, to see if you have full access to this publication.
Book Titles No access

Deep Learning With Very Few Training Examples

Authors:
Series:
Informatik/ Kommunikation, Volume 889
Publisher:
 13.03.2025

Keywords



Bibliographic data

Publication year
2025
Publication date
13.03.2025
ISBN-Print
978-3-18-388910-5
ISBN-Online
978-3-18-688910-2
Publisher
VDI Verlag, Düsseldorf
Series
Informatik/ Kommunikation
Volume
889
Language
German
Pages
121
Product type
Book Titles

Table of contents

ChapterPages
  1. Titelei/Inhaltsverzeichnis No access Pages I - XII
    1. Deep Learning No access
    2. SmallData No access
      1. Part I: Small Data Object Detection No access
      2. Part II: Neural Random Forest Imitation No access
      3. Part III: ChimeraMix & HydraMix No access
    3. List of Publications No access
    4. Outline No access
    1. Object Detection No access
    2. Random Forest to Neural Network Transformation No access
      1. Regularization No access
      2. Data Augmentation No access
      3. MixingAugmentation No access
    1. ArtificialIntelligence No access
      1. Decision Tree No access
      2. RandomForest No access
      1. ArtificialNeuron No access
      2. Neural Network No access
      3. Training No access
      4. Convolutional Neural Network No access
      1. FeatureLearning No access
      2. Random Forest Classification No access
      3. RF to NN Mapping No access
      4. Fully Convolutional Network No access
      5. Bounding Box Prediction No access
    1. Localization No access
    2. Clustering No access
      1. DataCapturing No access
      2. Filtering No access
      1. Training and Test Data No access
      2. Classification No access
      3. Object Detection No access
      4. ComputationTime No access
      5. Localization Accuracy No access
    3. Conclusion No access
      1. Data Generation No access
      2. ImitationLearning No access
      1. Datasets No access
      2. Implementation Details No access
      3. Results No access
      4. Comparison with State of the Art No access
      5. Analysis of the Generated Data No access
    1. Conclusion No access
      1. Encoder No access
      2. MixingModule No access
      3. Decoder No access
      4. Discriminator No access
      5. Training No access
      1. Experimental Setup No access
      2. Comparison with State of the Art No access
      3. Automatic Augmentation No access
      4. CLIPSynsetEntropy No access
      5. Generator Impact No access
      6. Analyses No access
      7. CLIP Features No access
      8. Hyperparameters No access
    1. Conclusion No access
  2. Conclusion No access Pages 98 - 101
  3. Bibliography No access Pages 102 - 121