, to see if you have full access to this publication.
Book Titles No access

Mikroklänge – Plinks

Zur Erkennbarkeit kürzester musikalischer Klangobjekte
Authors:
Publisher:
 2021


Bibliographic data

Copyright year
2021
ISBN-Print
978-3-8288-4588-6
ISBN-Online
978-3-8288-7651-4
Publisher
Nomos, Baden-Baden
Series
Wissenschaftliche Beiträge aus dem Tectum Verlag: Musikwissenschaft
Volume
15
Language
German
Pages
276
Product type
Book Titles

Table of contents

ChapterPages
  1. Titelei/Inhaltsverzeichnis No access Pages I - XXII
    1. 1 Einleitung No access
      1. 2.1 Historische Vorläufer der Plink-Forschung No access
      2. 2.2 Akustische Diskriminierungsleistungen bei Carl Stumpf No access
      3. 2.3 Verbesserung der Experimentalbedingungen im 20. Jahrhundert No access
      4. 2.4 Psychoakustische Untersuchungen No access
      1. 3.1 Variierende Zielsetzungen No access
      2. 3.2 Verlässlichkeit berichteter Schwellenwerte No access
      3. 3.3 Überlegungen zur Testpower No access
      4. 3.4 Das Kohortenmodell nach Marslen-Wilson No access
      5. 3.5 Nutzung kurzer Klangobjekte in der Neuen Musik No access
      6. 3.6 Künstlerisch-wissenschaftliche Perspektive No access
      1. 4.1 Timbre-Features zur Beschreibung klanglicher Eigenschaften No access
      2. 4.2 Mel-Frequency Cepstrum Coefficients No access
      3. 4.3 Musikinformatische Klassifikatoren No access
    2. 5 Zusammenfassung No access
    1. 6 Zielsetzungen No access
      1. 7.1 Rekonstruktion bestehender Versuchsmaterialien No access
      2. 7.2 Das „Matrjoschka-Prinzip“ der Stimulus-Konstruktion No access
      1. 8.1 Auswahl der Chance-corrected Agreement Coefficients No access
      2. 8.2 Urteilerübereinstimmung in der Stimulus-Höranalyse No access
      3. 8.3 Implikationen des Experten-Ratings für die erste Online-Studie No access
      1. 9.1 Ziele No access
      2. 9.2 Methode No access
        1. 9.3.1 Einflüsse von Extraktionszeitpunkt und Stimulusdauer No access
        2. 9.3.2 Analyse crossmodaler Variablen No access
        3. 9.3.3 Prädiktionsmodell (Conditional Inference Trees) No access
        4. 9.3.4 Extremgruppenvergleich No access
      3. 9.4 Zusammenfassung und Diskussion No access
      1. 10.1 Konstruktion neuer Stimulusmaterialien No access
      2. 10.2 Antwortverhalten im Experten-Rating No access
      3. 10.3 Implikationen des Experten-Ratings für Online-Studie II No access
      1. 11.1 Ziele No access
      2. 11.2 Methode No access
        1. 11.3.1 Häufigkeiten der (Teil-)Erkennungsleistungen No access
        2. 11.3.2 Signalentdeckungsparadigma No access
        3. 11.3.3 Prädiktionsmodell (Conditional Inference Trees) No access
      3. 11.4 Zusammenfassung No access
    2. 12 Abschließende Diskussion No access
  2. III Anhang No access Pages 183 - 184
  3. Literaturverzeichnis No access Pages 185 - 202
    1. Anhang A: Liste von in der Timbre-Analyse genutzten Signaldeskriptoren (psychoakustische low-level Features) No access
    2. Anhang B: Wiederbeschaffung der Stimulusquellen nach Krumhansl (2010) No access
    3. Anhang C: Strukturanalyse der Stimulusquellen für Online-Studie I No access
    4. Anhang D: Informed Consent No access
    5. Anhang E: Grundwahrheit der Arrangementbestandteile aus Online-Studie I No access
    6. Anhang F: Modelldeskriptionen Conditional Inference Trees Online-Sudie I No access
    7. Anhang G: Geprüfte Musikstücke und Auswahlkriterien in Vorstudie III (Auszug) No access
    8. Anhang H: SDT-Daten und Histogramme der Verteilung von d’ und c No access
    9. Anhang I: Modelldeskriptionen Conditional Inference Trees Online-Studie II No access
    10. Anhang J: Lebenslauf No access

Bibliography (226 entries)

  1. Literaturverzeichnis Open Google Scholar
  2. Abraham, O. S., & Brühl, L. J. (1898). Wahrnehmung kürzester Töne und Geräusche. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 18(1), 177–217. Open Google Scholar
  3. Addams, W., Pineda, A., Gomez, J., & Ferguson, S. (2009). Boom Boom Pow [Recorded by The Black Eyed Peas]. On The E.N.D. [CD]. Santa Monica, CA: Interscope. Open Google Scholar
  4. Adkins, A. L. B., & Epworth, P. (2010). Rolling in the deep [Recorded by Adele]. On 21 [CD]. New York: Columbia. Open Google Scholar
  5. Adler, S., Hudson, S., Isbell, J. D., McKagan, M. A., & Bailey, W. B. (1987). Sweet child o’ mine [Recorded by Guns n’ Roses]. On Appetite for destruction [CD]. Santa Monica, CA: Geffen. Open Google Scholar
  6. Alexander, R. A. (1990). A note on averaging correlations. Bulletin of the Psychonomic Society, 28(4), 335–336. doi:10.3758/bf03334037 Open Google Scholar
  7. Altman, D. G. (1991). Practical statistics for medical research. London: Chapman & Hall. Open Google Scholar
  8. American Psychological Association. (Ed.) (2015) APA dictionary of psychology (2nd ed.). Washington, DC: American Psychological Association. Open Google Scholar
  9. Ashley, R. (2008). Affective and perceptual responses to very brief musical stimuli. Open Google Scholar
  10. Paper presented at the International Conference on Music Perception and Cognition, Sapporo, Japan. Open Google Scholar
  11. Atwood, G. (1784). A treatise on the rectilinear motion and rotation of bodies; with a description of original experiments relative to the subject. Cambridge: University of Cambridge. Open Google Scholar
  12. Aucouturier, J.-J., & Bigand, E. (2013). Seven problems that keep MIR from attracting the interest of cognition and neuroscience. Journal of Intelligent Information Systems, 41(3), 483–497. Open Google Scholar
  13. Auerbach, F. (1879). Ueber die absolute Anzahl von Schwingungen, welche zur Erzeugung eines Tones erforderlich sind. Annalen der Physik, 242(4), 591–597. Open Google Scholar
  14. Bailes, F. (2010). Dynamic melody recognition: Distinctiveness and the role of musical expertise. Memory & Cognition, 38(5), 641–650. Open Google Scholar
  15. Bailey, C. D. (2010a). NanoSymph. On Immolation Ritual. St. Paul, MN: Innova Recordings. Open Google Scholar
  16. Bailey, C. D. (Producer). (2010b). NanoSymph. [Work description on bandcamp] Retrieved from https://christopherbailey.bandcamp.com/track/nanosymph Open Google Scholar
  17. Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and confirmatory. In G. R. Hancock, L. M. Stapleton, & R. O. Mueller (Eds.), Quantitative methods in the social sciences (pp. 98–122). New York & London: Routledge. Open Google Scholar
  18. Baniya, B. K., Lee, J., & Li, Z. N. (2004, October 5–8). Audio feature reduction and analysis for automatic music genre classification. Paper presented at the International Conference on Systems, Man and Cybernetics (SMC), San Diego, CA. Open Google Scholar
  19. Barnes, S., Edwards, B., Robinson, J., Rodgers, N., & Smith, W. (1998). Gettin’ jiggy wit’ it [Recorded by Will Smith]. On Big Willie style [CD]. New York: CBS. Open Google Scholar
  20. Belfi, A. M. (2019). Emotional valence and vividness of imagery predict aesthetic appeal in music. Psychomusicology: Music, Mind, and Brain, 29(2–3), 128–135. Open Google Scholar
  21. Benjamin, A. L. (2003). Hey Ya! [Recorded by Outkast]. On Speakerboxxx/The love below [CD]. Atlanta, GA: LaFace. Open Google Scholar
  22. Berryman, G., Buckland, J., Champion, W., & Martin, C. (2008). Viva la vida [Recorded by Coldplay]. On Viva la vida or death and all his friends [CD]. London: Parlophone. Open Google Scholar
  23. Bi, J. (2015). Sensory discrimination tests and measurements: Sensometrics in sensory evaluation. Hoboken, NJ: John Wiley & Sons. Open Google Scholar
  24. Bigand, E., Filipic, S., & Lalitte, P. (2005). The time course of emotional responses to music. Annals of the New York Academy of Sciences, 1060(1), 429–437. Open Google Scholar
  25. Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., & Dacquet, A. (2005). Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts. Cognition and Emotion, 19(8), 1113–1139. Open Google Scholar
  26. Billboard. (2016). Billboard year-end charts. Retrieved from https://www.billboard.com/charts/year-end Open Google Scholar
  27. Bittner, R., Tierney, S. M., Mauch, M., Cannam, C., & Bello, J. P. (2016). MedleyDB 2.0: New data and a system for sustainable data collection. Paper presented at the International Conference on Music Information Retrieval (ISMIR-16), New York. Open Google Scholar
  28. Bizley, J. K., & Cohen, Y. E. (2014). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693–707. doi:10.1038/nrn3565 Open Google Scholar
  29. Bortz, J. (2005). Statistik für Human-und Sozialwissenschaftler. Berlin: Springer. Open Google Scholar
  30. Bregman, A. (1990). Auditory scene analysis. Cambridge: MIT Press. Open Google Scholar
  31. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. London: Chapman & Hall. Open Google Scholar
  32. Brockhaus. (Ed.) (2006) Brockhaus Musik. Mannheim: Brockhaus. Open Google Scholar
  33. Brosche, G. (2002). Musikerhandschriften: Von Heinrich Schütz bis Wolfgang Rihm. Stuttgart: Reclam. Open Google Scholar
  34. Büdenbender, N., & Kreutz, G. (2016). Long-term representations of melodies in western listeners: Influences of familiarity, musical expertise, tempo and structure. Psychology of Music, 45(5), 665–681. Open Google Scholar
  35. Cabrera, A. (2017). CSoundQt (Version 0.9.5). Retrieved from https://github.com/CsoundQt/CsoundQt/releases/tag/0.9.5 Open Google Scholar
  36. Canales, J. (2010). A tenth of a second: A history. Chicago, IL: University of Chicago Press. Open Google Scholar
  37. Candès, E. J., Romberg, J. K., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223. Open Google Scholar
  38. Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: current directions and future challenges. Proceedings of the IEEE, 96(4), 668–696. Open Google Scholar
  39. Chang, K. K., Jang, J. S. R., & Iliopoulos, C. S. (2010). Music genre classification via compressive sampling. Paper presented at the 11th International Society for Music Information Retrieval Conference (ISMIR 2010), Utrecht, Netherlands. Open Google Scholar
  40. Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61. Open Google Scholar
  41. Chion, M. (1983). Guide des objets sonores: Pierre Schaeffer et la recherche musicale. Paris: Editions Buchet/Chastel. Open Google Scholar
  42. Cobain, K., Novoselic, K., & Grohl, D. (1991). Smells like teen spirit [Recorded by Nirvana]. On Nevermind [CD]. Santa Monica, CA: DGC. Open Google Scholar
  43. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: L. Erlbaum Associates. Open Google Scholar
  44. Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304–1312. Open Google Scholar
  45. Corbino, O. M. (1930). Problemi di elettro-acustica. L’energia elettrica, 1930(7), 503–506. Open Google Scholar
  46. Cutting, J. E. (1976). Auditory and linguistic processes in speech perception: Inferences from six fisuions in dichotic listening. Perception & Psychophysics, 83, 114–140. Open Google Scholar
  47. Cycling ’74. (2019). Max/MSP/Jitter (Version 8.1.1) [Computer software]. Open Google Scholar
  48. Dalla Bella, S., Peretz, I., & Aronoff, N. (2003). Time course of melody recognition: A gating paradigm study. Perception & Psychophysics, 65(7), 1019–1028. Open Google Scholar
  49. Daltrozzo, J., Tillmann, B., Platel, H., & Schön, D. (2009). Temporal aspects of the feeling of familiarity for music and the emergence of conceptual processing. Journal of Cognitive Neuroscience, 22(8), 1754–1769. Open Google Scholar
  50. Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366. doi:10.1109/tassp.1980.1163420 Open Google Scholar
  51. de Backer, W. (2011). Somebody that I used to know [Recorded by Gotye]. On Making Mirrors [CD]. Sydney: Eleven. Open Google Scholar
  52. de Veaux, R. D., Velleman, P. F., & Bock, D. E. (2005). Stats: Data and models. Boston, MA: Addison-Wesley. Open Google Scholar
  53. Dillard, T., & Najm, F. (2007). Low [Recorded by Flo Rida]. On Mail on sunday [CD]. Los Angeles: Atlantic. Open Google Scholar
  54. Divenyi, P. L., & Hirsh, I. J. (1974). Identification of temporal order in three-tone sequences. Journal of the Acoustical Society of America, 56(1), 144–151. Open Google Scholar
  55. Donoghue, J. R., & Collins, L. M. (1990). A note on the unbiased estimation of the intraclass correlation. Psychometrika, 55(1), 159–164. doi:10.1007/bf02294749 Open Google Scholar
  56. Doughty, J. M., & Garner, W. R. (1947). Pitch characteristics of short tones. Two kinds of pitch threshold. Journal of Experimental Psychology, 37(4), 351–365. Open Google Scholar
  57. Driedger, J., & Müller, M. (2014). TSM Toolbox: MATLAB implementations of time-scale modification algorithms. Paper presented at the International Conference on Digital Audio Effects (DAFx). Open Google Scholar
  58. Dylan, B. (1965). Mr. Tambourine Man. On Mr. Tambourine Man [Phonograph record]. New York: Columbia. Open Google Scholar
  59. Eberhard, M., & Kotterba, B. (1991). Der Wohlklang kurzzeitiger Klänge. Paper presented at the DAGA – 17. Jahrestagung für Akustik, Bochum. Open Google Scholar
  60. Eid, M., Gollwitzer, M., Schmitt, M. (2015). Statistik und Forschungsmethoden (4th ed.). Weinheim, Germany: Beltz. Open Google Scholar
  61. Exner, S. (1876). Zur Lehre von den Gehörsempfindungen. [Essay on hearing sensations]. Archiv für die gesamte Physiologie des Menschen und der Thiere, 13(1), 228–253. doi:10.1007/bf01628933 Open Google Scholar
  62. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. Open Google Scholar
  63. Faulkner, J. (2011). Random File Names [Computer software]. Retrieved from https://www.howtogeek.com/57661/stupid-geek-tricks-randomly-rename-every-file-in-a-directory/ Open Google Scholar
  64. Fastl, H., & Zwicker, E. (2007). Psychoacoustics: Facts and Models (3rd ed.). Berlin/Heidelberg: Springer. Open Google Scholar
  65. Feil, A. (1993). Metzler Musik Chronik: Vom frühen Mittelalter bis zur Gegenwart. Stuttgart: Metzler. Open Google Scholar
  66. Felder, D., Henley, D., & Frey, G. (1976). Hotel California [Recorded by The Eagles]. On Hotel California [Phonograph record]. Los Angeles: Asylum. Open Google Scholar
  67. Fisher, R. (1925). Statistical methods for research workers. Edinburgh: Oliver & Boyd. Open Google Scholar
  68. Fitzgerald, D. (2010). Harmonic/percussive separation using median filtering. Paper presented at the International Conference on Digital Audio Effects (DAFx), Graz, Austria. Open Google Scholar
  69. Fleiss, J. L. (1981). Statistical methods for rates and proportions. Hoboken, NJ: John Wiley & Sons. Open Google Scholar
  70. Floros, C. (2006). Neue Ohren für Neue Musik: Streifzüge durch die Musik des 20. und 21. Jahrhunderts. Mainz: Schott. Open Google Scholar
  71. Ford, V., & Marley, R. N. (1974). No woman, no cry [Recorded by Bob Marley and the Wailers]. On Natty dread [Phonograph record]. New York: Island. Open Google Scholar
  72. Fornasier, M., & Rauhut, H. (2011). Compressive sensing. In O. Scherzer (Ed.), Handbook of mathematical methods in imaging (pp. 187–228). New York: Springer. Open Google Scholar
  73. Fricke, J. P. (2005). Psychoakustik des Musikhörens: Was man von der Musik hört und wie man sie hört. In H. de la Motte-Haber & G. Rötter (Eds.), Handbuch der Systematischen Musikwissenschaft (Vol. 3). Laaber: Laaber. Open Google Scholar
  74. Gemelli, A., & Pastori, G. (1934). L’analisi elettroacustica del linguaggio. Milano, Italien: Società Editrice “Vita e Pensiero”. Open Google Scholar
  75. Genesis. (2007). Genesis Loudness Toolbox. Retrieved from http://genesis-acoustics.com/en/loudness_online–32.html Open Google Scholar
  76. Gjerdingen, R. O., & Perrott, D. (2008). Scanning the dial: The rapid recognition of music genres. Journal of New Music Research, 37(2), 93–100. doi:10.1080/09298210802479268 Open Google Scholar
  77. Gladwell, M. (2007). Blink: The power of thinking without thinking. New York, NY: Back Bay Books. Open Google Scholar
  78. Gorsuch, R. L. (2015). Factor analysis (Classic ed.). New York/London: Routledge. Open Google Scholar
  79. Gramann, K., & Schandry, R. (2009). Psychopysiologie: Körperliche Indikatoren psychischen Geschehens. Weinheim: Beltz. Open Google Scholar
  80. Gray, G. W. (1942). Phonemic microtomy: The minimum duration of perceptible speech sounds. Communications Monographs, 9(1), 75–90. doi:10.1080/03637754209390064 Open Google Scholar
  81. Green, D. M. (1961). Detection of auditory sinusoids of uncertain frequency. Journal of the Acoustical Society of America, 33, 897–903. Open Google Scholar
  82. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. Open Google Scholar
  83. Grekow, J. (2018). Audio features dedicated to the detection and tracking of arousal and valence in musical compositions. Journal of Information and Telecommunication. doi:10.1080/24751839.2018.1463749 Open Google Scholar
  84. Grosjean, F. (1980). Spoken word recognition processes and the gating paradigm. Perception & Psychophysics, 28(4), 267–283. Open Google Scholar
  85. Gwet, K. L. (2014). Handbook of inter-rater reliability (4th ed.). Gaithersburg, MD: Advanced Analytics, LLC. Open Google Scholar
  86. Gwet, K. L. (2015). AgreeStat [Computer software] (Version 2015.6). Retrieved from http://www.agreestat.com/ Open Google Scholar
  87. Haggerty, B., & Lewis, R. (2012). Thrift Shop [Recorded by Macklemore & Ryan Lewis]. On The Heist [CD]. Seattle, WA: Macklemore LLC. Open Google Scholar
  88. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Amsterdam, Netherlands: Elsevier. Open Google Scholar
  89. Harman, H. H., & Jones, W. H. (1966). Factor analysis by minimizing residuals (minres). Psychometrika, 31(3), 351–368. doi:10.1007/BF02289468 Open Google Scholar
  90. Harrison, P. M. C., & Müllensiefen, D. (2018). Development and validation of the computerised adaptive beat alignment test (CA-BAT). Scientific Reports, 8(1), 12395. Retrieved from https://doi.org/10.1038/s41598-018-30318-8. doi:10.1038/s41598-018-30318-8 Open Google Scholar
  91. Hastie, T., Tibshirani, T., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Heidelberg, Germany: Springer. Open Google Scholar
  92. Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated values of d′. Behavior Research Methods, Instruments, & Computers, 27(1), 46–51. Retrieved from https://doi.org/10.3758/BF03203619. doi:10.3758/bf03203619 Open Google Scholar
  93. Helmholtz, H. (1850). Ueber die Fortpflanzungsgeschwindigkeit der Nervenreizung. Annalen der Physik und Chemie, 79(1850), 329–330. Open Google Scholar
  94. Hendrix, J. (1967). Purple Haze. On Are you experienced? [Phonograph record]. London: Track Record. Open Google Scholar
  95. Hennequin, R., Khlif, A., Voituret, F., & Moussalam, M. (2019). Spleeter: A fast and state-of-the-art music source separation tool with pre-trained models. Paper presented at the Late-Breaking/Demo ISMIR 2019. Open Google Scholar
  96. Herbort, H. J. (1967). Das musikalische Weltdorf. Zeit. Retrieved from https://www.zeit.de/1967/49/das-musikalische-weltdorf Open Google Scholar
  97. Hewson, P. D., Evans, D. h., Clayton, A. C., & Mullen, L. J. (2000). Beautiful Day. On All that you can’t leave behind [CD]. New York: Island. Open Google Scholar
  98. Hirsch, A. (1865). Chronoskopische Versuche über die Geschwindigkeit der verschiedenen Sinneseindrücke und der Nerven-Leitung. Untersuchungen zur Naturlehre der Menschen und der Thiere, 1, 188–199. Open Google Scholar
  99. Hirsh, I. J. (1959). Auditory perception of temporal order. Journal of the Acoustical Society of America, 31(6), 759–767. Open Google Scholar
  100. Hoffmeyer-Zlotnik, J. H. P., Glemser, A., Heckel, C., von der Heyde, C., Quitt, H., Hanefeld, U., . . . Mohr, S. (2010). Statistik und Wissenschaft: Demographische Standards. Wiesbaden: Statistisches Bundesamt. Open Google Scholar
  101. Hoke, E. S., Ross, B., & Hoke, M. (1998). Auditory afterimage: Tonotopic representation in the auditory cortex. NeuroReport, 9(13). 3065–3068. Open Google Scholar
  102. Hothorn, T., Hornik, K., & Zeileis, A. (2006a). ctree: Conditional inference trees. Retrieved from https://cran.r-project.org/web/packages/partykit/vignettes/ctree.pdf Open Google Scholar
  103. Hothorn, T., Hornik, K., & Zeileis, A. (2006b). party: A laboratory for recursive partitioning. Retrieved from https://cran.rproject.org/web/packages/party/vignettes/party.pdf Open Google Scholar
  104. Hothorn, T., Hornik, K., & Zeileis, A. (2006c). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674. Open Google Scholar
  105. Hughes, J. W. (1946). The threshold of audition for short periods of stimulation. Proceedings of the Royal Society, B 133, 486–490. Open Google Scholar
  106. Huijgen, J., Dellacherie, D., Tillmann, B., Clément, S., Bigand, E., Dupont, S., & Samson, S. (2015). The feeling of familiarity for music in patients with a unilateral temporal lobe lesion: A gating study. Neuropsychologia, 77(2015), 313–320. Open Google Scholar
  107. Huq, A., Bello, J. P., & Rowe, R. (2010). Automated music emotion recognition: A systematic evaluation. Journal of New Music Research, 39(3), 227–244. doi:10.1080/09298215.2010.513733 Open Google Scholar
  108. Istók, E., Brattico, E., Jacobsen, T., Ritter, A., & Tervaniemi, M. (2013). ‚I love Rock ‚n’ Roll’: Music genre preference modulates brain responses to music. Biological Psychology, 92(2013), 142–151. Open Google Scholar
  109. Jagger, M., & Richards, K. (1965). (I can’t get no) Satisfaction [Recorded by The Rolling Stones]. On Out of our heads [Phonograph record]. London: London Records. Open Google Scholar
  110. Joder, C., Essid, S., & Richard, G. (2009). Temporal integration for audio classification with application to musical instrument classification. IEEE Transactions on Audio, Speech, and Language Processing, 17(1), 174–186. Open Google Scholar
  111. Johnson, N. L., & Kotz, S. (1970). Discrete distributions: Distributions in statistics. New York: Wiley. Open Google Scholar
  112. Jost, E. (1970). Über den Einfluss der Darbietungsdauer auf die Identifikation von instrumentalen Klangfarben. Jahrbuch des Staatlichen Instituts für Musikforschung Preussischer Kulturbesitz, 1969, 83–92. Open Google Scholar
  113. Kass, G. J. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2), 119–127. Open Google Scholar
  114. Kelly, T., & Steinberg, B. (1984). Like a virgin [Recorded by Madonna]. On Like a virgin [CD]. New York: Sire. Open Google Scholar
  115. Kiedis, A., Smith, C. G., Balzary, M. P., & Frusciante, J. A. (1999). Californication [Recorded by The Red Hot Chili Peppers]. On Californication [CD]. Los Angeles: Warner Bros. Open Google Scholar
  116. Kittel, V. (2015). „Williams Mix“ – Eine Kooperation John Cages und David Tudors am Black Mountain College. Collaborative Platform by Freie Universität Berlin & Hamburger Bahnhof – Museum für Gegenwart Berlin. Retrieved from https://black-mountain-research.com/2015/03/04/williams-mix/ Open Google Scholar
  117. Köhler, W. (1929). Gestalt psychology. New York: Liveright. Open Google Scholar
  118. Kreidler, J. (Producer). (2008a). COIT: Calculated objects in time. [Online pamphlet] Retrieved from http://www.kreidler-net.de/theorie/kreidler__coit.pdf Open Google Scholar
  119. Kreidler, J. (Producer). (2008b). Product placements. [Music Composition] Retrieved from http://www.kreidler-net.de/productplacements.html Open Google Scholar
  120. Kreidler, J. (Producer). (2008c). Product Placements: Komponieren und Urheberrecht. [Online Pamphlet] Retrieved from http://kreidler-net.de/theorie/kreidler__product_placements.pdf Open Google Scholar
  121. Kreidler, J. (Producer). (2019). Johannes Kreidler GEMA-Aktion product placements Doku. [Online video] Retrieved from https://youtu.be/TRbsM2MXP20 Open Google Scholar
  122. Krumhansl, C. (2010). Plink: “Thin slices” of music. Music Perception: An Interdisciplinary Journal, 27(5), 337–354. doi:10.1525/mp.2010.27.5.337 Open Google Scholar
  123. Kutinyok, G. (2014). Compressed Sensing. Mitteilungen der DMV, 22(2014), 1–10. Retrieved from https://www.math.tu-berlin.de/fileadmin/i26_fg-kutyniok/Kutyniok/Papers/CompressedSensingDMV.pdf. Open Google Scholar
  124. Landis, J. R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. Open Google Scholar
  125. Lange, E. B., & Frieler, K. (2018). Challenges and opportunities of predicting musical emotions with perceptual and automatized features. Music Perception: An Interdisciplinary Journal, 36(2), 217–242. Open Google Scholar
  126. Lartillot, O., Toiviainen, P., & Eerola, T. (2013). A Matlab toolbox for music information retrieval. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. Decker (Eds.), Data analysis: Machine learning and applications (pp. 261–268). Berlin: Springer. Open Google Scholar
  127. Layman, S. L., & Dowling, W. J. (2018). Did you hear the vocalist? Differences in processing between short segments of familiar and unfamiliar music. Music Perception, 53(5), 607–621. doi:10.1525/mp.2018.35.5.607 Open Google Scholar
  128. Leimbach, G. (1912). Eine Methode zur Untersuchung der Wahrnehmung kürzester Töne. Annalen der Physik, 344(11), 251–254. doi:10.1002/andp.19123441110 Open Google Scholar
  129. Leiner, D. J. (2016). SoSci Survey (Computer software) (Version 2.6.00). Retrieved from https://www.soscisurvey.de Open Google Scholar
  130. Lennon, J. (1971). Imagine. On Imagine [Phonograph record]. London: Apple Records. Open Google Scholar
  131. Lennon, J., & McCartney, P. (1965). Help! [Recorded by The Beatles]. On Help! [Phonograph record]. London: EMI. Open Google Scholar
  132. Lerch, A. (2008). Software-based extraction of objective parameters from music performances. (PhD Doctoral Dissertation), Technische Universität Berlin, Berlin. Open Google Scholar
  133. Lerch, A. (2012). An introduction to audio content analysis: Applications in signal processing and music informatics. Hoboken, NJ: John Wiley & Sons. Open Google Scholar
  134. Logan, B. (2000). Mel frequency cepstral coefficients for music modelling. Paper presented at the International Symposium on Music Information Retrieval (ISMIR), Plymouth. http://ismir2000.ismir.net/papers/logan_paper.pdf Open Google Scholar
  135. Lyu, B., Choi, H. S., Marslen-Wilson, W. D., Clarke, A., Randall, B., & Tyler, R. K. (2019). Neural dynamics of semantic composition. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 21318–21327. Open Google Scholar
  136. Mace, S. T., Wagoner, C. L., Teachout, D. J., & Hodges, D. A. (2010). Genre identification of very brief musical excerpts. Psychology of Music, 40(1), 112–128. doi:10.1177/0305735610391347 Open Google Scholar
  137. Mach, E. (1873). Physikalische Notizen. [Physical notes]. Lotos: Zeitschrift für Naturwissenschaften, 23, 145–147. Open Google Scholar
  138. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: a user’s guide (2nd ed.). Mahwah, NJ/London: Lawrence Erlbaum Associates. Open Google Scholar
  139. Makowski, D., Najberg, H., Simko, V., & Epskamp, S. (2019). Package ‚psycho‘: Efficient and publishing-oriented workflow fpr psychological science (Version 0.4.91). Retrieved from https://github.com/neuropsychology/psycho.R Open Google Scholar
  140. Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1987), 71–102. Open Google Scholar
  141. Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access during ward recognition in continuous speech. Cognitive Psychology, 10(1978), 29–63. Open Google Scholar
  142. Martin, M. (1999). …Baby one more time [Recorded by Britney Spears]. On …Baby one more time [CD]. New York: Jive. Open Google Scholar
  143. Martius, G. (1891). Über die Reactionszeit und Perceptionsdauer der Klänge. [Essay on the reaction time and perceptual duration of sounds]. Philosophische Studien, 6, 394–416. Open Google Scholar
  144. Martius, G. (1892). Ueber den Einfluss der Intensität der Reize auf die Reactionszeit der Klänge. Philosophische Studien, 7, 469–486. Open Google Scholar
  145. MatLab. (2016). Retrieved from https://de.mathworks.com/products/matlab.html Open Google Scholar
  146. McKinney, M. F., & Breebaart, J. (2003). Features for audio and music classification. Paper presented at the 4th International Conference on Music Information Retrieval (ISMIR), Baltimore, MD, 26–30 October 2003. Open Google Scholar
  147. Mercury, F. (1975). Bohemian rhapsody [Recorded by Queen]. On A night at the opera [Phonograph record]. London: EMI. Open Google Scholar
  148. Miller, G. A. (1948). The perception of short bursts of noise. Journal of the Acoustical Society of America, 20, 160–170. Open Google Scholar
  149. Moore, B. C., Glasberg, B. R., & Baer, T. (1997). A model for the prediction of thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45(4), 224–240. Open Google Scholar
  150. Moosbrugger, H., & Kelava, A. (2012). Testtheorie und Fragebogenkonstruktion. Berlin, Heidelberg: Springer. Open Google Scholar
  151. Mühlhans, J. (2017). Musik und Angst - Untersuchung einer starken negativen Emotion in der Musik. (PhD Doctoral Dissertation), Universität Wien, Wien. Open Google Scholar
  152. Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLOS ONE, 9(2). doi:10.1371/journal.pone.0089642 Open Google Scholar
  153. Müllensiefen, D., & Siedenburg, D. (2017). Modeling timbre similarity of short music clips. Frontiers in Psychology, 8(639). doi:10.3389/fpsyg.2017.00639 Open Google Scholar
  154. Müller, M. (2007). Information retrieval for music and motion. Heidelberg: Springer. Open Google Scholar
  155. Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications. Heidelberg: Springer. Open Google Scholar
  156. Nattiez, J.-J. (Ed.) (1997). »Dear Pierre«, »Cher John« – Pierre Boulez, John Cage: Der Briefwechsel. Hamburg: Europäische Verlagsanstalt. Open Google Scholar
  157. Niemierko, R. (2015). Regressionsbäume anhand des CART-Algorithmus und diverse fortgeschrittene Methoden: Veranschaulicht durch eine empirische Analyse US-amerikanischer Verbrechensraten. München: Grin. Open Google Scholar
  158. Olkin, I., & Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. The Annals of Mathematical Statistics, 201–211. doi:10.1214/aoms/1177706717 Open Google Scholar
  159. Ong, A. (2019). Die Ähnlichkeit von Tonclustern: Zur Hörwahrnehmung eines prototypischen Klangs in Neuer Musik. Berlin: Berliner Wissenschaftsverlag. Open Google Scholar
  160. Page, J., & Plant, R. (1971). Stairway to heaven [Recorded by Led Zeppelin]. On Led Zeppelin Respect [Phonograph record]. New York: Atlantic. Open Google Scholar
  161. Pallier, C. (2002). Computing discriminability (A’, d’) and bias with the R software. Retrieved from http://www.pallier.org/computing-discriminability-a-d-and-bias-with-r.html Open Google Scholar
  162. Perrott, D., & Gjerdingen, R. O. (1999). Scanning the dial: An exploration of factors in the identification of musical style. Paper presented at the Meeting of the Society for Music Perception and Cognition, Evanston, IL. Open Google Scholar
  163. Perry, K., Gottwald, L., Martin, M., & Dennis, C. (2008). I kissed a girl [Recorded by Katy Perry]. On One of the boys [CD]. Los Angeles: Capitol. Open Google Scholar
  164. Perry, S., Cain, J., & Schon, N. (1981). Don’t stop believin’ [Recorded by The Eagles]. On Escape [CD]. New York: Columbia. Open Google Scholar
  165. Platz, F., Kopiez, R., & Lehmann, M. (2012). Statistische Poweranalyse als Weg zu einer „kraftvolleren“ Musikpsychologie im 21. Jahrhundert. Jahrbuch Musikpsychologie, 22(2012), 169–179. Open Google Scholar
  166. Plazak, J., & Huron, D. (2011). The first three seconds: Listener knowledge gained from brief musical excerpts. Musicae Scientiae, 15(1), 29–44. doi:10.1177/1029864910391455 Open Google Scholar
  167. Powter, D. (2005). Bad Day. [Maxi-Single CD]. Los Angeles: Warner Bros. Open Google Scholar
  168. R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/ Open Google Scholar
  169. Ramone, T., & Ramone, D. D. (1976). Blitzkrieg Bop [Recorded by The Ramones]. On Ramones [Phonograph record]. New York: Sire. Open Google Scholar
  170. Redding, O. (1967). Respect. On I never loved a man the way I love you [Recorded by Aretha Franklin] [Phonograph record]. New York: Atlantic. Open Google Scholar
  171. Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84, 1236–1256. doi:10.1037/0022–3514.84.6.1236 Open Google Scholar
  172. Reuter, C., & Czedik-Eysenberg, I. (2016). Timbre Feature Extractor [unpublished computer software]. Wien: Universität Wien. Open Google Scholar
  173. Revelle, W. (2018). psych: Procedures for Personality and Psychological Research (Version 1.8.4). Evanston, IL: Northwestern University. Retrieved from https://CRAN.R-project.org/package=psych Open Google Scholar
  174. Revelle, W. (2018a). Exploratory factor analysis using MinRes (minimum residual) as well as EFA by principal axis, weighted least squares or maximum likelihood. Retrieved from http://www.bibme.org/citation-guide/apa/website/ Open Google Scholar
  175. Roads, C. (2001). Microsound. Cambridge/London: The MIT Press. Open Google Scholar
  176. Robinson, K., & Patterson, R. D. (1995a). The duration required to identify the instrument, the octave, or the pitch chroma of a musical note. Music Perception: An Interdisciplinary Journal, 13(1), 1–15. Open Google Scholar
  177. Robinson, K., & Patterson, R. D. (1995b). The stimulus duration required to identify vowels, their octave, and their pitch chroma. Journal of the Acoustical Society of America, 98(4), 1858–1865. Open Google Scholar
  178. Ronson, M., Hernandez, P. G., Lawrence, P., & Bhasker, J. (2014). Uptown Funk [Recorded by Mark Ronson ft. Bruno Mars]. On Uptown Special [CD]. New York: RCA. Open Google Scholar
  179. Rosenblith, W. A., Miller, G. A., Egan, J. P.., Hirsh, I. J., & Thomas, G. J. (1947). An auditory afterimage? Science, 106(2755). 333–335. Open Google Scholar
  180. Roush, R. G. (1947). Tone burst generator: Universal electronic switch initiates short bursts of tone for code intelligibility research. Electronics, 7(20), 92–96. Open Google Scholar
  181. Russell, J. A. (1980). A circumplex model of affect. Journal of personality and social psychology, 39(6), 1161–1178. Open Google Scholar
  182. Schaeffer, P. (1966). Traité des objets musicaux: Essai interdisciplines. Paris: Editions du Seuil. Open Google Scholar
  183. Schaeffer, P. (1977). Morphologie et typologie des objets sonores. Paris: Editions du Seuil. Open Google Scholar
  184. Schellenberg, E. G., Iverson, P., & McKinnon, M. (1999). Name that tune: Identifying popular recordings from brief excerpts. Psychonomic Bulletin & Review, 6(4), 641- 646. doi:10.3758/bf03212973 Open Google Scholar
  185. Schmitz, R., & Ure, B. (2016). Tasten, Töne und Tumulte: Alles, was Sie über Musik nicht wissen. München: Siedler Verlag. Open Google Scholar
  186. Schreiner, F. (2012). Dramatische Entwicklungen im Williams Mix. kunsttexte.de, 4(2012), 1–8. Retrieved from https://edoc.hu-berlin.de/bitstream/handle/18452/7533/schreiner.pdf Open Google Scholar
  187. Schubert, E., & Wolfe, J. (2006). Does timbral brightness scale with frequency and spectral centroid? Acta acustica united with acustica, 92(5), 820–825. Open Google Scholar
  188. Sebert, K., Gottwald, L., & Levin, B. J. (2008). Tik Tok [Recorded by Ke$ha]. On Animal [CD]. New York: RCA. Open Google Scholar
  189. Sethares, W. A. (2004). Tuning, timbre, spectrum, scale (2nd ed.). Berlin: Springer. Open Google Scholar
  190. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379–423. Open Google Scholar
  191. Siedenburg, K., Fujinaga, I., & McAdams, S. (2016). A comparison of approaches to timbre descriptors in music information retrieval and music psychology. Journal of New Music Research, 45(1), 27–41. Open Google Scholar
  192. Simon, P. (1970). Bridge over troubled water [Recorded by Simon & Garfunkel]. On Bridge over troubled water [Phonograph record]. New York: Columbia. Open Google Scholar
  193. Skidmore, S. T., & Thompson, B. (2011). Choosing the best correction formula for the Pearson r2 effect size. The Journal of Experimental Education, 79(3), 257–278. doi:10.1080/00220973.2010.484437 Open Google Scholar
  194. Smith, S., Eriksen, M. S., Hermansen, T. E., Lind, E., & Knowles, B. (2006). Irreplaceable [Recorded by Beyoncé Knowles]. On B’Day [CD]. New York: Columbia. Open Google Scholar
  195. Spreckelmeyer, K. N., Kutas, M., Urbach, T., Altenmüller, E., & Münte, T. F. (2009). Neural processing of vocal emotion and identity. Brain and Cognition, 69(1), 121–126. Open Google Scholar
  196. Steinberg Media Technologies. (2017). Cubase: Advanced Music Production System (Version 9.5). Hamburg: Steinberg Media Technologies. Open Google Scholar
  197. Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. Psychological Review, 43(5), 185–190. Open Google Scholar
  198. Stockhausen, K. (1969). Hymnen [2 Langspielplatten]. Berlin: Deutsche Grammophon. Open Google Scholar
  199. Strasser, H., & Weber, C. (1999). On the asymptotic theory of permutation statistics. Mathematical Methods of Statistics, 8, 220–250. Open Google Scholar
  200. Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods, 14(4), 323–348. Open Google Scholar
  201. Strummer, J., & Jones, M. (1979). London Calling [Recorded by The Clash]. On London Calling [Phonograph record]. New York: CBS. Open Google Scholar
  202. Stumpf, C. (1891). Götz Martius: Über die Reaktionszeit und Perceptionsdauer der Klänge [Rezension] Wundts Philos. Studien, VI. 3. 394–415. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 2, 230–232. Open Google Scholar
  203. Stumpf, C. (1910). Beobachtungen über Kombinationstöne. Beiträge zur Akustik und Musikwissenschaft, 5, 1–142. Open Google Scholar
  204. Stumpf, C. (1926). Die Sprachlaute: Experimentell-phonetische Untersuchungen nebst einem Anhang über Instrumentalklänge. Berlin: Springer. Open Google Scholar
  205. Sturm, B., & Collins, N. (2014). The Kiki-Bouba Challenge. Paper presented at the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan. Open Google Scholar
  206. Suen, C. Y., & Beddoes, M. P. (1972). Discrimination of vowel sounds of very short duration. Perception & Psychophysics, 11(6), 417–419. Open Google Scholar
  207. Sumner, G. M. T. (1983). Every breath you take [Recorded by The Police]. On Synchronicity [CD]. Santa Monica, CA: A&M. Open Google Scholar
  208. Temperton, R. (1984). Thriller [Recorded by Michael Jackson]. On Thriller [CD]. Los Angeles: Epic. Open Google Scholar
  209. Tenney, J. (1988). Meta-Hodos and Meta Meta-Hodos: A phenomenology of 20th century musical materials and an approach to the study of form (2nd ed.). Lebanon, NH: Frog Peak Music. Open Google Scholar
  210. The jamovi project. (2019). jamovi (Version 0.9). Retrieved from https://www.jamovi.org Open Google Scholar
  211. Thiele, B., & Weiss, G. D. (1967). What a wonderful world [Recorded by Louis Open Google Scholar
  212. Armstrong]. On What a wonderful world [Single phonograph record]. New York: ABC. Open Google Scholar
  213. Thiemichen, S. (2009). Unverzerrtes rekursives Partitionieren: Ein empirischer Vergleich von CHAID und CTREE. Bachelor-Thesis, LMU München. (BSc Bachelor’s Thesis), Ludwig-Maximilians-Universität München, München. Open Google Scholar
  214. Thiesen, F. C., Kopiez, R., Reuter, C., & Czedik-Eysenberg, I. (2019). A snippet in a snippet: Development of the matryoshka principle for the construction of very short musical stimuli (plinks). Musicae Scientiae, 23(1), 1–15. doi:10.1177/1029864918820212 Open Google Scholar
  215. Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on speech and audio processing, 10(5), 293–302. doi:10.1109/tsa.2002.800560 Open Google Scholar
  216. Tzanetakis, G., Essl, G., & Cook, P. (2001). Automatic musical genre classification of audio signals. Paper presented at the 2nd International Society for Music Information Retrieval Conference (ISMIR 2010), Bloomington, IN. Open Google Scholar
  217. van Noorden, L. P. A. S. (1975). Temporal coherences in the perception of tone sequences (PhD Unpublished doctoral dissertation), Eindhoven University of Technology, Open Google Scholar
  218. Vercoe, B. (1986). The public Csound reference manual. Cambridge, MA: The Massachussetts Institute of Technology. Open Google Scholar
  219. von Kries, J. A., & Auerbach, F. (1877). Die Zeitdauer einfachster psychischer Vorgänge. Archiv für Physiologie(1877), 297–378. Open Google Scholar
  220. Williams, P. (2013). Happy. On Girl [CD]. New York: Columbia. Open Google Scholar
  221. Winehouse, A. (2006). Rehab. On Back to black [CD]. New York: Island. Open Google Scholar
  222. Winckel, F. (1960). Phänomene des musikalischen Hörens: Ästhetisch-naturwissenschaftliche Betrachtungen. Berlin und Wunsiedel: Max Hesses Verlag. Open Google Scholar
  223. Wirtz, M., & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität. Göttingen: Hogrefe. Open Google Scholar
  224. Zwicker, E. (1970). Masking and psychological excitation as consequences of the ear’s frequency analysis. In R. Plomp & G. F. Smoorenburg (Eds.), Frequency Analysis and Periodicity Detection in Hearing (pp. 376–396). Leiden: Sijthoff. Open Google Scholar
  225. Zwicker, E. (1982). Psychoakustik. Berlin: Springer. Open Google Scholar
  226. Zwicker, E., & Feldtkeller, R. (1967). Das Ohr als Nachrichtenempfänger (2. Aufl.). Stuttgart: S. Hirzel Verlag. Open Google Scholar

Similar publications

from the topics "Musicology General"
Cover of book: Musical Traces of a Lost Past
Edited Book No access
Dilek Kızıldağ, Martin Greve
Musical Traces of a Lost Past
Cover of book: Non*binär!
Edited Book No access
Cornelia Bartsch, Anna Schürmer, Jonas Spieker
Non*binär!
Cover of book: Poesie und Mystik
Edited Book No access
Philip Feldhordt, Matthias Geuting, Stefan Keym
Poesie und Mystik
Cover of book: Facetten der Teilhabe an Musikkultur
Book Titles No access
Hsin-Rui Lin
Facetten der Teilhabe an Musikkultur