
Intuitionism vs. Classicism
A Mathematical Attack on Classical Logic- Autor:innen:
- Reihe:
- Studies in Theoretical Philosophy, Band 2
- Verlag:
- 2015
Zusammenfassung
In the early twentieth century, the Dutch mathematician L.E.J. Brouwer launched a powerful attack on the prevailing mathematical methods and theories. He developed a new kind of constructive mathematics, called intuitionism, which seems to allow for a rigorous refutation of widely accepted mathematical assumptions including fundamental principles of classical logic. Following an intense mathematical debate esp. in the 1920s, Brouwer's revolutionary criticism became a central philosophical concern in the 1970s, when Michael Dummett tried to substantiate it with meaning-theoretic considerations. Since that time, the debate between intuitionists and classicists has remained a central philosophical dispute with far-reaching implications for mathematics, logic, epistemology, and semantics. In this book, Nick Haverkamp presents a detailed analysis of the intuitionistic criticism of classical logic and mathematics. The common assumption that intuitionism and classicism are equally legitimate enterprises corresponding to different understandings of logical or mathematical expressions is investigated and rejected, and the major intuitionistic arguments against classical logic are scrutinised and repudiated. Haverkamp argues that the disagreement between intuitionism and classicism is a fundamental logical and mathematical dispute which cannot be resolved by means of meta-mathematical, epistemological, or semantic considerations.
Schlagworte
Publikation durchsuchen
Bibliographische Angaben
- Copyrightjahr
- 2015
- ISBN-Print
- 978-3-465-03906-8
- ISBN-Online
- 978-3-465-13906-5
- Verlag
- Klostermann, Frankfurt am Main
- Reihe
- Studies in Theoretical Philosophy
- Band
- 2
- Sprache
- Englisch
- Seiten
- 270
- Produkttyp
- Monographie
Inhaltsverzeichnis
- Titelei/Inhaltsverzeichnis Kein Zugriff Seiten I - X
- Preface Kein Zugriff Seiten XI - XII
- Introduction Kein Zugriff Seiten XIII - XVI
- 1.1 Logical Theories Kein Zugriff
- 1.2 Classical and Intuitionistic Logic Kein Zugriff
- 1.3 Arguing Against a Logical Theory Kein Zugriff
- 1.4 Relevance Kein Zugriff
- 1.5 Empty Singular Terms Kein Zugriff
- 2.1 Mathematical Languages Kein Zugriff
- 2.2 Logical Vocabulary Kein Zugriff
- 2.3 Mathematical Vocabulary Kein Zugriff
- 2.4 The Simplicity of Understanding Kein Zugriff
- 3.1 A Mathematical Conflict Kein Zugriff
- 3.2 Justifications of UP and CP Kein Zugriff
- 3.3 Weak Counterexamples Kein Zugriff
- 3.4 A Logical Basis of Mathematics? Kein Zugriff
- 4.1 A Sketch of the Manifestation Argument Kein Zugriff
- 4.2 Truth Conditional Semantics Kein Zugriff
- 4.3 Understanding and Knowledge Kein Zugriff
- 4.4 Understanding and Use Kein Zugriff
- 4.5 The Simplicity of Manifestability Kein Zugriff
- 5.1 Proof-Theoretic Preliminaries Kein Zugriff
- 5.2 Accounts of Meaning and Logical Frameworks Kein Zugriff
- 5.3 Tennant´s Proof-Theoretic Argument Kein Zugriff
- 5.4 Harmony Kein Zugriff
- 5.5 Dummett´s Proof-Theoretc Argument Kein Zugriff
- 5.6 Against Dummett´s Proof-Theoretic Argument Kein Zugriff
- Chapter 6: Conclusion Kein Zugriff Seiten 240 - 243
- Appendix A Kein Zugriff Seiten 244 - 256
- Bibliography Kein Zugriff Seiten 257 - 267
- Index Kein Zugriff Seiten 268 - 270




