, um zu prüfen, ob Sie einen Vollzugriff auf diese Publikation haben.
Monographie Kein Zugriff

Lebendige Konstruktionen - Technisierung des Lebendigen

Potenziale, Grenzen und Entwicklungspfade der Synthetischen Biologie
Autor:innen:
Verlag:
 2015

Zusammenfassung

Synthetische Biologie wird als vielversprechende Zukunftstechnikwissenschaft angesehen. Sie zielt darauf ab, Ingenieursprinzipien in der Biologie zu verwirklichen. Mit der Vision von umfassender Planbarkeit und allgemeiner Konstruierbarkeit grenzt sie sich von der nur manipulierenden Gentechnik ab. Offen ist bisher, ob diese Vision realisiert werden kann. Ebenso unbestimmt sind derzeit mögliche Folgen für Gesellschaft, Mensch und Natur. Dieses frühe Stadium eröffnet aber Optionen, Einfluss auf ihre Entwicklung zu nehmen: um Chancen zu realisieren und Risiken zu minimieren.

Dieses Buch stellt die prägenden Visionen, Modelle und Methoden, die sich unter dem Dach der Synthetischen Biologie gruppieren, im Überblick vor. So können die sich eröffnenden Möglichkeiten frühzeitig analysiert und kritisch bewertet werden. Die mit ihnen verbundenen Chancen und Risiken werden in vier Fallstudien untersucht, wobei auch wenig beachtete Bereiche in den Blick rücken wie etwa biomimetische Werkstoffe: Technik, die am Vorbild der Natur orientiert ist. Basierend auf einer gleichermaßen gesellschaftlich orientierten wie technikbezogenen Bewertung werden gefährdungsarme Entwicklungspfade sichtbar.


Publikation durchsuchen


Bibliographische Angaben

Copyrightjahr
2015
ISBN-Print
978-3-8487-2516-8
ISBN-Online
978-3-8452-7132-3
Verlag
Nomos, Baden-Baden
Sprache
Deutsch
Seiten
248
Produkttyp
Monographie

Inhaltsverzeichnis

KapitelSeiten
  1. Titelei/Inhaltsverzeichnis Kein Zugriff Seiten 1 - 6
  2. Vorbemerkung Kein Zugriff Seiten 7 - 8
  3. 1 Einleitung Kein Zugriff Seiten 9 - 14
  4. 2 Vorsorgeorientierung Kein Zugriff Seiten 15 - 20
    1. 3.1 Visionen und Definitionen Kein Zugriff
    2. 3.2 Traditionslinien und Paradigmen Kein Zugriff
    3. 3.3 Nachmoderne Technik Kein Zugriff
    4. 3.4 Selbstorganisation Kein Zugriff
    5. 3.5 Hindernisse und Grenzen Kein Zugriff
    6. 3.6 Perspektiven Kein Zugriff
    1. 4.1 Ebene 1: Molekulare Grundbausteine Kein Zugriff
    2. 4.2 Ebene 2: Biologische Polymere als molekulare Werkzeuge und Strukturen Kein Zugriff
    3. 4.3 Ebene 3: Module, metabolische und Signalnetzwerke Kein Zugriff
    4. 4.4 Ebene 4: Das Genom Kein Zugriff
    5. 4.5 Ebene 5: Die Zelle Kein Zugriff
    6. 4.6 Neue Funktionalitäten im Überblick Kein Zugriff
    7. 4.7 Vereinfachungen und Ansätze zur Komplexitätsreduktion Kein Zugriff
    1. 5.1 Biologische Grundlagenforschung Kein Zugriff
    2. 5.2 Energiegewinnung Kein Zugriff
    3. 5.3 Biologische und biomimetische Materialien Kein Zugriff
    4. 5.4 Grüne Biotechnologie Kein Zugriff
    5. 5.5 Potenziale der Synthetischen Biologie Kein Zugriff
    6. 5.6 Erkenntnisse für die ausgewählten Anwendungsfelder Kein Zugriff
    1. 6.1 Quellen von Gefährdungs- und Expositionspotenzialen Kein Zugriff
    2. 6.2 Gefährdungs- und Expositionspotenziale aufgrund biologischer Funktionalitäten Kein Zugriff
    3. 6.3 Kritische Anwendungskontexte Kein Zugriff
    4. 6.4 Risikopotenziale in Anwendungsfeldern Kein Zugriff
    1. 7.1 Naturfremde molekulare Grundbausteine als Basis Kein Zugriff
    2. 7.2 Der Vorteil funktioneller Reduktion Kein Zugriff
    3. 7.3 In-vitro-Systeme als Weg zur sicheren Nutzung Kein Zugriff
    4. 7.4 Fazit Kein Zugriff
  5. 8 Zusammenfassung Kein Zugriff Seiten 197 - 204
  6. 9 Perspektiven und Optionen Kein Zugriff Seiten 205 - 210
  7. Literatur Kein Zugriff Seiten 211 - 245
  8. Abbildungsverzeichnis Kein Zugriff Seiten 246 - 246
  9. Schlagwortregister Kein Zugriff Seiten 247 - 248

Literaturverzeichnis (545 Einträge)

  1. Agapakis, C. M./Silver, P. A. 2009: Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. In: Molecular BioSystems, Bd. 5, H. 7, S. 704–713. DOI: http://dx.doi.org/10.1039/b901484e Google Scholar öffnen doi.org/10.1039/b901484e
  2. AGS – Ausschuss für Gefahrstoffe bei der Bundesanstalt für Arbeitsschutz und Arbeitsmedi-zin (2008): Technische Regel für Gefahrstoffe 600: Substitution (Internet: http://www. baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/TRGS-600.html; zuletzt aufgesucht am 19.9.2015) Google Scholar öffnen
  3. Ajo-Franklin, C. M./Drubin, D. A./Eskin, J. A./Gee, E. P./Landgraf, D./Phillips, I./Silver, P. A. (2007): Rational design of memory in eukaryotic cells. In: Genes & Development, Bd. 21, H. 18, S. 2271–2276. DOI: http://dx.doi.org/10.1101/gad.1586107 Google Scholar öffnen doi.org/10.1101/gad.1586107
  4. Algar, E. M./Scopes, R. K. (1985): Studies on cell-free metabolism: Ethanol production by extracts of Zymomonas mobilis. In: Journal of Biotechnology, Bd. 2, H. 5, S. 275–287. DOI: http://dx.doi.org/10.1016/0168-1656(85)90030-6 Google Scholar öffnen doi.org/10.1016/0168-1656(85)90030-6
  5. Alon, U. (2007a): Network motifs: theory and experimental approaches. In: Nature Reviews Genetics, Bd. 8, H. 6, S. 450–461 Google Scholar öffnen
  6. Alon, U. 2007b: Simplicity in biology. In: Nature, Bd. 446, H. 7135, S. 497–497. DOI: http://dx.doi.org/doi:10.1038/446497a Google Scholar öffnen doi.org/10.1038/446497a
  7. Altman, A./Hasegawa, P. M. 2012: Introduction to plant biotechnology 2011: Basic aspects and agricultural implications. In: Altman, A./Hasegawa, P. M. (Hg.): Plant Biotechnol-ogy and Agriculture – Prospects for the 21st Century. Amsterdam u.a.O.: Elsevier, Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00050-X
  8. S. xxix–xxxviii Google Scholar öffnen
  9. Amidi, M./de Raad, M./de Graauw, H./van Ditmarsch, D./Hennink, W. E./Crommelin, D. J./Mastrobattista, E. 2010: Optimization and quantification of protein synthesis inside liposomes. In: Journal of Liposome Research, Bd. 20, H. 1, S. 73–83. DOI: http://dx. doi.org/10.3109/08982100903402954 Google Scholar öffnen doi.org/10.3109/08982100903402954
  10. Anders, G. 1958: Die Antiquiertheit des Menschen. Über die Seele im Zeitalter der zweiten industriellen Revolution. Beck, München Google Scholar öffnen
  11. Anderson, J. C./Clarke, E. J./Arkin, A. P./Voigt, C. A. 2006: Environmentally Controlled In-vasion of Cancer Cells by Engineered Bacteria. In: Journal of Molecular Biology, Bd. 355, H. 4, S. 619–627. DOI: http://dx.doi.org/10.1016/j.jmb.2005.10.076 Google Scholar öffnen doi.org/10.1016/j.jmb.2005.10.076
  12. Anderson, J. C./Voigt, C. A./Arkin, A. P. 2007: Environmental signal integration by a modu-lar AND gate. In: Molecular Systems Biology, Bd. 3, S. 133. DOI: http://dx.doi.org/10. 1038/msb4100173 Google Scholar öffnen doi.org/10.1038/msb4100173
  13. Andow, D. a./Zwahlen, C. 2006: Assessing environmental risks of transgenic plants. In: Ecol-ogy letters, Bd. 9, H. 2, S. 196–214. DOI: http://dx.doi.org/10.1111/j.1461-0248.2005. 00846.x Google Scholar öffnen
  14. Andrianantoandro, E./Basu, S./Karig, D. K./Weiss, R. 2006: Synthetic Biology: New Engi-neering Rules for an Emerging Discipline. In: Molecular Systems Biology, Bd. 2 Artikel Nr.: 2006.0028. DOI: http://dx.doi.org/10.1038/msb4100073 Google Scholar öffnen doi.org/10.1038/msb4100073
  15. Anemaet, I. G./Bekker, M./Hellingwerf, K. J. 2010: Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production. In: Marine Biotechnology, Bd. 12, H. 6, S. 619–629. DOI: http://dx.doi.org/10.1007/s10126-010-9311-1 Google Scholar öffnen doi.org/10.1007/s10126-010-9311-1
  16. Annaluru, N./Muller, H./Mitchell, L. A./Ramalingam, S./Stracquadanio, G./Richardson, S. M./Dymond, J. S./Kuang, Z./Scheifele, L. Z./Cooper, E. M./Cai, Y./Zeller, K./Agmon, N./Han, J. S./Hadjithomas, M./Tullman, J./Caravelli, K./Cirelli, K./Guo, Z./London, V./Yeluru, A./Murugan, S./Kandavelou, K./Agier, N./Fischer, G./Yang, K./Martin, J. A./Bilgel, M./Bohutski, P./Boulier, K. M./Capaldo, B. J./Chang, J./Charoen, K./Choi, W. J./Deng, P./DiCarlo, J. E./Doong, J./Dunn, J./Feinberg, J. I./Fernandez, C./Floria, C. E./Gladowski, D./Hadidi, P./Ishizuka, I./Jabbari, J./Lau, C. Y./Lee, P. A./Li, S./Lin, D./Linder, M. E./Ling, J./Liu, J./Liu, J./London, M./Ma, H./Mao, J./McDade, J. E./Mc-Millan, A./Moore, A. M./Oh, W. C./Ouyang, Y./Patel, R./Paul, M./Paulsen, L. C./Qiu, J./Rhee, A./Rubashkin, M. G./Soh, I. Y./Sotuyo, N. E./Srinivas, V./Suarez, A./Wong, A./ Wong, R./Xie, W. R./Xu, Y./Yu, A. T./Koszul, R./Bader, J. S./Boeke, J. D./Chandrase-garan, S. 2014: Total synthesis of a functional designer eukaryotic chromosome. In: Science, Bd. 344, H. 6179, S. 55–58. DOI: http://dx.doi.org/10.1126/science.1249252 Google Scholar öffnen doi.org/10.1126/science.1249252
  17. Anonymus. 2014: Synthetic biology: back to the basics. In: Nature Methods, Bd. 11, H. 5, Google Scholar öffnen doi.org/10.1515/9783110316421.17
  18. S. 463–463. DOI: http://dx.doi.org/10.1038/nmeth.2941 Google Scholar öffnen doi.org/10.1038/nmeth.2941
  19. Antoni, D./Zverlov, V. V./Schwarz, W. H. 2007: Biofuels from microbes. In: Applied Micro-biology and Biotechnology, Bd. 77, H. 1, S. 23–35. DOI: http://dx.doi.org/10.1007/ s00253-007-1163-x Google Scholar öffnen doi.org/10.1007/s00253-007-1163-x
  20. Antunes, M. S./Morey, K. J./Smith, J. J./Albrecht, K. D./Bowen, T. a./Zdunek, J. K./Troupe, J. F./Cuneo, M. J./Webb, C. T./Hellinga, H. W./Medford, J. I. 2011: Programmable ligand detection system in plants through a synthetic signal transduction pathway. In: PLoS One, Bd. 6, H. 1, S. e16292-e16292. DOI: http://dx.doi.org/10.1371/journal.pone. 0016292 Google Scholar öffnen
  21. Antunes, M. S./Morey, K. J./Tewari-Singh, N./Bowen, T. a./Smith, J. J./Webb, C. T./Hellin¬ga, H. W./Medford, J. I. 2009: Engineering key components in a synthetic eukaryotic signal transduction pathway. In: Molecular systems biology, Bd. 5, H. 270, S. 270–270. DOI: http://dx.doi.org/10.1038/msb.2009.28 Google Scholar öffnen doi.org/10.1038/msb.2009.28
  22. Arkin, A. P. 2008: Setting the Standard in Synthetic Biology. In: Nature Biotechnology, Bd. 26, H. 7, S. 771–774. DOI: http://dx.doi.org/10.1038/nbt0708-771 Google Scholar öffnen doi.org/10.1038/nbt0708-771
  23. Arkin, A. P./Fletcher, D. A. 2006: Fast, cheap and somewhat in control. In: Genome Biology, Bd. 7, H. 8, S. 114–114 Google Scholar öffnen doi.org/10.1186/gb-2006-7-8-114
  24. Arruda, P. 2012: Genetically Modified Sugarcane for Bioenergy Generation. In: Current Opinion in Biotechnology, Bd. 23, H. 3, S. 315–322. DOI: http://dx.doi.org/10.1016/ j.copbio.2011.10.012 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.10.012
  25. Ashby, M. F./Gibson, L. J./Wegst, U./Olive, R. 1995: The Mechanical Properties of Natural Materials. I. Material Property Charts. In: Proceeding Royal Society. Mathematical and Physical Scienes, Bd. 450, H. 1938, S. 123–140 Google Scholar öffnen doi.org/10.1098/rspa.1995.0075
  26. Ball, P. 2005: Synthetic biology for nanotechnology. In: Nanotechnology, Bd. 16, H. 1, Google Scholar öffnen doi.org/10.1088/0957-4484/16/1/R01
  27. S. R1-R1. DOI: http://dx.doi.org/10.1088/0957-4484/16/1/R01 Google Scholar öffnen doi.org/10.1088/0957-4484/16/1/R01
  28. Baltimore, D./Berg, P./Botchan, M./Carroll, D./Charo, R. A./Church, G./Corn, J. E./Daley, G. Q./Doudna, J. A./Fenner, M./Greely, H. T./Jinek, M./Martin, G. S./Penhoet, E./Puck, J./ Sternberg, S. H./Weissman, J. S./Yamamoto, K. R. 2015: Biotechnology. A prudent path forward for genomic engineering and germline gene modification. In: Science, Bd. 348, H. 6230, S. 36–38. DOI: http://dx.doi.org/10.1126/science.aab1028 Google Scholar öffnen doi.org/10.1126/science.aab1028
  29. Bar-Even, A./Noor, E./Lewis, N. E./Milo, R. 2010: Design and analysis of synthetic carbon fixation pathways. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 107, H. 19, S. 8889–8894. DOI: http://dx.doi.org/10.1073/pnas. 0907176107 Google Scholar öffnen doi.org/10.1073/pnas
  30. Barthelat, F./Zhu, D. 2011: A novel biomimetic material duplicating the structure and mechanics of natural nacre. In: Journal of Materials Research, Bd. 26, H. 10, S. 1203–1215. DOI: http://dx.doi.org/10.1557/jmr.2011.65 Google Scholar öffnen doi.org/10.1557/jmr.2011.65
  31. Basu, S./Gerchman, Y./Collins, C. H./Arnold, F. H./Weiss, R. 2005: A synthetic multicellular system for programmed pattern formation. In: Nature, Bd. 434, H. 7037, S. 1130–1134. DOI: http://dx.doi.org/10.1038/nature03461 Google Scholar öffnen doi.org/10.1038/nature03461
  32. Basu, S./Mehreja, R./Thiberge, S./Chen, M. T./Weiss, R. 2004: Spatiotemporal Control of Gene Expression with Pulse-Generating Networks. In: Proceedings of the National Aca-demy of Sciences of the United States of America, Bd. 101, H. 17, S. 6355–6360. DOI: http://dx.doi.org/10.1073/pnas.0307571101 Google Scholar öffnen doi.org/10.1073/pnas.0307571101
  33. Bath, J./Turberfield, A. J. 2007: DNA nanomachines. In: Nature Nanotechnology, Bd. 2, H. 5, S. 275–284. DOI: http://dx.doi.org/10.1038/nnano.2007.104 Google Scholar öffnen doi.org/10.1038/nnano.2007.104
  34. Beck, U./Giddens, A./Lash, S. 1996: Reflexive Modernisierung: Eine Kontroverse. Frankfurt/M.: Suhrkamp Google Scholar öffnen
  35. Bedau, M. A./Parke, E. C./Tangen, U./Hantsche-Tangen, B. 2009: Social and ethical check-points for bottom-up synthetic biology, or protocells. In: Systems and Synthetic Biology, Bd. 3, H. 1–4, S. 65–75. DOI: http://dx.doi.org/10.1007/s11693-009-9039-2 Google Scholar öffnen doi.org/10.1007/s11693-009-9039-2
  36. Behrens, G. A./Hummel, A./Padhi, S. K./Schatzle, S./Bornscheuer, U. T. 2011: Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. In: Advanced Synthesis & Catalysis, Bd. 353, H. 13, S. 2191–2215. DOI: http://dx.doi.org/10.1002/adsc.201100446 Google Scholar öffnen doi.org/10.1002/adsc.201100446
  37. Ben-Ari, G./Lavi, U. 2012: Marker-assisted selection in plant breeding. In: Altman, A./Hasegawa, P. M. (Hg.): Plant Biotechnology and Agriculture – Prospects for the 21st Century Amsterdam u.a.O.: Academiv Press, S. 163–184 Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00011-0
  38. Benner, S. A. 2004: Understanding nucleic acids using synthetic chemistry. In: Accounts of Chemical Research, Bd. 37, H. 10, S. 784–797. DOI: http://dx.doi.org/10.1021/ar040004z Google Scholar öffnen doi.org/10.1021/ar040004z
  39. Benner, S. A./Sismour, A. M. 2005: Synthetic Biology. In: Nature Reviews Genetics, Bd. 6, H. 7, S. 533–543. DOI: http://dx.doi.org/10.1038/nrg1637 Google Scholar öffnen doi.org/10.1038/nrg1637
  40. Benner, S. A./Yang, Z./Chen, F. 2011: Synthetic biology, tinkering biology, and artificial biology. What are we learning? In: Comptes Rendus Chimie, Bd. 14, H. 4, S. 372–387. DOI: http://dx.doi.org/10.1016/j.crci.2010.06.013 Google Scholar öffnen doi.org/10.1016/j.crci.2010.06.013
  41. Bergelson, J./Purrington, C. B./Wichmann, G. 1998: Promiscuity in transgenic plants. In: Na-ture, Bd. 395, H. 6697, S. 25. DOI: http://dx.doi.org/10.1038/25626 Google Scholar öffnen doi.org/10.1038/25626
  42. Beyer, P./Al-babili, S./Ye, X./Lucca, P./Schaub, P./Welsch, R./Rice, G. 2002: Golden Rice : Introducing the ß-Carotene Biosynthesis Pathway into Rice Endosperm by Genetic En-gineering to Defeat Vitamin A Deficiency 1. In: The Journal of Nutrition, S. 506–510. DOI: http://dx.doi.org/ Google Scholar öffnen doi.org/10.1093/jn/132.3.506S
  43. Birchler, J. A./Krishnaswamy, L./Gaeta, R. T./Masonbrink, R. E./Zhao, C. 2010: Engineered Minichromosomes in Plants. In: Critical Reviews in Plant Sciences, Bd. 29, H. 3, Google Scholar öffnen doi.org/10.1080/07352681003709918
  44. S. 135–147. DOI: http://dx.doi.org/10.1080/07352681003709918 Google Scholar öffnen doi.org/10.1080/07352681003709918
  45. Blanch, H. W. 2012: Bioprocessing for Biofuels. In: Current Opinion in Biotechnology, Bd. 23, H. 3, S. 390–395. DOI: http://dx.doi.org/10.1016/j.copbio.2011.10.002 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.10.002
  46. Blankenship, R. E./Tiede, D. M./Barber, J./Brudvig, G. W./Fleming, G./Ghirardi, M./Gunner, M. R./Junge, W./Kramer, D. M./Melis, A./Moore, T. a./Moser, C. C./Nocera, D. G./No-zik, A. J./Ort, D. R./Parson, W. W./Prince, R. C./Sayre, R. T. 2011: Comparing Photo-synthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. In: Science, Bd. 332, H. 6031, S. 805–809. DOI: http://dx.doi.org/10.1126/science.1200 165 Google Scholar öffnen
  47. Bley, T./Kirsten, C./Weitze, M.-D. 2009: Bioenergie in Deutschland. In: Bley, T. (Hg.): Bio-technologische Energieumwandlung: Gegenwärtige Situation, Chancen und künftiger Forschungsbedarf. Berlin; Heidelberg: Springer, S. 13–35 Google Scholar öffnen doi.org/10.1007/978-3-642-01115-3_1
  48. BMBF 2010: Nationale Forschungsstrategie BioÖkonomie 2030. Bonn, Berlin: Bundesminis-terium für Bildung und Forschung Google Scholar öffnen
  49. Boldt, J./Muller, O. 2008: Newtons of the leaves of grass. In: Nature Biotechnology, Bd. 26, H. 4, S. 387–389 Google Scholar öffnen doi.org/10.1038/nbt0408-387
  50. Böschen, S./Kastenhofer, K./Rust, I./Soentgen, J./Wehling, P. 2010: Scientific Nonknowledge and Its Political Dynamics: The Cases of Agri-Biotechnology and Mobile Phoning. In: Science, Technology & Human Values, Bd. 35, H. 6, S. 783–811. DOI: http://dx.doi.org/ 10.1177/0162243909357911 Google Scholar öffnen doi.org/10.1177/0162243909357911
  51. Böschen, S./Wehling, P. 2004: Wissenschaft zwischen Folgenverantwortung und Nichtwis¬sen: aktuelle Perspektiven der Wissenschaftsforschung. Wiesbaden: VS Google Scholar öffnen doi.org/10.1007/978-3-322-87351-4
  52. Boyle, A. L./Woolfson, D. N. 2011: De novo designed peptides for biological applications. In: Chemical Society reviews, H. 8. DOI: http://dx.doi.org/10.1039/c0cs00152j Google Scholar öffnen doi.org/10.1039/c0cs00152j
  53. Brand, U./von Gleich, A. 2015: Transformation toward a Secure and Precaution-Oriented Energy System with the Guiding Concept of Resilience – Implementation of Low-Ex-ergy Solutions in Northwestern Germany. In: Energies, Bd. 8, H. 7, S. 6995–7019. DOI: http://dx.doi.org/10.3390/en8076995 Google Scholar öffnen doi.org/10.3390/en8076995
  54. Breckling, B./Middelhoff, U./Borgmann, P./Menzel, G./Brauner, R./Born, A./Laue, H./Schmidt, G./Schröder, W./Wurbs, A./Glemnitz, M. 2003: Biologische Risikoforschung zu gen¬technisch veränderten Pflanzen in der Landwirtschaft: Das Beispiel Raps in Nord¬deutschland. In: Reuter, H./Beckling, B./Mitwollen, A. (Hg.): Gene, Bits und Ökosys¬teme. Frankfurt/M.: P. Lang,, S. 19–45 Google Scholar öffnen
  55. Breckling, B./Schmidt, G. 2015: Synthetic Biology and Genetic Engineering: Parallels in Risk Assessment. In: Giese, B./Pade, C./Wigger, H./von Gleich, A. (Hg.): Synthetic Biology: Character and Impact. Cham: Springer, S. 197–211 Google Scholar öffnen doi.org/10.1007/978-3-319-02783-8_10
  56. Breckling, B./Schmidt, G./Schröder, W. 2012: Systemische Risiken von GVO und ihre wis-senschaftliche Analyse: Strukturelle Aspekte der Risiko-Charakterisierung von GVO. In: Breckling, B./Schmidt, G./Schröder, W. (Hg.): GeneRisk, Systemische Risiken der Gen-technik: Analyse von Umweltwirkungen gentechnisch veränderter Organismen in der Landwirtschaft. Berlin Heidelberg: Springer, S. 15–20 Google Scholar öffnen doi.org/10.1007/978-3-642-23433-0_2
  57. Breithaupt, H. 2006: The engineer’s approach to biology. In: EMBO REPORTS, Bd. 7, H. 1, S. 21–24. DOI: http://dx.doi.org/10.1038/sj.embor.7400607 Google Scholar öffnen doi.org/10.1038/sj.embor.7400607
  58. Bromley, E. H. C./Channon, K./Moutevelis, E./Woolfson, D. N. 2008: Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organ¬ized biomolecular systems. In: ACS Chemical Biology, Bd. 3, H. 1, S. 38–50. DOI: http://dx.doi.org/10.1021/cb700249v Google Scholar öffnen doi.org/10.1021/cb700249v
  59. Brooks, A. E./Stricker, S. M./Joshi, S. B./Kamerzell, T. J./Middaugh, C. R./Lewis, R. V. 2008: Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. In: Bio-macromolecules, Bd. 9, H. 6, S. 1506–1510. DOI: http://dx.doi.org/10.1021/bm701124p Google Scholar öffnen doi.org/10.1021/bm701124p
  60. Brubaker, C. E./Messersmith, P. B. 2012: The present and future of biologically inspired ad-hesive interfaces and materials. In: Langmuir, Bd. 28, H. 4, S. 2200–2205. DOI: http:// dx.doi.org/10.1021/la300044v Google Scholar öffnen doi.org/10.1021/la300044v
  61. Buchner, E. 1897: Alkoholische Gärung ohne Hefezellen. In: Berichte der deutschen chemi-schen Gesellschaft, Bd. 30, H. 1, S. 117–124. DOI: http://dx.doi.org/10.1002/cber.18970 300121 Google Scholar öffnen
  62. Buehler, M. J. 2010a: Materiomics: biological protein materials, from nano to macro. In: Nanotechnology, Science and Applications, S. 127. DOI: http://dx.doi.org/10.2147/ NSA.S9037 Google Scholar öffnen
  63. Buehler, M. J. 2010b: Multiscale Mechanics of Biological and Biologically Inspired Materials and Structures. In: Acta Mechanica Solida Sinica, Bd. 23, H. 6, S. 471–483 Google Scholar öffnen
  64. Bujara, M./Panke, S. 2010: Engineering in complex systems. In: Current Opinion in Biotech-nology, Bd. 21, S. 586–591. DOI: http://dx.doi.org/10.1016/j.copbio.2010.07.007 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.07.007
  65. Bujara, M./Schümperli, M./Billerbeek, S./Heinemann, M./Panke, S. 2010: Exploiting Cell-Free Systems: Implementation and Debugging of a System of Biotransformations. In: Biotechnology and Bioengineering, Bd. 106, H. 3, S. 376–389. DOI: http://dx.doi.org/ 10.1002/bit.22666 Google Scholar öffnen doi.org/10.1002/bit.22666
  66. Cachat, E./Davies, J. A. 2011: Application of Synthetic Biology to Regenerative Medicine. In: Journal of Bioengineering and Biomedical Sciences Artikel Nr.: S2:003. DOI: http:// dx.doi.org/10.4172/2155-9538.s2-003 Google Scholar öffnen doi.org/10.4172/2155-9538.S2-003
  67. Callow, J. A./Callow, M. E. 2011: Trends in the development of environmentally friendly fouling-resistant marine coatings. In: Nature Communications, Bd. 2, S. 244. DOI: http://dx.doi.org/10.1038/ncomms1251 Google Scholar öffnen doi.org/10.1038/ncomms1251
  68. Calvert, J. 2008: The Commodification of Emergence: Systems Biology, Synthetic Biology and Intellectual Property. In: BioSocieties, Bd. 3, H. 4, S. 383–398 Google Scholar öffnen doi.org/10.1017/S1745855208006303
  69. Cambray, G./Mutalik, V. K./Arkin, A. P. 2011: Toward Rational Design of Bacterial Ge-nomes. In: Current Opinion in Microbiology, Bd. 14, H. 5, S. 624–630. DOI: http://dx. doi.org/10.1016/j.mib.2011.08.001 Google Scholar öffnen doi.org/10.1016/j.mib.2011.08.001
  70. Canton, B./Labno, A./Endy, D. 2008: Refinement and standardization of synthetic biological parts and devices. In: Nature Biotechnology, Bd. 26, H. 7, S. 787–793. DOI: http:// dx.doi.org/10.1038/nbt1413 Google Scholar öffnen doi.org/10.1038/nbt1413
  71. Carlson, E. D./Gan, R./Hodgman, C. E./Jewett, M. C. 2012: Cell-free protein synthesis: Ap-plications come of age. In: Biotechnology Advances, Bd. 30, H. 5, S. 1185–1194. DOI: http://dx.doi.org/10.1016/j.biotechadv.2011.09.016 Google Scholar öffnen doi.org/10.1016/j.biotechadv.2011.09.016
  72. Carothers, J. M./Goler, J. A./Keasling, J. D. 2009: Chemical synthesis using synthetic biol¬ogy. In: Current Opinion in Biotechnology, Bd. 20, H. 4, S. 498–503 Google Scholar öffnen doi.org/10.1016/j.copbio.2009.08.001
  73. Carpita, N. C. 2012: Progress in the Biological Synthesis of the Plant Cell Wall: New Ideas for Improving Biomass for Bioenergy. In: Current Opinion in Biotechnology, Bd. 23, H. 3, S. 330–337. DOI: http://dx.doi.org/10.1016/j.copbio.2011.12.003 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.12.003
  74. Cartwright, J. H./Checa, A. G. 2007: The dynamics of nacre self-assembly. In: Journal of the Royal Society Interface, Bd. 4, H. 14, S. 491–504. DOI: http://dx.doi.org/10.1098/rsif. 2006.0188 Google Scholar öffnen doi.org/10.1098/rsif
  75. Century, K./Reuber, T. L./Ratcliffe, O. J. 2008: Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. In: Plant Physiology, Bd. 147, H. 1, S. 20–29. DOI: http://dx.doi.org/10.1104/pp.108.117887 Google Scholar öffnen
  76. Channon, K./Bromley, E. H. C./Woolfson, D. N. 2008: Synthetic biology through biomolecu-lar design and engineering. In: Current Opinion in Structural Biology, Bd. 18, H. 4, Google Scholar öffnen doi.org/10.1016/j.sbi.2008.06.006
  77. S. 491–498. DOI: http://dx.doi.org/10.1016/j.sbi.2008.06.006 Google Scholar öffnen doi.org/10.1016/j.sbi.2008.06.006
  78. Check Hayden, E. 2014: Synthetic-biology firms shift focus. In: Nature, Bd. 505, H. 7485, Google Scholar öffnen doi.org/10.1038/505598a
  79. S. 598. DOI: http://dx.doi.org/10.1038/505598a Google Scholar öffnen doi.org/10.1038/505598a
  80. Check Hayden, E. 2015: Synthetic biology called to order. In: Nature, Bd. 520, H. 7546, Google Scholar öffnen doi.org/10.1038/520141a
  81. S. 141–142. DOI: http://dx.doi.org/10.1038/520141a Google Scholar öffnen doi.org/10.1038/520141a
  82. Chen, F./Yang, Z./Yan, M./Alvarado, J. B./Wang, G./Benner, S. A. 2011: Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity. In: Nucleic Acids Research, Bd. 39, H. 9, S. 3949–3961 Google Scholar öffnen doi.org/10.1093/nar/gkq1274
  83. Chen, P.-Y./McKittrick, J./Meyers, M. A. 2012: Biological materials: Functional adaptations and bioinspired designs. In: Progress in Materials Science, Bd. 57, H. 8, S. 1492–1704. DOI: http://dx.doi.org/10.1016/j.pmatsci.2012.03.001 Google Scholar öffnen doi.org/10.1016/j.pmatsci.2012.03.001
  84. Chen, Y./Chen, H./Shi, J. 2013: In vivo bio-safety evaluations and diagnostic/therapeutic ap-plications of chemically designed mesoporous silica nanoparticles. In: Advanced Mate-rials, Bd. 25, H. 23, S. 3144–3176. DOI: http://dx.doi.org/10.1002/adma.201205292 Google Scholar öffnen doi.org/10.1002/adma.201205292
  85. Chiarabelli, C./Stano, P./Anella, F./Carrara, P./Luisi, P. L. 2012: Approaches to chemical synthetic biology. In: FEBS Letters, Bd. 586, H. 15, S. 2138–2145. DOI: http://dx.doi. org/10.1016/j.febslet.2012.01.014 Google Scholar öffnen doi.org/10.1016/j.febslet.2012.01.014
  86. Chung, H./Kim, T. Y./Lee, S. Y. 2012: Recent advances in production of recombinant spider silk proteins. In: Current Opinion in Biotechnology. DOI: http://dx.doi.org/10.1016/ j.copbio.2012.03.013 Google Scholar öffnen doi.org/10.1016/j.copbio.2012.03.013
  87. Church, G. M./Gao, Y./Kosuri, S. 2012: Next-generation digital information storage in DNA. In: Science, Bd. 337, H. 6102, S. 1628. DOI: http://dx.doi.org/10.1126/science.1226355 Google Scholar öffnen doi.org/10.1126/science.1226355
  88. Church, G. M./Regis, E. 2012: Regenesis How Synthetic Biology Will Reinvent Nature and Ourselves. New York: Basic Books Google Scholar öffnen
  89. Clomburg, J. M./Gonzalez, R. 2010: Biofuel Production in Escherichia Coli: The Role of Metabolic Engineering and Synthetic Biology. In: Applied Microbiology and Biotech-nology, Bd. 86, H. 2, S. 419–434. DOI: http://dx.doi.org/10.1007/s00253-010-2446-1 Google Scholar öffnen doi.org/10.1007/s00253-010-2446-1
  90. Collingridge, D. 1980: The social control of technology. New York: St. Martin’s Press Google Scholar öffnen
  91. Collins, M. L./Irvine, B./Tyner, D./Fine, E./Zayati, C./Chang, C./Horn, T./Ahle, D./Detmer, J./Shen, L. P./Kolberg, J./Bushnell, S./Urdea, M. S./Ho, D. D. 1997: A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecu-les/ml. In: Nucleic Acids Research, Bd. 25, H. 15, S. 2979–2984. DOI: http://dx.doi. org/10.1093/nar/25.15.2979 Google Scholar öffnen doi.org/10.1093/nar/25.15.2979
  92. Conner, A. J./Glare, T. R./Nap, J.-P. 2003: The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. In: Plant Journal, Bd. 33, H. 1, S. 19–46 Google Scholar öffnen doi.org/10.1046/j.0960-7412.2002.001607.x
  93. Connor, M. R./Atsumi, S. 2010: Synthetic Biology Guides Biofuel Production. In: Journal of Biomedicine And Biotechnology, Bd. 2010 Artikel Nr.: 541698. DOI: http://dx.doi.org/ 10.1155/2010/541698 Google Scholar öffnen doi.org/10.1155/2010/541698
  94. Cook, M. 2010: Synthetic Life or Cellular Machine? In: Australasian Science, Bd. 31, H. 6, S. 48 Google Scholar öffnen
  95. Cooney, M. J./Svoboda, V./Lau, C./Martin, G./Minteer, S. D. 2008: Enzyme catalysed biofuel cells. In: Energy & Environmental Science, Bd. 1, H. 3, S. 320–337 Google Scholar öffnen doi.org/10.1039/b809009b
  96. Csete, M. E./Doyle, J. C. 2002: Reverse Engineering of Biological Complexity. In: Science, Bd. 295, H. 5560, S. 1664–1669. DOI: http://dx.doi.org/10.1126/Science.1069981 Google Scholar öffnen doi.org/10.1126/science.1069981
  97. Dana, G. V./Kuiken, T./Rejeski, D./Snow, A. A. 2012: Synthetic biology: Four steps to avoid a synthetic-biology disaster. In: Nature, Bd. 483, H. 7387, S. 29–29 Google Scholar öffnen doi.org/10.1038/483029a
  98. Das, S./Priess, J. A./Schweitzer, C. 2010: Biofuel Options for India-Perspectives on Land Availability, Land Management and Land-Use Change. In: Journal of Biobased Materi-als and Bioenergy, Bd. 4, H. 3, S. 243–255. DOI: http://dx.doi.org/10.1166/Jbmb.2010. 1089 Google Scholar öffnen
  99. Dassanayake, M./Oh, D.-H./Yun, D.-J./Bressan, R. A./Cheeseman, J. M./Bohnert, J. H. 2012: The scope of things to come. In: Altman, A./Hasegawa, P. M. (Hg.): Plant Biotechnol-ogy and Agriculture – Prospects for the 21st Century. Amsterdam: Academic Press Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00002-X
  100. S. 19–34 Google Scholar öffnen
  101. Deans, T. L./Cantor, C. R./Collins, J. J. 2007: A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. In: Cell, Bd. 130, H. 2, S. 363–372. DOI: http://dx.doi.org/10.1016/j.cell.2007.05.045 Google Scholar öffnen doi.org/10.1016/j.cell.2007.05.045
  102. Dellomonaco, C./Fava, F./Gonzalez, R. 2010: The Path to Next Generation Biofuels: Suc-cesses and Challenges in the Era of Synthetic Biology. In: Microbial Cell Factories, Bd. 9, H. 3. DOI: http://dx.doi.org/10.1186/1475-2859-9-3 Google Scholar öffnen doi.org/10.1186/1475-2859-9-3
  103. Daele, W. van den /Pühler, A./Sukopp, H. 1996: Grüne Gentechnik im Widerstreit: Modell einer partizipativen Technikfolgenabschätzung zum Einsatz transgener herbizidresisten¬ter Pflanzen. Weinheim: VCH Google Scholar öffnen doi.org/10.1002/9783527624584.ch6a
  104. Dethoff, E. A./Chugh, J./Mustoe, A. M./Al-Hashimi, H. M. 2012: Functional Complexity and Regulation through RNA Dynamics. In: Nature, Bd. 482, S. 322–330. DOI: http://dx. doi.org/10.1038/nature10885 Google Scholar öffnen doi.org/10.1038/nature10885
  105. DFG/acatech/Leopoldina. 2009: Stellungnahme Synthetische Biologie. Weinheim:Wiley-VCH Google Scholar öffnen
  106. Dhar, M. K./Kaul, S./Kour, J. 2011: Towards the development of better crops by genetic transformation using engineered plant chromosomes. In: Plant Cell Reports, Bd. 30, Google Scholar öffnen doi.org/10.1007/s00299-011-1001-6
  107. H. 5, S. 799–806. DOI: http://dx.doi.org/10.1007/s00299-011-1001-6 Google Scholar öffnen doi.org/10.1007/s00299-011-1001-6
  108. Dietz, S./Panke, S. 2010: Microbial systems engineering: First successes and the way ahead. In: BioEssays, Bd. 32, H. 4, S. 356–362. DOI: http://dx.doi.org/10.1002/bies.200900174 Google Scholar öffnen doi.org/10.1002/bies.200900174
  109. Doktycz, M. J./Simpson, M. L. 2007: Nano-enabled synthetic biology. In: Molecular Systems Biology, Bd. 3, S. 125. DOI: http://dx.doi.org/10.1038/msb4100165 Google Scholar öffnen doi.org/10.1038/msb4100165
  110. Drexler, K. E. 1986: Engines of Creation: The Coming Era of Nanotechnology. New York: Anchor Google Scholar öffnen
  111. Ducat, D. C./Silver, P. A. 2012: Improving Carbon Fixation Pathways. In: Current Opinion in Chemical Biology, Bd. 16, H. 3–4, S. 337–344. DOI: http://dx.doi.org/10.1016/j.cbpa. 2012.05.002 Google Scholar öffnen
  112. Dunlop, J. W. C./Fratzl, P. 2012: Multilevel architectures in natural materials. In: Scripta Materialia, S. 8–12. DOI: http://dx.doi.org/10.1016/j.scriptamat.2012.05.045 Google Scholar öffnen doi.org/10.1016/j.scriptamat.2012.05.045
  113. Dupuy, J.-P. 2004: Complexity and Uncertainty: A Prudential Approach to Nanotechnology. In: European Commission – Health and Consumer Protection Directorate General (Hg.): Nanotechnologies: A Preliminary Risk Analysis on the Basis of a Workshop Organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission. Commission of the European Communities – Health and Consumer Protection Directorate General, Brussels, S. 71–94 Google Scholar öffnen
  114. Dupuy, L./Mackenzie, J./Haseloff, J. 2010: Coordination of plant cell division and expansion in a simple morphogenetic system. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 107, H. 6, S. 2711–2716. DOI: http://dx.doi.org/ 10.1073/pnas.0906322107 Google Scholar öffnen doi.org/10.1073/pnas.0906322107
  115. Dupuy, L./Mackenzie, J./Rudge, T./Haseloff, J. 2008: A system for modelling cell-cell inter-actions during plant morphogenesis. In: Annals of Botany, Bd. 101, H. 8, S. 1255–1265. DOI: http://dx.doi.org/10.1093/aob/mcm235 Google Scholar öffnen doi.org/10.1093/aob/mcm235
  116. Dymond, J. S./Richardson, S. M./Coombes, C. E./Babatz, T./Muller, H./Annaluru, N./Blake, W. J./Schwerzmann, J. W./Dai, J./Lindstrom, D. L./Boeke, A. C./Gottschling, D. E./ Chandrasegaran, S./Bader, J. S./Boeke, J. D. 2011: Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. In: Nature. DOI: http://dx.doi.org/ 10.1038/nature10403 Google Scholar öffnen doi.org/10.1038/nature10403
  117. Ebeling, W./Feistel, R. 1994: Chaos und Kosmos. Prinzipien der Evolution. S. 34. DOI: http://dx.doi.org/ Google Scholar öffnen
  118. EEA – European Environment Agency 2001: Late Lessons from Early Warnings: The Pre-cautionary Principle 1896–2000. (EEA), E. E. A., Copenhagen. Internet: http://www.eea. europa.eu/publications/environmental_issue_report_2001_22 [zuletzt aufgesucht am 10. 07.2012] Google Scholar öffnen
  119. Ehrlich, H. 2010: Biomaterials and Biological Materials, Common Definitions, History, and Classification. In: Ehrlich, H. (Hg.): Biological Materials of Marine Origin, Biologi¬cally-Inspired Systems 1. Dordrecht u.a.O.: Springer, S. 3–22 Google Scholar öffnen doi.org/10.1007/978-90-481-9130-7_1
  120. Eickenbusch, H./Hoffknecht, A./Holtmannspötter, D./Wagner, V./Zweck, A. (VDI-Technolo-giezentrum – Zukünftige Technologien Consulting). 2003: Ansätze zur technischen Nut-zung der Selbstorganisation. VDI-Technologiezentrum – Zukünftige Technologien Con-sulting, Düsseldorf. Internet: http://www.vditz.de/fileadmin/media/publications/pdf/bd481 .pdf [zuletzt aufgesucht am 20.3.2014] Google Scholar öffnen
  121. Eisoldt, L./Smith, A./Scheibel, T. 2011: Decoding the secrets of spider silk. In: Materials Today, Bd. 14, H. 3, S. 80–86. DOI: http://dx.doi.org/10.1016/s1369-7021(11)70057-8 Google Scholar öffnen doi.org/10.1016/S1369-7021(11)70057-8
  122. Eldar, A./Elowitz, M. B. 2010: Functional roles for noise in genetic circuits. In: Nature, Bd. 467, H. 7312, S. 167–173 Google Scholar öffnen doi.org/10.1038/nature09326
  123. Elkins, J. G./Raman, B./Keller, M. 2010: Engineered Microbial Systems for Enhanced Con-version of Lignocellulosic Biomass. In: Current Opinion in Biotechnology, Bd. 21, H. 5, S. 657–662. DOI: http://dx.doi.org/10.1016/j.copbio.2010.05.008 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.05.008
  124. Ellis, D. I./Goodacre, R. 2012: Metabolomics-assisted synthetic biology. In: Current Opinion in Biotechnology, Bd. 23, H. 1, S. 22–28. DOI: http://dx.doi.org/10.1016/j.copbio.2011. 10.014 Google Scholar öffnen
  125. Ellis, T./Wang, X./Collins, J. J. 2009: Diversity-Based, Model-Guided Construction of Synthetic Gene Networks with Predicted Functions. In: Nature Biotechnology, Bd. 27, H. 5, S. 465–471. DOI: http://dx.doi.org/10.1038/nbt.1536 Google Scholar öffnen doi.org/10.1038/nbt.1536
  126. Elowitz, M. B./Leibler, S. 2000: A synthetic oscillatory network of transcriptional regulators. In: Nature, Bd. 403, H. 6767, S. 335–338. DOI: http://dx.doi.org/10.1038/35002125 Google Scholar öffnen doi.org/10.1038/35002125
  127. Endy, D. 2005: Foundations for Engineering Biology. In: Nature, Bd. 438, H. 7067, S. 449–453. DOI: http://dx.doi.org/10.1038/nature04342 Google Scholar öffnen doi.org/10.1038/nature04342
  128. Engelhard, M. 2010: Biosicherheit in der Synthetischen Biologie. In: Die Politische Meinung, H. 493, S. 17–22 Google Scholar öffnen
  129. Esvelt, K. M./Smidler, A. L./Catteruccia, F./Church, G. M. 2014: Concerning RNA-guided gene drives for the alteration of wild populations. In: eLife, S. e03401. DOI: http://dx. doi.org/10.7554/eLife.03401 Google Scholar öffnen doi.org/10.7554/eLife.03401
  130. ETAG (European Technology Assessment Group). 2009: Making a perfect life: Bioengineer-ing in the 21st century. European Technology Assessment Group, Rathenau Institute, The Hague Google Scholar öffnen
  131. ETC Group. 2007: Extreme Genetic Engineering: An Introduction to Synthetic Biology. ETC Group. Internet: http://www.etcgroup.org/sites/www.etcgroup.org/files/publication/602/ 01/synbioreportweb.pdf [zuletzt aufgesucht am 22.3.2014] Google Scholar öffnen
  132. ETC Group. 2010: The New Biomassters: Synthetic Biology and the Next Assault on Biodiversity and Livelihoods. Internet: http://www.etcgroup.org/sites/www.etcgroup. org/files/biomassters_27feb2011.pdf [zuletzt aufgesucht am 24.3.2014] Google Scholar öffnen
  133. EU 1993: Biotechnology and Genetic Engineering, What Europeans think about it in 1993 Google Scholar öffnen
  134. Evenson, R. E./Gollin, D. 2003: Assessing the impact of the green revolution, 1960 to 2000. In: Science, Bd. 300, H. 5620, S. 758–762. DOI: http://dx.doi.org/10.1126/science. 1078710 Google Scholar öffnen doi.org/10.1126/science
  135. Evonik. 2013: Synthesegas schmeckt Bakterien. Essen: Evonik Industries AG Google Scholar öffnen
  136. Fargione, J./Hill, J./Tilman, D./Polasky, S./Hawthorne, P. 2008: Land clearing and the biofuel carbon debt. In: Science, Bd. 319, H. 5867, S. 1235–1238. DOI: http://dx.doi.org/ 10.1126/science.1152747 Google Scholar öffnen doi.org/10.1126/science.1152747
  137. Farr, C./Fantes, J./Goodfellow, P./Cooke, H. 1991: Functional reintroduction of human telomeres into mammalian cells. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 88, S. 7006–7010 Google Scholar öffnen doi.org/10.1073/pnas.88.16.7006
  138. Fast, A. G./Papoutsakis, E. T. 2012: Stoichiometric and energetic analyses of non-photosyn-thetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. In: Current Opinion in Chemical Engineering, Bd. 1, H. 4, S. 380–395. DOI: http://dx.doi.org/10.1016/j.coche.2012.07.005 Google Scholar öffnen doi.org/10.1016/j.coche.2012.07.005
  139. Fedoroff, N. V. 2010: The past, present and future of crop genetic modification. In: New Biotechnology, Bd. 27, H. 5, S. 461–465. DOI: http://dx.doi.org/10.1016/j.nbt.2009. 12.004 Google Scholar öffnen
  140. Fehér, T./Papp, B./Pal, C./Pósfai, G. 2007: Systematic genome reductions: theoretical and experimental approaches. In: Chemical Reviews, Bd. 107, H. 8, S. 3498–3513. DOI: http://dx.doi.org/10.1021/cr0683111 Google Scholar öffnen doi.org/10.1021/cr0683111
  141. Fellermann, H./Rasmussen, S./Ziock, H.-J./Solé, R. V. 2007: Life cycle of a minimal proto¬cell: A dissipative particle dynamics study. In: Artificial life, Bd. 13, H. 4, S. 319–345. DOI: http://dx.doi.org/10.1162/artl.2007.13.4.319 Google Scholar öffnen doi.org/10.1162/artl.2007.13.4.319
  142. Ferber, D. 2004: Microbes made to Order. In: Science, Bd. 303, H. 5655, S. 158–158. DOI: http://dx.doi.org/10.1126/science.303.5655.158 Google Scholar öffnen doi.org/10.1126/science.303.5655.158
  143. Feynman, R. P. 2006 (1985): QED: The Strange Theory of Light and Matter (with a new in-troduction by A. Zee). Princeton University Press, Princeton Google Scholar öffnen
  144. Fischbach, M./Voigt, C. A. 2010: Prokaryotic gene clusters: A rich toolbox for synthetic biol-ogy. In: Biotechnology Journal, Bd. 5, H. 12, S. 1277–1296. DOI: http://dx.doi.org/10. 1002/biot.201000181 Google Scholar öffnen doi.org/10.1002/biot.201000181
  145. Flavell, R. 2010: Knowledge and technologies for sustainable intensification of food produc-tion. In: New Biotechnology, Bd. 27, H. 5, S. 505–516. DOI: http://dx.doi.org/10.1016/ j.nbt.2010.05.019 Google Scholar öffnen doi.org/10.1016/j.nbt.2010.05.019
  146. FoE (Friends of the Earth). 2010: Synthetic Solutions to the Climate Crisis: The Dangers of Synthetic Biology for Biofuels Production. Internet: http://libcloud.s3.amazonaws.com/ 93/59/9/529/1/SynBio-Biofuels_Report_Web.pdf [zuletzt aufgesucht am 25.3.2014] Google Scholar öffnen
  147. Folcher, M./Fussenegger, M. 2012: Synthetic biology advancing clinical applications. In: Current Opinion in Chemical Biology, Bd. 16, H. 3–4, S. 345–354. DOI: http://dx.doi. org/10.1016/j.cbpa.2012.06.008 Google Scholar öffnen doi.org/10.1016/j.cbpa.2012.06.008
  148. Forster, A. C./Church, G. M. 2006: Towards synthesis of a minimal cell. In: Molecular Sys-tems Biology, Bd. 2, S. 45–45. DOI: http://dx.doi.org/10.1038/msb4100090 Google Scholar öffnen doi.org/10.1038/msb4100090
  149. Forster, A. C./Church, G. M. 2007: Synthetic biology projects in vitro. In: Genome Research, Bd. 17, H. 1, S. 1–6 Google Scholar öffnen
  150. Fratzl, P./Barth, F. G. 2009: Biomaterial systems for mechanosensing and actuation. In: Na-ture, Bd. 462, H. 7272, S. 442–448. DOI: http://dx.doi.org/10.1038/nature08603 Google Scholar öffnen doi.org/10.1038/nature08603
  151. French, C. E. 2009: Synthetic Biology and Biomass Conversion: A Match Made in Heaven? In: Journal of the Royal Society Interface, Bd. 6, H. S4, S. S547–S558. DOI: http://dx. doi.org/10.1098/rsif.2008.0527.focus Google Scholar öffnen doi.org/10.1098/rsif.2008.0527.focus
  152. Friedrich, B./Fritsch, J./Lenz, O. 2011: Oxygen-Tolerant Hydrogenases in Hydrogen-Based Technologies. In: Current Opinion in Biotechnology, Bd. 22, H. 3, S. 358–364. DOI: http://dx.doi.org/10.1016/j.copbio.2011.01.006 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.01.006
  153. Fritz, G./Buchler, N. E./Hwa, T./Gerland, U. 2007: Designing sequential transcription logic: A simple genetic circuit for conditional memory. In: Systems and Synthetic Biology, Bd. 1, H. 2, S. 89–98. DOI: http://dx.doi.org/10.1007/s11693-007-9006-8 Google Scholar öffnen doi.org/10.1007/s11693-007-9006-8
  154. Fuchs, G. 2006: Phototrophe Lebensweise. In: Fuchs, G. (Hg.): Allgemeine Mikrobiologie (8. Aufl.). Stuttgart: Thieme, S. 405–438 Google Scholar öffnen
  155. Führ, M. 2011: Praxishandbuch REACH. Köln: Heymann Google Scholar öffnen
  156. Fujisawa, M./Takita, E./Harada, H./Sakurai, N./Suzuki, H./Ohyama, K./Shibata, D./Misawa, N. 2009: Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. In: Journal of Experimental Botany, Bd. 60, H. 4, S. 1319–1332. DOI: http://dx.doi.org/10.1093/jxb/erp006 Google Scholar öffnen doi.org/10.1093/jxb/erp006
  157. Fukushima, A./Kusano, M./Redestig, H./Arita, M./Saito, K. 2009: Integrated omics ap-proaches in plant systems biology. In: Current Opinion in Chemical Biology, Bd. 13, Google Scholar öffnen doi.org/10.1016/j.cbpa.2009.09.022
  158. H. 5–6, S. 532–538. DOI: http://dx.doi.org/10.1016/j.cbpa.2009.09.022 Google Scholar öffnen doi.org/10.1016/j.cbpa.2009.09.022
  159. Gaeta, R. T./Masonbrink, R. E./Krishnaswamy, L./Zhao, C./Birchler, J. A. 2012: Synthetic chromosome platforms in plants. In: Annual Review of Plant Biology, Bd. 63, S. 307–330. DOI: http://dx.doi.org/10.1146/annurev-arplant-042110-103924 Google Scholar öffnen doi.org/10.1146/annurev-arplant-042110-103924
  160. Gardner, T. S./Cantor, C. R./Collins, J. J. 2000: Construction of a genetic toggle switch in Escherichia coli. In: Nature, Bd. 403, H. 6767, S. 339–342. DOI: http://dx.doi.org/10. 1038/35002131 Google Scholar öffnen doi.org/10.1038/35002131
  161. Gentechnikgesetz. 1990: Gentechnikgesetz in der Fassung der Bekanntmachung vom 16. De-zember 1993 (BGBl. I S. 2066), das durch Artikel 4 Absatz 14 des Gesetzes vom 7. Au-gust 2013 (BGBl. I S. 3154) geändert worden ist Google Scholar öffnen
  162. GenTSV. 1990: Gentechnik-Sicherheitsverordnung in der Fassung der Bekanntmachung vom 14. März 1995 (BGBl. I S. 297), die zuletzt durch Artikel 4 der Verordnung vom 18. Dezember 2008 (BGBl. I S. 2768) geändert worden ist Google Scholar öffnen
  163. Ghim, C.-M./Kim, T./Mitchell, R. J./Lee, S. K. 2010: Synthetic Biology for Biofuels: Build¬ing Designer Microbes from the Scratch. In: Biotechnology and Bioprocess Engineering, Bd. 15, H. 1, S. 11–21. DOI: http://dx.doi.org/10.1007/s12257-009-3065-5 Google Scholar öffnen doi.org/10.1007/s12257-009-3065-5
  164. Gibson, D. G./Glass, J. I./Lartigue, C./Noskov, V. N./Chuang, R. Y./Algire, M. A./Benders, G. A./Montague, M. G./Ma, L./Moodie, M. M./Merryman, C./Vashee, S./Krishnakumar, R./Assad-Garcia, N./Andrews-Pfannkoch, C./Denisova, E. A./Young, L./Qi, Z. Q./Se-gall-Shapiro, T. H./Calvey, C. H./Parmar, P. P./Hutchison, C. A., 3rd/Smith, H. O./Ven-ter, J. C. 2010: Creation of a bacterial cell controlled by a chemically synthesized genome. In: Science, Bd. 329, H. 5987, S. 52–56. DOI: http://dx.doi.org/10.1126/ science.1190719 Google Scholar öffnen doi.org/10.1126/science.1190719
  165. Gibson, D. G./Young, L./Chuang, R. Y./Venter, J. C./Hutchison, C. A., 3rd/Smith, H. O. 2009: Enzymatic assembly of DNA molecules up to several hundred kilobases. In: Na-ture Methods, Bd. 6, H. 5, S. 343–345. DOI: http://dx.doi.org/10.1038/nmeth.1318 Google Scholar öffnen doi.org/10.1038/nmeth.1318
  166. Giese, B./von Gleich, A. 2015: Hazards, Risks, and Low Hazard Development Paths of Syn-thetic Biology. In: Giese, B./Pade, C./Wigger, H./von Gleich, A. (Hg.): Synthetic Biol-ogy: Character and Impact. Cham: Springer, S. 173–195 Google Scholar öffnen doi.org/10.1007/978-3-319-02783-8_9
  167. Giese, B./Koenigstein, S./Wigger, H./Schmidt, J./Gleich, A. 2013: Rational Engineering Prin-ciples in Synthetic Biology: A Framework for Quantitative Analysis and an Initial As-sessment. In: Biological Theory, S. 1–10. DOI: http://dx.doi.org/10.1007/s13752-013-0130-2 Google Scholar öffnen doi.org/10.1007/s13752-013-0130-2
  168. Giese, B./Pade, C./Wigger, H./von Gleich, A. (Hg.). 2015: Synthetic Biology: Character and Impact. Cham: Springer Google Scholar öffnen doi.org/10.1007/978-3-319-02783-8_9
  169. Gilbert, L. A./Larson, M. H./Morsut, L./Liu, Z./Brar, G. A./Torres, S. E./Stern-Ginossar, N./Brandman, O./Whitehead, E. H./Doudna, J. A./Lim, W. A./Weissman, J. S./Qi, L. S. 2013: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. In: Cell, Bd. 154, H. 2, S. 442–451. DOI: http://dx.doi.org/10.1016/j.cell.2013.06.044 Google Scholar öffnen doi.org/10.1016/j.cell.2013.06.044
  170. Gleich, A. von 1989: Der wissenschaftliche Umgang mit der Natur: Über die Vielfalt harter und sanfter Naturwissenschaften. Frankfurt/M., New York: Campus Google Scholar öffnen
  171. Gleich, A. von 1998: Ökologische Kriterien der Technik- und Stoffbewertung: Integration des Vorsorgeprinzips – Teil I: Die Bedeutung von Kriterien in der Technik- und Stoffbe-wertung. In: Umweltwissenschaften und Schadstoff-Forschung, Bd. 10, H. 6, S. 367–373. DOI: http://dx.doi.org/10.1007/bf03037681 Google Scholar öffnen doi.org/10.1007/BF03037681
  172. Gleich, A. von 1999a: Ökologische Kriterien der Technik- und Stoffbewertung: Integration des Vorsorgeprinzips – Teil II: Kriterien zur Charakterisierung von Techniken und Stof-fen. In: Umweltwissenschaften und Schadstoff-Forschung, Bd. 11, H. 1, S. 21–32. DOI: http://dx.doi.org/10.1007/bf03037757 Google Scholar öffnen doi.org/10.1007/BF03037757
  173. Gleich, A. von 1999b: Ökologische Kriterien der Technik- und Stoffbewertung: Integration des Vorsorgeprinzips – Teil III: Ein Raster ökologischer Bewertungskriterien. In: Um-weltwissenschaften und Schadstoff-Forschung, Bd. 11, H. 2, S. 99–102. DOI: http://dx. doi.org/10.1007/bf03037906 Google Scholar öffnen
  174. Gleich, A. von 1999c: Vorsorgeprinzip. In: Sundermann, K./Bröchler, S./Simonis, G. (Hg.): Handbuch Technikfolgenabschätzung. Berlin: edition sigma Google Scholar öffnen
  175. Gleich, A. von 2013: Prospektive Technikbewertung und Technikgestaltung zur Umsetzung des Vorsorgeprinzips. In: Simonis, G. (Hg.): Konzepte und Verfahren der Technikfol-genabschätzung. Wiesbaden: Springer Fachmedien, S. 51–73 Google Scholar öffnen
  176. Gleich, A. von/Gößling-Reisemann, S./Stührmann, S./Woizeschke, P./Lutz-Kunisch, B. 2010a: Resilienz als Leitkonzept – Vulnerabilität als analytische Kategorie. In: Fichter, K./ Gleich, A. v./Pfriem, R./Siebenhüner, B. (Hg.): Theoretische Grundlagen für erfolg¬reiche Klimaanpassungsstrategien, Bd. 1. Bremen, Oldenburg Google Scholar öffnen
  177. Gleich, A. von/Pade, C./Petschow, U./Pissarskoi, E. 2007: Bionik – Aktuelle Trends und zu-künftige Potenziale. Bremen Google Scholar öffnen
  178. Gleich, A. von/Pade, C./Petschow, U./Pissarskoi, E. 2010b: Potentials and Trends in Biomi-metics. Berlin, Heidelberg: Springer Google Scholar öffnen
  179. GR/RGO/KNAW (Gesondheidsraad; Raad voor Gezondheidsonderzoek; Koninklijke Neder-landse Akademie van Wetenschappen). 2008: Synthetic Biology: Creating Opportunities. Gezondheidsraad, The Hague. Internet: http://www.gezondheidsraad.nl/sites/default/files/ 200819E_0.pdf [zuletzt aufgesucht am 15.10.2013] Google Scholar öffnen
  180. Greber, D./Fussenegger, M. 2007: Mammalian synthetic biology: engineering of sophisticated gene networks. In: Journal of Biotechnology, Bd. 130, H. 4, S. 329–345. DOI: http://dx. doi.org/10.1016/j.jbiotec.2007.05.014 Google Scholar öffnen doi.org/10.1016/j.jbiotec.2007.05.014
  181. Gressel, J. 2010: Gene flow of transgenic seed-expressed traits: Biosafety considerations. In: Plant Science, Bd. 179, H. 6, S. 630–634. DOI: http://dx.doi.org/10.1016/j.plantsci. 2010.02.012 Google Scholar öffnen
  182. Grünberg, R./Serrano, L. 2010: Strategies for Protein Synthetic Biology. In: Nucleic Acids Research, Bd. 38, H. 8, S. 2663–2675. DOI: http://dx.doi.org/10.1093/nar/gkq139 Google Scholar öffnen doi.org/10.1093/nar/gkq139
  183. Grunwald, I./Rischka, K./Kast, S. M./Scheibel, T./Bargel, H. 2009: Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. In: Philosoph¬ical Transactions-Series A, Mathematical, Physical, and Engineering Sciences, Bd. 367, H. 1894, S. 1727–1747. DOI: http://dx.doi.org/10.1098/rsta.2009.0012 Google Scholar öffnen doi.org/10.1098/rsta.2009.0012
  184. Guido, N. J./Wang, X./Adalsteinsson, D./McMillen, D./Hasty, J./Cantor, C. R./Elston, T. C./ Collins, J. J. 2006: A bottom-up approach to gene regulation. In: Nature, Bd. 439, H. 7078, S. 856–860. DOI: http://dx.doi.org/10.1038/nature04473 Google Scholar öffnen doi.org/10.1038/nature04473
  185. Guo, P. 2010: The emerging field of RNA nanotechnology. In: Nature Nanotechnology, Bd. 5, H. 12, S. 833–842. DOI: http://dx.doi.org/10.1038/nnano.2010.231 Google Scholar öffnen doi.org/10.1038/nnano.2010.231
  186. Guterl, J.-K./Sieber, V. 2013: Biosynthesis „debugged“: Novel bioproduction strategies. In: Engineering in Life Sciences, Bd. 13, H. 1, S. 4–18. DOI: http://dx.doi.org/10.1002/ elsc.201100231 Google Scholar öffnen doi.org/10.1002/elsc.201100231
  187. Gutterson, N./Zhang, J. Z. 2004: Genomics applications to biotech traits: a revolution in progress? In: Current Opinion in Plant Biology, Bd. 7, H. 2, S. 226–230. DOI: http://dx. doi.org/10.1016/j.pbi.2003.12.002 Google Scholar öffnen doi.org/10.1016/j.pbi.2003.12.002
  188. Han, D./Pal, S./Nangreave, J./Deng, Z./Liu, Y./Yan, H. 2011: DNA origami with complex curvatures in three-dimensional space. In: Science, Bd. 332, H. 6027, S. 342–346. DOI: http://dx.doi.org/10.1126/science.1202998 Google Scholar öffnen doi.org/10.1126/science.1202998
  189. Hansen, S. F./Carlsen, L./Tickner, J. A. 2007: Chemicals regulation and precaution: does REACH really incorporate the precautionary principle. In: Environmental Science & Policy, Bd. 10, H. 5, S. 395–404. DOI: http://dx.doi.org/10.1016/j.envsci.2007.01.001 Google Scholar öffnen doi.org/10.1016/j.envsci.2007.01.001
  190. Harfouche, A./Meilan, R./Altman, A. 2011: Tree genetic engineering and applications to sustainable forestry and biomass production. In: Trends in Biotechnology, Bd. 29, H. 1, S. 9–17. DOI: http://dx.doi.org/10.1016/j.tibtech.2010.09.003 Google Scholar öffnen doi.org/10.1016/j.tibtech.2010.09.003
  191. Harris, D. C./Jewett, M. C. 2012: Cell-free biology: Exploiting the interface between synthetic biology and synthetic chemistry. In: Current Opinion in Biotechnology, Bd. 23, H. 5, S. 672–678. DOI: http://dx.doi.org/10.1016/j.copbio.2012.02.002 Google Scholar öffnen doi.org/10.1016/j.copbio.2012.02.002
  192. Hasty, J./McMillen, D./Collins, J. J. 2002: Engineered gene circuits. In: Nature, Bd. 420, Google Scholar öffnen doi.org/10.1038/nature01257
  193. S. 224–230. DOI: http://dx.doi.org/10.1038/nature01257 Google Scholar öffnen doi.org/10.1038/nature01257
  194. Hawkins, A. S./McTernan, P. M./Lian, H./Kelly, R. M./Adams, M. W. W. 2013: Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. In: Current Opinion in Biotechnology, Bd. 24, H. 3, S. 376–384. DOI: http://dx.doi.org/10. 1016/j.copbio.2013.02.017 Google Scholar öffnen doi.org/10.1016/j.copbio.2013.02.017
  195. Hayashi, C. Y. 2000: Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene. In: Science, Bd. 287, H. 5457, S. 1477–1479. DOI: http://dx.doi.org/10.1126/ science.287.5457.1477 Google Scholar öffnen doi.org/10.1126/science.287.5457.1477
  196. Heider, J. 2006: Oxidation anorganischer Verbindungen: Chemolithotrophe Lebensweise. In: Fuchs, G. (Hg.): Allgemeine Mikrobiologie (8. Aufl.). Stuttgart: Thieme, S. 321–346 Google Scholar öffnen
  197. Heinemann, M./Panke, S. 2006: Synthetic biology – putting engineering into biology. In: Bioinformatics, Bd. 22, H. 22, S. 2790–2799 Google Scholar öffnen doi.org/10.1093/bioinformatics/btl469
  198. Hellingwerf, K. J./Teixeira de Mattos, M. J. 2009: Alternative routes to biofuels: Light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. In: Journal of Biotechnology, Bd. 142, H. 1, S. 87–90. DOI: http://dx.doi.org/10.1016/j.jbiotec.2009. 02.002 Google Scholar öffnen
  199. Henry, A. A./Romesberg, F. E. 2003: Beyond A, C, G and T: augmenting nature’s alphabet. In: Current Opinion in Chemical Biology, Bd. 7, H. 6, S. 727–733 Google Scholar öffnen doi.org/10.1016/j.cbpa.2003.10.011
  200. Herdewijn, P./Marliere, P. 2009: Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. In: Helvetica Chimica Acta, Bd. 6 Google Scholar öffnen doi.org/10.1002/chin.200935273
  201. Heslop-Harrison, J. S./Schwarzacher, T. 2012: Genetics and genomics of crop domestication. In: Altmann, A./Hasegawa, P. M. (Hg.): Plant Biotechnology and Agriculture – Pros-pects for the 21st Century. Amsterdam u.a.O.: Elsevier, S. 3–18 Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00001-8
  202. Heslop-Harrison, J. S. P./Schwarzacher, T. 2011: Organisation of the plant genome in chromosomes. In: Plant Journal, Bd. 66, H. 1, S. 18–33. DOI: http://dx.doi.org/10.1111/ j.1365-313X.2011.04544.x Google Scholar öffnen doi.org/10.1111/j.1365-313X.2011.04544.x
  203. Heß, D. 2008: Pflanzenphysiologie: Grundlagen der Physiologie und Biotechnologie der Pflanzen (11. Aufl.). Stuttgart: Eugen Ulmer (UTB) Google Scholar öffnen
  204. Hilbeck, A./McMillan, J. M./Meier, M./Humbel, A./Schläpfer-Miller, J./Trtikova, M. 2012: A controversy re-visited: Is the coccinellid Adalia bipunctata adversely affected by Bt toxins? In: Environmental Sciences Europe, Bd. 24, H. 1, S. 10. DOI: http://dx.doi.org/ 10.1186/2190-4715-24-10 Google Scholar öffnen doi.org/10.1186/2190-4715-24-10
  205. Himmel, M. E./Ding, S. Y./Johnson, D. K./Adney, W. S./Nimlos, M. R./Brady, J. W./Foust, T. D. 2007: Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. In: Science, Bd. 315, H. 5813, S. 804–807. DOI: http://dx.doi.org/10.1126/ Science.1137016 Google Scholar öffnen doi.org/10.1126/science.1137016
  206. Hinman, M. B./Jones, J. A./Lewis, R. V. 2000: Synthetic spider silk: a modular fiber. In: Trends in Biotechnology, Bd. 18, H. 9, S. 374–379. DOI: http://dx.doi.org/10.1016/ s0167-7799(00)01481-5 Google Scholar öffnen doi.org/10.1016/S0167-7799(00)01481-5
  207. Hockenberry, A. J./Jewett, M. C. 2012: Synthetic In Vitro Circuits. In: Current Opinion in Chemical Biology, Bd. 16, H. 3–4, S. 253–259. DOI: http://dx.doi.org/10.1016/j.cbpa. 2012.05.179 Google Scholar öffnen
  208. Hodgman, C. E./Jewett, M. C. 2012: Cell-free synthetic biology: Thinking outside the cell. In: Metabolic Engineering, Bd. 14, H. 3, S. 261–269. DOI: http://dx.doi.org/10.1016/j. ymben.2011.09.002 Google Scholar öffnen
  209. Hoesl, M. G./Budisa, N. 2011: In vivo incorporation of multiple noncanonical amino acids into proteins. In: Angewandte Chemie (International ed. in English), Bd. 50, H. 13, Google Scholar öffnen doi.org/10.1002/anie.201005680
  210. S. 2896–2902. DOI: http://dx.doi.org/10.1002/anie.201005680 Google Scholar öffnen doi.org/10.1002/anie.201005680
  211. Hold, C./Panke, S. 2009: Towards the engineering of in vitro systems. In: Journal of the Royal Society Interface, Bd. 6 Suppl. 4, S. S507–521. DOI: http://dx.doi.org/10.1098/ rsif.2009.0110.focus Google Scholar öffnen doi.org/10.1098/rsif.2009.0110.focus
  212. Holmes, M. T./Ingham, E. R./Doyle, J. D./Hendricks, C. W. 1999: Effects of Klebsiella planticola SDF20 on soil biota and wheat growth in sandy soil. In: Applied Soil Ecol¬ogy, Bd. 11, S. 67–78 Google Scholar öffnen doi.org/10.1016/S0929-1393(98)00129-2
  213. Hoshika, S./Chen, F./Leal, N. A./Benner, S. A. 2010: Artificial Genetic Systems: Self-Avoiding DNA in PCR and Multiplexed PCR. In: Angewandte Chemie International Edition, Bd. 49, H. 32, S. 5554–5557. DOI: http://dx.doi.org/10.1002/anie.201001977 Google Scholar öffnen doi.org/10.1002/anie.201001977
  214. Houben, A./Schubert, I. 2007: Engineered plant minichromosomes: a resurrection of B chro-mosomes? In: The Plant cell, Bd. 19, H. 8, S. 2323–2327. DOI: http://dx.doi.org/10. 1105/tpc.107.053603 Google Scholar öffnen doi.org/10.1105/tpc.107.053603
  215. Huber, J. 2000: Industrielle Ökologie: Konsistenz, Effizienz und Suffizienz in zyklusanalyti-scher Betrachtung. In: Simonis, U. E. (Hg.): „Global Change“ (VDW-Jahrestagung, Ber-lin, 28.–29.Oktober 1999). Baden-Baden: Nomos Google Scholar öffnen
  216. Hubig, C. 2006: Die Kunst des Möglichen I: Technikphilosophie als Reflexion der Medialität, Bd. 1. Bielefeld: Transcript Google Scholar öffnen doi.org/10.14361/9783839404317
  217. Hübner, H. 2002: Integratives Innovationsmanagement: Nachhaltigkeit als Herausforderung für ganzheitliche Erneuerungsprozesse. Erich Schmidt, Berlin Google Scholar öffnen
  218. Isaacs, F. J./Dwyer, D. J./Collins, J. J. 2006: RNA Synthetic Biology. In: Nature Biotechnol-ogy, Bd. 24, H. 5, S. 545–554. DOI: http://dx.doi.org/10.1038/nbt1208 Google Scholar öffnen doi.org/10.1038/nbt1208
  219. James, C. 2010. Global status of commercialized biotech/GM crops, 2009. ISAAA Brief No. 41 Google Scholar öffnen
  220. Jang, Y.-S./Park, J. M./Choi, S./Choi, Y. J./Seung, D. Y./Cho, J. H./Lee, S. Y. 2012: En-gineering of Microorganisms for the Production of Biofuels and Perspectives Based on Systems Metabolic Engineering Approaches. In: Biotechnology Advances, Bd. 30, H. 5, S. 989–1000. DOI: http://dx.doi.org/10.1016/j.biotechadv.2011.08.015 Google Scholar öffnen doi.org/10.1016/j.biotechadv.2011.08.015
  221. Jarboe, L. R./Zhang, X. L./Wang, X./Moore, J. C./Shanmugam, K. T./Ingram, L. O. 2010: Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contribu-tions of Synthetic Biology. In: Journal of Biomedicine and Biotechnology, Bd. 2010 Ar-tikel Nr.: Article ID 761042. DOI: http://dx.doi.org/10.1155/2010/761042 Google Scholar öffnen doi.org/10.1155/2010/761042
  222. Jewett, M. C./Calhoun, K. a./Voloshin, A./Wuu, J. J./Swartz, J. R. 2008: An integrated cell-free metabolic platform for protein production and synthetic biology. In: Molecular sys-tems biology, Bd. 4, H. 220, S. 220–220. DOI: http://dx.doi.org/10.1038/msb.2008.57 Google Scholar öffnen doi.org/10.1038/msb.2008.57
  223. Jewett, M. C./Forster, A. C. 2010: Update on designing and building minimal cells. In: Cur-rent Opinion in Biotechnology, Bd. 21, H. 5, S. 697–703. DOI: http://dx.doi.org/10. 1016/j.copbio.2010.06.008 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.06.008
  224. Jia, K./Zhang, Y./Li, Y. 2010: Systematic engineering of microorganisms to improve alcohol tolerance. In: Engineering in Life Sciences, Bd. 10, H. 5, S. 422–429. DOI: http://dx.doi. org/10.1002/elsc.201000076 Google Scholar öffnen doi.org/10.1002/elsc.201000076
  225. Jonas, H. 1979: Das Prinzip Verantwortung: Versuch einer Ethik für die technologische Zivi-lisation. Frankfurt/M.: Suhrkamp Google Scholar öffnen
  226. Jonas, H. 1985a: Auf der Schwelle der Zukunft: Werte von gestern und Werte für morgen. In: Jonas, H. (Hg.): Technik, Medizin und Ethik: Zur Praxis des Prinzips Verantwortung. Frankfurt/M.: Insel, S. 53–75 Google Scholar öffnen
  227. Jonas, H. 1985b: Laßt uns einen Menschen klonieren: Von der Eugenik zur Gentechnologie. In: Jonas, H. (Hg.): Technik, Medizin und Ethik: Zur Praxis des Prinzips Verantwortung. Frankfurt/M.: Insel, S. 162–203 Google Scholar öffnen
  228. Jonas, H. 1985c: Warum die moderne Technik ein Gegenstand für die Philosophie ist. In: Jo-nas, H. (Hg.): Technik, Medizin und Ethik: Zur Praxis des Prinzips Verantwortung. Frankfurt/M.: Insel, S. 15–41 Google Scholar öffnen
  229. Jones, R. A. L. 2004: Soft Machines: Nanotechnology and Life. Oxford: Oxford University Press Google Scholar öffnen
  230. Joyce, G. F. 1994: Forward. In: Deamer, D./Fleischaker, G. R. (Hg.): Origins of Life: The Central Concept. Boston: Jones and Bartlett, S. xi–xii Google Scholar öffnen
  231. Juhas, M./Eberl, L./Glass, J. I. 2011: Essence of life: essential genes of minimal genomes. In: Trends in Cell Biology, Bd. 21, S. 562–568. DOI: http://dx.doi.org/10.1016/j.tcb.2011. 07.005 Google Scholar öffnen
  232. Jungmann, R./Renner, S./Simmel, F. C. 2008: From DNA nanotechnology to synthetic biol-ogy. In: HFSP Journal, Bd. 2, H. 2, S. 99–109. DOI: http://dx.doi.org/10.2976/1.2896331 Google Scholar öffnen doi.org/10.2976/1.2896331
  233. Jungmann, R./Scheible, M./Kuzyk, A./Pardatscher, G./Castro, C. E./Simmel, F. C. 2011: DNA origami-based nanoribbons: assembly, length distribution, and twist. In: Nanotech-nology, Bd. 22, H. 27, S. 275301–275301. DOI: http://dx.doi.org/10.1088/0957-4484/ 22/27/275301 Google Scholar öffnen
  234. Junker, A./Junker, B. H. 2012: Synthetic gene networks in plant systems. In: Methods in Mo-lecular Biology, Bd. 813, S. 343–358. DOI: http://dx.doi.org/10.1007/978-1-61779-412-4_21 Google Scholar öffnen doi.org/10.1007/978-1-61779-412-4_21
  235. Kaltschmitt, M./Hartmann, H./Hofbauer, H. (Hg.). 2009: Energie aus Biomasse: Grundlagen, Techniken und Verfahren (2. Aufl.). Heidelberg u.a.O.: Springer Google Scholar öffnen doi.org/10.1007/978-3-540-85095-3_1
  236. Kant, I. 1996 (1790): Kritik der Urteilskraft. Frankfurt/M.: Suhrkamp Google Scholar öffnen
  237. Karafyllis, N. C. (Hg.). 2003: Biofakte. Paderborn: Mentis Google Scholar öffnen
  238. Keerl, D./Scheibel, T. 2012: Characterization of natural and biomimetic spider silk fibers. In: Bioinspired, Biomimetic and Nanobiomaterials, Bd. 1, H. 2, S. 83–94. DOI: http://dx. doi.org/10.1680/bbn.11.00016 Google Scholar öffnen doi.org/10.1680/bbn.11.00016
  239. Kemmer, C./Fluri, D. A./Witschi, U./Passeraub, A./Gutzwiller, A./Fussenegger, M. 2011: A designer network coordinating bovine artificial insemination by ovulation-triggered re-lease of implanted sperms. In: Journal of Controlled Release, Bd. 150, H. 1, S. 23–29. DOI: http://dx.doi.org/10.1016/j.jconrel.2010.11.016 Google Scholar öffnen doi.org/10.1016/j.jconrel.2010.11.016
  240. Khalil, A. S./Collins, J. J. 2010: Synthetic biology: applications come of age. In: Nature Pub-lishing Group, Bd. 11, H. 5, S. 367–379 Google Scholar öffnen doi.org/10.1038/nrg2775
  241. Khush, G. S. 2001: Green revolution: the way forward. In: Nature Reviews-Genetics, Bd. 2, S. 815–823 Google Scholar öffnen doi.org/10.1038/35093585
  242. Kiely, P. D./Regan, J. M./Logan, B. E. 2011: The Electric Picnic: Synergistic Requirements for Exoelectrogenic Microbial Communities. In: Current Opinion in Biotechnology, Bd. 22, H. 3, S. 378–385. DOI: http://dx.doi.org/10.1016/j.copbio.2011.03.003 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.03.003
  243. Kim, J./Winfree, E. 2011: Synthetic in vitro transcriptional oscillators. In: Molecular Systems Biology, Bd. 7, S. 465. DOI: http://dx.doi.org/10.1038/msb.2010.119 Google Scholar öffnen doi.org/10.1038/msb.2010.119
  244. King, N. P./Sheffler, W./Sawaya, M. R./Vollmar, B. S./Sumida, J. P./André, I./Gonen, T./ Yeates, T. O./Baker, D. 2012: Computational Design of Self-Assembling Protein Nano-materials with Atomic Level Accuracy. In: Science, Bd. 336, H. Juni, S. 1171–1174 Google Scholar öffnen doi.org/10.1126/science.1219364
  245. Kitano, H. 2002: Systems Biology: A Brief Overview. In: Science, Bd. 295, H. 5560, Google Scholar öffnen doi.org/10.1126/science.1069492
  246. S. 1662–1664. DOI: http://dx.doi.org/10.1126/science.1069492 Google Scholar öffnen doi.org/10.1126/science.1069492
  247. Kitney, R./Freemont, P. 2012: Synthetic biology – the state of play. In: FEBS Letters, Bd. 586, H. 15, S. 2029–2036. DOI: http://dx.doi.org/10.1016/j.febslet.2012.06.002 Google Scholar öffnen doi.org/10.1016/j.febslet.2012.06.002
  248. Kittleson, J. T./Wu, G. C./Anderson, J. C. 2012: Successes and failures in modular genetic engineering. In: Current Opinion in Chemical Biology, Bd. 16, H. 3–4, S. 329–336. DOI: http://dx.doi.org/10.1016/j.cbpa.2012.06.009 Google Scholar öffnen doi.org/10.1016/j.cbpa.2012.06.009
  249. Knapp, K. G./Goerke, A. R./Swartz, J. R. 2007: Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. In: Biotechnology and Bioengineer-ing, Bd. 97, H. 4, S. 901–908. DOI: http://dx.doi.org/10.1002/bit.21296 Google Scholar öffnen doi.org/10.1002/bit.21296
  250. Kobayashi, H./Kaern, M./Araki, M./Chung, K./Gardner, T. S./Cantor, C. R./Collins, J. J. 2004: Programmable cells: Interfacing natural and engineered gene networks. In: Pro¬ceedings of the National Academy of Sciences of the United States of America, Bd. 101, S. 8414–8419. DOI: http://dx.doi.org/10.1073/pnas.0402940101 Google Scholar öffnen doi.org/10.1073/pnas.0402940101
  251. Köchy, K. 2011: Konstruktion von Leben? Herstellungsideale und Machbarkeitsgrenzen in der Synthetischen Biologie. In: Gerhardt, V./Lucas, K./Stock, G. (Hg.): Evolution: Theo-rie, Formen und Konseqenzen eines Paradigmas in Natur, Technik und Kultur. Berlin: Akademie Verlag, S. 233–242 Google Scholar öffnen
  252. Köchy, K. 2012: Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar? In: Bondio, M. B./Siebenpfeiffer, H. (Hg.): Konzepte des Humanen: Ethische und kulturelle Herausforderungen. Freiburg: Verlag Karl Alber, S. 81–101 Google Scholar öffnen
  253. Kortemme, T./Baker, D. 2004: Computational design of protein-protein interactions. In: Cur-rent Opinion in Chemical Biology, Bd. 8, H. 1, S. 91–97. DOI: http://dx.doi.org/10. 1016/j.cbpa.2003.12.008 Google Scholar öffnen doi.org/10.1016/j.cbpa.2003.12.008
  254. Kotschi, J. 2008: Transgenic Crops and Their Impact on Biodiversity. In: GAIA, Bd. 17, H. 1, S. 1–80 Google Scholar öffnen doi.org/10.14512/gaia.17.1.11
  255. Kraiser, T./Gras, D. E./Gutierrez, A. G./Gonzalez, B./Gutierrez, R. A. 2011: A holistic view of nitrogen acquisition in plants. In: Journal of Experimental Botany, Bd. 62, H. 4, Google Scholar öffnen doi.org/10.1093/jxb/erq425
  256. S. 1455–1466. DOI: http://dx.doi.org/10.1093/jxb/erq425 Google Scholar öffnen doi.org/10.1093/jxb/erq425
  257. Krinsky, N. I. 1993: Actions of Carotenoids in Biological Systems. In: Annual Review of Nutrition, Bd. 13, H. 34, S. 561–587. DOI: http://dx.doi.org/10.1146/annurev.nu.13. 070193.003021 Google Scholar öffnen
  258. Kroes, P. 2009: Foundational Issues of Engineering Design. In: Meijers, A. (Hg.): Philosophy of Technology and Engineering Sciences. Amsterdam u.a.O.: Elsevier B.V., S. 513–541 Google Scholar öffnen doi.org/10.1016/B978-0-444-51667-1.50023-9
  259. Kümmerer, K. 2010: Pharmaceuticals in the Environment. In: Annual Review of Environment and Resources, Bd. 35, H. 1. DOI: http://dx.doi.org/10.1146/annurev-environ-052809-161223 Google Scholar öffnen doi.org/10.1146/annurev-environ-052809-161223
  260. Kurihara, K./Tamura, M./Shohda, K.-I./Toyota, T./Suzuki, K./Sugawara, T. 2011: Self-repro-duction of supramolecular giant vesicles combined with the amplification of encapsu-lated DNA. In: Nature Chemistry, Bd. 3, H. 10, S. 775–781. DOI: http://dx.doi.org/10. 1038/nchem.1127 Google Scholar öffnen doi.org/10.1038/nchem.1127
  261. Kuruma, Y./Stano, P./Ueda, T./Luisi, P. L. 2009: A synthetic biology approach to the con-struction of membrane proteins in semi-synthetic minimal cells. In: Biochimica et Bio-physica Acta, Bd. 1788, H. 2, S. 567–574. DOI: http://dx.doi.org/10.1016/j.bbamem. 2008.10.017 Google Scholar öffnen
  262. Laaksonen, P./Walther, A./Malho, J.-M./Kainlauri, M./Ikkala, O./Linder, M. B. 2011: Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofi-brillated Cellulose. In: Angewandte Chemie International Edition, S. n/a-n/a. DOI: http://dx.doi.org/10.1002/anie.201102973 Google Scholar öffnen doi.org/10.1002/anie.201102973
  263. Lacroix, R./McKemey, A. R./Raduan, N./Kwee Wee, L./Hong Ming, W./Guat Ney, T./Rahi-dah, A. A. S./Salman, S./Subramaniam, S./Nordin, O./Hanum, A. T. N./Angamuthu, C./ Marlina Mansor, S./Lees, R. S./Naish, N./Scaife, S./Gray, P./Labbe, G./Beech, C./Nim-mo, D./Alphey, L./Vasan, S. S./Han Lim, L./Wasi, A. N./Murad, S. 2012: Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. In: PLoS One, Bd. 7, H. 8, S. e42771. DOI: http://dx.doi.org/10.1371/journal.pone.0042771 Google Scholar öffnen doi.org/10.1371/journal.pone.0042771
  264. Lam, C. M. C./Godinho, M./dos Santos, V. A. P. M. 2009: An Introduction to Synthetic Biol-ogy. In: Synthetic Biology: The Technoscience and Its Societal Consequences. Dordrecht u.a.O.: Springer, S. 23–48 Google Scholar öffnen doi.org/10.1007/978-90-481-2678-1_3
  265. Lamsen, E. N./Atsumi, S. 2012: Recent progress in synthetic biology for microbial production of C3-C10 alcohols. In: Frontiers in Microbiology, Bd. 3, S. 196. DOI: http://dx.doi.org/ Google Scholar öffnen doi.org/10.3389/fmicb.2012.00196
  266. Langridge, P./Fleury, D. 2011: Making the most of ‘omics’ for crop breeding. In: Trends in Biotechnology, Bd. 29, H. 1, S. 33–40. DOI: http://dx.doi.org/10.1016/j.tibtech.2010. 09.006 Google Scholar öffnen
  267. Larregola, M./Moore, S./Budisa, N. 2012: Congeneric bio-adhesive mussel foot proteins de-signed by modified prolines revealed a chiral bias in unnatural translation. In: Biochemi-cal and Biophysical Research Communications, Bd. 421, H. 4, S. 646–650. DOI: http:// dx.doi.org/10.1016/j.bbrc.2012.04.031 Google Scholar öffnen doi.org/10.1016/j.bbrc.2012.04.031
  268. Ledford, H. 2010: Garage biotech: Life hackers. In: Nature, Bd. 467, H. 7316, S. 650–652. DOI: http://dx.doi.org/10.1038/467650a Google Scholar öffnen doi.org/10.1038/467650a
  269. Lee, B. P./Messersmith, P. B./Israelachvili, J. N./Waite, J. H. 2011: Mussel-Inspired Adhe¬sives and Coatings. In: Annual Review of Materials Research, Bd. 41, S. 99–132. DOI: http://dx.doi.org/10.1146/annurev-matsci-062910-100429 Google Scholar öffnen doi.org/10.1146/annurev-matsci-062910-100429
  270. Lenton, T. M./Held, H./Kriegler, E./Hall, J. W./Lucht, W./Rahmstorf, S./Schellnhuber, H. J. 2008: Inaugural Article: Tipping elements in the Earth’s climate system. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 105, H. 6, Google Scholar öffnen doi.org/10.1073/pnas.0705414105
  271. S. 1786–1793 Google Scholar öffnen
  272. Lepthien, S./Merkel, L./Budisa, N. 2010: In vivo double and triple labeling of proteins using synthetic amino acids. In: Angewandte Chemie International Edition, Bd. 49, H. 32, Google Scholar öffnen doi.org/10.1002/anie.201000439
  273. S. 5446–5450. DOI: http://dx.doi.org/10.1002/anie.201000439 Google Scholar öffnen doi.org/10.1002/anie.201000439
  274. Lers, A. 2012: Potential application of biotechnology to maintain fresh produce postharvest quality and reduce losses during storage. In: Altman, A./Hasegawa, P. M. (Hg.): Plant Biotechnology and Agriculture – Prospects for the 21st Century. Amsterdam u.a.O.: Academic Press, S. 425–441 Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00027-4
  275. Levidow, L./Paul, H. 2008: Land-use, Bioenergy and Agro-biotechnology. In: Berlin: Wis-senschaftlicher Beirat der Bundesregierung globale Umweltveränderungen (WBGU) Google Scholar öffnen
  276. Li, H./Cann, A. F./Liao, J. C. 2010: Biofuels: Biomolecular Engineering Fundamentals and Advances. In: Annual Review of Chemical and Biomolecular Engineering, Vol 1, Bd. 1, S. 19–36. DOI: http://dx.doi.org/10.1146/annurev-chembioeng-073009-100938 Google Scholar öffnen doi.org/10.1146/annurev-chembioeng-073009-100938
  277. Li, H./Liao, J. C. 2013: Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. In: Energy & Environmental Science, Bd. 6, H. 10, S. 2892–2899. DOI: http://dx.doi.org/10.1039/c3ee41847b Google Scholar öffnen doi.org/10.1039/c3ee41847b
  278. Li, Y./Horsman, M./Wu, N./Lan, C. Q./Dubois-Calero, N. 2008: Biofuels from Microalgae. In: Biotechnology Progress, Bd. 24, H. 4, S. 815–820. DOI: http://dx.doi.org/10.1021/ Bp070371k Google Scholar öffnen doi.org/10.1021/bp070371k
  279. Liang, J./Luo, Y. Z./Zhao, H. M. 2011: Synthetic Biology: Putting Synthesis into Biology. In: Wiley Interdisciplinary Reviews-Systems Biology and Medicine, Bd. 3, H. 1, S. 7–20. DOI: http://dx.doi.org/10.1002/wsbm.104 Google Scholar öffnen doi.org/10.1002/wsbm.104
  280. Liebert, W./Schmidt, J. C. 2010: Towards a prospective technology assessment: challenges and requirements for technology assessment in the age of technoscience. In: Poiesis & Praxis, Bd. 7, H. 1–2, S. 99–116. DOI: http://dx.doi.org/10.1007/s10202-010-0079-1 Google Scholar öffnen doi.org/10.1007/s10202-010-0079-1
  281. Lienert, F./Lohmueller, J. J./Garg, A./Silver, P. A. 2014: Synthetic biology in mammalian cells: next generation research tools and therapeutics. In: Nature Reviews-Molecular Cell Biology, Bd. 15, H. 2, S. 95–107. DOI: http://dx.doi.org/10.1038/nrm3738 Google Scholar öffnen doi.org/10.1038/nrm3738
  282. Lin, C./Liu, Y./Rinker, S./Yan, H. 2006: DNA tile based self-assembly: building complex nanoarchitectures. In: Chemphyschem : a European journal of chemical physics and physical chemistry, Bd. 7, H. 8, S. 1641–1647. DOI: http://dx.doi.org/10.1002/cphc. 200600260 Google Scholar öffnen
  283. Lindblad, P./Lindberg, P./Oliveira, P./Stensjo, K./Heidorn, T. 2012: Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel produc-tion. In: AMBIO, Bd. 41 Suppl 2, S. 163–168. DOI: http://dx.doi.org/ Google Scholar öffnen doi.org/10.1007/s13280-012-0274-5
  284. Ling, M. M./Robinson, B. H. 1997: Approaches to DNA Mutagenesis: An Overview. In: Analytical Biochemistry, Bd. 254, S. 157–178 Google Scholar öffnen doi.org/10.1006/abio.1997.2428
  285. Liu, K./Jiang, L. 2011: Bio-inspired design of multiscale structures for function integration. In: Nano Today, Bd. 6, H. 2, S. 155–175. DOI: http://dx.doi.org/10.1016/j.nantod. 2011.02.002 Google Scholar öffnen
  286. Liu, R./Zhang, H. Y./Ji, Z. X./Rallo, R./Xia, T./Chang, C. H./Nel, A./Cohen, Y. 2013: Devel-opment of structure-activity relationship for metal oxide nanoparticles. In: Nanoscale, Bd. 5, H. 12, S. 5644–5653. DOI: http://dx.doi.org/10.1039/c3nr01533e Google Scholar öffnen doi.org/10.1039/c3nr01533e
  287. Liu, W./Yuan, J. S./Stewart, C. N., Jr. 2013: Advanced genetic tools for plant biotechnology. In: Nature Reviews-Genetics, Bd. 14, H. 11, S. 781–793. DOI: http://dx.doi.org/10. 1038/nrg3583 Google Scholar öffnen doi.org/10.1038/nrg3583
  288. Lorenz, M. G./Wackernagel, W. 1994: Bacterial Gene Transfer by Natural Genetic Transfor-mation in the Environment. In: Microbiological Reviews, Bd. 58, H. 3, S. 563–602 Google Scholar öffnen
  289. Lorenzo, V. de 2009: Recombinant Bacteria for Environmental Release: What Went Wrong and What We Have Learnt from It. In: Clinical Microbiology and Infection, Bd. 15, Google Scholar öffnen
  290. H. S1, S. 63–65. DOI: http://dx.doi.org/10.1111/j.1469-0691.2008.02683.x Google Scholar öffnen doi.org/10.1111/j.1469-0691.2008.02683.x
  291. Lorenzo, V. de 2010: Environmental biosafety in the age of synthetic biology: do we really need a radical new approach? Environmental fates of microorganisms bearing synthetic genomes could be predicted from previous data on traditionally engineered bacteria for in situ biore. In: BioEssays, Bd. 32, H. 11, S. 926–931. DOI: http://dx.doi.org/10.1002/ bies.201000099 Google Scholar öffnen
  292. Lovley, D. R./Nevin, K. P. 2013: Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. In: Current Opin-ion in Biotechnology, Bd. 24, H. 3, S. 385–390. DOI: http://dx.doi.org/10.1016/ j.copbio.2013.02.012 Google Scholar öffnen doi.org/10.1016/j.copbio.2013.02.012
  293. Lu, T. K./Collins, J. J. 2009: Engineered Bacteriophage Targeting Gene Networks as Adju-vants for Antibiotic Therapy. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 106, H. 12, S. 4629–4634. DOI: http://dx.doi.org/10. 1073/Pnas.0800442106 Google Scholar öffnen doi.org/10.1073/pnas.0800442106
  294. Lu, T. K./Khalil, A. S./Collins, J. J. 2009: Next-generation synthetic gene networks. In: Na¬ture Biotechnology, Bd. 27, H. 12, S. 1139–1150. DOI: http://dx.doi.org/10.1038/nbt. 1591 Google Scholar öffnen
  295. Luhmann, N. 2003 (1991): Soziologie des Risikos. Berlin: de Gruyter Google Scholar öffnen
  296. Luisi, P. L./Stano, P. 2011: Synthetic biology: minimal cell mimicry. In: Nature Chemistry, Bd. 3, S. 755–756. DOI: http://dx.doi.org/10.1038/nchem.1156 Google Scholar öffnen doi.org/10.1038/nchem.1156
  297. Lynch, S. R./Liu, H./Gao, J./Kool, E. T. 2006: Toward a Designed, Functioning Genetic Sys-tem With Expanded-size Base Pairs: Solution Structure of the 8-Base xDNA Double Helix. In: Journal of the American Chemical Society, Bd. 128, H. 45, S. 14704–14711. DOI: http://dx.doi.org/10.1021/ja065606n Google Scholar öffnen doi.org/10.1021/ja065606n
  298. MacDonald, J. T./Barnes, C./Kitney, R. I./Freemont, P. S./Stan, G.-B. V. 2011: Computa-tional design approaches and tools for synthetic biology. In: Integrative Biology, Bd. 3, H. 2, S. 97–108. DOI: http://dx.doi.org/10.1039/c0ib00077a Google Scholar öffnen doi.org/10.1039/c0ib00077a
  299. Macek, T./Kotrba, P./Svatos, A./Novakova, M./Demnerova, K./Mackova, M. 2008: Novel roles for genetically modified plants in environmental protection. In: Trends in Biotech-nology, Bd. 26, H. 3, S. 146–152. DOI: http://dx.doi.org/10.1016/j.tibtech.2007.11.009 Google Scholar öffnen doi.org/10.1016/j.tibtech.2007.11.009
  300. Magnus, C. J./Lee, P. H./Atasoy, D./Su, H. H./Looger, L. L./Sternson, S. M. 2011: Chemical and Genetic Engineering of Selective Ion Channel-Ligand Interactions. In: Science, Bd. 333, H. 6047, S. 1292–1296. DOI: http://dx.doi.org/10.1126/science.1206606 Google Scholar öffnen doi.org/10.1126/science.1206606
  301. Mandell, D. J./Lajoie, M. J./Mee, M. T./Takeuchi, R./Kuznetsov, G./Norville, J. E./Gregg, C. J./Stoddard, B. L./Church, G. M. 2015: Biocontainment of genetically modified organ-isms by synthetic protein design. In: Nature, Bd. 518, H. 7537, S. 55–+. DOI: http://dx. doi.org/10.1038/nature14121 Google Scholar öffnen doi.org/10.1038/nature14121
  302. Marchisio, M. A./Stelling, J. 2008: Computational design of synthetic gene circuits with composable parts. In: Bioinformatics, Bd. 24, H. 17, S. 1903–1910. DOI: http://dx.doi. org/10.1093/bioinformatics/btn330 Google Scholar öffnen doi.org/10.1093/bioinformatics/btn330
  303. Marchisio, M. A./Stelling, J. 2009: Computational design tools for synthetic biology. In: Cur-rent Opinion in Biotechnology, Bd. 20, H. 4, S. 479–485. DOI: http://dx.doi.org/10. 1016/j.copbio.2009.08.007 Google Scholar öffnen doi.org/10.1016/j.copbio.2009.08.007
  304. Marguet, P./Balagadde, F./Tan, C. M./You, L. C. 2007: Biology by Design: Reduction and Synthesis of Cellular Components and Behaviour. In: Journal of the Royal Society Inter-face, Bd. 4, H. 15, S. 607–623. DOI: http://dx.doi.org/10.1098/rsif.2006.0206 Google Scholar öffnen doi.org/10.1098/rsif.2006.0206
  305. Marliere, P. 2009: The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. In: Systems and Synthetic Biology, Bd. 3, H. 1–4, Google Scholar öffnen doi.org/10.1007/s11693-009-9040-9
  306. S. 77–84. DOI: http://dx.doi.org/10.1007/s11693-009-9040-9 Google Scholar öffnen doi.org/10.1007/s11693-009-9040-9
  307. Marliere, P./Patrouix, J./Doring, V./Herdewijn, P./Tricot, S./Cruveiller, S./Bouzon, M./Mut¬zel, R. 2011: Chemical evolution of a bacterium’s genome. In: Angewandte Chemie In-ternational Edition, Bd. 50, H. 31, S. 7109–7114. DOI: http://dx.doi.org/10.1002/anie. 201100535 Google Scholar öffnen
  308. Matsumoto, T. K./Gonsalves, D. 2012: Biolistic and other non-Agrobacterium technologies of plant transformation. S. 117–129. DOI: http://dx.doi.org/10.1016/b978-0-12-381466-1.00008-0 Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00008-0
  309. Maurer, S. E./Monnard, P. A. 2011: Primitive Membrane Formation, Characteristics and Roles in the Emergent Properties of a Protocell. In: Entropy, Bd. 13, H. 2, S. 466–484. DOI: http://dx.doi.org/10.3390/E13020466 Google Scholar öffnen doi.org/10.3390/e13020466
  310. McAllister, C. H./Beatty, P. H./Good, A. G. 2012: Engineering nitrogen use efficient crop plants: the current status. In: Plant Biotechnology Journal. DOI: http://dx.doi.org/10. 1111/j.1467-7652.2012.00700.x Google Scholar öffnen doi.org/10.1111/j.1467-7652.2012.00700.x
  311. McDaniel, R./Weiss, R. 2005: Advances in synthetic biology: on the path from prototypes to applications. In: Current Opinion in Biotechnology, Bd. 16, H. 4, S. 476–483. DOI: http://dx.doi.org/10.1016/j.copbio.2005.07.002 Google Scholar öffnen doi.org/10.1016/j.copbio.2005.07.002
  312. McMinn, D. L./Ogawa, A. K./Wu, Y./Liu, J./Schultz, P. G./Romesberg, F. E. 1999: Efforts toward Expansion of the Genetic Alphabet: DNA Polymerase Recognition of a Highly Stable, Self-Pairing Hydrophobic Base. In: Journal of the American Chemical Society, Bd. 121, H. 49, S. 11585-11586. DOI: S0002-7863(99)02515-9 Google Scholar öffnen doi.org/10.1021/ja9925150
  313. Meyers, M. a./Chen, P.-Y./Lopez, M. I./Seki, Y./Lin, A. Y. M. 2010: Biological materials: A materials science approach. In: Journal of the Mechanical Behavior of Biomedical Mate-rials, Bd. 4, H. 5, S. 626–657. DOI: http://dx.doi.org/10.1016/j.jmbbm.2010.08.005 Google Scholar öffnen doi.org/10.1016/j.jmbbm.2010.08.005
  314. Miki, W. 1991: Biological functions and activities of animal carotenoids. In: Pure & Applied Chemistry, Bd. 63, H. 1, S. 141–146 Google Scholar öffnen doi.org/10.1351/pac199163010141
  315. Mittler, R./Blumwald, E. 2010: Genetic engineering for modern agriculture: challenges and perspectives. In: Annual Review of Plant Biology, Bd. 61, S. 443–462. DOI: http://dx. doi.org/10.1146/annurev-arplant-042809-112116 Google Scholar öffnen doi.org/10.1146/annurev-arplant-042809-112116
  316. Mochida, K./Shinozaki, K. 2011: Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions. In: Plant and Cell Physiology, Bd. 52, H. 12, S. 2017–2038. DOI: http://dx.doi.org/10.1093/pcp/pcr153 Google Scholar öffnen doi.org/10.1093/pcp/pcr153
  317. Moe-Behrens, G. H./Davis, R./Haynes, K. A. 2013: Preparing synthetic biology for the world. In: Frontiers in Microbiology, Bd. 4, S. 5. DOI: http://dx.doi.org/10.3389/fmicb.2013. 00005 Google Scholar öffnen
  318. Moeller, L./Wang, K. 2008: Engineering with Precision : Tools for the New Generation of Transgenic Crops. In: BioScience, Bd. 58, H. 5, S. 391–401 Google Scholar öffnen doi.org/10.1641/B580506
  319. Moran, S./Ren, R. X. F./Kool, E. T. 1997: A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. In: Proceed¬ings of the National Academy of Sciences of the United States of America, Bd. 94, Google Scholar öffnen doi.org/10.1073/pnas.94.20.10506
  320. H. 20, S. 10506–10511 Google Scholar öffnen
  321. Morange, M. 2009: Synthetic Biology: A Bridge Between Functional and Evolutionary Biol-ogy. In: Biological Theory, Bd. 4, S. 368–377. DOI: http://dx.doi.org/ Google Scholar öffnen doi.org/10.1162/BIOT_a_00003
  322. Moreno-Risueno, M. a./Busch, W./Benfey, P. N. 2010: Omics meet networks – using systems approaches to infer regulatory networks in plants. In: Current Opinion in Plant Biology, Bd. 13, H. 2, S. 126–131. DOI: http://dx.doi.org/10.1016/j.pbi.2009.11.005 Google Scholar öffnen doi.org/10.1016/j.pbi.2009.11.005
  323. Moya, A./Gil, R./Latorre, A./Peretó, J./Garcillán-Barcia, M. P./de la Cruz, F. 2009: Toward Minimal Bacterial Cells: Evolution vs. Design. In: FEMS Microbiology Reviews, Bd. 33, H. 1, S. 225–235. DOI: http://dx.doi.org/10.1111/j.1574-6976.2008.00151.x Google Scholar öffnen doi.org/10.1111/j.1574-6976.2008.00151.x
  324. Mukhopadhyay, A./Redding, A. M./Rutherford, B. J./Keasling, J. D. 2008: Importance of sys¬tems biology in engineering microbes for biofuel production. In: Current Opinion in Biotechnology, Bd. 19, H. 3, S. 228–234. DOI: http://dx.doi.org/10.1016/j.copbio.2008. 05.003 Google Scholar öffnen
  325. Murck, M. 2013: Untersuchung von Perlmutt als Vorbild für die Entwicklung von geklebten Keramik- Polymer-Schichtverbundwerkstoffen. Bremen: Universität Bremen, Fachbereich Produktionstechnik (Dissertation) Google Scholar öffnen
  326. Murtas, G. 2009: Artificial Assembly of a Minimal Cell. In: Molecular BioSystems, Bd. 5, Google Scholar öffnen doi.org/10.1039/b906541e
  327. H. 11, S. 1292–1297. DOI: http://dx.doi.org/10.1039/B906541e Google Scholar öffnen doi.org/10.1039/b906541e
  328. Mutalik, V. K./Guimaraes, J. C./Cambray, G./Lam, C./Christoffersen, M. J./Mai, Q. A./Tran, A. B./Paull, M./Keasling, J. D./Arkin, A. P./Endy, D. 2013: Precise and reliable gene expression via standard transcription and translation initiation elements. In: Nature Methods, Bd. 10, H. 4, S. 354–360. DOI: http://dx.doi.org/10.1038/nmeth.2404 Google Scholar öffnen doi.org/10.1038/nmeth.2404
  329. Nangreave, J./Han, D./Liu, Y./Yan, H. 2010: DNA origami: a history and current perspective. In: Current Opinion in Chemical Biology, Bd. 14, H. 5, S. 608–615. DOI: http://dx.doi. org/10.1016/j.cbpa.2010.06.182 Google Scholar öffnen doi.org/10.1016/j.cbpa.2010.06.182
  330. NanoKommission (NanoKommission der deutschen Bundesregierung). 2008: Verantwortli-cher Umgang mit Nanotechnologien: Bericht und Empfehlungen der NanoKommission der deutschen Bundesregierung 2008. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin. Internet: http://www.bmu.de/fileadmin/bmu-import/ files/pdfs/allgemein/application/pdf/nanokomm_abschlussbericht_2008.pdf [zuletzt auf-gesucht am 24.3.2014] Google Scholar öffnen
  331. NanoKommission (NanoKommission der deutschen Bundesregierung). 2011: Verantwortli-cher Umgang mit Nanotechnologien, Bericht und Empfehlungen der NanoKommission 2011. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Ber-lin. Internet: http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Nano technologie/nanodialog_2_schlussbericht_2011_bf.pdf [zuletzt aufgesucht am 17.9.2015] Google Scholar öffnen
  332. Naqvi, S./Farré, G./Sanahuja, G./Capell, T./Zhu, C./Christou, P. 2010: When more is better: multigene engineering in plants. In: Trends in Plant Science, Bd. 15, H. 1, S. 48–56. DOI: http://dx.doi.org/10.1016/j.tplants.2009.09.010 Google Scholar öffnen doi.org/10.1016/j.tplants.2009.09.010
  333. NEST – New and Emerging Science and Technology (NEST) High-Level Expert Group 2005: Synthetic Biology—Applying Engineering to Biology. Commission of the Euro¬pean Communities – Research Directorate General, Brussels. Internet: ftp://ftp.cordis. europa.eu/pub/nest/docs/syntheticbiology_b5_eur21796_en.pdf [zuletzt aufgesucht am 24.3.2014] Google Scholar öffnen
  334. Neumann, H./Wang, K./Davis, L./Garcia-Alai, M./Chin, J. W. 2010: Encoding multiple un-natural amino acids via evolution of a quadruplet-decoding ribosome. In: Nature, Bd. 464, H. 7287, S. 441–444. DOI: http://dx.doi.org/10.1038/nature08817 Google Scholar öffnen doi.org/10.1038/nature08817
  335. Nicklisch, S. C./Waite, J. H. 2012: Mini-review: the role of redox in Dopa-mediated marine adhesion. In: Biofouling, Bd. 28, H. 8, S. 865–877. DOI: http://dx.doi.org/10.1080/ 08927014.2012.719023 Google Scholar öffnen doi.org/10.1080/08927014.2012.719023
  336. Nielsen, J./Fussenegger, M./Keasling, J./Lee, S. Y./Liao, J. C./Prather, K./Palsson, B. 2014: Engineering synergy in biotechnology. In: Nature Chemical Biology, Bd. 10, H. 5, Google Scholar öffnen doi.org/10.1038/nchembio.1519
  337. S. 319–322. DOI: http://dx.doi.org/10.1038/nchembio.1519 Google Scholar öffnen doi.org/10.1038/nchembio.1519
  338. Nielsen, J./Keasling, J. D. 2011: Synergies between synthetic biology and metabolic engi-neering. In: Nature Biotechnology, Bd. 29, S. 693–695. DOI: http://dx.doi.org/10.1038/ nbt.1937 Google Scholar öffnen doi.org/10.1038/nbt.1937
  339. Nielsen, J./Larsson, C./van Maris, A./Pronk, J. 2013: Metabolic engineering of yeast for pro-duction of fuels and chemicals. In: Current Opinion in Biotechnology, Bd. 24, H. 3, Google Scholar öffnen doi.org/10.1016/j.copbio.2013.03.023
  340. S. 398–404. DOI: http://dx.doi.org/10.1016/j.copbio.2013.03.023 Google Scholar öffnen doi.org/10.1016/j.copbio.2013.03.023
  341. Nielsen, P. E./Egholm, M. 1999: An introduction to peptide nucleic acid. In: Current Issues in Molecular Biology, Bd. 1, H. 1–2, S. 89–104 Google Scholar öffnen
  342. Nirenberg, M. W./Matthaei, J. H. 1961: The Dependence of Cell-Free Protein Synthesis in E. Coli Upon Naturally Occurring or Synthetic Polyribonucleotides. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 47, H. 10, S. 1588–1602 Google Scholar öffnen doi.org/10.1073/pnas.47.10.1588
  343. Noireaux, V./Bar-Ziv, R./Libchaber, A. 2003: Principles of cell-free genetic circuit assembly. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 100, H. 22, S. 12672–12677. DOI: http://dx.doi.org/10.1073/pnas.2135496100 Google Scholar öffnen doi.org/10.1073/pnas.2135496100
  344. Noireaux, V./Maeda, Y. T./Libchaber, A. 2011: Development of an Artificial Cell, from Self-Organization to Computation and Self-Reproduction. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 108, H. 9, S. 3473–3480. DOI: http://dx.doi.org/10.1073/pnas.1017075108 Google Scholar öffnen doi.org/10.1073/pnas.1017075108
  345. Nordmann, A. 2008: Technology Naturalized: A Challenge to Design for the Human Scale. In: Kroes, P./Vermaas, P. E./Light, A./Moore, S. A. (Hg.): Philosophy and Design: From Engineering to Architecture. Berlin: Springer, S. 173–184 Google Scholar öffnen doi.org/10.1007/978-1-4020-6591-0_13
  346. Norrby, E. 2011: Prions and protein-folding diseases. In: Journal of Internal Medicine, Bd. 270, H. 1, S. 1–14. DOI: http://dx.doi.org/10.1111/j.1365-2796.2011.02387.x Google Scholar öffnen doi.org/10.1111/j.1365-2796.2011.02387.x
  347. Nourian, Z./Roelofsen, W./Danelon, C. 2012: Triggered gene expression in fed-vesicle micro-reactors with a multifunctional membrane. In: Angewandte Chemie, Bd. 51, H. 13, Google Scholar öffnen doi.org/10.1002/anie.201107123
  348. S. 3114–3118. DOI: http://dx.doi.org/10.1002/anie.201107123 Google Scholar öffnen doi.org/10.1002/anie.201107123
  349. O’Malley, M./Powell, A./Davies, J. F./Calvert, J. 2008: Knowledge-making distinctions in synthetic biology. In: BioEssays, Bd. 30, H. 1, S. 57–65. DOI: http://dx.doi.org/10.1002/ bies.20664 Google Scholar öffnen
  350. OECD. 1989: Biotechnology. Economic and Wider Impacts, Paris Google Scholar öffnen doi.org/10.1787/eco_surveys-can-1989-en
  351. Okazaki, Y./Saito, K. 2012: Recent advances of metabolomics in plant biotechnology. In: Plant Biotechnology Reports, Bd. 6, H. 1, S. 1–15. DOI: http://dx.doi.org/10.1007/ s11816-011-0191-2 Google Scholar öffnen doi.org/10.1007/s11816-011-0191-2
  352. Olson, D. G./McBride, J. E./Joe Shaw, A./Lynd, L. R. 2012: Recent Progress in Consolidated Bioprocessing. In: Current Opinion in Biotechnology, Bd. 23, H. 3, S. 396–405. DOI: http://dx.doi.org/10.1016/j.copbio.2011.11.026 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.11.026
  353. Omenetto, F. G./Kaplan, D. L. 2010: New opportunities for an ancient material. In: Science, Bd. 329, H. 5991, S. 528–531. DOI: http://dx.doi.org/10.1126/science.1188936 Google Scholar öffnen doi.org/10.1126/science.1188936
  354. Orzaez, D./Monforte, A. J./Granell, A. 2010: Using genetic variability available in the breeder’s pool to engineer fruit quality. In: GM Crops, Bd. 1, H. 3, S. 120–127 Google Scholar öffnen doi.org/10.4161/gmcr.1.3.12327
  355. Osbourn, A. E./O’Maille, P. E./Rosser, S. J./Lindsey, K. 2012: Synthetic biology. 4th New Phytologist Workshop, Bristol, UK, June 2012. In: New Phytologist, Bd. 196, H. 3, Google Scholar öffnen doi.org/10.1111/j.1469-8137.2012.04374.x
  356. S. 671–677. DOI: http://dx.doi.org/10.1111/j.1469-8137.2012.04374.x Google Scholar öffnen doi.org/10.1111/j.1469-8137.2012.04374.x
  357. Ouldridge, T. E./Hoare, R. L./Louis, A. A./Doye, J. P./Bath, J./Turberfield, A. J. 2013: Opti-mizing DNA Nanotechnology through Coarse-Grained Modeling: A Two-Footed DNA Walker. In: ACS Nano. DOI: http://dx.doi.org/10.1021/nn3058483 Google Scholar öffnen doi.org/10.1021/nn3058483
  358. Oye, K. A./Esvelt, K./Appleton, E./Catteruccia, F./Church, G./Kuiken, T./Lightfoot, S. B./ McNamara, J./Smidler, A./Collins, J. P. 2014: Biotechnology. Regulating gene drives. In: Science, Bd. 345, H. 6197, S. 626–628. DOI: http://dx.doi.org/10.1126/science.1254 287 Google Scholar öffnen
  359. Paddon, C. J./Keasling, J. D. 2014: Semi-synthetic artemisinin: a model for the use of syn-thetic biology in pharmaceutical development. In: Nature Reviews-Microbiology, Bd. 12, H. 5, S. 355–367. DOI: http://dx.doi.org/10.1038/nrmicro3240 Google Scholar öffnen doi.org/10.1038/nrmicro3240
  360. Pade, C./Giese, B./Koenigstein, S./Wigger, H./Gleich, A. von 2015: Characterizing Synthetic Biology Through Its Novel and Enhanced Functionalities. In: Gies, B./Pade, C./Wigger, H./Gleich, A. von (Hg.): Synthetic Biology: Character and Impact. Cham: Springer, Google Scholar öffnen doi.org/10.1007/978-3-319-02783-8_4
  361. S. 71–104 Google Scholar öffnen
  362. Palm, A./Cousins, I. T./Mackay, D./Tysklind, M./Metcalfe, C./Alaee, M. 2002: Assessing the environmental fate of chemicals of emerging concern: a case study of the polybromi-nated diphenyl ethers. In: Environmental Pollution, Bd. 117, H. 2, S. 195–213 Google Scholar öffnen doi.org/10.1016/S0269-7491(01)00276-7
  363. Pandey, A./Kamle, M./Yadava, M./Kumar, P./Gupta, V./Ashafaque, M./Pandey, B. K. 2010: Genetically modified Food: Its uses, Future Prospects and Safety Assessment. In: Bio-technology, Bd. 9, H. 4, S. 444–458 Google Scholar öffnen doi.org/10.3923/biotech.2010.444.458
  364. Pardee, K./Green, A. A./Ferrante, T./Cameron, D. E./DaleyKeyser, A./Yin, P./Collins, J. J. 2014: Paper-based synthetic gene networks. In: Cell, Bd. 159, H. 4, S. 940–954. DOI: http://dx.doi.org/10.1016/j.cell.2014.10.004 Google Scholar öffnen doi.org/10.1016/j.cell.2014.10.004
  365. Park, N./Um, S. O./Funabashi, H./Xu, J./Luo, D. 2009: A cell-free protein-producing gel. In: Nature Materials, Bd. 8. DOI: http://dx.doi.org/10.1038/nmat2419 Google Scholar öffnen doi.org/10.1038/nmat2419
  366. Peleg, Z./Walia, H./Blumwald, E. 2012: Integrating genomics and genetics to accelerate de-velopment of drought and salinity tolerant crops. In: Altman, A./Hasegawa, P. M. (Hg.): Plant Biotechnology and Agriculture – Prospects for the 21st Century. Amsterdam u.a.O.: Academic Press, S. 271–286 Google Scholar öffnen doi.org/10.1016/B978-0-12-381466-1.00018-3
  367. Peralta-Yahya, P. P./Zhang, F./del Cardayre, S. B./Keasling, J. D. 2012: Microbial Engineer-ing for the Production of Advanced Biofuels. In: Nature, Bd. 488, H. 7411, S. 320–328. DOI: http://dx.doi.org/10.1038/nature11478 Google Scholar öffnen doi.org/10.1038/nature11478
  368. Perkel, J. M. 2012: Streamlined engineering for synthetic biology. In: Nature Methods, Bd. 10, H. 1, S. 39–42. DOI: http://dx.doi.org/10.1038/nmeth.2304 Google Scholar öffnen doi.org/10.1038/nmeth.2304
  369. Peterhansel, C. 2011: Best Practice Procedures for the Establishment of a C4 Cycle in Trans-genic C3 Plants. In: Journal of Experimental Botany, Bd. 62, H. 9, S. 3011–3019. DOI: http://dx.doi.org/10.1093/Jxb/Err027 Google Scholar öffnen doi.org/10.1093/jxb/err027
  370. Pilson, D./Snow, A./Rieseberg, L./Alexander, H. 2002: Fittness and population effects of gene flow from transgenic sun flower to wild Helianthus annus (Konferenzband: Eco-logical and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives, The University Plaza Hotel and Conference Center, Ohio State University Columbus, OH, S. 58–70. Ecological and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives) Google Scholar öffnen
  371. Pinheiro, A. V./Han, D./Shih, W. M./Yan, H. 2011: Challenges and opportunities for struc-tural DNA nanotechnology. In: Nature Nanotechnology, Bd. 6, H. 12, S. 763–772. DOI: http://dx.doi.org/10.1038/nnano.2011.187 Google Scholar öffnen doi.org/10.1038/nnano.2011.187
  372. Pinheiro, V. B./Taylor, A. I./Cozens, C./Abramov, M./Renders, M./Zhang, S./Chaput, J. C./ Wengel, J./Peak-Chew, S.-Y./McLaughlin, S. H./Herdewijn, P./Holliger, P. 2012: Syn-thetic genetic polymers capable of heredity and evolution. In: Science, Bd. 336, S. 341–344. DOI: http://dx.doi.org/10.1126/science.1217622 Google Scholar öffnen doi.org/10.1126/science.1217622
  373. Pleiss, J. 2006: The Promise of Synthetic Biology. In: Applied Microbiology and Biotechnol-ogy, Bd. 73, H. 4, S. 735–739 Google Scholar öffnen doi.org/10.1007/s00253-006-0664-3
  374. Pollack, J. 2002: Breaking the Limits on Design Complexity. In: Roco, M. C./Bainbridge, W. S. (Hg.): Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science (NSF/DOC-sponsored Report). Arlington/VA: National Science Foundation (NSF), S. 161–164 Google Scholar öffnen
  375. Porter, D./Vollrath, F. 2009: Silk as a Biomimetic Ideal for Structural Polymers. In: Advanced Materials, Bd. 21, H. 4, S. 487–492. DOI: http://dx.doi.org/10.1002/adma.200801332 Google Scholar öffnen doi.org/10.1002/adma.200801332
  376. Pottage, A./Sherman, B. 2007: Organisms and manufactures: On the history of plant inven-tions. In: Melbourne University Law Review, Bd. 31, H. 2, S. 539–568 Google Scholar öffnen
  377. Prokup, A./Hemphill, J./Deiters, A. 2012: DNA computation: a photochemically controlled AND gate. In: Journal of the American Chemical Society, Bd. 134, H. 8, S. 3810–3815. DOI: http://dx.doi.org/10.1021/ja210050s Google Scholar öffnen doi.org/10.1021/ja210050s
  378. Pu, Y./Kosa, M./Kalluri, U. C./Tuskan, G. A./Ragauskas, A. J. 2011: Challenges of the utili-zation of wood polymers: how can they be overcome? In: Applied Microbiology and Biotechnology, Bd. 91, H. 6, S. 1525–1536. DOI: http://dx.doi.org/10.1007/s00253-011-3350-z Google Scholar öffnen doi.org/10.1007/s00253-011-3350-z
  379. Pühler, A./Müller-Röber, B./Weitze, M.-D. 2011: Synthetische Biologie: Die Geburt einer neuen Technikwissenschaft. DOI: http://dx.doi.org/10.1007/978-3-642-22354-9_15 Google Scholar öffnen doi.org/10.1007/978-3-642-22354-9_15
  380. Puri, A./Loomis, K./Smith, B./Lee, J. H./Yavlovich, A./Heldman, E./Blumenthal, R. 2009: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. In: Critical Reviews in Therapeutic Drug Carrier Systems, Bd. 26, H. 6, S. 523–580 Google Scholar öffnen doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
  381. Purnick, P. E. M./Weiss, R. 2009: The second wave of synthetic biology: from modules to systems. In: Nature Reviews Molecular Cell Biology, Bd. 10, H. 6, S. 410–422. DOI: http://dx.doi.org/10.1038/Nrm2698 Google Scholar öffnen doi.org/10.1038/nrm2698
  382. Puzyn, T./Rasulev, B./Gajewicz, A./Hu, X. K./Dasari, T. P./Michalkova, A./Hwang, H. M./Toropov, A./Leszczynska, D./Leszczynski, J. 2011: Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. In: Nature Nanotechnology, Bd. 6, H. 3, Google Scholar öffnen doi.org/10.1038/nnano.2011.10
  383. S. 175–178. DOI: http://dx.doi.org/10.1038/Nnano.2011.10 Google Scholar öffnen doi.org/10.1038/nnano.2011.10
  384. Qi, L. S./Larson, M. H./Gilbert, L. A./Doudna, J. A./Weissman, J. S./Arkin, A. P./Lim, W. A. 2013: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. In: Cell, Bd. 152, H. 5, S. 1173–1183. DOI: http://dx.doi.org/10. 1016/ j.cell.2013.02.022 Google Scholar öffnen doi.org/10.1016/j.cell.2013.02.022
  385. Qin, S./Lin, H./Jiang, P. 2012: Advances in genetic engineering of marine algae. In: Biotech-nology Advances, Bd. 30, H. 6, S. 1602–1613. DOI: http://dx.doi.org/10.1016/j.biotech adv.2012.05.004 Google Scholar öffnen
  386. Que, Q./Chilton, M.-D. M./de Fontes, C. M./He, C./Nuccio, M./Zhu, T./Wu, Y./Chen, J. S./ Shi, L. 2010: Trait stacking in transgenic crops: challenges and opportunities. In: GM Crops, Bd. 1, H. 4, S. 220–229. DOI: http://dx.doi.org/10.4161/gmcr.1.4.13439 Google Scholar öffnen doi.org/10.4161/gmcr.1.4.13439
  387. Rabaey, K./Girguis, P./Nielsen, L. K. 2011: Metabolic and Practical Considerations on Mi-crobial Electrosynthesis. In: Current Opinion in Biotechnology, Bd. 22, H. 3, S. 371–377. DOI: http://dx.doi.org/10.1016/j.copbio.2011.01.010 Google Scholar öffnen doi.org/10.1016/j.copbio.2011.01.010
  388. Rasmussen, S./Bedau, M. A./Chen, L./Deamer, D./Krakauer, D. C./Packard, N. H./Stadler, P. F. (Hg.). 2008: Protocells: Bridging Nonliving and Living Matter. Cam¬bridge/MA, London: The MIT Press Google Scholar öffnen doi.org/10.7551/mitpress/9780262182683.001.0001
  389. Rawis, R. L. 2000: ‘Synthetic Biology’ Makes Its Debut. In: Chemical & Engineering News Archive, Bd. 78, H. 17, S. 49–53. DOI: http://dx.doi.org/10.1021/cen-v078n017.p049 Google Scholar öffnen doi.org/10.1021/cen-v078n017.p049
  390. Richmond, D. L./Schmid, E. M./Martens, S./Stachowiak, J. C./Liska, N./Fletcher, D. a. 2011: Forming giant vesicles with controlled membrane composition, asymmetry, and con¬tents. In: PNAS, Bd. 108, H. 23, S. 9431–9436. DOI: http://dx.doi.org/10.1073/pnas. 1016410108 Google Scholar öffnen doi.org/10.1073/pnas
  391. Rivera-Gil, P./Jimenez De Aberasturi, D./Wulf, V./Pelaz, B./Del Pino, P./Zhao, Y./De La Fuente, J. M./Ruiz De Larramendi, I./Rojo, T./Liang, X.-J./Parak, W. J. 2013: The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. In: Accounts of Chemical Research, Bd. 46, H. 3, S. 743–749. DOI: http:// dx.doi.org/10.1021/ar300039j Google Scholar öffnen doi.org/10.1021/ar300039j
  392. Robins, K. J./Hooks, D. O./Rehm, B. H./Ackerley, D. F. 2013: Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. In: PLoS One, Bd. 8, H. 3, S. e59200. DOI: http://dx.doi.org/10.1371/journal.pone.0059200 Google Scholar öffnen doi.org/10.1371/journal.pone.0059200
  393. Roco, M. C. 2002: Coherence and Divergence of Megatrends in Science and Engineering. In: Roco, M. C./Bainbridge, W. S. (Hg.): Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science (NSF/DOC-sponsored Report). Arlington/VA: National Science Foundation (NSF), S. 79–96 Google Scholar öffnen
  394. Roodbeen, R./van Hest, J. C. M. 2009: Synthetic cells and organelles: compartmentalization strategies. In: BioEssays, Bd. 31, H. 12, S. 1299–1308. DOI: http://dx.doi.org/10.1002/ bies.200900106 Google Scholar öffnen doi.org/10.1002/bies.200900106
  395. Ropohl, G. 1991: Technologische Aufklärung : Beiträge zur Technikphilosophie. Frank¬furt/M.: Suhrkamp Google Scholar öffnen
  396. Rothemund, P. W. K. 2006: Folding DNA to Create Nanoscale Shapes and Patterns. In: Na-ture, Bd. 440, H. 7082, S. 297–302. DOI: http://dx.doi.org/10.1038/nature04586 Google Scholar öffnen doi.org/10.1038/nature04586
  397. Rovner, A. J./Haimovich, A. D./Katz, S. R./Li, Z./Grome, M. W./Gassaway, B. M./Amiram, M./Patel, J. R./Gallagher, R. R./Rinehart, J./Isaacs, F. J. 2015: Recoded organisms en-gineered to depend on synthetic amino acids. In: Nature, Bd. 518, H. 7537, S. 89–+. DOI: http://dx.doi.org/10.1038/nature14095 Google Scholar öffnen doi.org/10.1038/nature14095
  398. Royal Academy of Engineering (The Royal Academy of Engineering, United Kingdom). 2009: Synthetic Biology: Scope, Applications and Implications. London: The Royal Academy of Engineering. Internet: http://www.raeng.org.uk/news/publications/list/reports/ Synthetic_biology.pdf [zuletzt aufgesucht am 24.3.2014] Google Scholar öffnen
  399. Ruder, W. C./Lu, T./Collins, J. J. 2011: Synthetic Biology Moving into the Clinic. In: Sci¬ence, Bd. 333, H. 6047, S. 1248–1252. DOI: http://dx.doi.org/10.1126/science.1206843 Google Scholar öffnen doi.org/10.1126/science.1206843
  400. Ruiz-Mirazo, K./Pereto, J./Moreno, A. 2010: Defining Life or Bringing Biology to Life. In: Origins of Life and Evolution of Biospheres, Bd. 40, S. 203–213. DOI: http://dx.doi.org/ 10.1007/s11084-010-9201-6 Google Scholar öffnen doi.org/10.1007/s11084-010-9201-6
  401. Rupp, S. 2013: Next-generation bioproduction systems: Cell-free conversion concepts for industrial biotechnology. In: Engineering in Life Sciences, Bd. 13, H. 1, S. 19–25. DOI: http://dx.doi.org/10.1002/elsc.201100237 Google Scholar öffnen doi.org/10.1002/elsc.201100237
  402. Saccà, B./Niemeyer, C. M. 2012: DNA origami: The Art of Folding DNA. In: Angewandte Chemie International Edition, Bd. 51, S. 58–66. DOI: http://dx.doi.org/10.1002/anie. 201105846 Google Scholar öffnen
  403. Saito, H./Inoue, T. 2009: Synthetic biology with RNA motifs. In: The International Journal of Biochemistry & Cell Biology, Bd. 41, H. 2, S. 398–404. DOI: http://dx.doi.org/10.1016/ j.biocel.2008.08.017 Google Scholar öffnen doi.org/10.1016/j.biocel.2008.08.017
  404. Saito, K./Matsuda, F. 2010: Metabolomics for functional genomics, systems biology, and biotechnology. In: Annual Review of Plant Biology, Bd. 61, S. 463–489. DOI: http://dx. doi.org/10.1146/annurev.arplant.043008.092035 Google Scholar öffnen doi.org/10.1146/annurev.arplant.043008.092035
  405. Sathitsuksanoh, N./George, A./Zhang, Y.-H. P. 2013: New lignocellulose pretreatments using cellulose solvents: a review. In: Journal of Chemical Technology & Biotechnology, Bd. 88, H. 2, S. 169–180. DOI: http://dx.doi.org/10.1002/jctb.3959 Google Scholar öffnen doi.org/10.1002/jctb.3959
  406. Sauter, A. 2005: TA-Projekt Grüne Gentechnik – Transgene Pflanzen der 2. und 3. Genera¬tion (TAB Arbeitsbericht Nr. 104). Internet: http://www.biosicherheit.de/pdf/dokumente/ tab_ab104.pdf [zuletzt aufgesucht am 21.9.2015] Google Scholar öffnen
  407. Schamel, W. W. A./Reth, M. 2012: Synthetic immune signaling. In: Current Opinion in Bio-technology, Bd. 23, H. 5, S. 780–784. DOI: http://dx.doi.org/10.1016/j.copbio.2012. 01.010 Google Scholar öffnen
  408. Schelling, F. W. J. 1994 (1797): Ideen zu einer Philosophie der Natur (Historisch-kritische Ausgabe, Reihe 1: Werke), Bd. 5. Stuttgart: Frommann-Holzboog Google Scholar öffnen
  409. Schmidt, J. C. 2002: Vom Leben zur Technik? Wissenschaftsphilosophische Aspekte der Natur-Nachahmungsthese in der Bionik. In: Dialektik (Zeitschrift für Kulturphiloso¬phie), Bd. 2002, H. 2, S. 129–142 Google Scholar öffnen
  410. Schmidt, J. C. 2004: Unbounded Technologies: Working Through the Technological Reduc-tionism of Nanotechnology. In: Baird, D./Nordmann, A./Schummer, J. (Hg.): Discover-ing the Nanoscale. Amsterdam, Washington/D.C.: IOS, S. 35–51 Google Scholar öffnen
  411. Schmidt, J. C. 2008a: Instabilität in Natur und Wissenschaft: Eine Wissenschaftsphilosophie der nachmodernen Physik. Berlin: De Gruyter Google Scholar öffnen
  412. Schmidt, J. C. 2008b: Towards a philosophy of interdisciplinarity: An attempt to provide a classification and clarification. In: Poiesis & Praxis, Bd. 5, H. 1, S. 53–69. DOI: http:// dx.doi.org/10.1007/s10202-007-0037-8 Google Scholar öffnen
  413. Schmidt, J. C. 2011: Challenged by Instability and Complexity...: Questioning Classic Stabil-ity Assumptions and Presuppositions in Scientific Methodology. In: Hooker, C. (Hg.): Philosophy of Complex Systems., Bd. 10. Amsterdam: Elsevier B.V., S. 223–254 Google Scholar öffnen doi.org/10.1016/B978-0-444-52076-0.50008-0
  414. Schmidt, J. C. 2012a: Quellen des Nichtwissens: Ein Beitrag zur Wissenschafts- und Technik-philosophie des Nichtwissens. In: Janich, N./Nordmann, A./Schebeck, L. (Hg.): Nicht-wissenskommunikation in den Wissenschaften: Interdisziplinäre Zugänge. Frankfurt/M.: Peter Lang, S. 93–124 Google Scholar öffnen
  415. Schmidt, J. C. 2012b: Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur „Prospektiven Technikfolgenabschätzung“ – 2012. In: Technikfolgenabschätzung – Theorie und Praxis, Bd. 21, H. 2, S. 29–35 Google Scholar öffnen
  416. Schmidt, J. C. 2013: Das Argument „Zukunftsverantwortung“: Versuch einer analytischen Rekonstruktion der naturphilosophischen Natur- und Technikethik von Hans Jonas. In: Hartung, G./Köchy, K./Schmidt, J. C./Hofmeister, G. (Hg.): Naturphilosophie als Grundlage der Naturethik: Zur Aktualität von Hans Jonas. Freiburg: Verlag Karl Alber, S. 155–186 Google Scholar öffnen
  417. Schmidt, J. C. 2015a: Das Andere der Natur: Neue Wege zur Naturphilosophie. Stuttgart: Hir-zel Google Scholar öffnen
  418. Schmidt, J. C. 2015b: Synthetic Biology as Late-Modern Technology. In: Giese, B./Pade, C./Wigger, H./von Gleich, A. (Hg.): Synthetic Biology: Character and Impact. Cham u.a.O.: Springer, S. 1–30 Google Scholar öffnen
  419. Schmidt, M. 2008: Diffusion of synthetic biology: A challenge to biosafety. In: Systems and Synthetic Biology, Bd. 2, H. 1–2, S. 1–6. DOI: http://dx.doi.org/10.1007/s11693-008-9018-z Google Scholar öffnen doi.org/10.1007/s11693-008-9018-z
  420. Schmidt, M. 2009: Do I Understand What I Can Create? BiosafetyIssues in Synthetic Biol-ogy“. In: Schmidt, M./Kelle, A./Gangulli-Mitra, A./de Vriend, H. (Hg.): Synthetic Biol-ogy: The Technoscience and Its Societal Consequences. Dordrecht u.a.O.: Springer, Google Scholar öffnen doi.org/10.1007/978-90-481-2678-1_6
  421. S. 81–100 Google Scholar öffnen
  422. Schmidt, M. 2010: Xenobiology: A new form of life as the ultimate biosafety tool. In: BioEs-says, Bd. 32, H. 4, S. 322–331. DOI: http://dx.doi.org/10.1002/bies.200900147 Google Scholar öffnen doi.org/10.1002/bies.200900147
  423. Schmidt, M./Ganguli-Mitra, A./Torgersen, H./Kelle, A./Deplazes, A./Biller-Andorno, N. 2009: A priority paper for the societal and ethical aspects of synthetic biology. In: Sys¬tems and Synthetic Biology, Bd. 3, H. 1–4, S. 3–7 Google Scholar öffnen doi.org/10.1007/s11693-009-9034-7
  424. Schmidt, M./de Lorenzo, V. 2012: Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. In: FEBS Letters, Bd. 586, H. 15, Google Scholar öffnen doi.org/10.1016/j.febslet.2012.02.022
  425. S. 2199-2206. DOI: http://dx.doi.org/10.1016/j.febslet.2012.02.022 Google Scholar öffnen doi.org/10.1016/j.febslet.2012.02.022
  426. Schopfer, P./Brennicke, A. 2006: Pflanzenphysiologie (6. Aufl.). München: Elsevier Google Scholar öffnen
  427. Schummer, J. 2011: Das Gotteshandwerk: Die künstliche Herstellung von Leben im Labor. DOI: http://dx.doi.org/ Google Scholar öffnen
  428. Schwille, P. 2011: Bottom-up synthetic biology: Engineering in a tinkerer’s world. In: Sci¬ence, Bd. 333, H. 6047, S. 1252–1254. DOI: http://dx.doi.org/10.1126/science.1211701 Google Scholar öffnen doi.org/10.1126/science.1211701
  429. Schwille, P./Diez, S. 2009: Synthetic Biology of Minimal Systems. In: Critical Reviews in Biochemistry and Molecular Biology, Bd. 44, H. 4, S. 223–242. DOI: http://dx.doi.org/ 10.1080/10409230903074549 Google Scholar öffnen doi.org/10.1080/10409230903074549
  430. Searchinger, T./Heimlich, R./Houghton, R. A./Dong, F./Elobeid, A./Fabiosa, J./Tokgoz, S./ Hayes, D./Yu, T.-H. 2008: Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. In: Science, Bd. 319, H. 5867, S. 1238–1240. DOI: http://dx.doi.org/10.1126/science.1151861 Google Scholar öffnen doi.org/10.1126/science.1151861
  431. Seeman, N. C. 1982: Nucleic acid junctions and lattices. In: Journal of Theoretical Biology, Bd. 99, H. 2, S. 237–247. DOI: http://dx.doi.org/10.1016/0022-5193(82)90002-9 Google Scholar öffnen doi.org/10.1016/0022-5193(82)90002-9
  432. Seeman, N. C. 2007: An overview of structural DNA nanotechnology. In: Molecular Biotech-nology, Bd. 37, H. 3, S. 246–257. DOI: http://dx.doi.org/10.1007/s12033-007-0059-4 Google Scholar öffnen doi.org/10.1007/s12033-007-0059-4
  433. Seeman, N. C. 2010: Nanomaterials based on DNA. In: Annual Review of Biochemistry, Bd. 79, S. 65–87. DOI: http://dx.doi.org/10.1146/annurev-biochem-060308-102244 Google Scholar öffnen doi.org/10.1146/annurev-biochem-060308-102244
  434. Shchukin, D. G./Sukhorukov, G. B. 2004: Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors. In: Advanced Materials, Bd. 16, H. 8, S. 671–682. DOI: http://dx. doi.org/10.1002/adma.200306466 Google Scholar öffnen doi.org/10.1002/adma.200306466
  435. Sheehy, J. E./Gunawardana, D./Ferrer, A. B./Danila, F./Tan, K. G./Mitchell, P. L. 2008: Sys-tems biology or the biology of systems: routes to reducing hunger. In: New Phytologist, Bd. 179, H. 3, S. 579–582. DOI: http://dx.doi.org/10.1111/J.1469-8137.2008.02407.X Google Scholar öffnen doi.org/10.1111/j.1469-8137.2008.02407.x
  436. Shen, L./Bao, N./Zhou, Z./Prevelige, P. E./Gupta, A. 2011: Materials design using genetically engineered proteins. In: Journal of Materials Chemistry, Bd. 21, H. 47, S. 18868–18868. DOI: http://dx.doi.org/10.1039/c1jm12238j Google Scholar öffnen doi.org/10.1039/c1jm12238j
  437. Shimizu, Y./Kanamori, T./Ueda, T. 2005: Protein synthesis by pure translation systems. In: Methods, Bd. 36, H. 3, S. 299–304. DOI: http://dx.doi.org/10.1016/j.ymeth.2005.04.006 Google Scholar öffnen doi.org/10.1016/j.ymeth.2005.04.006
  438. Shin, J./Noireaux, V. 2012: An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. In: ACS Synthetic Biology, Bd. 1, H. 1, S. 29–41. DOI: http://dx.doi.org/10.1021/sb200016s Google Scholar öffnen doi.org/10.1021/sb200016s
  439. Shiva, V./Barker, D./Lockhart, C. 2011: The GMO Emperor has no clothes: A Global Citi¬zens Report on the State of GMOs—False Promises, Failed Technologies. Internet: http://www.navdanya.org/attachments/Latest_Publications7.pdf [zuletzt aufgesucht am 19.3.2014] Google Scholar öffnen
  440. Shulaev, V./Cortes, D./Miller, G./Mittler, R. 2008: Metabolomics for plant stress response. In: Physiologia plantarum, Bd. 132, H. 2, S. 199–208. DOI: http://dx.doi.org/10.1111/j. 1399-3054.2007.01025.x Google Scholar öffnen
  441. Sikora, P./Chawade, A./Larsson, M./Olsson, J./Olsson, O. 2011: Mutagenesis as a Tool in Plant Genetics, Functional Genomics, and Breeding. In: International Journal of Plant Genomics, Bd. 2011, S. 1–13. DOI: http://dx.doi.org/10.1155/2011/314829 Google Scholar öffnen doi.org/10.1155/2011/314829
  442. Sills, D. L./Paramita, V./Franke, M. J./Johnson, M. C./Akabas, T. M./Greene, C. H./Tester, J. W. 2013: Quantitative uncertainty analysis of Life Cycle Assessment for algal biofuel production. In: Environmental Science & Technology, Bd. 47, H. 2, S. 687–694. DOI: http://dx.doi.org/10.1021/es3029236 Google Scholar öffnen doi.org/10.1021/es3029236
  443. Silver, P. A./Way, J. C./Arnold, F. H./Meyerowitz, J. T. 2014: Synthetic biology: Engineering explored. In: Nature, Bd. 509, H. 7499, S. 166–167. DOI: http://dx.doi.org/10.1038/ 509166a Google Scholar öffnen doi.org/10.1038/509166a
  444. Silverman, H. G./Roberto, F. F. 2007: Understanding marine mussel adhesion. In: Marine Biotechnology, Bd. 9, H. 6, S. 661–681. DOI: http://dx.doi.org/10.1007/s10126-007-9053-x Google Scholar öffnen doi.org/10.1007/s10126-007-9053-x
  445. Singer, S. D./Cox, K. D./Liu, Z. 2011: Enhancer-promoter interference and its prevention in transgenic plants. In: Plant Cell Reports, Bd. 30, H. 5, S. 723–731. DOI: http://dx.doi. org/10.1007/s00299-010-0977-7 Google Scholar öffnen doi.org/10.1007/s00299-010-0977-7
  446. Sismour, A. M./Benner, S. A. 2005: The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. In: Nucleic Acids Research, Bd. 33, H. 17, S. 5640–5646. DOI: http://dx.doi.org/10.1093/nar/gki873 Google Scholar öffnen doi.org/10.1093/nar/gki873
  447. Sismour, A. M./Lutz, S./Park, J. H./Lutz, M. J./Boyer, P. L./Hughes, S. H./Benner, S. A. 2004: PCR Amplification of DNA Containing Non-Standard Base Pairs by Variants of Reverse Transcriptase from Human Immunodeficiency Virus-1. In: Nucleic Acids Re-search, Bd. 32, H. 2, S. 728–735. DOI: http://dx.doi.org/10.1093/nar/gkh241 Google Scholar öffnen doi.org/10.1093/nar/gkh241
  448. Skjanes, K./Lindblad, P./Muller, J. 2007: BioCO2 – A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. In: Bio-molecular Engineering, Bd. 24, H. 4, S. 405–413. DOI: http://dx.doi.org/10.1016/ j.bioeng.2007.06.002 Google Scholar öffnen
  449. Sohka, T./Heins, R. A./Phelan, R. M./Greisler, J. M./Townsend, C. A./Ostermeier, M. 2009: An externally tunable bacterial band-pass filter. In: Proceedings of the National Acad-emy of Sciences of the United States of America, Bd. 106, H. 25, S. 10135–10140. DOI: http://dx.doi.org/10.1073/pnas.0901246106 Google Scholar öffnen doi.org/10.1073/pnas.0901246106
  450. Solé, R. V. 2009: Evolution and self-assembly of protocells. In: International Journal of Bio-chemistry & Cell Biology, Bd. 41, H. 2, S. 274–284. DOI: http://dx.doi.org/10.1016/ j.biocel.2008.10.004 Google Scholar öffnen doi.org/10.1016/j.biocel.2008.10.004
  451. Solé, R. V./Munteanu, A./Rodriguez-Caso, C./Macía, J./Sole, R. V./Macia, J. 2007: Synthetic protocell biology: from reproduction to computation. In: Philosophical Transactions of the Royal Society Biological Sciences, Bd. 362, H. 1486, S. 1727–1739. DOI: http:// dx.doi.org/10.1098/rstb.2007.2065 Google Scholar öffnen
  452. Sommer, M. O. A./Church, G. M./Dantas, G. 2010: A Functional Metagenomic Approach for Expanding the Synthetic Biology Toolbox for Biomass Conversion. In: Molecular Sys-tems Biology, Bd. 6, S. 360. DOI: http://dx.doi.org/10.1038/msb.2010.16 Google Scholar öffnen doi.org/10.1038/msb.2010.16
  453. Sponner, A./Vater, W./Monajembashi, S./Unger, E./Grosse, F./Weisshart, K. 2007: Composi-tion and Hierarchical Organisation of a Spider Silk. In: PLoS One, Bd. 2, H. 10, S. e998. DOI: http://dx.doi.org/10.1371/journal.pone.0000998 Google Scholar öffnen doi.org/10.1371/journal.pone.0000998
  454. SRU – Sachverständigenrat für Umweltfragen der deutschen Bundesregierung 2004: Umwelt¬politische Handlungsfähigkeit sichern (Umweltgutachten 2004). Internet: http://www. umweltrat.de/SharedDocs/Downloads/DE/01_Umweltgutachten/2004_Umweltgutachten Google Scholar öffnen
  455. _BTD.pdf?__blob=publicationFile [zuletzt aufgesucht am 21.9.2015] Google Scholar öffnen
  456. SRU – Sachverständigenrat für Umweltfragen der deutschen Bundesregierung 2008: Um-weltgutachten 2008: Kapitel 12 – Gentechnik. Internet: http://www.umweltrat.de/ SharedDocs/Downloads/DE/01_Umweltgutachten/2008_Umweltgutachten_HD_Kap12.pdf?__blob=publicationFile [zuletzt aufgesucht am 21.9.2015] Google Scholar öffnen
  457. Stamm, P./Ramamoorthy, R./Kumar, P. P. 2011: Feeding the extra billions: strategies to im-prove crops and enhance future food security. In: Plant Biotechnology Reports, Bd. 5, Google Scholar öffnen doi.org/10.1007/s11816-011-0169-0
  458. H. 2, S. 107–120. DOI: http://dx.doi.org/10.1007/s11816-011-0169-0 Google Scholar öffnen doi.org/10.1007/s11816-011-0169-0
  459. Stano, P./Carrara, P./Kuruma, Y./de Souza, T. P./Luisi, P. L. 2011: Compartmentalized reac-tions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids in-side lipid vesicles. In: Journal of Materials Chemistry, Bd. 21, H. 47, S. 18887–18902. DOI: http://dx.doi.org/10.1039/c1jm12298c Google Scholar öffnen doi.org/10.1039/c1jm12298c
  460. Stano, P./Luisi, P. L. 2010: Achievements and open questions in the self-reproduction of vesi-cles and synthetic minimal cells. In: Chemical Communications, Bd. 46, H. 21, S. 3639–3653. DOI: http://dx.doi.org/10.1039/B913997D Google Scholar öffnen doi.org/10.1039/b913997d
  461. Stanton, B. C./Nielsen, A. A. K./Tamsir, A./Clancy, K./Peterson, T./Voigt, C. A. 2013: Ge-nomic mining of prokaryotic repressors for orthogonal logic gates. In: Nature Chemical Biology, Bd. 10, S. 99–105. DOI: http://dx.doi.org/10.1038/nchembio.1411 Google Scholar öffnen doi.org/10.1038/nchembio.1411
  462. Steinhauer, C./Jungmann, R./Sobey, T. L./Simmel, F. C./Tinnefeld, P. 2009: DNA-Origami als Nanometerlineal für die superauflösende Mikroskopie. In: Angewandte Chemie, Bd. 121, H. 47, S. 9030–9034. DOI: http://dx.doi.org/10.1002/ange.200903308 Google Scholar öffnen doi.org/10.1002/ange.200903308
  463. Styring, S. 2012: Solar fuels: vision and concepts. In: AMBIO, Bd. 41 Suppl 2, S. 156–162. DOI: http://dx.doi.org/10.1007/s13280-012-0273-6 Google Scholar öffnen doi.org/10.1007/s13280-012-0273-6
  464. Suess, B./Weigand, J. E. 2008: Engineered Riboswitches : Overview, Problems and Trends. In: RNA Biology, Bd. 5, H. 1, S. 24–29. DOI: http://dx.doi.org/10.4161/rna.5.1.5955 Google Scholar öffnen doi.org/10.4161/rna.5.1.5955
  465. Sun, J./Bhushan, B. 2012: Hierarchical structure and mechanical properties of nacre: a re¬view. In: RSC Advances, Bd. 2, H. 20, S. 7617. DOI: http://dx.doi.org/10.1039/c2ra 20218b Google Scholar öffnen
  466. Swartz, J. R. 2006: Developing cell-free biology for industrial applications. In: Journal of Industrial Microbiology & Biotechnology, Bd. 33, H. 7, S. 476–485. DOI: http://dx.doi. org/10.1007/s10295-006-0127-y Google Scholar öffnen doi.org/10.1007/s10295-006-0127-y
  467. Swartz, J. R. 2012: Transforming Biochemical Engineering with Cell-Free Biology. In: Aiche Journal, Bd. 58, H. 1, S. 5–13. DOI: http://dx.doi.org/10.1002/Aic.13701 Google Scholar öffnen doi.org/10.1002/aic.13701
  468. Szita, N./Polizzi, K./Jaccard, N./Baganz, F. 2010: Microfluidic approaches for systems and synthetic biology. In: Current Opinion in Biotechnology, Bd. 21, H. 4, S. 517–523. DOI: http://dx.doi.org/10.1016/j.copbio.2010.08.002 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.08.002
  469. Szostak, J. W./Bartel, D. P./Luisi, P. L. 2001: Synthesizing Life. In: Nature, Bd. 409, H. 6818, S. 387–390. DOI: http://dx.doi.org/ Google Scholar öffnen doi.org/10.1038/35053176
  470. Tarakanova, A./Buehler, M. J. 2012: A Materiomics Approach to Spider Silk: Protein Mole-cules to Webs. In: JOM, Bd. 64, H. 2, S. 214–225. DOI: http://dx.doi.org/10.1007/ s11837-012-0250-3 Google Scholar öffnen doi.org/10.1007/s11837-012-0250-3
  471. TESSY (Towards a European Strategy for Synthetic Biology). 2008: Synthetic Biology in Europe. Internet: http://www.tessy-europe.eu/public_docs/SyntheticBiology_TESSY-In-formation-Leaflet.pdf [zuletzt aufgesucht am 23.5.2014] Google Scholar öffnen
  472. Teulé, F./Cooper, A. R./Furin, W. A./Bittencourt, D./Rech, E. L./Brooks, A./Lewis, R. V. 2009: A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. In: Nature protocols, Bd. 4, H. 3, S. 341–341. DOI: http://dx.doi.org/10. 1038/nprot.2008.250.A Google Scholar öffnen doi.org/10.1038/nprot.2008.250
  473. Then, C./Hamberger, S. (Testbiotech). 2010: Synthetische Biologie und Künstliches Leben: Eine kritische Analyse (Synthetische Biologie, Teil 1). Testbiotech, München. Internet: http://www.testbiotech.org/sites/default/files/Synthetische Biologie Teil 1_7.Juni 2010.pdf [zuletzt aufgesucht am 24.3.2014] Google Scholar öffnen
  474. Then, C./Lorch, A. 2009: Schadensbericht Gentechnik (herausgegeben vom Bund Ökologi-sche Lebensmittelwirtschaft e.V., BÖLW). Berlin: BÖLW. Internet: http://www.boelw. de/uploads/media/pdf/Dokumentation/Dossiers_und_Positionspapiere/BOELW_Schadensbericht_Gentechnik090318.pdf [zuletzt aufgesucht am 21.9.2015] Google Scholar öffnen
  475. Thomas, C. M./Nielsen, K. M. 2005: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. In: Nature Reviews-Microbiology, Bd. 3, H. 9, S. 711–721. DOI: http://dx.doi.org/10.1038/nrmicro1234 Google Scholar öffnen doi.org/10.1038/nrmicro1234
  476. Tian, J./Ma, K./Saaem, I. 2009: Advancing high-throughput gene synthesis technology. In: Molecular BioSystems, Bd. 5, H. 7, S. 714–722. DOI: http://dx.doi.org/10.1039/ b822268c Google Scholar öffnen doi.org/10.1039/b822268c
  477. Toyoda, T. 2011: Methods for Open Innovation on a Genome-Design Platform Associating Scientific, Commercial, and Educational Communities in Synthetic Biology. In: Meth¬ods in Enzymology, Bd. 498, S. 189–203. DOI: http://dx.doi.org/10.1016/B978-0-12-385120-8.00009-7 Google Scholar öffnen doi.org/10.1016/B978-0-12-385120-8.00009-7
  478. Tucker, J. B./Zilinskas, R. A. 2006: The promise and perils of synthetic biology. In: The New Atlantis, Bd. 12, S. 25–45 Google Scholar öffnen
  479. Turner, J./Sverdrup, G./Mann, M. K./Maness, P.-C./Kroposki, B./Ghirardi, M./Evans, R. J./Blake, D. 2008: Renewable hydrogen production. In: International Journal of Energy Research, Bd. 32, H. 5, S. 379–407. DOI: http://dx.doi.org/10.1002/er.1372 Google Scholar öffnen doi.org/10.1002/er.1372
  480. Uchida, M./Klem, M. T./Allen, M./Suci, P./Flenniken, M./Gillitzer, E./Varpness, Z./Liepold, L. O./Young, M./Douglas, T. 2007: Biological Containers: Protein Cages as Multifunc¬tional Nanoplatforms. In: Advanced Materials, Bd. 19, H. 8, S. 1025–1042 Google Scholar öffnen doi.org/10.1002/adma.200601168
  481. Underwood, K. A./Swartz, J. R./Puglisi, J. D. 2005: Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis. In: Biotechnology and Bioengineer¬ing, Bd. 91, H. 4, S. 425–435. DOI: http://dx.doi.org/10.1002/bit.20529 Google Scholar öffnen doi.org/10.1002/bit.20529
  482. Urban, P. L./Goodall, D. M./Bruce, N. C. 2006: Enzymatic microreactors in chemical analysis and kinetic studies. In: Biotechnology Advances, Bd. 24, H. 1, S. 42–57. DOI: http:// dx.doi.org/10.1016/j.biotechadv.2005.06.001 Google Scholar öffnen doi.org/10.1016/j.biotechadv.2005.06.001
  483. Usher, S./Haslam, R. P./Ruiz-Lopez, N./Sayanova, O./Napier, J. A. 2015: Field trial evalua¬tion of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants. In: Metabolic Engineering Com-munications, Bd. 2, H. December 2015, S. 93–98. DOI: http://dx.doi.org/10.1016/ j.meteno.2015.04.002 Google Scholar öffnen doi.org/10.1016/j.meteno.2015.04.002
  484. Van der Sloot, A. M./Kiel, C./Serrano, L./Stricher, F. 2009: Protein design in biological net-works: from manipulating the input to modifying the output. In: Protein Engineering, Design & Selection, Bd. 22, H. 9, S. 537–542. DOI: http://dx.doi.org/10.1093/protein/ gzp032 Google Scholar öffnen
  485. Vendrely, C./Scheibel, T. 2007: Biotechnological production of spider-silk proteins enables new applications. In: Macromolecular bioscience, Bd. 7, H. 4, S. 401–409. DOI: http:// dx.doi.org/10.1002/mabi.200600255 Google Scholar öffnen doi.org/10.1002/mabi.200600255
  486. Vincent, J. F. V. 2008: Biomimetic Materials. In: Journal of Materials Research, Bd. 23, H. 12, S. 3140–3147. DOI: http://dx.doi.org/10.1557/jmr.2008.0380 Google Scholar öffnen doi.org/10.1557/JMR.2008.0380
  487. Vinuselvi, P./Lee, S. K. 2011: Engineering Escherichia coli for Efficient Cellobiose Utiliza-tion. In: Applied Microbiology and Biotechnology, Bd. 92, H. 1, S. 125–132. DOI: http://dx.doi.org/10.1007/s00253-011-3434-9 Google Scholar öffnen doi.org/10.1007/s00253-011-3434-9
  488. Vollrath, F. 2000: Strength and structure of spiders’ silks. In: Journal of biotechnology, Bd. 74, H. 2, S. 67–83 Google Scholar öffnen doi.org/10.1016/S1389-0352(00)00006-4
  489. Vollrath, F./Knight, D. P. 2001: Liquid crystalline spinning of spider silk. In: Nature, Bd. 410, H. 6828, S. 541–548. DOI: http://dx.doi.org/10.1038/35069000 Google Scholar öffnen doi.org/10.1038/35069000
  490. Vriend, H. de 2006: Constructing Life: Early Social Reflections on the Emerging Field of Synthetic Biology. The Hague: Rathenau Institute. Internet: http://www.rathenau.nl/ uploads/tx_tferathenau/WED97_Constructing_Life_2006.pdf [zuletzt aufgesucht am 24. 3.2014] Google Scholar öffnen
  491. Vries, J. de /Wackernagel, W. 2002: Integration of foreign DNA during natural transforma¬tion of Acinetobacter sp. by homology-facilitated illegitimate recombination. In: Pro¬ceedings of the National Academy of Sciences of the United States of America, Bd. 99, H. 4, S. 2094–2099. DOI: http://dx.doi.org/10.1073/pnas.042263399 Google Scholar öffnen doi.org/10.1073/pnas.042263399
  492. Wackett, L. P. 2011: Engineering Microbes to Produce Biofuels. In: Current Opinion in Bio-technology, Bd. 22, H. 3, S. 388–393. DOI: http://dx.doi.org/10.1016/j.copbio.2010. 10.010 Google Scholar öffnen
  493. Wang, H. H./Church, G. M. 2011: Multiplexed Genome Engineering and Genotyping Methods: Applications for Synthetic Biology and Metabolic Engineering, Bd. 498. In: Methods Enzymology, Bd. 498. Amsterdam: Elsevier Inc., S. 409–426 Google Scholar öffnen doi.org/10.1016/B978-0-12-385120-8.00018-8
  494. Wang, L./Xie, J./Schultz, P. G. 2006: Expanding the genetic code. In: Annual Review of Bio-physics and Biomolecular Structure, Bd. 35, S. 225–249. DOI: http://dx.doi.org/10. 1146/annurev.biophys.35.101105.121507 Google Scholar öffnen doi.org/10.1146/annurev.biophys.35.101105.121507
  495. Waseem, M./Ali, A./Tahir, M./Nadeem, M. A./Ayub, M./Tanveer, A./Ahmad, R./Hussain, M. 2011: Mechanism of Drought Tolerance in Plant and Its Management Through Different Methods. In: Continental J. Agricultural Science, Bd. 5, H. 1, S. 10–25 Google Scholar öffnen
  496. WBGU. 1998: Welt im Wandel – Strategien zur Bewältigung globaler Umweltrisiken. Berlin: Springer. Internet: http://www.wbgu.de/hauptgutachten/hg-1998-risiken/ [zuletzt aufge-sucht am 02.09.2015] Google Scholar öffnen
  497. Weber, W./Fussenegger, M. 2010: Synthetic Gene Networks in Mammalian Cells. In: Current Opinion in Biotechnology, Bd. 21, H. 5, S. 690–696. DOI: http://dx.doi.org/10.1016/ j.copbio.2010.07.006 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.07.006
  498. Weber, W./Luzi, S./Karlsson, M./Sanchez-Bustamante, C. D./Frey, U./Hierlemann, A./Fus-senegger, M. 2009: A synthetic mammalian electro-genetic transcription circuit. In: Nucleic Acids Research, Bd. 37, H. 4, S. e33. DOI: http://dx.doi.org/10.1093/nar/gkp014 Google Scholar öffnen doi.org/10.1093/nar/gkp014
  499. Weber, W./Schoenmakers, R./Keller, B./Gitzinger, M./Grau, T./Daoud-El Baba, M./Sander, P./Fussenegger, M. 2008: A Synthetic Mammalian Gene Circuit Reveals Antituberculo¬sis Compounds. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 105, H. 29, S. 9994–9998. DOI: http://dx.doi.org/10.1073/pnas. 0800663105 Google Scholar öffnen doi.org/10.1073/pnas
  500. Weber, W./Stelling, J./Rimann, M./Keller, B./Daoud-El Baba, M./Weber, C. C./Aubel, D./ Fussenegger, M. 2007: A synthetic time-delay circuit in mammalian cells and mice. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 104, H. 8, S. 2643–2648. DOI: http://dx.doi.org/10.1073/pnas.0606398104 Google Scholar öffnen doi.org/10.1073/pnas.0606398104
  501. Weckwerth, W. 2011: Green systems biology – From single genomes, proteomes and me-tabolomes to ecosystems research and biotechnology. In: Journal of Proteomics, Bd. 75, H. 1, S. 284–305. DOI: http://dx.doi.org/10.1016/j.jprot.2011.07.010 Google Scholar öffnen doi.org/10.1016/j.jprot.2011.07.010
  502. Wehling, P. 2011: The „technoscientization“ of medicine and its limits: technoscientific iden-tities, biosocialities, and rare disease patient organizations. In: Poiesis & Praxis, Bd. 8, H. 2–3, S. 67–82 Google Scholar öffnen doi.org/10.1007/s10202-011-0100-3
  503. Weizsäcker, C. F. von 1974: Die Einheit der Natur. München: DTV Google Scholar öffnen
  504. Welch, P./Scopes, R. K. 1985: Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. In: Journal of Biotechnology, Bd. 2, H. 5, S. 257–273. DOI: http://dx.doi.org/10.1016/0168-1656(85)90029-X Google Scholar öffnen doi.org/10.1016/0168-1656(85)90029-X
  505. Wenzel, G. 2004: Ein effizienterer Weg zur besseren Pflanze. In: mensch+umwelt, Bd. 17, H. „spezial“, S. 17–25 Google Scholar öffnen
  506. Wenzel, M./Muller, A./Siemann-Herzberg, M./Altenbuchner, J. 2011: Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. In: Applied and Environmental Microbiology, Bd. 77, H. 18, Google Scholar öffnen doi.org/10.1128/AEM.05219-11
  507. S. 6419–6425. DOI: http://dx.doi.org/10.1128/AEM.05219-11 Google Scholar öffnen doi.org/10.1128/AEM.05219-11
  508. Westerhoff, H. V./Palsson, B. O. 2004: The Evolution of Molecular Biology into Systems Biology. In: Nature Biotechnology, Bd. 22, H. 10, S. 1249–1252. DOI: http://dx.doi.org/ 10.1038/nbt1020 Google Scholar öffnen doi.org/10.1038/nbt1020
  509. Whitesides, G. M./Wong, A. P. 2006: The Intersection of Biology and Materials Science. In: MRS Bulletin, Bd. 31, H. 01, S. 19–27. DOI: http://dx.doi.org/10.1557/mrs2006.2 Google Scholar öffnen doi.org/10.1557/mrs2006.2
  510. Widmaier, D. M./Tullman-Ercek, D./Mirsky, E. a./Hill, R./Govindarajan, S./Minshull, J./ Voigt, C. a. 2009: Engineering the Salmonella type III secretion system to export spider silk monomers. In: Molecular Systems Biology, Bd. 5, S. 309 Artikel Nr.: 309. DOI: http://dx.doi.org/10.1038/msb.2009.62 Google Scholar öffnen doi.org/10.1038/msb.2009.62
  511. Wiegemann, M. 2005: Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): Mechanisms and technical applications. In: Aquatic Sciences, Bd. 67, H. 2, Google Scholar öffnen doi.org/10.1007/s00027-005-0758-5
  512. S. 166–176. DOI: http://dx.doi.org/10.1007/s00027-005-0758-5 Google Scholar öffnen doi.org/10.1007/s00027-005-0758-5
  513. Wijffels, R. H./Kruse, O./Hellingwerf, K. J. 2013: Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. In: Current Opinion in Biotechnology, Bd. 24, H. 3, S. 405–413. DOI: http://dx.doi.org/10.1016/j.copbio.2013.04.004 Google Scholar öffnen doi.org/10.1016/j.copbio.2013.04.004
  514. Williams, E. S./Panko, J./Paustenbach, D. J. 2009: The European Union’s REACH regulation: a review of its history and requirements. In: Critical Reviews in Toxicology, Bd. 39, H. 7, S. 553–575. DOI: http://dx.doi.org/10.1080/10408440903036056 Google Scholar öffnen doi.org/10.1080/10408440903036056
  515. Win, M. N./Liang, J. C./Smolke, C. D. 2009: Frameworks for Programming Biological Func-tion through RNA Parts and Devices. In: Chemistry & Biology, Bd. 16, H. 3, S. 298–310. DOI: http://dx.doi.org/10.1016/J.Chembiol.2009.02.011 Google Scholar öffnen doi.org/10.1016/j.chembiol.2009.02.011
  516. Wintermute, E. H./Silver, P. A. 2010a: Dynamics in the mixed microbial concourse. In: Genes & Development, Bd. 24, H. 23, S. 2603–2614. DOI: http://dx.doi.org/10.1101/ gad.1985210 Google Scholar öffnen
  517. Wintermute, E. H./Silver, P. A. 2010b: Emergent cooperation in microbial metabolism. In: Molecular Systems Biology, Bd. 6, S. 407. DOI: http://dx.doi.org/10.1038/msb.2010.66 Google Scholar öffnen doi.org/10.1038/msb.2010.66
  518. Woolfson, D. N./Bartlett, G. J./Bruning, M./Thomson, A. R. 2012: New currency for old rope: from coiled-coil assemblies to alpha-helical barrels. In: Current Opinion in Struc¬tural Biology. DOI: http://dx.doi.org/10.1016/j.sbi.2012.03.002 Google Scholar öffnen doi.org/10.1016/j.sbi.2012.03.002
  519. Wright, O./Stan, G. B./Ellis, T. 2013: Building-in biosafety for synthetic biology. In: Micro-biology, Bd. 159, H. Pt 7, S. 1221–1235. DOI: http://dx.doi.org/10.1099/mic.0.066308-0 Google Scholar öffnen doi.org/10.1099/mic.0.066308-0
  520. Wright, S. L./Thompson, R. C./Galloway, T. S. 2013: The physical impacts of microplastics on marine organisms: a review. In: Environmental Pollution, Bd. 178, S. 483–492. DOI: http://dx.doi.org/10.1016/j.envpol.2013.02.031 Google Scholar öffnen doi.org/10.1016/j.envpol.2013.02.031
  521. Xia, X.-X./Qian, Z.-G./Ki, C. S./Park, Y. H./Kaplan, D. L./Lee, S. Y. 2010: Native-sized re-combinant spider silk protein produced in metabolically engineered Escherichia coli re-sults in a strong fiber. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 107, H. 32, S. 14059–14063. DOI: http://dx.doi.org/ 10.1073/pnas.1003366107 Google Scholar öffnen doi.org/10.1073/pnas.1003366107
  522. Xie, Z./Wroblewska, L./Prochazka, L./Weiss, R./Benenson, Y. 2011: Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells. In: Science, Bd. 333, Google Scholar öffnen doi.org/10.1126/science.1205527
  523. S. 1307–1311. DOI: http://dx.doi.org/10.1126/science.1205527 Google Scholar öffnen doi.org/10.1126/science.1205527
  524. Xu, C./Cheng, Z./Yu, W. 2012: Construction of rice mini-chromosomes by telomere-medi¬ated chromosomal truncation. In: Plant Journal, Bd. 70, H. 6, S. 1070–1079. DOI: http:// dx.doi.org/10.1111/j.1365-313X.2012.04916.x Google Scholar öffnen doi.org/10.1111/j.1365-313X.2012.04916.x
  525. Xu, L./Anchordoquy, T. 2011: Drug delivery trends in clinical trials and translational medi-cine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. In: Journal of Pharmaceutical Sciences, Bd. 100, H. 1, S. 38–52. DOI: http://dx.doi.org/10. 1002/jps.22243 Google Scholar öffnen doi.org/10.1002/jps.22243
  526. Yang, Z./Chen, F./Alvarado, J. B./Benner, S. A. 2011: Amplification, mutation, and se-quencing of a six-letter synthetic genetic system. In: Journal of the American Chemical Society, Bd. 133, H. 38, S. 15105–15112. DOI: http://dx.doi.org/10.1021/ja204910n Google Scholar öffnen doi.org/10.1021/ja204910n
  527. Yang, Z./Hutter, D./Sheng, P./Sismour, A. M./Benner, S. A. 2006: Artificially expanded ge-netic information system: a new base pair with an alternative hydrogen bonding pattern. In: Nucleic Acids Research, Bd. 34, H. 21, S. 6095–6101. DOI: http://dx.doi.org/10. 1093/nar/gkl633 Google Scholar öffnen doi.org/10.1093/nar/gkl633
  528. Yeh, B. J./Lim, W. A. 2007: Synthetic biology: lessons from the history of synthetic organic chemistry. In: Nature Chemical Biology, Bd. 3, H. 9, S. 521–525 Google Scholar öffnen doi.org/10.1038/nchembio0907-521
  529. Yong, Y.-C./Yu, Y.-Y./Li, C.-M./Zhong, J.-J./Song, H. 2011: Bioelectricity Enhancement via Overexpression of Quorum Sensing System in Pseudomonas aeruginosa-Inoculated Mi-crobial Fuel Cells. In: Biosensors & Bioelectronics, Bd. 30, H. 1, S. 87–92. DOI: http://dx.doi.org/10.1016/j.bios.2011.08.032 Google Scholar öffnen doi.org/10.1016/j.bios.2011.08.032
  530. Young, E./Alper, H. 2010: Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes. In: Journal of Biomedicine and Biotechnology, Bd. 2010, S. 1–13 Google Scholar öffnen doi.org/10.1155/2010/130781
  531. Yu, W./Birchler, J. A. 2007: Minichromosomes: The Next Generation Technology for Plant Genetic Engineering. In: ISB News Report, Bd. 2007, H. August, S. 4–7 Google Scholar öffnen doi.org/10.1016/j.copbio.2007.09.005
  532. Yu, W./Han, F./Birchler, J. a. 2007a: Engineered minichromosomes in plants. In: Current Opinion in Biotechnology, Bd. 18, H. 5, S. 425–431. DOI: http://dx.doi.org/10.1016/ j.copbio.2007.09.005 Google Scholar öffnen doi.org/10.1016/j.copbio.2007.09.005
  533. Yu, W./Han, F./Gao, Z./Vega, J. M./Birchler, J. a. 2007b: Construction and behavior of en-gineered minichromosomes in maize. In: Proceedings of the National Academy of Sci-ences of the United States of America, Bd. 104, H. 21, S. 8924–8929. DOI: http://dx.doi.org/10.1073/pnas.0700932104 Google Scholar öffnen doi.org/10.1073/pnas.0700932104
  534. Yu, W./Lamb, J. C./Han, F./Birchler, J. a. 2006: Telomere-mediated chromosomal truncation in maize. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 103, H. 46, S. 17331-17336. DOI: http://dx.doi.org/10.1073/pnas.0605750 103 Google Scholar öffnen
  535. Yuan, J. S./Galbraith, D. W./Dai, S. Y./Griffin, P./Stewart, C. N. 2008: Plant systems biology comes of age. In: Trends in Plant Science, Bd. 13, H. 4, S. 165–171. DOI: http://dx.doi. org/10.1016/j.tplants.2008.02.003 Google Scholar öffnen doi.org/10.1016/j.tplants.2008.02.003
  536. Yurke, B./Mills, A. P. 2003: Using DNA to Power Nanostructures. In: Genetic Programming and Evolvable Machines, Bd. 4, S. 111–122 Google Scholar öffnen doi.org/10.1023/A:1023928811651
  537. Zawada, J. F./Yin, G./Steiner, A. R./Yang, J./Naresh, A./Roy, S. M./Gold, D. S./Heinsohn, H. G./Murray, C. J. 2011: Microscale to manufacturing scale-up of cell-free cytokine pro-duction –a new approach for shortening protein production development timelines. In: Biotechnology and bioengineering, Bd. 108, H. 7, S. 1570–1578. DOI: http://dx.doi.org/ 10.1002/bit.23103 Google Scholar öffnen doi.org/10.1002/bit.23103
  538. Zhang, D. Y./Seelig, G. 2011: Dynamic DNA nanotechnology using strand-displacement re-actions. In: Nature Chemistry, Bd. 3, H. 2, S. 103–113. DOI: http://dx.doi.org/10.1038/ Nchem.957 Google Scholar öffnen doi.org/10.1038/nchem.957
  539. Zhang, D. Y./Winfree, E. 2009: Control of DNA Strand Displacement Kinetics Using Toe-hold Exchange. In: Journal of the American Chemical Society, Bd. 131, S. 17303–17314 Google Scholar öffnen doi.org/10.1021/ja906987s
  540. Zhang, Y.-H. P. 2010: Production of Biocommodities and Bioelectricity by Cell-Free Syn-thetic Enzymatic Pathway Biotransformations: Challenges and Opportunities. In: Bio-technology and Bioengineering, Bd. 105, H. 4, S. 663–677. DOI: http://dx.doi.org/10. 1002/bit.22630 Google Scholar öffnen doi.org/10.1002/bit.22630
  541. Zhang, Y.-H. P. 2011: Substrate channeling and enzyme complexes for biotechnological ap-plications. In: Biotechnology Advances, Bd. 29, H. 6, S. 715–725. DOI: http://dx.doi. org/10.1016/j.biotechadv.2011.05.020 Google Scholar öffnen doi.org/10.1016/j.biotechadv.2011.05.020
  542. Zhang, Y.-H. P./Evans, B. R./Mielenz, J. R./Hopkins, R. C./Adams, M. W. W. 2007: High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway. In: PLoS One, Bd. 2, H. 5, S. e456 (456 pp). DOI: http://dx.doi.org/10.1371/journal. pone.0000456 Google Scholar öffnen
  543. Zhang, Y.-H. P./Myung, S./You, C./Zhu, Z./Rollin, J. A. 2011: Toward low-cost biomanu-facturing through in vitro synthetic biology: bottom-up design. In: Journal of Materials Chemistry, Bd. 21, H. 47, S. 18877–18886. DOI: http://dx.doi.org/10.1039/c1jm12078f Google Scholar öffnen doi.org/10.1039/c1jm12078f
  544. Zhang, Y.-H. P./Sun, J./Zhong, J.-J. 2010: Biofuel production by in vitro synthetic enzymatic pathway biotransformation. In: Current Opinion in Biotechnology, Bd. 21, H. 5, S. 663–669. DOI: http://dx.doi.org/10.1016/j.copbio.2010.05.005 Google Scholar öffnen doi.org/10.1016/j.copbio.2010.05.005
  545. Zurbriggen, M. D./Moor, A./Weber, W. 2012: Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy. In: Journal of Biotechnology, S. 1–11. DOI: http:// dx.doi.org/10.1016/j.jbiotec.2012.01.014 Google Scholar öffnen doi.org/10.1016/j.jbiotec.2012.01.014

Ähnliche Veröffentlichungen

aus dem Schwerpunkt "Kulturgeschichte & Kulturwissenschaft", "Umweltökonomie & Umweltmanagement & Energiewirtschaft", "Ethik", "Wirtschaftsinformatik"
Cover des Buchs: Gute Poesie
Monographie Kein Zugriff
Christian Eger
Gute Poesie
Cover des Buchs: Musical Traces of a Lost Past
Sammelband Kein Zugriff
Dilek Kızıldağ, Martin Greve
Musical Traces of a Lost Past
Cover des Buchs: Comparative Perspectives on the Law of Energy Transition in Europe
Sammelband Vollzugriff
Michael Rodi, Johannes Saurer
Comparative Perspectives on the Law of Energy Transition in Europe
Cover des Buchs: Ethik der Kryptographie
Monographie Vollzugriff
Laurence Lerch
Ethik der Kryptographie