, to see if you have full access to this publication.
Book Titles Partial access
Manifold Learning for Super Resolution
- Authors:
- Series:
- Informatik/ Kommunikation, Volume 859
- Publisher:
- 2018
Keywords
Search publication
Bibliographic data
- Copyright year
- 2018
- ISBN-Print
- 978-3-18-385910-8
- ISBN-Online
- 978-3-18-685910-5
- Publisher
- VDI Verlag, Düsseldorf
- Series
- Informatik/ Kommunikation
- Volume
- 859
- Language
- German
- Pages
- 118
- Product type
- Book Titles
Table of contents
ChapterPages
- Titelei/Inhaltsverzeichnis Partial access Pages I - XII Download chapter (PDF)
- Problem statement No access
- Motivation No access
- Challenges No access
- Related work No access
- Contributions No access
- Overview No access
- Author’s papers No access
- Introduction No access
- Model for Sparse SR No access
- Global Reconstruction Constrain No access
- Training coupled dictionaries No access
- k-SVD No access
- Summary and discussion No access
- Introduction No access
- Collaborative Norm Relaxation No access
- Neighborhood Embedding No access
- Summary and discussion No access
- Introduction No access
- Adaptive Training Set No access
- Bayesian Formulation No access
- Rejecting Non-Informative Regions No access
- Feature Space No access
- Summary and discussion No access
- Introduction No access
- Linear Regression Framework No access
- Neighborhoods and training No access
- Search Strategy No access
- Summary and discussion No access
- Introduction No access
- Metrics for linear regression No access
- Embedding in the Euclidean Space No access
- Feature Space and coarse approximation No access
- Validation No access
- Summary and discussion No access
- Introduction No access
- Hierarchical manifold learning No access
- Antipodality and bimodal trees No access
- Naive Bayes Super-Resolution Forest No access
- Von Mises-Fisher distribution No access
- Local Naive Bayes tree selection No access
- Validation No access
- Summary and discussion No access
- Introduction No access
- Mean subtraction and normalization No access
- Antipodality No access
- Transformation models No access
- Dihedral group in the DCT space No access
- Manifold symmetries No access
- Application to SR No access
- Validation No access
- Summary and discussion No access
- Methodology No access
- Peak Signal-to-Noise Ratio No access
- SSIM No access
- IFC No access
- Time No access
- Model Size No access
- Datasets No access
- Sparse SR No access
- Anchored Neighborhood Regression No access
- Adaptive dictionaries No access
- Dense Local Training No access
- Half Hypersphere Confinement No access
- Naive Bayes SR Forest No access
- Patch Symmetry Collapse No access
- Benchmarking No access
- Future Work No access
- Bibliography No access Pages 106 - 118





