, to see if you have full access to this publication.
Book Titles No access

AI in Pharmaceutical Companies

Enabling Efficient, Responsible and Human-Centered Solutions for Medical Affairs
Authors:
Publisher:
 2022

Summary

The concrete realization of AI endeavors is challenging, especially for established companies. In this paper, essential requirements from theory and practice are analyzed holistically and applicable solutions are discussed. It incorporates insights from conducted case studies and expert interviews in the pharmaceutical industry.

This work contributes to support previous research on how efficient, (ethically) responsible and human-centered AI solutions can be integrated into the business model of scientifically oriented fields (such as Medical Affairs). In this context, the role of management and interdisciplinary professionals is highlighted and the development of an AI framework is proposed.

Keywords



Bibliographic data

Copyright year
2022
ISBN-Print
978-3-8288-4721-7
ISBN-Online
978-3-8288-7816-7
Publisher
Tectum, Baden-Baden
Series
Wissenschaftliche Beiträge aus dem Tectum Verlag: Wirtschaftswissenschaften
Volume
103
Language
English
Pages
238
Product type
Book Titles

Table of contents

ChapterPages
  1. Titelei/Inhaltsverzeichnis No access Pages I - XXII
    1. 1.1. Initial situation and problem statement No access
    2. 1.2. Introduction of Merck & Co. No access
    3. 1.3. Research scope and approach No access
    4. 1.4. Focus, aim and research question No access
      1. 2.1.1. Definition and understanding No access
      2. 2.1.2. Pharmaceutical companies and intellectual setting of medical affairs No access
      3. 2.1.3. Conceptual understanding No access
      1. 2.2.1. Business model No access
      2. 2.2.2. Business model innovation No access
      3. 2.2.3. Framework elaboration for investigation No access
        1. Medical affairs business function and activities No access
        2. Drivers and required capabilities of the changing medical affair’s business No access
        1. Historical development No access
        2. Definition No access
      1. 2.3.2. Conceptual understanding No access
        1. 2.4.1.1. Definition and categorization No access
        2. 2.4.1.2. Potential and challenges of responsible artificial intelligence No access
      1. 2.4.2. Framework with challenges for safety and ethical responsibility considerations in artificial intelligence solutions No access
        1. 2.4.3.1. Technology No access
        2. 2.4.3.2. People/ Human No access
        3. 2.4.3.3. Organization No access
        1. Background on global medical affairs AI journey No access
      1. 2.5.2. Introducing the human-centered artificial intelligence canvas No access
        1. gPrime: AI HCP Medical Knowledge Discovery and Education No access
        2. Advisory Board Expert Input Forum Artificial Intelligence Program No access
        3. Scientific Congress and Abstract AI Analytics No access
        4. Medical Information Artificial Intelligence Compendia No access
        5. Medical Information Inquiries No access
        6. Augmented Documentation Global Review Tool (GRT) No access
    1. 3.1. Research design and preparation No access
    2. 3.2. Triad of methodological principles No access
    3. 3.3. Design of the interview guideline No access
    4. 3.4. Sampling No access
    5. 3.5. Conduct of expert interviews No access
    6. 3.6. Transcription No access
      1. 3.7.1. Structured qualitative content analysis No access
      2. 3.7.2. Structured steps of data analysis No access
    1. Comprehension of AI within the business model innovation context of medical affairs No access
    2. Dissolving the business AI framework of Dobbe et al. (2019) from a stage-based approach to an iterative domain-based approach No access
    3. Development & design domain (value creation) No access
    4. Training domain (value delivery) No access
    5. Deployment domain (value capture) No access
    6. Role of management to balance domains No access
    7. Challenges No access
    8. Manager as value enabler No access
    9. Human-centered AI canvas No access
    10. Jobs to be done No access
    11. AI promise No access
    12. Benefits for humans No access
    13. Human activities (including skills, capabilities and competencies) No access
    14. Machine activities No access
    15. Collaboration No access
    16. Human reinforcement No access
    17. Critical thinking and biases No access
    18. Critical/ complex decisions No access
    19. Considerations and implications No access
    20. Change management No access
    21. Information policy No access
    1. Comprehension of AI within the BMI context of medical affairs No access
    2. Value enablement as new BMI value part and role of the manager No access
    3. The balancing activities of the manager as value enabler in the context of TOP antecedents and human-centered AI solutions No access
    4. Deeper remarks on responsibility and ethical considerations based on three fundamental management principles No access
    1. 6.1. Summary No access
    2. 6.2. Limitations No access
    3. 6.3. Outlook No access
  2. 7. References No access Pages 183 - 208
    1. Section A: Use case overview No access
    2. Section B: Interview guideline No access
    3. Section C: Interview sample overview No access
      1. Composition of the category system No access
      2. Definition of categories and anchor examples No access
      3. Material run-through with applied coding method No access
    4. Section E: Code overview with anchor example references No access

Bibliography (347 entries)

  1. Aarts, E., & Marzano, S. (2003). The new everyday: Views on ambient intelligence. 010 Publishers. Open Google Scholar doi.org/10.5771/9783828878167
  2. Accenture. (2019). Responsible AI and robotics. An ethical framework. 1–4. Retrieved from: https://accntu.re/3771eT6 Open Google Scholar doi.org/10.5771/9783828878167
  3. Adorno, T.W. (1951). Minima Moralia. Reflexionen aus dem beschädigten Leben. Frankfurt/M.: Suhrkamp. Open Google Scholar doi.org/10.5771/9783828878167
  4. Agrawal, A., Gans, J., & Goldfarb, A. (2018). A simple tool to start making decisions with the help of AI. Harvard Business Review, 2–7. Retrieved from: https://bit.ly/37vEKvn Open Google Scholar doi.org/10.5771/9783828878167
  5. Agrawal, P. (2018). Artificial intelligence in drug discovery and development. Journal of Pharmacovigilance, 6(2). https://doi.org/10.4172/2329-6887.1000e173 Open Google Scholar doi.org/10.5771/9783828878167
  6. Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model concept. European Journal of Information Systems, 19(3), 359–376. https://doi.org/10.1057/ejis.2010.21 Open Google Scholar doi.org/10.5771/9783828878167
  7. Amit, R., & Zott, C. (2001). Value creation in E-business. Strategic Management Journal, 22(6–7), 493–520. https://doi.org/10.1002/smj.187 Open Google Scholar doi.org/10.5771/9783828878167
  8. Amit, R., & Zott, C. (2012). Creating value through business model innovation. MIT Sloan Management Review, 53(3), 41–49. Retrieved from: https://bit.ly/3jMTMCu Open Google Scholar doi.org/10.5771/9783828878167
  9. Anderson, E. (2006). The epistemology of democracy. Episteme: A journal of social epistemology, 3(1), 8–22. https://doi.org/10.3366/epi.2006.3.1-2.8 Open Google Scholar doi.org/10.5771/9783828878167
  10. Anju. (2020). How Big Data and AI Are Changing the Role of Medical Affairs & Pharma. Retrieved from: https://bit.ly/3yfF3Gk Open Google Scholar doi.org/10.5771/9783828878167
  11. Applegate, L. M., & Collura, M. (2017). Crafting business models. Building E-Businesses, Harvard Business School. Publishing, Boston. 1–22. Retrieved from: https://bit.ly/3CGq76z Open Google Scholar doi.org/10.5771/9783828878167
  12. Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher, J. J., Peng, L., … & Shetty, S. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine, 25(6), 954–961. https://doi.org/10.1038/s41591-019-0447-x Open Google Scholar doi.org/10.5771/9783828878167
  13. Aspara, J., Hietanen, J., & Tikkanen, H. (2010). Business model innovation vs replication: Financial performance implications of strategic emphases. Journal of Strategic Marketing, 18(1), 39–56. https://doi.org/10.1080/09652540903511290 Open Google Scholar doi.org/10.5771/9783828878167
  14. Auernhammer, J. (2020). Human-centered AI: The role of Human-centered Design Research in the development of AI. 1315–1333. https://doi.org/10.21606/drs.2020.282 Open Google Scholar doi.org/10.5771/9783828878167
  15. Bäckström, A., & Larsson, H. (2018). Is There Such A Thing As Too Much Intelligence?: A qualitative study exploring how Born Global e-commerce companies are working towards adopting Artificial Intelligence into their Customer Relationship Management Systems (Dissertation). Retrieved from: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-74865 Open Google Scholar doi.org/10.5771/9783828878167
  16. Bagehot, W. (1855). The first Edinburgh Reviewers. In: Norman St. John-Stevas (eds.). (1986). The Collected Works of Walter Bagehot. Vol. 1, 311, Hartfort. Open Google Scholar doi.org/10.5771/9783828878167
  17. Baker-Brunnbauer, J. (2021). Management perspective of ethics in artificial intelligence. AI Ethics, 1, 173–181. https://doi.org/10.1007/s43681-020-00022-3 Open Google Scholar doi.org/10.5771/9783828878167
  18. Barnes, J. (2017). The AI-First Business Model. Element AI. 1–14. Retrieved from: https://bit.ly/3s8FHTM Open Google Scholar doi.org/10.5771/9783828878167
  19. Barton, T. (2020). AI special feature: Artificial intelligence and the future of medical information services. Pharmalive.com. Retrieved from: https://bit.ly/2X8ZBT6 Open Google Scholar doi.org/10.5771/9783828878167
  20. Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis. Educational Research, 45(2), 143–154. https://doi.org/10.1080/0013188032000133548 Open Google Scholar doi.org/10.5771/9783828878167
  21. Baur, N., & Blasius, J. (2014). Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-531-18939-0 Open Google Scholar doi.org/10.5771/9783828878167
  22. Bedenkov, A., Moreno, C., Agustin, L., Jain, N., Newman, A., Feng, L., & Kostello, G. (2021). Customer Centricity in Medical Affairs Needs Human-centric Artificial Intelligence. Pharmaceutical Medicine, 21–29. https://doi.org/10.1007/s40290-020-00378-1 Open Google Scholar doi.org/10.5771/9783828878167
  23. Bedenkov, A., Rajadhyaksha, V., Beekman, M., Moreno, C., Fong, P. C., Agustin, L., & Odell, S. (2020). Developing Medical Affairs Leaders Who Create the Future. Pharmaceutical Medicine, 34(5), 301–307. https://doi.org/10.1007/s40290-020-00351-y Open Google Scholar doi.org/10.5771/9783828878167
  24. Beelke, M., E. (2017). The Evolving Role of Medical Affairs: Opportunities for Discovery, Preclinical and Clinical Research. Journal for Clinical Studies, 9(3). 20–24. Retrieved from: https://bit.ly/3yDfzTj Open Google Scholar doi.org/10.5771/9783828878167
  25. Bevolo, M., & Amati, F. (2020). The Potential Role of AI in Anticipating Futures from a Design Process Perspective: From the Reflexive Description of “Design” to a Discussion of Influences by the Inclusion of AI in the Futures Research Process. World Futures Review, 12(2), 1–21. https://doi.org/10.1177/1946756719897402 Open Google Scholar doi.org/10.5771/9783828878167
  26. Bhardwaj, G. (2020). How Can AI Technologies Help Streamline Medical Affairs Processes?. Retrieved from: https://bit.ly/3fTbhzS Open Google Scholar doi.org/10.5771/9783828878167
  27. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Oxford University Press. Open Google Scholar doi.org/10.5771/9783828878167
  28. Bogner, A., Littig, B., & Menz, W. (2014). Interviews mit Experten: Eine praxisorientierte Einführung. Qualitative Sozialforschung. Wiesbaden: Springer. https://doi.org/10.1007/978-3-531-19416-5 Open Google Scholar doi.org/10.5771/9783828878167
  29. Bosch, J. (2019). Towards a digital business operating system. In 2019 13th International Conference on Research Challenges in Information Science (RCIS), 1–9. IEEE. https://10.1109/RCIS.2019.8877053 Open Google Scholar doi.org/10.5771/9783828878167
  30. Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. The Cambridge handbook of artificial intelligence, 1, 316–334. Retrieved from: https://intelligence.org/files/EthicsofAI.pdf Open Google Scholar doi.org/10.5771/9783828878167
  31. Bostrom, R. P., Gupta, S., & Thomas, D. (2009). A meta-theory for understanding information systems within sociotechnical systems. Journal of Management Information Systems, 26(1), 17–48. https://doi.org/10.1109/HICSS.2008.28 Open Google Scholar doi.org/10.5771/9783828878167
  32. Boy, G. A. (2019). Human Systems Integration: A Mix of Human-Centered Design, Systems Engineering, Ergonomics, HCI and Artificial Intelligence. In INCOSE HSI2019 International Conference. Retrieved from: https://hal.archives-ouvertes.fr/hal-02424940 Open Google Scholar doi.org/10.5771/9783828878167
  33. Boy, G. A., & Narkevicius, J. M. (2014). Unifying human centered design and systems engineering for human systems integration. In Complex Systems Design & Management, Springer, Cham, 151–162. https://doi.org/10.1007/978-3-319-02812-5_12 Open Google Scholar doi.org/10.5771/9783828878167
  34. Boy, G.A. (2013). Orchestrating Human-Centered Design. Springer, U.K. https://doi.org/10.1007/978-1-4471-4339-0 Open Google Scholar doi.org/10.5771/9783828878167
  35. Brock, J. K. U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/1536504219865226 Open Google Scholar doi.org/10.5771/9783828878167
  36. Brown, N., Ertl, P., Lewis, R., Luksch, T., Reker, D., & Schneider, N. (2020). Artificial intelligence in chemistry and drug design. Journal of Computer-Aided Molecular Design, 34, 709–715. https://doi.org/10.1007/s10822-020-00317-x Open Google Scholar doi.org/10.5771/9783828878167
  37. Brown, P. (2020). An Ethical Framework for Artificial Intelligence. New York Law Journal. Retrieved from: https://bit.ly/3xdh2OT Open Google Scholar doi.org/10.5771/9783828878167
  38. Bryson, J. J. (2019). The past decade and future of AI’s impact on society. Towards a new enlightenment: A transcendent decade, 11. Turner, Madrid. 1–35. Retrieved from: https://bit.ly/3faTX9n Open Google Scholar doi.org/10.5771/9783828878167
  39. Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., … & Trench, M. (2017). Artificial intelligence: The next digital frontier? McKinsey and Company Global Institute, 47, 1–75. Retrieved from: https://mck.co/3ye1XxF Open Google Scholar doi.org/10.5771/9783828878167
  40. Buxmann, P., & Schmidt, H. (2019). Grundlagen der künstlichen Intelligenz und des maschinellen Lernens. In Künstliche Intelligenz. Springer Gabler, Berlin, Heidelberg. 3–19. https://doi.org/10.1007/978-3-662-57568-0 Open Google Scholar doi.org/10.5771/9783828878167
  41. Calo, R. (2017). Artificial intelligence policy: a primer and roadmap. SSRN Journal, 1–28. http://dx.doi.org/10.2139/ssrn.3015350 Open Google Scholar doi.org/10.5771/9783828878167
  42. Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding In-depth Semistructured Interviews. Sociological Methods & Research, 42(3), 294–320. https://doi.org/10.1177/0049124113500475 Open Google Scholar doi.org/10.5771/9783828878167
  43. Capo, F., Brunetta, F., & Boccardelli, P. (2014). Innovative Business Models in the Pharmaceutical Industry: A Case on Exploiting Value Networks to Stay Competitive. International Journal of Engineering Business Management, 6(7), 1–11. https://doi.org/10.5772/59155 Open Google Scholar doi.org/10.5771/9783828878167
  44. Carrier, M., & Roggenhofer, J. (Eds.). (2015). Wandel oder Niedergang?: Die Rolle der Intellektuellen in der Wissensgesellschaft. transcript Verlag. https://doi.org/10.14361/9783839405840-fm Open Google Scholar doi.org/10.5771/9783828878167
  45. Carrillo, M. R. (2020). Artificial intelligence: from ethics to law. Telecommunications Policy, 101937. 1–16. https://doi.org/10.1016/j.telpol.2020.101937 Open Google Scholar doi.org/10.5771/9783828878167
  46. Casadesus-Masanell, R., & Ricart, J. E. (2010). From Strategy to Business Models and onto Tactics. Long Range Planning, 43(2–3), 195–215. https://doi.org/10.1016/j.lrp.2010.01.004 Open Google Scholar doi.org/10.5771/9783828878167
  47. Casadesus‐Masanell, R., & Zhu, F. (2013). Business model innovation and competitive imitation: The case of sponsor‐based business models. Strategic management journal, 34(4), 464–482. https://doi.org/10.1002/smj.2022 Open Google Scholar doi.org/10.5771/9783828878167
  48. Champagne, D., Hung, A., & Leclerc, O. (2015). The road to digital success in pharma. McKinsey White Paper, 1–7. https://mck.co/3yfcuZv Open Google Scholar doi.org/10.5771/9783828878167
  49. Charmaz, K. (1996). The search for Meanings – Grounded Theory. In Smith, J. A., Harré, R., & Van Langenhove, L. (eds.). Rethinking Methods in Psychology, 27–49. London: Sage Publications. http://dx.doi.org/10.4135/9781446221792.n3 Open Google Scholar doi.org/10.5771/9783828878167
  50. Chesbrough, H. (2010). Business Model Innovation: Opportunities and Barriers. Long Range Planning, 43(2–3), 354–363. https://doi.org/10.1016/j.lrp.2009.07.010 Open Google Scholar doi.org/10.5771/9783828878167
  51. Chesbrough, H., & Rosenbloom, R. S. (2002). The role of the business model in capturing value from innovation: Evidence from Xerox Corporation's technology spin-off companies. Industrial and Corporate Change, 11(3), 529–555. https://doi.org/10.1093/icc/11.3.529 Open Google Scholar doi.org/10.5771/9783828878167
  52. Christensen, C. M., Anthony, S. D., Berstell, G., & Nitterhouse, D. (2007). Finding the right job for your product. MIT Sloan Management Review, 48(3), 38–47. Retrieved from: https://bit.ly/3xctBtR Open Google Scholar doi.org/10.5771/9783828878167
  53. Christensen, C. M., Hall, T., Dillon, K., & Duncan D. S. (2016). Know Your Customers’ “Jobs to Be Done”. Harvard Business Review, 94(9), 54–62. Retrieved from: https://bit.ly/3s6bqFf Open Google Scholar doi.org/10.5771/9783828878167
  54. Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., & De Felice, F. (2020). Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability, 12(2), 492, 1–26. https://doi.org/10.3390/su12020492 Open Google Scholar doi.org/10.5771/9783828878167
  55. Clauss, T. (2017). Measuring business model innovation: Conceptualization, scale development, and proof of performance. R&D Management, 47(3), 385–403. https://doi.org/10.1111/radm.12186 Open Google Scholar doi.org/10.5771/9783828878167
  56. Coeckelbergh, M. (2020). Artificial intelligence, responsibility attribution, and a relational justification of explainability. Science and engineering ethics, 26(4), 2051–2068. https://doi.org/10.1007/s11948-019-00146-8 Open Google Scholar doi.org/10.5771/9783828878167
  57. Cohen, O., Fox, B., Mills, N., & Wright, P. (2020). COVID-19 and commercial pharma: navigating an uneven recovery. McKinsey & Company: New York, NY, USA, 1–13. Retrieved from: https://mck.co/3rKjziu Open Google Scholar doi.org/10.5771/9783828878167
  58. Danner, S., Solbach, T., & Ludwig, M. (2017). Capitalizing on precision medicine: How pharmaceutical firms can shape the future of healthcare. Strategy& Report. Retrieved from: https://pwc.to/3jM8TMp Open Google Scholar doi.org/10.5771/9783828878167
  59. Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. MIT Press. Open Google Scholar doi.org/10.5771/9783828878167
  60. Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organizations manage what they know. Harvard Business Press. Retrieved from: https://bit.ly/3jJx3Hu Open Google Scholar doi.org/10.5771/9783828878167
  61. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94 Open Google Scholar doi.org/10.5771/9783828878167
  62. De Angelis, C., & Braccini, A. M. (2019). Digital Transformation in Healthcare: Challenges, Opportunities in a Socio-Technical Perspectives. 1–17. Retrieved from: https://bit.ly/37u3d42 Open Google Scholar doi.org/10.5771/9783828878167
  63. De Paiva, V., Jarrold, W., Martin, D. L., Patel-Schneider, P. F., Wallace, K., & Yeh, P. Z. (2014). Ontologies in Enterprise Application: Dimensional Comparison. In FOMI@ FOIS. https://bit.ly/3yGJXw9 Open Google Scholar doi.org/10.5771/9783828878167
  64. De Reuver, M., Bouwman, H., & MacInnes, I. (2009). Business models dynamics for start-ups and innovating e-businesses. Int. J. Electronic Business, 7(3), 269–286. https://doi.org10.1504/IJEB.2009.026530 Open Google Scholar doi.org/10.5771/9783828878167
  65. Desai, A. (2020). ViewPoints Article: Digital Revolution in Healthcare and Strategic Role of Medical Affairs Amidst Covid-19 Outbreak. Retrieved from: https://bit.ly/3zNu2fD Open Google Scholar doi.org/10.5771/9783828878167
  66. Descartes, R. (1960) Discours de la Méthode. Von der Methode des richtigen Vernunftgebrauchs und der wissenschaftlichen Forschung. Felix Meiner Verlag. Hamburg. [1st ed. 1637] Open Google Scholar doi.org/10.5771/9783828878167
  67. Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205–213. https://doi.org/10.1016/j.bushor.2019.11.004 Open Google Scholar doi.org/10.5771/9783828878167
  68. Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283–314. https://doi.org/10.1016/j.jbusres.2020.08.019 Open Google Scholar doi.org/10.5771/9783828878167
  69. Dignam, A. J. (2019). Artificial Intelligence: The very human dangers of dysfunctional design and autocratic corporate governance. Queen Mary School of Law Legal Studies Research Paper, (314). https://ssrn.com/abstract=3382342 Open Google Scholar doi.org/10.5771/9783828878167
  70. Dignum, V. (2018). Ethics in artificial intelligence: introduction to the special issue. Ethics and Information Technology, 20. 1–3. https://doi.org/10.1007/s10676-018-9450-z Open Google Scholar doi.org/10.5771/9783828878167
  71. Dignum, V. (2019). Responsible Artificial Intelligence: Ethical Thinking by and about AI. Retrieved from: https://bit.ly/2EAsChL Open Google Scholar doi.org/10.5771/9783828878167
  72. Dobbe, R., Gilbert, T. K., & Mintz, Y. (2019). Hard Choices in Artificial Intelligence: Addressing Normative Uncertainty through Sociotechnical Commitments. arXiv preprint arXiv:1911.09005. https://doi.org/10.1145/3375627.3375861 Open Google Scholar doi.org/10.5771/9783828878167
  73. Dorard, L. (2016). From data to AI with the machine learning canvas (Part I). Retrieved from: https://bit.ly/3xbn9Do Open Google Scholar doi.org/10.5771/9783828878167
  74. Downes, L., & Nunes, P. (2013). Big bang disruption. Harvard business review, 44–56. https://ssrn.com/abstract=2709801 Open Google Scholar doi.org/10.5771/9783828878167
  75. Downe-Wamboldt, B. (1992). Content analysis: Method, applications, and issues. Health Care for Women International, 13, 313–321. https://doi.org/10.1080/07399339209516006 Open Google Scholar doi.org/10.5771/9783828878167
  76. Drucker, P. F. & Wartzman, R. (ed.). (2010). The Drucker Institute. The Drucker Lectures: Essential Lessons on Management, Society, and Economy. McGraw-Hill Education Open Google Scholar doi.org/10.5771/9783828878167
  77. Drucker, P. F. (1954). The Practice of Management. Harper & Row, New York. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  78. Drucker, P. F. (1969). The Age of Discontinuity: Guidelines to Our Changing Society. Harper & Row, New York. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  79. Drucker, P. F. (1986). Management. Tasks, Responsibilities, Practices. Truman Talley Books/ E.P. Dutton, New York. [1st ed. 1973] Open Google Scholar doi.org/10.5771/9783828878167
  80. Drucker, P. F. (1987). What I have learned. A look back and a look ahead, Acceptance Speech, unpublished manuscript. Open Google Scholar doi.org/10.5771/9783828878167
  81. Drucker, P. F. (1988). The coming of the new organization. Harvard Business Review, 66, 45–53. Open Google Scholar doi.org/10.5771/9783828878167
  82. Drucker, P. F. (1989). The New Realities. Oxford. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  83. Drucker, P. F. (1993). The Post-Capitalist Society. London. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  84. Drucker, P. F. (1993b). Afterword: Reflections of a Social Ecologist, in ders. The Ecological Vision, Reflections on the American Condition, New Brunswick/London, 441–458. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  85. Drucker, P. F. (1994). The Ecological Vision, Reflections on the American Condition. New Brunswick. [1st ed. 1993] Open Google Scholar doi.org/10.5771/9783828878167
  86. Drucker, P. F. (2003). A Functioning Society: Selections from Sixty-five Years of Writing on Community, Society, and Polity. Transaction Publishers, New Jersey. [1st ed.] Open Google Scholar doi.org/10.5771/9783828878167
  87. Drucker, P. F. (2011). Technology, management, and society. Harvard Business Press. [1st ed. 1970] Open Google Scholar doi.org/10.5771/9783828878167
  88. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 1–22. https://doi.org/10.1016/J.IJINFOMGT.2019.01.021 Open Google Scholar doi.org/10.5771/9783828878167
  89. Dupras, C., & Ravitsky, V. (2016). The ambiguous nature of epigenetic responsibility. Journal of Medical Ethics, 42(8), 534–541. http://www.jstor.org/stable/44014432 Open Google Scholar doi.org/10.5771/9783828878167
  90. Dvorsky, G. (2019). Henry Kissinger Warns That AI Will Fundamentally Alter Human Consciousness. Gizmodo. Retrieved from: https://bit.ly/3l9yAJp Open Google Scholar doi.org/10.5771/9783828878167
  91. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., … & Galanos, V. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57(101994), 1–47. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 Open Google Scholar doi.org/10.5771/9783828878167
  92. Eisenhardt, K. M. (1989). Building Theories from Case Study Research. The Academy of Management Review, 14(4). Retrieved from: http://www.jstor.org/stable/258557 Open Google Scholar doi.org/10.5771/9783828878167
  93. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056 Open Google Scholar doi.org/10.5771/9783828878167
  94. Evers, M., Ghatak, A., Suresh, B., & Westra, A. (2019). A vision for Medical Affairs in 2025. 1–20. McKinsey Report. Retrieved from: https://mck.co/3fc4CRb Open Google Scholar doi.org/10.5771/9783828878167
  95. Fagella, D. (2020). 7 Applications of Machine Learning in Pharma and Medicine. Emerj. Retrieved from: https://bit.ly/3zQj5Ks Open Google Scholar doi.org/10.5771/9783828878167
  96. Fengquan, W., Jihai, J., & Ruojin, W. (2020). How does Artificial Intelligence Reshape the Fit of Business Model? A New E-commerce Case Study of Pinduoduo. Foreign Economics & Management, 42(07), 48–63. https://doi.org/10.16538/j.cnki.fem.20200515.102 Open Google Scholar doi.org/10.5771/9783828878167
  97. Ferrario, A., Loi, M., & Viganò, E. (2020). In AI we trust Incrementally: a Multi-layer model of trust to analyze Human-Artificial intelligence interactions. Philosophy & Technology, 33(1), 523–539. https://doi.org/10.1007/s13347-019-00378-3 Open Google Scholar doi.org/10.5771/9783828878167
  98. Flick, U. (2009). An Introduction to Qualitative Research. London: Sage Publication Ltd. Open Google Scholar doi.org/10.5771/9783828878167
  99. Floridi, L. (2019). What the near future of artificial intelligence could be. Philosophy & Technology, 32, 1–15. https://doi.org/10.1007/s13347-019-00345-y Open Google Scholar doi.org/10.5771/9783828878167
  100. Fontana, A., & Frey, J. H. (2005). The Interview: From Neutral Stance to Political Involvement. In N. K. Denzin & Y. S. Lincoln (eds.). Handbook of Qualitative Research (3rd ed.). Thousand Oaks: Sage Publications, London, 695–727. Open Google Scholar doi.org/10.5771/9783828878167
  101. Ford, J., Blair, A., Naaz, B., & Overman, J. (2020). Biopharma leaders prioritize r&d, technological transformation, and global market presence. Findings from a new survey and analysis of investor calls in the first half of 2020. A report from the Deloitte Center for Health Solutions, 1–24. Retrieved from: https://bit.ly/2Wsevn3 Open Google Scholar doi.org/10.5771/9783828878167
  102. Forster, S. P., Stegmaier, J., Spycher, R., & Seeger, S. (2014). Virtual pharmaceutical companies: Collaborating flexibly in pharmaceutical development. Drug Discovery Today, 19(3), 348–355. https://doi.org/10.1016/j.drudis.2013.11.015 Open Google Scholar doi.org/10.5771/9783828878167
  103. Foss, N. J. & Stieglitz, N. (2015). Business model innovation: the role of leadership. In: Foss, N.J., Saebi, T. (eds.), The Organisational Dimension. Oxford University Press, Oxford, 104–122. https://doi.org/10.1093/acprof:oso/9780198701873.003.0006 Open Google Scholar doi.org/10.5771/9783828878167
  104. Foss, N. J., & Saebi, T. (2017). Fifteen years of research on business model innovation: How far have we come, and where should we go?. Journal of Management, 43(1), 200–227. https://doi.org/10.1177/0149206316675927 Open Google Scholar doi.org/10.5771/9783828878167
  105. Foss, N. J., & Saebi, T. (2018). Business models and business model innovation: Between wicked and paradigmatic problems. Long range planning, 51(1), 1–13. https://doi.org/10.1016/j.lrp.2017.07.006 Open Google Scholar doi.org/10.5771/9783828878167
  106. Francis, D., & Bessant, J. (2005). Targeting innovation and implications for capability development. Technovation, 25(3), 171–183. https://doi.org/10.1016/j.technovation.2004.03.004 Open Google Scholar doi.org/10.5771/9783828878167
  107. Frankenberger, K., Weiblen, T., Csik, M., & Gassmann, O. (2013). The 4I-framework of business model innovation: A structured view on process phases and challenges. International Journal of Product Development, 18(3/4), 249–273. https://doi.org/10.1504/IJPD.2013.055012 Open Google Scholar doi.org/10.5771/9783828878167
  108. Fulford, L. (2020). Building the medical affairs organisation of tomorrow. Reuters. Retrieved from: https://bit.ly/3idOkt0 Open Google Scholar doi.org/10.5771/9783828878167
  109. Gautam, A., & Pan, X. (2016). The changing model of big pharma: Impact of key trends. Drug Discovery Today, 21(3), 379–384. https://doi.org/10.1016/j.drudis.2015.10.002 Open Google Scholar doi.org/10.5771/9783828878167
  110. Geissdoerfer, M., Vladimirova, D., van Fossen, K., & Evans, S. (2018). Product, service, and business model innovation: A discussion. Procedia Manufacturing, 21, 165–172. https://doi.org/10.1016/j.promfg.2018.02.107 Open Google Scholar doi.org/10.5771/9783828878167
  111. George, G., & Bock, A. J. (2011). The business model in practice and its implications for entrepreneurship research. Entrepreneurship theory and practice, 35(1), 83–111. https://doi.org/10.2139/ssrn.1490251 Open Google Scholar doi.org/10.5771/9783828878167
  112. Gherardi, S. (2008). Situated knowledge and situated action: What do practice-based studies promise. The SAGE handbook of new approaches in management and organization, 516–525. https://doi.org/10.4135/9781849200394.n89 Open Google Scholar doi.org/10.5771/9783828878167
  113. Giddens, A. (1999). Risk and responsibility. The modern law review, 62(1), 1–10. https://doi.org/10.1111/1468-2230.00188 Open Google Scholar doi.org/10.5771/9783828878167
  114. Giesen, E., Berman, S. J., Bell, R., & Blitz, A. (2007). Three ways to successfully innovate your business model. Strategy & Leadership, 35(6), 27–33. https://doi.org/10.1108/10878570710833732 Open Google Scholar doi.org/10.5771/9783828878167
  115. Giesen, E., Riddleberger, E., Christner, R., & Bell, R. (2010). When and how to innovate your business model. Strategy & Leadership, 38(4), 17–26. https://doi.org/10.1108/10878571011059700 Open Google Scholar doi.org/10.5771/9783828878167
  116. Gilvary, C., Madhukar, N., Elkhader, J., & Elemento, O. (2019). The missing pieces of artificial intelligence in medicine. Trends in pharmacological sciences, 40(8), 555–564. https://doi.org/10.1016/j.tips.2019.06.001 Open Google Scholar doi.org/10.5771/9783828878167
  117. Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking Qualitative Rigor in Inductive Research. Organizational Research Methods, 16(1), 15–31. https://doi.org/10.1177/1094428112452151 Open Google Scholar doi.org/10.5771/9783828878167
  118. Girard, J., & Girard, J. (2015). Defining knowledge management: Toward an applied compendium. Online Journal of Applied Knowledge Management, 3(1), 1–20. Retrieved from: https://bit.ly/3fQyWkr Open Google Scholar doi.org/10.5771/9783828878167
  119. Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Mill Valley, CA: Sociology Press. Open Google Scholar doi.org/10.5771/9783828878167
  120. Gläser, J., & Laudel, G. (2010). Experteninterviews und qualitative Inhaltsanalyse: Als Instrumente rekonstruierender Untersuchungen (4. Aufl.). Wiesbaden: VS Verl. für Sozialwissenschaften. Open Google Scholar doi.org/10.5771/9783828878167
  121. Gleixner, M. (2018). How can precision medicine be embedded within the pharmaceutical industry?. Master‘s thesis, Technical University of Munich. Open Google Scholar doi.org/10.5771/9783828878167
  122. Goasduff, L. (2019). 3 Barriers to AI Adoption. Retrieved from: https://gtnr.it/3xa754D Open Google Scholar doi.org/10.5771/9783828878167
  123. Govia, L. (2018). Beneath the Hype: Engaging the Sociality of Artificial Intelligence. Master's thesis, University of Waterloo. Retrieved from: http://hdl.handle.net/10012/13154 Open Google Scholar doi.org/10.5771/9783828878167
  124. Grewal, D. S. (2014). A critical conceptual analysis of definitions of artificial intelligence as applicable to computer engineering. IOSR Journal of Computer Engineering, 16(2), 9–13. https://doi.org/10.9790/0661-16210913 Open Google Scholar doi.org/10.5771/9783828878167
  125. Gronum, S., Steen, J., & Verreynne, M.-L. (2015). Business model design and innovation: Unlocking the performance benefits of innovation. Australian Journal of Management, 41(3), 585–605. https://doi.org/10.1177/0312896215587315 Open Google Scholar doi.org/10.5771/9783828878167
  126. Haaker, T., Bouwman, H., Janssen, W., & Reuver, M. de. (2017). Business model stress testing: A practical approach to test the robustness of a business model. Futures, 89, 14–25. https://doi.org/10.1016/j.futures.2017.04.003 Open Google Scholar doi.org/10.5771/9783828878167
  127. Hacklin, F., Björkdahl, J., & Wallin, M. W. (2018). Strategies for business model innovation: How firms reel in migrating value. Long Range Planning, 51(1), 82–110. https://doi.org/10.1016/j.lrp.2017.06.009 Open Google Scholar doi.org/10.5771/9783828878167
  128. Hagendorff, T. (2020). The ethics of AI ethics: An evaluation of guidelines. Minds and Machines, 30(1), 99–120. https://doi.org/10.1007/s11023-020-09517-8 Open Google Scholar doi.org/10.5771/9783828878167
  129. Hartmann, P. (2021). It’s the data engineering, stupid – bringing clarity to complexity. Retrieved from: https://bit.ly/3ybJ2U9 Open Google Scholar doi.org/10.5771/9783828878167
  130. Hartmann, P., & Henkel, J. (2020). The rise of corporate science in AI: Data as a strategic resource. Academy of Management Discoveries, 6(3), 359–381. https://doi.org/10.5465/amd.2019.0043 Open Google Scholar doi.org/10.5771/9783828878167
  131. Hartmann, P., Schlickewei, U., Liebl, A., Waldmann, A., & Brakemeier, H. (2019). Applying AI: The elements of a comprehensive AI strategy. unternehmertum report. 1–12. Retrieved from: https://t1p.de/x3gn Open Google Scholar doi.org/10.5771/9783828878167
  132. Hassanien, A. E., Taha, M. H. N., & Khalifa, N. E. M. (eds.). (2021). Enabling AI Applications in Data Science. Springer. https://doi.org/10.1007/978-3-030-52067-0 Open Google Scholar doi.org/10.5771/9783828878167
  133. Häusler, J. M. C. (2008). Was versteht man unter Medical Affairs?. Bulletin des medecins suisses, 89(49), 2127–2129. Retrieved from: https://bit.ly/3i6Hqpb Open Google Scholar doi.org/10.5771/9783828878167
  134. Health Industry Hub. (2019). Understanding AI and ML and potential applications for Medical Affairs. Retrieved from: https://bit.ly/3BT0Be5 Open Google Scholar doi.org/10.5771/9783828878167
  135. Hedlund, M. (2012). Epigenetic responsibility. Medicine studies, 3(3), 171–183. https://doi.org/10.1007/s12376-011-0072-6 Open Google Scholar doi.org/10.5771/9783828878167
  136. Heer, J. (2019). Agency plus automation: Designing artificial intelligence into interactive systems. Proceedings of the National Academy of Sciences, 116(6), 1844–1850. https://doi.org/10.1073/pnas.1807184115 Open Google Scholar doi.org/10.5771/9783828878167
  137. Helfferich, C. (2011). Die Qualität qualitativer Daten: Manual für die Durchführung qualitativer Interviews. Wiesbaden: VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-531-92076-4 Open Google Scholar doi.org/10.5771/9783828878167
  138. Hellgren, H. (2018). Why is Agile the most overused word in software business?. Retrieved from: https://bit.ly/3yeHEQC Open Google Scholar doi.org/10.5771/9783828878167
  139. Hemerling, J., Kilmann, J., Danoesastro, M., Stutts, L., & Ahern, C. (2018). It’s not a digital transformation without a digital culture. BCG, Boston, Massachusetts, USA, 1–7. Retrieved from: https://on.bcg.com/373Pktg Open Google Scholar doi.org/10.5771/9783828878167
  140. Henstock, P. (2021). Artificial Intelligence in Pharma: Positive Trends but More Investment Needed to Drive a Transformation. Archives of Pharmacology and Therapeutics, 2(2), 24–28. Retrieved from: https://bit.ly/3lcnSlp Open Google Scholar doi.org/10.5771/9783828878167
  141. Hermes, S., Riasanow, T., Clemons, E. K., Böhm, M., & Krcmar, H. (2020). The digital transformation of the healthcare industry: exploring the rise of emerging platform ecosystems and their influence on the role of patients. Business Research, 13(3), 1033–1069. https://doi.org/10.1007/s40685-020-00125-x Open Google Scholar doi.org/10.5771/9783828878167
  142. Hess, T.; Matt, C.; Benlian, A.; Wiesböck, F. (2016). Options for Formulating a Digital Transformation Strategy. MIS Quarterly Executive, 15(2),103–119. https://doi.org/10.7892/BORIS.105447 Open Google Scholar doi.org/10.5771/9783828878167
  143. Hilb, M. (2020). Toward artificial governance? The role of artificial intelligence in shaping the future of corporate governance. Journal of Management and Governance, 24(4), 1–20. https://doi.org/10.1007/s10997-020-09519-9 Open Google Scholar doi.org/10.5771/9783828878167
  144. Hines, A, & Bishop, P., eds. (2012). Thinking about the Future: Guidelines for Strategic Foresight. 1st ed. Washington, DC: Social Technologies. Open Google Scholar doi.org/10.5771/9783828878167
  145. Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1), 52–61. https://doi.org/10.1016/j.infoandorg.2018.02.004 Open Google Scholar doi.org/10.5771/9783828878167
  146. Hixson, N. (2018). The Death of the Manager: The Rise of the Enabler. 13th Global Peter Drucker Forum 2021. Retrieved from: https://bit.ly/2UWf3S3 Open Google Scholar doi.org/10.5771/9783828878167
  147. Hlupic, V., Pouloudi, A., & Rzevski, G. (2002). Towards an integrated approach to knowledge management: ‘hard’, ‘soft’ and ‘abstract’ issues. Knowledge and Process Management, 9(2), 90–102. https://doi.org/10.1002/kpm.134 Open Google Scholar doi.org/10.5771/9783828878167
  148. Hoeschl, H. C., & Barcellos, V. (2006). Artificial intelligence and knowledge management. In IFIP International Conference on Artificial Intelligence in Theory and Practice (pp. 11–19). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34747-9 Open Google Scholar doi.org/10.5771/9783828878167
  149. Hoffman, S. G. (2017). Managing ambiguities at the edge of knowledge: Research strategy and artificial intelligence labs in an era of academic capitalism. Science, Technology, & Human Values, 42(4), 703–740. https://doi.org/10.1177/0162243916687038 Open Google Scholar doi.org/10.5771/9783828878167
  150. Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288. https://doi.org/10.1177/1049732305276687 Open Google Scholar doi.org/10.5771/9783828878167
  151. Hsu, F.-H. (2002). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton, NJ: Princeton University Press. Open Google Scholar doi.org/10.5771/9783828878167
  152. Huang, M. H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 1–23. https://doi.org/10.1177/0008125619863436 Open Google Scholar doi.org/10.5771/9783828878167
  153. Inspirient, (2021). Productionizing AI. Cognitive Analytics. White Paper. 1–11. Retrieved from: https://bit.ly/2WGv0fH Open Google Scholar doi.org/10.5771/9783828878167
  154. Jansson, F. (2018). 3 ways to boost marketing and medical affairs with artificial intelligence. MarksMan Healthcare. Retrieved from: https://bit.ly/2VmqHp7 Open Google Scholar doi.org/10.5771/9783828878167
  155. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007 Open Google Scholar doi.org/10.5771/9783828878167
  156. Johannessen, J. A., Olsen, B., & Olaisen, J. (1999). Aspects of innovation theory based on knowledge-management. International journal of information management, 19(2), 121–139. https://doi.org/10.1016/S0268-4012(99)00004-3 Open Google Scholar doi.org/10.5771/9783828878167
  157. Johnson, A., Zeng, J., Bailey, A. M., Holla, V., Litzenburger, B., Lara-Guerra, H., … Meric-Bernstam, F. (2015). The right drugs at the right time for the right patient: The MD Anderson precision oncology decision support platform. Drug Discovery Today, 20(12), 1433–1438. https://doi.org/10.1016/j.drudis.2015.05.013 Open Google Scholar doi.org/10.5771/9783828878167
  158. Johnson, M. W., Christensen, C. M., & Kagermann, H. (2008). Reinventing Your Business Model. Harvard Business Review, 86(12), 51–59. Retrieved from: https://bit.ly/3xxtgSA Open Google Scholar doi.org/10.5771/9783828878167
  159. Kaeser, E. (2020). Gesucht: künstliche Intelligenz mit Common Sense. Neue Zürcher Zeitung. Retrieved from: https://bit.ly/3ibvrqk Open Google Scholar doi.org/10.5771/9783828878167
  160. Kaiser, R. (2014). Qualitative Experteninterviews: Konzeptionelle Grundlagen und praktische Durchführung. Elemente der Politik. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-658-02479-6 Open Google Scholar doi.org/10.5771/9783828878167
  161. Kaltenboeck, A., & Bach, P. B. (2018). Value-Based Pricing for Drugs: Theme and Variations. Journal of the American Medical Association, 319(21), 2165–2166. https://doi.org/10.1001/jama.2018.4871 Open Google Scholar doi.org/10.5771/9783828878167
  162. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004 Open Google Scholar doi.org/10.5771/9783828878167
  163. Katsamakas, E., & Pavlov, O. V. (2020). AI and Business Model Innovation: Leveraging the AI Feedback Loop. Journal of Business Models, 8(2), 22–30. https://doi.org/10.5278/ojs.jbm.v8i2.3532 Open Google Scholar doi.org/10.5771/9783828878167
  164. Kaufman, J. K. (2000). The Making of a Value Manager Facilitator. Save International Conference Proceedings. 313–319. Retrieved from: https://bit.ly/3AvVqzc Open Google Scholar doi.org/10.5771/9783828878167
  165. Kaufmann, M. (2019). Big data management canvas: a reference model for value creation from data. Big Data and Cognitive Computing, 3(1), 1–18. https://doi.org/10.3390/bdcc3010019 Open Google Scholar doi.org/10.5771/9783828878167
  166. Kaushal, A., Abrams, K., Sklar, D., & Fera, B. (2019). The future of artificial intelligence in health care | How AI will impact patients, clinicians, and the pharmaceutical industry. Deloitte. 1–20. Retrieved from: https://bit.ly/3rIKISM Open Google Scholar doi.org/10.5771/9783828878167
  167. Kearney. (2020). Digitale Game Changer. Retrieved from: https://bit.ly/37eHexK Open Google Scholar doi.org/10.5771/9783828878167
  168. Kerzel, U. (2021). Enterprise AI Canvas Integrating Artificial Intelligence into Business. Applied Artificial Intelligence, 35(1), 1–12. https://doi.org/10.1080/08839514.2020.1826146 Open Google Scholar doi.org/10.5771/9783828878167
  169. Kessel, M. (2011). The problems with today's pharmaceutical business–an outsider's view. Nature Biotechnology, 29(1), 27–33. https://doi.org/10.1038/nbt.1748 Open Google Scholar doi.org/10.5771/9783828878167
  170. Kickbusch, I. (2019). Health promotion 4.0. Health Promotion International, 34, 179–181. https://doi.org/10.1093/heapro/daz022 Open Google Scholar doi.org/10.5771/9783828878167
  171. Kiriiri, G. K., Njogu, P. M., & Mwangi, A. N. (2020). Exploring different approaches to improve the success of drug discovery and development projects: a review. Future Journal of Pharmaceutical Sciences, 6(1), 1–12. https://doi.org/10.1186/s43094-020-00047-9 Open Google Scholar doi.org/10.5771/9783828878167
  172. Kissinger, H. A. (2019). Henry Kissinger on Artificial Intelligence, Authoritarianism, and Hope. The Catalyst, 15. Retrieved from: https://bit.ly/3lf5qbx Open Google Scholar doi.org/10.5771/9783828878167
  173. Kissinger, H. A., Schmidt, E., & Huttenlocher, D. (2019). The Metamorphosis. The Atlantic. Retrieved from: https://bit.ly/2WE4zHm Open Google Scholar doi.org/10.5771/9783828878167
  174. Kreutzer, R. T., & Sirrenberg, M. (2020). Understanding artificial intelligence. Fundamentals, Use Cases and Methods for a Corporate AI Journey. Springer International Publishing. https://doi.org/10.1007/978-3-030-25271-7 Open Google Scholar doi.org/10.5771/9783828878167
  175. Krockow, C. (1997). Interview mit Christian von Krockow, in: Jäger, W. & Villinger, I. (Hg.): Die Intellektuellen und die Deutsche Einheit. Freiburg i.B., 258–275. Open Google Scholar doi.org/10.5771/9783828878167
  176. Kühn, A., Joppen, R., Reinhart, F., Röltgen, D., von Enzberg, S., & Dumitrescu, R. (2018). Analytics Canvas–A Framework for the design and specification of data analytics projects. Procedia CIRP, 70, 162–167. https://doi.org/10.1016/j.procir.2018.02.031 Open Google Scholar doi.org/10.5771/9783828878167
  177. Kuntsman, A. & Arenkov, I. A. (2019). Method for Assessing Effectiveness of Company Digital Transformation: Integrated approach, IBIMA Business Review, 2019, Article ID 334457, https://doi.org/10.5171/2019.334457 Open Google Scholar doi.org/10.5771/9783828878167
  178. Kvale, S. (1996). InterViews: Learning the craft of qualitative research interviewing (1st ed.). Los Angeles. Sage. Open Google Scholar doi.org/10.5771/9783828878167
  179. Lambert, S. C., & Davidson, R. A. (2013). Applications of the business model in studies of enterprise success, innovation and classification: An analysis of empirical research from 1996 to 2010. European Management Journal, 31(6), 668–681. https://doi.org/10.1016/j.emj.2012.07.007 Open Google Scholar doi.org/10.5771/9783828878167
  180. Lamnek, S., & Krell, C. (2016). Qualitative Sozialforschung: Mit Online-Materialien (6., überarb. Aufl.). Weinheim, Basel: Beltz. Retrieved from: https://bit.ly/3la2ey4 Open Google Scholar doi.org/10.5771/9783828878167
  181. Latour, B. (1999). Pandora's hope: essays on the reality of science studies. Cambridge, MA: Harvard University Press. Open Google Scholar doi.org/10.5771/9783828878167
  182. Lawal, N. T. A., Odeniyi, O. A., & Kayode, A. A. (2015). Application of data mining and knowledge management for business improvement: An exploratory study. International Journal of Applied Information Systems, 8(3), 13–19. https://doi.org/10.5120/IJAIS15-451296 Open Google Scholar doi.org/10.5771/9783828878167
  183. Leathers, C. G. (1971). Intellectual Activism: A Schumpeterian Threat to the New Industrial State. Nebraska Journal of Economics and Business, 3–11. Retrieved from: https://www.jstor.org/stable/40472390 Open Google Scholar doi.org/10.5771/9783828878167
  184. Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: the case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 44. https://doi.org/10.3390/joitmc5030044 Open Google Scholar doi.org/10.5771/9783828878167
  185. Leslie, D. (2019). Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute, 1–95. https://doi.org/10.5281/zenodo.3240529 Open Google Scholar doi.org/10.5771/9783828878167
  186. Li, G., Gomez, R., Nakamura, K., & He, B. (2019). Human-centered reinforcement learning: A survey. IEEE Transactions on Human-Machine Systems, 49(4), 337–349. https://doi.org/10.1109/THMS.2019.2912447 Open Google Scholar doi.org/10.5771/9783828878167
  187. Li, S. (2015). Keynote: Hybrid Intelligent Models and Systems for Problem Solving and Decision Making in the Digital Age. In The 6th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA2015). IEEE. https://bit.ly/379qA2L Open Google Scholar doi.org/10.5771/9783828878167
  188. Liessmann, K. P. (2006). Theorie der Unbildung: Die Irrtümer der Wissensgesellschaft. Paul Zsolnay Verlag. Open Google Scholar doi.org/10.5771/9783828878167
  189. Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 1(1), 48–56. https://doi.org/10.1016/j.visinf.2017.01.006 Open Google Scholar doi.org/10.5771/9783828878167
  190. Lu, L. (2020). Literature Exploration on the Correlation between Value, Business Model and AI Technology: A Case Study on Urban Green. KTH Royale Institute of Technology, 1–18. https://bit.ly/3rH56DX Open Google Scholar doi.org/10.5771/9783828878167
  191. Magretta, J. (2002). Why Business Models Matters. Harvard Business Review, 80(5), 86–92. Retrieved from: https://bit.ly/2VpyWkk Open Google Scholar doi.org/10.5771/9783828878167
  192. Maier, M., Emery, D., Hilliard, R. (2001). Software architecture: introducing IEEE standard 1471. Computer 34(4), 107–109. https://doi.org/10.1109/2.917550 Open Google Scholar doi.org/10.5771/9783828878167
  193. Maillet, A. (2019). Introducing the Human-Centered AI Canvas. Medium. Retrieved from: https://bit.ly/3xkwYyY Open Google Scholar doi.org/10.5771/9783828878167
  194. Mainzer, K. (2016). Künstliche Intelligenz-Wann übernehmen die Maschinen?. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-58046-2 Open Google Scholar doi.org/10.5771/9783828878167
  195. Mainzer, K. (2016b). Natürliche und künstliche Intelligenz. Fatum, 4, 7. Retrieved from: https://bit.ly/3xiL9El Open Google Scholar doi.org/10.5771/9783828878167
  196. Malladi, A., Cickova, P., Davies, R., O'Connor, H., Hawksworth, C., & Walker, S. (2019). An introduction to medical affairs for medical writers. Medical Writing, 28, 39–43. Retrieved from: https://bit.ly/3BWzDSM Open Google Scholar doi.org/10.5771/9783828878167
  197. Mangematin, V., Sapsed, J., & Schüßler, E. (2014). Disassembly and reassembly: An introduction to the Special Issue on digital technology and creative industries. Technological Forecasting and Social Change, 83, 1–9. https://doi.org/10.1016/j.techfore.2014.01.002 Open Google Scholar doi.org/10.5771/9783828878167
  198. Marin, I. (2019). Data science and development team remote communication: The use of the machine learning canvas. In 2019 ACM/IEEE 14th International Conference on Global Software Engineering (ICGSE) (pp. 18–21). IEEE. https://doi.org/10.1109/ICGSE.2019.00-12 Open Google Scholar doi.org/10.5771/9783828878167
  199. MarketsandMarkets. (2019). Healthcare Report. Artificial Intelligence in Healthcare Market. Retrieved from: https://bit.ly/3BY6XsF Open Google Scholar doi.org/10.5771/9783828878167
  200. Marksman Healthcare. (2018). Is There a Role of Artificial Intelligence in Medical Affairs?. 1–2. Retrieved from: https://bit.ly/3zY1e4p Open Google Scholar doi.org/10.5771/9783828878167
  201. Massachusetts Institute of Technology. (2019). Can science writing be automated? A neural network can read scientific papers and render a plain-English summary. ScienceDaily. Retrieved from: https://bit.ly/3C12F3w Open Google Scholar doi.org/10.5771/9783828878167
  202. Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business & Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/s12599-015-0401-5 Open Google Scholar doi.org/10.5771/9783828878167
  203. Matthias, A. (2004). The responsibility gap: Ascribing responsibility for the actions of learning automata. Ethics and information technology, 6(3), 175–183. https://doi.org/10.1007/s10676-004-3422-1 Open Google Scholar doi.org/10.5771/9783828878167
  204. Mayor, T. (2019). 5 building blocks of digital transformation. Digital Economy. MIT Sloan. 1–6. Retrieved from: https://bit.ly/3lehPNa Open Google Scholar doi.org/10.5771/9783828878167
  205. Mayring, P. (1983). Qualitative Inhaltsanalyse. Grundlagen und Techniken. Weinheim: Beltz. Open Google Scholar doi.org/10.5771/9783828878167
  206. Mayring, P. (1991). Qualitative Inhaltsanalyse. In Flick, U., von Kardoff, E., Keupp, H., von Rosenstiel, L., Wolff, S. (eds.). (1991). Handbuch qualitative Forschung: Grundlagen, Konzepte, Methoden und Anwendungen. München: Beltz – Psychologie Verl. Union. 209–213. Retrieved from: https://bit.ly/3rH6RB3 Open Google Scholar doi.org/10.5771/9783828878167
  207. Mayring, P. (2015). Qualitative Inhaltsanalyse: Grundlagen und Techniken (12., überarb. Aufl.). Beltz Pädagogik. Weinheim: Beltz. Retrieved from: https://bit.ly/37vIPjb Open Google Scholar doi.org/10.5771/9783828878167
  208. Mayring, P. (2016). Einführung in die qualitative Sozialforschung: Eine Anleitung zu qualitativem Denken (6., überarb. Aufl.). Weinheim, Basel: Beltz. Open Google Scholar doi.org/10.5771/9783828878167
  209. McAfee, A., & Brynjolfsson, E. (2013). Big data: The management revolution. Harvard Business Review, 61–68. Retrieved from: https://bit.ly/37zjhBE Open Google Scholar doi.org/10.5771/9783828878167
  210. McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. WW Norton & Company. Open Google Scholar doi.org/10.5771/9783828878167
  211. McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904 Open Google Scholar doi.org/10.5771/9783828878167
  212. McKinsey. (2019). Transforming Medical Affairs: Tapping the alchemy for storytellers and digital start-ups. 1–8. Retrieved from: https://mck.co/3BQBWqq Open Google Scholar doi.org/10.5771/9783828878167
  213. Meade, R. (2020). Innovara digest: How the marriage of data analytics and AI will transform healthcare. Innovara. Retrieved from: https://bit.ly/3j8tQ3S Open Google Scholar doi.org/10.5771/9783828878167
  214. Merkens, H. (1997). Stichproben bei qualitativen Studien. In Friebertshäuser, B., Prengel, A. (ed.). Handbuch Qualitative Forschungsmethoden in der Erziehungswissenschaft. Weinheim/München: Juventa, 97–106. Open Google Scholar doi.org/10.5771/9783828878167
  215. Merkens, H. (2000). Auswahlverfahren, Sampling, Fallkonstruktion. In Flick, U., Kardoff, E. v., Steinke, I. (ed.). Qualitative Forschung. Ein Handbuch. Reinbeck b. Hamburg: Rowohlt. 286–299. Open Google Scholar doi.org/10.5771/9783828878167
  216. Metelskaia, I., Ignatyeva, O., Denef, S., & Samsonowa, T. (2018). A business model template for AI solutions. In Proceedings of the International Conference on Intelligent Science and Technology, 35–41. https://doi.org/10.1145/3233740.3233750 Open Google Scholar doi.org/10.5771/9783828878167
  217. Meuser, M. & Nagel, U. (2009). Das Experteninterview – konzeptionelle Grundlagen und methodische Anlage. In S. Pickel, G. Pickel, H.-J. Lauth & D. Jahn (ed.), Methoden der vergleichenden Politik- und Sozialwissenschaft (pp. 465–479). VS Verl. für Sozialwissenschaften. Open Google Scholar doi.org/10.5771/9783828878167
  218. Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative Data Analysis: A Methods Sourcebook (3rd ed.). California: Sage. Open Google Scholar doi.org/10.5771/9783828878167
  219. Milićević, M. (2018). Artificial Intelligence as the Voice of Wisdom for Future-Ready IT. 10th Global Peter Drucker Forum. Retrieved from: https://bit.ly/3lelomw Open Google Scholar doi.org/10.5771/9783828878167
  220. Miller, S. (2018). AI: Augmentation, more so than automation. Asian Management Insights, 5(1), 1–20. Retrieved from: https://ink.library.smu.edu.sg/ami/83 Open Google Scholar doi.org/10.5771/9783828878167
  221. Moberg, F., & Blomberg, E. (2019). Artificial Intelligence Adoption–Is it more than just hype?. Lund University. Retrieved from: https://bit.ly/2Vi3QuI Open Google Scholar doi.org/10.5771/9783828878167
  222. Moebius, S. (2011). Wo sind die Intellektuellen hin?. Zeit Online. Retrieved from: https://bit.ly/3xfb6og Open Google Scholar doi.org/10.5771/9783828878167
  223. Moody, L., & Bickel, W. K. (2016). Substance Use and Addictions. In Computer-Assisted and Web-Based Innovations in Psychology, Special Education, and Health. Academic Press. 157–183. Open Google Scholar doi.org/10.5771/9783828878167
  224. Morris, M., Schindehutte, M., & Allen, J. (2005). The entrepreneur's business model: Toward a unified perspective. Journal of Business Research, 58(6), 726–735. https://doi.org/10.1016/j.jbusres.2003.11.001 Open Google Scholar doi.org/10.5771/9783828878167
  225. MSD. (2019). Annual report. Retrieved from: https://bit.ly/3xiKva2 Open Google Scholar doi.org/10.5771/9783828878167
  226. MSD. (2020). Retrieved from: https://www.msd.com/media/company-fact-sheet/ Open Google Scholar doi.org/10.5771/9783828878167
  227. MSD. (2020b). Retrieved from: https://www.msd.com/research/product-pipeline/) Open Google Scholar doi.org/10.5771/9783828878167
  228. MSD. (2020c). Retrieved from: https://www.merck.com/company-overview/ Open Google Scholar doi.org/10.5771/9783828878167
  229. MSD. (2020d). Retrieved from: https://www.merck.com/company-overview/responsibility/ Open Google Scholar doi.org/10.5771/9783828878167
  230. MSD. (2020e). Retrieved from: https://www.merck.com/company-overview/responsibility/philanthropy/ Open Google Scholar doi.org/10.5771/9783828878167
  231. MSD. (2020f). Retrieved from: https://www.merck.com/company-overview/culture-and-values/ Open Google Scholar doi.org/10.5771/9783828878167
  232. Müller, J. (2005). Teilnehmender Beobachter. Neue Zürcher Zeitung. Retrieved from: https://www.nzz.ch/articleCNMCI-1.106516 Open Google Scholar doi.org/10.5771/9783828878167
  233. Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nature Reviews. Drug Discovery, 8(12), 959–968. https://doi.org/10.1038/nrd2961 Open Google Scholar doi.org/10.5771/9783828878167
  234. Najdawi, A. (2020). Assessing AI Readiness Across Organizations: The Case of UAE. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1–5). IEEE. https://doi.org/10.1109/ICCCNT49239.2020.9225386 Open Google Scholar doi.org/10.5771/9783828878167
  235. NCCN. (2021). National Comprehensive Cancer Network – NCCN Drugs & Biologics Compendium. Retrieved from: https://bit.ly/3j6JzAx Open Google Scholar doi.org/10.5771/9783828878167
  236. Ng, A. (2018). AI transformation playbook: how to lead your company into the AI era. Landing AI. Retrieved from: https://bit.ly/3xd7KCf Open Google Scholar doi.org/10.5771/9783828878167
  237. Nortje, M. A., & Grobbelaar, S. S. (2020). A Framework for the Implementation of Artificial Intelligence in Business Enterprises: A Readiness Model. In 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–10). IEEE. https://doi.org/10.1109/ICE/ITMC49519.2020.9198436 Open Google Scholar doi.org/10.5771/9783828878167
  238. Novasecta. (2019). Medical Affairs: Influencers of the Future. 1–8. Retrieved from: https://bit.ly/3fhJglf Open Google Scholar doi.org/10.5771/9783828878167
  239. O'Dell, C., & Grayson, C. J. (1998). If only we knew what we know: the transfer of internal knowledge and best practice. New York: Free Press. https://doi.org/10.2307/41165948 Open Google Scholar doi.org/10.5771/9783828878167
  240. Opderbeck, D. W. (2019). Artificial Intelligence in Pharmaceuticals, Biologics, and Medical Devices: Present and Future Regulatory Models. Fordham Law Review, 88, 553–589. Retrieved from: https://ir.lawnet.fordham.edu/flr/vol88/iss2/7 Open Google Scholar doi.org/10.5771/9783828878167
  241. Orr, W., & Davis, J. L. (2020). Attributions of ethical responsibility by Artificial Intelligence practitioners. Information, Communication & Society, 1–17. https://doi.org/10.1080/1369118X.2020.1713842 Open Google Scholar doi.org/10.5771/9783828878167
  242. Osterwalder, A. (2004). The Business Model Ontology. A Proposition in a Design Science Approach. PhD thesis, University of Lausanne, CH. Retrieved from: https://bit.ly/3xik989 Open Google Scholar doi.org/10.5771/9783828878167
  243. Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. New York: Wiley&Sons. Open Google Scholar doi.org/10.5771/9783828878167
  244. Osterwalder, A., Pigneur, Y. and Tucci, C.L. (2005). Clarifying Business Models: Origins, Present, and Future of the Concept. Communications of the Association for Information Systems, 16, 1–40. https://doi.org/10.17705/1CAIS.01601 Open Google Scholar doi.org/10.5771/9783828878167
  245. Ostojic, I. & Stevens, R. (2019). Transforming Medical Affairs: Tapping the alchemy of storytellers and digital start-ups. McKinsey & Company. 1–5. Retrieved from: https://mck.co/3xgKofi Open Google Scholar doi.org/10.5771/9783828878167
  246. Overgoor, G., Chica, M., Rand, W., & Weishampel, A. (2019). Letting the computers take over: Using AI to solve marketing problems. California Management Review, 61(4), 156–185. https://doi.org/10.1177/0008125619859318 Open Google Scholar doi.org/10.5771/9783828878167
  247. Özdemir, V. (2019). Not all intelligence is artificial: Data science, automation, and AI meet HI. Omics: a journal of integrative biology, 23(2), 67–69. https://doi.org/10.1089/omi.2019.0003 Open Google Scholar doi.org/10.5771/9783828878167
  248. Paschek, P. (2020). Peter F. Drucker Erinnerungen an einen konservativ-christlichen Anarchisten. Tectum, Baden-Baden. Open Google Scholar doi.org/10.5771/9783828878167
  249. Paschek, P. (2021) Müssen Manager gebildet sein? – Gedankenanstöße. 13th Global Peter Drucker Forum. Retrieved from: https://bit.ly/3rNlbaZ Open Google Scholar doi.org/10.5771/9783828878167
  250. Pastor-Escuredo, D., & Vinuesa, R. (2020). Towards and Ethical Framework in the Complex Digital Era. arXiv preprint arXiv:2010.10028. Retrieved from: https://arxiv.org/ftp/arxiv/papers/2010/2010.10028.pdf Open Google Scholar doi.org/10.5771/9783828878167
  251. Patton, M. Q. (1990). Qualitative Evaluation and Research Methods (pp. 169–186). Beverly Hills, CA: Sage Publications, Inc. http://doi.org/10.1002/nur.4770140111 Open Google Scholar doi.org/10.5771/9783828878167
  252. Pega. (2019). AI and Empathy: Combining artificial intelligence with human ethics for better engagement. 1–9. Retrieved from: https://pe.ga/37c8P2T Open Google Scholar doi.org/10.5771/9783828878167
  253. Perc, M., Ozer, M., & Hojnik, J. (2019). Social and juristic challenges of artificial intelligence. Palgrave Communications, 5(1), 1–7. https://doi.org/10.1057/s41599-019-0278-x Open Google Scholar doi.org/10.5771/9783828878167
  254. Pietsch, W. (2021). Big Data. Cambridge University Press. https://doi.org/10.1017/9781108588676 Open Google Scholar doi.org/10.5771/9783828878167
  255. Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved from: https://bit.ly/3fnrnBz Open Google Scholar doi.org/10.5771/9783828878167
  256. Plantevin, L., Schlegel, C. & Gordian, M. (2017). Reinventing the Role of Medical Affairs. Bain & Company, 1–8. Retrieved from: https://bit.ly/2TOElkp Open Google Scholar doi.org/10.5771/9783828878167
  257. Pratt, K. (2015). Radical Innovation. Retrieved from: https://bit.ly/3rO2sw6 Open Google Scholar doi.org/10.5771/9783828878167
  258. Purdy, M., Zelleay, J., & Maselli, O. (2019). The Risks of Using AI to Interpret Human Emotions. Harvard Business Review. Retrieved from: https://bit.ly/3C5nbAf Open Google Scholar doi.org/10.5771/9783828878167
  259. PwC, (2017). Sizing the prize What’s the real value of AI for your business and how can you capitalise?. PwC report, 1–32. Retrieved from: https://pwc.to/3BYvQEu Open Google Scholar doi.org/10.5771/9783828878167
  260. Rabionet, S. E. (2011). How I Learned to Design and Conduct Semi-structured Interviews: An Ongoing and Continuous Journey. The Qualitative Report, 16 (2), 563–566. https://doi.org/10.46743/2160-3715/2011.1070 Open Google Scholar doi.org/10.5771/9783828878167
  261. Rago, F. (2018). A Methodology to Develop AI Software in an Organization. In Proceedings of the World Congress on Engineering, 1,1–4. Retrieved from: https://bit.ly/3xcZrqg Open Google Scholar doi.org/10.5771/9783828878167
  262. Rao, A., & Palaci, F. (2019). PwC’s Responsible AI. AI you can trust. 1–2. Retrieved from: https://pwc.to/3jc96IL Open Google Scholar doi.org/10.5771/9783828878167
  263. Rao, A., Palaci, F., & Chow, W. (2019). A practical guide to Responsible Artificial Intelligence (AI). Retrieved from: https://pwc.to/2Vmz9EI Open Google Scholar doi.org/10.5771/9783828878167
  264. Rao, M. S. (2019). Technology, humanity and prosperity: why Peter Drucker is more relevant today than ever before. The People Space. Retrieved from: https://bit.ly/2Vqqml0 Open Google Scholar doi.org/10.5771/9783828878167
  265. Raymond, A. (2017). The opium of the intellectuals. Routledge. [1st ed. 1955] Retrieved from: https://bit.ly/3mx9PVH Open Google Scholar doi.org/10.5771/9783828878167
  266. Riedl, M. O. (2019). Human‐centered artificial intelligence and machine learning. Human Behavior and Emerging Technologies, 1(1), 1–8. https://doi.org/10.1002/hbe2.117 Open Google Scholar doi.org/10.5771/9783828878167
  267. Rodrigues, R. (2020). Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. Journal of Responsible Technology, 4, 100005. https://doi.org/10.1016/j.jrt.2020.100005 Open Google Scholar doi.org/10.5771/9783828878167
  268. Rosso, C. (2018). The human bias in the AI machine. Psychology Today. New York. Retrieved from: https://bit.ly/3A3mMfE Open Google Scholar doi.org/10.5771/9783828878167
  269. Rowe, F. (2018). Being critical is good, but better with philosophy! From digital transformation and values to the future of IS research. European Journal of Information Systems, 27(3), 380–393. https://doi.org/10.1080/0960085X.2018.1471789 Open Google Scholar doi.org/10.5771/9783828878167
  270. Russell, S. J., & Norvig, P. R. (2016). Artificial intelligence. A modern approach, 3rd ed. Essex, England, Pearson Education. [1st ed. 2002] Open Google Scholar doi.org/10.5771/9783828878167
  271. Saenz, M. J., Revilla, E., & Simón, C. (2020). Designing AI Systems With Human-Machine Teams. MIT Sloan Management Review, 61(3), 1–5. Retrieved from: https://bit.ly/3fjlJQY Open Google Scholar doi.org/10.5771/9783828878167
  272. Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). Los Angeles: Sage Publications. Open Google Scholar doi.org/10.5771/9783828878167
  273. Sanchez, V. V. S., Schneider-Kamp, P., Goduscheit, R. C., & Gerstlberger, W. (2019). Is Big Data Overrated? The underestimated innovation challenges of BD management. In DRUID Academy Conference 2019. Retrieved from: https://bit.ly/3fngJuR Open Google Scholar doi.org/10.5771/9783828878167
  274. Santos, J., Spector, B., & Van der Heyden, L. (2009). Toward a theory of business model innovation within incumbent firms. INSEAD, Fontainebleau, France. https://doi.org/10.2139/SSRN.1362515 Open Google Scholar doi.org/10.5771/9783828878167
  275. Sartorio, C. (2007). Causation and responsibility. Philosophy Compass, 2(5), 749–765. https://doi.org/10.1111/j.1747-9991.2007.00097.x Open Google Scholar doi.org/10.5771/9783828878167
  276. Schallmo, D. R. A. (2013). Geschäftsmodelle erfolgreich entwickeln und implementieren. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37994-9 Open Google Scholar doi.org/10.5771/9783828878167
  277. Schneider, B., Asprion, P. M., & Grimberg, F. (2019). Human-centered Artificial Intelligence: A Multidimensional Approach towards Real World Evidence. In ICEIS (1) (pp. 381–390). https://doi.org/10.1002/hbe2.117 Open Google Scholar doi.org/10.5771/9783828878167
  278. Schneider, S., & Leyer, M. (2019). Me or information technology? Adoption of artificial intelligence in the delegation of personal strategic decisions. Managerial and Decision Economics, 40(3), 223–231. https://doi.org/10.1002/mde.2982 Open Google Scholar doi.org/10.5771/9783828878167
  279. Schneider, S., & Spieth, P. (2013). Business Model Innovation: Towards an Integrated Future Research Agenda. International Journal of Innovation Management, 17(1), 1340001. https://doi.org/10.1142/S136391961340001X Open Google Scholar doi.org/10.5771/9783828878167
  280. Schreier, M. (2014). Ways of Doing Qualitative Content Analysis: Disentangling Terms and Terminologies. Forum Qualitative Sozialforschung/ Forum: Qualitative Social Research, 15(1). https://doi.org/10.17169/fqs-15.1.2043 Open Google Scholar doi.org/10.5771/9783828878167
  281. Schuhmacher, A., Gatto, A., Hinder, M., Kuss, M., & Gassmann, O. (2020). The upside of being a digital pharma player. Drug discovery today, 25(9), 1569–1574. https://doi.org/10.1016/j.drudis.2020.06.002 Open Google Scholar doi.org/10.5771/9783828878167
  282. Schumpeter, J. A. (1994). Capitalism, Socialism and Democracy. Routledge. [1st ed. 1942] Open Google Scholar doi.org/10.5771/9783828878167
  283. Sebastian, I., Ross, J., Beath, C., Mocker, M., Moloney, K., & Fonstad, N. (2017). How big old companies navigate digital transformation. MIS Quarterly Executive. 197–213. Retrieved from: https://core.ac.uk/download/pdf/132606601.pdf Open Google Scholar doi.org/10.5771/9783828878167
  284. Seddon, P. B., Lewis, G. P., Freeman, P., & Shanks, G. (2004). The case for viewing business models as abstractions of strategy. Communications of the association for Information Systems, 13(1), 25. 427–442. https://doi.org/10.17705/1CAIS.01325 Open Google Scholar doi.org/10.5771/9783828878167
  285. Shafer, S. M., Smith, H. J., & Linder, J. C. (2005). The power of business models. Business Horizons, 48(3), 199–207. https://doi.org/10.1016/j.bushor.2004.10.014 Open Google Scholar doi.org/10.5771/9783828878167
  286. Shah, I., Janajreh, I., & Fung, S. M. (2020). Medical Information Practices Across the Pharma Industry: What Can We Learn from Benchmarking Surveys?. Therapeutic Innovation & Regulatory Science, 54, 1259–1262. https://doi.org/10.1007/s43441-020-00226-z Open Google Scholar doi.org/10.5771/9783828878167
  287. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press. Retrieved from: https://bit.ly/3jdcW47 Open Google Scholar doi.org/10.5771/9783828878167
  288. Shashank, A. (2019). Is Artificial Intelligence The Answer To A Plethora of Healthcare Problems? Retrieved from: https://bit.ly/3A2Qh1u Open Google Scholar doi.org/10.5771/9783828878167
  289. Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109–124. https://doi.org/10.17705/1thci.00131 Open Google Scholar doi.org/10.5771/9783828878167
  290. Silva, V. S., Freitas, A., & Handschuh, S. (2019). On the semantic interpretability of artificial intelligence models. arXiv preprint arXiv:1907.04105. 1–17. Retrieved from: https://arxiv.org/abs/1907.04105 Open Google Scholar doi.org/10.5771/9783828878167
  291. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … & Hassabis, D. (2017). Mastering the game of go without human knowledge. nature, 550(7676), 354–359. https://doi.org/10.1038/nature24270 Open Google Scholar doi.org/10.5771/9783828878167
  292. Silverman, D. (2014). Interpreting qualitative data: A guide to the principles of qualitative research. London: Sage. Open Google Scholar doi.org/10.5771/9783828878167
  293. Sjödin, D., Parida, V., Jovanovic, M., & Visnjic, I. (2020). Value creation and value capture alignment in business model innovation: A process view on outcome‐based business models. Journal of Product Innovation Management, 37(2), 158–183. https://doi.org/10.1111/jpim.12516 Open Google Scholar doi.org/10.5771/9783828878167
  294. Smith, S. (2019). AI for Medical Affairs White Paper. Cognitive Computing. 1–12. Retrieved from: https://bit.ly/3C1ElPj Open Google Scholar doi.org/10.5771/9783828878167
  295. Soares, N., & Fallenstein, B. (2017). Agent foundations for aligning machine intelligence with human interests: a technical research agenda. In The Technological Singularity. Springer, Berlin, Heidelberg, 103–125. Retrieved from: https://bit.ly/37fzVpM Open Google Scholar doi.org/10.5771/9783828878167
  296. Solbach, T., Kremer, M., Grünewald, P., & Ickerott, D. (2019). Driving the future of health. How biopharma can defend and grow its business in an era of digitally enabled healthcare, strategy& report, 1–24. Retrieved from: https://pwc.to/3ieEbMt Open Google Scholar doi.org/10.5771/9783828878167
  297. Soliman, S. (2018). Five ways Artificial Intelligence will Change Medical Affairs. Pharmacistsmomsgroup. Retrieved from: https://bit.ly/3iheScx Open Google Scholar doi.org/10.5771/9783828878167
  298. Spatharou, A. Hieronimus, S., & Jenkins J. (2020). Transforming healthcare with AI: The impact on the workforce and organizations. EIT Health. McKinsey & Company. 1–134. Retrieved from: https://mck.co/3jdhsQ7 Open Google Scholar doi.org/10.5771/9783828878167
  299. Spieth, P., & Schneider, S. (2016). Business model innovativeness: designing a formative measure for business model innovation. Journal of business Economics, 86(6), 671–696. https://doi.org/10.1007/s11573-015-0794-0 Open Google Scholar doi.org/10.5771/9783828878167
  300. Spinner, N. (2020). Indegene: AI is transforming the pharma industry. Retrieved from: https://bit.ly/3A3PwVE Open Google Scholar doi.org/10.5771/9783828878167
  301. Spoun, S. & Meynhardt, T. (2010). Management – eine gesellschaftliche Aufgabe. Baden-Baden. Open Google Scholar doi.org/10.5771/9783828878167
  302. Stamann, C., Janssen, M., & Schreier, M. (2016). Qualitative Inhaltsanalyse – Versuch einer Begriffsbestimmung und Systematisierung. Forum Qualitative Sozialforschung/ Forum: Qualitative Social Research, 17(3), 1–16. https://doi.org/10.17169/fqs-17.3.2581 Open Google Scholar doi.org/10.5771/9783828878167
  303. Stone, A. (2019). The digital transformation of medical. Multiply the impact of medical affairs without compromising authenticity. Eyeforpharma. 1–21. Open Google Scholar doi.org/10.5771/9783828878167
  304. Suddaby, R. (Ed.). (2010). Editor's comments: Construct clarity in theories of management and organization. Academy of Management Review, 35(3), 346–357. https://doi.org/10.5465/amr.35.3.zok346 Open Google Scholar doi.org/10.5771/9783828878167
  305. Sutton, R. S., & Barto, A. G. (1998). Introduction to Reinforcement Learning. Vol. 2.4. Cambridge: MIT Press. Open Google Scholar doi.org/10.5771/9783828878167
  306. Szwec, A. (2019). ML/AI Model Canvas. Medium. Retrieved from: https://bit.ly/37eUL8L Open Google Scholar doi.org/10.5771/9783828878167
  307. Tardieu, H., Daly, D., Esteban-Lauzán, J., Hall, J., & Miller, G. (2020). Deliberately Digital: Rewriting Enterprise DNA for Enduring Success. Springer Nature. https://doi.org/10.1007/978-3-030-37955-1 Open Google Scholar doi.org/10.5771/9783828878167
  308. Taulli, T. (2021). IBM Watson: Why Is Healthcare AI So Tough? Forbes. Retrieved from: https://bit.ly/2WDR8ae Open Google Scholar doi.org/10.5771/9783828878167
  309. Teece, D. J. (2010). Business Models, Business Strategy and Innovation. Long Range Planning, 43(2–3), 172–194. https://doi.org/10.1016/j.lrp.2009.07.003 Open Google Scholar doi.org/10.5771/9783828878167
  310. Teece, D. J. (2018). Business models and dynamic capabilities. Long range planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007 Open Google Scholar doi.org/10.5771/9783828878167
  311. Thomas, A., & Chopra, M. (2020). On how big data revolutionizes knowledge management. In Digital transformation in business and society (pp. 39–60). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-08277-2 Open Google Scholar doi.org/10.5771/9783828878167
  312. Tsui, E., Garner, B. J., & Staab, S. (2000). The role of artificial intelligence in knowledge management. Knowledge based systems, 13(5), 235–239. https://doi.org/10.1016/S0950-7051(00)00093-9 Open Google Scholar doi.org/10.5771/9783828878167
  313. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. Retrieved from: https://www.jstor.org/stable/2251299 Open Google Scholar doi.org/10.5771/9783828878167
  314. Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle, C., & Matthes, F. (2018). Supporting large-scale agile development with domain-driven design. In International Conference on Agile Software Development, Springer, Cham, 232–247. https://doi.org/10.1007/978-3-319-91602-6_16 Open Google Scholar doi.org/10.5771/9783828878167
  315. Unseld, S. (1990). Künstliche Intelligenz und Simulation in der Unternehmung. Stuttgart: Teubner. https://doi.org/10.1007/978-3-322-99836-1 Open Google Scholar doi.org/10.5771/9783828878167
  316. Van den Hoven, J., Lokhorst, G. J., & Van de Poel, I. (2012). Engineering and the problem of moral overload. Science and engineering ethics, 18(1), 143–155. https://doi.org/10.1007/s11948-011-9277-z Open Google Scholar doi.org/10.5771/9783828878167
  317. Van Otterlo, M. (2014). Automated experimentation in Walden 3.0.: The next step in profiling, predicting, control and surveillance. Surveillance & society, 12(2), 255–272. https://doi.org/10.24908/ss.v12i2.4600 Open Google Scholar doi.org/10.5771/9783828878167
  318. Van Velthoven, M. H., Cordon, C., & Challagalla, G. (2019). Digitization of healthcare organizations: the digital health landscape and information theory. International journal of medical informatics, 124, 49–57. https://doi.org/10.1016/j.ijmedinf.2019.01.007 Open Google Scholar doi.org/10.5771/9783828878167
  319. Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/10.1016/j.jsis.2019.01.003 Open Google Scholar doi.org/10.5771/9783828878167
  320. Vidgen, R., Hindle, G., & Randolph, I. (2020). Exploring the ethical implications of business analytics with a business ethics canvas. European Journal of Operational Research, 281(3), 491–501. https://doi.org/10.1016/J.EJOR.2019.04.036 Open Google Scholar doi.org/10.5771/9783828878167
  321. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., … & Nerini, F. F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, 11(1), 1–10. https://doi.org/10.1038/s41467-019-14108-y Open Google Scholar doi.org/10.5771/9783828878167
  322. Wahab, W.A., & Rahman, S.A. (2018). A Brief Review on the Knowledge Management and Data Mining for Marketing Decision. The International Journal of Academic Research in Business and Social Sciences, 8, 267–275. https://doi.org/10.6007/ijarbss/v8-i9/4588 Open Google Scholar doi.org/10.5771/9783828878167
  323. Waldner, F., Poetz, M. K., Grimpe, C., & Eurich, M. (2015). Antecedents and Consequences of Business Model Innovation: The Role of Industry Structure. In Charles Baden-Fuller, Vincent Mangematin (ed.) Business Models and Modelling. Advances in Strategic Management, 33, Emerald Group Publishing Limited, 347–386. https://doi.org/10.1108/S0742-332220150000033009 Open Google Scholar doi.org/10.5771/9783828878167
  324. Walsh, M. N., & Rumsfeld, J. S. (2017). Leading the digital transformation of healthcare: the ACC innovation strategy. Journal of the American College of Cardiology, 70(21), 2719–2722. https://doi.org/10.1016/j.jacc.2017.10.020 Open Google Scholar doi.org/10.5771/9783828878167
  325. Weber, M., & Buschbacher, F. (2017). Künstliche Intelligenz–Wirtschaftliche Bedeutung, gesellschaftliche Herausforderungen, menschliche Verantwortung. Berlin/Kaiserslautern: Bitkom eV und DFKI. Retrieved from: https://bit.ly/3Cb4MlC Open Google Scholar doi.org/10.5771/9783828878167
  326. Weber, R., & Seeberg, P. (2020). KI in der Industrie: Grundlagen, Anwendungen, Perspektiven. Carl Hanser Verlag GmbH Co KG. Open Google Scholar doi.org/10.5771/9783828878167
  327. West Monroe Partners & rMark Bio. (2020). How AI meets medical affairs teams' evolving need for KPIs. Retrieved from: https://bit.ly/3lyootQ Open Google Scholar doi.org/10.5771/9783828878167
  328. Westerman, G., & Bonnet, D. (2015) ‘Revamping Your Business Through Digital Transformation,’ MIT Sloan Management Review, 1–5. Retrieved from: https://bit.ly/3rUy2bt Open Google Scholar doi.org/10.5771/9783828878167
  329. Wilkinson, D., & Birmingham, P. (2003). Using research instruments: A guide for researchers. London: RoutledgeFalmer. Retrieved from: https://bit.ly/3frx1CS Open Google Scholar doi.org/10.5771/9783828878167
  330. Winner, L. (1980). Do Artifacts Have Politics? Daedalus, 109(1), 121–136. Retrieved from: http://www.jstor.org/stable/20024652 Open Google Scholar doi.org/10.5771/9783828878167
  331. Wirtz, B. W., & Müller, W. M. (2019). An integrated artificial intelligence framework for public management. Public Management Review, 21(7), 1076–1100. https://doi.org/10.1080/14719037.2018.1549268 Open Google Scholar doi.org/10.5771/9783828878167
  332. Wirtz, B. W., Göttel, V., & Daiser, P. (2016). Business Model Innovation: Development, Concept and Future Research Directions. Journal of Business Models, 4(1), 1–28. https://doi.org/10.5278/ojs.jbm.v4i1.1621 Open Google Scholar doi.org/10.5771/9783828878167
  333. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., … & Dean, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. Retrieved from: https://bit.ly/3lU6uly Open Google Scholar doi.org/10.5771/9783828878167
  334. Xu, W. (2019). Toward human-centered AI: a perspective from human-computer interaction. Interactions, 26(4), 42–46. Retrieved from: https://doi.org/10.1145/3328485 Open Google Scholar doi.org/10.5771/9783828878167
  335. Yigitcanlar, T., & Velibeyoglu, K. (2008). Knowledge-based urban development: The local economic development path of Brisbane, Australia. Local Economy, 23(3), 195–207. https://doi.org/10.1080/02690940802197358 Open Google Scholar doi.org/10.5771/9783828878167
  336. Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Applied social research methods series: v. 5. Thousand Oaks, Calif., London: SAGE. Open Google Scholar doi.org/10.5771/9783828878167
  337. Yocher, R. E. (2019). Critical Thinking and Leadership Skills for Regulatory Professionals. Regulatory Focus. Retrieved from: https://bit.ly/2VmRRwa Open Google Scholar doi.org/10.5771/9783828878167
  338. Yuan, Y., Wartenberg, F., Wolk, A., Ilgin, Y. (2019). Using AI & machine learning to drive commercial success in the EU. IQVIA White paper. Retrieved from: https://bit.ly/3A75GO2 Open Google Scholar doi.org/10.5771/9783828878167
  339. Zawadzki, J. (2019). Introducing the AI Project Canvas. Towards data science. Retrieved from: https://bit.ly/3lrp1Fy Open Google Scholar doi.org/10.5771/9783828878167
  340. Zhang, X., Ming, X., Liu, Z., Yin, D., Chen, Z., & Chang, Y. (2019). A reference framework and overall planning of industrial artificial intelligence (I-AI) for new application scenarios. The International Journal of Advanced Manufacturing Technology, 101(9), 2367–2389. https://doi.org/10.1007/s00170-018-3106-3 Open Google Scholar doi.org/10.5771/9783828878167
  341. Zhou, J., Huang, B., Yan, Z., & Bünzli, J. C. G. (2019). Emerging role of machine learning in light-matter interaction. Light: Science & Applications, 8(1), 1–7. https://doi.org/10.1038/s41377-019-0192-4 Open Google Scholar doi.org/10.5771/9783828878167
  342. Zhu, J., Liapis, A., Risi, S., Bidarra, R., & Youngblood, G. M. (2018). Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation. In 2018 IEEE Conference on Computational Intelligence and Games (CIG) (pp. 1–8). IEEE. https://doi.org/10.1109/CIG.2018.8490433 Open Google Scholar doi.org/10.5771/9783828878167
  343. Zimmermann, A., Sandkuhl, K., Schmidt, R., Hertweck, D., & Rossmann, A. (2020). Evolution of smart service architectures through cognitive co-creation. In Advances in the Human Side of Service Engineering : Proceedings of the AHFE 2020 Virtual Conference on The Human Side of Service Engineering, July 16–20, 2020, USA (pp. 289–296). Cham: Springer. https://doi.org/10.1007/978-3-030-51057-2_40 Open Google Scholar doi.org/10.5771/9783828878167
  344. Zins, C. 2007. Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology, 58(4): 479–493. https://doi.org/10.1002/asi.20508 Open Google Scholar doi.org/10.5771/9783828878167
  345. Zott, C., & Amit, R. (2008). The fit between product market strategy and business model: Implications for firm performance. Strategic Management Journal, 29(1), 1–26. https://doi.org/10.1002/smj.642 Open Google Scholar doi.org/10.5771/9783828878167
  346. Zott, C., Amit, R., & Massa, L. (2011). The business model: recent developments and future research. Journal of management, 37(4), 1019–1042. https://doi.org/10.1177/0149206311406265 Open Google Scholar doi.org/10.5771/9783828878167
  347. Zott, C., Amit, R., 2010. Business model design: an activity system perspective. Long Range Planning. 43(2), 216–226. https://doi.org/10.1016/j.lrp.2009.07.004 Open Google Scholar doi.org/10.5771/9783828878167

Similar publications

from the topics "Corporate Management & Management & Organization", "Business Administration", "Economics General"
Cover of book: Projektmanagement in der Pflege
Educational Book No access
Thomas Busse, Wolfram Burkhardt
Projektmanagement in der Pflege
Cover of book: Medienmanagement
Educational Book No access
Ingo Knuth, Thomas Kilian
Medienmanagement
Cover of book: Unlocking the Potential of Sustainable Finance
Book Titles Full access
Isabelle Hinsche-McLardy
Unlocking the Potential of Sustainable Finance
Cover of book: Finance, Accounting, Controlling im Kontext von Digitaler Transformation und Nachhaltigkeit
Edited Book No access
Manuela Ender, Tim Alexander Herberger, Michael Kuttner
Finance, Accounting, Controlling im Kontext von Digitaler Transformation und Nachhaltigkeit
Cover of book: Siedlungsbausteine für bestehende Wohnquartiere
Edited Book No access
Anette von Ahsen, Jens Schneider, Stephan Rinderknecht, Dirk Schiereck
Siedlungsbausteine für bestehende Wohnquartiere