, um zu prüfen, ob Sie einen Vollzugriff auf diese Publikation haben.
Sammelband Kein Zugriff

Enterprise & Business Management

A Handbook for Educators, Consultants, and Practitioners
Herausgeber:innen:
Verlag:
 2020

Publikation durchsuchen


Bibliographische Angaben

Copyrightjahr
2020
ISBN-Print
978-3-8288-4255-7
ISBN-Online
978-3-8288-7230-1
Verlag
Tectum, Baden-Baden
Reihe
Enterprise & Business Management
Sprache
Englisch
Seiten
412
Produkttyp
Sammelband

Inhaltsverzeichnis

KapitelSeiten
  1. Titelei/Inhaltsverzeichnis Kein Zugriff Seiten I - XIV
  2. Özden Tozanlı, Elif Kongar
    1. Learning Objectives Kein Zugriff Özden Tozanlı, Elif Kongar
    2. Chapter Outline Kein Zugriff Özden Tozanlı, Elif Kongar
    3. Özden Tozanlı, Elif Kongar
      1. 1 Introduction Kein Zugriff Özden Tozanlı, Elif Kongar
      2. Özden Tozanlı, Elif Kongar
        1. 2.1 The Role of Reverse Logistics in Sustainable Supply Chain Operations Kein Zugriff Özden Tozanlı, Elif Kongar
      3. Özden Tozanlı, Elif Kongar
        1. 3.1 Impacts of Industry 4.0 on Supply Chain Operations towards Sustainability Kein Zugriff Özden Tozanlı, Elif Kongar
      4. Özden Tozanlı, Elif Kongar
        1. 4.1 A Qualitative Research Approach Kein Zugriff Özden Tozanlı, Elif Kongar
      5. 5 Conclusions Kein Zugriff Özden Tozanlı, Elif Kongar
      6. 6 References Kein Zugriff Özden Tozanlı, Elif Kongar
      7. 7 Key Terms Kein Zugriff Özden Tozanlı, Elif Kongar
      8. 8 Questions for Further Study Kein Zugriff Özden Tozanlı, Elif Kongar
      9. 9 Exercises Kein Zugriff Özden Tozanlı, Elif Kongar
      10. 10 Further Reading Kein Zugriff Özden Tozanlı, Elif Kongar
  3. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
    1. Learning Objectives Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
    2. Chapter Outline Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
    3. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      1. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        1. 1.1 Problem Statement and Company Background Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        2. 1.2 Motivation Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      2. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        1. 2.1 Retail Applications Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        2. 2.2 SKU Segmentation Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        3. 2.3 Inventory Management Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      3. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        1. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          1. 3.1.1 Current System Design Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          2. 3.1.2 Interviews and Business Context Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        2. 3.2 Decision Frame Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        3. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          1. 3.3.1 Ordering Flow Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          2. 3.3.2 Decision Frame in Safety Stock Calculation Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        4. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          1. 3.4.1 System Dynamics Model Parameters Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          2. 3.4.2 DPS Simulation Parameters Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      4. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        1. 4.1 Standard Deviation of Demand or Forecast Error Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        2. 4.2 Fixed vs. Dynamic Cycle Service Levels Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        3. 4.3 Improvements on Dynamic Cycle Service Levels Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      5. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        1. Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
          1. 5.1.1 Operations of System Dynamics Model Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
        2. 5.2 Benefits of Using Dynamic Cycle Service Levels Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      6. 6 Conclusion Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      7. 7 References Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      8. 8 Key Terms Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      9. 9 Questions for Further Study Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      10. 10 Exercises Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
      11. 11 Further Reading Kein Zugriff Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
  4. Serpil Erol, Gül Didem Batur Sir
    1. Learning Objectives Kein Zugriff Serpil Erol, Gül Didem Batur Sir
    2. Chapter Outline Kein Zugriff Serpil Erol, Gül Didem Batur Sir
    3. Serpil Erol, Gül Didem Batur Sir
      1. 1 Introduction Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      2. 2 Readiness for Industry 4.0 Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      3. 3 A Roadmap for Industry 4.0 Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      4. 4 Case Study: Current Situation in Turkey Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      5. Conclusion Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      6. References Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      7. Key Terms Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      8. Questions for Further Study Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      9. Exercises Kein Zugriff Serpil Erol, Gül Didem Batur Sir
      10. Further Reading Kein Zugriff Serpil Erol, Gül Didem Batur Sir
  5. Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
    1. Learning Objectives Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
    2. Chapter Outline Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
    3. Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      1. 1 Introduction Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      2. 2 Effects of Industry 4.0 on the Shop-Floor Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      3. 3 Literature Review Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      4. 4 Research Methodology Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      5. Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
        1. 5.1 Pre-Industry 4.0 Stage Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
        2. 5.2 Industry 4.0 Initiation Stage Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
        3. 5.3 Industry 4.0 Implementation Phase Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      6. 6 Conclusion Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      7. References Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      8. Key Terms Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      9. Questions for Further Study Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      10. Exercises Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
      11. Further Reading Kein Zugriff Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
  6. Cagla Ediz
    1. Learning Objectives Kein Zugriff Cagla Ediz
    2. Chapter Outline Kein Zugriff Cagla Ediz
    3. Cagla Ediz
      1. 1 Introduction Kein Zugriff Cagla Ediz
      2. Cagla Ediz
        1. 2.1 The Principles of Industry 4.0 Technology Kein Zugriff Cagla Ediz
        2. 2.2 Factors Affecting Industry 4.0 Kein Zugriff Cagla Ediz
      3. Cagla Ediz
        1. 3.1 Milk Supply Process of Sample Company Kein Zugriff Cagla Ediz
        2. 3.2 Acceptance of Milk and Milk Processing Kein Zugriff Cagla Ediz
        3. Cagla Ediz
          1. 3.3.1 CAN Bus (Controller Area Network Bus) System Kein Zugriff Cagla Ediz
          2. 3.3.2 GPS (Global Positioning System) Kein Zugriff Cagla Ediz
          3. 3.3.3 Temperature and Moisture Sensors Kein Zugriff Cagla Ediz
      4. 4 Current Situation Assessment Kein Zugriff Cagla Ediz
      5. Cagla Ediz
        1. 5.1 Traceability of Product and Service Using RFID Kein Zugriff Cagla Ediz
        2. 5.2 Interoperability with IoT and Cyber Physical Systems Kein Zugriff Cagla Ediz
        3. 5.3 Intelligent Systems Kein Zugriff Cagla Ediz
        4. 5.4 Robots, Automatic Machines and Unmanned Transportation Vehicles Kein Zugriff Cagla Ediz
        5. 5.5 Customized Services and Products Kein Zugriff Cagla Ediz
        6. 5.6 Globalizing Systems Kein Zugriff Cagla Ediz
      6. 6 Threats Coming with Industry 4.0 Kein Zugriff Cagla Ediz
      7. 7 Conclusion Kein Zugriff Cagla Ediz
      8. References Kein Zugriff Cagla Ediz
      9. Key Terms Kein Zugriff Cagla Ediz
      10. Questions for Further Study Kein Zugriff Cagla Ediz
      11. Exercises Kein Zugriff Cagla Ediz
      12. Further Reading Kein Zugriff Cagla Ediz
  7. Elif Nurten, Cagla Seneler
    1. Learning Objectives Kein Zugriff Elif Nurten, Cagla Seneler
    2. Chapter Outline Kein Zugriff Elif Nurten, Cagla Seneler
    3. Elif Nurten, Cagla Seneler
      1. 1 Introduction Kein Zugriff Elif Nurten, Cagla Seneler
      2. Elif Nurten, Cagla Seneler
        1. 2.1 Cyber physical systems Kein Zugriff Elif Nurten, Cagla Seneler
        2. 2.2 Industry 4.0 and Industrial Internet of Things (IIoT) difference Kein Zugriff Elif Nurten, Cagla Seneler
      3. 3 Smart Factories Kein Zugriff Elif Nurten, Cagla Seneler
      4. 4 Relation between Industry 4.0 and Smart Factory Kein Zugriff Elif Nurten, Cagla Seneler
      5. 5 Conclusions Kein Zugriff Elif Nurten, Cagla Seneler
      6. 6 References Kein Zugriff Elif Nurten, Cagla Seneler
      7. Key Terms Kein Zugriff Elif Nurten, Cagla Seneler
      8. Questions for Further Study Kein Zugriff Elif Nurten, Cagla Seneler
      9. Exercises Kein Zugriff Elif Nurten, Cagla Seneler
      10. Further Reading Kein Zugriff Elif Nurten, Cagla Seneler
  8. Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    1. Classification of technology Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    2. Relationship between business and technology Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    3. Business view on managing technologies Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    4. Technology management and innovation Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    5. How to review technological innovation? Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    6. Relationship between technology and market Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    7. How to choose technology management methodologies? Which factors have to be considered? Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    8. Prerequisites for a successful methodology? Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    9. Benefits of using a methodology Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    10. When you have chosen a methodology review it consequently Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
    11. Strategic technology lifecycle Kein Zugriff Bryce Rowan, Alptekin Erkollar, Birgit Oberer
  9. Gizem ATAK, Ferhan ÇEBİ
    1. Learnign Objectives Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
    2. Chapter Outline Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
    3. Gizem ATAK, Ferhan ÇEBİ
      1. 1 Introduction Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      2. Gizem ATAK, Ferhan ÇEBİ
        1. 2.1 The First Industrial Revolution Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
        2. 2.2 The Second Industrial Revolution Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
        3. 2.3 The Third Industrial Revolution Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
        4. 2.4 The Fourth Industrial Revolution Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      3. Gizem ATAK, Ferhan ÇEBİ
        1. 3.1 Technologies of Industry 4.0 Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      4. 4 Techno Parks Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      5. Gizem ATAK, Ferhan ÇEBİ
        1. Gizem ATAK, Ferhan ÇEBİ
          1. 5.1.1 The level of awareness about Industry 4.0 Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
          2. 5.1.2 Technologies of Industry 4.0 Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
          3. 5.1.3 Application areas Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
          4. 5.1.4 Effect of Size and Establishment Year Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      6. Conclusion Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      7. References Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      8. Key Terms Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      9. Questions for Further Study Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      10. Exercises Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
      11. Further Reading Kein Zugriff Gizem ATAK, Ferhan ÇEBİ
  10. Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
    1. Learning Objectives Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
    2. Chapter Outline Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
    3. Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      1. Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
        1. 1.1 Why is Industry 4.0 Important? Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
        2. 1.2 What is Outsourcing? Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
        3. 1.3 Why do Organizations Outsource? Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
        4. 1.4 Some Samples for the Outsourcing Reasons in Different Countries Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      2. 2 Convergence Point of These Two Phenomena „Outsourcing and Industry 4.0“: Technology Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      3. 3 The Relationship between the Institutional Logic, Pragmatism, Industry 4.0 and Outsourcing Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      4. Conclusion Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      5. References Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      6. Key Terms Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      7. Questions for Further Studies in the Field Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      8. Exercises Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
      9. Further Reading Kein Zugriff Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
  11. Birgit Oberer, Shi-Shuenn Chang
    1. Definitions Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    2. Stakeholders Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    3. Software products Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    4. Software product evaluation criteria Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    5. Attributes of good software Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    6. Classification of software process models Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    7. Generic software process models Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    8. Engineering process model Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    9. Hybrid process models Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    10. Spiral model Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    11. Potential problems of process models Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    12. Process visibility Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
    13. Questions on Software engineering Kein Zugriff Birgit Oberer, Shi-Shuenn Chang
  12. Recep Benzer, Emre Akar
    1. Learning Objectives Kein Zugriff Recep Benzer, Emre Akar
    2. Chapter Outline Kein Zugriff Recep Benzer, Emre Akar
    3. Recep Benzer, Emre Akar
      1. 1 Introduction Kein Zugriff Recep Benzer, Emre Akar
      2. 2 Definition and Scope of ERP Kein Zugriff Recep Benzer, Emre Akar
      3. 3 Development of ERP System Kein Zugriff Recep Benzer, Emre Akar
      4. 4 Fundamental Features of ERP System Kein Zugriff Recep Benzer, Emre Akar
      5. 5 Components of ERP System Kein Zugriff Recep Benzer, Emre Akar
      6. 6 ERP Software in Turkey Kein Zugriff Recep Benzer, Emre Akar
      7. Recep Benzer, Emre Akar
        1. 7.1 Foreign ERP Providers Kein Zugriff Recep Benzer, Emre Akar
        2. 7.2 Turkey ERP Providers Kein Zugriff Recep Benzer, Emre Akar
      8. 8 Definition of Information and Information Safety Kein Zugriff Recep Benzer, Emre Akar
      9. Recep Benzer, Emre Akar
        1. 9.1 ERP Information Safety Gaps Kein Zugriff Recep Benzer, Emre Akar
      10. 10 Conclusions Kein Zugriff Recep Benzer, Emre Akar
      11. 11 References Kein Zugriff Recep Benzer, Emre Akar
      12. 12 Key Terms Kein Zugriff Recep Benzer, Emre Akar
      13. 13 Questions for Further Study Kein Zugriff Recep Benzer, Emre Akar
      14. 14 Exercises Kein Zugriff Recep Benzer, Emre Akar
      15. 15 Further Reading Kein Zugriff Recep Benzer, Emre Akar
  13. Mete Eminağaoğlu
    1. Learning Objectives Kein Zugriff Mete Eminağaoğlu
    2. Chapter Outline Kein Zugriff Mete Eminağaoğlu
    3. Mete Eminağaoğlu
      1. 1 Introduction Kein Zugriff Mete Eminağaoğlu
      2. 2 Background Kein Zugriff Mete Eminağaoğlu
      3. 3 Artificial Neural Networks Kein Zugriff Mete Eminağaoğlu
      4. 4 Materials and Methods Kein Zugriff Mete Eminağaoğlu
      5. 5 Design and Implementation Kein Zugriff Mete Eminağaoğlu
      6. 6 Results and Discussion Kein Zugriff Mete Eminağaoğlu
      7. 7 Conclusions and Recommendations Kein Zugriff Mete Eminağaoğlu
      8. 8 References Kein Zugriff Mete Eminağaoğlu
      9. 9 Key TErms Kein Zugriff Mete Eminağaoğlu
      10. 10 Questions for Further Study Kein Zugriff Mete Eminağaoğlu
      11. 11 Exercises Kein Zugriff Mete Eminağaoğlu
      12. 12 Further Reading Kein Zugriff Mete Eminağaoğlu
  14. Semra Benzer, Recep Benzer
    1. Learning Objectives Kein Zugriff Semra Benzer, Recep Benzer
    2. Chapter Outline Kein Zugriff Semra Benzer, Recep Benzer
    3. Semra Benzer, Recep Benzer
      1. 1 Introduction Kein Zugriff Semra Benzer, Recep Benzer
      2. Semra Benzer, Recep Benzer
        1. 2.1 Study area Kein Zugriff Semra Benzer, Recep Benzer
        2. 2.2 Data collection Kein Zugriff Semra Benzer, Recep Benzer
        3. 2.3 Length–weight relationship (LWR) equation Kein Zugriff Semra Benzer, Recep Benzer
        4. 2.4 Artificial Neural Networks (ANNs) Kein Zugriff Semra Benzer, Recep Benzer
        5. 2.5 Normalization Kein Zugriff Semra Benzer, Recep Benzer
        6. 2.6 Estimation Accuracy Validation Kein Zugriff Semra Benzer, Recep Benzer
        7. 2.7 Statistics Kein Zugriff Semra Benzer, Recep Benzer
        8. 2.8 Data Editing for MATLAB Kein Zugriff Semra Benzer, Recep Benzer
      3. Semra Benzer, Recep Benzer
        1. 3.1 Tinca tinca Kein Zugriff Semra Benzer, Recep Benzer
        2. 3.2 LENGTH˗WEIGHT RELATIONSHIPS (LWR) Kein Zugriff Semra Benzer, Recep Benzer
        3. 3.3 ARTIFICIAL NEURAL NETWORKS (ANNs) Kein Zugriff Semra Benzer, Recep Benzer
      4. 4 Results and Discussion Kein Zugriff Semra Benzer, Recep Benzer
      5. 5 References Kein Zugriff Semra Benzer, Recep Benzer
      6. 6 Key Terms Kein Zugriff Semra Benzer, Recep Benzer
      7. 7 Questions for Further Study Kein Zugriff Semra Benzer, Recep Benzer
      8. 8 Exercises Kein Zugriff Semra Benzer, Recep Benzer
      9. 9 Further Reading Kein Zugriff Semra Benzer, Recep Benzer
  15. Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    1. Definitions Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    2. Knowledge generation Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    3. Knowledge classification Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    4. Transforming knowledge Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    5. Tacit to Tacit Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    6. Explicit to Tacit Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    7. Tacit to Explicit Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    8. Explicit to Explicit Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    9. Knowledge management components Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    10. Strategies, processes and metrics Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    11. How to develop a knowledge strategy? Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    12. Knowledge management architecture Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    13. Aspects of Secure Knowledge Management Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    14. Security Strategies Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    15. Security processes Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    16. Metrics Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    17. Techniques Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    18. Knowledge management cycle Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    19. Knowledge management technologies Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    20. People and systems Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    21. People Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    22. Systems Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    23. Two ways to generate and use knowledge Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    24. Knowledge cycle Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    25. Levers Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    26. Principles of effective learning Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    27. understanding Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    28. skills Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    29. processes Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
    30. The goal of knowledge management metrics Kein Zugriff Alptekin Erkollar, Andor Darow, Ingeborg Zulechner
  16. Recep Benzer, Semra Benzer
    1. Learning Objectives Kein Zugriff Recep Benzer, Semra Benzer
    2. Chapter Outline Kein Zugriff Recep Benzer, Semra Benzer
    3. Recep Benzer, Semra Benzer
      1. 1 Introduction Kein Zugriff Recep Benzer, Semra Benzer
      2. Recep Benzer, Semra Benzer
        1. 2.1 Study area Kein Zugriff Recep Benzer, Semra Benzer
        2. 2.2 Data collection Kein Zugriff Recep Benzer, Semra Benzer
        3. 2.3 Length–weight relationship (LWR) equation Kein Zugriff Recep Benzer, Semra Benzer
        4. 2.4 Artificial Neural Networks (ANNs) Kein Zugriff Recep Benzer, Semra Benzer
        5. 2.5 Normalization Kein Zugriff Recep Benzer, Semra Benzer
        6. 2.6 Estimation Accuracy Validation Kein Zugriff Recep Benzer, Semra Benzer
        7. 2.7 Statistics Kein Zugriff Recep Benzer, Semra Benzer
        8. 2.8 Data Editing for MATLAB Kein Zugriff Recep Benzer, Semra Benzer
      3. 3 Literature Review Kein Zugriff Recep Benzer, Semra Benzer
      4. 4 Results Kein Zugriff Recep Benzer, Semra Benzer
      5. 5 Discussion Kein Zugriff Recep Benzer, Semra Benzer
      6. 6 References Kein Zugriff Recep Benzer, Semra Benzer
      7. 7 Key Terms Kein Zugriff Recep Benzer, Semra Benzer
      8. 8 Questions for Further Study Kein Zugriff Recep Benzer, Semra Benzer
      9. 9 Exercises Kein Zugriff Recep Benzer, Semra Benzer
      10. 10 Further Reading Kein Zugriff Recep Benzer, Semra Benzer
  17. Sinem Zeliha Dalak, Cagla Seneler
    1. Learning Objectives Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
    2. Chapter Outline Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
    3. Sinem Zeliha Dalak, Cagla Seneler
      1. Sinem Zeliha Dalak, Cagla Seneler
        1. 1.1 Definition and Evolution of Industry 4.0 Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      2. Sinem Zeliha Dalak, Cagla Seneler
        1. 2.1 Autonomous Robots Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        2. 2.2 Big Data and Analytics Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        3. 2.3 Simulation Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        4. 2.4 System Integration Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        5. 2.5 Cybersecurity Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        6. 2.6 The Industrial Internet of Things (IIoT) Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        7. 2.7 The Cloud Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        8. 2.8 Additive Manufacturing Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        9. 2.9 Augmented Reality Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      3. Sinem Zeliha Dalak, Cagla Seneler
        1. 3.1 Companies and Overall Economy Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        2. 3.2 Managers and Employees Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        3. 3.3 Countries, Regions, Cities and Transnational Relations Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        4. 3.4 Individual and the Society Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      4. Sinem Zeliha Dalak, Cagla Seneler
        1. 4.1 Definition and History of Planned Obsolescence Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
        2. Sinem Zeliha Dalak, Cagla Seneler
          1. 4.2.1 Obsolescence of Function Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
          2. 4.2.2 Obsolescence of Quality Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
          3. 4.2.3 Obsolescence of Desirability Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      5. 5 Conclusions Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      6. 6 References Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      7. Key Terms Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      8. Questions for Further Study Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      9. Exercises Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
      10. Further Reading Kein Zugriff Sinem Zeliha Dalak, Cagla Seneler
  18. Burcu OZCAN, Cevher HİLAL AYTAC
    1. Learning Objectives Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
    2. Chapter Outline Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
    3. Burcu OZCAN, Cevher HİLAL AYTAC
      1. 1 Introduction Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      2. Burcu OZCAN, Cevher HİLAL AYTAC
        1. 2.1 Literature Review Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      3. 3 Conclusion Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      4. References Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      5. Key Terms Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      6. Questions for Further Study Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      7. Exercises Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
      8. Further Reading Kein Zugriff Burcu OZCAN, Cevher HİLAL AYTAC
  19. About the Chapter Contributors Kein Zugriff Seiten 407 - 412

Literaturverzeichnis (643 Einträge)

  1. Integration of Industry 4.0 Principles into Reverse Logistics Operations for Improved Value Creation: A Case Study of a Mattress Recycling Company by Özden Tozanlı, Elif Kongar Google Scholar öffnen
  2. Agrawal, S., Singh, R. K. & Murtaza, Q. 2015. A Literature Review And Perspectives In Reverse Logistics. Resources, Conservation And Recycling, 97, 76-92. Google Scholar öffnen
  3. Ahi, P. & Searcy, C. 2013. A Comparative Literature Analysis Of Definitions For Green And Sustainable Supply Chain Management. Journal Of Cleaner Production, 52, 329–341. Google Scholar öffnen
  4. Bartodziej, C. J. 2016. The Concept Industry 4.0: An Empirical Analysis Of Technologies And Applications In Production Logistics, Springer. Google Scholar öffnen
  5. Brettel, M., Friederichsen, N., Keller, M. & Rosenberg, M. 2014. How Virtualization, Decentralization And Network Building Change The Manufacturing Landscape: An Industry 4.0 Perspective. International Journal Of Mechanical, Industrial Science And Engineering, 8, 37–44. Google Scholar öffnen
  6. Cascadealliance 2017. The State Of The Mattress Recycling Industry. Google Scholar öffnen
  7. Chopra, S. & Meindl, P. 2007. Supply Chain Management. Strategy, Planning & Operation. Das Summa Summarum Des Management. Springer. Google Scholar öffnen
  8. Deep. 2018. Mattress Recycling [Online]. Department Of Energy & Environmental Protection. Available: Http://Www.Ct.Gov/Deep/Cwp/View.Asp?A=2714&Q=482160&Deepnav_Gid=1645%20. Google Scholar öffnen
  9. Efendigil, T., Önüt, S. & Kongar, E. 2008. A Holistic Approach For Selecting A Third-Party Reverse Logistics Provider In The Presence Of Vagueness. Computers & Industrial Engineering, 54, 269–287. Google Scholar öffnen
  10. Gbce. 2018. Bye Bye Mattress Recycling Program [Online]. Greater Community Bridgeport Enterprises. Available: Https://Greenteambpt.Com/Bye-Bye-Mattress-Recycling-Program/. Google Scholar öffnen
  11. Handfield, R. B. & Nichols, E. L. 1999. Introduction To Supply Chain Management, Upper Saddle River, Nj: Prentice Hall. Google Scholar öffnen
  12. Hofmann, E. & Rüsch, M. 2017. Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34. Google Scholar öffnen
  13. Kagermann, H., Lukas, W.-D. & Wahlster, W. 2011. Industrie 4.0: Mit Dem Internet Der Dinge Auf Dem Weg Zur 4. Industriellen Revolution. Vdi Nachrichten, 13, 11. Google Scholar öffnen
  14. Kagermann, H., Wahlster, W. & Helbig, J. 2012. Im Fokus: Das Zukunftsprojekt Industrie 4.0: Handlungsempfehlungen Zur Umsetzung. Bericht Der Promotorengruppe Kommunikation. Forschungsunion. Google Scholar öffnen
  15. Lasi, H., Kemper, H.-G., Fettke, P., Feld, T. & Hoffmann, M. 2014. Industry 4.0. Business & Information Systems Engineering, 6, 239–242. Google Scholar öffnen
  16. Porter, M. E. 1985. Competitive Advantage: Creating And Sustaining Superior Performance. 1985. New York: Free Press. Google Scholar öffnen
  17. Stock, T. & Seliger, G. 2016. Opportunities Of Sustainable Manufacturing In Industry 4.0. Procedia Cirp, 40, 536–541. Google Scholar öffnen
  18. Tozanli, O., Duman, G., Kongar, E. & Gupta, S. 2017. Environmentally Concerned Logistics Operations In Fuzzy Environment: A Literature Survey. Logistics, 1, 4. Google Scholar öffnen
  19. Tuck. 2018. Mattresses [Online]. Tuck Advancing Better Sleep. Available: Https://Www.Tuck.Com/Mattresses/. Google Scholar öffnen
  20. Wef. 2017. Impact Of The Fourth Industrial Revolution On Supply Chains [Online]. World Economic Forum. Available: Http://Www3.Weforum.Org/Docs/Wef_Impact_Of_The_Fourth_Industrial_Revolution_On_Supply_Chains_.Pdf [Accessed October 2017. Google Scholar öffnen
  21. Dynamic Customer Service Levels: Evolving Safety Stock Requirements for Changing Business Needs by Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil Google Scholar öffnen
  22. Armstrong, David J. "Sharpening inventory management." Harvard Business Review 63.6 (1985): 42–58. Google Scholar öffnen
  23. Bijvank, Marco. "Periodic review inventory systems with a service level criterion." Journal of the Operational Research Society 65.12 (2014): 1853–1863. Google Scholar öffnen
  24. Dubelaar, Chris, Garland Chow, and Paul D. Larson. "Relationships between inventory, sales and service in a retail chain store operation." International Journal of Physical Distribution & Logistics Management 31.2 (2001): 96–108. Google Scholar öffnen
  25. Emmelhainz, Larry W., Margaret A. Emmelhainz, and James R. Stock. "Logistics implications of retail stockouts." Journal of Business Logistics 12.2 (1991): 129. Google Scholar öffnen
  26. Flores, Benito E., and D. Clay Whybark. "Implementing multiple criteria ABC analysis." Journal of Operations Management 7.1 – 2 (1987): 79–85. Google Scholar öffnen
  27. Flores, Benito E., David L. Olson, and V. K. Dorai. "Management of multicriteria inventory classification." Mathematical and Computer modelling 16.12 (1992): 71–82. Google Scholar öffnen
  28. Koottatep, Pakawkul, and Jinqian Li. Promotional forecasting in the grocery retail business. Diss. Massachusetts Institute of Technology, 2006. Google Scholar öffnen
  29. Millstein, Mitchell A., Liu Yang, and Haitao Li. "Optimizing ABC inventory grouping decisions." International Journal of Production Economics 148 (2014): 71–80. Google Scholar öffnen
  30. Mohammaditabar, Davood, Seyed Hassan Ghodsypour, and Chris O'Brien. "Inventory control system design by integrating inventory classification and policy selection." International Journal of Production Economics 140.2 (2012): 655–659. Google Scholar öffnen
  31. Ng, Wan Lung. "A simple classifier for multiple criteria ABC analysis." European Journal of Operational Research 177.1 (2007): 344–353. Google Scholar öffnen
  32. Porras, Eric, and Rommert Dekker. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods." European Journal of Operational Research 184.1 (2008): 101–132. Google Scholar öffnen
  33. Ramanathan, Ramakrishnan. "ABC inventory classification with multiple-criteria using weighted linear optimization." Computers & Operations Research 33.3 (2006): 695–700. Google Scholar öffnen
  34. Silver, Edward Allen, Pyke, David F., & Peterson, Rein. (1998). Inventory management and production planning and scheduling (Vol. 3, p. 30). New York: Wiley. Google Scholar öffnen
  35. Taylor, J. C., & Fawcett, S. E. (2001). Retail on‐shelf performance of advertised items: an assessment of supply chain effectiveness at the point of purchase. Journal of Business Logistics, 22(1), 73–89. Google Scholar öffnen
  36. Teunter, Ruud H., M. Zied Babai, and Aris A. Syntetos. "ABC classification: service levels and inventory costs." Production and Operations Management 19.3 (2010): 343–352. Google Scholar öffnen
  37. Van Kampen, Tim J., Renzo Akkerman, and Dirk Pieter van Donk. "SKU classification: a literature review and conceptual framework." International Journal of Operations & Production Management 32.7 (2012): 850–876. Google Scholar öffnen
  38. Thomopoulos, Nick T. "Promotion Forecasts" Demand Forecasting for Inventory Control. Springer International Publishing, 2015. 71–87. Google Scholar öffnen
  39. Timofeev, Roman. "Classification and regression trees (cart) theory and applications." Humboldt University, Berlin (2004). Google Scholar öffnen
  40. Yang, Liu. Optimizing inventory for profitability and order fulfillment improvement: Integrating Inventory Classification and Control Decisions under Non-Stationary Demand For Profit Maximization and Integrating Inventory Classification and Control Decisions to Maximize Order Fulfillment Measures. Diss. University of Missouri-Saint Louis, 2016. Google Scholar öffnen
  41. Yu, Min-Chun. "Multi-criteria ABC analysis using artificial-intelligence-based classification techniques." Expert Systems with Applications 38.4 (2011): 3416–3421. Google Scholar öffnen
  42. Zhang, Rachel Q., Wallace J. Hopp, and Chonawee Supatgiat. "Spreadsheet implementable inventory control for a distribution center." Journal of Heuristics 7.2 (2001): 185–203. Google Scholar öffnen
  43. Zhou, Peng, and Liwei Fan. "A note on multi-criteria ABC inventory classification using weighted linear optimization." European journal of operational research 182.3 (2007): 1488–1491. Google Scholar öffnen
  44. Industry 4.0: Is Your Country Ready? by Serpil Erol, Gül Didem Batur Sir Google Scholar öffnen
  45. Cabinet Office. “Report on the 5th science and technology basic plan”, Cabinet Office of Japan, Tokyo, 2015. Google Scholar öffnen
  46. Conseil national de l’industrie. “The new face of industry in France”, French National Industry Council, Paris, 2013. Google Scholar öffnen
  47. European Commission, “Factories of the Future PPP: Towards Competitive EU Manufacturing”, European Commission, Bruxelles, 2016. Google Scholar öffnen
  48. European Parliament’s Committee on Industry, Research and Energy, Study for ITRE, “Industry 4.0”, Policy Department A: Economic and Scientific Policy, Brussels, 2016. Google Scholar öffnen
  49. Evans, P.C. & Annunziata, M. “Industrial internet: pushing the boundaries of minds and machines”, General Electric, Boston, 2012. Google Scholar öffnen
  50. Foresight. “The future of manufacturing: a new era of opportunity and challenge for the UK”, UK Government Office for Science, London, 2013. Google Scholar öffnen
  51. Gentner, S. “Industry 4.0: Reality, Future or just Science Fiction? How to Convince Today’s Management to Invest in Tomorrow’s Future! Successful Strategies for Industry 4.0 and Manufacturing IT”, CHIMIA International Journal for Chemistry, Vol. 70, No. 9, 2016, pp. 628–633. Google Scholar öffnen
  52. https://www.statista.com/statistics/667634/leading-countires-industry-40-worldwide/ Google Scholar öffnen
  53. Kagermann, H., Wahlster, W. & Helbig, J. “Recommendations for implementing the strategic initiative Industrie 4.0”, Final Report of the Industrie 4.0 Working Group of Acatech, Berlin, 2013. Google Scholar öffnen
  54. Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H. & Do Noh, S. “Smart manufacturing: Past research, present findings, and future directions”, International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1, 2016, pp. 111–128. Google Scholar öffnen
  55. Li, K. “Made in China 2025”, State Council of China, Beijing, 2015. Google Scholar öffnen
  56. Liao, Y., Deschamps, F., Loures, EDFR & Ramos, L.F.P., "Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal", International journal of production research, Vol. 55, No. 12, 2017, pp. 3609–3629. Google Scholar öffnen
  57. Mueller, E., Chen, X. L., & Riedel, R. “Challenges and requirements for the application of industry 4.0: a special insight with the usage of cyber-physical system”, Chinese Journal of Mechanical Engineering, Vol. 30, No. 5, 2017, pp. 1050–1057. Google Scholar öffnen
  58. National Research Foundation. “Research, innovation and enterprise (RIE) 2015 plan” Prime Minister’s Office of Singapore, Singapore, 2016. Google Scholar öffnen
  59. Rafael R., Shirley A.J. & Liveris, A. “Report to the president accelerating u.s. advanced manufacturing”, The President’s Council of Advisors on Science and Technology, Washington, 2014. Google Scholar öffnen
  60. Ridgway, K., Clegg, C.W. & Williams, D.J. “The factory of the future. Future of Manufacturing Project: Evidence Paper 29”, Government Office for Science, London, 2013. Google Scholar öffnen
  61. Siemieniuch, C.E., Sinclair, M.A. & deC Henshaw, M.J. “Global Drivers, Sustainable Manufacturing and Systems Ergonomics”, Applied Ergonomics, Vol. 51, 2015, pp. 104–119. Google Scholar öffnen
  62. World Economic Forum, ‘Readiness for the Future of Production Report’, World Economic Forum’s System Initiative on Shaping the Future of Production, 2018. Google Scholar öffnen
  63. Transformation of Shop Floor with Industry 4.0: Guidelines for Manufacturing Companies by Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA Google Scholar öffnen
  64. Abersfelder, S., Bogner, E., Heyder, A. and Franke, J. (2016). “Application and Validation of an Existing Industry 4.0 Guideline for the Development of Specific Recommendations for Implementation”, Advanced Materials Research, 1140: 465–472. Google Scholar öffnen
  65. Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES), Journal of Innovation Management, 3(4), 16–21. Google Scholar öffnen
  66. Berger, C., Berlak, J. and Reinhart, G. (2016). Service-based Production Planning and Control of Cyber-Physical Production Systems, BLED 2016 Proceedings, pp: 491–502. Google Scholar öffnen
  67. Cachada, A., Pires, F., Barbosa, J., & Leitão, P. (2017, October). Petri nets approach for designing the migration process towards industrial cyber-physical production systems. In Industrial Electronics Society, IECON 2017–43rd Annual Conference of the IEEE (pp. 3492–3497). IEEE. Google Scholar öffnen
  68. Erol, S., Schumacher, A. and Sihn, W. (2016). “Strategic guidance towards Industry 4.0 – a three-stage process model”. International Conference on Competitive Manufacturing 2016 (COMA'16), At Stellenbosch, South Africa. Google Scholar öffnen
  69. Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on(pp. 289–294). Ieee. Google Scholar öffnen
  70. Industrie 4.0 Reifegrad – Selbstcheck f¨ur Unternehmen. 2016. URL:https://ihk-industrie40.de/selbstcheck/. Google Scholar öffnen
  71. Kagermann, H., Wahlster, W. and Helbig, J. (2013). “Securing the future of German manufacturing industry, Recommendations for implementing the strategic initiative INDUSTRIE 4.0“, Final report of the Industrie 4.0“ Working Group,“Report_“Industrie 4.0“_engl.pdf, Frankfurt, April 2013. Google Scholar öffnen
  72. Khedher, A.B., Henry, S., and Bouras, A. (2011). Integration between MES and Product Lifecycle Management. 2011 IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA). Google Scholar öffnen
  73. Klein, K., Franke, M., Hribernik, K., Coscia, E., Balzert, S., Sutter, J., and Thoben, K. D. (2014, November). Potentials of future internet technologies for digital factories. In Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on (pp. 734–741). IEEE. Google Scholar öffnen
  74. Kucharska, E., Grobler- Debska, K., Gracel, J., and Jagodzinski, M. (2015). “Idea of Impact of ERP-APS-MES Systems Integration on the Effectiveness of Decision Making Process in Manufacturing Companies”. In Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (Eds.). Beyond Databases, Architectures and Structures. 11th International Conference, BDAS 2015, Ustroń, Poland, May 26–29, 2015, Proceedings. Google Scholar öffnen
  75. Lee, J., Bagheri, B., and Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. Google Scholar öffnen
  76. Lee, J., Holgado, M., Kao, H. A., & Macchi, M. (2014). New thinking paradigm for maintenance innovation design. IFAC Proceedings Volumes, 47(3), 7104–7109. Google Scholar öffnen
  77. Leyh, C., Bley, K., Schäffer, T., & Forstenhäusler, S. (2016, September). SIMMI 4.0-a maturity model for classifying the enterprise-wide it and software landscape focusing on Industry 4.0. In Computer Science and Information Systems (FedCSIS), 2016 Federated Conference on (pp. 1297–1302). IEEE. Google Scholar öffnen
  78. Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E. & M.S.: IMPULS – Industrie 4.0- Readiness, (2015). Google Scholar öffnen
  79. Lins, R. G., Guerreiro, B., Schmitt, R., Sun, J., Corazzim, M., & Silva, F. R. (2017, October). A novel methodology for retrofitting CNC machines based on the context of industry 4.0. In Systems Engineering Symposium (ISSE), 2017 IEEE International (pp. 1–6). IEEE. Google Scholar öffnen
  80. Madkan, P. (2014). Empirical Study of ERP Implementation Strategies-Filling Gaps between the Success and Failure of ERP Implementation Process. International Journal of Information & Computation Technology, 4(6), 633–642. Google Scholar öffnen
  81. Naedele, M., Chen, H-M.,Kazman,R., Cai, Y.,Xiao, L. and Silva, C.V.A. (2015). Manufacturing execution systems: A vision for managing software development. The Journal of Systems and Software, 101: 59–68. Google Scholar öffnen
  82. Panetto, H., and Molina, A. (2008). Enterprise Integration and Interoperability in Manufacturing Systems: trends and issues. Computers in Industry, 59(7), 641–646. Google Scholar öffnen
  83. Porter, M.E., and Heppelmann, J.E. (2015). How Smart, Connected Products Are Transforming Companies, Harvard Business Review, 1–9. Google Scholar öffnen
  84. PricewaterhouseCoopers: The Industry 4.0 / Digital Operations Self Assessment, (2016). Google Scholar öffnen
  85. Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., & Gorecky, D. (2016, October). Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In INTERNATIONAL CONFERENCE ON COMPUTERS & INDUSTRIAL ENGINEERING (CIE46) (pp. 1–11). Google Scholar öffnen
  86. Romero, D., and Vernadat, F. (2016). Enterprise information systems state of the art: Past, present and future trends. Computers in Industry, 79, 3–13. Google Scholar öffnen
  87. Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016). Continuous maintenance and the future–Foundations and technological challenges. CIRP Annals, 65(2), 667–688. Google Scholar öffnen
  88. Sanders, A., Elangeswaran, C., and Wulfsberg, J. (2016). “Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing”, Journal of Industrial Engineering and Management, 9(3), 812–833. Google Scholar öffnen
  89. Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161–166. Google Scholar öffnen
  90. Seitz, K-F., and Nyhuis, P. (2015). Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. Procedia CIRP, (32), 92–97. Google Scholar öffnen
  91. Shrouf, F., Ordieres, J., and Miragliotta, G. (2014). Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm. Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on, 9–12 Dec. 2014, 697–701. Google Scholar öffnen
  92. Stojkić, Z., Veža, I., and Bošnjak, I. (2016). A Concept Of Information System Implementation (CRM and ERP) Within Industry 4.0. 26TH DAAAM International Symposium On Intelligent Manufacturing and Automation, 912–919. Google Scholar öffnen
  93. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576. Google Scholar öffnen
  94. Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. Ieee Access, 5, 20418–20427. Google Scholar öffnen
  95. Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T., and Lennartson, B. (2016). An event-driven manufacturing information system architecture for Industry 4.0, International Journal of Production Research, 1–15. Google Scholar öffnen
  96. Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335–340. Google Scholar öffnen
  97. Wang, H., Liu, L., Fei, Y., and Liu, T. (2016). A collaborative manufacturing execution system oriented to discrete manufacturing enterprises. Concurrent Engineering, 24(4), 330–343. Google Scholar öffnen
  98. Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22. Google Scholar öffnen
  99. Zainal, Z. (2007). Case study as a research method. Jurnal Kemanusiaan, (9), 1–6. Google Scholar öffnen
  100. Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(1–4), 1149–1163. Google Scholar öffnen
  101. A Review on Cold Chain Management for Industry 4.0 by Cagla Ediz Google Scholar öffnen
  102. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet Of Things: A Survey. Computer Networks, 54(15), 2787–2805. Google Scholar öffnen
  103. Barata, J., Rupino Da Cunha, P., & Stal, J. (2018). Mobile Supply Chain Management In The Industry 4.0 Era: An Annotated Bibliography And Guide For Future Research. Journal of Enterprise Information Management, 31(1), 173–192. Google Scholar öffnen
  104. Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 Implications In Logistics: An Overview. Procedia Manufacturing, 13, 1245–1252. Google Scholar öffnen
  105. Benešová, A., & Tupa, J. (2017). Requirements For Education And Qualification Of People In Industry 4.0. Procedia Manufacturing, 11, 2195–2202. Google Scholar öffnen
  106. Bouzakis, A., & Overmeyer, L. (2012, November). Simulation Analysis For The Performance Of Integrated HF RFID Antennas. In Computer Modeling And Simulation (EMS), 2012 Sixth Uksim/AMSS European Symposium On,391–394, IEEE. Google Scholar öffnen
  107. Corallo, A., Latino, M. E., & Menegoli, M. (2018). From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability. Int. J. Nutr. Food Eng., 12(5). Google Scholar öffnen
  108. Dombrowski, U., Richter, T., & Krenkel, P. (2017). Interdependencies Of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manufacturing, 11, 1061–1068. Google Scholar öffnen
  109. Drath, R., & Horch, A. (2014). Industrie 4. 0: Hit Or Hype? IEEE Ind Electron Mag, 8(2):56–58. Google Scholar öffnen
  110. Erkollar, A. & Oberer, B. (2017). Endüstri 4.0 Ve Ulaşımda Kullanımı. Transist 2017, 493–498. Google Scholar öffnen
  111. Fleisch, E., Weinberger, M., & Wortmann, F. (2015). Business Models And The Internet Of Things. In Interoperability And Open-Source Solutions For The Internet Of Things, 6–10, Springer, Cham. Google Scholar öffnen
  112. Gunhan, T., Demir, V., & Bilgen, H. (2006). Çiftlik Tipi Süt Soğutma Tanklarının Performans Değerlerinin Deneysel Olarak Belirlenmesi. Tarım Makinaları Bilimi Dergisi, 2(4). Google Scholar öffnen
  113. Hermann, M., Pentek, T., & Otto, B. (2016, January). Design Principles For Industrie 4.0 Scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference On,3928–3937, IEEE. Google Scholar öffnen
  114. Hofmann, E., & Rüsch, M. (2017). Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34. Google Scholar öffnen
  115. Kara, İ. (2009). CAN Haberleşme Protokolünün İncelenmesi Ve Bir Sıcaklık Kontrol Sistemine Uygulanması (Doctoral Dissertation). Google Scholar öffnen
  116. Muneeswaran. A. (2015). Automotive Diagnostics Communication Protocols AnalysisKWP2000, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 10, Issue 1, Ver. 1 (Jan – Feb. 2015), 20–31. Google Scholar öffnen
  117. Olsen, P., & Borit, M. (2013). How to define traceability. Trends in food science & technology, 29(2), 142–150. Google Scholar öffnen
  118. Onat, O. (2018). Sürücüsüz Otomobil de Kaza Yapar, CNN Turk, 20.03.2018. Google Scholar öffnen
  119. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6, 239–242. Google Scholar öffnen
  120. Lu Y., Industry 4.0: A Survey On Technologies, Applications And Open Research İssues, In Journal Of Industrial Information Integration, Volume 6, 2017, Pages 1–10. Google Scholar öffnen
  121. Oberer, B., & Erkollar, A. (2017), Sustainable Cities Need Smart Transportation: The Industry 4.0 Transportation Matrix. Transist 2017, 188–197. Google Scholar öffnen
  122. Ozgüven, M. M. (2016), Radyo Frekansli (Rf) Pedometre Tasarimi. (Master Thesis), Gaziosmanpaşa University, Tokat. Google Scholar öffnen
  123. Shafiq, S. I., Sanin, C., Szczerbicki, E., & Toro, C. (2015). Virtual Engineering Object/Virtual Engineering Process: A Specialized Form Of Cyber Physical System For Industrie 4.0. Procedia Computer Science, 60, 1146–1155. Google Scholar öffnen
  124. Sung, T. K. (2018). Industry 4.0: A Korea perspective. Technological Forecasting and Social Change, 132, 40–45. Google Scholar öffnen
  125. Suru Yonetimli Buyukbas Sagım Sistemleri, Sezer Tarım Teknolojileri, http://www.sezermac.com/index.php?sayfa=detay&act=view&code=507&cat=413&catname=S%FCr%FC%20Y%F6netimli%20B%FCy%FCkba%FE%20Sa%F0%FDm%20Sistemleri, accessed on 2.6.2018. Google Scholar öffnen
  126. TC Milli Eğitim Bakanlığı (2013). Gıda Teknolojisi, Sütü İşletmeye Alma, Ankara,. Google Scholar öffnen
  127. Tanrıvermiş, H., & Mülayim, Z. G. (1997). Sanayinin Neden Olduğu Çevre Kirliliğinin Tarıma Verdiği Zararların Değerinin Biçilmesi: Samsun Gübre (TÜGSAS) Ve Karadeniz Bakır (KBI) Sanayileri Örneği,. J. Agriculture And Forestry, 23, 337–345. Google Scholar öffnen
  128. Thames, L., & Schaefer, D. (2016). Software-Defined Cloud Manufacturing For Industry 4.0. Procedia CIRP, 52, 12–17. Google Scholar öffnen
  129. Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What Does Industry 4.0 Mean To Supply Chain? Procedia Manufacturing, 13, 1175–1182. Google Scholar öffnen
  130. Tupa, J., Simota, J., & Steiner, F. (2017). Aspects Of Risk Management Implementation For Industry 4.0. Procedia Manufacturing, 11, 1223–1230. Google Scholar öffnen
  131. Connection between industry 4.0 and smart factories by Elif Nurten, Cagla Seneler Google Scholar öffnen
  132. Alcin, S. (2016). ÜRETİM İÇİN YENİ BİR İZLEK: SANAYİ 4.0. Journal of Life Economics, 3(8), pp.19 – 19. Google Scholar öffnen
  133. AZoNano.com. (2005). What is Nanotechnology and What Can It Do?. [online] Available at: https://www.azonano.com/article.aspx?ArticleID=1134 Google Scholar öffnen
  134. Burke, R., Mussomeli, A., Laaper, S., Hartigan, M. and Sniderman, B. (2017). The smart factory. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html Google Scholar öffnen
  135. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. and Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, pp.6505 – 6519. Google Scholar öffnen
  136. Cleaveland, P. (2006). What is a smart sensor? – Control Engineering. [online] Control Engineering. Available at: https://www.controleng.com/articles/what-is-a-smart-sensor/ Google Scholar öffnen
  137. Correia, M. (2014). Industrie 4.0 Framework, Challenges and Perspectives. [online] Recipp.ipp.pt. Available at: http://recipp.ipp.pt/bitstream/10400.22/7110/1/DM_CorreiaMiguel_2014_MEM.pdf Google Scholar öffnen
  138. Deloitte Insights. (2018). Forces of change: Industry 4.0. [online] Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/overview.html Duivenvoorden, C. (2017). The Beginners Guide To The Industry 4.0 – Industry4Magazine. [online] Industry4Magazine. Available at: https://industry4magazine.com/the-beginners-guide-to-the-industry-4-0-f45b93a95649 Google Scholar öffnen
  139. Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics. Google Scholar öffnen
  140. Lee, E. (2008). Cyber Physical Systems: Design Challenges. 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). Google Scholar öffnen
  141. Lee, E (2015). The Past, Present and Future of Cyber-Physical Systems: A Focus on Models. Sensors, 15(3), pp.4837 – 4869. Google Scholar öffnen
  142. Lee, I. and Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), pp.431 – 440. Google Scholar öffnen
  143. Lee, J., Bagheri, B. and Kao, H. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, pp.18 – 23. Google Scholar öffnen
  144. Lee, J., Davari, H., Singh, J. and Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, pp.20 – 23. Google Scholar öffnen
  145. Lueth, K. (2014). Why it is called Internet of Things: Definition, history, disambiguation. [online] Iot-analytics.com. Available at: https://iot-analytics.com/internet-of-things-definition/ Marr, B. (2016). What Everyone Must Know About Industry 4.0. [online] Forbes.com. Available at: https://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-must-know-about-industry-4-0/#6f0059f3795f Google Scholar öffnen
  146. OTTO Motors. (n.d.). 5 Key Industry 4.0 Technologies Changing Manufacturing. [online] Available at: https://ottomotors.com/blog/5-industry-4-0-technologies Google Scholar öffnen
  147. Rojko, A. (2017). Industry 4.0 Concept: Background and Overview. International Journal of Interactive Mobile Technologies (iJIM), 11(5), p.77. Google Scholar öffnen
  148. Rghioui, A. (2017). Internet of Things: Visions, Technologies, and Areas of Application. Automation, Control and Intelligent Systems, 5(6), p.83. Google Scholar öffnen
  149. Sawe, B. (2017). What Was The Second Industrial Revolution?. [online] WorldAtlas. Available at: https://www.worldatlas.com/articles/what-was-the-second-industrial-revolution.html Scheuermann, C., Verclas, S. and Bruegge, B. (2015). Agile Factory – An Example of an Industry 4.0 Manufacturing Process. 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications. Google Scholar öffnen
  150. Schwab, K. (n.d.). The fourth industrial revolution. Google Scholar öffnen
  151. Shrouf, F., Ordieres, J. and Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Google Scholar öffnen
  152. Sniderman, B., Mahto, M. and Cotteleer, M. (2016). Industry 4.0 and manufacturing ecosystems. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/manufacturing-ecosystems-exploring-world-connected-enterprises.html Google Scholar öffnen
  153. Weallans, S. (2018). IIoT And Industry 4.0: The Basics You Need to Know | Sensors Magazine. [online] Sensorsmag.com. Available at: https://www.sensorsmag.com/components/iiot-and-industry-4-0-basics-you-need-to-know Google Scholar öffnen
  154. Wright, G. (2018). Smart factories just got smarter. [online] Manufacturingglobal.com. Available at: https://www.manufacturingglobal.com/technology/smart-factories-just-got-smarter Google Scholar öffnen
  155. Techno-Parks on the Digital Transformation by Gizem ATAK, Ferhan ÇEBİ Google Scholar öffnen
  156. Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters. Google Scholar öffnen
  157. Auger, P., Barnir, A., & Gallaugher, M. J. (2003). Business Process Digitization, Strategy, and the Impact of Firm Age and Size: The Case of the Magazine Publishing Industry. Journal of Business Venturing, (6) 18, 789–814. Google Scholar öffnen
  158. Atak G. (2018), The Role of Technopark Companies in the Development of the Fourth Industrial Revolution in Turkey,. Istanbul Technical University, Unpublished master’s thesis Google Scholar öffnen
  159. Btgm.sanayi.gov.tr (2018). Date retrieved 28.12.2018, from https://btgm.sanayi.gov.tr/DokumanGetHandler.ashx?dokumanId=c2f 7d4c9–5cde-461e-b2ee-1966309073d2. Google Scholar öffnen
  160. Fırat, S. Ü., & Fırat, O. Z. (2017). Sanayi 4.0 Devrimi Üzerine Karşılaştırmalı Bir İnceleme: Kavramlar, Küresel Gelişmeler ve Türkiye. Toprak İşveren Dergisi, (114), 10–23. Google Scholar öffnen
  161. Fuchs, C. (2018). Industry 4.0: The Digital German Ideology. tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 16(1), 280–289. Google Scholar öffnen
  162. Gubán, M., & Kovács, G. (2017). Industry 4.0 Conception. Acta Technical Corviniensis-Bulletin of Engineering, 10(1), 111. Google Scholar öffnen
  163. IASP (2017). Date retrieved 23.10.2017, from https://www.iasp.ws/OurIndustry/Definitions. Google Scholar öffnen
  164. İçten, T., & Bal, G. (2017). Artırılmış Gerçeklik Teknolojisi Üzerine Yapılan Akademik Çalışmaların İçerik Analizi. Bilişim Teknolojileri Dergisi, 10(4), 401–415. (IASP 2017) Doyduk, H. B. B., & Tiftik, C. (2017). Nesnelerin İnterneti: Kapsamı, Gelecek Yönelimi ve İş Fırsatları. Third Sector Social Economic Review, 52(3), 127–147. Google Scholar öffnen
  165. Kai-Oliver Zander MS, M., & MEng, K. R. (2015). An Analysis of the Potential of Company's Inter-Cooperation on Shop-Floor Level Through the Utilization of Cyber-Physical Production Systems. In Proceedings of the International Annual Conference of the American Society for Engineering Management. (p.1). American Society for Engineering Management (ASEM). Google Scholar öffnen
  166. Kiran, V. (2016). Trends 2016: Big Data, IoT take the plunge. Voice & Data; New Delhi. Google Scholar öffnen
  167. Koçak, A., & Diyadin, A. (2018). Sanayi 4.0 Geçiş Süreçlerinde Kritik Başarı Faktörlerinin DEMATEL Yöntemi ile Değerlendirilmesi. Ege Akademik Bakis, 18(1), 107–120. Google Scholar öffnen
  168. Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25. Google Scholar öffnen
  169. Magruk, A. (2016). Uncertainty in the Sphere of the Industry 4.0-Potential Areas to Research. Business, Management and Education, 14(2), 275. Google Scholar öffnen
  170. Official Gazette 24454 (2001). Date retrieved 23.10.2017, from http://www.resmigazete.gov.tr/eskiler/2001/07/20010706.htm#1. Google Scholar öffnen
  171. Ozdogan, O. (2017). Endüstri 4.0. Ankara: Pusula yayın. Google Scholar öffnen
  172. Pekol, Ö., & Erbas, B. Ç. (2011). Patent Sisteminde Türkiye'deki Teknoparkların Yeri/Technopark in Turkey: Patent System Perspective. Ege Akademik Bakis, 11(1), 1327. Google Scholar öffnen
  173. Schwab, K. (2017). Dördüncü Sanayi Devrimi. Istanbul: Optimist. Google Scholar öffnen
  174. Siegel, D. S., Westhead, P., & Wright, M. (2003). Science Parks and The Performance of New Technology-Based Firms: A Review of Recent UK Evidence and an Agenda for Future Research. Small Business Economics, 20(2), 177–184. Google Scholar öffnen
  175. Soysal, M., & Pamuk, N. S. (2018). Yeni Sanayi Devrimi Endüstri 4.0 Üzerine Bir İnceleme. Verimlilik Dergisi, (1), 41–66. Google Scholar öffnen
  176. TÜBİTAK (2016). Ar-Ge Reform Paketi Tanıtım Toplantısı Yapıldı. Türkiye Bilimsel ve Teknolojik Araştırmalar Merkezi, 14 Ocak 2016. Date retrieved: 23.04.2017, from https://www.tubitak.gov. tr /tr/haber/ar-gereform-paketi-tanitim-programi-yapildi. Google Scholar öffnen
  177. Türkiye Odalar ve Borsalar Birliği (2016). Akıllı Fabrikalar Geliyor. TOBB Ekonomik Forum Dergisi, 259, 16–27. Google Scholar öffnen
  178. TÜSİAD & BCG (2016). Türkiye’nin Küresel Rekabetçiliği için Bir Gereklilik Olarak Sanayi 4.0: Gelişmekte Olan Ekonomi Perspektifi. İstanbul: TÜSİAD. Google Scholar öffnen
  179. An Evaluative Perspective from Institutional Logic and Pragmatism on the Relationship between Industry 4.0 and Outsourcing by Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR Google Scholar öffnen
  180. Adler, P. S. Making the HR Outsourcing Decision. MIT Sloan Management Review, 45(1), 2003, 53–60. Google Scholar öffnen
  181. Alexander, M., and D. Young, Strategic Outsourcing. Long Range Planning, 29(1), 1996,116–119. Google Scholar öffnen
  182. Alford, R. R. and R. Friedland,. Powers of Theory: Capitalism, the State, and Democracy. Cambridge: Cambridge University Press,1985. Google Scholar öffnen
  183. Arnold, U. New Dimensions of Outsourcing: A Combination of Transaction Cost Economics and the Core Competencies Concept. European Journal of Purchasing & Supply Management, 6(1), 2000, 23–29. Google Scholar öffnen
  184. Aron, R., E. K. Clemons, and S. Reddi, “Just Right Outsourcing: Understending and Managing Risk”, Journal of Management Information Systens, Vol. 22, Issue 2, 2005, Pp. 37–55 (Https://and.Tandfonline.Com/Doi/Abs/10.1080/07421222.2005.11045852, 28.08.2018) Google Scholar öffnen
  185. Arora, A., and A. Gambardella, Complementarity and External Linkages: The Strategies of the Large Firms in Biotechnology. the Journal of Industrial Economics, 1990, 361–379. Google Scholar öffnen
  186. Aubert, B.A., M. Patry, and S. Rivard, “A Transaction Cost Approach to Outsourcing Behavior: Some Empirical Evidence”, Information & Management, Vol. 30, 1996, Pp. 51–64. Google Scholar öffnen
  187. Aubert, B. A., M. Patry, and S. Rivard, “Assessing the Risk of IT Outsourcing”, Proceedings of the Thirty-First Hawai International Conference on System Sciences, 9 January 1998, Kohala Coast, USA. 1998. Google Scholar öffnen
  188. Bartodziej, C. J. The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics. Springer. 2016. Google Scholar öffnen
  189. Battilana, J. 2006. ‘Agency and Institutions: The Enabling Role of Individuals’ Social Position,’ Organization, Forthcoming. Google Scholar öffnen
  190. Beaulieu, M., Roy, J., & S. Landry, Logistics Outsourcing in the Healthcare Sector: Lessons from A Canadian Experience. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences De l'Administration, 35(4), 2018, 635–648.DOI: 10.1002/CJAS.1469. Google Scholar öffnen
  191. Belcourt, M. “Outsourcing — the Benefits and the Risks”, Human Resource Management Review, Vol. 16, 2006, P. 269–279. Google Scholar öffnen
  192. Berger, P. and T. Luckmann, the Social Construction of Reality. New York: Doubleday Anchor. 1967. Google Scholar öffnen
  193. Crouch, C. Complementarıty, Morgan, G., Campbell, J., Crouch, C., Pedersen, O. K., & Whitley, R. (Eds.). In the Oxford Handbook of Comparative Institutional Analysis. Oxford University Press.2010. Google Scholar öffnen
  194. El Mokrini, A., E. Dafaoui, A. Berrado, and A. El Mhamedi, “An Approach to Risk Assessment for Outsourcing Logistics: Case of Pharmaceutical Industry”, IFAC-Papers Online, Vol. 49, Pp. 1239–1244, 2016. Google Scholar öffnen
  195. Greenwood, R. & C. R. Hinings, Understanding Strategic Change: The Contribution of Archetypes. Academy of Management Journal, 36(5), 1993,1052–1081. Google Scholar öffnen
  196. Gupta, U. G. & A. Gupta, Outsourcing the IS Function: Is It Necessary For Your Organization?, Information Systems Management, 9(3), 1992, 44–47. Google Scholar öffnen
  197. Gutek, G. Philosophical, Ideological, and theoretical Perspectives on Education. New Jersey: Pearson, 2014, pp. 76,100. ISBN 978–0–13–285238–8. Google Scholar öffnen
  198. Haour, G. Stretching the Knowledge‐Base of the Enterprise Through Contract Research. R&D Management, 22(2), 1992, 177–182. Google Scholar öffnen
  199. Heng, S. Industry 4.0. Upgrade Des Industriestandorts Deutschland Steht Bevor. In: DB Research Management. Frankfurt A. M., 2014. Google Scholar öffnen
  200. Hofmann, E., & M. RüSch, Industry 4.0 and the Current Status as well as Future Prospects on Logistics. Computers in Industry, 89, 2017, 23–34. Google Scholar öffnen
  201. Howells, J. Research and Technology Outsourcing, Technology Analysis & Strategic Management, 11:1, 1999, 17–29, Google Scholar öffnen
  202. Huff, S. L. Outsourcing of Information Services. Business Quarterly, 55(4), 1991, 62–65. Google Scholar öffnen
  203. Jackall, R. Moral Mazes: The World of Corporate Managers. International Journal of Politics, Culture, and Society, 1(4), 1988, 598–614. Google Scholar öffnen
  204. Kagermann, AND., AND. Wahlster, J. Helbig, Umsetzungsempfehlungen für das Zukunftsprojekt Industry 4.0. Abschlussbericht Des Arbeitskreises Industry 4.0. Deutschlands Zukunft Als Produktionsstandort Sichern. In: Promotorengruppe Kommunikation der Forschungsunion Wirtschaft – Wissenschaft. Berlin, 2013. Google Scholar öffnen
  205. Kakabadse, A., and N. Kakabadse. “Trends in Outsourcing: Contrasting USA and Europe”, European Management Journal Vol. 20, No. 2, 2002, Pp. 189–198. Google Scholar öffnen
  206. Kosnik, T., D. J. Wong-Mingji, & K. Hoover, Outsourcing Vs Insourcing in the Human Resource Supply Chain: A Comparison of Five Generic Models. Personnel Review, 35(6), 2006,671–684. Google Scholar öffnen
  207. Leeman, D., & D. Reynolds, Trust and Outsourcing: Do Perceptions of Trust Influence the Retention of Outsourcing Providers in the Hospitality Industry?, International Journal of Hospitality Management, 31(2), 2012, 601–608. Google Scholar öffnen
  208. Li-Jun, Z. “Research on Analysis and Control of Enterprise Logistics Outsourcing Risks”, Energy Procedia, Vol. 17,2012, Pp. 1268–1273. Google Scholar öffnen
  209. Masten. S, K. Crocker, Efficient Adaptation in Long-Term Contracts: Take or Pay Provisions For Natural Gas. American Economic Review,1985, 75,1085–1096. Google Scholar öffnen
  210. Mccauley, A. Know the Benefits and Costs of Outsourcing Services. Canadian HR Reporter, 13(17), 18–19.
Meyer, John and., R. Richard Scott (Eds). 1983. Organizational Environments: Ritual and Rationality, Beverly Hills, CA: Sage, 2000. Google Scholar öffnen
  211. Meyer, J. and., J. Boli, G. M. Thomas, and F. O. Ramirez. ‘World Society and the Nation-State,’ American Journal of Sociology 103, 1997, 144–181. Google Scholar öffnen
  212. Ngwenyama, O. K., & N. Bryson, Making the Information Systems Outsourcing Decision: A Transaction Cost Approach to Analyzing Outsourcing Decision Problems. European Journal of Operational Research, 115(2),1999, 351–367. Google Scholar öffnen
  213. Oshima, M., T. Kao, & J. Tower, Achieving Post-Outsourcing Success. Human Resources Planning, 28(2), 7–12.
Outsourcing and the Implications for Human Resource Development. (2000). Journal of Management Development, 19(8), 2005, 694–699. Google Scholar öffnen
  214. Quélin, B., & F. Duhamel, Bringing Together Strategic Outsourcing and Corporate Strategy: Outsourcing Motives and Risks. European Management Journal, 21(5), 2003, 647–661. Google Scholar öffnen
  215. Rennunga, F. M., C. T. Luminosua, and A. Draghici, “Strategic Management – Managing the Potential Complexity-Risks in Outsourcing”, Procedia Economics and Finance, Vol. 26, 2015, Pp. 757–763. Google Scholar öffnen
  216. Ringe, M. J. (1992). The Contract Research Business in the United Kingdom. The European Dimension. EUR 14578 EN. Research Evaluation. Science and Technology Policy Series. Google Scholar öffnen
  217. Scott, AND. R. [1995] 2001. Institutions and Organizations, 2nd Edn. Thousand Oaks, CA: Sage,1992. Google Scholar öffnen
  218. Scott, AND. R., M. Ruef, P. Mendel, and C. Caronna, Institutional Change and Health Care Organizations: From Professional Dominance to Managed Care. Chicago: University of Chicago Press, 2000. Google Scholar öffnen
  219. Spath, D. (Ed.), O. Ganschar, S. Gerlach, M. Hämmerle, T. Krause, S. Schlund, Studie: Produktionsarbeit Der Zukunft – Industrie 4.0 (2013). Retrieved June 8, 2015, From Http://and.Iao.Fraunhofer.De/Images/Iao-News/ Produktionsarbeit-Der-Zukunft.Pdf. Google Scholar öffnen
  220. Thornton, P. AND., & AND. Ocasio, Institutional Logics. The Sage Handbook of Organizational Institutionalism, 840, 2008, 99–128.,Pdf Google Scholar öffnen
  221. Wang, E. T. Transaction Attributes and Software Outsourcing Success: An Empirical Investigation of Transaction Cost theory. Information Systems Journal, 12(2), 2002, 153–181. Google Scholar öffnen
  222. Weick, K. E. Educational Organizations as Loosely Coupled Systems. Administrative Science Quarterly, 21, 1–19, 1976. Google Scholar öffnen
  223. Weick, K. E. Management of Organizational Change Among Loosely Coupled Elements. Inp. S. Goodman &As-Sociates (Eds.), Change in Organizations (Pp. 375–408). San Francisco: Jossey-Bass, 1982. Google Scholar öffnen
  224. William, J. The Meaning of Truth. Retrieved 5 March, 1909/2015. Google Scholar öffnen
  225. https://Tez.Yok.Gov.Tr/Ulusaltezmerkezi/Tezsorgusonucyeni.Jsp Google Scholar öffnen
  226. Usage of Enterprise Resource Planning (ERP) in Turkey and Information Safety by Recep Benzer, Emre Akar Google Scholar öffnen
  227. Al-Mashari, M., Al-Mudimigh, A., & Zairi, M. Enterprise resource planning: A taxonomy of critical factors. European journal of operational research, 146(2), 352–364. 2003. Google Scholar öffnen
  228. Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Al-Qudah, M. A., & Al-Omari, A. Introduction to Information Security. In Practical Information Security (pp. 1–16). Springer, Cham. 2018. Google Scholar öffnen
  229. Anonymous, Security and threats in ERP. Https://Cpm.Com.Tr/Tr/Erp-Blog/Erpde-Guvenlik-Ve-Tehditler. 2018. Google Scholar öffnen
  230. Avunduk, H., & Güleryüz, Ö. Enterprise Resource Planning (ERP) and an Analysis of the Effects to Managerial Decisions: A Qualitative Research in Textile Firm. Journal of Current Researches on Business and Economics, 8(1), 41–52. 2018. Google Scholar öffnen
  231. Aydoğan, E.. Enterprise Resource Planning, TSA Dergisi Yı l:2 S:2, Ağustos 2008, s.109. 2008 Google Scholar öffnen
  232. Başaran, A. Cyberspace Arion Press (In Turkish). 2017. Google Scholar öffnen
  233. Başaran, A. Http://Alperbasaran.Com/Kurumsal-Kaynak-Planlama-Yazilimi-Erp-Guvenligi/. 2018. Google Scholar öffnen
  234. Braggs, S. ERP: the state of the industry. Arc. Insights 12 ECL, New York. 2005. Google Scholar öffnen
  235. Canbek Gürol, Sağıroğlu Şeref, Bilgi, Bilgi Güvenliği Ve Süreçleri Üzerine Bir İnceleme, Politeknik Dergisi, Cilt: 9, Sayı:3, 2006, S.165 4 Türkiye Bilişim Derneği, Bilişim Sistemleri Güvenliği El Kitabı, Sürüm 1.0, Ankara, Mayıs 2006, S.3 (In Turkish). Google Scholar öffnen
  236. Çetinkaya, M. Implementation of Information Security Management System in Institutions. Akademik Bilişim 2008, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, 30 Ocak- 01 Şubat 2008, S.511 (In Turkish). 2008. Google Scholar öffnen
  237. Demir, B. Information Security in the Accounting Information Systems. The Journal of Accounting and Finance, (26), 147–156. 2005. Google Scholar öffnen
  238. Erkan, Turan. Erman. ERP Enterprise Resource Planning. Ankara: Atılım Üniversitesi. (Turkish) Enterprise Resource Planning. 2008. Google Scholar öffnen
  239. Habertürk, https://www.haberturk.com/sap-ve-oracle-in-guvenlik-aciklari-binlerce-sirketi-tehlikeye-soktu-2076352-ekonomi alıntı tarihi: 26 Temmuz 2018. 2018 Google Scholar öffnen
  240. İnal, İ. WEB based ERP for SME's: An evaluation of Turkey's ERP vendors, Msc Thesis. Balıkesir University Graduate School of Natural and Applied Sciences. 103 page. 2004. Google Scholar öffnen
  241. Keçek, G. & Yıldırım, E. Enterprise Resource Planning and The Importance For Company Electronic Journal of Social Sciences 8 :240–258. 2014. Google Scholar öffnen
  242. Laudon, C. K., & Laudon, P. J. Information Systems in the Enterprise, Managing the Digital Firm, 8/E. Prentice Hall. 2004. Google Scholar öffnen
  243. Loh TC, Koh SCL Critical elements for a successful enterprise resource planning implementation in small-and medium-sized enterprises. Int J Prod Res 42(17):3433–3455. 2004. Google Scholar öffnen
  244. Manettı J. How technology is transforming manufacturing. Production and Inventory Management Journal 42(1), 54–64. 2001. Google Scholar öffnen
  245. Montalbano, E. Onapsis Report Report: Cybercriminals target difficult-to-secure ERP systems with new attacks https://www.onapsis.com/research/reports/erp-security-threat-report 2018. Google Scholar öffnen
  246. Ross, J.W. and Vitale, M.R. The ERP revolution, surviving vs. Thriving. Information Systems Frontiers; special issue on The Future of Enterprise Resource Planning Systems 2(2), 233–241. 2000. Google Scholar öffnen
  247. Sumner, M., Enterprise resource planning, Upper Saddle River, New Jersey: Prentice-Hall. 2005. Google Scholar öffnen
  248. Usmanij, PA, Khosla R, Chu M-T Successful product or successful system? User satisfaction measurement of ERP software. J Intell Manuf 24(6):1131–1144. 2013. Google Scholar öffnen
  249. Vural, Y, Sağıroğlu Ş., A Review On Enterprise Information Security And Standards. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Cilt 23, No 2, Ankara, 2008, S.509. 2008. Google Scholar öffnen
  250. Machine learning approaches for prediction of service times in health information systems by Mete Eminağaoğlu Google Scholar öffnen
  251. Aha, D. W., Kibler, D., & Albert, M. K. (1991). “Instance-based learning algorithms”, Machine Learning, Vol. 6 No. 1, pp. 37–66. Google Scholar öffnen
  252. Akaike, H. (1981). “Likelihood of a model and information criteria”, Journal of Econometrics, Vol. 16 No. 1, pp. 3–14. Google Scholar öffnen
  253. Bernardi, R. Constantinides, P., & Nandhakumar, J. (2017). “Challenging Dominant Frames in Policies for IS Innovation in Healthcare through Rhetorical Strategies”, Journal of the Association for Information Systems, Vol. 18 No. 2, pp. 81–112. Google Scholar öffnen
  254. Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer Science + Business Media LLC, New York. Google Scholar öffnen
  255. Breil, B. Fritz, F., Thiemann, V., & Dugas, M. (2011). “Mapping turnaround times (TAT) to a generic timeline: a systematic review of TAT definitions in clinical domains”, BMC Medical Informatics and Decision Making, Vol. 11 No. 34, pp. 1–12. Google Scholar öffnen
  256. Broomhead, D. S., & Lowe, D. (1988). “Radial basis functions, multi-variable functional interpolation and adaptive networks (Technical report)”, Royal Signals and Radar Establishment, Report no. 4148, UK. Google Scholar öffnen
  257. Buduma, N., & Locascio, N. (2017). Fundamentals of Deep Learning, O’Reilly Media, Inc., USA. Google Scholar öffnen
  258. Chen, S. (2014). "Information needs and information sources of family caregivers of cancer patients", Aslib Journal of Information Management, Vol. 66 No. 6, pp. 623–639. Google Scholar öffnen
  259. Dasu T. & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning, John Wiley & Sons Inc., New Jersey. Google Scholar öffnen
  260. Eibe, F. (2014). Fully supervised training of Gaussian radial basis function networks in WEKA. Retrieved from https://www.cs.waikato.ac.nz/~eibe/pubs/ rbf_networks_in_weka_ description.pdf Google Scholar öffnen
  261. Eminağaoğlu M., & Vahaplar A. (2018). “Turnaround Time Prediction for a Medical Laboratory Using Artificial Neural Networks”, International Journal of Informatics Technologies, Vol.11 No. 4, pp: 357–368. Google Scholar öffnen
  262. Fieri, M., Ranney, N. F., Schroeder, E. B., Van Aken, E. M., & Stone, A. H. (2010). “Analysis and improvement of patient turnaround time in an emergency department”, in Proceedings of the 2010 IEEE Systems and Information Engineering Design Symposium, University of Virginia Charlottesville, VA, USA, 2010, pp. 239–244. Google Scholar öffnen
  263. Goodfellow, A., Bengio, Y., & Courville, A. (2017). Deep Learning, The MIT Press, USA. Google Scholar öffnen
  264. Goswami, B., Singh, B., Chawla, R., Gupta, V. K., & Mallika, V. (2010). “Turnaround time (TAT) as a benchmark of laboratory performance”, Indian Journal of Clinical Biochemistry, Vol. 25 No. 4, pp. 376–379. Google Scholar öffnen
  265. Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, Springer-Verlag., Berlin. Google Scholar öffnen
  266. Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Francisco. Google Scholar öffnen
  267. Hand, C., Mannila, H., & Smyth P. (2001). Principles of Data Mining, the MIT Press, London. Google Scholar öffnen
  268. Hassanpour, M., Vaferi, B., & Masoumi, M. E. (2018). “Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches”, Applied Thermal Engineering, Vol. 128, pp. 1208–1222. Google Scholar öffnen
  269. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning, Data Mining, Inference and Prediction, 2nd edition, Springer, New York. Google Scholar öffnen
  270. Haykin, S. (2009). Neural Networks and Learning Machines, 3rd edition, Pearson Education, Inc., New Jersey. Google Scholar öffnen
  271. He, C., Fan, X., & Li, Y. (2013). “Toward Ubiquitous Healthcare Services with a Novel Efficient Cloud Platform”, IEEE Transactions on Biomedical Engineering, Vol. 60 No. 1, pp. 230–234. Google Scholar öffnen
  272. Hendrickx, I., & Antal, V. B. (2005). "Hybrid algorithms with Instance-Based Classification", in Proceedings of 16th European Conference on Machine Learning Machine Learning: ECML2005, Porto, Portugal, 2005, pp. 158–169. Google Scholar öffnen
  273. Hope, T., Yehezkel, S. R., & Lieder, I. (2017). Learning TensorFlow: A Guide to Building Deep Learning Systems, O’Reilly Media, Inc., USA. Google Scholar öffnen
  274. Huang, W., Lai, K. K., Nakamori, Y., & Wang, S. (2004). “Forecasting Foreign Exchange Rates with Artificial Neural Networks: A Review”, International Journal of Information Technology & Decision Making, Vol. 3 No. 1, pp. 145–165. Google Scholar öffnen
  275. Köksal, H., Eminağaoğlu, M., & Türkoğlu, B. (2016) “An Adaptive Network-Based Fuzzy Inference System for Estimating the Duration of Medical Services: A Case Study”, in Proceedings of 10th IEEE International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, pp: 801–806. Google Scholar öffnen
  276. Kumar, S. (2017). Neural Networks – A Classroom Approach, 2nd ed., McGraw-Hill, New Delhi. Google Scholar öffnen
  277. Larose, D. T. (2005). Discovering Knowledge in Data – An Introduction to Data Mining, John Wiley & Sons Inc., New Jersey. Google Scholar öffnen
  278. Larose, D. T. (2006). Data Mining Methods and Models, John Wiley & Sons Inc., New Jersey. Google Scholar öffnen
  279. Lyon, A. R., Wasse, J. K., Ludwig, K., Zachry, M., Bruns, E. J., Unutzer, J., & McCauley, E. (2016). “The Contextualized Technology Adaptation Process (CTAP): Optimizing Health Information Technology to Improve Mental Health Systems”, Administration and Policy in Mental Health and Mental Health Services Research, Vol. 43 No. 3, pp. 394–409. Google Scholar öffnen
  280. Mitchell, T. M. (2017). Machine Learning, McGraw-Hill, India. Google Scholar öffnen
  281. Nedjah, N., Luiza, M. M., & Kacprzyk, J. (2009). Innovative Applications in Data Mining, Springer-Verlag, Berlin. Google Scholar öffnen
  282. Ng, X. W., & Chung, W. Y. (2012). “VLC-based Medical Healthcare Information System”, Biomedical Engineering: Applications, Basis and Communications, Vol. 24 No. 2, pp. 155–163. Google Scholar öffnen
  283. Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach, O’Reilly Media, Inc., USA. Google Scholar öffnen
  284. Python, (2019). Programming language. Retrieved from https://www.python.org/downloads/ windows/ Google Scholar öffnen
  285. Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., & Lopez, A. J. S. (2009). Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Publishing, USA. Google Scholar öffnen
  286. Quinlan, R. J. (1992). “Learning with Continuous Classes”, in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, 1992, pp. 343–348. Google Scholar öffnen
  287. Ravinesh, C. D., & Şahin, M. (2015). “Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia”, Applied Soft Computing, Vol. 153, pp. 512–525. Google Scholar öffnen
  288. Reyes, J., Morales-Esteban, A., & Martinez-Alvarez, F. (2013). “Neural networks to predict earthquakes in Chile”, Applied Soft Computing, Vol. 13 No. 2, pp. 1314–1328. Google Scholar öffnen
  289. Samudrala, S. (2019). Machine Intelligence: Demystifying Machine Learning, Neural Networks and Deep Learning, Notion Press, Chennai. Google Scholar öffnen
  290. Scagliarini, M., Apreda, M., Wienand, U., & Valpiani, G. (2016). "Monitoring operating room turnaround time: a retrospective analysis", International Journal of Health Care Quality Assurance, Vol. 29 No. 3, pp. 351–359. Google Scholar öffnen
  291. Sinreich, D., & Marmor, Y. (2005). "Ways to reduce patient turnaround time and improve service quality in emergency departments", Journal of Health Organization and Management, Vol. 19 No. 2, pp. 88–105. Google Scholar öffnen
  292. Söderholm, H.M., & Sonnenwald, D. H. (2010). "Visioning Future Emergency Healthcare Collaboration: Perspectives from Large and Small Medical Centers", Journal of The American Society for Information Science and Technology, Vol. 61 No. 9, pp. 1808–1823. Google Scholar öffnen
  293. Storrow, A. B., Zhou, C., Gaddis, G., Han, J. H., Miller, K., Klubert, D., Laidig A., & Aronsky, D. (2008). “Decreasing Lab Turnaround Time Improves Emergency Department Throughput and Decreases Emergency Medical Services Diversion: A Simulation Model”, Academic Emergency Medicine, Vol. 15 No. 11, pp. 1130–1135. Google Scholar öffnen
  294. Stvilia, B., Mon, L., & Yi, Y. J. (2009). "A Model for Online Consumer Health Information Quality", Journal of the American Society for Information Science and Technology, Vol. 60 No. 9, pp. 1781–1791. Google Scholar öffnen
  295. Tensorflow (2019). An open source machine learning framework for everyone. Retrieved from https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md Google Scholar öffnen
  296. Wang, Y. & Witten, I. H. (1997). “Induction of model trees for predicting continuous classes”, in Poster papers of the 9th European Conference on Machine Learning, Prague, Czech Republic, 1997. Google Scholar öffnen
  297. Weka (2019). Data Mining Software in Java. Retrieved from http://www.cs.waikato.ac.nz/ ml/weka/ Google Scholar öffnen
  298. Willoughby, K. A., Chan, B. T. B., & Strenger, M. (2010). "Achieving wait time reduction in the emergency department", Leadership in Health Services, Vol. 23 No. 4, pp. 304–319. Google Scholar öffnen
  299. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques, 3rd edition, The Morgan Kaufmann Series in Data Management Systems, Burlington. Google Scholar öffnen
  300. Wold, S, Sjöström, M., & Eriksson, L. (2001). "PLS-regression: a basic tool of chemometrics", Chemometrics and Intelligent Laboratory Systems, Vol. 58 No. 2, pp. 109–130. Google Scholar öffnen
  301. Yeh, I-C., & Lien, C. (2009). “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients”, Expert Systems with Applications, Vol. 36, pp. 2473–2480. Google Scholar öffnen
  302. Yu, L., Lai, K. K., & Wang, S. Y. (2006). “Currency Crisis Forecasting with General Regression Neural Networks”, International Journal of Information Technology & Decision Making, Vol. 5 No. 3, pp. 437–454. Google Scholar öffnen
  303. Application of Artificial Neural Networks in Growth Models by Semra Benzer, Recep Benzer Google Scholar öffnen
  304. Acatech, “Acatech: Recommendations for Implementing the Strategic Initiative Industrie 4.0”, Final Report of the Industry 4.0 Working Group, http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (15.12.2018). 2013. Google Scholar öffnen
  305. Altındağ, A., Shah, S.L., Yigit, S., The growth features of tench (Tinca tinca L., 1758) in Bayındır Dam Lake, Ankara, Turkey. Turk J Zool, 26, 385–391. 2002. Google Scholar öffnen
  306. Altındağ, A., Yiğit, S., Ahıska, S., Özkurt, Ş., The Growth Features of Tench (Tinca tinca L., 1758) in the Kesikköprü Dam Lake. Turk J Zool, 22, 311- 318. 1998. Google Scholar öffnen
  307. Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002. Google Scholar öffnen
  308. Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995. Google Scholar öffnen
  309. Bahçecitapar, M., and Aktaş, S. Use of linear mixed model in multicollinearity and an application. Sakarya University Journal of Science, 21(6), 1349–1359. 2017. Google Scholar öffnen
  310. Balık, İ., Çubuk, H., Çınar, Ş., Özkök, R., Population structure, growth, mortality and estimated stock size of the introduced tench, Tinca tinca (L.), population in Lake Beyşehir, Turkey. J Appl Ichthyol, 25, 206–210. 2009. Google Scholar öffnen
  311. Balık, S., Sarı, H.M., Ustaoğlu, M.R., Ilhan, A., The structure, mortality and growth of the tench (Tinca tinca L., 1758) in Çivril Lake, Denizli, Turkey. Turk J Vet Anim Sci, 28, 973–979. 2004. Google Scholar öffnen
  312. Banger, G. Industry 4.0 and Smart Business, Dorlion Press., Ankara (In Turkish). 2016. Google Scholar öffnen
  313. Benzer S. and Benzer R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Appl Ecol Environ Res, 14(2): 543–54. 2016. Google Scholar öffnen
  314. Benzer S., Benzer R. and Günay A.Ç., Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5): 527–35. 2017. Google Scholar öffnen
  315. Benzer, R. and Benzer, S., Application of artificial neural network into the freshwater fish caught in Turkey. International Journal of Fisheries and Aquatic Studies, 2(5), 341–346. 2015. Google Scholar öffnen
  316. Benzer, R., Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 12:1–15. 2015. Google Scholar öffnen
  317. Benzer, R., and Benzer, S. Alternative approaches for growth models: Artificial neural networks. 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE. 2018. Google Scholar öffnen
  318. Benzer, R., and Benzer, S., Growth and length–weight relationships of Pseudorasbora parva (Temminck & Schlegel, 1846) in Hirfanlı Dam Lake: Comparison with traditional and artificial neural networks approaches. Iranian Journal of Fisheries Sciences. DOI:10.22092/ijfs.2018.119889. 2019. Google Scholar öffnen
  319. Benzer, S. and Benzer, R., Comparative growth models of big-scale sand smelt (Atherina boyeri Risso, 1810) sampled from Hirfanlı Dam Lake, Kırşehir, Ankara, Turkey. Computational Ecology and Software 7(2): 82–90. 2017. Google Scholar öffnen
  320. Benzer, S., and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35–35. 2018. Google Scholar öffnen
  321. Benzer, S., Gül, A., Yılmaz, M., Growth Properties of Tench (Tinca tinca, L., 1758) Living in Kapulukaya Dam Lake, Turkey. Kastamonu Educ J, 18, 839–848. 2010. Google Scholar öffnen
  322. Benzer, S., Karasu Benli, Ç. and Benzer R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J Black Sea/Mediter Environ, 21(2): 208–23. 2015. Google Scholar öffnen
  323. Benzer, Ş.S., Gül, A., Yılmaz, M. Growth Properties of Tench (Tinca tinca, L., 1758) Living in Hirfanlı Reservoir (Kırşehir, Turkey). Iran J Fish Sci, 8, 219–224. 2009. Google Scholar öffnen
  324. Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991. Google Scholar öffnen
  325. Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017. 2017. Google Scholar öffnen
  326. Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999. Google Scholar öffnen
  327. Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009. Google Scholar öffnen
  328. Demirsoy, A., Basic Rules of Life, Vertebrates, (in Turkish). Hacettepe University Publication. III A/55: pp 684. 1998. Google Scholar öffnen
  329. Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z.. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823) (Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007 Google Scholar öffnen
  330. Erguden Alagoz, S., Goksu, M.Z.L., Age, growth and sex ratio of tench Tinca tinca (L., 1758) in Seyhan Dam Lake, Turkey. J Appl Ichthyol, 26, 546 -549. 2010. Google Scholar öffnen
  331. Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012. Google Scholar öffnen
  332. Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995. Google Scholar öffnen
  333. Geldiay, R. and Balık, S., Freshwater Fishes of Turkey, 3. Edition. Ege University press, No: 46, Izmir, 532 p. 1996. Google Scholar öffnen
  334. Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995. Google Scholar öffnen
  335. Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995. Google Scholar öffnen
  336. Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007. Google Scholar öffnen
  337. Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000. Google Scholar öffnen
  338. Innal, D., Population Structures and Some Growth Properties of Three Cyprinid Species [Squalius cephalus (Linnaeus, 1758); Tinca tinca (Linnaeus, 1758) and Alburnus escherichii Steindachner, 1897] Living in Camkoru Pond (Ankara-Turkey), Kafkas Univ Vet Fak Derg, 16, 297–304. 2010. Google Scholar öffnen
  339. ITRE Industry 4.0, European Parliament’s Committee on Industry, Research and Energy”,http://www.europarl.europa.eu/RegData/etudes/STUD/2016/570007/IPOL_STU(2016)570007_EN.pdf (15.12.2018) 2016. Google Scholar öffnen
  340. Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004. Google Scholar öffnen
  341. Kagermann, H., Lukas, W. and Wahlster, W., Industrie 4.0 -Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, Inhalte der Ausgabe Nr. 13/2011,VDI Nachrichten, Berlin. 2011. Google Scholar öffnen
  342. Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013. Google Scholar öffnen
  343. Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011. Google Scholar öffnen
  344. Lagler, K.F., Freshwater fishery biology. W.M.C. Brown Company, Dubuque, IA. 421. 1966. Google Scholar öffnen
  345. Lek, S., and Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999. Google Scholar öffnen
  346. Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982. Google Scholar öffnen
  347. Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983. Google Scholar öffnen
  348. Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003. Google Scholar öffnen
  349. Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997. Google Scholar öffnen
  350. Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004. Google Scholar öffnen
  351. Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002. Google Scholar öffnen
  352. Nikolsky, G.V., The ecology of fishes (translated by L. Birkett). Academic Press, London, pp 352. 1963. Google Scholar öffnen
  353. Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001. Google Scholar öffnen
  354. Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001. Google Scholar öffnen
  355. Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008. Google Scholar öffnen
  356. Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017. Google Scholar öffnen
  357. Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003. Google Scholar öffnen
  358. Pimpica, E., Pinos, B., Growth of Female Tench, Tinca tinca (L.,1758) in Lake Dgal Wielki, NE Poland. Folia Zool, 48, 143–148. 1999. Google Scholar öffnen
  359. Pompei, L., Franchi, E., Giannetto, D., Lorenzoni, M., Growth and reproductive properties of tench, Tinca tinca Linnaeus, 1758 in Trasimeno Lake (Umbria, Italy), Knowl Manag Aquat Ec, 406, 1–13. 2012. Google Scholar öffnen
  360. Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998. Google Scholar öffnen
  361. Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973. Google Scholar öffnen
  362. Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017. Google Scholar öffnen
  363. Rosa, H., A synopsis of the biological data on the tench, Tinca tinca (L., 1758). FAO 58, 951. 1958. Google Scholar öffnen
  364. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986. Google Scholar öffnen
  365. Sarı, M. Artificial Neural Networks And Sales Demand Forecasting Application In The Automotive Industry. Msc Thesis. Sakarya University. 2016. Google Scholar öffnen
  366. Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004. Google Scholar öffnen
  367. Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015. Google Scholar öffnen
  368. Sinis, A.I., Meunier, F.J., Vieillot, H.F., Comparision of sclaes, opercular bones, and Vertabrae to Determine Age and Population Structure in Tench, Tinca tinca (L., 1758) (Pisces, teleostei), Israel J Zool, 45, 453–465.1999. Google Scholar öffnen
  369. Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986. Google Scholar öffnen
  370. Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009. Google Scholar öffnen
  371. Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008. Google Scholar öffnen
  372. Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008. Google Scholar öffnen
  373. Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006. Google Scholar öffnen
  374. Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007. Google Scholar öffnen
  375. Tureli Bilen, C, Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Mediterranean Marine Science, 12(2):439–446. 2011. Google Scholar öffnen
  376. Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006. Google Scholar öffnen
  377. Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002. Google Scholar öffnen
  378. Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992. Google Scholar öffnen
  379. Wright, R.M., Giles, N. The population biology of tench, Tinca tinca (L.) in two gravel pit lakes. J Fish Biol, 38, 17–28. 1991. Google Scholar öffnen
  380. Alternative approaches to traditional methods for growth parameters of fisheries industry: Artificial Neural Networks by Recep Benzer, Semra Benzer Google Scholar öffnen
  381. Aksu, Ö. and Harlioğlu, M.M., The Effect of Placing Hides into the Natural Habitat on Astacus Leptodactylus (Eschscholtz, 1823) Harvest. Ecological Life Sciences, 11(2), 1–10. 2016. Google Scholar öffnen
  382. Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002. Google Scholar öffnen
  383. Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995. Google Scholar öffnen
  384. Aydin, H., Harlioğlu, M.M. and Deniz, T., An investigation on the population parameters of freshwater crayfish (Astacus leptodactylus Esch., 1823) in Lake İznik (Bursa). Turkish Journal of Zoology, 39(4), 660–668. 2015. Google Scholar öffnen
  385. Azari, M.A., Seidgar, M. and Mohebbi, F., Population dynamics of freshwater crayfish (Astacus leptodactylus) in Aras reservoir, Iran. Environ. Resourc. Res., 3: 15–26. 2015. Google Scholar öffnen
  386. Azari, S., Jhin, G., Papini, M. and Spelt, J.K., Fatigue threshold and crack growth rate of adhesively bonded joints as a function of load/displacement ratio. Composites Part A 57, 59–66. 2014. Google Scholar öffnen
  387. Balık, S., Ustaoğlu, M.R., Sarı H.M., Berber, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). EU Journal of Fisheries & Aquatic Sciences, 22(1–2): 83–89. 2005. Google Scholar öffnen
  388. Baran İ, Soylu E., Crayfish plague in Turkey (short communication). J Fish Dis 12: 193–197. 1989. Google Scholar öffnen
  389. Benzer, R. Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 24(2), 460–466. 2015. Google Scholar öffnen
  390. Benzer, S and Benzer, R., Determine Some Morphological Characteristics of Crayfish (Astacus Leptodactylus Eschscholtz, 1823) with Tradional Methods and Artificial Neural Networks in Dikilitas Pond, Ankara, Turkey. Fresenius Environmental Bulletin, 24 (11A):3727–3735. 2015. Google Scholar öffnen
  391. Benzer, S., Karasu Benli, Ç., Benzer, R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J. Black Sea/Mediterranean Environment, 21(2):208–223. 2015. Google Scholar öffnen
  392. Benzer, S and Benzer, R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Applied Ecology and Environmental Research; 14(2), 543–554. 2016. Google Scholar öffnen
  393. Benzer, S, Benzer, R and Gül A., Developments in Science and Engineering. St. Kliment Ohridski University Presssofia, Chaper 5: Artificial Neural Networks Application for Biological Systems: The Case Study of Pseudorasbora parva.; A. ISBN 978–954–07–4137–6. 2016. Google Scholar öffnen
  394. Benzer, S., Benzer, R., and Günal, A. Ç. Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5), 527–535. 2017. Google Scholar öffnen
  395. Benzer, S. and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan J. Zool. 50(1):35–45. 2018. Google Scholar öffnen
  396. Berber, S. and Balık, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Manyas Lake (Balıkesir), EU Journal of Fisheries & Aquatic Sciences, 23(1–2):83–91. 2006. Google Scholar öffnen
  397. Berber, S. and Balık, S., The length-weight relationships, and meat yield of crayfish (Astacus leptodactylus Eschcholtz, 1823) population in Apolyont Lake (Bursa, Turkey). J Fish Sci., 3(2):86–99. 2009. Google Scholar öffnen
  398. Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991. Google Scholar öffnen
  399. Bolat, Y., Mazlum, Y., Demirci, A., & Koca, H. U. Estimating the population size of Astacus leptodactylus (Decapoda: Astacidae) by mark-recapture technique in Egirdir lake, Turkey. African Journal of Biotechnology, 10(55), 11778. 2011. Google Scholar öffnen
  400. Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017. Google Scholar öffnen
  401. Bök, T. D., Aydın, H., & Ateş, C. A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. Journal of Black Sea/Mediterranean Environment, 19(2). 2013. Google Scholar öffnen
  402. Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999. Google Scholar öffnen
  403. Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009. Google Scholar öffnen
  404. Demirol, F., Gündüz, F., Yüksel, F., Çoban, M.Z., Abdulmutalip, B.E.R.İ., Kurtoğlu, M. and Küçükyilmaz, M., The Investigation of By-catch and Discard Rates in Crayfish (Astacus leptodactylus Eschscholtz, 1823) Catching in the Keban Dam Lake. Journal of Limnology and Freshwater Fisheries Research, 1(2), 69–74. 2015. Google Scholar öffnen
  405. Deniz, T.B., Aydın, C. and Ateş, C., A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. J Black Sea/Mediterranean Environment., 19(2):190˗205. 2013. Google Scholar öffnen
  406. Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823)(Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007. Google Scholar öffnen
  407. Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., & Puche, J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 407). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). 2016. Google Scholar öffnen
  408. Ekici, B.B. and Aksoy, U.T., Prediction of building energy consumption by using artificial neural networks, Advances in Engineering Software, 40: 356–362. 1993. Google Scholar öffnen
  409. Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012. Google Scholar öffnen
  410. Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995. Google Scholar öffnen
  411. Furst, M., Future perspectives for Turkish crayfish fishery. I Unv J Fish Aquat Sci 2: 139–147. 1988. Google Scholar öffnen
  412. Füreder, L., Oberkofler, B., Hanel, R., Leiter J. and Thaler, B., The freshwater crayfish Austropotamobius pallipes in South Tyrol: Heritage species and bioindicator. B Fr Peche Piscic., 370–371:79−95. 2003. Google Scholar öffnen
  413. Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995. Google Scholar öffnen
  414. Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995. Google Scholar öffnen
  415. Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007. Google Scholar öffnen
  416. Gutiérrez-Yurrita, P.J., Martínez, J.M., Bravo-Utrera, M.A., Montes, C., Ilhéu M. and Bernardo, J.M., The status of crayfish populations in Spain and Portugal. Pages 161–192 in F. Gherardi, and D. M. Holdich, editors. Crayfish in Europe as alien species: how to make the best of a bad situation? A. A. Balkema, Rotterdam, Netherlands. 1999. Google Scholar öffnen
  417. Harlioğlu, M. M. Comparative biology of the signal crayfish, Pacifastacus leniusculus (Dana), and the narrow-clawed crayfish, Astacus leptodactylus Eschscholtz (Doctoral dissertation, University of Nottingham). 1996. Google Scholar öffnen
  418. Harlioğlu, M.M., The Relationships between Length-Weight, and Meat Yield of Freshwater Crayfish, Astacus leptodactylus Eschscholtz, in the Ağın Region of Keban Dam Lake. Turk J Zool., 23: 949–958. 1999. Google Scholar öffnen
  419. Harlioğlu, M.M., The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. Aquaculture, 230:181–187. 2004. Google Scholar öffnen
  420. Harlioğlu, M.M. and Harlioğlu, A.G., The comparison of morphometric analysis and meat yield contents of freshwater crayfish, Astacus leptodactylus (Esch 1823) caught from İznik, Eğirdir Lakes and Hirfanlı Dam Lake, Science and Engineering Journal of Fırat University, 17(2):412–423. 2005. Google Scholar öffnen
  421. Hogger, J. B., Ecology, population biology and behaviour, In: D.M. Holdich and R.S. Lowery (eds.), Freshwater Crayfish, Biology, Menagement and Exploitation, Cambridge, 114–144. 1988. Google Scholar öffnen
  422. Holdich, D.M. and Lowery, R.S., Freshwater Crayfish – Biology, Management and Exploitation. Chapman and Hall, London. 498 p. 1988. Google Scholar öffnen
  423. Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000. Google Scholar öffnen
  424. Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004. Google Scholar öffnen
  425. Kaastra, I., Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215–236. 1996. Google Scholar öffnen
  426. Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013. Google Scholar öffnen
  427. Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011. Google Scholar öffnen
  428. Lek, S., & Guégan, J. F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999. Google Scholar öffnen
  429. Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982. Google Scholar öffnen
  430. Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983. Google Scholar öffnen
  431. Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003. Google Scholar öffnen
  432. Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997. Google Scholar öffnen
  433. Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004. Google Scholar öffnen
  434. Momot, W. T. Annual production and production/biomass of the crayfish, Orconectes virilis in two northern Ontario Lakes. Trans. Am. Fish. Soc., 96: 202–209. 1978. Google Scholar öffnen
  435. Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002. Google Scholar öffnen
  436. Nystrom, P. Ecology. In: Biology of Freshwater Crayfish (ed. D. M. Holdich), pp. 192–235. Blackwell Science, Oxford. 2002. Google Scholar öffnen
  437. Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001. Google Scholar öffnen
  438. Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001. Google Scholar öffnen
  439. Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008. Google Scholar öffnen
  440. Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017. Google Scholar öffnen
  441. Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003. Google Scholar öffnen
  442. Pârvulescu L., Schrimpf A., Kozubíková E., Cabanillas Resino S., Vrålstad T., Petrusek A & Schulz R. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94. 2012. Google Scholar öffnen
  443. Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998. Google Scholar öffnen
  444. Rahe R, Soylu E. Identification of the pathogenic fungus causing destruction to Turkish crayfish stocks (Astacus leptodactylus). J Invertebr Pathol 54: 10–15. 1989. Google Scholar öffnen
  445. Rhodes, C.P. and Holdich, D.M., On size and sexual dimorphism in Austropotamobius pallipes (Lereboullet) – A step in assessing the commercial exploitation potential of the native British freshwater crayfish. Aquaculture, 17: 345–358. 1979. Google Scholar öffnen
  446. Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973. Google Scholar öffnen
  447. Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017. Google Scholar öffnen
  448. Romaire, R.P., Forester J.S. and Avault, J.W., Length˗weight relationships of two commercially important crayfishes of the genus Procambarus. Freshwater Crayfish, 3:463˗470. 1977. Google Scholar öffnen
  449. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986. Google Scholar öffnen
  450. Sari, B. G., Lúcio, A. D. C., Santana, C. S., Krysczun, D. K., Tischler, A. L., & Drebes, L. Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests. Ciência Rural, 47(10):1–6. 2017. Google Scholar öffnen
  451. Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004. Google Scholar öffnen
  452. Sharda, R., Patil, R. B. Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. 1992. Google Scholar öffnen
  453. Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015. Google Scholar öffnen
  454. Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986. Google Scholar öffnen
  455. Skurdal, J. and Taugbol, T., Crayfish of commercial importance-Astacus. In: D.M. Holdich (Ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford: 467–510. 2001. Google Scholar öffnen
  456. Souty-Grosset, C., Holdrich, D.M., Noel, P.Y., Reynolds, J.D. and Haffner, P., Atlas of crayfish in Europe. Publications Scientifiques du MNHN-Paris. 2006. Google Scholar öffnen
  457. Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009. Google Scholar öffnen
  458. Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008. Google Scholar öffnen
  459. Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008. Google Scholar öffnen
  460. Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006. Google Scholar öffnen
  461. Tesch, F.W., Age and growth. In: Methods for Assessment of Fish Production in Fresh Waters (ed., W. E. Ricker), Blackwell Scientific Publications, Oxford, 99˗130. 1971. Google Scholar öffnen
  462. Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007. Google Scholar öffnen
  463. Tureli Bilen, C., Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Medit Mar Sci., 12(2):439–446. 2011. Google Scholar öffnen
  464. TÜİK Aquaculture Statistics. Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). www.tuik.gov.tr. 2018. Google Scholar öffnen
  465. TÜİK, Aquaculture Statistics (1984–1991). Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). 1984–1991. Google Scholar öffnen
  466. Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006. Google Scholar öffnen
  467. Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002. Google Scholar öffnen
  468. Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992. Google Scholar öffnen
  469. Yüksel, F., and Duman, E. The investigation of the crayfish (Astacus leptodactylus Eschscholtz, 1823) population amplitude in Keban Dam Lake. Journal of FisheriesSciences. com, 5(3), 226. 2011. Google Scholar öffnen
  470. Would the Benefits Created by Industry 4.0 Via Innovations Set the Consumers Free of Planned Obsolescence? by Sinem Zeliha Dalak, Cagla Seneler Google Scholar öffnen
  471. Accenture.com. (2018). Airbus | Wearable Technology | Accenture. [online] Available at: https://www.accenture.com/gb-en/success-airbus-wearable-technology Google Scholar öffnen
  472. Adamson, G. and Stevens, B. (2003). Industrial strength design. Milwaukee, Wis.: Milwaukee Art Museum. Google Scholar öffnen
  473. AM Sub-Platform. (2014). Additive Manufacturing: Strategic Research Agenda. [online] Available at: http://www.rm-platform.com/linkdoc/AM%20SRA%20-%20February%202014.pdf Google Scholar öffnen
  474. Amankwah-Amoah, J. (2017). Integrated vs. add-on: A multidimensional conceptualisation of technology obsolescence. Technological Forecasting and Social Change, 116, pp.299 – 307. Google Scholar öffnen
  475. Auschitzky, E., Hammer, M. and Rajagopaul, A. (2018). How big data can improve manufacturing. [online] McKinsey & Company. Available at: https://www.mckinsey.com/business-functions/operations/our-insights/how-big-data-can-improve-manufacturing Google Scholar öffnen
  476. Bertolucci, J. (2018). Intel Cuts Manufacturing Costs With Big Data – InformationWeek. [online] InformationWeek. Available at: https://www.informationweek.com/software/information-management/intel-cuts-manufacturing-costs-with-big-data/d/d-id/1109111 [Accessed 25 Nov. 2018]. Google Scholar öffnen
  477. Bidgoli, H. (2010). Supply chain management, marketing and advertising, and global management. Hoboken, NJ: Wiley. Google Scholar öffnen
  478. Bokhari, M., Shallal, Q. and Tamandani, Y. (2016). Cloud computing service models: A comparative study. IEEE. Google Scholar öffnen
  479. Bulow, J. (1986). An Economic Theory of Planned Obsolescence. The Quarterly Journal of Economics, 101(4), p.729. Google Scholar öffnen
  480. Burgess, J. (2018). 4 Big Data Use Cases in the Manufacturing Industry. [online] Ingrammicroadvisor.com. Available at: http://www.ingrammicroadvisor.com/data-center/4-big-data-use-cases-in-the-manufacturing-industry Google Scholar öffnen
  481. Butt, T., Camilleri, M., Paul, P. and Jones, K. (2015). Obsolescence types and the built environment – definitions and implications. International Journal of Environment and Sustainable Development, 14(1), p.20. Google Scholar öffnen
  482. Castells, M. (2014). The Impact of the Internet on Society: A Global Perspective. [online] MIT Technology Review. Available at: https://www.technologyreview.com/s/530566/the-impact-of-the-internet-on-society-a-global-perspective/ Google Scholar öffnen
  483. Credit Suisse. (2015). Global Wealth Report. [online] Available at: http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=F2425415-DCA7-80B8-EAD989AF9341D47E Google Scholar öffnen
  484. Deloitte. (2017). Using autonomous robots to drive supply chain innovation. [online] Available at: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-supply-chain-of-the-autonomous-robots.pdf Google Scholar öffnen
  485. Erol, S., Jäger, A., Hold, P., Ott, K. and Sihn, W. (2016). Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP, 54, pp.13 – 18. Google Scholar öffnen
  486. Fishman, A., Gandal, N. and Shy, O. (1993). Planned Obsolescence as an Engine of Technological Progress. The Journal of Industrial Economics, 41(4), p.361. Google Scholar öffnen
  487. Frey, C. and Osborne, M. (2013). THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION?. [online] Available at: https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf Google Scholar öffnen
  488. Gartner.com. (2018). Gartner Says 6.4 Billion Connected. [online] Available at: https://www.gartner.com/newsroom/id/3165317 Google Scholar öffnen
  489. Ge.com. (2018). Everything you need to know about IIoT | GE Digital. [online] Available at: https://www.ge.com/digital/blog/everything-you-need-know-about-industrial-internet-things Google Scholar öffnen
  490. Ge.com. (2018). What is Edge Computing? | GE Digital. [online] Available at: https://www.ge.com/digital/blog/what-edge-computing#to-section-index=section-8 GE Additive. (2018). What is Additive Manufacturing?. [online] Available at: https://www.ge.com/additive/additive-manufacturing Google Scholar öffnen
  491. Guiltinan, J. (2008). Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. Journal of Business Ethics, 89(S1), pp.19 – 28. Google Scholar öffnen
  492. Grattan, L. (2016). Populism's power. Oxford: Oxford University Press. Google Scholar öffnen
  493. Grieves, M. (2014). [online] Innovate.fit.edu. Available at: http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf Google Scholar öffnen
  494. Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html Google Scholar öffnen
  495. Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html [Accessed 30 Dec. 2018]. Google Scholar öffnen
  496. Hozdić, E. (2015). MANUFACTURING FOR INDUSTRY 4.0. Google Scholar öffnen
  497. Hozdić, Elvis. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies. 7. 28–35. Google Scholar öffnen
  498. Huelsman, T., Powers, E., Peasley, S. and Robinson, R. (2016). Cyber risk in advanced manufacturing. [online] Available at: https://www.nist.gov/sites/default/files/documents/2016/12/28/cyberrisk_manu_fullstudy_landscape_brochure_lpxcic07_06_17_7101_finalfor.pdf Google Scholar öffnen
  499. Kadir, B. (2017). The nine pillars of Industry 4.0. [online] 4th Post | Industry 4.0 | Smart Manufacturing | Research. Available at: https://www.4thpost.com/single-post/2017/07/23/The-nine-pillars-of-Industry-40 Google Scholar öffnen
  500. Kenton, W. (2018). End-To-End. [online] Investopedia. Available at: https://www.investopedia.com/terms/e/end-to-end.asp Google Scholar öffnen
  501. Kenton, W. (2018). Functional Obsolescence. [online] Investopedia. Available at: https://www.investopedia.com/terms/f/functional-obsolescence.asp Google Scholar öffnen
  502. Kenton, W. (2018). Vertical Integration. [online] Investopedia. Available at: https://www.investopedia.com/terms/v/verticalintegration.asp Google Scholar öffnen
  503. Kenton, W. (2018). What are some examples of horizontal integration?. [online] Investopedia. Available at: https://www.investopedia.com/ask/answers/051315/what-are-some-examples-horizontal-integration.asp Google Scholar öffnen
  504. Kessler, T. and Brendel, J. (2016). Planned Obsolescence and Product-Service Systems: Linking Two Contradictory Business Models. Google Scholar öffnen
  505. Keynes, J. (1931). Economic Possibilities for our Grandchildren. Google Scholar öffnen
  506. Khaleeli, H. (2015). End of the line for stuff that's built to die?. [online] the Guardian. Available at: https://www.theguardian.com/technology/shortcuts/2015/mar/03/has-planned-obsolesence-had-its-day-design Google Scholar öffnen
  507. Knight, E. (2014). The Art of Corporate Endurance. [online] Harvard Business Review. Available at: https://hbr.org/2014/04/the-art-of-corporate-endurance Google Scholar öffnen
  508. Kim, E. (2018). Amazon's $775 million deal for robotics company Kiva is starting to look really smart. [online] Business Insider. Available at: https://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6 Google Scholar öffnen
  509. Kumari, P. and Kaur, P. (2018). A survey of fault tolerance in cloud computing. Journal of King Saud University – Computer and Information Sciences. Google Scholar öffnen
  510. Kuppelwieser, V., Klaus, P., Manthiou, A. and Boujena, O. (2018). Consumer responses to planned obsolescence. Journal of Retailing and Consumer Services, 47, pp.157 – 165. Google Scholar öffnen
  511. London, B. (1932). Ending the Depression Through Planned Obsolescence. Google Scholar öffnen
  512. Lueth, K. (2015). IoT basics: Getting started with the Internet of Things. [online] Available at: https://iot-analytics.com/wp/wp-content/uploads/2015/03/2015-March-Whitepaper-IoT-basics-Getting-started-with-the-Internet-of-Things.pdf Google Scholar öffnen
  513. Mearian, L. (2017). MIT creates 3D printed graphene that’s lighter than air, 10X stronger than steel. [online] Computerworld. Available at: https://www.computerworld.com/article/3155102/emerging-technology/mit-creates-3d-printed-graphene-thats-lighter-than-air-10x-stronger-than-steel.html Google Scholar öffnen
  514. Naím, M. (2013). The End of Power: From Boardrooms to Battlefields and Churches to States, Why Being In Charge Isn't What It Used to Be. Google Scholar öffnen
  515. Neagle, C. (2013). 10 augmented reality technologies you should know about. [online] Network World. Available at: https://www.networkworld.com/article/2358001/data-center/90615-10-augmented-reality-technologies-you-should-know-about.html#slide2 [Accessed 21 Dec. 2018]. Google Scholar öffnen
  516. OECD. (2011). Divided We Stand: Why Inequality Keeps Rising. [online] Available at: http://www.oecd.org/els/soc/49499779.pdf Google Scholar öffnen
  517. Ohnemus, T. (2018). Digital Twin Excellence: Two Shining Examples. [online] Digitalistmag.com. Available at: https://www.digitalistmag.com/iot/2018/06/14/digital-twin-excellence-2-shining-examples-06175901 Google Scholar öffnen
  518. Orbach, B. (2004). The Durapolist Puzzle: Monopoly Power in Durable-Goods Market. Yale Journal on Regulation, 21, pp.67 – 118. Google Scholar öffnen
  519. Parrott, A. and Warshaw, L. (2017). Industry 4.0 and the digital twin Manufacturing meets its match. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html Google Scholar öffnen
  520. Qin, J., Liu, Y. and Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, pp.173 – 178. Google Scholar öffnen
  521. Packard, V. (1960). The Waste Makers. Great Britain, London: Longmans. Google Scholar öffnen
  522. Patidar, S., Rane, D. and Jain, P. (2012). A Survey Paper on Cloud Computing. 2012 Second International Conference on Advanced Computing & Communication Technologies. Google Scholar öffnen
  523. Ramsey, M. and MacMillan, D. (2015). Carnegie Mellon Reels After Uber Lures Away Researchers. [online] WSJ. Available at: https://www.wsj.com/articles/is-uber-a-friend-or-foe-of-carnegie-mellon-in-robotics-1433084582 Google Scholar öffnen
  524. Rangnekar, D. (2002). R&D appropriability and planned obsolescence: empirical evidence from wheat breeding in the UK (1960–1995). Industrial and Corporate Change, 11(5), pp.1011 – 1029. Google Scholar öffnen
  525. Rimal, B., Choi, E. and Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing Systems. 2009 Fifth International Joint Conference on INC, IMS and IDC. Google Scholar öffnen
  526. Rivera, J. and Lallmahomed, A. (2016). Environmental implications of planned obsolescence and product lifetime: a literature review. International Journal of Sustainable Engineering, 9(2), pp.119 – 129. Google Scholar öffnen
  527. Rodič, B. (2017). Industry 4.0 and the New Simulation Modelling Paradigm. Organizacija, 50(3), pp.193 – 207. Google Scholar öffnen
  528. Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. and Harnisch, M. (2018). Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. [online] Inovasyon.org. Available at: http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf Google Scholar öffnen
  529. Saikia, D. and Devi, Y. (n.d.). FAULT TOLEREANE TECHNIQUES AND ALGORITHMS IN CLOUD COMPUTING. [online] Ijcscn.com. Available at: https://www.ijcscn.com/Documents/Volumes/vol4issue1/ijcscn2014040101.pdf Google Scholar öffnen
  530. Savu, L. (2011). Cloud Computing: Deployment Models, Delivery Models, Risks and Research Challenges. 2011 International Conference on Computer and Management (CAMAN). Google Scholar öffnen
  531. Schuh, G., Potente, T., Wesch-Potente, C., Weber, A. and Prote, J. (2014). Collaboration Mechanisms to Increase Productivity in the Context of Industrie 4.0. Procedia CIRP, 19, pp.51 – 56. Google Scholar öffnen
  532. Schwab, K. (2016). The Fourth Industrial Revolution. World Economic Forum. Google Scholar öffnen
  533. Scott, M. (2017). 3D Printing Will Change The Way We Make Things And Design Them In 2017. [online] Forbes.com. Available at: https://www.forbes.com/sites/mikescott/2017/01/25/3d-printing-will-change-the-way-we-make-things-in-2017/#107a1385310e Google Scholar öffnen
  534. Singh, S., Jeong, Y. and Park, J. (2016). A survey on cloud computing security: Issues, threats, and solutions. Journal of Network and Computer Applications, 75, pp.200 – 222. Google Scholar öffnen
  535. Sivarajah, U., Kamal, M., Irani, Z. and Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, pp.263 – 286. Google Scholar öffnen
  536. Stewart, I. (1959). Day Conference in Gloucestershire. Occupational Therapy: the Official Journal of the Association of Occupational Therapists, 22(11), pp.14 – 15. Google Scholar öffnen
  537. Stock, T. and Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP, 40, pp.536 – 541. Google Scholar öffnen
  538. Strausz, R. (2009). Planned Obsolescence as an Incentive Device for Unobservable Quality. The Economic Journal, 119(540), pp.1405 – 1421. Google Scholar öffnen
  539. Swan, P. (1972). Optimum Durability, Second-Hand Markets, and Planned Obsolescence. Journal of Political Economy, 80(3, Part 1), pp.575 – 585. Google Scholar öffnen
  540. Thoben, K., Wiesner, S. and Wuest, T. (2017). “Industrie 4.0” and Smart Manufacturing – A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1), pp.4 – 16. Google Scholar öffnen
  541. Tofail, S., Koumoulos, E., Bandyopadhyay, A., Bose, S., O’Donoghue, L. and Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), pp.22 – 37. Google Scholar öffnen
  542. Utaka, A. (2000). Planned obsolescence and marketing strategy. Managerial and Decision Economics, 21(8), pp.339 – 344. Google Scholar öffnen
  543. Vaidya, S., Ambad, P. and Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia Manufacturing, 20, pp.233 – 238. Google Scholar öffnen
  544. Waldman, M. (1996). Planned Obsolescence and the R&D Decision. The RAND Journal of Economics, 27(3), p.583. Google Scholar öffnen
  545. Waslo, R., Lewis, T., Hajj, R. and Carton, R. (2017). [online] Www2.deloitte.com. Available at: https://www2.deloitte.com/content/dam/insights/us/articles/3749_Industry4-0_cybersecurity/DUP_Industry4-0_cybersecurity.pdf Google Scholar öffnen
  546. Wetterstrand, K. (2015). The Cost of Sequencing a Human Genome. [online] National Human Genome Research Institute (NHGRI). Available at: https://www.genome.gov/sequencingcosts/ Google Scholar öffnen
  547. White, L. (1969). The American Automobile Industry in the Post War Period. Google Scholar öffnen
  548. World Economic Forum. (2015). Data-Driven Development Pathways for Progress. [online] Available at: http://www3.weforum.org/docs/WEFUSA_DataDrivenDevelopment_Report2015.pdf Google Scholar öffnen
  549. Zissis, D. and Lekkas, D. (2012). Addressing cloud computing security issues. Future Generation Computer Systems, 28(3), pp.583–592. Google Scholar öffnen
  550. Industry 4.0 and Big Data Literature Review by Burcu OZCAN, Cevher HİLAL AYTAC Google Scholar öffnen
  551. Abouelmehdi, K., Beni-hssane, A., Khaloufi H., et. al. (2017). Big Data Security and Privacy in Healthcare: A Review. Procedia Comput Science, 113,73–80. Google Scholar öffnen
  552. Ackermann, K. and Angus, S.D. (2014). A Resource Efficient Big Data Analysis Method for the Social Sciences: The Case of Global IP Activity. Procedia Comput Science, 29, 2360–2369. Google Scholar öffnen
  553. Aikat, J., Carsey T.M., Fecho K., et al. (2017). Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education. Big Data, 5 (1), 12–18. Google Scholar öffnen
  554. Akhavan-Hejazi, H., Mohsenian-Rad, H. (2018). Power Systems Big Data Analytics: An Assessment of Paradigm Shift Barriers and Prospects. Energy Reports, 4, 91–100. Google Scholar öffnen
  555. Arslantekin, S. and Doğan, K. (2016). Big Data: Its Importance, Structure and Current Status. DTCF Journal, 56, 15–36. Google Scholar öffnen
  556. Baccarelli, E., Cordeschi, N., Mei A., et. al. (2016). Energy-efficient Dynamic Traffic Offloading and Reconfiguration of Networked Data Centers for Big Data Stream Mobile Computing: Review, Challenges and A Case Study. IEEE Network, 30 (2), 54–61. Google Scholar öffnen
  557. Bartevyan, L. Industry 4.0 – Summary Report. (2015). DLG: Expert Report. (Report No:5), 1–8. Google Scholar öffnen
  558. Bello-Orgaz, G., Jung, J.J., Camacho, D. (2016). Social Big Data: Recent Achievements and New Challenges. Information Fusion, 28, 45–59. Google Scholar öffnen
  559. Benjelloun, F.Z., Lahcen, A.A., Belfkih, S. (2015, March). An Overview of Big Data Opportunities, Applications and Tools. 2015 Intelligent Systems and Computer Vision (ISCV), 1–6. Google Scholar öffnen
  560. Blazquez, D. and Domenech, J. (2018). Big Data Sources and Methods for Social and Economic Analyses. Technological Forecasting & Social Change, 130, 99–113. Google Scholar öffnen
  561. Brettel, M., Friederichsen, N., Keller, M. et. al. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. International Journal of Information and Computer Engineering, 8 (1), 37–44. Google Scholar öffnen
  562. Cackett, D. Information Management and Big Data, A Reference Architecture. White paper. Redwood Shores: Oracle Corporation. 2013; Accessed: 20 April 2016. https://www.oracle.com/technetwork/topics/entarch/articles/info-mgmt-big-data-ref-arch-1902853.pdf Google Scholar öffnen
  563. Can, A.V. and Kıymaz, M. (2016). Reflection of Information Technologies to Retail Sector: Impact of Industry 4.0 to Accounting Departments. Journal of Suleyman Demirel University Institute of Social Sciences, Special Issue, 107–117. Google Scholar öffnen
  564. Celesti, A., Celesti, F., Fazio, M., et. al. (2017). Are Next-Generation Sequencing Tools Ready for the Cloud? Trsoends in Biotechnology, 35 (6), 486–489. Google Scholar öffnen
  565. Chang, V. (2018). A Proposed Social Network Analysis Platform for Big Data Analytics. Technological Forecasting and Social Change, 130, 57–68. Google Scholar öffnen
  566. Chen, R. and Lazer, M. (2013). Sentiment Analysis of Twitter Feeds for the Prediction of Stock Market Movement. Accessed: 25.01.2013. http://cs229.stanford.edu/proj2011/ChenLazer-SentimentAnalysisOfTwitterFeedsForThePredictionOfStockMarketMovement.pdf. Google Scholar öffnen
  567. Chen, P. (2018). Medical Big Data Applications: Intertwined Effects and Effective Resource Allocatiın Strategies Identified Through IRA-NRM Analysis. Technologies Forecasting and Social Change, 150–164. Google Scholar öffnen
  568. Chen, D.Q., Preston, D.S., Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4), 4–39. Google Scholar öffnen
  569. Chung, M.K. (2018). Statistical Challenge of Big Brain Network Data. Statistics & Probability Letters, 136, 78–82. Google Scholar öffnen
  570. Corte-Real, N., Ruivo, P., Oliveira, T. (2014). The Diffusion Stages of Business Intelligence & Analytics (BI&A): A Systematic Mapping Study. Procedia Technology, 16, 172–179. Google Scholar öffnen
  571. Davenport, T.H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Boston Massachusetts: Harvard Business Press. Google Scholar öffnen
  572. Dong, X., Li, R., He, H., et al. (2015). Secure Sensitive Data Sharing on a Big Data Platform. Tsinghua Science and Technology, 20 (1), 72–80. Google Scholar öffnen
  573. Du, D., Li, A., Zhang, L. (2014). Survey on the Applications of Big Data in Chinese Real Estate Enterprise. Procedia Computer Science, 30, 24–33. Google Scholar öffnen
  574. EBSO,Aegean Region Chamber of Industry (2015). Industry 4.0. Research Directorate. Google Scholar öffnen
  575. Elragal, A. (2014). ERP and Big Data: The Inept Couple. Procedia Technology,16, 242–249. Google Scholar öffnen
  576. Erevelles, S., Fukawa, N., Swayne, L. (2016). Big Data Consumer Analytics and the Transformation of Marketing. Journal of Business Research, 69 (2), 897–904. Google Scholar öffnen
  577. Fessele, K.L. (2018). The Rise of Big Data in Oncology. Seminars in Oncology Nursing, 34 (2), 168–176. Google Scholar öffnen
  578. Gandomi, A. and Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management,35 (2), 137–144. Google Scholar öffnen
  579. Germano, G. (2015). How Pfizer is Using Big Data to Power Patient Care. Forbes. Accessed:03.09.2015. http://www.forbes.com/sites/matthewherper/2015/02/17/how-pfizer-is-using-big-data-to-power-patient-care/#3a8f6ee8ceb4 Google Scholar öffnen
  580. Gleaser, E.L., Kominers, S.D., Luca, M., et al. (2016). Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life. Economic Inquiry, 56 (1),114–137. Google Scholar öffnen
  581. Golzer, P., Simon, L., Cato, P., et al. (2015). Designing Global Manufacturing Networks Using Big Data. Procedia CIRP, 33,191–196. Google Scholar öffnen
  582. Gu, F., Ma, B., Guo, J. et al. (2017). Internet of Things and Big Data as Potential Solutions to thSe Problems in Waste Electrical and Electronic Equipment Management: An exploratory Study. Waste Management, 68, 434–448. Google Scholar öffnen
  583. Gursakal, N. (2014). Big Data. Bursa: Dora Publishing. Google Scholar öffnen
  584. Hardy, K. and Maurushat, A. (2017). Opening Up Government Data for Big Data Analysis and Public Benefit. Computer Law & Security Review, 33 (1), 30–37. Google Scholar öffnen
  585. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., et al. (2015). The Rise of “Big Data” on Cloud Computing: Review and Open Research Issues. Information Systems, 47, 98–115. Google Scholar öffnen
  586. He, X., Ai, Q., Qiu, R., et al. (2017). A Big Data Architecture Design for Smart Grids Based on Random Matrix Theory. IEEE Transactions on Smart Grid, 8 (2), 674–686. Google Scholar öffnen
  587. Hu, F., Yang, C., Schnase, J.L., et al. (2018). ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics. Computers & Geosciences, 2018, 115, 154–166. Google Scholar öffnen
  588. Huda, M., Jasmi, K. A., Embong, W.H., et al. (2018). Nurturing Compassion-Based Empathy: Innovative Approach in Higher Education. In M. Badea, & M. Suditu (Eds.), Violence Prevention and Safety Promotion in Higher Education Settings. Hershey, 154–173. Google Scholar öffnen
  589. Hure, E., Picot-Coupey, K., Ackermann, C. (2017). Understanding Omni-channel Shopping Value: A Mixed-method Study. Journal of Retailing and Consumer Services, 3, 314–330. Google Scholar öffnen
  590. Hurwitz, J., Nugent, A., Halper, F., et al. (2013). Big Data for Dummies. Hoboken, NJ: For Dummies, sa Wiley Brand Google Scholar öffnen
  591. Iafrate, F. (2015). From Big Data to Smart Data. Hoboken, NJ: ISTE Ltd, John Wiley and Sons Inc., Google Scholar öffnen
  592. International Controller Association-ICV (2017). Industrie 4.0- Controlling in the Age of Intelligent Networks. Dream Car of the Dream Factory of the ICV- 2015. https://www.icv-controlling.com/fileadmin/Assets/Content/AK/Ideenwerkstatt/Files/Dream_Car_Industrie_4.0_EN.pdf Google Scholar öffnen
  593. Ji, W., Wang, L. (2017). Big Data Analytics Based Fault Prediction for Shop Floor Scheduling. Journal of Manufacturing Systems, 43 (1), 187–194. Google Scholar öffnen
  594. Jian, Q., Ying, L., Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, 173–178. Google Scholar öffnen
  595. Jin, X., Wah, B.W., Cheng, X., et al. (2015). Significance and Challenges of Big Data Research. Big Data Research, 2 (2), 59–64. Google Scholar öffnen
  596. Karim, A., Siddiga, A., Safdar, Z., et al. (2017). Big Data Management in Participatory Sensing: Issues, Trends and future Directions. Future Generation Computer Systems. Available online. https://doi.org/10.1016/j.future.2017.10.007 Google Scholar öffnen
  597. Khakifrooz, M., Chien, C.F., Chen, Y. (2017). Bayesian Inference For Mining Semiconductor Manufacturing Big Data for Yield Enhancement and Smart Production to Empower Industry 4.0. Applied Soft Computing, 68, 990–999. Google Scholar öffnen
  598. Kobusinska, A., Pawluczuk, K., Brzezinski, J. (2018). Big Data Fingerprinting Information Analytics for Sustainability. Future Generation Computer Systems, 86, 1321–1337. Google Scholar öffnen
  599. Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (). META Group. Google Scholar öffnen
  600. Lee, R.J., Sener, I.N., Mokhtarian, P.L., et al. (2017). Relationships Between the Online and In-store Shopping Frequency of Davis, California Residents. Transportation Research Part A: Policy and Practice, 100, 40–52. Google Scholar öffnen
  601. Li, J., Xu, L., Tang, L., et al. (2018) Big Data in Tourism Research: A Literature Review. Tourism Management, 68, 301–323. Google Scholar öffnen
  602. Mahyoub, F.H., Siddiqui, M.A., Dahab, M.Y. (2014). Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning. Journal of King Saud University-Computer and Information Sciences, 26 (4), 417–424. Google Scholar öffnen
  603. Manogaran, G., Thota, C., Lopez, D., et al. (2017). Big Data Knowledge System in Healthcare. Internet of Things and Big Data Technologies for Newt Generation Healthcare, 23, 133–157. Google Scholar öffnen
  604. Manyika, J., Chui, M., Brown, B., et al. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation Google Scholar öffnen
  605. Matz, S., Netzer, O. (2017). Using Big Data As a Window into Consumers’ Psychology. Current Opinion in Behavioral Sciences, 18, 7–12. Google Scholar öffnen
  606. Mayer-Schönberger, V., Cukier, K. (2013). Big Data – A Revolution to Transform Your Life, Work and Thinking. İstanbul: Paloma Publisher. Google Scholar öffnen
  607. Mehta, N. and Pandit, A. (2018). Concurrence of Big Data Analytics and Healthcare: A systematic Review. International Journal of Medical Informatics, 114, 57–65. Google Scholar öffnen
  608. Melie-Garcia, L., Draganski, B., Ashburner, J., et al. (2018). Multiple Linear Regression: Bayesian Inference for Distributed and Big Data in the Medical Informatics Platform of the Human Brain Project. The Preprint Server For Biology. Electronic preprint. https://doi.org/10.1101/242883 Google Scholar öffnen
  609. Mendelson, D. (2017). Legal Protections for Personal Health Information in the Age of Big Data – A Proposal for Regulatory Framework. Ethics, Medicine and Public Health, 3, 37–55. Google Scholar öffnen
  610. Moktadir, M.A., Ali, S.M., Paul, S.K., et al. (2018). Barries to Big Data Analtyics in Manufacturing Supply Chains: A Case Study from Bangladesh. Computers & Industrial Engineering. Available online. https://doi.org/10.1016/j.cie.2018.04.013 Google Scholar öffnen
  611. Morabito, V. (2015). Big Data and Analytics. Berlin: Springer International Publishing. Google Scholar öffnen
  612. Niemi, T., Nurminen, J.K., Liukkonen, J., et al. (2018). Towards Green Big Data an CERN. Future Generation Computer Systems, 81, 103–113. Google Scholar öffnen
  613. Pries, K.H., Dunnigan, R. (2015). Big Data Analytics: A Practical Guide for Managers. New York: CRC Press.Taylor & Francis Group. Google Scholar öffnen
  614. Qian, J., Li, P., Yue, X., et al. (2015). Hierarchical Attribute Reduction Algorithms for Big Data Using MapReduce. Knowledge-Based Systems, 73, 18–31. Google Scholar öffnen
  615. Ramakrishnan, R., Sridharan, B., Kasturi, P., et al. (2017 May). Azure Data Lake Store: A Hyperscale Distributed File Service for Big Data Analytics. Proceedings of the 2017 ACM International Conference on Management of Data. doi:10.1145/3035918.3056100 Google Scholar öffnen
  616. Salleh, K.A. and Janczewski, L. (2016). Technological, Organizational and Environmental Security and Privacy Issues of Big Data: A Literature Review. Procedia Computer Science, 100, 19–28. Google Scholar öffnen
  617. Samuel, A., Sarfraz, M.I., Haseeb, H., et al. (2015). A Framework for Composition and Enforcement of Privacy-Aware and Context-Driven Authorization Mechanism for Multimedia Big Data. IEEE Transactions and Multimedia,17 (9), 1484–1494. Google Scholar öffnen
  618. Sayer, S., Ulker, A. (2014). Product Lifecycle Management. Engineer & the Machinery Magazine,55 (657), 65–72. Google Scholar öffnen
  619. Schwab, K. (2016). The Fourth Industrial Revolution. İstanbul: Optimist Publications. Google Scholar öffnen
  620. Shi, Y. (2014). Big Data: History, Current Status, and Challenges Going Forward. The Bridge, A Global View of Big Data, 44 (6), 6–11. Google Scholar öffnen
  621. Shin, D.H. and Choi, M.J. (2015). Ecological Views of Big Data: Perspectives and Issues. Telematics and Informatics,32 (2), 311–320. Google Scholar öffnen
  622. Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, buy, Lie, or Die. Hoboken, N.J: Wiley. Google Scholar öffnen
  623. Siemens, (2015) On the Way to Industrie 4.0 – The Digital Enterprise Industry 4.0 Way. https://www.siemens.com/press/pool/de/events/2015/digitalfactory/2015-04-hannovermesse/presentation-e.pdf Google Scholar öffnen
  624. Sinan, A. (2016). A New Theme for Production: Industry 4.0. Journal of Life Economics, 3 (2), 19–30. Google Scholar öffnen
  625. Smith, S.M. and Nichols, T.E. (2018). Statistical Challenges in Big Data Human Neuroimaging, Neuroview, 97 (2), 263–268. Google Scholar öffnen
  626. Smiths, G., Pivert, O., Yager, R., et al. (2018). A Soft Computing Approach to Big Data Summarization. Fuzzy Sets and Systems, 348, 4–20. Google Scholar öffnen
  627. Soroka, A., Liu, Y., Hani, L., et al. (2017). Big Data Driven Customer Insights for SMEs in Redistributed Manufacturing, Procedia CIRP, 63, 692–697. Google Scholar öffnen
  628. Su, Z., Xu, Q., Qi, Q. (2016). Big Data in Mobile Social Networks: A QoE- Oriented Framework. Browse Journal & Magazines, 30 (1), 52–57. Google Scholar öffnen
  629. Tiwari, S., Wee, H.M. (2018). Daryanto Y. Big Data Analytics in Supply Chain Management Between 2010 and 2016: Insights to Industries. Computers & Industrial Engineering, 115, 319–330. Google Scholar öffnen
  630. Torrecilla, J.L. and Romo, J. (2018). Data Learning From Big Data. Statitics & Probability Letters, 136, 15–19. Google Scholar öffnen
  631. Wamba, S.F., Gunasekaran, A., Akter, S., et al. (2017). Big Data Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 70, 356–365. Google Scholar öffnen
  632. Weichselbraun, A., Gindl, S., Scharl, A. (2014). Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge Based Systems 69, 78–85. Google Scholar öffnen
  633. Williams, M.L., Burnap, P., Sloan, L. (2017). Crime Sensing With Big Data: The Affordances and Limitations of Using Open-source Communications to Estimate Crime Patterns. The British Journal of Criminology,57 (2),320–340. Google Scholar öffnen
  634. Witkowski, K. (2016). Internet of Things, Big Data, Industry 4.0 – Innovative Solutions in Logistics and Supplu Chains Management. Procedia Engineer, 182, 763–769. Google Scholar öffnen
  635. Wu, K., Cui, L., Tseng, M., et al. (2017). Applying Big Data with Fuzzy Dematel to Discover the Critical Factors for Employee Engagement in Developing Sustainability for the Hospitality Industry under Uncertainty. In Supply Chain Management in the Big Data Era (pp. 218–253). IGI Global. doi:10.4018/978–1–5225–0956–1.ch012 Google Scholar öffnen
  636. Wu, K., Liao, C., Tseng, M., et al. (2017). Toward Sustainability: Using Big Data to Explore the Decisive Attributes of Supply Chain Risks and: Uncertainties. Journal of Cleaner Production, 142 (2), 663–676. Google Scholar öffnen
  637. Xiang, Z., Schwartz, Z., Gerdes, J.H., et al. (2015). What Can Big Data and Text Analytics Tell Us About Hotel Guest Experience and Satisfaction? International Journal of Hospitality Management, 44, 120–130. Google Scholar öffnen
  638. Xie, L., Draizen, E.J., Bourne, P.E. (2016). Harnessing Big Data for Systems Pharmacology. Annual Review of Pharmacology and Toxicology, 57, 245–262. Google Scholar öffnen
  639. Yin, S. and Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, 103 (2), 143–146. Google Scholar öffnen
  640. Young, S.D. (2015). A “Big Data” Approach to HIV Epidemiology and Prevention. Preventive Medicin, 70, 17–18. Google Scholar öffnen
  641. Zaki, M., Theodoulidis, B., Shapira, P., et al. (2017). The Role of Big Data to Facilitate Redistributed Manufacturing Using a Co-creation Lens: Patterns from Consumer Goods. Procedia CIRP, 63, 680–685. Google Scholar öffnen
  642. Zeide, E. (2017). The Structural Consequences of Big Data-Driven Education. Big Data, 5 (2), 165–172. Google Scholar öffnen
  643. Zhong, R.Y, Xu, C., Chen, C., et al. (2017). Big Data Analytics for Physical Internet-based Intelligent Manufacturing Shop Floors. Internet Journal of Production Research, 55 (9), 2610–2621. Google Scholar öffnen

Ähnliche Veröffentlichungen

aus dem Schwerpunkt "Unternehmensführung & Management & Organisation", "Wirtschaft allgemein"
Cover des Buchs: Projektmanagement in der Pflege
Lehrbuch Kein Zugriff
Thomas Busse, Wolfram Burkhardt
Projektmanagement in der Pflege
Cover des Buchs: Unlocking the Potential of Sustainable Finance
Monographie Vollzugriff
Isabelle Hinsche-McLardy
Unlocking the Potential of Sustainable Finance
Cover des Buchs: Sportmanagement
Sammelband Kein Zugriff
Albert Galli, Markus Breuer, Rainer Tarek Cherkeh, Christian Keller
Sportmanagement
Cover des Buchs: Siedlungsbausteine für bestehende Wohnquartiere
Sammelband Kein Zugriff
Anette von Ahsen, Jens Schneider, Stephan Rinderknecht, Dirk Schiereck
Siedlungsbausteine für bestehende Wohnquartiere
Cover des Buchs: Enterprise & Business Management
Sammelband Teilzugriff
Alptekin Erkollar
Enterprise & Business Management