Enterprise & Business Management
A Handbook for Educators, Consultants, and Practitioners- Editors:
- Series:
- Enterprise & Business Management
- Publisher:
- 2020
Summary
Organizations have always been dependent on communication, information, technology and their management. The development of information technology has sped up the importance of management information systems, which is an emerging discipline combining various aspects of informatics, information technology, and business management. Understanding the impact of information on today’s organizations requires technological and managerial views, which are both offered by management information systems.
Business management is not only about generating greater returns and using new technologies for developing businesses to reach future goals. Business management also means generating better revenue performance if plans are diligently followed.
It is part of business management to have an ear to the ground of global economic trends, changing environmental conditions and preferences, as well as the behavior of value chain partners. While, until now, business management and management information systems are mostly treated as independent fields, this publication takes an interest in the cooperation of the two. Its contributions focus on both research areas and practical approaches, in turn showing novelties in the area of enterprise and business management.
Main topics covered in this book are technology management, software engineering, knowledge management, innovation management and social media management.
This book adopts an international view, combines theory and practice, and is authored for researchers, lecturers, students as well as consultants and practitioners.
Search publication
Bibliographic data
- Copyright year
- 2020
- ISBN-Print
- 978-3-8288-4255-7
- ISBN-Online
- 978-3-8288-7230-1
- Publisher
- Tectum, Baden-Baden
- Series
- Enterprise & Business Management
- Language
- English
- Pages
- 412
- Product type
- Edited Book
Table of contents
- Titelei/Inhaltsverzeichnis No access Pages I - XIV
- Özden Tozanlı, Elif Kongar
- Learning Objectives No access Özden Tozanlı, Elif Kongar
- Chapter Outline No access Özden Tozanlı, Elif Kongar
- Özden Tozanlı, Elif Kongar
- 1 Introduction No access Özden Tozanlı, Elif Kongar
- Özden Tozanlı, Elif Kongar
- 2.1 The Role of Reverse Logistics in Sustainable Supply Chain Operations No access Özden Tozanlı, Elif Kongar
- Özden Tozanlı, Elif Kongar
- 3.1 Impacts of Industry 4.0 on Supply Chain Operations towards Sustainability No access Özden Tozanlı, Elif Kongar
- Özden Tozanlı, Elif Kongar
- 4.1 A Qualitative Research Approach No access Özden Tozanlı, Elif Kongar
- 5 Conclusions No access Özden Tozanlı, Elif Kongar
- 6 References No access Özden Tozanlı, Elif Kongar
- 7 Key Terms No access Özden Tozanlı, Elif Kongar
- 8 Questions for Further Study No access Özden Tozanlı, Elif Kongar
- 9 Exercises No access Özden Tozanlı, Elif Kongar
- 10 Further Reading No access Özden Tozanlı, Elif Kongar
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Learning Objectives No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Chapter Outline No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 1.1 Problem Statement and Company Background No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 1.2 Motivation No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 2.1 Retail Applications No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 2.2 SKU Segmentation No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 2.3 Inventory Management No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.1.1 Current System Design No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.1.2 Interviews and Business Context No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.2 Decision Frame No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.3.1 Ordering Flow No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.3.2 Decision Frame in Safety Stock Calculation No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.4.1 System Dynamics Model Parameters No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 3.4.2 DPS Simulation Parameters No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 4.1 Standard Deviation of Demand or Forecast Error No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 4.2 Fixed vs. Dynamic Cycle Service Levels No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 4.3 Improvements on Dynamic Cycle Service Levels No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 5.1.1 Operations of System Dynamics Model No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 5.2 Benefits of Using Dynamic Cycle Service Levels No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 6 Conclusion No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 7 References No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 8 Key Terms No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 9 Questions for Further Study No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 10 Exercises No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- 11 Further Reading No access Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Serpil Erol, Gül Didem Batur Sir
- Learning Objectives No access Serpil Erol, Gül Didem Batur Sir
- Chapter Outline No access Serpil Erol, Gül Didem Batur Sir
- Serpil Erol, Gül Didem Batur Sir
- 1 Introduction No access Serpil Erol, Gül Didem Batur Sir
- 2 Readiness for Industry 4.0 No access Serpil Erol, Gül Didem Batur Sir
- 3 A Roadmap for Industry 4.0 No access Serpil Erol, Gül Didem Batur Sir
- 4 Case Study: Current Situation in Turkey No access Serpil Erol, Gül Didem Batur Sir
- Conclusion No access Serpil Erol, Gül Didem Batur Sir
- References No access Serpil Erol, Gül Didem Batur Sir
- Key Terms No access Serpil Erol, Gül Didem Batur Sir
- Questions for Further Study No access Serpil Erol, Gül Didem Batur Sir
- Exercises No access Serpil Erol, Gül Didem Batur Sir
- Further Reading No access Serpil Erol, Gül Didem Batur Sir
- Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Learning Objectives No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Chapter Outline No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 1 Introduction No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 2 Effects of Industry 4.0 on the Shop-Floor No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 3 Literature Review No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 4 Research Methodology No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 5.1 Pre-Industry 4.0 Stage No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 5.2 Industry 4.0 Initiation Stage No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 5.3 Industry 4.0 Implementation Phase No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- 6 Conclusion No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- References No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Key Terms No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Questions for Further Study No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Exercises No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Further Reading No access Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Cagla Ediz
- Learning Objectives No access Cagla Ediz
- Chapter Outline No access Cagla Ediz
- Cagla Ediz
- 1 Introduction No access Cagla Ediz
- Cagla Ediz
- 2.1 The Principles of Industry 4.0 Technology No access Cagla Ediz
- 2.2 Factors Affecting Industry 4.0 No access Cagla Ediz
- Cagla Ediz
- 3.1 Milk Supply Process of Sample Company No access Cagla Ediz
- 3.2 Acceptance of Milk and Milk Processing No access Cagla Ediz
- Cagla Ediz
- 3.3.1 CAN Bus (Controller Area Network Bus) System No access Cagla Ediz
- 3.3.2 GPS (Global Positioning System) No access Cagla Ediz
- 3.3.3 Temperature and Moisture Sensors No access Cagla Ediz
- 4 Current Situation Assessment No access Cagla Ediz
- Cagla Ediz
- 5.1 Traceability of Product and Service Using RFID No access Cagla Ediz
- 5.2 Interoperability with IoT and Cyber Physical Systems No access Cagla Ediz
- 5.3 Intelligent Systems No access Cagla Ediz
- 5.4 Robots, Automatic Machines and Unmanned Transportation Vehicles No access Cagla Ediz
- 5.5 Customized Services and Products No access Cagla Ediz
- 5.6 Globalizing Systems No access Cagla Ediz
- 6 Threats Coming with Industry 4.0 No access Cagla Ediz
- 7 Conclusion No access Cagla Ediz
- References No access Cagla Ediz
- Key Terms No access Cagla Ediz
- Questions for Further Study No access Cagla Ediz
- Exercises No access Cagla Ediz
- Further Reading No access Cagla Ediz
- Elif Nurten, Cagla Seneler
- Learning Objectives No access Elif Nurten, Cagla Seneler
- Chapter Outline No access Elif Nurten, Cagla Seneler
- Elif Nurten, Cagla Seneler
- 1 Introduction No access Elif Nurten, Cagla Seneler
- Elif Nurten, Cagla Seneler
- 2.1 Cyber physical systems No access Elif Nurten, Cagla Seneler
- 2.2 Industry 4.0 and Industrial Internet of Things (IIoT) difference No access Elif Nurten, Cagla Seneler
- 3 Smart Factories No access Elif Nurten, Cagla Seneler
- 4 Relation between Industry 4.0 and Smart Factory No access Elif Nurten, Cagla Seneler
- 5 Conclusions No access Elif Nurten, Cagla Seneler
- 6 References No access Elif Nurten, Cagla Seneler
- Key Terms No access Elif Nurten, Cagla Seneler
- Questions for Further Study No access Elif Nurten, Cagla Seneler
- Exercises No access Elif Nurten, Cagla Seneler
- Further Reading No access Elif Nurten, Cagla Seneler
- Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Classification of technology No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Relationship between business and technology No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Business view on managing technologies No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Technology management and innovation No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- How to review technological innovation? No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Relationship between technology and market No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- How to choose technology management methodologies? Which factors have to be considered? No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Prerequisites for a successful methodology? No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Benefits of using a methodology No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- When you have chosen a methodology review it consequently No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Strategic technology lifecycle No access Bryce Rowan, Alptekin Erkollar, Birgit Oberer
- Gizem ATAK, Ferhan ÇEBİ
- Learnign Objectives No access Gizem ATAK, Ferhan ÇEBİ
- Chapter Outline No access Gizem ATAK, Ferhan ÇEBİ
- Gizem ATAK, Ferhan ÇEBİ
- 1 Introduction No access Gizem ATAK, Ferhan ÇEBİ
- Gizem ATAK, Ferhan ÇEBİ
- 2.1 The First Industrial Revolution No access Gizem ATAK, Ferhan ÇEBİ
- 2.2 The Second Industrial Revolution No access Gizem ATAK, Ferhan ÇEBİ
- 2.3 The Third Industrial Revolution No access Gizem ATAK, Ferhan ÇEBİ
- 2.4 The Fourth Industrial Revolution No access Gizem ATAK, Ferhan ÇEBİ
- Gizem ATAK, Ferhan ÇEBİ
- 3.1 Technologies of Industry 4.0 No access Gizem ATAK, Ferhan ÇEBİ
- 4 Techno Parks No access Gizem ATAK, Ferhan ÇEBİ
- Gizem ATAK, Ferhan ÇEBİ
- Gizem ATAK, Ferhan ÇEBİ
- 5.1.1 The level of awareness about Industry 4.0 No access Gizem ATAK, Ferhan ÇEBİ
- 5.1.2 Technologies of Industry 4.0 No access Gizem ATAK, Ferhan ÇEBİ
- 5.1.3 Application areas No access Gizem ATAK, Ferhan ÇEBİ
- 5.1.4 Effect of Size and Establishment Year No access Gizem ATAK, Ferhan ÇEBİ
- Conclusion No access Gizem ATAK, Ferhan ÇEBİ
- References No access Gizem ATAK, Ferhan ÇEBİ
- Key Terms No access Gizem ATAK, Ferhan ÇEBİ
- Questions for Further Study No access Gizem ATAK, Ferhan ÇEBİ
- Exercises No access Gizem ATAK, Ferhan ÇEBİ
- Further Reading No access Gizem ATAK, Ferhan ÇEBİ
- Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Learning Objectives No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Chapter Outline No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 1.1 Why is Industry 4.0 Important? No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 1.2 What is Outsourcing? No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 1.3 Why do Organizations Outsource? No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 1.4 Some Samples for the Outsourcing Reasons in Different Countries No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 2 Convergence Point of These Two Phenomena „Outsourcing and Industry 4.0“: Technology No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- 3 The Relationship between the Institutional Logic, Pragmatism, Industry 4.0 and Outsourcing No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Conclusion No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- References No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Key Terms No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Questions for Further Studies in the Field No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Exercises No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Further Reading No access Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Birgit Oberer, Shi-Shuenn Chang
- Definitions No access Birgit Oberer, Shi-Shuenn Chang
- Stakeholders No access Birgit Oberer, Shi-Shuenn Chang
- Software products No access Birgit Oberer, Shi-Shuenn Chang
- Software product evaluation criteria No access Birgit Oberer, Shi-Shuenn Chang
- Attributes of good software No access Birgit Oberer, Shi-Shuenn Chang
- Classification of software process models No access Birgit Oberer, Shi-Shuenn Chang
- Generic software process models No access Birgit Oberer, Shi-Shuenn Chang
- Engineering process model No access Birgit Oberer, Shi-Shuenn Chang
- Hybrid process models No access Birgit Oberer, Shi-Shuenn Chang
- Spiral model No access Birgit Oberer, Shi-Shuenn Chang
- Potential problems of process models No access Birgit Oberer, Shi-Shuenn Chang
- Process visibility No access Birgit Oberer, Shi-Shuenn Chang
- Questions on Software engineering No access Birgit Oberer, Shi-Shuenn Chang
- Recep Benzer, Emre Akar
- Learning Objectives No access Recep Benzer, Emre Akar
- Chapter Outline No access Recep Benzer, Emre Akar
- Recep Benzer, Emre Akar
- 1 Introduction No access Recep Benzer, Emre Akar
- 2 Definition and Scope of ERP No access Recep Benzer, Emre Akar
- 3 Development of ERP System No access Recep Benzer, Emre Akar
- 4 Fundamental Features of ERP System No access Recep Benzer, Emre Akar
- 5 Components of ERP System No access Recep Benzer, Emre Akar
- 6 ERP Software in Turkey No access Recep Benzer, Emre Akar
- Recep Benzer, Emre Akar
- 7.1 Foreign ERP Providers No access Recep Benzer, Emre Akar
- 7.2 Turkey ERP Providers No access Recep Benzer, Emre Akar
- 8 Definition of Information and Information Safety No access Recep Benzer, Emre Akar
- Recep Benzer, Emre Akar
- 9.1 ERP Information Safety Gaps No access Recep Benzer, Emre Akar
- 10 Conclusions No access Recep Benzer, Emre Akar
- 11 References No access Recep Benzer, Emre Akar
- 12 Key Terms No access Recep Benzer, Emre Akar
- 13 Questions for Further Study No access Recep Benzer, Emre Akar
- 14 Exercises No access Recep Benzer, Emre Akar
- 15 Further Reading No access Recep Benzer, Emre Akar
- Mete Eminağaoğlu
- Learning Objectives No access Mete Eminağaoğlu
- Chapter Outline No access Mete Eminağaoğlu
- Mete Eminağaoğlu
- 1 Introduction No access Mete Eminağaoğlu
- 2 Background No access Mete Eminağaoğlu
- 3 Artificial Neural Networks No access Mete Eminağaoğlu
- 4 Materials and Methods No access Mete Eminağaoğlu
- 5 Design and Implementation No access Mete Eminağaoğlu
- 6 Results and Discussion No access Mete Eminağaoğlu
- 7 Conclusions and Recommendations No access Mete Eminağaoğlu
- 8 References No access Mete Eminağaoğlu
- 9 Key TErms No access Mete Eminağaoğlu
- 10 Questions for Further Study No access Mete Eminağaoğlu
- 11 Exercises No access Mete Eminağaoğlu
- 12 Further Reading No access Mete Eminağaoğlu
- Semra Benzer, Recep Benzer
- Learning Objectives No access Semra Benzer, Recep Benzer
- Chapter Outline No access Semra Benzer, Recep Benzer
- Semra Benzer, Recep Benzer
- 1 Introduction No access Semra Benzer, Recep Benzer
- Semra Benzer, Recep Benzer
- 2.1 Study area No access Semra Benzer, Recep Benzer
- 2.2 Data collection No access Semra Benzer, Recep Benzer
- 2.3 Length–weight relationship (LWR) equation No access Semra Benzer, Recep Benzer
- 2.4 Artificial Neural Networks (ANNs) No access Semra Benzer, Recep Benzer
- 2.5 Normalization No access Semra Benzer, Recep Benzer
- 2.6 Estimation Accuracy Validation No access Semra Benzer, Recep Benzer
- 2.7 Statistics No access Semra Benzer, Recep Benzer
- 2.8 Data Editing for MATLAB No access Semra Benzer, Recep Benzer
- Semra Benzer, Recep Benzer
- 3.1 Tinca tinca No access Semra Benzer, Recep Benzer
- 3.2 LENGTH˗WEIGHT RELATIONSHIPS (LWR) No access Semra Benzer, Recep Benzer
- 3.3 ARTIFICIAL NEURAL NETWORKS (ANNs) No access Semra Benzer, Recep Benzer
- 4 Results and Discussion No access Semra Benzer, Recep Benzer
- 5 References No access Semra Benzer, Recep Benzer
- 6 Key Terms No access Semra Benzer, Recep Benzer
- 7 Questions for Further Study No access Semra Benzer, Recep Benzer
- 8 Exercises No access Semra Benzer, Recep Benzer
- 9 Further Reading No access Semra Benzer, Recep Benzer
- Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Definitions No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge generation No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge classification No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Transforming knowledge No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Tacit to Tacit No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Explicit to Tacit No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Tacit to Explicit No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Explicit to Explicit No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge management components No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Strategies, processes and metrics No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- How to develop a knowledge strategy? No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge management architecture No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Aspects of Secure Knowledge Management No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Security Strategies No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Security processes No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Metrics No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Techniques No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge management cycle No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge management technologies No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- People and systems No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- People No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Systems No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Two ways to generate and use knowledge No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Knowledge cycle No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Levers No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Principles of effective learning No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- understanding No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- skills No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- processes No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- The goal of knowledge management metrics No access Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
- Recep Benzer, Semra Benzer
- Learning Objectives No access Recep Benzer, Semra Benzer
- Chapter Outline No access Recep Benzer, Semra Benzer
- Recep Benzer, Semra Benzer
- 1 Introduction No access Recep Benzer, Semra Benzer
- Recep Benzer, Semra Benzer
- 2.1 Study area No access Recep Benzer, Semra Benzer
- 2.2 Data collection No access Recep Benzer, Semra Benzer
- 2.3 Length–weight relationship (LWR) equation No access Recep Benzer, Semra Benzer
- 2.4 Artificial Neural Networks (ANNs) No access Recep Benzer, Semra Benzer
- 2.5 Normalization No access Recep Benzer, Semra Benzer
- 2.6 Estimation Accuracy Validation No access Recep Benzer, Semra Benzer
- 2.7 Statistics No access Recep Benzer, Semra Benzer
- 2.8 Data Editing for MATLAB No access Recep Benzer, Semra Benzer
- 3 Literature Review No access Recep Benzer, Semra Benzer
- 4 Results No access Recep Benzer, Semra Benzer
- 5 Discussion No access Recep Benzer, Semra Benzer
- 6 References No access Recep Benzer, Semra Benzer
- 7 Key Terms No access Recep Benzer, Semra Benzer
- 8 Questions for Further Study No access Recep Benzer, Semra Benzer
- 9 Exercises No access Recep Benzer, Semra Benzer
- 10 Further Reading No access Recep Benzer, Semra Benzer
- Sinem Zeliha Dalak, Cagla Seneler
- Learning Objectives No access Sinem Zeliha Dalak, Cagla Seneler
- Chapter Outline No access Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- 1.1 Definition and Evolution of Industry 4.0 No access Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- 2.1 Autonomous Robots No access Sinem Zeliha Dalak, Cagla Seneler
- 2.2 Big Data and Analytics No access Sinem Zeliha Dalak, Cagla Seneler
- 2.3 Simulation No access Sinem Zeliha Dalak, Cagla Seneler
- 2.4 System Integration No access Sinem Zeliha Dalak, Cagla Seneler
- 2.5 Cybersecurity No access Sinem Zeliha Dalak, Cagla Seneler
- 2.6 The Industrial Internet of Things (IIoT) No access Sinem Zeliha Dalak, Cagla Seneler
- 2.7 The Cloud No access Sinem Zeliha Dalak, Cagla Seneler
- 2.8 Additive Manufacturing No access Sinem Zeliha Dalak, Cagla Seneler
- 2.9 Augmented Reality No access Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- 3.1 Companies and Overall Economy No access Sinem Zeliha Dalak, Cagla Seneler
- 3.2 Managers and Employees No access Sinem Zeliha Dalak, Cagla Seneler
- 3.3 Countries, Regions, Cities and Transnational Relations No access Sinem Zeliha Dalak, Cagla Seneler
- 3.4 Individual and the Society No access Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- 4.1 Definition and History of Planned Obsolescence No access Sinem Zeliha Dalak, Cagla Seneler
- Sinem Zeliha Dalak, Cagla Seneler
- 4.2.1 Obsolescence of Function No access Sinem Zeliha Dalak, Cagla Seneler
- 4.2.2 Obsolescence of Quality No access Sinem Zeliha Dalak, Cagla Seneler
- 4.2.3 Obsolescence of Desirability No access Sinem Zeliha Dalak, Cagla Seneler
- 5 Conclusions No access Sinem Zeliha Dalak, Cagla Seneler
- 6 References No access Sinem Zeliha Dalak, Cagla Seneler
- Key Terms No access Sinem Zeliha Dalak, Cagla Seneler
- Questions for Further Study No access Sinem Zeliha Dalak, Cagla Seneler
- Exercises No access Sinem Zeliha Dalak, Cagla Seneler
- Further Reading No access Sinem Zeliha Dalak, Cagla Seneler
- Burcu OZCAN, Cevher HİLAL AYTAC
- Learning Objectives No access Burcu OZCAN, Cevher HİLAL AYTAC
- Chapter Outline No access Burcu OZCAN, Cevher HİLAL AYTAC
- Burcu OZCAN, Cevher HİLAL AYTAC
- 1 Introduction No access Burcu OZCAN, Cevher HİLAL AYTAC
- Burcu OZCAN, Cevher HİLAL AYTAC
- 2.1 Literature Review No access Burcu OZCAN, Cevher HİLAL AYTAC
- 3 Conclusion No access Burcu OZCAN, Cevher HİLAL AYTAC
- References No access Burcu OZCAN, Cevher HİLAL AYTAC
- Key Terms No access Burcu OZCAN, Cevher HİLAL AYTAC
- Questions for Further Study No access Burcu OZCAN, Cevher HİLAL AYTAC
- Exercises No access Burcu OZCAN, Cevher HİLAL AYTAC
- Further Reading No access Burcu OZCAN, Cevher HİLAL AYTAC
- About the Chapter Contributors No access Pages 407 - 412
Bibliography (643 entries)
No match found. Try another term.
- Integration of Industry 4.0 Principles into Reverse Logistics Operations for Improved Value Creation: A Case Study of a Mattress Recycling Company by Özden Tozanlı, Elif Kongar Open Google Scholar
- Agrawal, S., Singh, R. K. & Murtaza, Q. 2015. A Literature Review And Perspectives In Reverse Logistics. Resources, Conservation And Recycling, 97, 76-92. Open Google Scholar
- Ahi, P. & Searcy, C. 2013. A Comparative Literature Analysis Of Definitions For Green And Sustainable Supply Chain Management. Journal Of Cleaner Production, 52, 329–341. Open Google Scholar
- Bartodziej, C. J. 2016. The Concept Industry 4.0: An Empirical Analysis Of Technologies And Applications In Production Logistics, Springer. Open Google Scholar
- Brettel, M., Friederichsen, N., Keller, M. & Rosenberg, M. 2014. How Virtualization, Decentralization And Network Building Change The Manufacturing Landscape: An Industry 4.0 Perspective. International Journal Of Mechanical, Industrial Science And Engineering, 8, 37–44. Open Google Scholar
- Cascadealliance 2017. The State Of The Mattress Recycling Industry. Open Google Scholar
- Chopra, S. & Meindl, P. 2007. Supply Chain Management. Strategy, Planning & Operation. Das Summa Summarum Des Management. Springer. Open Google Scholar
- Deep. 2018. Mattress Recycling [Online]. Department Of Energy & Environmental Protection. Available: Http://Www.Ct.Gov/Deep/Cwp/View.Asp?A=2714&Q=482160&Deepnav_Gid=1645%20. Open Google Scholar
- Efendigil, T., Önüt, S. & Kongar, E. 2008. A Holistic Approach For Selecting A Third-Party Reverse Logistics Provider In The Presence Of Vagueness. Computers & Industrial Engineering, 54, 269–287. Open Google Scholar
- Gbce. 2018. Bye Bye Mattress Recycling Program [Online]. Greater Community Bridgeport Enterprises. Available: Https://Greenteambpt.Com/Bye-Bye-Mattress-Recycling-Program/. Open Google Scholar
- Handfield, R. B. & Nichols, E. L. 1999. Introduction To Supply Chain Management, Upper Saddle River, Nj: Prentice Hall. Open Google Scholar
- Hofmann, E. & Rüsch, M. 2017. Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34. Open Google Scholar
- Kagermann, H., Lukas, W.-D. & Wahlster, W. 2011. Industrie 4.0: Mit Dem Internet Der Dinge Auf Dem Weg Zur 4. Industriellen Revolution. Vdi Nachrichten, 13, 11. Open Google Scholar
- Kagermann, H., Wahlster, W. & Helbig, J. 2012. Im Fokus: Das Zukunftsprojekt Industrie 4.0: Handlungsempfehlungen Zur Umsetzung. Bericht Der Promotorengruppe Kommunikation. Forschungsunion. Open Google Scholar
- Lasi, H., Kemper, H.-G., Fettke, P., Feld, T. & Hoffmann, M. 2014. Industry 4.0. Business & Information Systems Engineering, 6, 239–242. Open Google Scholar
- Porter, M. E. 1985. Competitive Advantage: Creating And Sustaining Superior Performance. 1985. New York: Free Press. Open Google Scholar
- Stock, T. & Seliger, G. 2016. Opportunities Of Sustainable Manufacturing In Industry 4.0. Procedia Cirp, 40, 536–541. Open Google Scholar
- Tozanli, O., Duman, G., Kongar, E. & Gupta, S. 2017. Environmentally Concerned Logistics Operations In Fuzzy Environment: A Literature Survey. Logistics, 1, 4. Open Google Scholar
- Tuck. 2018. Mattresses [Online]. Tuck Advancing Better Sleep. Available: Https://Www.Tuck.Com/Mattresses/. Open Google Scholar
- Wef. 2017. Impact Of The Fourth Industrial Revolution On Supply Chains [Online]. World Economic Forum. Available: Http://Www3.Weforum.Org/Docs/Wef_Impact_Of_The_Fourth_Industrial_Revolution_On_Supply_Chains_.Pdf [Accessed October 2017. Open Google Scholar
- Dynamic Customer Service Levels: Evolving Safety Stock Requirements for Changing Business Needs by Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil Open Google Scholar
- Armstrong, David J. "Sharpening inventory management." Harvard Business Review 63.6 (1985): 42–58. Open Google Scholar
- Bijvank, Marco. "Periodic review inventory systems with a service level criterion." Journal of the Operational Research Society 65.12 (2014): 1853–1863. Open Google Scholar
- Dubelaar, Chris, Garland Chow, and Paul D. Larson. "Relationships between inventory, sales and service in a retail chain store operation." International Journal of Physical Distribution & Logistics Management 31.2 (2001): 96–108. Open Google Scholar
- Emmelhainz, Larry W., Margaret A. Emmelhainz, and James R. Stock. "Logistics implications of retail stockouts." Journal of Business Logistics 12.2 (1991): 129. Open Google Scholar
- Flores, Benito E., and D. Clay Whybark. "Implementing multiple criteria ABC analysis." Journal of Operations Management 7.1 – 2 (1987): 79–85. Open Google Scholar
- Flores, Benito E., David L. Olson, and V. K. Dorai. "Management of multicriteria inventory classification." Mathematical and Computer modelling 16.12 (1992): 71–82. Open Google Scholar
- Koottatep, Pakawkul, and Jinqian Li. Promotional forecasting in the grocery retail business. Diss. Massachusetts Institute of Technology, 2006. Open Google Scholar
- Millstein, Mitchell A., Liu Yang, and Haitao Li. "Optimizing ABC inventory grouping decisions." International Journal of Production Economics 148 (2014): 71–80. Open Google Scholar
- Mohammaditabar, Davood, Seyed Hassan Ghodsypour, and Chris O'Brien. "Inventory control system design by integrating inventory classification and policy selection." International Journal of Production Economics 140.2 (2012): 655–659. Open Google Scholar
- Ng, Wan Lung. "A simple classifier for multiple criteria ABC analysis." European Journal of Operational Research 177.1 (2007): 344–353. Open Google Scholar
- Porras, Eric, and Rommert Dekker. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods." European Journal of Operational Research 184.1 (2008): 101–132. Open Google Scholar
- Ramanathan, Ramakrishnan. "ABC inventory classification with multiple-criteria using weighted linear optimization." Computers & Operations Research 33.3 (2006): 695–700. Open Google Scholar
- Silver, Edward Allen, Pyke, David F., & Peterson, Rein. (1998). Inventory management and production planning and scheduling (Vol. 3, p. 30). New York: Wiley. Open Google Scholar
- Taylor, J. C., & Fawcett, S. E. (2001). Retail on‐shelf performance of advertised items: an assessment of supply chain effectiveness at the point of purchase. Journal of Business Logistics, 22(1), 73–89. Open Google Scholar
- Teunter, Ruud H., M. Zied Babai, and Aris A. Syntetos. "ABC classification: service levels and inventory costs." Production and Operations Management 19.3 (2010): 343–352. Open Google Scholar
- Van Kampen, Tim J., Renzo Akkerman, and Dirk Pieter van Donk. "SKU classification: a literature review and conceptual framework." International Journal of Operations & Production Management 32.7 (2012): 850–876. Open Google Scholar
- Thomopoulos, Nick T. "Promotion Forecasts" Demand Forecasting for Inventory Control. Springer International Publishing, 2015. 71–87. Open Google Scholar
- Timofeev, Roman. "Classification and regression trees (cart) theory and applications." Humboldt University, Berlin (2004). Open Google Scholar
- Yang, Liu. Optimizing inventory for profitability and order fulfillment improvement: Integrating Inventory Classification and Control Decisions under Non-Stationary Demand For Profit Maximization and Integrating Inventory Classification and Control Decisions to Maximize Order Fulfillment Measures. Diss. University of Missouri-Saint Louis, 2016. Open Google Scholar
- Yu, Min-Chun. "Multi-criteria ABC analysis using artificial-intelligence-based classification techniques." Expert Systems with Applications 38.4 (2011): 3416–3421. Open Google Scholar
- Zhang, Rachel Q., Wallace J. Hopp, and Chonawee Supatgiat. "Spreadsheet implementable inventory control for a distribution center." Journal of Heuristics 7.2 (2001): 185–203. Open Google Scholar
- Zhou, Peng, and Liwei Fan. "A note on multi-criteria ABC inventory classification using weighted linear optimization." European journal of operational research 182.3 (2007): 1488–1491. Open Google Scholar
- Industry 4.0: Is Your Country Ready? by Serpil Erol, Gül Didem Batur Sir Open Google Scholar
- Cabinet Office. “Report on the 5th science and technology basic plan”, Cabinet Office of Japan, Tokyo, 2015. Open Google Scholar
- Conseil national de l’industrie. “The new face of industry in France”, French National Industry Council, Paris, 2013. Open Google Scholar
- European Commission, “Factories of the Future PPP: Towards Competitive EU Manufacturing”, European Commission, Bruxelles, 2016. Open Google Scholar
- European Parliament’s Committee on Industry, Research and Energy, Study for ITRE, “Industry 4.0”, Policy Department A: Economic and Scientific Policy, Brussels, 2016. Open Google Scholar
- Evans, P.C. & Annunziata, M. “Industrial internet: pushing the boundaries of minds and machines”, General Electric, Boston, 2012. Open Google Scholar
- Foresight. “The future of manufacturing: a new era of opportunity and challenge for the UK”, UK Government Office for Science, London, 2013. Open Google Scholar
- Gentner, S. “Industry 4.0: Reality, Future or just Science Fiction? How to Convince Today’s Management to Invest in Tomorrow’s Future! Successful Strategies for Industry 4.0 and Manufacturing IT”, CHIMIA International Journal for Chemistry, Vol. 70, No. 9, 2016, pp. 628–633. Open Google Scholar
- https://www.statista.com/statistics/667634/leading-countires-industry-40-worldwide/ Open Google Scholar
- Kagermann, H., Wahlster, W. & Helbig, J. “Recommendations for implementing the strategic initiative Industrie 4.0”, Final Report of the Industrie 4.0 Working Group of Acatech, Berlin, 2013. Open Google Scholar
- Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H. & Do Noh, S. “Smart manufacturing: Past research, present findings, and future directions”, International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1, 2016, pp. 111–128. Open Google Scholar
- Li, K. “Made in China 2025”, State Council of China, Beijing, 2015. Open Google Scholar
- Liao, Y., Deschamps, F., Loures, EDFR & Ramos, L.F.P., "Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal", International journal of production research, Vol. 55, No. 12, 2017, pp. 3609–3629. Open Google Scholar
- Mueller, E., Chen, X. L., & Riedel, R. “Challenges and requirements for the application of industry 4.0: a special insight with the usage of cyber-physical system”, Chinese Journal of Mechanical Engineering, Vol. 30, No. 5, 2017, pp. 1050–1057. Open Google Scholar
- National Research Foundation. “Research, innovation and enterprise (RIE) 2015 plan” Prime Minister’s Office of Singapore, Singapore, 2016. Open Google Scholar
- Rafael R., Shirley A.J. & Liveris, A. “Report to the president accelerating u.s. advanced manufacturing”, The President’s Council of Advisors on Science and Technology, Washington, 2014. Open Google Scholar
- Ridgway, K., Clegg, C.W. & Williams, D.J. “The factory of the future. Future of Manufacturing Project: Evidence Paper 29”, Government Office for Science, London, 2013. Open Google Scholar
- Siemieniuch, C.E., Sinclair, M.A. & deC Henshaw, M.J. “Global Drivers, Sustainable Manufacturing and Systems Ergonomics”, Applied Ergonomics, Vol. 51, 2015, pp. 104–119. Open Google Scholar
- World Economic Forum, ‘Readiness for the Future of Production Report’, World Economic Forum’s System Initiative on Shaping the Future of Production, 2018. Open Google Scholar
- Transformation of Shop Floor with Industry 4.0: Guidelines for Manufacturing Companies by Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA Open Google Scholar
- Abersfelder, S., Bogner, E., Heyder, A. and Franke, J. (2016). “Application and Validation of an Existing Industry 4.0 Guideline for the Development of Specific Recommendations for Implementation”, Advanced Materials Research, 1140: 465–472. Open Google Scholar
- Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES), Journal of Innovation Management, 3(4), 16–21. Open Google Scholar
- Berger, C., Berlak, J. and Reinhart, G. (2016). Service-based Production Planning and Control of Cyber-Physical Production Systems, BLED 2016 Proceedings, pp: 491–502. Open Google Scholar
- Cachada, A., Pires, F., Barbosa, J., & Leitão, P. (2017, October). Petri nets approach for designing the migration process towards industrial cyber-physical production systems. In Industrial Electronics Society, IECON 2017–43rd Annual Conference of the IEEE (pp. 3492–3497). IEEE. Open Google Scholar
- Erol, S., Schumacher, A. and Sihn, W. (2016). “Strategic guidance towards Industry 4.0 – a three-stage process model”. International Conference on Competitive Manufacturing 2016 (COMA'16), At Stellenbosch, South Africa. Open Google Scholar
- Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on(pp. 289–294). Ieee. Open Google Scholar
- Industrie 4.0 Reifegrad – Selbstcheck f¨ur Unternehmen. 2016. URL:https://ihk-industrie40.de/selbstcheck/. Open Google Scholar
- Kagermann, H., Wahlster, W. and Helbig, J. (2013). “Securing the future of German manufacturing industry, Recommendations for implementing the strategic initiative INDUSTRIE 4.0“, Final report of the Industrie 4.0“ Working Group,“Report_“Industrie 4.0“_engl.pdf, Frankfurt, April 2013. Open Google Scholar
- Khedher, A.B., Henry, S., and Bouras, A. (2011). Integration between MES and Product Lifecycle Management. 2011 IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA). Open Google Scholar
- Klein, K., Franke, M., Hribernik, K., Coscia, E., Balzert, S., Sutter, J., and Thoben, K. D. (2014, November). Potentials of future internet technologies for digital factories. In Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on (pp. 734–741). IEEE. Open Google Scholar
- Kucharska, E., Grobler- Debska, K., Gracel, J., and Jagodzinski, M. (2015). “Idea of Impact of ERP-APS-MES Systems Integration on the Effectiveness of Decision Making Process in Manufacturing Companies”. In Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (Eds.). Beyond Databases, Architectures and Structures. 11th International Conference, BDAS 2015, Ustroń, Poland, May 26–29, 2015, Proceedings. Open Google Scholar
- Lee, J., Bagheri, B., and Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. Open Google Scholar
- Lee, J., Holgado, M., Kao, H. A., & Macchi, M. (2014). New thinking paradigm for maintenance innovation design. IFAC Proceedings Volumes, 47(3), 7104–7109. Open Google Scholar
- Leyh, C., Bley, K., Schäffer, T., & Forstenhäusler, S. (2016, September). SIMMI 4.0-a maturity model for classifying the enterprise-wide it and software landscape focusing on Industry 4.0. In Computer Science and Information Systems (FedCSIS), 2016 Federated Conference on (pp. 1297–1302). IEEE. Open Google Scholar
- Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E. & M.S.: IMPULS – Industrie 4.0- Readiness, (2015). Open Google Scholar
- Lins, R. G., Guerreiro, B., Schmitt, R., Sun, J., Corazzim, M., & Silva, F. R. (2017, October). A novel methodology for retrofitting CNC machines based on the context of industry 4.0. In Systems Engineering Symposium (ISSE), 2017 IEEE International (pp. 1–6). IEEE. Open Google Scholar
- Madkan, P. (2014). Empirical Study of ERP Implementation Strategies-Filling Gaps between the Success and Failure of ERP Implementation Process. International Journal of Information & Computation Technology, 4(6), 633–642. Open Google Scholar
- Naedele, M., Chen, H-M.,Kazman,R., Cai, Y.,Xiao, L. and Silva, C.V.A. (2015). Manufacturing execution systems: A vision for managing software development. The Journal of Systems and Software, 101: 59–68. Open Google Scholar
- Panetto, H., and Molina, A. (2008). Enterprise Integration and Interoperability in Manufacturing Systems: trends and issues. Computers in Industry, 59(7), 641–646. Open Google Scholar
- Porter, M.E., and Heppelmann, J.E. (2015). How Smart, Connected Products Are Transforming Companies, Harvard Business Review, 1–9. Open Google Scholar
- PricewaterhouseCoopers: The Industry 4.0 / Digital Operations Self Assessment, (2016). Open Google Scholar
- Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., & Gorecky, D. (2016, October). Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In INTERNATIONAL CONFERENCE ON COMPUTERS & INDUSTRIAL ENGINEERING (CIE46) (pp. 1–11). Open Google Scholar
- Romero, D., and Vernadat, F. (2016). Enterprise information systems state of the art: Past, present and future trends. Computers in Industry, 79, 3–13. Open Google Scholar
- Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016). Continuous maintenance and the future–Foundations and technological challenges. CIRP Annals, 65(2), 667–688. Open Google Scholar
- Sanders, A., Elangeswaran, C., and Wulfsberg, J. (2016). “Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing”, Journal of Industrial Engineering and Management, 9(3), 812–833. Open Google Scholar
- Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161–166. Open Google Scholar
- Seitz, K-F., and Nyhuis, P. (2015). Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. Procedia CIRP, (32), 92–97. Open Google Scholar
- Shrouf, F., Ordieres, J., and Miragliotta, G. (2014). Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm. Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on, 9–12 Dec. 2014, 697–701. Open Google Scholar
- Stojkić, Z., Veža, I., and Bošnjak, I. (2016). A Concept Of Information System Implementation (CRM and ERP) Within Industry 4.0. 26TH DAAAM International Symposium On Intelligent Manufacturing and Automation, 912–919. Open Google Scholar
- Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576. Open Google Scholar
- Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. Ieee Access, 5, 20418–20427. Open Google Scholar
- Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T., and Lennartson, B. (2016). An event-driven manufacturing information system architecture for Industry 4.0, International Journal of Production Research, 1–15. Open Google Scholar
- Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335–340. Open Google Scholar
- Wang, H., Liu, L., Fei, Y., and Liu, T. (2016). A collaborative manufacturing execution system oriented to discrete manufacturing enterprises. Concurrent Engineering, 24(4), 330–343. Open Google Scholar
- Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22. Open Google Scholar
- Zainal, Z. (2007). Case study as a research method. Jurnal Kemanusiaan, (9), 1–6. Open Google Scholar
- Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(1–4), 1149–1163. Open Google Scholar
- A Review on Cold Chain Management for Industry 4.0 by Cagla Ediz Open Google Scholar
- Atzori, L., Iera, A., & Morabito, G. (2010). The Internet Of Things: A Survey. Computer Networks, 54(15), 2787–2805. Open Google Scholar
- Barata, J., Rupino Da Cunha, P., & Stal, J. (2018). Mobile Supply Chain Management In The Industry 4.0 Era: An Annotated Bibliography And Guide For Future Research. Journal of Enterprise Information Management, 31(1), 173–192. Open Google Scholar
- Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 Implications In Logistics: An Overview. Procedia Manufacturing, 13, 1245–1252. Open Google Scholar
- Benešová, A., & Tupa, J. (2017). Requirements For Education And Qualification Of People In Industry 4.0. Procedia Manufacturing, 11, 2195–2202. Open Google Scholar
- Bouzakis, A., & Overmeyer, L. (2012, November). Simulation Analysis For The Performance Of Integrated HF RFID Antennas. In Computer Modeling And Simulation (EMS), 2012 Sixth Uksim/AMSS European Symposium On,391–394, IEEE. Open Google Scholar
- Corallo, A., Latino, M. E., & Menegoli, M. (2018). From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability. Int. J. Nutr. Food Eng., 12(5). Open Google Scholar
- Dombrowski, U., Richter, T., & Krenkel, P. (2017). Interdependencies Of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manufacturing, 11, 1061–1068. Open Google Scholar
- Drath, R., & Horch, A. (2014). Industrie 4. 0: Hit Or Hype? IEEE Ind Electron Mag, 8(2):56–58. Open Google Scholar
- Erkollar, A. & Oberer, B. (2017). Endüstri 4.0 Ve Ulaşımda Kullanımı. Transist 2017, 493–498. Open Google Scholar
- Fleisch, E., Weinberger, M., & Wortmann, F. (2015). Business Models And The Internet Of Things. In Interoperability And Open-Source Solutions For The Internet Of Things, 6–10, Springer, Cham. Open Google Scholar
- Gunhan, T., Demir, V., & Bilgen, H. (2006). Çiftlik Tipi Süt Soğutma Tanklarının Performans Değerlerinin Deneysel Olarak Belirlenmesi. Tarım Makinaları Bilimi Dergisi, 2(4). Open Google Scholar
- Hermann, M., Pentek, T., & Otto, B. (2016, January). Design Principles For Industrie 4.0 Scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference On,3928–3937, IEEE. Open Google Scholar
- Hofmann, E., & Rüsch, M. (2017). Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34. Open Google Scholar
- Kara, İ. (2009). CAN Haberleşme Protokolünün İncelenmesi Ve Bir Sıcaklık Kontrol Sistemine Uygulanması (Doctoral Dissertation). Open Google Scholar
- Muneeswaran. A. (2015). Automotive Diagnostics Communication Protocols AnalysisKWP2000, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 10, Issue 1, Ver. 1 (Jan – Feb. 2015), 20–31. Open Google Scholar
- Olsen, P., & Borit, M. (2013). How to define traceability. Trends in food science & technology, 29(2), 142–150. Open Google Scholar
- Onat, O. (2018). Sürücüsüz Otomobil de Kaza Yapar, CNN Turk, 20.03.2018. Open Google Scholar
- Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6, 239–242. Open Google Scholar
- Lu Y., Industry 4.0: A Survey On Technologies, Applications And Open Research İssues, In Journal Of Industrial Information Integration, Volume 6, 2017, Pages 1–10. Open Google Scholar
- Oberer, B., & Erkollar, A. (2017), Sustainable Cities Need Smart Transportation: The Industry 4.0 Transportation Matrix. Transist 2017, 188–197. Open Google Scholar
- Ozgüven, M. M. (2016), Radyo Frekansli (Rf) Pedometre Tasarimi. (Master Thesis), Gaziosmanpaşa University, Tokat. Open Google Scholar
- Shafiq, S. I., Sanin, C., Szczerbicki, E., & Toro, C. (2015). Virtual Engineering Object/Virtual Engineering Process: A Specialized Form Of Cyber Physical System For Industrie 4.0. Procedia Computer Science, 60, 1146–1155. Open Google Scholar
- Sung, T. K. (2018). Industry 4.0: A Korea perspective. Technological Forecasting and Social Change, 132, 40–45. Open Google Scholar
- Suru Yonetimli Buyukbas Sagım Sistemleri, Sezer Tarım Teknolojileri, http://www.sezermac.com/index.php?sayfa=detay&act=view&code=507&cat=413&catname=S%FCr%FC%20Y%F6netimli%20B%FCy%FCkba%FE%20Sa%F0%FDm%20Sistemleri, accessed on 2.6.2018. Open Google Scholar
- TC Milli Eğitim Bakanlığı (2013). Gıda Teknolojisi, Sütü İşletmeye Alma, Ankara,. Open Google Scholar
- Tanrıvermiş, H., & Mülayim, Z. G. (1997). Sanayinin Neden Olduğu Çevre Kirliliğinin Tarıma Verdiği Zararların Değerinin Biçilmesi: Samsun Gübre (TÜGSAS) Ve Karadeniz Bakır (KBI) Sanayileri Örneği,. J. Agriculture And Forestry, 23, 337–345. Open Google Scholar
- Thames, L., & Schaefer, D. (2016). Software-Defined Cloud Manufacturing For Industry 4.0. Procedia CIRP, 52, 12–17. Open Google Scholar
- Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What Does Industry 4.0 Mean To Supply Chain? Procedia Manufacturing, 13, 1175–1182. Open Google Scholar
- Tupa, J., Simota, J., & Steiner, F. (2017). Aspects Of Risk Management Implementation For Industry 4.0. Procedia Manufacturing, 11, 1223–1230. Open Google Scholar
- Connection between industry 4.0 and smart factories by Elif Nurten, Cagla Seneler Open Google Scholar
- Alcin, S. (2016). ÜRETİM İÇİN YENİ BİR İZLEK: SANAYİ 4.0. Journal of Life Economics, 3(8), pp.19 – 19. Open Google Scholar
- AZoNano.com. (2005). What is Nanotechnology and What Can It Do?. [online] Available at: https://www.azonano.com/article.aspx?ArticleID=1134 Open Google Scholar
- Burke, R., Mussomeli, A., Laaper, S., Hartigan, M. and Sniderman, B. (2017). The smart factory. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html Open Google Scholar
- Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. and Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, pp.6505 – 6519. Open Google Scholar
- Cleaveland, P. (2006). What is a smart sensor? – Control Engineering. [online] Control Engineering. Available at: https://www.controleng.com/articles/what-is-a-smart-sensor/ Open Google Scholar
- Correia, M. (2014). Industrie 4.0 Framework, Challenges and Perspectives. [online] Recipp.ipp.pt. Available at: http://recipp.ipp.pt/bitstream/10400.22/7110/1/DM_CorreiaMiguel_2014_MEM.pdf Open Google Scholar
- Deloitte Insights. (2018). Forces of change: Industry 4.0. [online] Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/overview.html Duivenvoorden, C. (2017). The Beginners Guide To The Industry 4.0 – Industry4Magazine. [online] Industry4Magazine. Available at: https://industry4magazine.com/the-beginners-guide-to-the-industry-4-0-f45b93a95649 Open Google Scholar
- Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics. Open Google Scholar
- Lee, E. (2008). Cyber Physical Systems: Design Challenges. 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). Open Google Scholar
- Lee, E (2015). The Past, Present and Future of Cyber-Physical Systems: A Focus on Models. Sensors, 15(3), pp.4837 – 4869. Open Google Scholar
- Lee, I. and Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), pp.431 – 440. Open Google Scholar
- Lee, J., Bagheri, B. and Kao, H. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, pp.18 – 23. Open Google Scholar
- Lee, J., Davari, H., Singh, J. and Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, pp.20 – 23. Open Google Scholar
- Lueth, K. (2014). Why it is called Internet of Things: Definition, history, disambiguation. [online] Iot-analytics.com. Available at: https://iot-analytics.com/internet-of-things-definition/ Marr, B. (2016). What Everyone Must Know About Industry 4.0. [online] Forbes.com. Available at: https://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-must-know-about-industry-4-0/#6f0059f3795f Open Google Scholar
- OTTO Motors. (n.d.). 5 Key Industry 4.0 Technologies Changing Manufacturing. [online] Available at: https://ottomotors.com/blog/5-industry-4-0-technologies Open Google Scholar
- Rojko, A. (2017). Industry 4.0 Concept: Background and Overview. International Journal of Interactive Mobile Technologies (iJIM), 11(5), p.77. Open Google Scholar
- Rghioui, A. (2017). Internet of Things: Visions, Technologies, and Areas of Application. Automation, Control and Intelligent Systems, 5(6), p.83. Open Google Scholar
- Sawe, B. (2017). What Was The Second Industrial Revolution?. [online] WorldAtlas. Available at: https://www.worldatlas.com/articles/what-was-the-second-industrial-revolution.html Scheuermann, C., Verclas, S. and Bruegge, B. (2015). Agile Factory – An Example of an Industry 4.0 Manufacturing Process. 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications. Open Google Scholar
- Schwab, K. (n.d.). The fourth industrial revolution. Open Google Scholar
- Shrouf, F., Ordieres, J. and Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Open Google Scholar
- Sniderman, B., Mahto, M. and Cotteleer, M. (2016). Industry 4.0 and manufacturing ecosystems. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/manufacturing-ecosystems-exploring-world-connected-enterprises.html Open Google Scholar
- Weallans, S. (2018). IIoT And Industry 4.0: The Basics You Need to Know | Sensors Magazine. [online] Sensorsmag.com. Available at: https://www.sensorsmag.com/components/iiot-and-industry-4-0-basics-you-need-to-know Open Google Scholar
- Wright, G. (2018). Smart factories just got smarter. [online] Manufacturingglobal.com. Available at: https://www.manufacturingglobal.com/technology/smart-factories-just-got-smarter Open Google Scholar
- Techno-Parks on the Digital Transformation by Gizem ATAK, Ferhan ÇEBİ Open Google Scholar
- Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters. Open Google Scholar
- Auger, P., Barnir, A., & Gallaugher, M. J. (2003). Business Process Digitization, Strategy, and the Impact of Firm Age and Size: The Case of the Magazine Publishing Industry. Journal of Business Venturing, (6) 18, 789–814. Open Google Scholar
- Atak G. (2018), The Role of Technopark Companies in the Development of the Fourth Industrial Revolution in Turkey,. Istanbul Technical University, Unpublished master’s thesis Open Google Scholar
- Btgm.sanayi.gov.tr (2018). Date retrieved 28.12.2018, from https://btgm.sanayi.gov.tr/DokumanGetHandler.ashx?dokumanId=c2f 7d4c9–5cde-461e-b2ee-1966309073d2. Open Google Scholar
- Fırat, S. Ü., & Fırat, O. Z. (2017). Sanayi 4.0 Devrimi Üzerine Karşılaştırmalı Bir İnceleme: Kavramlar, Küresel Gelişmeler ve Türkiye. Toprak İşveren Dergisi, (114), 10–23. Open Google Scholar
- Fuchs, C. (2018). Industry 4.0: The Digital German Ideology. tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 16(1), 280–289. Open Google Scholar
- Gubán, M., & Kovács, G. (2017). Industry 4.0 Conception. Acta Technical Corviniensis-Bulletin of Engineering, 10(1), 111. Open Google Scholar
- IASP (2017). Date retrieved 23.10.2017, from https://www.iasp.ws/OurIndustry/Definitions. Open Google Scholar
- İçten, T., & Bal, G. (2017). Artırılmış Gerçeklik Teknolojisi Üzerine Yapılan Akademik Çalışmaların İçerik Analizi. Bilişim Teknolojileri Dergisi, 10(4), 401–415. (IASP 2017) Doyduk, H. B. B., & Tiftik, C. (2017). Nesnelerin İnterneti: Kapsamı, Gelecek Yönelimi ve İş Fırsatları. Third Sector Social Economic Review, 52(3), 127–147. Open Google Scholar
- Kai-Oliver Zander MS, M., & MEng, K. R. (2015). An Analysis of the Potential of Company's Inter-Cooperation on Shop-Floor Level Through the Utilization of Cyber-Physical Production Systems. In Proceedings of the International Annual Conference of the American Society for Engineering Management. (p.1). American Society for Engineering Management (ASEM). Open Google Scholar
- Kiran, V. (2016). Trends 2016: Big Data, IoT take the plunge. Voice & Data; New Delhi. Open Google Scholar
- Koçak, A., & Diyadin, A. (2018). Sanayi 4.0 Geçiş Süreçlerinde Kritik Başarı Faktörlerinin DEMATEL Yöntemi ile Değerlendirilmesi. Ege Akademik Bakis, 18(1), 107–120. Open Google Scholar
- Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25. Open Google Scholar
- Magruk, A. (2016). Uncertainty in the Sphere of the Industry 4.0-Potential Areas to Research. Business, Management and Education, 14(2), 275. Open Google Scholar
- Official Gazette 24454 (2001). Date retrieved 23.10.2017, from http://www.resmigazete.gov.tr/eskiler/2001/07/20010706.htm#1. Open Google Scholar
- Ozdogan, O. (2017). Endüstri 4.0. Ankara: Pusula yayın. Open Google Scholar
- Pekol, Ö., & Erbas, B. Ç. (2011). Patent Sisteminde Türkiye'deki Teknoparkların Yeri/Technopark in Turkey: Patent System Perspective. Ege Akademik Bakis, 11(1), 1327. Open Google Scholar
- Schwab, K. (2017). Dördüncü Sanayi Devrimi. Istanbul: Optimist. Open Google Scholar
- Siegel, D. S., Westhead, P., & Wright, M. (2003). Science Parks and The Performance of New Technology-Based Firms: A Review of Recent UK Evidence and an Agenda for Future Research. Small Business Economics, 20(2), 177–184. Open Google Scholar
- Soysal, M., & Pamuk, N. S. (2018). Yeni Sanayi Devrimi Endüstri 4.0 Üzerine Bir İnceleme. Verimlilik Dergisi, (1), 41–66. Open Google Scholar
- TÜBİTAK (2016). Ar-Ge Reform Paketi Tanıtım Toplantısı Yapıldı. Türkiye Bilimsel ve Teknolojik Araştırmalar Merkezi, 14 Ocak 2016. Date retrieved: 23.04.2017, from https://www.tubitak.gov. tr /tr/haber/ar-gereform-paketi-tanitim-programi-yapildi. Open Google Scholar
- Türkiye Odalar ve Borsalar Birliği (2016). Akıllı Fabrikalar Geliyor. TOBB Ekonomik Forum Dergisi, 259, 16–27. Open Google Scholar
- TÜSİAD & BCG (2016). Türkiye’nin Küresel Rekabetçiliği için Bir Gereklilik Olarak Sanayi 4.0: Gelişmekte Olan Ekonomi Perspektifi. İstanbul: TÜSİAD. Open Google Scholar
- An Evaluative Perspective from Institutional Logic and Pragmatism on the Relationship between Industry 4.0 and Outsourcing by Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR Open Google Scholar
- Adler, P. S. Making the HR Outsourcing Decision. MIT Sloan Management Review, 45(1), 2003, 53–60. Open Google Scholar
- Alexander, M., and D. Young, Strategic Outsourcing. Long Range Planning, 29(1), 1996,116–119. Open Google Scholar
- Alford, R. R. and R. Friedland,. Powers of Theory: Capitalism, the State, and Democracy. Cambridge: Cambridge University Press,1985. Open Google Scholar
- Arnold, U. New Dimensions of Outsourcing: A Combination of Transaction Cost Economics and the Core Competencies Concept. European Journal of Purchasing & Supply Management, 6(1), 2000, 23–29. Open Google Scholar
- Aron, R., E. K. Clemons, and S. Reddi, “Just Right Outsourcing: Understending and Managing Risk”, Journal of Management Information Systens, Vol. 22, Issue 2, 2005, Pp. 37–55 (Https://and.Tandfonline.Com/Doi/Abs/10.1080/07421222.2005.11045852, 28.08.2018) Open Google Scholar
- Arora, A., and A. Gambardella, Complementarity and External Linkages: The Strategies of the Large Firms in Biotechnology. the Journal of Industrial Economics, 1990, 361–379. Open Google Scholar
- Aubert, B.A., M. Patry, and S. Rivard, “A Transaction Cost Approach to Outsourcing Behavior: Some Empirical Evidence”, Information & Management, Vol. 30, 1996, Pp. 51–64. Open Google Scholar
- Aubert, B. A., M. Patry, and S. Rivard, “Assessing the Risk of IT Outsourcing”, Proceedings of the Thirty-First Hawai International Conference on System Sciences, 9 January 1998, Kohala Coast, USA. 1998. Open Google Scholar
- Bartodziej, C. J. The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics. Springer. 2016. Open Google Scholar
- Battilana, J. 2006. ‘Agency and Institutions: The Enabling Role of Individuals’ Social Position,’ Organization, Forthcoming. Open Google Scholar
- Beaulieu, M., Roy, J., & S. Landry, Logistics Outsourcing in the Healthcare Sector: Lessons from A Canadian Experience. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences De l'Administration, 35(4), 2018, 635–648.DOI: 10.1002/CJAS.1469. Open Google Scholar
- Belcourt, M. “Outsourcing — the Benefits and the Risks”, Human Resource Management Review, Vol. 16, 2006, P. 269–279. Open Google Scholar
- Berger, P. and T. Luckmann, the Social Construction of Reality. New York: Doubleday Anchor. 1967. Open Google Scholar
- Crouch, C. Complementarıty, Morgan, G., Campbell, J., Crouch, C., Pedersen, O. K., & Whitley, R. (Eds.). In the Oxford Handbook of Comparative Institutional Analysis. Oxford University Press.2010. Open Google Scholar
- El Mokrini, A., E. Dafaoui, A. Berrado, and A. El Mhamedi, “An Approach to Risk Assessment for Outsourcing Logistics: Case of Pharmaceutical Industry”, IFAC-Papers Online, Vol. 49, Pp. 1239–1244, 2016. Open Google Scholar
- Greenwood, R. & C. R. Hinings, Understanding Strategic Change: The Contribution of Archetypes. Academy of Management Journal, 36(5), 1993,1052–1081. Open Google Scholar
- Gupta, U. G. & A. Gupta, Outsourcing the IS Function: Is It Necessary For Your Organization?, Information Systems Management, 9(3), 1992, 44–47. Open Google Scholar
- Gutek, G. Philosophical, Ideological, and theoretical Perspectives on Education. New Jersey: Pearson, 2014, pp. 76,100. ISBN 978–0–13–285238–8. Open Google Scholar
- Haour, G. Stretching the Knowledge‐Base of the Enterprise Through Contract Research. R&D Management, 22(2), 1992, 177–182. Open Google Scholar
- Heng, S. Industry 4.0. Upgrade Des Industriestandorts Deutschland Steht Bevor. In: DB Research Management. Frankfurt A. M., 2014. Open Google Scholar
- Hofmann, E., & M. RüSch, Industry 4.0 and the Current Status as well as Future Prospects on Logistics. Computers in Industry, 89, 2017, 23–34. Open Google Scholar
- Howells, J. Research and Technology Outsourcing, Technology Analysis & Strategic Management, 11:1, 1999, 17–29, Open Google Scholar
- Huff, S. L. Outsourcing of Information Services. Business Quarterly, 55(4), 1991, 62–65. Open Google Scholar
- Jackall, R. Moral Mazes: The World of Corporate Managers. International Journal of Politics, Culture, and Society, 1(4), 1988, 598–614. Open Google Scholar
- Kagermann, AND., AND. Wahlster, J. Helbig, Umsetzungsempfehlungen für das Zukunftsprojekt Industry 4.0. Abschlussbericht Des Arbeitskreises Industry 4.0. Deutschlands Zukunft Als Produktionsstandort Sichern. In: Promotorengruppe Kommunikation der Forschungsunion Wirtschaft – Wissenschaft. Berlin, 2013. Open Google Scholar
- Kakabadse, A., and N. Kakabadse. “Trends in Outsourcing: Contrasting USA and Europe”, European Management Journal Vol. 20, No. 2, 2002, Pp. 189–198. Open Google Scholar
- Kosnik, T., D. J. Wong-Mingji, & K. Hoover, Outsourcing Vs Insourcing in the Human Resource Supply Chain: A Comparison of Five Generic Models. Personnel Review, 35(6), 2006,671–684. Open Google Scholar
- Leeman, D., & D. Reynolds, Trust and Outsourcing: Do Perceptions of Trust Influence the Retention of Outsourcing Providers in the Hospitality Industry?, International Journal of Hospitality Management, 31(2), 2012, 601–608. Open Google Scholar
- Li-Jun, Z. “Research on Analysis and Control of Enterprise Logistics Outsourcing Risks”, Energy Procedia, Vol. 17,2012, Pp. 1268–1273. Open Google Scholar
- Masten. S, K. Crocker, Efficient Adaptation in Long-Term Contracts: Take or Pay Provisions For Natural Gas. American Economic Review,1985, 75,1085–1096. Open Google Scholar
- Mccauley, A. Know the Benefits and Costs of Outsourcing Services. Canadian HR Reporter, 13(17), 18–19. Meyer, John and., R. Richard Scott (Eds). 1983. Organizational Environments: Ritual and Rationality, Beverly Hills, CA: Sage, 2000. Open Google Scholar
- Meyer, J. and., J. Boli, G. M. Thomas, and F. O. Ramirez. ‘World Society and the Nation-State,’ American Journal of Sociology 103, 1997, 144–181. Open Google Scholar
- Ngwenyama, O. K., & N. Bryson, Making the Information Systems Outsourcing Decision: A Transaction Cost Approach to Analyzing Outsourcing Decision Problems. European Journal of Operational Research, 115(2),1999, 351–367. Open Google Scholar
- Oshima, M., T. Kao, & J. Tower, Achieving Post-Outsourcing Success. Human Resources Planning, 28(2), 7–12. Outsourcing and the Implications for Human Resource Development. (2000). Journal of Management Development, 19(8), 2005, 694–699. Open Google Scholar
- Quélin, B., & F. Duhamel, Bringing Together Strategic Outsourcing and Corporate Strategy: Outsourcing Motives and Risks. European Management Journal, 21(5), 2003, 647–661. Open Google Scholar
- Rennunga, F. M., C. T. Luminosua, and A. Draghici, “Strategic Management – Managing the Potential Complexity-Risks in Outsourcing”, Procedia Economics and Finance, Vol. 26, 2015, Pp. 757–763. Open Google Scholar
- Ringe, M. J. (1992). The Contract Research Business in the United Kingdom. The European Dimension. EUR 14578 EN. Research Evaluation. Science and Technology Policy Series. Open Google Scholar
- Scott, AND. R. [1995] 2001. Institutions and Organizations, 2nd Edn. Thousand Oaks, CA: Sage,1992. Open Google Scholar
- Scott, AND. R., M. Ruef, P. Mendel, and C. Caronna, Institutional Change and Health Care Organizations: From Professional Dominance to Managed Care. Chicago: University of Chicago Press, 2000. Open Google Scholar
- Spath, D. (Ed.), O. Ganschar, S. Gerlach, M. Hämmerle, T. Krause, S. Schlund, Studie: Produktionsarbeit Der Zukunft – Industrie 4.0 (2013). Retrieved June 8, 2015, From Http://and.Iao.Fraunhofer.De/Images/Iao-News/ Produktionsarbeit-Der-Zukunft.Pdf. Open Google Scholar
- Thornton, P. AND., & AND. Ocasio, Institutional Logics. The Sage Handbook of Organizational Institutionalism, 840, 2008, 99–128.,Pdf Open Google Scholar
- Wang, E. T. Transaction Attributes and Software Outsourcing Success: An Empirical Investigation of Transaction Cost theory. Information Systems Journal, 12(2), 2002, 153–181. Open Google Scholar
- Weick, K. E. Educational Organizations as Loosely Coupled Systems. Administrative Science Quarterly, 21, 1–19, 1976. Open Google Scholar
- Weick, K. E. Management of Organizational Change Among Loosely Coupled Elements. Inp. S. Goodman &As-Sociates (Eds.), Change in Organizations (Pp. 375–408). San Francisco: Jossey-Bass, 1982. Open Google Scholar
- William, J. The Meaning of Truth. Retrieved 5 March, 1909/2015. Open Google Scholar
- https://Tez.Yok.Gov.Tr/Ulusaltezmerkezi/Tezsorgusonucyeni.Jsp Open Google Scholar
- Usage of Enterprise Resource Planning (ERP) in Turkey and Information Safety by Recep Benzer, Emre Akar Open Google Scholar
- Al-Mashari, M., Al-Mudimigh, A., & Zairi, M. Enterprise resource planning: A taxonomy of critical factors. European journal of operational research, 146(2), 352–364. 2003. Open Google Scholar
- Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Al-Qudah, M. A., & Al-Omari, A. Introduction to Information Security. In Practical Information Security (pp. 1–16). Springer, Cham. 2018. Open Google Scholar
- Anonymous, Security and threats in ERP. Https://Cpm.Com.Tr/Tr/Erp-Blog/Erpde-Guvenlik-Ve-Tehditler. 2018. Open Google Scholar
- Avunduk, H., & Güleryüz, Ö. Enterprise Resource Planning (ERP) and an Analysis of the Effects to Managerial Decisions: A Qualitative Research in Textile Firm. Journal of Current Researches on Business and Economics, 8(1), 41–52. 2018. Open Google Scholar
- Aydoğan, E.. Enterprise Resource Planning, TSA Dergisi Yı l:2 S:2, Ağustos 2008, s.109. 2008 Open Google Scholar
- Başaran, A. Cyberspace Arion Press (In Turkish). 2017. Open Google Scholar
- Başaran, A. Http://Alperbasaran.Com/Kurumsal-Kaynak-Planlama-Yazilimi-Erp-Guvenligi/. 2018. Open Google Scholar
- Braggs, S. ERP: the state of the industry. Arc. Insights 12 ECL, New York. 2005. Open Google Scholar
- Canbek Gürol, Sağıroğlu Şeref, Bilgi, Bilgi Güvenliği Ve Süreçleri Üzerine Bir İnceleme, Politeknik Dergisi, Cilt: 9, Sayı:3, 2006, S.165 4 Türkiye Bilişim Derneği, Bilişim Sistemleri Güvenliği El Kitabı, Sürüm 1.0, Ankara, Mayıs 2006, S.3 (In Turkish). Open Google Scholar
- Çetinkaya, M. Implementation of Information Security Management System in Institutions. Akademik Bilişim 2008, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, 30 Ocak- 01 Şubat 2008, S.511 (In Turkish). 2008. Open Google Scholar
- Demir, B. Information Security in the Accounting Information Systems. The Journal of Accounting and Finance, (26), 147–156. 2005. Open Google Scholar
- Erkan, Turan. Erman. ERP Enterprise Resource Planning. Ankara: Atılım Üniversitesi. (Turkish) Enterprise Resource Planning. 2008. Open Google Scholar
- Habertürk, https://www.haberturk.com/sap-ve-oracle-in-guvenlik-aciklari-binlerce-sirketi-tehlikeye-soktu-2076352-ekonomi alıntı tarihi: 26 Temmuz 2018. 2018 Open Google Scholar
- İnal, İ. WEB based ERP for SME's: An evaluation of Turkey's ERP vendors, Msc Thesis. Balıkesir University Graduate School of Natural and Applied Sciences. 103 page. 2004. Open Google Scholar
- Keçek, G. & Yıldırım, E. Enterprise Resource Planning and The Importance For Company Electronic Journal of Social Sciences 8 :240–258. 2014. Open Google Scholar
- Laudon, C. K., & Laudon, P. J. Information Systems in the Enterprise, Managing the Digital Firm, 8/E. Prentice Hall. 2004. Open Google Scholar
- Loh TC, Koh SCL Critical elements for a successful enterprise resource planning implementation in small-and medium-sized enterprises. Int J Prod Res 42(17):3433–3455. 2004. Open Google Scholar
- Manettı J. How technology is transforming manufacturing. Production and Inventory Management Journal 42(1), 54–64. 2001. Open Google Scholar
- Montalbano, E. Onapsis Report Report: Cybercriminals target difficult-to-secure ERP systems with new attacks https://www.onapsis.com/research/reports/erp-security-threat-report 2018. Open Google Scholar
- Ross, J.W. and Vitale, M.R. The ERP revolution, surviving vs. Thriving. Information Systems Frontiers; special issue on The Future of Enterprise Resource Planning Systems 2(2), 233–241. 2000. Open Google Scholar
- Sumner, M., Enterprise resource planning, Upper Saddle River, New Jersey: Prentice-Hall. 2005. Open Google Scholar
- Usmanij, PA, Khosla R, Chu M-T Successful product or successful system? User satisfaction measurement of ERP software. J Intell Manuf 24(6):1131–1144. 2013. Open Google Scholar
- Vural, Y, Sağıroğlu Ş., A Review On Enterprise Information Security And Standards. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Cilt 23, No 2, Ankara, 2008, S.509. 2008. Open Google Scholar
- Machine learning approaches for prediction of service times in health information systems by Mete Eminağaoğlu Open Google Scholar
- Aha, D. W., Kibler, D., & Albert, M. K. (1991). “Instance-based learning algorithms”, Machine Learning, Vol. 6 No. 1, pp. 37–66. Open Google Scholar
- Akaike, H. (1981). “Likelihood of a model and information criteria”, Journal of Econometrics, Vol. 16 No. 1, pp. 3–14. Open Google Scholar
- Bernardi, R. Constantinides, P., & Nandhakumar, J. (2017). “Challenging Dominant Frames in Policies for IS Innovation in Healthcare through Rhetorical Strategies”, Journal of the Association for Information Systems, Vol. 18 No. 2, pp. 81–112. Open Google Scholar
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer Science + Business Media LLC, New York. Open Google Scholar
- Breil, B. Fritz, F., Thiemann, V., & Dugas, M. (2011). “Mapping turnaround times (TAT) to a generic timeline: a systematic review of TAT definitions in clinical domains”, BMC Medical Informatics and Decision Making, Vol. 11 No. 34, pp. 1–12. Open Google Scholar
- Broomhead, D. S., & Lowe, D. (1988). “Radial basis functions, multi-variable functional interpolation and adaptive networks (Technical report)”, Royal Signals and Radar Establishment, Report no. 4148, UK. Open Google Scholar
- Buduma, N., & Locascio, N. (2017). Fundamentals of Deep Learning, O’Reilly Media, Inc., USA. Open Google Scholar
- Chen, S. (2014). "Information needs and information sources of family caregivers of cancer patients", Aslib Journal of Information Management, Vol. 66 No. 6, pp. 623–639. Open Google Scholar
- Dasu T. & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning, John Wiley & Sons Inc., New Jersey. Open Google Scholar
- Eibe, F. (2014). Fully supervised training of Gaussian radial basis function networks in WEKA. Retrieved from https://www.cs.waikato.ac.nz/~eibe/pubs/ rbf_networks_in_weka_ description.pdf Open Google Scholar
- Eminağaoğlu M., & Vahaplar A. (2018). “Turnaround Time Prediction for a Medical Laboratory Using Artificial Neural Networks”, International Journal of Informatics Technologies, Vol.11 No. 4, pp: 357–368. Open Google Scholar
- Fieri, M., Ranney, N. F., Schroeder, E. B., Van Aken, E. M., & Stone, A. H. (2010). “Analysis and improvement of patient turnaround time in an emergency department”, in Proceedings of the 2010 IEEE Systems and Information Engineering Design Symposium, University of Virginia Charlottesville, VA, USA, 2010, pp. 239–244. Open Google Scholar
- Goodfellow, A., Bengio, Y., & Courville, A. (2017). Deep Learning, The MIT Press, USA. Open Google Scholar
- Goswami, B., Singh, B., Chawla, R., Gupta, V. K., & Mallika, V. (2010). “Turnaround time (TAT) as a benchmark of laboratory performance”, Indian Journal of Clinical Biochemistry, Vol. 25 No. 4, pp. 376–379. Open Google Scholar
- Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, Springer-Verlag., Berlin. Open Google Scholar
- Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Francisco. Open Google Scholar
- Hand, C., Mannila, H., & Smyth P. (2001). Principles of Data Mining, the MIT Press, London. Open Google Scholar
- Hassanpour, M., Vaferi, B., & Masoumi, M. E. (2018). “Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches”, Applied Thermal Engineering, Vol. 128, pp. 1208–1222. Open Google Scholar
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning, Data Mining, Inference and Prediction, 2nd edition, Springer, New York. Open Google Scholar
- Haykin, S. (2009). Neural Networks and Learning Machines, 3rd edition, Pearson Education, Inc., New Jersey. Open Google Scholar
- He, C., Fan, X., & Li, Y. (2013). “Toward Ubiquitous Healthcare Services with a Novel Efficient Cloud Platform”, IEEE Transactions on Biomedical Engineering, Vol. 60 No. 1, pp. 230–234. Open Google Scholar
- Hendrickx, I., & Antal, V. B. (2005). "Hybrid algorithms with Instance-Based Classification", in Proceedings of 16th European Conference on Machine Learning Machine Learning: ECML2005, Porto, Portugal, 2005, pp. 158–169. Open Google Scholar
- Hope, T., Yehezkel, S. R., & Lieder, I. (2017). Learning TensorFlow: A Guide to Building Deep Learning Systems, O’Reilly Media, Inc., USA. Open Google Scholar
- Huang, W., Lai, K. K., Nakamori, Y., & Wang, S. (2004). “Forecasting Foreign Exchange Rates with Artificial Neural Networks: A Review”, International Journal of Information Technology & Decision Making, Vol. 3 No. 1, pp. 145–165. Open Google Scholar
- Köksal, H., Eminağaoğlu, M., & Türkoğlu, B. (2016) “An Adaptive Network-Based Fuzzy Inference System for Estimating the Duration of Medical Services: A Case Study”, in Proceedings of 10th IEEE International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, pp: 801–806. Open Google Scholar
- Kumar, S. (2017). Neural Networks – A Classroom Approach, 2nd ed., McGraw-Hill, New Delhi. Open Google Scholar
- Larose, D. T. (2005). Discovering Knowledge in Data – An Introduction to Data Mining, John Wiley & Sons Inc., New Jersey. Open Google Scholar
- Larose, D. T. (2006). Data Mining Methods and Models, John Wiley & Sons Inc., New Jersey. Open Google Scholar
- Lyon, A. R., Wasse, J. K., Ludwig, K., Zachry, M., Bruns, E. J., Unutzer, J., & McCauley, E. (2016). “The Contextualized Technology Adaptation Process (CTAP): Optimizing Health Information Technology to Improve Mental Health Systems”, Administration and Policy in Mental Health and Mental Health Services Research, Vol. 43 No. 3, pp. 394–409. Open Google Scholar
- Mitchell, T. M. (2017). Machine Learning, McGraw-Hill, India. Open Google Scholar
- Nedjah, N., Luiza, M. M., & Kacprzyk, J. (2009). Innovative Applications in Data Mining, Springer-Verlag, Berlin. Open Google Scholar
- Ng, X. W., & Chung, W. Y. (2012). “VLC-based Medical Healthcare Information System”, Biomedical Engineering: Applications, Basis and Communications, Vol. 24 No. 2, pp. 155–163. Open Google Scholar
- Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach, O’Reilly Media, Inc., USA. Open Google Scholar
- Python, (2019). Programming language. Retrieved from https://www.python.org/downloads/ windows/ Open Google Scholar
- Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., & Lopez, A. J. S. (2009). Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Publishing, USA. Open Google Scholar
- Quinlan, R. J. (1992). “Learning with Continuous Classes”, in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, 1992, pp. 343–348. Open Google Scholar
- Ravinesh, C. D., & Şahin, M. (2015). “Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia”, Applied Soft Computing, Vol. 153, pp. 512–525. Open Google Scholar
- Reyes, J., Morales-Esteban, A., & Martinez-Alvarez, F. (2013). “Neural networks to predict earthquakes in Chile”, Applied Soft Computing, Vol. 13 No. 2, pp. 1314–1328. Open Google Scholar
- Samudrala, S. (2019). Machine Intelligence: Demystifying Machine Learning, Neural Networks and Deep Learning, Notion Press, Chennai. Open Google Scholar
- Scagliarini, M., Apreda, M., Wienand, U., & Valpiani, G. (2016). "Monitoring operating room turnaround time: a retrospective analysis", International Journal of Health Care Quality Assurance, Vol. 29 No. 3, pp. 351–359. Open Google Scholar
- Sinreich, D., & Marmor, Y. (2005). "Ways to reduce patient turnaround time and improve service quality in emergency departments", Journal of Health Organization and Management, Vol. 19 No. 2, pp. 88–105. Open Google Scholar
- Söderholm, H.M., & Sonnenwald, D. H. (2010). "Visioning Future Emergency Healthcare Collaboration: Perspectives from Large and Small Medical Centers", Journal of The American Society for Information Science and Technology, Vol. 61 No. 9, pp. 1808–1823. Open Google Scholar
- Storrow, A. B., Zhou, C., Gaddis, G., Han, J. H., Miller, K., Klubert, D., Laidig A., & Aronsky, D. (2008). “Decreasing Lab Turnaround Time Improves Emergency Department Throughput and Decreases Emergency Medical Services Diversion: A Simulation Model”, Academic Emergency Medicine, Vol. 15 No. 11, pp. 1130–1135. Open Google Scholar
- Stvilia, B., Mon, L., & Yi, Y. J. (2009). "A Model for Online Consumer Health Information Quality", Journal of the American Society for Information Science and Technology, Vol. 60 No. 9, pp. 1781–1791. Open Google Scholar
- Tensorflow (2019). An open source machine learning framework for everyone. Retrieved from https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md Open Google Scholar
- Wang, Y. & Witten, I. H. (1997). “Induction of model trees for predicting continuous classes”, in Poster papers of the 9th European Conference on Machine Learning, Prague, Czech Republic, 1997. Open Google Scholar
- Weka (2019). Data Mining Software in Java. Retrieved from http://www.cs.waikato.ac.nz/ ml/weka/ Open Google Scholar
- Willoughby, K. A., Chan, B. T. B., & Strenger, M. (2010). "Achieving wait time reduction in the emergency department", Leadership in Health Services, Vol. 23 No. 4, pp. 304–319. Open Google Scholar
- Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques, 3rd edition, The Morgan Kaufmann Series in Data Management Systems, Burlington. Open Google Scholar
- Wold, S, Sjöström, M., & Eriksson, L. (2001). "PLS-regression: a basic tool of chemometrics", Chemometrics and Intelligent Laboratory Systems, Vol. 58 No. 2, pp. 109–130. Open Google Scholar
- Yeh, I-C., & Lien, C. (2009). “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients”, Expert Systems with Applications, Vol. 36, pp. 2473–2480. Open Google Scholar
- Yu, L., Lai, K. K., & Wang, S. Y. (2006). “Currency Crisis Forecasting with General Regression Neural Networks”, International Journal of Information Technology & Decision Making, Vol. 5 No. 3, pp. 437–454. Open Google Scholar
- Application of Artificial Neural Networks in Growth Models by Semra Benzer, Recep Benzer Open Google Scholar
- Acatech, “Acatech: Recommendations for Implementing the Strategic Initiative Industrie 4.0”, Final Report of the Industry 4.0 Working Group, http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (15.12.2018). 2013. Open Google Scholar
- Altındağ, A., Shah, S.L., Yigit, S., The growth features of tench (Tinca tinca L., 1758) in Bayındır Dam Lake, Ankara, Turkey. Turk J Zool, 26, 385–391. 2002. Open Google Scholar
- Altındağ, A., Yiğit, S., Ahıska, S., Özkurt, Ş., The Growth Features of Tench (Tinca tinca L., 1758) in the Kesikköprü Dam Lake. Turk J Zool, 22, 311- 318. 1998. Open Google Scholar
- Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002. Open Google Scholar
- Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995. Open Google Scholar
- Bahçecitapar, M., and Aktaş, S. Use of linear mixed model in multicollinearity and an application. Sakarya University Journal of Science, 21(6), 1349–1359. 2017. Open Google Scholar
- Balık, İ., Çubuk, H., Çınar, Ş., Özkök, R., Population structure, growth, mortality and estimated stock size of the introduced tench, Tinca tinca (L.), population in Lake Beyşehir, Turkey. J Appl Ichthyol, 25, 206–210. 2009. Open Google Scholar
- Balık, S., Sarı, H.M., Ustaoğlu, M.R., Ilhan, A., The structure, mortality and growth of the tench (Tinca tinca L., 1758) in Çivril Lake, Denizli, Turkey. Turk J Vet Anim Sci, 28, 973–979. 2004. Open Google Scholar
- Banger, G. Industry 4.0 and Smart Business, Dorlion Press., Ankara (In Turkish). 2016. Open Google Scholar
- Benzer S. and Benzer R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Appl Ecol Environ Res, 14(2): 543–54. 2016. Open Google Scholar
- Benzer S., Benzer R. and Günay A.Ç., Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5): 527–35. 2017. Open Google Scholar
- Benzer, R. and Benzer, S., Application of artificial neural network into the freshwater fish caught in Turkey. International Journal of Fisheries and Aquatic Studies, 2(5), 341–346. 2015. Open Google Scholar
- Benzer, R., Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 12:1–15. 2015. Open Google Scholar
- Benzer, R., and Benzer, S. Alternative approaches for growth models: Artificial neural networks. 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE. 2018. Open Google Scholar
- Benzer, R., and Benzer, S., Growth and length–weight relationships of Pseudorasbora parva (Temminck & Schlegel, 1846) in Hirfanlı Dam Lake: Comparison with traditional and artificial neural networks approaches. Iranian Journal of Fisheries Sciences. DOI:10.22092/ijfs.2018.119889. 2019. Open Google Scholar
- Benzer, S. and Benzer, R., Comparative growth models of big-scale sand smelt (Atherina boyeri Risso, 1810) sampled from Hirfanlı Dam Lake, Kırşehir, Ankara, Turkey. Computational Ecology and Software 7(2): 82–90. 2017. Open Google Scholar
- Benzer, S., and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35–35. 2018. Open Google Scholar
- Benzer, S., Gül, A., Yılmaz, M., Growth Properties of Tench (Tinca tinca, L., 1758) Living in Kapulukaya Dam Lake, Turkey. Kastamonu Educ J, 18, 839–848. 2010. Open Google Scholar
- Benzer, S., Karasu Benli, Ç. and Benzer R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J Black Sea/Mediter Environ, 21(2): 208–23. 2015. Open Google Scholar
- Benzer, Ş.S., Gül, A., Yılmaz, M. Growth Properties of Tench (Tinca tinca, L., 1758) Living in Hirfanlı Reservoir (Kırşehir, Turkey). Iran J Fish Sci, 8, 219–224. 2009. Open Google Scholar
- Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991. Open Google Scholar
- Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017. 2017. Open Google Scholar
- Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999. Open Google Scholar
- Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009. Open Google Scholar
- Demirsoy, A., Basic Rules of Life, Vertebrates, (in Turkish). Hacettepe University Publication. III A/55: pp 684. 1998. Open Google Scholar
- Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z.. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823) (Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007 Open Google Scholar
- Erguden Alagoz, S., Goksu, M.Z.L., Age, growth and sex ratio of tench Tinca tinca (L., 1758) in Seyhan Dam Lake, Turkey. J Appl Ichthyol, 26, 546 -549. 2010. Open Google Scholar
- Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012. Open Google Scholar
- Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995. Open Google Scholar
- Geldiay, R. and Balık, S., Freshwater Fishes of Turkey, 3. Edition. Ege University press, No: 46, Izmir, 532 p. 1996. Open Google Scholar
- Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995. Open Google Scholar
- Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995. Open Google Scholar
- Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007. Open Google Scholar
- Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000. Open Google Scholar
- Innal, D., Population Structures and Some Growth Properties of Three Cyprinid Species [Squalius cephalus (Linnaeus, 1758); Tinca tinca (Linnaeus, 1758) and Alburnus escherichii Steindachner, 1897] Living in Camkoru Pond (Ankara-Turkey), Kafkas Univ Vet Fak Derg, 16, 297–304. 2010. Open Google Scholar
- ITRE Industry 4.0, European Parliament’s Committee on Industry, Research and Energy”,http://www.europarl.europa.eu/RegData/etudes/STUD/2016/570007/IPOL_STU(2016)570007_EN.pdf (15.12.2018) 2016. Open Google Scholar
- Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004. Open Google Scholar
- Kagermann, H., Lukas, W. and Wahlster, W., Industrie 4.0 -Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, Inhalte der Ausgabe Nr. 13/2011,VDI Nachrichten, Berlin. 2011. Open Google Scholar
- Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013. Open Google Scholar
- Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011. Open Google Scholar
- Lagler, K.F., Freshwater fishery biology. W.M.C. Brown Company, Dubuque, IA. 421. 1966. Open Google Scholar
- Lek, S., and Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999. Open Google Scholar
- Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982. Open Google Scholar
- Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983. Open Google Scholar
- Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003. Open Google Scholar
- Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997. Open Google Scholar
- Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004. Open Google Scholar
- Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002. Open Google Scholar
- Nikolsky, G.V., The ecology of fishes (translated by L. Birkett). Academic Press, London, pp 352. 1963. Open Google Scholar
- Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001. Open Google Scholar
- Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001. Open Google Scholar
- Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008. Open Google Scholar
- Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017. Open Google Scholar
- Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003. Open Google Scholar
- Pimpica, E., Pinos, B., Growth of Female Tench, Tinca tinca (L.,1758) in Lake Dgal Wielki, NE Poland. Folia Zool, 48, 143–148. 1999. Open Google Scholar
- Pompei, L., Franchi, E., Giannetto, D., Lorenzoni, M., Growth and reproductive properties of tench, Tinca tinca Linnaeus, 1758 in Trasimeno Lake (Umbria, Italy), Knowl Manag Aquat Ec, 406, 1–13. 2012. Open Google Scholar
- Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998. Open Google Scholar
- Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973. Open Google Scholar
- Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017. Open Google Scholar
- Rosa, H., A synopsis of the biological data on the tench, Tinca tinca (L., 1758). FAO 58, 951. 1958. Open Google Scholar
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986. Open Google Scholar
- Sarı, M. Artificial Neural Networks And Sales Demand Forecasting Application In The Automotive Industry. Msc Thesis. Sakarya University. 2016. Open Google Scholar
- Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004. Open Google Scholar
- Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015. Open Google Scholar
- Sinis, A.I., Meunier, F.J., Vieillot, H.F., Comparision of sclaes, opercular bones, and Vertabrae to Determine Age and Population Structure in Tench, Tinca tinca (L., 1758) (Pisces, teleostei), Israel J Zool, 45, 453–465.1999. Open Google Scholar
- Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986. Open Google Scholar
- Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009. Open Google Scholar
- Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008. Open Google Scholar
- Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008. Open Google Scholar
- Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006. Open Google Scholar
- Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007. Open Google Scholar
- Tureli Bilen, C, Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Mediterranean Marine Science, 12(2):439–446. 2011. Open Google Scholar
- Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006. Open Google Scholar
- Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002. Open Google Scholar
- Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992. Open Google Scholar
- Wright, R.M., Giles, N. The population biology of tench, Tinca tinca (L.) in two gravel pit lakes. J Fish Biol, 38, 17–28. 1991. Open Google Scholar
- Alternative approaches to traditional methods for growth parameters of fisheries industry: Artificial Neural Networks by Recep Benzer, Semra Benzer Open Google Scholar
- Aksu, Ö. and Harlioğlu, M.M., The Effect of Placing Hides into the Natural Habitat on Astacus Leptodactylus (Eschscholtz, 1823) Harvest. Ecological Life Sciences, 11(2), 1–10. 2016. Open Google Scholar
- Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002. Open Google Scholar
- Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995. Open Google Scholar
- Aydin, H., Harlioğlu, M.M. and Deniz, T., An investigation on the population parameters of freshwater crayfish (Astacus leptodactylus Esch., 1823) in Lake İznik (Bursa). Turkish Journal of Zoology, 39(4), 660–668. 2015. Open Google Scholar
- Azari, M.A., Seidgar, M. and Mohebbi, F., Population dynamics of freshwater crayfish (Astacus leptodactylus) in Aras reservoir, Iran. Environ. Resourc. Res., 3: 15–26. 2015. Open Google Scholar
- Azari, S., Jhin, G., Papini, M. and Spelt, J.K., Fatigue threshold and crack growth rate of adhesively bonded joints as a function of load/displacement ratio. Composites Part A 57, 59–66. 2014. Open Google Scholar
- Balık, S., Ustaoğlu, M.R., Sarı H.M., Berber, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). EU Journal of Fisheries & Aquatic Sciences, 22(1–2): 83–89. 2005. Open Google Scholar
- Baran İ, Soylu E., Crayfish plague in Turkey (short communication). J Fish Dis 12: 193–197. 1989. Open Google Scholar
- Benzer, R. Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 24(2), 460–466. 2015. Open Google Scholar
- Benzer, S and Benzer, R., Determine Some Morphological Characteristics of Crayfish (Astacus Leptodactylus Eschscholtz, 1823) with Tradional Methods and Artificial Neural Networks in Dikilitas Pond, Ankara, Turkey. Fresenius Environmental Bulletin, 24 (11A):3727–3735. 2015. Open Google Scholar
- Benzer, S., Karasu Benli, Ç., Benzer, R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J. Black Sea/Mediterranean Environment, 21(2):208–223. 2015. Open Google Scholar
- Benzer, S and Benzer, R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Applied Ecology and Environmental Research; 14(2), 543–554. 2016. Open Google Scholar
- Benzer, S, Benzer, R and Gül A., Developments in Science and Engineering. St. Kliment Ohridski University Presssofia, Chaper 5: Artificial Neural Networks Application for Biological Systems: The Case Study of Pseudorasbora parva.; A. ISBN 978–954–07–4137–6. 2016. Open Google Scholar
- Benzer, S., Benzer, R., and Günal, A. Ç. Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5), 527–535. 2017. Open Google Scholar
- Benzer, S. and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan J. Zool. 50(1):35–45. 2018. Open Google Scholar
- Berber, S. and Balık, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Manyas Lake (Balıkesir), EU Journal of Fisheries & Aquatic Sciences, 23(1–2):83–91. 2006. Open Google Scholar
- Berber, S. and Balık, S., The length-weight relationships, and meat yield of crayfish (Astacus leptodactylus Eschcholtz, 1823) population in Apolyont Lake (Bursa, Turkey). J Fish Sci., 3(2):86–99. 2009. Open Google Scholar
- Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991. Open Google Scholar
- Bolat, Y., Mazlum, Y., Demirci, A., & Koca, H. U. Estimating the population size of Astacus leptodactylus (Decapoda: Astacidae) by mark-recapture technique in Egirdir lake, Turkey. African Journal of Biotechnology, 10(55), 11778. 2011. Open Google Scholar
- Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017. Open Google Scholar
- Bök, T. D., Aydın, H., & Ateş, C. A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. Journal of Black Sea/Mediterranean Environment, 19(2). 2013. Open Google Scholar
- Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999. Open Google Scholar
- Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009. Open Google Scholar
- Demirol, F., Gündüz, F., Yüksel, F., Çoban, M.Z., Abdulmutalip, B.E.R.İ., Kurtoğlu, M. and Küçükyilmaz, M., The Investigation of By-catch and Discard Rates in Crayfish (Astacus leptodactylus Eschscholtz, 1823) Catching in the Keban Dam Lake. Journal of Limnology and Freshwater Fisheries Research, 1(2), 69–74. 2015. Open Google Scholar
- Deniz, T.B., Aydın, C. and Ateş, C., A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. J Black Sea/Mediterranean Environment., 19(2):190˗205. 2013. Open Google Scholar
- Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823)(Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007. Open Google Scholar
- Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., & Puche, J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 407). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). 2016. Open Google Scholar
- Ekici, B.B. and Aksoy, U.T., Prediction of building energy consumption by using artificial neural networks, Advances in Engineering Software, 40: 356–362. 1993. Open Google Scholar
- Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012. Open Google Scholar
- Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995. Open Google Scholar
- Furst, M., Future perspectives for Turkish crayfish fishery. I Unv J Fish Aquat Sci 2: 139–147. 1988. Open Google Scholar
- Füreder, L., Oberkofler, B., Hanel, R., Leiter J. and Thaler, B., The freshwater crayfish Austropotamobius pallipes in South Tyrol: Heritage species and bioindicator. B Fr Peche Piscic., 370–371:79−95. 2003. Open Google Scholar
- Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995. Open Google Scholar
- Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995. Open Google Scholar
- Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007. Open Google Scholar
- Gutiérrez-Yurrita, P.J., Martínez, J.M., Bravo-Utrera, M.A., Montes, C., Ilhéu M. and Bernardo, J.M., The status of crayfish populations in Spain and Portugal. Pages 161–192 in F. Gherardi, and D. M. Holdich, editors. Crayfish in Europe as alien species: how to make the best of a bad situation? A. A. Balkema, Rotterdam, Netherlands. 1999. Open Google Scholar
- Harlioğlu, M. M. Comparative biology of the signal crayfish, Pacifastacus leniusculus (Dana), and the narrow-clawed crayfish, Astacus leptodactylus Eschscholtz (Doctoral dissertation, University of Nottingham). 1996. Open Google Scholar
- Harlioğlu, M.M., The Relationships between Length-Weight, and Meat Yield of Freshwater Crayfish, Astacus leptodactylus Eschscholtz, in the Ağın Region of Keban Dam Lake. Turk J Zool., 23: 949–958. 1999. Open Google Scholar
- Harlioğlu, M.M., The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. Aquaculture, 230:181–187. 2004. Open Google Scholar
- Harlioğlu, M.M. and Harlioğlu, A.G., The comparison of morphometric analysis and meat yield contents of freshwater crayfish, Astacus leptodactylus (Esch 1823) caught from İznik, Eğirdir Lakes and Hirfanlı Dam Lake, Science and Engineering Journal of Fırat University, 17(2):412–423. 2005. Open Google Scholar
- Hogger, J. B., Ecology, population biology and behaviour, In: D.M. Holdich and R.S. Lowery (eds.), Freshwater Crayfish, Biology, Menagement and Exploitation, Cambridge, 114–144. 1988. Open Google Scholar
- Holdich, D.M. and Lowery, R.S., Freshwater Crayfish – Biology, Management and Exploitation. Chapman and Hall, London. 498 p. 1988. Open Google Scholar
- Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000. Open Google Scholar
- Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004. Open Google Scholar
- Kaastra, I., Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215–236. 1996. Open Google Scholar
- Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013. Open Google Scholar
- Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011. Open Google Scholar
- Lek, S., & Guégan, J. F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999. Open Google Scholar
- Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982. Open Google Scholar
- Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983. Open Google Scholar
- Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003. Open Google Scholar
- Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997. Open Google Scholar
- Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004. Open Google Scholar
- Momot, W. T. Annual production and production/biomass of the crayfish, Orconectes virilis in two northern Ontario Lakes. Trans. Am. Fish. Soc., 96: 202–209. 1978. Open Google Scholar
- Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002. Open Google Scholar
- Nystrom, P. Ecology. In: Biology of Freshwater Crayfish (ed. D. M. Holdich), pp. 192–235. Blackwell Science, Oxford. 2002. Open Google Scholar
- Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001. Open Google Scholar
- Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001. Open Google Scholar
- Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008. Open Google Scholar
- Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017. Open Google Scholar
- Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003. Open Google Scholar
- Pârvulescu L., Schrimpf A., Kozubíková E., Cabanillas Resino S., Vrålstad T., Petrusek A & Schulz R. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94. 2012. Open Google Scholar
- Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998. Open Google Scholar
- Rahe R, Soylu E. Identification of the pathogenic fungus causing destruction to Turkish crayfish stocks (Astacus leptodactylus). J Invertebr Pathol 54: 10–15. 1989. Open Google Scholar
- Rhodes, C.P. and Holdich, D.M., On size and sexual dimorphism in Austropotamobius pallipes (Lereboullet) – A step in assessing the commercial exploitation potential of the native British freshwater crayfish. Aquaculture, 17: 345–358. 1979. Open Google Scholar
- Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973. Open Google Scholar
- Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017. Open Google Scholar
- Romaire, R.P., Forester J.S. and Avault, J.W., Length˗weight relationships of two commercially important crayfishes of the genus Procambarus. Freshwater Crayfish, 3:463˗470. 1977. Open Google Scholar
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986. Open Google Scholar
- Sari, B. G., Lúcio, A. D. C., Santana, C. S., Krysczun, D. K., Tischler, A. L., & Drebes, L. Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests. Ciência Rural, 47(10):1–6. 2017. Open Google Scholar
- Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004. Open Google Scholar
- Sharda, R., Patil, R. B. Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. 1992. Open Google Scholar
- Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015. Open Google Scholar
- Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986. Open Google Scholar
- Skurdal, J. and Taugbol, T., Crayfish of commercial importance-Astacus. In: D.M. Holdich (Ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford: 467–510. 2001. Open Google Scholar
- Souty-Grosset, C., Holdrich, D.M., Noel, P.Y., Reynolds, J.D. and Haffner, P., Atlas of crayfish in Europe. Publications Scientifiques du MNHN-Paris. 2006. Open Google Scholar
- Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009. Open Google Scholar
- Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008. Open Google Scholar
- Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008. Open Google Scholar
- Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006. Open Google Scholar
- Tesch, F.W., Age and growth. In: Methods for Assessment of Fish Production in Fresh Waters (ed., W. E. Ricker), Blackwell Scientific Publications, Oxford, 99˗130. 1971. Open Google Scholar
- Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007. Open Google Scholar
- Tureli Bilen, C., Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Medit Mar Sci., 12(2):439–446. 2011. Open Google Scholar
- TÜİK Aquaculture Statistics. Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). www.tuik.gov.tr. 2018. Open Google Scholar
- TÜİK, Aquaculture Statistics (1984–1991). Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). 1984–1991. Open Google Scholar
- Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006. Open Google Scholar
- Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002. Open Google Scholar
- Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992. Open Google Scholar
- Yüksel, F., and Duman, E. The investigation of the crayfish (Astacus leptodactylus Eschscholtz, 1823) population amplitude in Keban Dam Lake. Journal of FisheriesSciences. com, 5(3), 226. 2011. Open Google Scholar
- Would the Benefits Created by Industry 4.0 Via Innovations Set the Consumers Free of Planned Obsolescence? by Sinem Zeliha Dalak, Cagla Seneler Open Google Scholar
- Accenture.com. (2018). Airbus | Wearable Technology | Accenture. [online] Available at: https://www.accenture.com/gb-en/success-airbus-wearable-technology Open Google Scholar
- Adamson, G. and Stevens, B. (2003). Industrial strength design. Milwaukee, Wis.: Milwaukee Art Museum. Open Google Scholar
- AM Sub-Platform. (2014). Additive Manufacturing: Strategic Research Agenda. [online] Available at: http://www.rm-platform.com/linkdoc/AM%20SRA%20-%20February%202014.pdf Open Google Scholar
- Amankwah-Amoah, J. (2017). Integrated vs. add-on: A multidimensional conceptualisation of technology obsolescence. Technological Forecasting and Social Change, 116, pp.299 – 307. Open Google Scholar
- Auschitzky, E., Hammer, M. and Rajagopaul, A. (2018). How big data can improve manufacturing. [online] McKinsey & Company. Available at: https://www.mckinsey.com/business-functions/operations/our-insights/how-big-data-can-improve-manufacturing Open Google Scholar
- Bertolucci, J. (2018). Intel Cuts Manufacturing Costs With Big Data – InformationWeek. [online] InformationWeek. Available at: https://www.informationweek.com/software/information-management/intel-cuts-manufacturing-costs-with-big-data/d/d-id/1109111 [Accessed 25 Nov. 2018]. Open Google Scholar
- Bidgoli, H. (2010). Supply chain management, marketing and advertising, and global management. Hoboken, NJ: Wiley. Open Google Scholar
- Bokhari, M., Shallal, Q. and Tamandani, Y. (2016). Cloud computing service models: A comparative study. IEEE. Open Google Scholar
- Bulow, J. (1986). An Economic Theory of Planned Obsolescence. The Quarterly Journal of Economics, 101(4), p.729. Open Google Scholar
- Burgess, J. (2018). 4 Big Data Use Cases in the Manufacturing Industry. [online] Ingrammicroadvisor.com. Available at: http://www.ingrammicroadvisor.com/data-center/4-big-data-use-cases-in-the-manufacturing-industry Open Google Scholar
- Butt, T., Camilleri, M., Paul, P. and Jones, K. (2015). Obsolescence types and the built environment – definitions and implications. International Journal of Environment and Sustainable Development, 14(1), p.20. Open Google Scholar
- Castells, M. (2014). The Impact of the Internet on Society: A Global Perspective. [online] MIT Technology Review. Available at: https://www.technologyreview.com/s/530566/the-impact-of-the-internet-on-society-a-global-perspective/ Open Google Scholar
- Credit Suisse. (2015). Global Wealth Report. [online] Available at: http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=F2425415-DCA7-80B8-EAD989AF9341D47E Open Google Scholar
- Deloitte. (2017). Using autonomous robots to drive supply chain innovation. [online] Available at: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-supply-chain-of-the-autonomous-robots.pdf Open Google Scholar
- Erol, S., Jäger, A., Hold, P., Ott, K. and Sihn, W. (2016). Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP, 54, pp.13 – 18. Open Google Scholar
- Fishman, A., Gandal, N. and Shy, O. (1993). Planned Obsolescence as an Engine of Technological Progress. The Journal of Industrial Economics, 41(4), p.361. Open Google Scholar
- Frey, C. and Osborne, M. (2013). THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION?. [online] Available at: https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf Open Google Scholar
- Gartner.com. (2018). Gartner Says 6.4 Billion Connected. [online] Available at: https://www.gartner.com/newsroom/id/3165317 Open Google Scholar
- Ge.com. (2018). Everything you need to know about IIoT | GE Digital. [online] Available at: https://www.ge.com/digital/blog/everything-you-need-know-about-industrial-internet-things Open Google Scholar
- Ge.com. (2018). What is Edge Computing? | GE Digital. [online] Available at: https://www.ge.com/digital/blog/what-edge-computing#to-section-index=section-8 GE Additive. (2018). What is Additive Manufacturing?. [online] Available at: https://www.ge.com/additive/additive-manufacturing Open Google Scholar
- Guiltinan, J. (2008). Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. Journal of Business Ethics, 89(S1), pp.19 – 28. Open Google Scholar
- Grattan, L. (2016). Populism's power. Oxford: Oxford University Press. Open Google Scholar
- Grieves, M. (2014). [online] Innovate.fit.edu. Available at: http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf Open Google Scholar
- Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html Open Google Scholar
- Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html [Accessed 30 Dec. 2018]. Open Google Scholar
- Hozdić, E. (2015). MANUFACTURING FOR INDUSTRY 4.0. Open Google Scholar
- Hozdić, Elvis. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies. 7. 28–35. Open Google Scholar
- Huelsman, T., Powers, E., Peasley, S. and Robinson, R. (2016). Cyber risk in advanced manufacturing. [online] Available at: https://www.nist.gov/sites/default/files/documents/2016/12/28/cyberrisk_manu_fullstudy_landscape_brochure_lpxcic07_06_17_7101_finalfor.pdf Open Google Scholar
- Kadir, B. (2017). The nine pillars of Industry 4.0. [online] 4th Post | Industry 4.0 | Smart Manufacturing | Research. Available at: https://www.4thpost.com/single-post/2017/07/23/The-nine-pillars-of-Industry-40 Open Google Scholar
- Kenton, W. (2018). End-To-End. [online] Investopedia. Available at: https://www.investopedia.com/terms/e/end-to-end.asp Open Google Scholar
- Kenton, W. (2018). Functional Obsolescence. [online] Investopedia. Available at: https://www.investopedia.com/terms/f/functional-obsolescence.asp Open Google Scholar
- Kenton, W. (2018). Vertical Integration. [online] Investopedia. Available at: https://www.investopedia.com/terms/v/verticalintegration.asp Open Google Scholar
- Kenton, W. (2018). What are some examples of horizontal integration?. [online] Investopedia. Available at: https://www.investopedia.com/ask/answers/051315/what-are-some-examples-horizontal-integration.asp Open Google Scholar
- Kessler, T. and Brendel, J. (2016). Planned Obsolescence and Product-Service Systems: Linking Two Contradictory Business Models. Open Google Scholar
- Keynes, J. (1931). Economic Possibilities for our Grandchildren. Open Google Scholar
- Khaleeli, H. (2015). End of the line for stuff that's built to die?. [online] the Guardian. Available at: https://www.theguardian.com/technology/shortcuts/2015/mar/03/has-planned-obsolesence-had-its-day-design Open Google Scholar
- Knight, E. (2014). The Art of Corporate Endurance. [online] Harvard Business Review. Available at: https://hbr.org/2014/04/the-art-of-corporate-endurance Open Google Scholar
- Kim, E. (2018). Amazon's $775 million deal for robotics company Kiva is starting to look really smart. [online] Business Insider. Available at: https://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6 Open Google Scholar
- Kumari, P. and Kaur, P. (2018). A survey of fault tolerance in cloud computing. Journal of King Saud University – Computer and Information Sciences. Open Google Scholar
- Kuppelwieser, V., Klaus, P., Manthiou, A. and Boujena, O. (2018). Consumer responses to planned obsolescence. Journal of Retailing and Consumer Services, 47, pp.157 – 165. Open Google Scholar
- London, B. (1932). Ending the Depression Through Planned Obsolescence. Open Google Scholar
- Lueth, K. (2015). IoT basics: Getting started with the Internet of Things. [online] Available at: https://iot-analytics.com/wp/wp-content/uploads/2015/03/2015-March-Whitepaper-IoT-basics-Getting-started-with-the-Internet-of-Things.pdf Open Google Scholar
- Mearian, L. (2017). MIT creates 3D printed graphene that’s lighter than air, 10X stronger than steel. [online] Computerworld. Available at: https://www.computerworld.com/article/3155102/emerging-technology/mit-creates-3d-printed-graphene-thats-lighter-than-air-10x-stronger-than-steel.html Open Google Scholar
- Naím, M. (2013). The End of Power: From Boardrooms to Battlefields and Churches to States, Why Being In Charge Isn't What It Used to Be. Open Google Scholar
- Neagle, C. (2013). 10 augmented reality technologies you should know about. [online] Network World. Available at: https://www.networkworld.com/article/2358001/data-center/90615-10-augmented-reality-technologies-you-should-know-about.html#slide2 [Accessed 21 Dec. 2018]. Open Google Scholar
- OECD. (2011). Divided We Stand: Why Inequality Keeps Rising. [online] Available at: http://www.oecd.org/els/soc/49499779.pdf Open Google Scholar
- Ohnemus, T. (2018). Digital Twin Excellence: Two Shining Examples. [online] Digitalistmag.com. Available at: https://www.digitalistmag.com/iot/2018/06/14/digital-twin-excellence-2-shining-examples-06175901 Open Google Scholar
- Orbach, B. (2004). The Durapolist Puzzle: Monopoly Power in Durable-Goods Market. Yale Journal on Regulation, 21, pp.67 – 118. Open Google Scholar
- Parrott, A. and Warshaw, L. (2017). Industry 4.0 and the digital twin Manufacturing meets its match. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html Open Google Scholar
- Qin, J., Liu, Y. and Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, pp.173 – 178. Open Google Scholar
- Packard, V. (1960). The Waste Makers. Great Britain, London: Longmans. Open Google Scholar
- Patidar, S., Rane, D. and Jain, P. (2012). A Survey Paper on Cloud Computing. 2012 Second International Conference on Advanced Computing & Communication Technologies. Open Google Scholar
- Ramsey, M. and MacMillan, D. (2015). Carnegie Mellon Reels After Uber Lures Away Researchers. [online] WSJ. Available at: https://www.wsj.com/articles/is-uber-a-friend-or-foe-of-carnegie-mellon-in-robotics-1433084582 Open Google Scholar
- Rangnekar, D. (2002). R&D appropriability and planned obsolescence: empirical evidence from wheat breeding in the UK (1960–1995). Industrial and Corporate Change, 11(5), pp.1011 – 1029. Open Google Scholar
- Rimal, B., Choi, E. and Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing Systems. 2009 Fifth International Joint Conference on INC, IMS and IDC. Open Google Scholar
- Rivera, J. and Lallmahomed, A. (2016). Environmental implications of planned obsolescence and product lifetime: a literature review. International Journal of Sustainable Engineering, 9(2), pp.119 – 129. Open Google Scholar
- Rodič, B. (2017). Industry 4.0 and the New Simulation Modelling Paradigm. Organizacija, 50(3), pp.193 – 207. Open Google Scholar
- Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. and Harnisch, M. (2018). Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. [online] Inovasyon.org. Available at: http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf Open Google Scholar
- Saikia, D. and Devi, Y. (n.d.). FAULT TOLEREANE TECHNIQUES AND ALGORITHMS IN CLOUD COMPUTING. [online] Ijcscn.com. Available at: https://www.ijcscn.com/Documents/Volumes/vol4issue1/ijcscn2014040101.pdf Open Google Scholar
- Savu, L. (2011). Cloud Computing: Deployment Models, Delivery Models, Risks and Research Challenges. 2011 International Conference on Computer and Management (CAMAN). Open Google Scholar
- Schuh, G., Potente, T., Wesch-Potente, C., Weber, A. and Prote, J. (2014). Collaboration Mechanisms to Increase Productivity in the Context of Industrie 4.0. Procedia CIRP, 19, pp.51 – 56. Open Google Scholar
- Schwab, K. (2016). The Fourth Industrial Revolution. World Economic Forum. Open Google Scholar
- Scott, M. (2017). 3D Printing Will Change The Way We Make Things And Design Them In 2017. [online] Forbes.com. Available at: https://www.forbes.com/sites/mikescott/2017/01/25/3d-printing-will-change-the-way-we-make-things-in-2017/#107a1385310e Open Google Scholar
- Singh, S., Jeong, Y. and Park, J. (2016). A survey on cloud computing security: Issues, threats, and solutions. Journal of Network and Computer Applications, 75, pp.200 – 222. Open Google Scholar
- Sivarajah, U., Kamal, M., Irani, Z. and Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, pp.263 – 286. Open Google Scholar
- Stewart, I. (1959). Day Conference in Gloucestershire. Occupational Therapy: the Official Journal of the Association of Occupational Therapists, 22(11), pp.14 – 15. Open Google Scholar
- Stock, T. and Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP, 40, pp.536 – 541. Open Google Scholar
- Strausz, R. (2009). Planned Obsolescence as an Incentive Device for Unobservable Quality. The Economic Journal, 119(540), pp.1405 – 1421. Open Google Scholar
- Swan, P. (1972). Optimum Durability, Second-Hand Markets, and Planned Obsolescence. Journal of Political Economy, 80(3, Part 1), pp.575 – 585. Open Google Scholar
- Thoben, K., Wiesner, S. and Wuest, T. (2017). “Industrie 4.0” and Smart Manufacturing – A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1), pp.4 – 16. Open Google Scholar
- Tofail, S., Koumoulos, E., Bandyopadhyay, A., Bose, S., O’Donoghue, L. and Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), pp.22 – 37. Open Google Scholar
- Utaka, A. (2000). Planned obsolescence and marketing strategy. Managerial and Decision Economics, 21(8), pp.339 – 344. Open Google Scholar
- Vaidya, S., Ambad, P. and Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia Manufacturing, 20, pp.233 – 238. Open Google Scholar
- Waldman, M. (1996). Planned Obsolescence and the R&D Decision. The RAND Journal of Economics, 27(3), p.583. Open Google Scholar
- Waslo, R., Lewis, T., Hajj, R. and Carton, R. (2017). [online] Www2.deloitte.com. Available at: https://www2.deloitte.com/content/dam/insights/us/articles/3749_Industry4-0_cybersecurity/DUP_Industry4-0_cybersecurity.pdf Open Google Scholar
- Wetterstrand, K. (2015). The Cost of Sequencing a Human Genome. [online] National Human Genome Research Institute (NHGRI). Available at: https://www.genome.gov/sequencingcosts/ Open Google Scholar
- White, L. (1969). The American Automobile Industry in the Post War Period. Open Google Scholar
- World Economic Forum. (2015). Data-Driven Development Pathways for Progress. [online] Available at: http://www3.weforum.org/docs/WEFUSA_DataDrivenDevelopment_Report2015.pdf Open Google Scholar
- Zissis, D. and Lekkas, D. (2012). Addressing cloud computing security issues. Future Generation Computer Systems, 28(3), pp.583–592. Open Google Scholar
- Industry 4.0 and Big Data Literature Review by Burcu OZCAN, Cevher HİLAL AYTAC Open Google Scholar
- Abouelmehdi, K., Beni-hssane, A., Khaloufi H., et. al. (2017). Big Data Security and Privacy in Healthcare: A Review. Procedia Comput Science, 113,73–80. Open Google Scholar
- Ackermann, K. and Angus, S.D. (2014). A Resource Efficient Big Data Analysis Method for the Social Sciences: The Case of Global IP Activity. Procedia Comput Science, 29, 2360–2369. Open Google Scholar
- Aikat, J., Carsey T.M., Fecho K., et al. (2017). Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education. Big Data, 5 (1), 12–18. Open Google Scholar
- Akhavan-Hejazi, H., Mohsenian-Rad, H. (2018). Power Systems Big Data Analytics: An Assessment of Paradigm Shift Barriers and Prospects. Energy Reports, 4, 91–100. Open Google Scholar
- Arslantekin, S. and Doğan, K. (2016). Big Data: Its Importance, Structure and Current Status. DTCF Journal, 56, 15–36. Open Google Scholar
- Baccarelli, E., Cordeschi, N., Mei A., et. al. (2016). Energy-efficient Dynamic Traffic Offloading and Reconfiguration of Networked Data Centers for Big Data Stream Mobile Computing: Review, Challenges and A Case Study. IEEE Network, 30 (2), 54–61. Open Google Scholar
- Bartevyan, L. Industry 4.0 – Summary Report. (2015). DLG: Expert Report. (Report No:5), 1–8. Open Google Scholar
- Bello-Orgaz, G., Jung, J.J., Camacho, D. (2016). Social Big Data: Recent Achievements and New Challenges. Information Fusion, 28, 45–59. Open Google Scholar
- Benjelloun, F.Z., Lahcen, A.A., Belfkih, S. (2015, March). An Overview of Big Data Opportunities, Applications and Tools. 2015 Intelligent Systems and Computer Vision (ISCV), 1–6. Open Google Scholar
- Blazquez, D. and Domenech, J. (2018). Big Data Sources and Methods for Social and Economic Analyses. Technological Forecasting & Social Change, 130, 99–113. Open Google Scholar
- Brettel, M., Friederichsen, N., Keller, M. et. al. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. International Journal of Information and Computer Engineering, 8 (1), 37–44. Open Google Scholar
- Cackett, D. Information Management and Big Data, A Reference Architecture. White paper. Redwood Shores: Oracle Corporation. 2013; Accessed: 20 April 2016. https://www.oracle.com/technetwork/topics/entarch/articles/info-mgmt-big-data-ref-arch-1902853.pdf Open Google Scholar
- Can, A.V. and Kıymaz, M. (2016). Reflection of Information Technologies to Retail Sector: Impact of Industry 4.0 to Accounting Departments. Journal of Suleyman Demirel University Institute of Social Sciences, Special Issue, 107–117. Open Google Scholar
- Celesti, A., Celesti, F., Fazio, M., et. al. (2017). Are Next-Generation Sequencing Tools Ready for the Cloud? Trsoends in Biotechnology, 35 (6), 486–489. Open Google Scholar
- Chang, V. (2018). A Proposed Social Network Analysis Platform for Big Data Analytics. Technological Forecasting and Social Change, 130, 57–68. Open Google Scholar
- Chen, R. and Lazer, M. (2013). Sentiment Analysis of Twitter Feeds for the Prediction of Stock Market Movement. Accessed: 25.01.2013. http://cs229.stanford.edu/proj2011/ChenLazer-SentimentAnalysisOfTwitterFeedsForThePredictionOfStockMarketMovement.pdf. Open Google Scholar
- Chen, P. (2018). Medical Big Data Applications: Intertwined Effects and Effective Resource Allocatiın Strategies Identified Through IRA-NRM Analysis. Technologies Forecasting and Social Change, 150–164. Open Google Scholar
- Chen, D.Q., Preston, D.S., Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4), 4–39. Open Google Scholar
- Chung, M.K. (2018). Statistical Challenge of Big Brain Network Data. Statistics & Probability Letters, 136, 78–82. Open Google Scholar
- Corte-Real, N., Ruivo, P., Oliveira, T. (2014). The Diffusion Stages of Business Intelligence & Analytics (BI&A): A Systematic Mapping Study. Procedia Technology, 16, 172–179. Open Google Scholar
- Davenport, T.H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Boston Massachusetts: Harvard Business Press. Open Google Scholar
- Dong, X., Li, R., He, H., et al. (2015). Secure Sensitive Data Sharing on a Big Data Platform. Tsinghua Science and Technology, 20 (1), 72–80. Open Google Scholar
- Du, D., Li, A., Zhang, L. (2014). Survey on the Applications of Big Data in Chinese Real Estate Enterprise. Procedia Computer Science, 30, 24–33. Open Google Scholar
- EBSO,Aegean Region Chamber of Industry (2015). Industry 4.0. Research Directorate. Open Google Scholar
- Elragal, A. (2014). ERP and Big Data: The Inept Couple. Procedia Technology,16, 242–249. Open Google Scholar
- Erevelles, S., Fukawa, N., Swayne, L. (2016). Big Data Consumer Analytics and the Transformation of Marketing. Journal of Business Research, 69 (2), 897–904. Open Google Scholar
- Fessele, K.L. (2018). The Rise of Big Data in Oncology. Seminars in Oncology Nursing, 34 (2), 168–176. Open Google Scholar
- Gandomi, A. and Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management,35 (2), 137–144. Open Google Scholar
- Germano, G. (2015). How Pfizer is Using Big Data to Power Patient Care. Forbes. Accessed:03.09.2015. http://www.forbes.com/sites/matthewherper/2015/02/17/how-pfizer-is-using-big-data-to-power-patient-care/#3a8f6ee8ceb4 Open Google Scholar
- Gleaser, E.L., Kominers, S.D., Luca, M., et al. (2016). Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life. Economic Inquiry, 56 (1),114–137. Open Google Scholar
- Golzer, P., Simon, L., Cato, P., et al. (2015). Designing Global Manufacturing Networks Using Big Data. Procedia CIRP, 33,191–196. Open Google Scholar
- Gu, F., Ma, B., Guo, J. et al. (2017). Internet of Things and Big Data as Potential Solutions to thSe Problems in Waste Electrical and Electronic Equipment Management: An exploratory Study. Waste Management, 68, 434–448. Open Google Scholar
- Gursakal, N. (2014). Big Data. Bursa: Dora Publishing. Open Google Scholar
- Hardy, K. and Maurushat, A. (2017). Opening Up Government Data for Big Data Analysis and Public Benefit. Computer Law & Security Review, 33 (1), 30–37. Open Google Scholar
- Hashem, I.A.T., Yaqoob, I., Anuar, N.B., et al. (2015). The Rise of “Big Data” on Cloud Computing: Review and Open Research Issues. Information Systems, 47, 98–115. Open Google Scholar
- He, X., Ai, Q., Qiu, R., et al. (2017). A Big Data Architecture Design for Smart Grids Based on Random Matrix Theory. IEEE Transactions on Smart Grid, 8 (2), 674–686. Open Google Scholar
- Hu, F., Yang, C., Schnase, J.L., et al. (2018). ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics. Computers & Geosciences, 2018, 115, 154–166. Open Google Scholar
- Huda, M., Jasmi, K. A., Embong, W.H., et al. (2018). Nurturing Compassion-Based Empathy: Innovative Approach in Higher Education. In M. Badea, & M. Suditu (Eds.), Violence Prevention and Safety Promotion in Higher Education Settings. Hershey, 154–173. Open Google Scholar
- Hure, E., Picot-Coupey, K., Ackermann, C. (2017). Understanding Omni-channel Shopping Value: A Mixed-method Study. Journal of Retailing and Consumer Services, 3, 314–330. Open Google Scholar
- Hurwitz, J., Nugent, A., Halper, F., et al. (2013). Big Data for Dummies. Hoboken, NJ: For Dummies, sa Wiley Brand Open Google Scholar
- Iafrate, F. (2015). From Big Data to Smart Data. Hoboken, NJ: ISTE Ltd, John Wiley and Sons Inc., Open Google Scholar
- International Controller Association-ICV (2017). Industrie 4.0- Controlling in the Age of Intelligent Networks. Dream Car of the Dream Factory of the ICV- 2015. https://www.icv-controlling.com/fileadmin/Assets/Content/AK/Ideenwerkstatt/Files/Dream_Car_Industrie_4.0_EN.pdf Open Google Scholar
- Ji, W., Wang, L. (2017). Big Data Analytics Based Fault Prediction for Shop Floor Scheduling. Journal of Manufacturing Systems, 43 (1), 187–194. Open Google Scholar
- Jian, Q., Ying, L., Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, 173–178. Open Google Scholar
- Jin, X., Wah, B.W., Cheng, X., et al. (2015). Significance and Challenges of Big Data Research. Big Data Research, 2 (2), 59–64. Open Google Scholar
- Karim, A., Siddiga, A., Safdar, Z., et al. (2017). Big Data Management in Participatory Sensing: Issues, Trends and future Directions. Future Generation Computer Systems. Available online. https://doi.org/10.1016/j.future.2017.10.007 Open Google Scholar
- Khakifrooz, M., Chien, C.F., Chen, Y. (2017). Bayesian Inference For Mining Semiconductor Manufacturing Big Data for Yield Enhancement and Smart Production to Empower Industry 4.0. Applied Soft Computing, 68, 990–999. Open Google Scholar
- Kobusinska, A., Pawluczuk, K., Brzezinski, J. (2018). Big Data Fingerprinting Information Analytics for Sustainability. Future Generation Computer Systems, 86, 1321–1337. Open Google Scholar
- Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (). META Group. Open Google Scholar
- Lee, R.J., Sener, I.N., Mokhtarian, P.L., et al. (2017). Relationships Between the Online and In-store Shopping Frequency of Davis, California Residents. Transportation Research Part A: Policy and Practice, 100, 40–52. Open Google Scholar
- Li, J., Xu, L., Tang, L., et al. (2018) Big Data in Tourism Research: A Literature Review. Tourism Management, 68, 301–323. Open Google Scholar
- Mahyoub, F.H., Siddiqui, M.A., Dahab, M.Y. (2014). Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning. Journal of King Saud University-Computer and Information Sciences, 26 (4), 417–424. Open Google Scholar
- Manogaran, G., Thota, C., Lopez, D., et al. (2017). Big Data Knowledge System in Healthcare. Internet of Things and Big Data Technologies for Newt Generation Healthcare, 23, 133–157. Open Google Scholar
- Manyika, J., Chui, M., Brown, B., et al. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation Open Google Scholar
- Matz, S., Netzer, O. (2017). Using Big Data As a Window into Consumers’ Psychology. Current Opinion in Behavioral Sciences, 18, 7–12. Open Google Scholar
- Mayer-Schönberger, V., Cukier, K. (2013). Big Data – A Revolution to Transform Your Life, Work and Thinking. İstanbul: Paloma Publisher. Open Google Scholar
- Mehta, N. and Pandit, A. (2018). Concurrence of Big Data Analytics and Healthcare: A systematic Review. International Journal of Medical Informatics, 114, 57–65. Open Google Scholar
- Melie-Garcia, L., Draganski, B., Ashburner, J., et al. (2018). Multiple Linear Regression: Bayesian Inference for Distributed and Big Data in the Medical Informatics Platform of the Human Brain Project. The Preprint Server For Biology. Electronic preprint. https://doi.org/10.1101/242883 Open Google Scholar
- Mendelson, D. (2017). Legal Protections for Personal Health Information in the Age of Big Data – A Proposal for Regulatory Framework. Ethics, Medicine and Public Health, 3, 37–55. Open Google Scholar
- Moktadir, M.A., Ali, S.M., Paul, S.K., et al. (2018). Barries to Big Data Analtyics in Manufacturing Supply Chains: A Case Study from Bangladesh. Computers & Industrial Engineering. Available online. https://doi.org/10.1016/j.cie.2018.04.013 Open Google Scholar
- Morabito, V. (2015). Big Data and Analytics. Berlin: Springer International Publishing. Open Google Scholar
- Niemi, T., Nurminen, J.K., Liukkonen, J., et al. (2018). Towards Green Big Data an CERN. Future Generation Computer Systems, 81, 103–113. Open Google Scholar
- Pries, K.H., Dunnigan, R. (2015). Big Data Analytics: A Practical Guide for Managers. New York: CRC Press.Taylor & Francis Group. Open Google Scholar
- Qian, J., Li, P., Yue, X., et al. (2015). Hierarchical Attribute Reduction Algorithms for Big Data Using MapReduce. Knowledge-Based Systems, 73, 18–31. Open Google Scholar
- Ramakrishnan, R., Sridharan, B., Kasturi, P., et al. (2017 May). Azure Data Lake Store: A Hyperscale Distributed File Service for Big Data Analytics. Proceedings of the 2017 ACM International Conference on Management of Data. doi:10.1145/3035918.3056100 Open Google Scholar
- Salleh, K.A. and Janczewski, L. (2016). Technological, Organizational and Environmental Security and Privacy Issues of Big Data: A Literature Review. Procedia Computer Science, 100, 19–28. Open Google Scholar
- Samuel, A., Sarfraz, M.I., Haseeb, H., et al. (2015). A Framework for Composition and Enforcement of Privacy-Aware and Context-Driven Authorization Mechanism for Multimedia Big Data. IEEE Transactions and Multimedia,17 (9), 1484–1494. Open Google Scholar
- Sayer, S., Ulker, A. (2014). Product Lifecycle Management. Engineer & the Machinery Magazine,55 (657), 65–72. Open Google Scholar
- Schwab, K. (2016). The Fourth Industrial Revolution. İstanbul: Optimist Publications. Open Google Scholar
- Shi, Y. (2014). Big Data: History, Current Status, and Challenges Going Forward. The Bridge, A Global View of Big Data, 44 (6), 6–11. Open Google Scholar
- Shin, D.H. and Choi, M.J. (2015). Ecological Views of Big Data: Perspectives and Issues. Telematics and Informatics,32 (2), 311–320. Open Google Scholar
- Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, buy, Lie, or Die. Hoboken, N.J: Wiley. Open Google Scholar
- Siemens, (2015) On the Way to Industrie 4.0 – The Digital Enterprise Industry 4.0 Way. https://www.siemens.com/press/pool/de/events/2015/digitalfactory/2015-04-hannovermesse/presentation-e.pdf Open Google Scholar
- Sinan, A. (2016). A New Theme for Production: Industry 4.0. Journal of Life Economics, 3 (2), 19–30. Open Google Scholar
- Smith, S.M. and Nichols, T.E. (2018). Statistical Challenges in Big Data Human Neuroimaging, Neuroview, 97 (2), 263–268. Open Google Scholar
- Smiths, G., Pivert, O., Yager, R., et al. (2018). A Soft Computing Approach to Big Data Summarization. Fuzzy Sets and Systems, 348, 4–20. Open Google Scholar
- Soroka, A., Liu, Y., Hani, L., et al. (2017). Big Data Driven Customer Insights for SMEs in Redistributed Manufacturing, Procedia CIRP, 63, 692–697. Open Google Scholar
- Su, Z., Xu, Q., Qi, Q. (2016). Big Data in Mobile Social Networks: A QoE- Oriented Framework. Browse Journal & Magazines, 30 (1), 52–57. Open Google Scholar
- Tiwari, S., Wee, H.M. (2018). Daryanto Y. Big Data Analytics in Supply Chain Management Between 2010 and 2016: Insights to Industries. Computers & Industrial Engineering, 115, 319–330. Open Google Scholar
- Torrecilla, J.L. and Romo, J. (2018). Data Learning From Big Data. Statitics & Probability Letters, 136, 15–19. Open Google Scholar
- Wamba, S.F., Gunasekaran, A., Akter, S., et al. (2017). Big Data Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 70, 356–365. Open Google Scholar
- Weichselbraun, A., Gindl, S., Scharl, A. (2014). Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge Based Systems 69, 78–85. Open Google Scholar
- Williams, M.L., Burnap, P., Sloan, L. (2017). Crime Sensing With Big Data: The Affordances and Limitations of Using Open-source Communications to Estimate Crime Patterns. The British Journal of Criminology,57 (2),320–340. Open Google Scholar
- Witkowski, K. (2016). Internet of Things, Big Data, Industry 4.0 – Innovative Solutions in Logistics and Supplu Chains Management. Procedia Engineer, 182, 763–769. Open Google Scholar
- Wu, K., Cui, L., Tseng, M., et al. (2017). Applying Big Data with Fuzzy Dematel to Discover the Critical Factors for Employee Engagement in Developing Sustainability for the Hospitality Industry under Uncertainty. In Supply Chain Management in the Big Data Era (pp. 218–253). IGI Global. doi:10.4018/978–1–5225–0956–1.ch012 Open Google Scholar
- Wu, K., Liao, C., Tseng, M., et al. (2017). Toward Sustainability: Using Big Data to Explore the Decisive Attributes of Supply Chain Risks and: Uncertainties. Journal of Cleaner Production, 142 (2), 663–676. Open Google Scholar
- Xiang, Z., Schwartz, Z., Gerdes, J.H., et al. (2015). What Can Big Data and Text Analytics Tell Us About Hotel Guest Experience and Satisfaction? International Journal of Hospitality Management, 44, 120–130. Open Google Scholar
- Xie, L., Draizen, E.J., Bourne, P.E. (2016). Harnessing Big Data for Systems Pharmacology. Annual Review of Pharmacology and Toxicology, 57, 245–262. Open Google Scholar
- Yin, S. and Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, 103 (2), 143–146. Open Google Scholar
- Young, S.D. (2015). A “Big Data” Approach to HIV Epidemiology and Prevention. Preventive Medicin, 70, 17–18. Open Google Scholar
- Zaki, M., Theodoulidis, B., Shapira, P., et al. (2017). The Role of Big Data to Facilitate Redistributed Manufacturing Using a Co-creation Lens: Patterns from Consumer Goods. Procedia CIRP, 63, 680–685. Open Google Scholar
- Zeide, E. (2017). The Structural Consequences of Big Data-Driven Education. Big Data, 5 (2), 165–172. Open Google Scholar
- Zhong, R.Y, Xu, C., Chen, C., et al. (2017). Big Data Analytics for Physical Internet-based Intelligent Manufacturing Shop Floors. Internet Journal of Production Research, 55 (9), 2610–2621. Open Google Scholar





