Code Capital
A Sociotechnical Framework to Understand the Implications of Artificially Intelligent Systems from Design to Deployment- Autor:innen:
- Verlag:
- 2022
Zusammenfassung
Um die vielfältigen Wirkungsdimensionen von Künstlicher Intelligenz zu verstehen, dient das innovative Konzept des Codekapitals als Analyse soziotechnischer Faktoren, die diese Systeme prägen. Es verbindet die Evolution verschiedener Kapitalformen mit der Technologiewissenschaft und ermöglicht so eine Analyse entlang von vier Dimensionen – Conception, Operations, Data und Environment. Zwei Fallstudien über Gesichtserkennungtechnologie und synthetische Spracherzeugung zeigen, wie Codekapital interdisziplinäre Akteur:innen befähigt, die Auswirkungen angewandter KI zu antizipieren und zu steuern.
Dr. Léa Steinacker ist Forscherin, Journalistin und Unternehmerin an der Schnittstelle zwischen menschlichen und maschinellen Systemen.
Schlagworte
Publikation durchsuchen
Bibliographische Angaben
- Copyrightjahr
- 2022
- ISBN-Print
- 978-3-8487-8890-3
- ISBN-Online
- 978-3-7489-2945-1
- Verlag
- Nomos, Baden-Baden
- Sprache
- Englisch
- Seiten
- 239
- Produkttyp
- Monographie
Inhaltsverzeichnis
- Titelei/Inhaltsverzeichnis Kein Zugriff Seiten 1 - 22
- 1.1.1 Calls for Action Kein Zugriff
- 1.1.2 Institutional Responses Kein Zugriff
- 1.2 Objectives Kein Zugriff
- 1.3 Contributions Kein Zugriff
- 1.4.1 Methodology Kein Zugriff
- 1.4.2 Structure Kein Zugriff
- 1.5 Conclusion Kein Zugriff
- 2.1 Introduction Kein Zugriff
- 2.2 A Brief History of AI Kein Zugriff
- 2.3.1 Classifications and Predictions Kein Zugriff
- 2.3.2 Rankings and Recommendations Kein Zugriff
- 2.3.3 Generation and Alteration Kein Zugriff
- 2.4 Contextualizing Central Issues Kein Zugriff
- 2.5 Conclusion Kein Zugriff
- 3.1 Introduction Kein Zugriff
- 3.2.1 Technology as Trajectory Kein Zugriff
- 3.2.2.1 Actor-Network-Theory Kein Zugriff
- 3.2.2.2 Large Technical Systems Kein Zugriff
- 3.3.1 Material features Kein Zugriff
- 3.3.2 Constitutive Entanglement Kein Zugriff
- 3.4.1 Relevant actors Kein Zugriff
- 3.4.2 Material features Kein Zugriff
- 3.4.3 Sociomaterial practice and structures Kein Zugriff
- 3.4.4 External forces Kein Zugriff
- 3.5 Conclusion Kein Zugriff
- 4.1 Introduction Kein Zugriff
- 4.2.1 Money and Goods Kein Zugriff
- 4.2.2 People and Labor Kein Zugriff
- 4.2.3 Intangibles and Disputes Kein Zugriff
- 4.3.1 Interpersonal Phenomena Kein Zugriff
- 4.3.2 Debate Kein Zugriff
- 4.4.1 The What: Commodifying Knowledge Kein Zugriff
- 4.4.2 The How: Elevating Digital Technologies Kein Zugriff
- 4.4.3 The Why: Surveilling Others Kein Zugriff
- 4.5 Discussion Kein Zugriff
- 4.6 Conclusion Kein Zugriff
- 5.1 Introduction Kein Zugriff
- 5.2 Code Capital: The Concept Kein Zugriff
- 5.3.1.1 Sensegiving Actors Kein Zugriff
- 5.3.1.2 Narratives Kein Zugriff
- 5.3.1.3 Investments and Expected Returns Kein Zugriff
- 5.3.2.1 Model Infrastructure Kein Zugriff
- 5.3.2.2 User Interface Kein Zugriff
- 5.3.2.2 Device Kein Zugriff
- 5.3.3.1 Collection Kein Zugriff
- 5.3.3.2 Pre-Processing Kein Zugriff
- 5.3.3.3 Ethical Concerns Kein Zugriff
- 5.3.4.1 Sensemaking Actors Kein Zugriff
- 5.3.4.2 Social Acceptance Kein Zugriff
- 5.3.4.3 Regulatory Boundaries Kein Zugriff
- 5.4 Discussion Kein Zugriff
- 5.5 Conclusion Kein Zugriff
- 6.1.1 Facial Recognition Technology and its Global Use Kein Zugriff
- 6.1.2 Issues of Concern: Bias, Accuracy, Privacy, and Abuse Kein Zugriff
- 6.1.3 Interaction with the Public Kein Zugriff
- 6.2.1 Sensegiving Actors Kein Zugriff
- 6.2.2 Narratives Kein Zugriff
- 6.2.3 Investment and Expected Return Kein Zugriff
- 6.3.1.1 Open-source Set-up Kein Zugriff
- 6.3.1.2 Detection vs Recognition Kein Zugriff
- 6.3.2.1 Accuracy Kein Zugriff
- 6.3.2.2 User privacy Kein Zugriff
- 6.3.2.3 Abuse Kein Zugriff
- 6.4.1 Collection Kein Zugriff
- 6.4.2 Processing Kein Zugriff
- 6.5.1.1 Surveillance Kein Zugriff
- 6.5.1.2 Public acceptance Kein Zugriff
- 6.5.2 Regulatory Boundaries Kein Zugriff
- 6.6 Discussion Kein Zugriff
- 6.7 Conclusion Kein Zugriff
- 7.1.1 Text-to-Speech Synthesis Kein Zugriff
- 7.1.2.1 Automation Kein Zugriff
- 7.1.2.2 Authenticity Kein Zugriff
- 7.1.2.3 Participation Kein Zugriff
- 7.1.2.4 Intimacy Kein Zugriff
- 7.2.1 Sensegiving Actors Kein Zugriff
- 7.2.2.1 Trust Kein Zugriff
- 7.2.2.2 Revenue Diversification Kein Zugriff
- 7.2.3.1 Funding Kein Zugriff
- 7.2.3.2 Business Model Kein Zugriff
- 7.3 Operations Kein Zugriff
- 7.3.1 Model Architecture Kein Zugriff
- 7.3.2 Evaluation Kein Zugriff
- 7.3.3 User Interface Kein Zugriff
- 7.4.1 Collection Kein Zugriff
- 7.4.2 Pre-Processing Kein Zugriff
- 7.4.3 Storage Kein Zugriff
- 7.5.1 Sensemaking Actors Kein Zugriff
- 7.5.2 Regulatory Boundaries Kein Zugriff
- 7.6 Discussion Kein Zugriff
- 7.7 Conclusion Kein Zugriff
- 8.1 Summary Kein Zugriff
- 8.2 Limitations Kein Zugriff
- 8.3.1.1 Accumulation Kein Zugriff
- 8.3.1.2 Reproducibility Kein Zugriff
- 8.3.1.3 Conversion Kein Zugriff
- 8.3.2 Practical Applications Kein Zugriff
- 8.4 Outlook for Further Research Kein Zugriff
- 8.5 Concluding Remarks Kein Zugriff
- References Kein Zugriff Seiten 199 - 237
- Appendix Kein Zugriff Seiten 238 - 239
Literaturverzeichnis (649 Einträge)
Es wurden keine Treffer gefunden. Versuchen Sie einen anderen Begriff.
- § 12 BGB - Einzelnorm. (n.d.). Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/bgb/__12.html Google Scholar öffnen doi.org/10.5771/9783748929451
- § 22 KunstUrhG - Einzelnorm. (n.d.). Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/kunsturhg/__22.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Abdi, H., Valentin, D., Edelman, B., & O’Toole, A. J. (1995). More about the difference between men and women: Evidence from linear neural networks and the principal-component approach. Perception, 24(5), 539–562. Google Scholar öffnen doi.org/10.5771/9783748929451
- Act on Copyright and Related Rights (Urheberrechtsgesetz – UrhG). (n.d.). Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/englisch_urhg/englisch_urhg.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Adam, A. (2006). Artificial knowing: Gender and the thinking machine. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Adams, R., & McIntyre, N. (2020, August 13). England A-level downgrades hit pupils from disadvantaged areas hardest. The Guardian. http://www.theguardian.com/education/2020/aug/13/england-a-level-downgrades-hit-pupils-from-disadvantaged-areas-hardest Google Scholar öffnen doi.org/10.5771/9783748929451
- Adobe. (2017, October 21). #ProjectCloak: Adobe MAX 2017 [Video]. YouTube. https://www.youtube.com/watch?v=TzBZWBht02I Google Scholar öffnen doi.org/10.5771/9783748929451
- Adomavicius, G., Bockstedt, J. C., Curley, S. P., & Zhang, J. (2018). Effects of online recommendations on consumers’ willingness to pay. Information Systems Research, 29(1), 84–102. Google Scholar öffnen doi.org/10.5771/9783748929451
- Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. Google Scholar öffnen doi.org/10.5771/9783748929451
- AFP. (2019, September 4). Smile-to-pay: Chinese shoppers turn to facial payment technology. The Guardian. https://www.theguardian.com/world/2019/sep/04/smile-to-pay-chinese-shoppers-turn-to-facial-payment-technology Google Scholar öffnen doi.org/10.5771/9783748929451
- Agarwal, S. (2021, March 11). India’s new social media law spells trouble for tech giants. Fast Company. https://www.fastcompany.com/90613579/india-social-media-rules-twitter-facebook-free-speech Google Scholar öffnen doi.org/10.5771/9783748929451
- Aguiar, L., & Waldfogel, J. (2018). Platforms, promotion, and product discovery: Evidence from spotify playlists (NBER Working Papers 24713). National Bureau of Economic Research. https://economics.ucdavis.edu/events/papers/515Waldfogel.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- AI Ethics Lab. (2020). TOOLBOX: Dynamics of AI Principles. AI ETHICS LAB. https://aiethicslab.com/big-picture/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Ajder, H. (2019, June 16). The ethics of deepfakes aren’t always black and white. The Next Web. https://thenextweb.com/podium/2019/06/16/the-ethics-of-deepfakes-arent-always-black-and-white/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Akrich, M. (1992). The de-scription of Technical Objects. In W. E. Bijker & J. Law (Eds.), Shaping Technology, building society (pp. 205–224). MIT Press. https://www.scribd.com/document/389890486/The-de-scription-of-Technical-Objects-Madeleine-Akrich Google Scholar öffnen doi.org/10.5771/9783748929451
- Akrich, M., & Latour, B. (1992). A Summary of a Convenient Vocabulary for the Semiotics of Human and Nonhuman Assemblies. In Shaping Technology, Building Society. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Alexander, C. P. (1983, May 30). The New Economy. Time. http://content.time.com/time/subscriber/article/0,33009,926013-1,00.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Allyn, B. (2020, June 10). Amazon Halts Police Use Of Its Facial Recognition Technology. NPR. https://www.npr.org/2020/06/10/874418013/amazon-halts-police-use-of-its-facial-recognition-technology Google Scholar öffnen doi.org/10.5771/9783748929451
- Alper, M. (2017a). Giving voice: Mobile communication, disability, and inequality. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Alper, M. (2017b, July 21). Talking Like a “Princess”: What Speaking Machines Say About Human Biases. The New Inquiry. https://thenewinquiry.com/blog/talking-like-a-princess-what-speaking-machines-say-about-human-biases/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Ananny, M. (2016). Toward an ethics of algorithms: Convening, observation, probability, and timeliness. Science, Technology, & Human Values, 41(1), 93–117. Google Scholar öffnen doi.org/10.5771/9783748929451
- Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., & Lalmas, M. (2020). Algorithmic effects on the diversity of consumption on spotify. Proceedings of The Web Conference 2020, 2155–2165. Google Scholar öffnen doi.org/10.5771/9783748929451
- Anderson, C. (2012). The Impact of Social Media on Lodging Performance. Cornell Hospitality Report, 12(15), 6–11. Google Scholar öffnen doi.org/10.5771/9783748929451
- Anderson, CW. (2013). Towards a sociology of computational and algorithmic journalism. New Media & Society, 15(7), 1005–1021. https://doi.org/10.1177/1461444812465137 Google Scholar öffnen doi.org/10.5771/9783748929451
- Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016, May 23). Machine Bias. ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing Google Scholar öffnen doi.org/10.5771/9783748929451
- Anonymous. (2021). Capitol Map. http://capitolmap.com/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. Google Scholar öffnen doi.org/10.5771/9783748929451
- Arrieta-Ibarra, I., Goff, L., Jiménez-Hernández, D., Lanier, J., & Weyl, E. G. (2018). Should We Treat Data as Labor? Moving beyond" Free". Aea Papers and Proceedings, 108, 38–42. Google Scholar öffnen doi.org/10.5771/9783748929451
- Art. 4 GDPR – Definitions, European Commission (2016). https://gdpr-info.eu/art-4-gdpr/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Art. 5 GDPR – Principles relating to processing of personal data, European Commission (2016). https://gdpr-info.eu/art-5-gdpr/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Art. 6 GDPR – Lawfulness of processing, European Commission (2016). https://gdpr-info.eu/art-6-gdpr/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Art. 12 GDPR – Transparent information, communication and modalities for the exercise of the rights of the data subject, European Commission (2016). https://gdpr-info.eu/art-12-gdpr/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Art. 25 GDPR – Data protection by design and by default, European Commission (2016). https://gdpr-info.eu/art-25-gdpr/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Aru, O. E., & Gozie, I. (2013). Facial Verification Technology for Use In Atm Transactions. American Journal of Engineering Research, 2(5), 188–193. Google Scholar öffnen doi.org/10.5771/9783748929451
- Audio Advertising—Austria. (n.d.). Statista Market Forecast. Retrieved January 20, 2021, from https://www.statista.com/outlook/20200/128/audio-advertising/austria?currency=eur Google Scholar öffnen doi.org/10.5771/9783748929451
- Audio Advertising—Germany. (n.d.). Statista Market Forecast. Retrieved January 20, 2021, from https://www.statista.com/outlook/20200/137/audio-advertising/germany Google Scholar öffnen doi.org/10.5771/9783748929451
- Audio Advertising—Switzerland. (n.d.). Statista Market Forecast. Retrieved January 20, 2021, from https://www.statista.com/outlook/20200/155/audio-advertising/switzerland Google Scholar öffnen doi.org/10.5771/9783748929451
- Azzi, C., & Ehrenberg, R. (1975). Household allocation of time and church attendance. Journal of Political Economy, 83(1), 27–56. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bai, X., Cambazoglu, B. B., Gullo, F., Mantrach, A., & Silvestri, F. (2017). Exploiting search history of users for news personalization. Information Sciences, 385, 125–137. Google Scholar öffnen doi.org/10.5771/9783748929451
- Baker, J. (2016, August 22). Germany eyes facial recognition tech for airports, train stations. Ars Technica. https://arstechnica.com/tech-policy/2016/08/germany-facial-recognition-tech-airports-train-stations/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Baker, P., & Potts, A. (2013). ‘Why do white people have thin lips?’ Google and the perpetuation of stereotypes via auto-complete search forms. Critical Discourse Studies, 10(2), 187–204. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, N.J., Prentice-Hall. Google Scholar öffnen doi.org/10.5771/9783748929451
- Banfield, E. (1961). Political Influence. The Free Press of Glencoe. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barad, K. (2003). Posthumanist performativity: Toward an understanding of how matter comes to matter. Signs: Journal of Women in Culture and Society, 28(3), 801–831. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Duke University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barassi, V. (2019). Datafied citizens in the age of coerced digital participation. Sociological Research Online, 24(3), 414–429. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barfield, W. (2018). Liability for autonomous and artificially intelligent robots. Paladyn, Journal of Behavioral Robotics, 9(1), 193–203. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. Calif. L. Rev., 104(3), 671–732. Google Scholar öffnen doi.org/10.5771/9783748929451
- Baron, J. N., & Hannan, M. T. (1994). The impact of economics on contemporary sociology. Journal of Economic Literature, 32(3), 1111–1146. Google Scholar öffnen doi.org/10.5771/9783748929451
- Barr, A. (2015, July 1). Google Mistakenly Tags Black People as ‘Gorillas,’ Showing Limits of Algorithms. WSJ. https://blogs.wsj.com/digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-algorithms/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Bates, J. (2009). Airport Security: CCTV Takes Off. International Airport Review, 13(4), 21–24. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bathaee, Y. (2017). The artificial intelligence black box and the failure of intent and causation. Harv. JL & Tech., 31(2), 889–937. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bayerische Landeszentrale für neue Medien. (2020). Online-Audio-Monitor 2020. Bayerische Landeszentrale für neue Medien. https://www.online-audio-monitor.de/wp-content/uploads/Bericht-OAM_2020_010920_FINAL_V3.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Becker, G. (1962). Investment in human capital: A theoretical analysis. Journal of Political Economy, 70(5), 9–49. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bell, D. (1976). The coming of the post-industrial society. The Educational Forum, 40(4), 574–579. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bell, D. A. (1995). Who’s afraid of critical race theory. U. Ill. L. Rev., 893. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bellman, R. (1978). An introduction to artificial intelligence: Can computers think? Boyd & Fraser Publishing Company. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big??. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. Google Scholar öffnen doi.org/10.5771/9783748929451
- Benitez-Quiroz, C. F., Srinivasan, R., Feng, Q., Wang, Y., & Martinez, A. M. (2017). EmotioNet Challenge: Recognition of facial expressions of emotion in the wild. ArXiv Preprint:1703.01210 [Cs]. http://arxiv.org/abs/1703.01210 Google Scholar öffnen doi.org/10.5771/9783748929451
- Benjamin, R. (2019). Race after technology: Abolitionist tools for the new jim code. Polity. Google Scholar öffnen doi.org/10.5771/9783748929451
- Berdux, S. (2015). “Eine kempelensche Sprechmaschine”. New insights in speaking machines in the late 18th and early 19th centuries. HSCR@ INTERSPEECH, 50–51. https://www.isca-speech.org/archive/hscr_2015/papers/hs15_050.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Berg, F., Koelbel, J. F., & Rigobon, R. (2019). Aggregate confusion: The divergence of ESG ratings. MIT Sloan School of Management. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bergmann, S. (1999). Publicity Rights in the United States and Germany: A Comparative Analysis. Loyola of Los Angeles Entertainment Law Journal, 19(3), 45. Google Scholar öffnen doi.org/10.5771/9783748929451
- Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for experimental research: Amazon.com’s Mechanical Turk. Political Analysis, 20(3), 351–368. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bialek, C. (2020, July 29). Audio-Markt: Nachfrage nach Podcasts und Hörbüchern wächst in der Coronazeit rasant. Handelsblatt. https://www.handelsblatt.com/unternehmen/it-medien/audio-markt-nachfrage-nach-podcasts-und-hoerbuechern-waechst-in-der-coronazeit-rasant/26047506.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Big Brother Watch UK Team. (2019, August 16). Facial Recognition ‘Epidemic’ in the UK – Big Brother Watch. https://bigbrotherwatch.org.uk/all-media/facial-recognition-epidemic-in-the-uk/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Bijker, W. E., Hughes, T. P., & Pinch, T. (Eds.). (1987). The Social construction of technological systems: New directions in the sociology and history of technology. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bimber, B. (1990). Karl Marx and the Three Faces of Technological Determinism. Social Studies of Science, 20(2), 333–351. JSTOR. https://doi.org/10.1177/030631290020002006 Google Scholar öffnen doi.org/10.5771/9783748929451
- Birch, K., Cochrane, D., & Ward, C. (2021). Data as asset? The measurement, governance, and valuation of digital personal data by Big Tech. Big Data & Society, 8(1), 1–15. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bodén, L. (2013). Seeing red? The agency of computer software in the production and management of students’ school absences. International Journal of Qualitative Studies in Education, 26(9), 1117–1131. Google Scholar öffnen doi.org/10.5771/9783748929451
- Böhm-Bawerk, E. von. (1890). Capital and interest. Macmillan. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bollier, D. (2010). The promise and peril of big data. Aspen Institute. https://www.aspeninstitute.org/publications/promise-peril-big-data/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in Neural Information Processing Systems, 29, 4349–4357. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bonham, J. (2021, January 25). Their faces should be published. Every last one of them should be charged, tried and convicted of sedition. #FacesOfTheRiot https://t.co/YCABCnCMGv [Tweet]. @b0nham_J. https://twitter.com/b0nham_J/status/1353711411139137537 Google Scholar öffnen doi.org/10.5771/9783748929451
- Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bourdieu, P. (1983). Ökonomisches Kapital, kulturelles Kapital, soziales Kapital. In R. Kreckel (Ed.), Soziale Ungleichheiten (pp. 183–198). Schwartz. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bourdieu, P. (1986). The Forms of Capital. In J. Richardson (Ed.), Handbook of Theory and Reseqarch for the Sociology of Education (pp. 241–258). Greenwood. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bourdieu, P. (2015). Die verborgenen Mechanismen der Macht (M. Steinrücke, Ed.). VSA Verlag. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bowles, S., & Gintis, H. (2002). Social Capital And Community Governance. The Economic Journal, 112(483), 419–436. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bowyer, K. W. (2004). Face recognition technology: Security versus privacy. IEEE Technology and Society Magazine, 23(1), 9–19. Google Scholar öffnen doi.org/10.5771/9783748929451
- Boyarskaya, M., Olteanu, A., & Crawford, K. (2020). Overcoming Failures of Imagination in AI Infused System Development and Deployment. ArXiv:2011.13416 [Cs]. http://arxiv.org/abs/2011.13416 Google Scholar öffnen doi.org/10.5771/9783748929451
- boyd, danah, & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878 Google Scholar öffnen doi.org/10.5771/9783748929451
- Braca, A. (2017). An investigation into Bias in Facial Recognition using Learning Algorithms [Master’s Thesis]. National College of Ireland. Google Scholar öffnen doi.org/10.5771/9783748929451
- Brey, P., & Søraker, J. H. (2009). Philosophy of computing and information technology. In A. Meijers (Ed.), Philosophy of technology and engineering sciences (pp. 1341–1407). Elsevier. Google Scholar öffnen doi.org/10.5771/9783748929451
- Brivot, M., & Gendron, Y. (2011). Beyond panopticism: On the ramifications of surveillance in a contemporary professional setting. Accounting, Organizations and Society, 36(3), 135–155. https://doi.org/10.1016/j.aos.2011.03.003 Google Scholar öffnen doi.org/10.5771/9783748929451
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. ArXiv Preprint ArXiv:2005.14165. http://arxiv.org/abs/2005.14165 Google Scholar öffnen doi.org/10.5771/9783748929451
- Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., Khlaaf, H., Yang, J., Toner, H., & Fong, R. (2020). Toward trustworthy AI development: Mechanisms for supporting verifiable claims. ArXiv Preprint ArXiv:2004.07213. Google Scholar öffnen doi.org/10.5771/9783748929451
- Brunelli, R., & Poggio, T. (1993). Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10), 1042–1052. Google Scholar öffnen doi.org/10.5771/9783748929451
- Brynjolfsson, E., Eggers, F., & Gannamaneni, A. (2018). Using Massive Online Choice Experiments to Measure Changes in Well-being. National Bureau of Economic Research Working Paper Series. https://www.nber.org/papers/w24514.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Buchanan, R. A. (2005). History of Technology. In Encyclopedia Britannica: History of technology. https://www.britannica.com/technology/history-of-technology Google Scholar öffnen doi.org/10.5771/9783748929451
- Buckley, O., & Nurse, J. R. (2019). The language of biometrics: Analysing public perceptions. Journal of Information Security and Applications, 47, 112–119. Google Scholar öffnen doi.org/10.5771/9783748929451
- Bundesrepublik Deutschland. (n.d.-a). Art 1 GG - Einzelnorm. Grundgesetz. Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/gg/art_1.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Bundesrepublik Deutschland. (n.d.-b). Art 2 GG - Einzelnorm. Grundgesetz. Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/gg/art_2.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Bundesverband Digitale Wirtschaft. (2020, December 2). Online-Audio-Umsätze in Deutschland verdoppeln sich innerhalb von nur drei Jahren / Podcast-Umsätze steigen 2020 von neun auf 14 Millionen Euro. BDVW News. https://www.bvdw.org/der-bvdw/news/detail/artikel/online-audio-umsaetze-in-deutschland-verdoppeln-sich-innerhalb-von-nur-drei-jahren-podcast-umsaetze/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Bunge, M. (1999). Social science under debate: A philosophical perspective. University of Toronto Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Conference on Fairness, Accountability and Transparency, 81, 77–91. Google Scholar öffnen doi.org/10.5771/9783748929451
- Burgess, M. (2019, June 17). Inside the urgent battle to stop UK police using facial recognition. Wired UK. https://www.wired.co.uk/article/uk-police-facial-recognition Google Scholar öffnen doi.org/10.5771/9783748929451
- Burns, T. (Ed.). (1969). Industrial Man: Selected Readings. Penguin. https://trove.nla.gov.au/version/43718768 Google Scholar öffnen doi.org/10.5771/9783748929451
- Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512. Google Scholar öffnen doi.org/10.5771/9783748929451
- Buschak, D. M. (1999). Increases in natural speech production following experience with synthetic speech. Journal of Special Education Technology, 14(2), 44–53. Google Scholar öffnen doi.org/10.5771/9783748929451
- Butler, J. (1997). The psychic life of power: Theories in subjection. Stanford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Butler, J. (2021). Excitable speech: A politics of the performative. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183–186. Google Scholar öffnen doi.org/10.5771/9783748929451
- Callaway, E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, 588(7837), 203–204. https://doi.org/10.1038/d41586-020-03348-4 Google Scholar öffnen doi.org/10.5771/9783748929451
- Callon, M. (1987). Society in the Making: The Sudy of Technology as a Tool for Sociological Analysis. In W. E. Bijker, T. Hughes, & T. Pinch (Eds.), The Social Construction of Technological Systems (pp. 83–103). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Cameron, D. (2021, January 11). Every Deleted Parler Post, Many With Users’ Location Data, Has Been Archived. Gizmodo. https://gizmodo.com/every-deleted-parler-post-many-with-users-location-dat-1846032466 Google Scholar öffnen doi.org/10.5771/9783748929451
- Campbell-Dollaghan, K. (2016, November 14). The Algorithmic Democracy. Co.Design. https://www.fastcodesign.com/3065582/the-algorithmic-democracyeng Google Scholar öffnen doi.org/10.5771/9783748929451
- Campbell-Wilson, G. (2020, April 29). RIP Lyrebird AI—which alternatives should I try? Replica Blog. https://blog.replicastudios.com/lyrebird-alternatives/?gclid=CjwKCAiAl4WABhAJEiwATUnEF47s26mvFyibN2kWb6VLjjYY9aALrRqJv8W15sB6moCioASnZnKV5hoCnJAQAvD_BwE Google Scholar öffnen doi.org/10.5771/9783748929451
- Cannan, E. (1921). Early History of the Term Capital. The Quarterly Journal of Economics, 35(3), 469–481. JSTOR. https://doi.org/10.2307/1884097 Google Scholar öffnen doi.org/10.5771/9783748929451
- Carstensen, T. (2021a). Parler Videos. Capitol Terrorist Attack. https://www.tommycarstensen.com/terrorism/index.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Carstensen, T. (2021b). @ParlerVideos I am an anti-fascist! I tweet mostly in English and Danish USDK I block anonymous profiles and those using ad hominem arguments ?. @hologram_stan. https://twitter.com/carstensenpol Google Scholar öffnen doi.org/10.5771/9783748929451
- Cassell, J., & Bickmore, T. (2000). External manifestations of trustworthiness in the interface. Communications of the ACM, 43(12), 50–56. Google Scholar öffnen doi.org/10.5771/9783748929451
- Castells, M. (2011). The rise of the network society (Vol. 12). John Wiley & Sons. Google Scholar öffnen doi.org/10.5771/9783748929451
- Cave, S., Craig, C., Dihal, K., Dillon, S., Montgomery, J., Singler, B., & Taylor, L. (2018). Portrayals and perceptions of AI and why they matter. The Royal Society. https://royalsociety.org/-/media/policy/projects/ai-narratives/AI-narratives-workshop-findings.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Cave, S., Dihal, K., & Dillon, S. (2020). AI narratives: A history of imaginative thinking about intelligent machines. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Center, J. L. (1998). Practical application of facial recognition: Automated facial recognition access control system. In H. Wechsler, P. Philips, V. Bruce, F. F. Soulié, & T. S. Huang (Eds.), Face Recognition (Vol. 163, pp. 402–411). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Char, D. S., Abràmoff, M. D., & Feudtner, C. (2020). Identifying ethical considerations for machine learning healthcare applications. The American Journal of Bioethics, 20(11), 7–17. Google Scholar öffnen doi.org/10.5771/9783748929451
- Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—Addressing ethical challenges. The New England Journal of Medicine, 378(11), 981–983. Google Scholar öffnen doi.org/10.5771/9783748929451
- Charniak, E. (1985). Introduction to artificial intelligence. Pearson Education India. Google Scholar öffnen doi.org/10.5771/9783748929451
- Chavan, M. (2009). The balanced scorecard: A new challenge. Journal of Management Development, 28(5), 393–406. Google Scholar öffnen doi.org/10.5771/9783748929451
- Chawla, R. (2019). Deepfakes: How a pervert shook the world. International Journal of Advance Research and Development, 4(6), 4–8. Google Scholar öffnen doi.org/10.5771/9783748929451
- Chee, F. Y. (2020, January 16). EU mulls five-year ban on facial recognition tech in public areas. Reuters. https://www.reuters.com/article/uk-eu-ai-idINKBN1ZF2QNeng Google Scholar öffnen doi.org/10.5771/9783748929451
- Chen, A. (2019, March 25). Tech journalist Clive Thompson examines the people behind the software changing the world. The Verge. https://www.theverge.com/2019/3/25/18277279/clive-thompson-coders-silicon-valley-software-engineers-programming-interview-books Google Scholar öffnen doi.org/10.5771/9783748929451
- Cheney-Lippold, J. (2016). Jus Algoritmi: How the National Security Agency Remade Citizenship. International Journal of Communication, 10, 1721–1742. Google Scholar öffnen doi.org/10.5771/9783748929451
- Chitika Insights. (2013). The value of Google result positioning. Chitika Insights. Google Scholar öffnen doi.org/10.5771/9783748929451
- Chu, X., Ilyas, I. F., Krishnan, S., & Wang, J. (2016). Data cleaning: Overview and emerging challenges. Proceedings of the 2016 International Conference on Management of Data, 2201–2206. Google Scholar öffnen doi.org/10.5771/9783748929451
- Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annu. Rev. Psychol., 55(1), 591–621. Google Scholar öffnen doi.org/10.5771/9783748929451
- Citron, D. K., & Pasquale, F. (2014). The Scored Society: Due Process for Automated Predictions. WASHINGTON LAW REVIEW, 89(1), 1–33. Google Scholar öffnen doi.org/10.5771/9783748929451
- Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19. Google Scholar öffnen doi.org/10.5771/9783748929451
- Clark, J. (1886). Capital and its earnings. Publications of the American Economic Association, 3(2), 9–69. Google Scholar öffnen doi.org/10.5771/9783748929451
- Clarke, R. (2019). Principles and business processes for responsible AI. Computer Law & Security Review, 35(4), 410–422. Google Scholar öffnen doi.org/10.5771/9783748929451
- Cohen, A. J., & Harcourt, G. C. (2003). Retrospectives Whatever Happened to the Cambridge Capital Theory Controversies? Journal of Economic Perspectives, 17(1), 199–214. https://doi.org/10.1257/089533003321165010 Google Scholar öffnen doi.org/10.5771/9783748929451
- Cohen, G. A. (1978). Karl Marx’s Theory of History. Clarendon Press. https://press.princeton.edu/titles/320.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Cohen, J. E. (2017). Law for the Platform Economy. UCDL Rev., 51, 133–204. Google Scholar öffnen doi.org/10.5771/9783748929451
- Cohen, Z. C., & Wild, W. (2021, April 28). Internal emails reveal Capitol security officials dismissed warnings about troubling social media posts before January 6 riot. CNN. https://www.cnn.com/2021/04/28/politics/capitol-security-emails-social-media-riot/index.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Coleman, J. (1988). Social Capital in the Creation of Human Capital. American Journal of Sociology, 94(1). https://www.jstor.org/stable/2780243?seq=1#metadata_info_tab_contents Google Scholar öffnen doi.org/10.5771/9783748929451
- Collins, H. (1981). Stages in the Empirical Programme of Relativism. Social Studies of Science, 11 (1), 3–10. Google Scholar öffnen doi.org/10.5771/9783748929451
- Corrado, C. A., Hulten, C. R., & Sichel, D. E. (2006). Intangible Capital and Economic Growth. National Bureau of Economic Research Working Paper Series, 11948. https://doi.org/10.3386/w11948 Google Scholar öffnen doi.org/10.5771/9783748929451
- Crawford, K. (2021). The Atlas of AI. Yale University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Creator of FacesOfTheRiot. (2021, February 23). Personal Communication [Personal communication]. Google Scholar öffnen doi.org/10.5771/9783748929451
- Danaher, J. (2016). The Threat of Algocracy: Reality, Resistance and Accommodation. Philosophy & Technology, 29(3), 245–268. https://doi.org/10.1007/s13347-015-0211-1 Google Scholar öffnen doi.org/10.5771/9783748929451
- Data Ethics Commission. (2019). Opinion of the Data Ethics Commission. Bundesministerium der Justiz und für Verbraucherschutz. https://www.bmjv.de/SharedDocs/Downloads/DE/Themen/Fokusthemen/Gutachten_DEK_EN.pdf?__blob=publicationFile&v=2 Google Scholar öffnen doi.org/10.5771/9783748929451
- Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated experiments on ad privacy settings. Proceedings on Privacy Enhancing Technologies, 2015(1), 92–112. Google Scholar öffnen doi.org/10.5771/9783748929451
- Davis, K. (2012). Ethics of Big Data: Balancing risk and innovation. O’Reilly Media. Google Scholar öffnen doi.org/10.5771/9783748929451
- Dawson, M., & Foster, J. B. (1996). Virtual Capitalism: The Political Economy of the Information Highway. Monthly Review, 48(3), 40–58. Google Scholar öffnen doi.org/10.5771/9783748929451
- De Swarte, T., Boufous, O., & Escalle, P. (2019). Artificial intelligence, ethics and human values: The cases of military drones and companion robots. Artificial Life and Robotics, 24(3), 291–296. Google Scholar öffnen doi.org/10.5771/9783748929451
- De Visser, E. J., Monfort, S. S., McKendrick, R., Smith, M. A., McKnight, P. E., Krueger, F., & Parasuraman, R. (2016). Almost human: Anthropomorphism increases trust resilience in cognitive agents. Journal of Experimental Psychology: Applied, 22(3), 331–349. Google Scholar öffnen doi.org/10.5771/9783748929451
- DeepMind. (2020, November 30). AlphaFold: A solution to a 50-year-old grand challenge in biology. DeepMind Blog. /blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology Google Scholar öffnen doi.org/10.5771/9783748929451
- del Rio, J. S., Moctezuma, D., Conde, C., de Diego, I. M., & Cabello, E. (2016). Automated border control e-gates and facial recognition systems. Computers & Security, 62, 49–72. Google Scholar öffnen doi.org/10.5771/9783748929451
- Delcker, J. (2018, September 13). Big Brother in Berlin. POLITICO. https://www.politico.eu/article/berlin-big-brother-state-surveillance-facial-recognition-technology/eng Google Scholar öffnen doi.org/10.5771/9783748929451
- Delcker, J. (2021, May 6). Opinion: Trump’s Facebook ban could have global impact. Deutsche Welle. https://www.dw.com/en/opinion-trumps-facebook-ban-could-have-global-impact/a-57442639 Google Scholar öffnen doi.org/10.5771/9783748929451
- Dencik, L., Hintz, A., & Cable, J. (2016). Towards data justice? The ambiguity of anti-surveillance resistance in political activism. Big Data & Society, 3(2), 1–12. Google Scholar öffnen doi.org/10.5771/9783748929451
- DeSanctis, G., & Poole, M. S. (1994). Capturing the complexity in advanced technology use: Adaptive structuration theory. Organization Science, 5(2), 121–147. Google Scholar öffnen doi.org/10.5771/9783748929451
- Desmedt, Y., Hou, S., & Quisquater, J.-J. (1998). Audio and optical cryptography. International Conference on the Theory and Application of Cryptology and Information Security, 392–404. Google Scholar öffnen doi.org/10.5771/9783748929451
- Diakopoulos, N., & Johnson, D. (2019). Anticipating and Addressing the Ethical Implications of Deepfakes in the Context of Elections (SSRN Scholarly Paper ID 3474183). Social Science Research Network. https://doi.org/10.2139/ssrn.3474183eng Google Scholar öffnen doi.org/10.5771/9783748929451
- Digital News Initiative. (n.d.). Digital News Initiative. Retrieved January 8, 2021, from https://newsinitiative.withgoogle.com/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Dignum, V. (2021). AI — the people and places that make, use and manage it. Nature, 593(7860), 499–500. https://doi.org/10.1038/d41586-021-01397-x Google Scholar öffnen doi.org/10.5771/9783748929451
- Dijkstra, J. J., Liebrand, W. B. G., & Timminga, E. (1998). Persuasiveness of expert systems. Behavior & Information Technology, 17(3), 155–163. Google Scholar öffnen doi.org/10.5771/9783748929451
- DiMaggio, P. (1979). Reproduction in Education, Society and Culture. By Pierre Bourdieu, Jean-Claude Passeron and Richard Nice; Outline of a Theory of Practice. By Pierre Bourdieu and Richard Nice. American Journal of Sociology, 84(6), 1460–1474. Google Scholar öffnen doi.org/10.5771/9783748929451
- DNI Final Impact Report. (2020). Digital News Initiative. https://newsinitiative.withgoogle.com/dnifund/documents/46/DNI_Fund_Impact_Report_v3.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- DNI Terms and Conditions. (n.d.). Digital News Initiative. Retrieved January 8, 2021, from https://newsinitiative.withgoogle.com/dnifund/documents/22/DNI-App-TC-02082018.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Donde, J. (2017, September 21). Self-Driving Cars Will Kill People. Who Decides Who Dies? WIRED. https://www.wired.com/story/self-driving-cars-will-kill-people-who-decides-who-dies/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Doyle, A. (2011). Revisiting the synopticon: Reconsidering Mathiesen’s ‘The Viewer Society’ in the age of Web 2.0. Theoretical Criminology, 15(3), 293–299. Google Scholar öffnen doi.org/10.5771/9783748929451
- Drucker, P. F. (1992, September). The New Society of Organizations. Harvard Business Review. https://hbr.org/1992/09/the-new-society-of-organizations Google Scholar öffnen doi.org/10.5771/9783748929451
- D’Souza, D. (2002). The virtue of prosperity: Finding values in an age of technoaffluence. Simon and Schuster. Google Scholar öffnen doi.org/10.5771/9783748929451
- Dudley, H., & Tarnoczy, T. H. (1950). The speaking machine of Wolfgang von Kempelen. The Journal of the Acoustical Society of America, 22(2), 151–166. Google Scholar öffnen doi.org/10.5771/9783748929451
- Durkin, E. (2019, May 30). New York tenants fight as landlords embrace facial recognition cameras. The Guardian. https://www.theguardian.com/cities/2019/may/29/new-york-facial-recognition-cameras-apartment-complex Google Scholar öffnen doi.org/10.5771/9783748929451
- Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). The role of trust in automation reliance. International Journal of Human-Computer Studies, 58(6), 697–718. Google Scholar öffnen doi.org/10.5771/9783748929451
- Economist. (2017, May 6). Data is giving rise to a new economy. The Economist. https://www.economist.com/briefing/2017/05/06/data-is-giving-rise-to-a-new-economy Google Scholar öffnen doi.org/10.5771/9783748929451
- Eitel-Porter, R. (2021). Beyond the promise: Implementing ethical AI. AI and Ethics, 1(1), 73–80. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ellul, J. (1904). The Technological Society. Vintage Book. Google Scholar öffnen doi.org/10.5771/9783748929451
- Epstein, R., & Robertson, R. (2015). The search engine manipulation effect (SEME) and its possible impact on the outcomes of elections. Proceedings of the National Academy of Sciences, 112, E4512–E4521. Google Scholar öffnen doi.org/10.5771/9783748929451
- Espinoza, J., & Murgia, M. (2020, February 11). EU backs away from call for blanket ban on facial recognition tech. Financial Times. https://www.ft.com/content/ff798944-4cc6-11ea-95a0-43d18ec715f5 Google Scholar öffnen doi.org/10.5771/9783748929451
- EU High-Level Expert Group on AI. (2019). Ethics guidelines for trustworthy AI. European Commission. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai Google Scholar öffnen doi.org/10.5771/9783748929451
- Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin’s Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- European Commission. (2021a). Announcement: Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). https://ec.europa.eu/newsroom/dae/items/709090 Google Scholar öffnen doi.org/10.5771/9783748929451
- European Commission. (2021b). Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). https://ec.europa.eu/newsroom/dae/items/709090 Google Scholar öffnen doi.org/10.5771/9783748929451
- Evans, M. P. (2007). Analysing Google rankings through search engine optimization data. Internet Research, 17(1), 21–37. Google Scholar öffnen doi.org/10.5771/9783748929451
- Evelyn, K. (2021, January 8). Capitol attack: The five people who died. The Guardian. http://www.theguardian.com/us-news/2021/jan/08/capitol-attack-police-officer-five-deaths Google Scholar öffnen doi.org/10.5771/9783748929451
- Eyal, N. (2014). Hooked: How to Build Habit-Forming Products (R. Hoover, Ed.). Portfolio. Google Scholar öffnen doi.org/10.5771/9783748929451
- Faces of the Riot. (2021). https://facesoftheriot.com/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Fairfield, J. A. (2021). Runaway Technology: Can Law Keep Up? Cambridge University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fanta, A. (2018, September 26). The Publishers’ Patron. Tech Transparency Project. https://www.techtransparencyproject.org/articles/publishers-patron-how-googles-news-initiative-redefining-journalism Google Scholar öffnen doi.org/10.5771/9783748929451
- Faulkner, P., & Runde, J. (2012). On sociomateriality. Materiality and Organizing: Social Interaction in a Technological World, 49–66. Google Scholar öffnen doi.org/10.5771/9783748929451
- Faulkner, Philip, & Runde, J. (2011). The social, the material, and the ontology of non-material technological objects. European Group for Organizational Studies (EGOS) Colloquium, Gothenburg, 985, 4–8. Google Scholar öffnen doi.org/10.5771/9783748929451
- Federal Buerau of Investigation. (2021). FBI Most Wanted: Capitol Violence. Federal Bureau of Investigation. https://www.fbi.gov/wanted/capitol-violence Google Scholar öffnen doi.org/10.5771/9783748929451
- Federal Trade Commission. (2020, January 28). You Don’t Say: An FTC Workshop on Voice Cloning Technologies. https://www.ftc.gov/news-events/events-calendar/you-dont-say-ftc-workshop-voice-cloning-technologies Google Scholar öffnen doi.org/10.5771/9783748929451
- Ferry, G. (2015). Ada Lovelace: In search of “a calculus of the nervous system.” The Lancet, 386(10005), 1731. https://doi.org/10.1016/S0140-6736(15)00686-8 Google Scholar öffnen doi.org/10.5771/9783748929451
- Fetter, F. (1937). Capital. In E. R. A. Seligman & A. Johnson (Eds.), Encyclopedia Of The Social Sciences Vol-III (1937) (pp. 187–190). Macmillan. http://archive.org/details/in.ernet.dli.2015.14950 Google Scholar öffnen doi.org/10.5771/9783748929451
- Fischer, C. (1994). America Calling. University of California Press. https://www.ucpress.edu/book/9780520086470/america-calling Google Scholar öffnen doi.org/10.5771/9783748929451
- Fisher, I. (1904). Precedents of Defining Capital. Quarterly Journal of Economics, 18(3), 386–408. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fisher, I. (1906). The nature of capital and income. Macmillan. http://archive.org/details/natureofcapitali00fishuoft Google Scholar öffnen doi.org/10.5771/9783748929451
- Fiss, P. C., & Zajac, E. J. (2006). The symbolic management of strategic change: Sensegiving via framing and decoupling. Academy of Management Journal, 49(6), 1173–1193. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fletcher, J. (2018). Deepfakes, artificial intelligence, and some kind of dystopia: The new faces of online post-fact performance. Theatre Journal, 70(4), 455–471. Google Scholar öffnen doi.org/10.5771/9783748929451
- Floridi, L. (2014). The fourth revolution: How the infosphere is reshaping human reality. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Floridi, L. (2019). Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1(6), 261–262. Google Scholar öffnen doi.org/10.5771/9783748929451
- Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681–694. Google Scholar öffnen doi.org/10.5771/9783748929451
- Forster, Y., Naujoks, F., & Neukum, A. (2017). Increasing anthropomorphism and trust in automated driving functions by adding speech output. 2017 IEEE Intelligent Vehicles Symposium (IV), 365–372. Google Scholar öffnen doi.org/10.5771/9783748929451
- Foucault, M. (1977). Discipline and punish: The birth of the prison. Penguin Books. Google Scholar öffnen doi.org/10.5771/9783748929451
- Foucault, M. (1984). On the genealogy of ethics: An overview of work in progress. The Foucault Reader, 340, 372. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fouquet, H. (2019, October 3). France Set to Roll Out Nationwide Facial Recognition ID Program. Bloomberg. https://www.bloomberg.com/news/articles/2019-10-03/french-liberte-tested-by-nationwide-facial-recognition-id-plan Google Scholar öffnen doi.org/10.5771/9783748929451
- Franck, G. (1998). Die Ökonomie der Aufmerksamkeit. Carl Hanser. Google Scholar öffnen doi.org/10.5771/9783748929451
- Friedman, B., & Nissenbaum, H. (2017). Bias in computer systems. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fuchs, C. (2010). Labor in Informational Capitalism and on the Internet. The Information Society, 26(3), 179–196. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fuchs, C. (2013). Capitalism or information society? The fundamental question of the present structure of society. European Journal of Social Theory, 16(4), 413–434. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fuchs, C. (2019). Karl Marx in the age of big data capitalism. In D. Chandler & C. Fuchs (Eds.), Digital Objects, Digital Subjects: Interdisciplinary Perspectives on Capitalism, Labour and Politics in the Age of Big Data (pp. 53–71). University of Westminster Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fuegi, J., & Francis, J. (2003). Lovelace & Babbage and the creation of the 1843’notes’. IEEE Annals of the History of Computing, 25(4), 16–26. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fukuyama, F. (1995). Trust: The Social Virtues and the Creation of Prosperity. The Free Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Fukuyama, F. (2000). Social Capital and Civil Society (SSRN Scholarly Paper ID 879582). Social Science Research Network. https://papers.ssrn.com/abstract=879582 Google Scholar öffnen doi.org/10.5771/9783748929451
- Fussell, S. (2019, June 28). The Strange Politics of Facial Recognition. The Atlantic. https://www.theatlantic.com/technology/archive/2019/06/democrats-and-republicans-passing-soft-regulations/592558/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Garrahan, M., & Khan, M. (2018, June 26). Google criticised for push against EU copyright reform. Financial Times. https://www.ft.com/content/a8031d7a-78a0-11e8-bc55-50daf11b720d Google Scholar öffnen doi.org/10.5771/9783748929451
- Garvie, C. (2019, May 16). Garbage In. Garbage Out. Face Recognition on Flawed Data. Flawed Face Data. https://www.flawedfacedata.com Google Scholar öffnen doi.org/10.5771/9783748929451
- Garvie, C., Bedoya, A. M., & Jonathan, F. (2016). The Perpetual Line-Up: Unregulated police face recognition in America. Georgetown Law Center on Privacy & Technology. https://www.perpetuallineup.org/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Gasser, U. (2017, June 26). AI and the Law: Setting the Stage. Medium. https://medium.com/berkman-klein-center/ai-and-the-law-setting-the-stage-48516fda1b11 Google Scholar öffnen doi.org/10.5771/9783748929451
- Gates, K. A. (2011). Our biometric future: Facial recognition technology and the culture of surveillance (Vol. 2). NYU Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- German Criminal Code (Strafgesetzbuch – StGB). (n.d.). Retrieved January 28, 2021, from https://www.gesetze-im-internet.de/englisch_stgb/englisch_stgb.html#p1842 Google Scholar öffnen doi.org/10.5771/9783748929451
- Gholipour, B. (n.d.). New AI Tech Can Mimic Any Voice. Scientific American. Retrieved January 14, 2021, from https://www.scientificamerican.com/article/new-ai-tech-can-mimic-any-voice/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Gibson, W. (2010, August 31). Opinion | Google’s Earth. The New York Times. https://www.nytimes.com/2010/09/01/opinion/01gibson.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Giddens, A. (1984). The Constitution of Society. Wiley. Google Scholar öffnen doi.org/10.5771/9783748929451
- Gillespie, T. (2014). The Relevance of Algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media Technologies (pp. 167–194). The MIT Press. https://doi.org/10.7551/mitpress/9780262525374.003.0009 Google Scholar öffnen doi.org/10.5771/9783748929451
- Gioia, D. A., & Chittipeddi, K. (1991). Sensemaking and sensegiving in strategic change initiation. Strategic Management Journal, 12(6), 433–448. Google Scholar öffnen doi.org/10.5771/9783748929451
- Glaser, B. G., & Strauss, A. L. (2017). Discovery of grounded theory: Strategies for qualitative research. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Goguen, J. (1997). Towards a social, ethical theory of information. In G. C. Bowker, S. L. Star, W. Turner, & L. Gasser (Eds.), Social science, technical systems and cooperative work: Beyond the great divide (pp. 27–56). Psychology Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Gong, L. (2008). How social is social responses to computers? The function of the degree of anthropomorphism in computer representations. Computers in Human Behavior, 24(4), 1494–1509. https://doi.org/10.1016/j.chb.2007.05.007 Google Scholar öffnen doi.org/10.5771/9783748929451
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks. ArXiv Preprint ArXiv:1406.2661. Google Scholar öffnen doi.org/10.5771/9783748929451
- Graham, S., & Wood, D. (2003). Digitizing Surveillance: Categorization, Space, Inequality. Critical Social Policy, 23(2), 227–248. https://doi.org/10.1177/0261018303023002006 Google Scholar öffnen doi.org/10.5771/9783748929451
- Gray, M. (2003). Urban Surveillance and Panopticism: Will we recognize the facial recognition society? Surveillance & Society, 1(3), 314–330. https://doi.org/10.24908/ss.v1i3.3343 Google Scholar öffnen doi.org/10.5771/9783748929451
- Greenberg, A. (2021, January 20). This Site Published Every Face From Parler’s Capitol Riot Videos. Wired. https://www.wired.com/story/faces-of-the-riot-capitol-insurrection-facial-recognition/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Greene, J. (2020, June 11). Microsoft won’t sell police its facial-recognition technology, following similar moves by Amazon and IBM. Washington Post. https://www.washingtonpost.com/technology/2020/06/11/microsoft-facial-recognition/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Greig, J. (2021, May 26). One year after Amazon, Microsoft and IBM ended facial recognition sales to police, smaller players fill void. ZDNet. https://www.zdnet.com/article/one-year-after-amazon-microsoft-and-ibm-ended-facial-recognition-sales-to-police-smaller-players-fill-void/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Grevatt, N. (2018). Google’s Duplex and Deception through Power and Dignity [Final Paper, University of Virginia]. https://aipavilion.github.io/docs/papers/duplex.pdfeng Google Scholar öffnen doi.org/10.5771/9783748929451
- Greve, J. (2021, March 2). FBI chief calls Capitol attack “domestic terrorism” and defends US intelligence. The Guardian. http://www.theguardian.com/us-news/2021/mar/02/fbi-christopher-wray-capitol-attack-domestic-terrorism Google Scholar öffnen doi.org/10.5771/9783748929451
- Grimshaw, M. (2009). The audio Uncanny Valley: Sound, fear and the horror game. Audio Mostly, 21–26. Google Scholar öffnen doi.org/10.5771/9783748929451
- Grossmann, M. (1972). On the concept of healthcapital and the demand for health. Journal of Political Economy, 80(2), 223–255. Google Scholar öffnen doi.org/10.5771/9783748929451
- Groth, O., Nitzberg, M. J., & Russell, S. (2019, August 15). AI Algorithms Need FDA-Style Drug Trials. Wired. https://www.wired.com/story/ai-algorithms-need-drug-trials/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Habermas, J. (1970). Technology and science as “ideology.” In Toward a Rational Society (pp. 81–122). Beacon. Google Scholar öffnen doi.org/10.5771/9783748929451
- Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. Google Scholar öffnen doi.org/10.5771/9783748929451
- Haggerty, K., & Ericson, R. (2000). The surveillant assemblage. British Journal of Sociology, 51(4), 605–622. https://doi.org/10.1080/00071310020015280 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hakim, C. (2010). Erotic capital. European Sociological Review, 26(5), 499–518. Google Scholar öffnen doi.org/10.5771/9783748929451
- Halpern, S. (2021, May 2). Facebook and the Normalization of Deviance. The New Yorker. https://www.newyorker.com/news/daily-comment/facebook-and-the-normalization-of-deviance Google Scholar öffnen doi.org/10.5771/9783748929451
- Hamann, S. (2016, July 18). Kriminalität: So will die Polizei Einbrüche in NRW voraussagen. RP ONLINE. http://www.rp-online.de/nrw/panorama/predictive-policing-so-sagt-die-polizei-einbrueche-in-nrw-voraus-aid-1.6097807 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hamm, J., Kohler, C. G., Gur, R. C., & Verma, R. (2011). Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. Journal of Neuroscience Methods, 200(2), 237–256. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hanifan, L. J. (1916). The rural school community center. Annals of the American Academy of Political and Social Science, 67, 130–138. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hansen, A. H. (1921). The Technological Interpretation of History. The Quarterly Journal of Economics, 36(1), 72–83. https://doi.org/10.2307/1883779 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hao, K. (2020, August 14). A college kid created a fake, AI-generated blog. It reached #1 on Hacker News. MIT Technology Review. https://www.technologyreview.com/2020/08/14/1006780/ai-gpt-3-fake-blog-reached-top-of-hacker-news/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Hao, K. (2021, April 13). Big Tech’s guide to talking about AI ethics. MIT Technology Review. https://www.technologyreview.com/2021/04/13/1022568/big-tech-ai-ethics-guide/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Harari, Y. N. (2016). Homo Deus: A brief history of tomorrow. Random House. Google Scholar öffnen doi.org/10.5771/9783748929451
- Harwell, D. (2019a, July 7). FBI, ICE find state driver’s license photos are a gold mine for facial-recognition searches. Washington Post. https://www.washingtonpost.com/technology/2019/07/07/fbi-ice-find-state-drivers-license-photos-are-gold-mine-facial-recognition-searches/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Harwell, D. (2019b, September 5). An artificial-intelligence first: Voice-mimicking software reportedly used in a major theft. Washington Post. https://www.washingtonpost.com/technology/2019/09/04/an-artificial-intelligence-first-voice-mimicking-software-reportedly-used-major-theft/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Haskel, J., & Westlake, S. (2018). Capitalism without capital: The rise of the intangible economy. Princeton University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Haugeland, J. (1989). Artificial intelligence: The very idea. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hayles, N. K. (2008). How we became posthuman: Virtual bodies in cybernetics, literature, and informatics. University of Chicago Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Healy, J., Nicholson, D., & Pekarek, A. (2017). Should we take the gig economy seriously? Labour & Industry: A Journal of the Social and Economic Relations of Work, 27(3), 232–248. Google Scholar öffnen doi.org/10.5771/9783748929451
- Heilbroner, R. L. (1967). Do Machines Make History? Technology and Culture, 8(3), 335–345. JSTOR. https://doi.org/10.2307/3101719 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hern, A. (2018, May 11). Google’s “deceitful” AI assistant to identify itself as a robot during calls. The Guardian. http://www.theguardian.com/technology/2018/may/11/google-duplex-ai-identify-itself-as-robot-during-calls Google Scholar öffnen doi.org/10.5771/9783748929451
- Hian, L. B., Chuan, S. L., Trevor, T. M. K., & Detenber, B. H. (2004). Getting to know you: Exploring the development of relational intimacy in computer-mediated communication. Journal of Computer-Mediated Communication, 9(3), 9–24. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hibbard, B. (2014). Ethical artificial intelligence. ArXiv Preprint ArXiv:1411.1373. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2020a, January 18). The Secretive Company That Might End Privacy as We Know It. The New York Times. https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2020b, March 5). Before Clearview Became a Police Tool, It Was a Secret Plaything of the Rich. The New York Times. https://www.nytimes.com/2020/03/05/technology/clearview-investors.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2020c, June 24). Wrongfully Accused by an Algorithm. The New York Times. https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2020d, December 29). Another Arrest, and Jail Time, Due to a Bad Facial Recognition Match. The New York Times. https://www.nytimes.com/2020/12/29/technology/facial-recognition-misidentify-jail.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2021a, February 3). Clearview AI’s Facial Recognition App Called Illegal in Canada. The New York Times. https://www.nytimes.com/2021/02/03/technology/clearview-ai-illegal-canada.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2021b, February 27). How One State Managed to Actually Write Rules on Facial Recognition. The New York Times. https://www.nytimes.com/2021/02/27/technology/Massachusetts-facial-recognition-rules.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2021c, March 18). What Happens When Our Faces Are Tracked Everywhere We Go? The New York Times. https://www.nytimes.com/interactive/2021/03/18/magazine/facial-recognition-clearview-ai.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hill, K. (2021d, March 18). What We Learned About Clearview AI and Its Secret ‘Co-Founder.’ The New York Times. https://www.nytimes.com/2021/03/18/technology/clearview-facial-recognition-ai.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Hines, D., Saris, R. N., & Throckmorton-Belzer, L. (2002). Pluralistic ignorance and health risk behaviors: Do college students misperceive social approval for risky behaviors on campus and in media? Journal of Applied Social Psychology, 32(12), 2621–2640. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hirsh, R. F., & Sovacool, B. K. (2006). Technological systems and momentum change: American electric utilities, restructuring, and distributed generation. The Journal of Technology Studies, 72–85. https://doi.org/10.21061/jots.v32i2.a.2 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hjelmaas, E., & Low, B. K. (2001). Face detection: A survey. Computer Vision and Image Understanding, 83(3), 236–274. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hodgson, G. M. (2014). What is capital? Economists and sociologists have changed its meaning: should it be changed back? Cambridge Journal of Economics, 38(5), 1063–1086. https://doi.org/10.1093/cje/beu013 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hoffmann, E. T. A. (1967). The Sandman. In R. Robertson (Trans.), The Golden Pot and Other Tales (pp. 85–118). Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction (TOCHI), 7(2), 174–196. Google Scholar öffnen doi.org/10.5771/9783748929451
- Holmes, D. (2001). From Iron Gaze to Nursing Care: Mental Health Nursing in the Era of Panopticism. Journal of Psychiatric and Mental Health Nursing, 8(1), 7–15. Google Scholar öffnen doi.org/10.5771/9783748929451
- Huang, T., Xiong, Z., & Zhang, Z. (2005). Face recognition applications. In S. Z. Li & A. K. Jain (Eds.), Handbook of Face Recognition (pp. 371–390). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Huber, B. M., & Comstock, M. (2017, July 27). ESG Reports and Ratings: What They Are, Why They Matter. The Harvard Law School Forum on Corporate Governance. https://corpgov.law.harvard.edu/2017/07/27/esg-reports-and-ratings-what-they-are-why-they-matter/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Huff, C., & Tingley, D. (2015). “Who are these people?” Evaluating the demographic characteristics and political preferences of MTurk survey respondents. Research & Politics, 2(3), 1–15. https://doi.org/10.1177/2053168015604648 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hughes, T. (1983). Networks of Power: Electrification in Western Society, 1880-1930. The John Hopkins University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hughes, T. (1986). The Seamless Web: Technology, Science, Etcetera, Etcetera. Social Studies of Science, 16(2), 281–292. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hughes, T. (1987). The Evolution of Large Technological Systems. In W. E. Bijker, T. Hughes, & T. Pinch (Eds.), The Social Construction of Technological Systems (pp. 50–82). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hughes, T. (1989). American Genesis: A century of invention and technological enthusiasm, 1870-1970. University of Chicago Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Hultin, L. (2019). On becoming a sociomaterial researcher: Exploring epistemological practices grounded in a relational, performative ontology. Information and Organization, 29(2), 91–104. https://doi.org/10.1016/j.infoandorg.2019.04.004 Google Scholar öffnen doi.org/10.5771/9783748929451
- Hutson, M. (2021, February 15). Who Should Stop Unethical A.I.? The New Yorker. https://www.newyorker.com/tech/annals-of-technology/who-should-stop-unethical-ai Google Scholar öffnen doi.org/10.5771/9783748929451
- Hvistendahl, M. (2016, September 27). Can ‘predictive policing’ prevent crime before it happens? Science. http://www.sciencemag.org/news/2016/09/can-predictive-policing-prevent-crime-it-happens Google Scholar öffnen doi.org/10.5771/9783748929451
- Icelandic Institute for Intelligent Machines. (2015). Ethics Policy. https://www.iiim.is/ethics-policy/ Google Scholar öffnen doi.org/10.5771/9783748929451
- International Network of Privacy Law Professionals. (2020, October 26). Facial recognition technologies from a Swedish data protection perspective. INPLP Latest News. https://inplp.com/latest-news/article/facial-recognition-technologies-from-a-swedish-data-protection-perspective/ Google Scholar öffnen doi.org/10.5771/9783748929451
- International Standards Organization. (2015). Societal security—Business continuity management systems—Guidelines for business impact analysis (ISO Standard No ISO/TS 22317). International Standards Organization. https://www.iso.org/obp/ui/#iso:std:iso:ts:22317:ed-1:v1:en Google Scholar öffnen doi.org/10.5771/9783748929451
- International Standards Organization. (2018). Risk management—Guidelines (ISO Standard No. 31000:2018). International Standards Organization. https://www.iso.org/obp/ui/#iso:std:iso:31000:en Google Scholar öffnen doi.org/10.5771/9783748929451
- International Standards Organization. (2020). Guidance for the governance of organizations (ISO Standard No. ISO 37000). International Standards Organization. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/50/65036.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Introna, L. D., & Nissenbaum, H. (2000). Shaping the Web: Why the politics of search engines matters. The Information Society, 16(3), 169–185. Google Scholar öffnen doi.org/10.5771/9783748929451
- Introna, L. D., & Nissenbaum, H. (2010). Facial Recognition Technology: A survey of policy and implementation issues. NYU Center for Catastrophe Preparedness and Response. https://nissenbaum.tech.cornell.edu/papers/facial_recognition_report.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Introna, L., & Wood, D. (2004). Picturing algorithmic surveillance: The politics of facial recognition systems. Surveillance & Society, 2(2/3), 177–198. Google Scholar öffnen doi.org/10.5771/9783748929451
- Jackman, T. (2021, January 28). Police union says 140 officers injured in Capitol riot. Washington Post. https://www.washingtonpost.com/local/public-safety/police-union-says-140-officers-injured-in-capitol-riot/2021/01/27/60743642-60e2-11eb-9430-e7c77b5b0297_story.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Jaiman, A. (2020, August 27). Debating the ethics of deepfakes. Observer Research Foundation. https://www.orfonline.org/expert-speak/debating-the-ethics-of-deepfakes/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Jasanoff, S., & Kim, S.-H. (2009). Containing the Atom: Sociotechnical Imaginaries and Nuclear Power in the United States and South Korea. Minerva, 47(2), 119–146. Google Scholar öffnen doi.org/10.5771/9783748929451
- Jennings, R. (2021, January 14). Scraped Parler data is truly revealing. Tech Beacon. https://techbeacon.com/security/scraped-parler-data-reveals-countless-capitol-perpseng Google Scholar öffnen doi.org/10.5771/9783748929451
- Joerges, B. (1988). Large Technical Systems: Concepts and issues. In R. Mayntz & T. P. Hughes (Eds.), The Development of Large Technical Systems (pp. 9–36). Campus. Google Scholar öffnen doi.org/10.5771/9783748929451
- Johnson. (2020, June 25). Congress introduces bill that bans facial recognition use by federal government. VentureBeat. https://venturebeat.com/2020/06/25/congress-introduces-bill-that-bans-facial-recognition-use-by-federal-government/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Johnson, C. (2015, November 16). From Idea to Execution: Spotify’s Discover Weekly [PowerPoint slides]. https://www.slideshare.net/MrChrisJohnson/from-idea-to-execution-spotifys-discover-weekly Google Scholar öffnen doi.org/10.5771/9783748929451
- Johnson, D., & Wiles, J. (2003). Effective affective user interface design in games. Ergonomics, 46(13–14), 1332–1345. Google Scholar öffnen doi.org/10.5771/9783748929451
- Jones, A., & Jenkins, K. (2008). Indigenous Discourse and “the Material” A Post-interpretivist Argument. International Review of Qualitative Research, 1(2), 125–144. Google Scholar öffnen doi.org/10.5771/9783748929451
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., Ronneberger, O., Bates, R., Zidek, A., & Bridgland, A. (2020). High accuracy protein structure prediction using deep learning. In Critical Assessment of Techniques for Protein Structure Prediction (pp. 22–24). Abstract Book. https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Kallinikos, J. (2010). Governing through technology: Information artefacts and social practice. Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kaplan, R. S. (2009). Conceptual foundations of the balanced scorecard. In A. G. Hopwood, C. S. Chapman, & M. D. Shields (Eds.), Handbooks of management accounting research (Vol. 3, pp. 1253–1269). Elsevier Science. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kaplan, R. S., & Norton, D. P. (1998). Putting the balanced scorecard to work. The Economic Impact of Knowledge, 27(4), 315–324. Google Scholar öffnen doi.org/10.5771/9783748929451
- Karapapa, S., & Borghi, M. (2015). Search engine liability for autocomplete suggestions: Personality, privacy and the power of the algorithm. International Journal of Law and Information Technology, 23(3), 261–289. Google Scholar öffnen doi.org/10.5771/9783748929451
- Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4401–4410. Google Scholar öffnen doi.org/10.5771/9783748929451
- Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8110–8119. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kasy, M., & Abebe, R. (2021). Fairness, equality, and power in algorithmic decision-making. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 576–586. Google Scholar öffnen doi.org/10.5771/9783748929451
- Katz, M. L., & Shapiro, C. (1985). Network externalities, competition, and compatibility. The American Economic Review, 75(3), 424–440. Google Scholar öffnen doi.org/10.5771/9783748929451
- Katz, M. L., & Shapiro, C. (1994). Systems competition and network effects. Journal of Economic Perspectives, 8(2), 93–115. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kauflin, J., Gara, A., & Klebnikov, S. (2020, August 19). The Inside Story Of Robinhood’s Billionaire Founders, Option Kid Cowboys And The Wall Street Sharks That Feed On Them. Forbes. https://www.forbes.com/sites/jeffkauflin/2020/08/19/the-inside-story-of-robinhoods-billionaire-founders-option-kid-cowboys-and-the-wall-street-sharks-that-feed-on-them/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Kember, S. (2003). Cyberfeminism and Artificial Life. FEMINIST THEORY, 4(3), 369–370. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kenney, M., & Zysman, J. (2016). The rise of the platform economy. Issues in Science and Technology, 32(3), 61. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kharpal, A. (2020, January 28). Big Tech’s calls for more regulation offers a chance for them to increase their power. CNBC. https://www.cnbc.com/2020/01/28/big-techs-calls-for-ai-regulation-could-lead-to-more-power.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Klare, B. F., Burge, M. J., Klontz, J. C., Bruegge, R. W. V., & Jain, A. K. (2012). Face recognition performance: Role of demographic information. IEEE Transactions on Information Forensics and Security, 7(6), 1789–1801. Google Scholar öffnen doi.org/10.5771/9783748929451
- Klein, S., & Kao, J. (2021, January 17). Why We Published More Than 500 Videos Taken by Parler Users of the Capitol Riot. ProPublica. https://www.propublica.org/article/why-we-published-parler-users-videos-capitol-attack?token=T9DMO_4oncWnPFNlubLC6K7JtywmqAu3 Google Scholar öffnen doi.org/10.5771/9783748929451
- Kline, R. R. (2015). Technological Determinism. In International Encyclopedia of the Social & Behavioral Sciences (pp. 109–112). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.85034-5 Google Scholar öffnen doi.org/10.5771/9783748929451
- Knight, W. (2017a). The dark secret at the heart of al. Technology Review, 120(3), 54–61. Google Scholar öffnen doi.org/10.5771/9783748929451
- Knight, W. (2017b, November 4). The Dark Secret at the Heart of AI. MIT Technology Review. https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Korolova, A. (2010). Privacy violations using microtargeted ads: A case study. 2010 IEEE International Conference on Data Mining Workshops, 474–482. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kostka, G. (2019). China’s social credit systems and public opinion: Explaining high levels of approval. New Media & Society, 21(7), 1565–1593. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kostka, G., Steinacker, L., & Meckel, M. (2021a). Between security and convenience: Facial recognition technology in the eyes of citizens in China, Germany, the United Kingdom, and the United States. Public Understanding of Science, 21(5), 556–572. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kostka, G., Steinacker, L., & Meckel, M. (2021b). Between security and convenience: Facial recognition technology in the eyes of citizens in China, Germany, the United Kingdom, and the United States. Public Understanding of Science, 09636625211001555. https://doi.org/10.1177/09636625211001555 Google Scholar öffnen doi.org/10.5771/9783748929451
- Kotler, P. (2010). The prosumer movement. In Prosumer Revisited (pp. 51–60). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kranzberg, M. (1986). Technology and History: “Kranzberg’s Laws.” Technology and Culture, 27(3), 544–560. https://doi.org/10.2307/3105385 Google Scholar öffnen doi.org/10.5771/9783748929451
- Krol, K., Parkin, S., & Sasse, M. A. (2016). “ I don’t like putting my face on the Internet!”: An acceptance study of face biometrics as a CAPTCHA replacement. 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), 1–7. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kurwa, R. (2019). Building the Digitally Gated Community: The Case of Nextdoor. Surveillance & Society, 17(1/2), 111–117. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kurzweil, R., Richter, R., Kurzweil, R., & Schneider, M. L. (1990). The age of intelligent machines (Vol. 579). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Kuss, P., & Leenes, R. (2020). The Ghost in the Machine-Emotionally Intelligent Conversational Agents and the Failure to Regulate’Deception by Design’. SCRIPTed, 17(2), 320–358. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lambert, T. A., Kahn, A. S., & Apple, K. J. (2003). Pluralistic ignorance and hooking up. Journal of Sex Research, 40(2), 129–133. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lambrecht, A., & Tucker, C. (2019). Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads. Management Science, 65(7), 2966–2981. Google Scholar öffnen doi.org/10.5771/9783748929451
- Latour, B. (1990). Technology is Society Made Durable. The Sociological Review, 38(1_suppl), 103–131. Google Scholar öffnen doi.org/10.5771/9783748929451
- Latour, B. (2017). On Actor-Network Theory. A Few Clarifications, Plus More Than a Few Complications. Philosophical Literary Journal Logos, 27(1), 173–197. https://doi.org/10.22394/0869-5377-2017-1-173-197 Google Scholar öffnen doi.org/10.5771/9783748929451
- Lattimore, R., & Baskin, L. (2011). The Iliad of Homer. University of Chicago Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Law, J. (1987). Technology and Heterogeneous Engineering: The Case of Portuguese Expansion. In The Social Construction of Technological Systems (pp. 111–134). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Law, J. (2001). Notes on the Theory of the Actor Network: Ordering, Strategy and Heterogeneity. In Organizational Studies: Critical Perspectives on Business and Management. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Leavy, S. (2018). Gender bias in artificial intelligence: The need for diversity and gender theory in machine learning. Proceedings of the 1st International Workshop on Gender Equality in Software Engineering, 14–16. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lecher, C. (2019, July 10). Congress faces ‘hard questions’ on facial recognition as activists push for ban. The Verge. https://www.theverge.com/2019/7/10/20688932/congress-facial-recognition-hearing-ban Google Scholar öffnen doi.org/10.5771/9783748929451
- Lee, E. A. (2017). Plato and the Nerd: The Creative Partnership of Humans and Technology. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lee, K.-F. (2017, June 24). The Real Threat of Artificial Intelligence. The New York Times. https://www.nytimes.com/2017/06/24/opinion/sunday/artificial-intelligence-economic-inequality.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Leibold, J. (2020). Surveillance in China’s Xinjiang region: Ethnic sorting, coercion, and inducement. Journal of Contemporary China, 29(121), 46–60. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lenglet, M. (2011). Conflicting Codes and Codings: How Algorithmic Trading Is Reshaping Financial Regulation. Theory, Culture & Society, 28(6), 44–66. https://doi.org/10.1177/0263276411417444 Google Scholar öffnen doi.org/10.5771/9783748929451
- Leonardi, P. M. (2007). Activating the informational capabilities of information technology for organizational change. Organization Science, 18(5), 813–831. Google Scholar öffnen doi.org/10.5771/9783748929451
- Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human and material agencies. MIS Quarterly, 35(1), 147–167. Google Scholar öffnen doi.org/10.5771/9783748929451
- Leonardi, P. M. (2012). Materiality, sociomateriality, and socio-technical systems: What do these terms mean? How are they different? Do we need them. In P. M. Leonardi, B. A. Nardi, & J. Kallinikos (Eds.), Materiality and Organizing: Social Interaction in a Technological World (pp. 25–48). Oxford University Press. https://ssrn.com/abstract=2129878 or http://dx.doi.org/10.2139/ssrn.2129878 Google Scholar öffnen doi.org/10.5771/9783748929451
- Leonardi, P. M. (2013). Theoretical foundations for the study of sociomateriality. Information and Organization, 23(2), 59–76. Google Scholar öffnen doi.org/10.5771/9783748929451
- Leong, N., & Belzer, A. (2016). The new public accommodations: Race discrimination in the platform economy. Geo. LJ, 105, 1271. Google Scholar öffnen doi.org/10.5771/9783748929451
- Leporini, B., Buzzi, M. C., & Buzzi, M. (2012). Interacting with mobile devices via VoiceOver: Usability and accessibility issues. Proceedings of the 24th Australian Computer-Human Interaction Conference, 339–348. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lessig, L. (1999). Code: And Other Laws of Cyberspace. Basic Books. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lessig, L. (2006). Code 2.0. Basic Books. http://codev2.cc/download+remix/Lessig-Codev2.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Lev, B. (2004). Sharpening the intangibles edge. Harvard Business Review, 109–116. Google Scholar öffnen doi.org/10.5771/9783748929451
- Levy, S. (2010, December 27). The AI Revolution Is On. Wired. https://www.wired.com/2010/12/ff-ai-essay-airevolution/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Li, J. (2019, October 3). Getting a new mobile number in China will involve a facial-recognition test. Quartz. https://qz.com/1720832/china-introduces-facial-recognition-step-to-get-new-mobile-number/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Liakin, D., Cardoso, W., & Liakina, N. (2017). The pedagogical use of mobile speech synthesis (TTS): Focus on French liaison. Computer Assisted Language Learning, 30(3–4), 325–342. https://doi.org/10.1080/09588221.2017.1312463 Google Scholar öffnen doi.org/10.5771/9783748929451
- Lin, H.-T., Balcan, M. F., Hadsell, R., & Ranzato, M. (2020, October 16). What we learned from NeurIPS 2020 reviewing process. Medium. https://neuripsconf.medium.com/what-we-learned-from-neurips-2020-reviewing-process-e24549eea38f Google Scholar öffnen doi.org/10.5771/9783748929451
- Liu, Y., Kohlberger, T., Norouzi, M., Dahl, G. E., Smith, J. L., Mohtashamian, A., Olson, N., Peng, L. H., Hipp, J. D., & Stumpe, M. C. (2019). Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists. Archives of Pathology & Laboratory Medicine, 143(7), 859–868. https://doi.org/10.5858/arpa.2018-0147-OA Google Scholar öffnen doi.org/10.5771/9783748929451
- Lomas, N. (2021, February 12). Sweden’s data watchdog slaps police for unlawful use of Clearview AI. TechCrunch. https://social.techcrunch.com/2021/02/12/swedens-data-watchdog-slaps-police-for-unlawful-use-of-clearview-ai/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Lovelace, A. & Steinacker, L. (2033). How we built the analytical engine - finally. Morals & Machines, 13(3), 67-89. Google Scholar öffnen doi.org/10.5771/9783748929451
- Luhmann, N. (2018). Unterwachung. In Schriften zur Organisation 1 (pp. 415–424). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947. Google Scholar öffnen doi.org/10.5771/9783748929451
- Luthans, F., Youssef, C. M., & Avolio, B. (2007). Psychological capital: Developing the human competitive edge. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Lyons, M. J., Budynek, J., & Akamatsu, S. (1999). Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1357–1362. https://doi.org/10.1109/34.817413 Google Scholar öffnen doi.org/10.5771/9783748929451
- MacKenzie, D. (1984). Marx and the Machine. Technology and Culture, 25(3), 473–502. https://doi.org/10.2307/3104202 Google Scholar öffnen doi.org/10.5771/9783748929451
- Malle, B. F., Magar, S. T., & Scheutz, M. (2019). AI in the sky: How people morally evaluate human and machine decisions in a lethal strike dilemma. In M. I. Aldinhas Ferreira, J. Silva Sequeira, V. Gurvinder, O. Tokhi, & E. Kadar (Eds.), Robotics and well-being (pp. 111–133). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Mann, M., & Smith, M. (2017). Automated facial recognition technology: Recent developments and approaches to oversight. UNSWLJ, 40(1), 121–145. Google Scholar öffnen doi.org/10.5771/9783748929451
- Manokha, I. (2018). Surveillance, Panopticism, and Self-Discipline in the Digital Age. Surveillance & Society, 16(2), 219–237. https://doi.org/10.24908/ss.v16i2.8346eng Google Scholar öffnen doi.org/10.5771/9783748929451
- Manovich, L. (2011). Trending: The promises and the challenges of big social data. Debates in the Digital Humanities, 2(1), 460–475. Google Scholar öffnen doi.org/10.5771/9783748929451
- Manyika, J., Lund, S., Bughin, J., Robinson, K., Mischke, J., & Mahajan, D. (2016). Independent work: Choice, necessity, and the gig economy. McKinsey Global Institute, 1–16. Google Scholar öffnen doi.org/10.5771/9783748929451
- Maras, M.-H., & Alexandrou, A. (2019). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. The International Journal of Evidence & Proof, 23(3), 255–262. Google Scholar öffnen doi.org/10.5771/9783748929451
- Marche, S. (2021, April 30). The Computers Are Getting Better at Writing, Thanks to Artificial Intelligence. The New Yorker. https://www.newyorker.com/culture/cultural-comment/the-computers-are-getting-better-at-writing Google Scholar öffnen doi.org/10.5771/9783748929451
- Marcus, J. (2020, February 20). How Technology Is Changing the Future of Higher Education. The New York Times. https://www.nytimes.com/2020/02/20/education/learning/education-technology.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Markoff, J. (2011, October 10). U.S. Intelligence Unit Aims to Build a ‘Data Eye in the Sky.’ The New York Times. https://www.nytimes.com/2011/10/11/science/11predict.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Martinez-Martin, N. (2019). What Are Important Ethical Implications of Using Facial Recognition Technology in Health Care? AMA Journal of Ethics, 21(2), 180–187. Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, K. (1971). The Poverty of Philosophy. Progress Publishers. Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, K. (2010a). Capital: A Critique of Political Economy—Volume II (F. Engels, Ed.). Progress Publishers. https://libcom.org/files/Capital-Volume-II.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, K. (2010b). Capital: A Critique of Political Economy—Volume III (F. Engels, Ed.). Progress Publishers. https://www.marxists.org/archive/marx/works/download/pdf/Capital-Volume-III.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, K. (2015). Capital: A Critique of Political Economy—Volume I. Progress Publishers. https://www.marxists.org/archive/marx/works/download/pdf/Capital-Volume-I.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, K., & Engels, F. (1970). The German Ideology (C. Arthur, Ed.). International Publishers Co. Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, L. (1994). The Idea of “Technology” and Postmodern Pessimism. In Y. Ezrahi, E. Mendelsohn, & H. Segal (Eds.), Technology, Pessimism, and Postmodernism (pp. 11–28). Springer Netherlands. https://doi.org/10.1007/978-94-011-0876-8_2 Google Scholar öffnen doi.org/10.5771/9783748929451
- Marx, L., & Smith, M. R. (1994). Introduction. In M. R. Smith & L. Marx (Eds.), Does Technology Drive History?: The Dilemma of Technological Determinism. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Massachusetts State Government. (2020, December 31). Governor Baker Signs Police Reform Legislation. https://www.mass.gov/news/governor-baker-signs-police-reform-legislation Google Scholar öffnen doi.org/10.5771/9783748929451
- Mathiesen, T. (1997). The viewer society: Michel Foucault’s “Panopticon” revisited. Theoretical Criminology, 1(2), 215–234. Google Scholar öffnen doi.org/10.5771/9783748929451
- McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine, 27(4), 12–12. Google Scholar öffnen doi.org/10.5771/9783748929451
- McClurg, A. J. (2007). In the face of danger: Facial recognition and the limits of privacy law. Harvard Law Review, 120(7), 1870–1891. Google Scholar öffnen doi.org/10.5771/9783748929451
- McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- McCormack, D. (2003). Can Corporate America Secure Our Nation-An Analysis of the Identix Framework for the Regulation and Use of Facial Recognition Technology. BUJ Sci. & Tech. L., 9, 128. Google Scholar öffnen doi.org/10.5771/9783748929451
- McCoy, S. (2002). O’Big Brother Where Art Thou?: The Constitutional Use of Facial-Recognition Technology. The John Marshall Journal of Information Technology & Privacy Law, 20(3), 471–493. Google Scholar öffnen doi.org/10.5771/9783748929451
- McKinlay, A., & Starkey, K. (1997). Foucault, Management and Organization Theory: From Panopticon to Technologies of Self. SAGE. Google Scholar öffnen doi.org/10.5771/9783748929451
- McMullan, T. (2015, July 23). What does the panopticon mean in the age of digital surveillance? The Guardian. https://www.theguardian.com/technology/2015/jul/23/panopticon-digital-surveillance-jeremy-bentham Google Scholar öffnen doi.org/10.5771/9783748929451
- Meckel, M., & Steinacker, L. (2021). Hybrid reality: The rise of deepfakes and diverging truths. Morals & Machines, 1(1), 10–20. Google Scholar öffnen doi.org/10.5771/9783748929451
- Menebrea, L. F., & Lovelace, A. (1842). Sketch of the Analytical Engine Invented by Charles Babbage. R. & J. E. Taylor. https://johnrhudson.me.uk/computing/Menabrea_Sketch.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Metcalfe, B. (2013). Metcalfe’s law after 40 years of ethernet. Computer, 46(12), 26–31. Google Scholar öffnen doi.org/10.5771/9783748929451
- Metcalfe, R. (1995). Metcalfe’s law. Infoworld, 2. Google Scholar öffnen doi.org/10.5771/9783748929451
- Metz, R. (2019, July 17). Beyond San Francisco, more cities are saying no to facial recognition. CNN. https://www.cnn.com/2019/07/17/tech/cities-ban-facial-recognition/index.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Miailhe, N. (2017). Understanding the Rise of Artificial Intelligence. Introduction. Field Actions Science Reports. The Journal of Field Actions, Special Issue 17, 5. Google Scholar öffnen doi.org/10.5771/9783748929451
- Midler v. Ford Motor Co. 549 F. 2d 460 (9th Cir.). (1988). https://cyber.harvard.edu/people/tfisher/1988%20Midler.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Milan, S. (2015). When Algorithms Shape Collective Action: Social Media and the Dynamics of Cloud Protesting. Social Media + Society, 1(2), 1–10. https://doi.org/10.1177/2056305115622481 Google Scholar öffnen doi.org/10.5771/9783748929451
- Miller, R. W. (1984). Analyzing Marx. Princeton University Press. https://press.princeton.edu/titles/1565.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Milligan, C. S. (1999). Facial recognition technology, video surveillance, and privacy. S. Cal. Interdisc. LJ, 9, 295. Google Scholar öffnen doi.org/10.5771/9783748929451
- Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. Google Scholar öffnen doi.org/10.5771/9783748929451
- Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21. https://doi.org/10.1177/2053951716679679 Google Scholar öffnen doi.org/10.5771/9783748929451
- Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. IEEE Robotics & Automation Magazine, 19(2), 98–100. Google Scholar öffnen doi.org/10.5771/9783748929451
- Morris, M. R. (2020). AI and accessibility. Communications of the ACM, 63(6), 35–37.eng Google Scholar öffnen doi.org/10.5771/9783748929451
- Morse, J. (2019, October 9). California just scored a major privacy win against facial-recognition tech. Mashable. https://mashable.com/article/california-facial-recognition-tech-body-cam-ban/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Moses, L. B., & Chan, J. (2018). Algorithmic prediction in policing: Assumptions, evaluation, and accountability. Policing and Society, 28(7), 806–822. https://doi.org/10.1080/10439463.2016.1253695 Google Scholar öffnen doi.org/10.5771/9783748929451
- Mozur, P. (2019, April 17). One Month, 500,000 Face Scans: How China Is Using A.I. to Profile a Minority. The New York Times. https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Mozur, P., Kang, C., Satariano, A., & McCabe, D. (2021, April 20). A Global Tipping Point for Reining In Tech Has Arrived. The New York Times. https://www.nytimes.com/2021/04/20/technology/global-tipping-point-tech.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Mueller, B., Renken, U., & van Den Heuvel, G. (2016). Get your act together: An alternative approach to understanding the impact of technology on individual and organizational behavior. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 47(4), 67–83. Google Scholar öffnen doi.org/10.5771/9783748929451
- Mueller, M. (1989). The switchboard problem: Scale, signaling, and organization in manual telephone switching, 1877-1897. Technology and Culture, 30(3), 534–560. Google Scholar öffnen doi.org/10.5771/9783748929451
- Murgia, M. (2019, August 12). London’s King’s Cross uses facial recognition in security cameras. Financial Times. https://www.ft.com/content/8cbcb3ae-babd-11e9-8a88-aa6628ac896c Google Scholar öffnen doi.org/10.5771/9783748929451
- Mutch, A. (2013). Sociomateriality—Taking the wrong turning? Information and Organization, 23(1), 28–40. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nahaphiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. Academy of Management Review, 23(2), 242–266. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nakamura, L. (2013). Cybertypes: Race, ethnicity, and identity on the Internet. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Naker, S., & Greenbaum, D. (2017). Now you see me: Now you still do: Facial recognition technology and the growing lack of privacy. BUJ Sci. & Tech. L., 23, 88–123. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nass, C., Steuer, J., & Tauber, E. R. (1994). Computers are social actors. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 72–78. Google Scholar öffnen doi.org/10.5771/9783748929451
- NBC News. (2021, September 2). House Impeachment Managers Play Video Of Capitol Riot During Impeachment Trial. https://www.youtube.com/watch?v=ERIbhsCzZwk Google Scholar öffnen doi.org/10.5771/9783748929451
- Neyman, C. J. (2017). A survey of addictive software design. Digital Commons@Cal Poly. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ngan, M., & Grother, P. J. (2015). Face recognition vendor test (FRVT) performance of automated gender classification algorithms. US Department of Commerce, National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8052.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Nguyen, T. T., Nguyen, C. M., Nguyen, D. T., Nguyen, D. T., & Nahavandi, S. (2019). Deep learning for deepfakes creation and detection. ArXiv Preprint ArXiv:1909.11573, 1. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nietzsche, F. (1910). Human, all too human (Zimmern, Trans.). T.N. Foulis. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nilsson, N. J. (1998). Artificial intelligence: A new synthesis. Morgan Kaufmann. Google Scholar öffnen doi.org/10.5771/9783748929451
- Nitzan, J., & Bichler, S. (2009). Capital as power. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ogburn, W. F. (1936). Technology and Governmental Change. The Journal of Business of the University of Chicago, 9(1), 1–13. JSTOR. Google Scholar öffnen doi.org/10.5771/9783748929451
- O’Neil, C. (2017). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Penguin. Google Scholar öffnen doi.org/10.5771/9783748929451
- Oppermann, R. (2002). User-interface design. In H. H. Adelsberger & J. M. Palowski (Eds.), Handbook on information technologies for education and training (pp. 233–248). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Orlikowski, W. J. (2000). Using technology and constituting structures: A practice lens for studying technology in organizations. Organization Science, 11(4), 404–428. Google Scholar öffnen doi.org/10.5771/9783748929451
- Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work. Organization Studies, 28(9), 1435–1448. Google Scholar öffnen doi.org/10.5771/9783748929451
- Orlikowski, W. J., & Scott, S. V. (2008). Sociomateriality: Challenging the separation of technology, work and organization. Academy of Management Annals, 2(1), 433–474. Google Scholar öffnen doi.org/10.5771/9783748929451
- Orlikowski, W. J., & Scott, S. V. (2015). The algorithm and the crowd: Considering the materiality of service innovation. MIS Quarterly, 39(1), 201–216. Google Scholar öffnen doi.org/10.5771/9783748929451
- Orlikowski, W. J., Walsham, G., Jones, M. R., & DeGross, J. I. (1996). Information technology and changes in organizational work. Springer Science & Business Media. Google Scholar öffnen doi.org/10.5771/9783748929451
- Owuor, J., & Larkan, F. (2017). Assistive Technology for an Inclusive Society for People with Intellectual Disability. Studies in Health Technology and Informatics, 242, 805–812. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pace, J. (2018). The concept of digital capitalism. Communication Theory, 28(3), 254–269. Google Scholar öffnen doi.org/10.5771/9783748929451
- Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Paine, T. L., Khorrami, P., Chang, S., Zhang, Y., Ramachandran, P., Hasegawa-Johnson, M. A., & Huang, T. S. (2016). Fast wavenet generation algorithm. ArXiv Preprint ArXiv:1611.09482. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pal, D., Arpnikanondt, C., Funilkul, S., & Varadarajan, V. (2019). User experience with smart voice assistants: The accent perspective. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–6.eng Google Scholar öffnen doi.org/10.5771/9783748929451
- Paluck, E. L. (2009). What’s in a norm? Sources and processes of norm change. Journal of Personality and Social Psychology, 96(3), 594–600. https://doi.org/10.1037/a0014688 Google Scholar öffnen doi.org/10.5771/9783748929451
- Paluck, E. L., & Green, D. P. (2009). Prejudice reduction: What works? A review and assessment of research and practice. Annual Review of Psychology, 60, 339–367. Google Scholar öffnen doi.org/10.5771/9783748929451
- Paluck, E. L., & Shepherd, H. (2012). The salience of social referents: A field experiment on collective norms and harassment behavior in a school social network. Journal of Personality and Social Psychology, 103(6), 899–915. https://doi.org/10.1037/a0030015 Google Scholar öffnen doi.org/10.5771/9783748929451
- Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. Proceedings of the British Machine Vision Conference 2015, 80, 41.1-41.12. https://doi.org/10.5244/C.29.41 Google Scholar öffnen doi.org/10.5771/9783748929451
- Partnership On AI. (2016). Tenets. Partnership on AI. https://www.partnershiponai.org/tenets/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Pasinetti, L. L., Fisher, F. M., Felipe, J., McCombie, J. S. L., & Greenfield, R. L. (2003). Cambridge Capital Controversies. The Journal of Economic Perspectives, 17(4), 227–232. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pasquale, F. (2016a). The Black Box Society. Harvard University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pasquale, F. (2016b). Two narratives of platform capitalism. Yale L. & Pol’y Rev., 35, 309. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to artificial general intelligence. In B. Goertzel & C. Pennachin (Eds.), Artificial general intelligence (pp. 1–30). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Perkowitz, S. (2021). The Bias in the Machine: Facial Recognition Technology and Racial Disparities. MIT Case Studies in Social and Ethical Responsibilities of Computing. https://mit-serc.pubpub.org/pub/bias-in-machine/release/1 Google Scholar öffnen doi.org/10.5771/9783748929451
- Pettman, D. (2016). Infinite distraction. John Wiley & Sons. Google Scholar öffnen doi.org/10.5771/9783748929451
- Phillips, P., Barnes, S., Zigan, K., & Schegg, R. (2016). Understanding the Impact of Online Reviews on Hotel Performance: An Empirical Analysis. Journal of Travel Research, 56(2), 235–249. https://doi.org/10.1177/0047287516636481 Google Scholar öffnen doi.org/10.5771/9783748929451
- Picard, R. (2002). Affective medicine: Technology with emotional intelligence. Studies in Health Technology and Informatics, 69–84. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pichai, S. (2020, January 20). Why Google thinks we need to regulate AI. Financial Times. https://www.ft.com/content/3467659a-386d-11ea-ac3c-f68c10993b04 Google Scholar öffnen doi.org/10.5771/9783748929451
- Pickering, A. (2010). The mangle of practice: Time, agency, and science. University of Chicago Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pidd, H. (2020, August 14). “Punishment by statistics”: The father who foresaw A-level algorithm flaws. The Guardian. http://www.theguardian.com/education/2020/aug/14/punishment-by-statistics-the-father-who-foresaw-a-level-algorithm-flaws Google Scholar öffnen doi.org/10.5771/9783748929451
- Piketty, T. (2014). Capital in the twenty-first century. Harvard University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Pinch, T., & Bijker, W. E. (1987). The Social Construction of Facts and Artifacts: Or How the Sociology of Science and the Sociology of Technology Might Benefit Each Other. In W. E. Bijker & T. P. Hughes (Eds.), The Social Construction of Technological Systems (pp. 17–50). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Platform for the Information Society. (2018). Artificial Intelligence Impact Assessment. Platform for the Information Society. https://static1.squarespace.com/static/5b7877457c9327fa97fef427/t/5c368c611ae6cf01ea0fba53/1547078768062/Artificial+Intelligence+Impact+Assessment+-+English.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Pomerantz, S., & Raby, R. (2020). Bodies, hoodies, schools, and success: Post-human performativity and smart girlhood. Gender and Education, 32(8), 983–1000. Google Scholar öffnen doi.org/10.5771/9783748929451
- Poole, D., Mackworth, A., & Goebel, R. (1998). Computational intelligence: A logical approach. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Porter, J. (2021, February 24). Australia passes law requiring Facebook and Google to pay for news content. The Verge. https://www.theverge.com/2021/2/24/22283777/australia-new-media-bargaining-code-facebook-google-paying-news Google Scholar öffnen doi.org/10.5771/9783748929451
- Prassl, J. (2018). Humans as a service: The promise and perils of work in the gig economy. Oxford University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Prentice, D. A., & Miller, D. T. (1996). Pluralistic ignorance and the perpetuation of social norms by unwitting actors. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 28, pp. 161–209). Academic Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Press Association. (2019, March 30). Mark Zuckerberg calls for stronger regulation of internet. The Guardian. http://www.theguardian.com/technology/2019/mar/30/mark-zuckerberg-calls-for-stronger-regulation-of-internet Google Scholar öffnen doi.org/10.5771/9783748929451
- Prokoshyna, N., Szlichta, J., Chiang, F., Miller, R. J., & Srivastava, D. (2015). Combining quantitative and logical data cleaning. Proceedings of the VLDB Endowment, 9(4), 300–311. Google Scholar öffnen doi.org/10.5771/9783748929451
- Purdy, G. (2010). ISO 31000: 2009—setting a new standard for risk management. Risk Analysis: An International Journal, 30(6), 881–886. Google Scholar öffnen doi.org/10.5771/9783748929451
- Puschmann, T., & Alt, R. (2016). Sharing economy. Business & Information Systems Engineering, 58(1), 93–99. Google Scholar öffnen doi.org/10.5771/9783748929451
- Putnam, R. D. (1993). What makes democracy work? National Civic Review, 82(2), 101–107. https://doi.org/10.1002/ncr.4100820204 Google Scholar öffnen doi.org/10.5771/9783748929451
- Putnam, R. D. (2000). Bowling alone: America’s declining social capital. Simon and Schuster. Google Scholar öffnen doi.org/10.5771/9783748929451
- Qiu, L., & Benbasat, I. (2005). An investigation into the effects of Text-To-Speech voice and 3D avatars on the perception of presence and flow of live help in electronic commerce. ACM Transactions on Computer-Human Interaction (TOCHI), 12(4), 329–355. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology, 20(1), 5–14. https://doi.org/10.1007/s10676-017-9430-8 Google Scholar öffnen doi.org/10.5771/9783748929451
- Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. ‘Sandy,’ … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-yeng Google Scholar öffnen doi.org/10.5771/9783748929451
- Ramiller, N. C., & Chiasson, M. (2008). The service behind the service: Sensegiving in the service economy. In M. Barrett, E. Davidson, E. Middleton, & J. DeGross (Eds.), Information Technology in the Service Economy: Challenges and Possibilities for the 21st Century (pp. 117–126). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Reid, E. M. (1991). Electropolis: Communication and community on internet relay chat [Honours Thesis, University of Melbourne, Department of History]. http://www.aluluei.com/electropolis.htm Google Scholar öffnen doi.org/10.5771/9783748929451
- Reisman, D., Schultz, J., Crawford, K., & Whittaker, M. (2018). Algorithmic impact assessments: A practical framework for public agency accountability. AI Now Institute. https://ainowinstitute.org/aiareport2018.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- H.R. 7356: Facial Recognition and Biometric Technology Moratorium Act of 2020, U.S. Congress (2020) (testimony of Pramila Rep. Jayapal). https://www.govtrack.us/congress/bills/116/hr7356 Google Scholar öffnen doi.org/10.5771/9783748929451
- Reynolds, D. A. (2009). Gaussian Mixture Models. In S.Z. Li (Ed.), Encyclopedia of Biometrics (pp. 659–663). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ribeiro, M. H., Ottoni, R., West, R., Almeida, V. A., & Meira Jr, W. (2020). Auditing radicalization pathways on YouTube. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 131–141. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rich, E., Knight, K., & Nair, S. B. (2009). Artificial intelligence third edition. McGraw-Hill. Google Scholar öffnen doi.org/10.5771/9783748929451
- Richardson, L. (2015). Performing the sharing economy. Geoforum, 67, 121–129. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ringrose, K. (2019). Law Enforcement’s Pairing of Facial Recognition Technology with Body-Worn Cameras Escalates Privacy Concerns. Va. L. Rev. Online, 105, 57. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ritzer, G. (2015). Prosumer capitalism. The Sociological Quarterly, 56(3), 413–445. Google Scholar öffnen doi.org/10.5771/9783748929451
- Ritzer, G., Dean, P., & Jurgenson, N. (2012). The coming of age of the prosumer. American Behavioral Scientist, 56(4), 379–398. Google Scholar öffnen doi.org/10.5771/9783748929451
- Robertson, R. E., Jiang, S., Lazer, D., & Wilson, C. (2019). Auditing autocomplete: Suggestion networks and recursive algorithm interrogation. Proceedings of the 10th ACM Conference on Web Science, 235–244. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rogers, B. (2016). Employment rights in the platform economy: Getting back to basics. Harv. L. & Pol’y Rev., 10, 479. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rolls Royce. (2020, December). The Aletheia Framework. Rolls Royce. https://www.rolls-royce.com/sustainability/ethics-and-compliance/the-aletheia-framework.aspx Google Scholar öffnen doi.org/10.5771/9783748929451
- Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5, Part 2), S71–S102. https://doi.org/10.1086/261725 Google Scholar öffnen doi.org/10.5771/9783748929451
- Roscher, W. (1870). Die romantische Schule der Nationalökonomik in Deutschland. Zeitschrift Für Die Gesamte Staatswissenschaft / Journal of Institutional and Theoretical Economics, 57–105. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 23–38. Google Scholar öffnen doi.org/10.5771/9783748929451
- Rudin, C., Waltz, D., Anderson, R. N., Boulanger, A., Salleb-Aouissi, A., Chow, M., Dutta, H., Gross, P. N., Huang, B., & Ierome, S. (2011). Machine learning for the New York City power grid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 328–345. Google Scholar öffnen doi.org/10.5771/9783748929451
- Russell, S. (2019, October 8). How to Stop Superhuman A.I. Before It Stops Us. The New York Times. https://www.nytimes.com/2019/10/08/opinion/artificial-intelligence.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Russell, S., & Norvig, P. (2010). Artificial Intelligence: A modern approach (3rd edition). Pearson Education. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sadowski, J. (2019). When data is capital: Datafication, accumulation, and extraction. Big Data & Society, 6(1), 1–12. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sætra, H. S. (2020). A shallow defence of a technocracy of artificial intelligence: Examining the political harms of algorithmic governance in the domain of government. Technology in Society, 62(101283), 1–10. Google Scholar öffnen doi.org/10.5771/9783748929451
- Salin, E. D., & Winston, P. H. (1992). Machine learning and artificial intelligence: An introduction. Analytical Chemistry, 64(1), 49A-60A. Google Scholar öffnen doi.org/10.5771/9783748929451
- Samatas, M. (2005). Studying surveillance in Greece: Methodological and other problems related to an authoritarian surveillance culture. Surveillance & Society, 3(2), 181–197. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sambasivan, N., & Holbrook, J. (2018). Toward responsible AI for the next billion users. Interactions, 26(1), 68–71. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sandberg, S., & Pedersen, W. (2011). Street capital: Black cannabis dealers in a white welfare state. The Policy Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sandler, M., & Howard, A. (2018, April 3). MobileNetV2: The Next Generation of On-Device Computer Vision Networks. Google AI Blog. http://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520. Google Scholar öffnen doi.org/10.5771/9783748929451
- Satariano, A. (2019, September 4). Police Use of Facial Recognition Is Accepted by British Court. The New York Times. https://www.nytimes.com/2019/09/04/business/facial-recognition-uk-court.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Saygin, A. P., Cicekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds and Machines, 10(4), 463–518. Google Scholar öffnen doi.org/10.5771/9783748929451
- Scassa, T. (2018). Information Law in the Platform Economy: Ownership, Control, and Reuse of Platform Data. In D. McKee, F. Makela, & T. Scassa (Eds.), Law and the «Sharing Economy»: Regulating Online Market Platforms (pp. 321–356). University of Ottawa Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schermer, B. W. (2011). The limits of privacy in automated profiling and data mining. Computer Law & Security Review, 27(1), 45–52. Google Scholar öffnen doi.org/10.5771/9783748929451
- Scheuerman, M. K., Paul, J. M., & Brubaker, J. (2019). How Computers See Gender: An Evaluation of Gender Classification in Commercial Facial Analysis and Image Labeling Services. Proceedings of the ACM on Human-Computer Interaction, 3, 1–33. Google Scholar öffnen doi.org/10.5771/9783748929451
- Scheuerman, M. K., Wade, K., Lustig, C., & Brubaker, J. R. (2020). How We’ve Taught Algorithms to See Identity: Constructing Race and Gender in Image Databases for Facial Analysis. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW1), 1–35. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schiller, D. (2000). Digital capitalism: Networking the global market system. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schiller, D., & Mosco, V. (2001). Continental Order? Integrating North America for Cybercapitalism. Rowman and Littlefield. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schmidt, E., Work, B., Catz, S., Chien, S., Darby, C., Ford, K., Griffiths, J.-M., Horvitz, E., Jassy, A., & Mark, W. (2021). National Security Commission on Artificial Intelligence (AI). National Security Commission on Artificial Intelligence. https://www.nscai.gov/wp-content/uploads/2021/03/Full-Report-Digital-1.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Schor, J. (2016). Debating the sharing economy. Journal of Self-Governance and Management Economics, 4(3), 7–22. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schor, J. B., & Attwood-Charles, W. (2017). The “sharing” economy: Labor, inequality, and social connection on for-profit platforms. Sociology Compass, 11(8), e12493. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schultz, T. W. (1961). Investment in Human Capital. The American Economic Review, 51(1), 1–17. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schumpeter, J. (1954). History of Economic Analysis (E. B. Schumpeter, Ed.). Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Schwartz, O. (2018, September 26). Love in the time of AI: Meet the people falling for scripted robots. The Guardian. https://www.theguardian.com/technology/2018/sep/26/mystic-messenger-dating-simulations-sims-digital-intimacy Google Scholar öffnen doi.org/10.5771/9783748929451
- Seeger, A.-M., & Heinzl, A. (2018). Human versus machine: Contingency factors of anthropomorphism as a trust-inducing design strategy for conversational agents. In F. D. Davis, R. Riedl, P. vom Brocke, P. Léger, & A. B. Randolph (Eds.), Information systems and neuroscience (pp. 129–139). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Seelman, K. D. (1993). Assistive technology policy: A road to independence for individuals with disabilities. Journal of Social Issues, 49(2), 115–136. Google Scholar öffnen doi.org/10.5771/9783748929451
- Segura, M. S., & Waisbord, S. (2019). Between data capitalism and data citizenship. Television & New Media, 20(4), 412–419. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sengupta, A. (2020, November 16). Election polls were a disaster this year. Here’s how AI could help. Fast Company. https://www.fastcompany.com/90575531/ai-election-polling Google Scholar öffnen doi.org/10.5771/9783748929451
- Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A. W., & Bridgland, A. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706–710. Google Scholar öffnen doi.org/10.5771/9783748929451
- Shaw, W. H. (1979). “The Handmill Gives You the Feudal Lord”: Marx’s Technological Determinism. History and Theory, 18(2), 155–176. JSTOR. https://doi.org/10.2307/2504754 Google Scholar öffnen doi.org/10.5771/9783748929451
- Shelley, M. W. (1869). Frankenstein, or, The Modern Prometheus. Sever, Francis, & Company. Google Scholar öffnen doi.org/10.5771/9783748929451
- Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y., & Skerrv-Ryan, R. (2018). Natural tts synthesis by conditioning wavenet on mel spectrogram predictions. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4779–4783. Google Scholar öffnen doi.org/10.5771/9783748929451
- Shergill, G. S., Sarrafzadeh, A., Diegel, O., & Shekar, A. (2008). Computerized Sales Assistants: The application of computer technology to measure consumer interest-a conceptual framework. Journal of Electronic Commerce Research, 9(2), 176–191. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sherif, M. (1936). The psychology of social norms. Harper. Google Scholar öffnen doi.org/10.5771/9783748929451
- Shilton, K. (2015). “ That’s Not An Architecture Problem!”: Techniques and Challenges for Practicing Anticipatory Technology Ethics. IConference 2015 Proceedings. Google Scholar öffnen doi.org/10.5771/9783748929451
- Shilton, K. (2018). Engaging values despite neutrality: Challenges and approaches to values reflection during the design of internet infrastructure. Science, Technology, & Human Values, 43(2), 247–269. Google Scholar öffnen doi.org/10.5771/9783748929451
- Siau, K., & Wang, W. (2020). Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. Journal of Database Management (JDM), 31(2), 74–87. Google Scholar öffnen doi.org/10.5771/9783748929451
- Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley. Google Scholar öffnen doi.org/10.5771/9783748929451
- Silverman, C. (2016, November 16). This Analysis Shows How Viral Fake Election News Stories Outperformed Real News On Facebook. BuzzFeed News. https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook Google Scholar öffnen doi.org/10.5771/9783748929451
- Similar companies to VocaliD. (2021). Venture Radar. https://www.ventureradar.com/similar/VocaliD/34420c6a-e53f-46ae-870b-cef6bc01008a Google Scholar öffnen doi.org/10.5771/9783748929451
- Simonite, T. (2019, September 3). Behind the Rise of China’s Facial-Recognition Giants. Wired. https://www.wired.com/story/behind-rise-chinas-facial-recognition-giants/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Simonite, T. (2020, July 22). AI Text Generator GPT-3 Is Learning Our Language—Fitfully. WIRED. https://www.wired.com/story/ai-text-generator-gpt-3-learning-language-fitfully/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Simonite, T. (2021, March 16). The Departure of 2 Google AI Researchers Spurs More Fallout. WIRED. https://www.wired.com/story/departures-2-google-ai-researchers-spur-fallout/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Sinha, N., Bhowmick, A., & Kishore, B. (2015). Encrypted information hiding using audio steganography and audio cryptography. International Journal of Computer Applications, 112(5), 49–53. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sismondo, S. (2009). An Introduction to Science and Technology Studies (2nd ed.). Wiley-Blackwell. Google Scholar öffnen doi.org/10.5771/9783748929451
- Skitka, L. J., Mosier, K. L., & Burdick, M. (1999). Does automation bias decision-making? International Journal of Human-Computer Studies, 51(5), 991–1006. Google Scholar öffnen doi.org/10.5771/9783748929451
- Slaney, M., & Casey, M. (2008). Locality-sensitive hashing for finding nearest neighbors [lecture notes]. IEEE Signal Processing Magazine, 25(2), 128–131. Google Scholar öffnen doi.org/10.5771/9783748929451
- Slater, D. (2013). Love in times of algorithms: What technology does to meeting and mating. Current. Google Scholar öffnen doi.org/10.5771/9783748929451
- Smaradottir, B. F., Haaland, J. A., & Martinez, S. G. (2018). User evaluation of the smartphone screen reader VoiceOver with visually disabled participants. Mobile Information Systems, 2018. https://doi.org/10.1155/2018/6941631 Google Scholar öffnen doi.org/10.5771/9783748929451
- Smith, Aaron. (2019, September 5). More Than Half of U.S. Adults Trust Law Enforcement to Use Facial Recognition Responsibly. Pew Research Center: Internet, Science & Tech. https://www.pewinternet.org/2019/09/05/more-than-half-of-u-s-adults-trust-law-enforcement-to-use-facial-recognition-responsibly/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Smith, Adam. (1804). An Inquiry Into the Nature and Causes of the Wealth of Nations, Volume 1 (Vol. 1). Oliver D Cooke. Google Scholar öffnen doi.org/10.5771/9783748929451
- Solow, R. M. (2017). Thomas Piketty Is Right. In H. Boushey, J. B. DeLong, & M. Steinbaum (Eds.), After Piketty (pp. 48–59). Harvard University Press. https://doi.org/10.4159/9780674978195-003 Google Scholar öffnen doi.org/10.5771/9783748929451
- Sotala, K. (2020, July 18). Collection of GPT-3 results. LESSWRONG. https://www.lesswrong.com/posts/6Hee7w2paEzHsD6mn/collection-of-gpt-3-results Google Scholar öffnen doi.org/10.5771/9783748929451
- Sovacool, B. K., & Hess, D. J. (2017). Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science, 47(5), 703–750. https://doi.org/10.1177/0306312717709363 Google Scholar öffnen doi.org/10.5771/9783748929451
- Srnicek, N. (2017). Platform capitalism. John Wiley & Sons. Google Scholar öffnen doi.org/10.5771/9783748929451
- St. Vincent, S. (2019, June 21). Facial Recognition Technology in US Schools Threatens Rights. Human Rights Watch. https://www.hrw.org/news/2019/06/21/facial-recognition-technology-us-schools-threatens-rights Google Scholar öffnen doi.org/10.5771/9783748929451
- Star, S. L. (1999). The ethnography of infrastructure. American Behavioral Scientist, 43(3), 377–391. Google Scholar öffnen doi.org/10.5771/9783748929451
- Statista. (2018). Nachrichteninhalte—Aufmerksamkeitsquellen in Deutschland 2016. Statista. https://de.statista.com/statistik/daten/studie/550868/umfrage/aufmerksamkeitsquellen-fuer-nachrichteninhalte/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Statista. (2021, January). Search engines: Market share of desktop and mobile search in Germany 2021. Statista. https://www.statista.com/statistics/445974/search-engines-market-share-of-desktop-and-mobile-search-germany/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Statt, N. (2018, May 10). Google now says controversial AI voice calling system will identify itself to humans. The Verge. https://www.theverge.com/2018/5/10/17342414/google-duplex-ai-assistant-voice-calling-identify-itself-update Google Scholar öffnen doi.org/10.5771/9783748929451
- Steinacker, L., Kostka, G., Meckel, M., Guo, D., & Suter, V. (2020, May). Facing the public: A cross-national analysis of social norms and communication about facial recognition technologies. International Communication Association 2020, Australia. https://www.alexandria.unisg.ch/259127/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Steinacker, L., Meckel, M., Kostka, G., & Borth, D. (2020). Facial Recognition: A cross-national Survey on Public Acceptance, Privacy, and Discrimination. ArXiv Preprint ArXiv:2008.07275. Google Scholar öffnen doi.org/10.5771/9783748929451
- Steinbicker, J. (2001). Zur Theorie der Informationsgesellschaft. Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Steiner, C. (2013). Automate This: How algorithms took over markets, our jobs, and the world. Penguin Random House. Google Scholar öffnen doi.org/10.5771/9783748929451
- Stern, S. E., Dumont, M., Mullennix, J. W., & Winters, M. L. (2007). Positive prejudice toward disabled persons using synthesized speech: Does the effect persist across contexts? Journal of Language and Social Psychology, 26(4), 363–380. Google Scholar öffnen doi.org/10.5771/9783748929451
- Stern, S. E., Mullennix, J. W., & Wilson, S. J. (2002). Effects of perceived disability on persuasiveness of computer-synthesized speech. Journal of Applied Psychology, 87(2), 411–417. Google Scholar öffnen doi.org/10.5771/9783748929451
- Stöcker, C., & Preuss, M. (2020). Riding the Wave of Misclassification: How We End up with Extreme YouTube Content. International Conference on Human-Computer Interaction, 359–375. Google Scholar öffnen doi.org/10.5771/9783748929451
- Stone, D., Jarrett, C., Woodroffe, M., & Minocha, S. (2005). User interface design and evaluation. Elsevier. Google Scholar öffnen doi.org/10.5771/9783748929451
- Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D. C., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2016). One hundred year study on Artificial Intelligence: AI and life in 2030. Stanford University. ai100.standford.edu Google Scholar öffnen doi.org/10.5771/9783748929451
- Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques. Citeseer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Striphas, T. (2015). Algorithmic culture. European Journal of Cultural Studies, 18(4–5), 395–412. https://doi.org/10.1177/1367549415577392 Google Scholar öffnen doi.org/10.5771/9783748929451
- Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. ArXiv Preprint ArXiv:1906.02243. Google Scholar öffnen doi.org/10.5771/9783748929451
- Suarez-Villa, L. (2000). Invention and the Rise of Technocapitalism. Rowman & Littlefield. Google Scholar öffnen doi.org/10.5771/9783748929451
- Suarez-Villa, L. (2013). Technocapitalism. http://www.technocapitalism.com/Introduction.htm Google Scholar öffnen doi.org/10.5771/9783748929451
- Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine Communication. Cambridge University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Suchman, L. (2007). Human-machine reconfigurations: Plans and situated actions (2nd Edition). Cambridge University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Svenmarck, P., Luotsinen, L., Nilsson, M., & Schubert, J. (2018). Possibilities and challenges for artificial intelligence in military applications. Proceedings of the 2018 NATO Big Data and Artificial Intelligence for Military Decision Making Specialists’ Meeting, 1–15. Google Scholar öffnen doi.org/10.5771/9783748929451
- Sweeney, L. (2013). Discrimination in online ad delivery. ArXiv Preprint ArXiv:1301.6822. Google Scholar öffnen doi.org/10.5771/9783748929451
- Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701–1708. https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Taigman_DeepFace_Closing_the_2014_CVPR_paper.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Takeishi, A., & Lee, K.-J. (2005). Mobile music business in Japan and Korea: Copyright management institutions as a reverse salient. The Journal of Strategic Information Systems, 14(3), 291–306. https://doi.org/10.1016/j.jsis.2005.07.005 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tan, B., Shen, X., & Zhai, C. (2006). Mining long-term search history to improve search accuracy. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 718–723. Google Scholar öffnen doi.org/10.5771/9783748929451
- Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). Defining “Fake News”: A typology of scholarly definitions. Digital Journalism, 6(2), 137–153. https://doi.org/10.1080/21670811.2017.1360143 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tankard, M. E., & Paluck, E. L. (2016). Norm Perception as a Vehicle for Social Change: Vehicle for Social Change. Social Issues and Policy Review, 10(1), 181–211. https://doi.org/10.1111/sipr.12022 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tankard, M. E., & Paluck, E. L. (2017). The Effect of a Supreme Court Decision Regarding Gay Marriage on Social Norms and Personal Attitudes. Psychological Science, 28(9), 1334–1344. https://doi.org/10.1177/0956797617709594 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tans, G. (2018, October 11). For Businesses Big and Small, AI is the Great Equalizer. Linkedin. https://www.linkedin.com/pulse/businesses-big-small-ai-great-equalizer-gillian-tans Google Scholar öffnen doi.org/10.5771/9783748929451
- Tao, Q., & Veldhuis, R. (2010). Biometric authentication system on mobile personal devices. IEEE Transactions on Instrumentation and Measurement, 59(4), 763–773. Google Scholar öffnen doi.org/10.5771/9783748929451
- Tariq, S., Jeon, S., & Woo, S. S. (2021). Am I a Real or Fake Celebrity? Measuring Commercial Face Recognition Web APIs under Deepfake Impersonation Attack. ArXiv Preprint ArXiv:2103.00847. Google Scholar öffnen doi.org/10.5771/9783748929451
- Taylor, L. (2017). What is data justice? The case for connecting digital rights and freedoms globally. Big Data & Society, 4(2), 1–14. Google Scholar öffnen doi.org/10.5771/9783748929451
- Taylor, P. (2009). Text-to-speech synthesis. Cambridge University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Tene, O., & Polonetsky, J. (2013). Big data for all: Privacy and user control in the age of analytics. Nw. J. Tech. & Intell. Prop., 11(5), 240–272. Google Scholar öffnen doi.org/10.5771/9783748929451
- Thaler, R. H., Sunstein, C. R., & Balz, J. P. (2013). Choice architecture. In E. Shafir (Ed.), The behavioral foundations of public policy (pp. 428–439). Princeton University Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- The Royal Society. (2017). Machine learning: The power and promise of computers that learn by example. The Royal Society. https://royalsociety.org/-/media/policy/projects/machine-learning/publications/machine-learning-report.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- The State of Responsible AI: 2021. (2021). FICO. https://www.fico.com/en/resource-access/download/36776?access_token_9f4fd=3a3e8333dc8922948bee98cd1fd89cb11e2585415f725da6adf63342cb6e18d0 Google Scholar öffnen doi.org/10.5771/9783748929451
- Thelen, K. A. (2018). Regulating Uber: The politics of the platform economy in Europe and the United States. Perspectives on Politics, 16(4), 938–953. Google Scholar öffnen doi.org/10.5771/9783748929451
- Thompson, C. (2014). Smarter Than You Think: How Technology is Changing Our Minds for the Better. Harper Collins Australia. Google Scholar öffnen doi.org/10.5771/9783748929451
- Thompson, C. (2019). Coders: The making of a new tribe and the remaking of the world. Penguin Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Thrift, N. (1998). Virtual Capitalism: The Globalisation of Reflexive Business Knowledge. In J. Carrier & D. Miller (Eds.), Virtualism: A New Political Economy (pp. 161–186). Berg Publishers. Google Scholar öffnen doi.org/10.5771/9783748929451
- Tiernan, E. (2021, February 17). Massachusetts’ New Police Reform Law Misses First Deadline. Governing. https://www.governing.com/now/Massachusetts-New-Police-Reform-Law-Misses-First-Deadline.html Google Scholar öffnen doi.org/10.5771/9783748929451
- TradeCNBC. (2021, January 25). I wish @CNN cared as much about the riots that happened all summer. This #FacesOfTheRiot show is scary, like a McCarthy hearing, or Russian dissenter hunt [Tweet]. @TradeCNBC. https://twitter.com/TradeCNBC/status/1353549611638652929 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tréguer, P. (2018, May 30). Meaning andOorigin of ‘to be unable to run a whelk stall.’ Word Histories. https://wordhistories.net/2018/05/30/unable-run-whelkstall/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Trouvain, J., & Brackhane, F. (2011). Wolfgang von Kempelen’s speaking machine as an instrument for demonstration and research. Proceedings of the 17th International Conference of Phonetic Sciences, 164–167. Google Scholar öffnen doi.org/10.5771/9783748929451
- Tufekci, Z. (2014). Engineering the public: Big data, surveillance and computational politics. First Monday, 19(7). https://doi.org/10.5210/fm.v19i7.4901 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tufekci, Z. (2018). YouTube, the great radicalizer. The New York Times. https://www.nytimes.com/2018/03/10/opinion/sunday/youtube-politics-radical.html Google Scholar öffnen doi.org/10.5771/9783748929451
- Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, LIX(236), 433–460. https://doi.org/10.1093/mind/LIX.236.433 Google Scholar öffnen doi.org/10.5771/9783748929451
- Tutt, A. (2017). An FDA for algorithms. Admin. L. Rev., 69, 83–123. Google Scholar öffnen doi.org/10.5771/9783748929451
- UBI Hologram. (2021, January 24). Any #Facesoftheriot bounty hunters out there? We’re looking for a guy that owes us some money ... What the hell: I’ll toss another $100 on the pile. [Tweet]. @hologram_stan. https://twitter.com/hologram_stan/status/1353420876662755329 Google Scholar öffnen doi.org/10.5771/9783748929451
- United Nations Environment Programme. (2020). Principles for Responsible Investment Report 2020. PRI. https://www.unpri.org/download?ac=10948 Google Scholar öffnen doi.org/10.5771/9783748929451
- U.S. Federal Trade Commission. (2021, April 19). Aiming for truth, fairness, and equity in your company’s use of AI. Federal Trade Commission. https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai Google Scholar öffnen doi.org/10.5771/9783748929451
- U.S. podcast advertising revenue 2019. (2020, July). Statista. https://www.statista.com/statistics/760791/us-podcast-advertising-revenue/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Vaccari, C., & Chadwick, A. (2020). Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news. Social Media + Society, 6(1), 1–13. Google Scholar öffnen doi.org/10.5771/9783748929451
- Vallas, S. P. (2019). Platform capitalism: What’s at stake for workers? New Labor Forum, 28(1), 48–59. Google Scholar öffnen doi.org/10.5771/9783748929451
- van Heek, J., Arning, K., & Ziefle, M. (2016). The Surveillance Society: Which Factors Form Public Acceptance of Surveillance Technologies? In M. Helfert, C. Klein, B. Donnellan, & O. Gusikhin (Eds.), Smart Cities, Green Technologies, and Intelligent Transport Systems (pp. 170–191). Springer. Google Scholar öffnen doi.org/10.5771/9783748929451
- Van Hoof, J., Kort, H. S., Markopoulos, P., & Soede, M. (2007). Ambient intelligence, ethics and privacy. Gerontechnology, 6(3), 155–163. Google Scholar öffnen doi.org/10.5771/9783748929451
- Veblen, T. (1908a). On the nature of capital. Quarterly Journal of Economics, 23(1), 104–136. Google Scholar öffnen doi.org/10.5771/9783748929451
- Veblen, T. (1908b). Professor Clark’s economics. Quarterly Journal of Economics, 22(2), 147–195. Google Scholar öffnen doi.org/10.5771/9783748929451
- Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540 Google Scholar öffnen doi.org/10.5771/9783748929451
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412 Google Scholar öffnen doi.org/10.5771/9783748929451
- Vincent, J. (2016, June 29). Satya Nadella’s rules for AI are more boring (and relevant) than Asimov’s Three Laws. The Verge. https://www.theverge.com/2016/6/29/12057516/satya-nadella-ai-robot-laws Google Scholar öffnen doi.org/10.5771/9783748929451
- Vincent, J. (2020, July 27). This is what a deepfake voice clone used in a failed fraud attempt sounds like. The Verge. https://www.theverge.com/2020/7/27/21339898/deepfake-audio-voice-clone-scam-attempt-nisos Google Scholar öffnen doi.org/10.5771/9783748929451
- Vincent, J. (2021a, April 14). The EU is considering a ban on AI for mass surveillance and social credit scores. The Verge. https://www.theverge.com/2021/4/14/22383301/eu-ai-regulation-draft-leak-surveillance-social-credit Google Scholar öffnen doi.org/10.5771/9783748929451
- Vincent, J. (2021b, April 21). FBI used facial recognition to identify a Capitol rioter from his girlfriend’s Instagram posts. The Verge. https://www.theverge.com/2021/4/21/22395323/fbi-facial-recognition-us-capital-riots-tracked-down-suspect Google Scholar öffnen doi.org/10.5771/9783748929451
- Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, I–I. Google Scholar öffnen doi.org/10.5771/9783748929451
- Viola, P., & Jones, M. J. (2004). Robust Real-Time Face Detection. International Journal of Computer Vision, 57(2), 137–154. Google Scholar öffnen doi.org/10.5771/9783748929451
- Vocally Yours (Round 5). (2018). Digital News Initiative. https://newsinitiative.withgoogle.com//dnifund/dni-projects/vocally-yours-round-5/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Voiceitt: Home. (2021). Voiceitt. https://voiceitt.com/ Google Scholar öffnen doi.org/10.5771/9783748929451
- Von Kempelen, W. (1791). Mechanismus der menschlichen Sprache nebst der Beschreibung einer sprechenden Machine. Degen. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wagner, E. L., Newell, S., & Piccoli, G. (2010). Understanding project survival in an ES environment: A sociomaterial practice perspective. Journal of the Association for Information Systems, 11(5), 276–297. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wajcman, J. (2002). Addressing Technological Change: The Challenge to Social Theory. Current Sociology, 50(3), 347–363. https://doi.org/10.1177/0011392102050003004 Google Scholar öffnen doi.org/10.5771/9783748929451
- Walther, J. B. (1996). Computer-mediated communication: Impersonal, interpersonal, and hyperpersonal interaction. Communication Research, 23(1), 3–43. Google Scholar öffnen doi.org/10.5771/9783748929451
- Walther, J. B. (2007). Selective self-presentation in computer-mediated communication: Hyperpersonal dimensions of technology, language, and cognition. Computers in Human Behavior, 23(5), 2538–2557. Google Scholar öffnen doi.org/10.5771/9783748929451
- Walther, J. B., Van Der Heide, B., Ramirez, A., Burgoon, J. K., & Peña, J. (2015). Interpersonal and hyperpersonal dimensions of computer-mediated communication. In S. S. Sundar (Ed.), The handbook of the psychology of communication technology (pp. 1–22). Wiley & Sons. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wang, Yilun, & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 114(2), 246. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wang, Yuxuan, Skerry-Ryan, R. J., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R., & Saurous, R. A. (2017). Tacotron: Towards End-to-End Speech Synthesis. ArXiv:1703.10135 [Cs]. http://arxiv.org/abs/1703.10135 Google Scholar öffnen doi.org/10.5771/9783748929451
- Wardle, C., & Derakhshan, H. (2017). Information disorder: Toward an interdisciplinary framework for research and policy making. Council of Europe. https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c Google Scholar öffnen doi.org/10.5771/9783748929451
- Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113–117. Google Scholar öffnen doi.org/10.5771/9783748929451
- Weber, M. (1968). Economy and Society: An outline of interpretive sociology. University of California Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Weber, S., & Stanton, C. (2019, October 2). The World Isn’t Ready for AI to Upend the Global Economy. Carnegie Endowment for International Peace. https://carnegieendowment.org/2019/10/02/world-isn-t-ready-for-ai-to-upend-global-economy-pub-79961 Google Scholar öffnen doi.org/10.5771/9783748929451
- Webster, F. (2014). Theories of the information society. Routledge. Google Scholar öffnen doi.org/10.5771/9783748929451
- Weick, K. E., Sutcliffe, K. M., & Obstfeld, D. (2005). Organizing and the process of sensemaking. Organization Science, 16(4), 409–421. Google Scholar öffnen doi.org/10.5771/9783748929451
- West, S. M. (2019). Data capitalism: Redefining the logics of surveillance and privacy. Business & Society, 58(1), 20–41. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wiener, N. (1988). The human use of human beings: Cybernetics and society. Da Capo Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wiener, N. (2019). Cybernetics or Control and Communication in the Animal and the Machine. MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wing, J. M. (2020). Trustworthy AI. ArXiv Preprint ArXiv:2002.06276. Google Scholar öffnen doi.org/10.5771/9783748929451
- Winner, L. (1977). Autonomous technology: Technics-out-of-control as a theme in political thought (9. printing). MIT Press. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wood, A. J., Graham, M., Lehdonvirta, V., & Hjorth, I. (2019). Good gig, bad gig: Autonomy and algorithmic control in the global gig economy. Work, Employment and Society, 33(1), 56–75. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wood, S. G., Moxley, J. H., Tighe, E. L., & Wagner, R. K. (2018). Does Use of Text-to-Speech and Related Read-Aloud Tools Improve Reading Comprehension for Students With Reading Disabilities? A Meta-Analysis. Journal of Learning Disabilities, 51(1), 73–84. https://doi.org/10.1177/0022219416688170 Google Scholar öffnen doi.org/10.5771/9783748929451
- Woodward, J. D., Horn, C., Gatune, J., & Thomas, A. (2003). Biometrics: A look at facial recognition. RAND. Google Scholar öffnen doi.org/10.5771/9783748929451
- Woolgar, S. (1991). The Turn to Technology in Social Studies of Science. Science, Technology, & Human Values, 16(1), 20–50. JSTOR. https://doi.org/10.1177/016224399101600102 Google Scholar öffnen doi.org/10.5771/9783748929451
- Woolley, B. (2015). The Bride of Science: Romance, reason and Byron’s daughter. Pan Macmillan. Google Scholar öffnen doi.org/10.5771/9783748929451
- Wu, X., & Zhang, X. (2016). Responses to Critiques on Machine Learning of Criminality Perceptions (Addendum of arXiv: 1611.04135). ArXiv Preprint ArXiv:1611.04135. Google Scholar öffnen doi.org/10.5771/9783748929451
- Yamamoto, R., Song, E., & Kim, J.-M. (2020). Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6199–6203. Google Scholar öffnen doi.org/10.5771/9783748929451
- Yong, S. (2013). Panopticism Technique in Crime Prevention Through Environmental Design (SSRN Scholarly Paper ID 3001563). Social Science Research Network. https://papers.ssrn.com/abstract=3001563 Google Scholar öffnen doi.org/10.5771/9783748929451
- Young, A. (1998). Towards an Interim Statistical Framework: Selecting the Core Components of Intangible Investment. OECD Secretariat. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zarkadakis, G. (2015). In Our Own Image: Will artificial intelligence save or destroy us? Random House. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., & Sellitto, M. (2021). The AI Index 2021 Annual Report. Human-Centered AI Institute, Stanford University. https://arxiv.org/pdf/2103.06312.pdf Google Scholar öffnen doi.org/10.5771/9783748929451
- Zhang, J.-X., Ling, Z.-H., & Dai, L.-R. (2018). Forward attention in sequence-to-sequence acoustic modeling for speech synthesis. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4789–4793. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zielke, T., & Wolfer, R. C. (2008). Facing up to gambling addicts. Biometric Technology Today, 16(3), 10–11. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zimmer, M. (2010). “But the data is already public”: On the ethics of research in Facebook. Ethics and Information Technology, 12(4), 313–325. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zou, J., & Schiebinger, L. (2018). AI can be sexist and racist—It’s time to make it fair. Nature Publishing Group. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zuboff, S. (1988). In the age of the smart machine: The future of work and power. Basic Books. Google Scholar öffnen doi.org/10.5771/9783748929451
- Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75–89. https://doi.org/10.1057/jit.2015.5 Google Scholar öffnen doi.org/10.5771/9783748929451
- Zuboff, S. (2016, March 5). Google as a Fortune Teller: The Secrets of Surveillance Capitalism. Frankfurter Allgemeine Zeitung. https://www.faz.net/1.4103616 Google Scholar öffnen doi.org/10.5771/9783748929451
- Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. Profile Books. Google Scholar öffnen doi.org/10.5771/9783748929451





