, to see if you have full access to this publication.
Book Titles Partial access

Object Detection using Feature Mining in a Distributed Machine Learning Framework

Authors:
Series:
Informatik/ Kommunikation, Volume 855
Publisher:
 2017

Keywords



Bibliographic data

Copyright year
2017
ISBN-Print
978-3-18-385510-0
ISBN-Online
978-3-18-685510-7
Publisher
VDI Verlag, Düsseldorf
Series
Informatik/ Kommunikation
Volume
855
Language
German
Pages
152
Product type
Book Titles

Table of contents

ChapterPages
  1. Titelei/Inhaltsverzeichnis Partial access Pages I - XIV Download chapter (PDF)
  2. Introduction No access Pages 1 - 15
      1. Feature Provision No access
      2. Learning Algorithms No access
    1. Data Sets and Benchmarks No access
      1. Haar-like Features No access
      2. Histograms of Oriented Gradients No access
      3. FromFeatures to Classifiers No access
      1. Adaptive Boosting No access
      2. Viola and Jones Detection Framework No access
      3. Margin Analysis No access
      4. Variants of Boosting Algorithms No access
      1. Cluster Analysis No access
      2. Principal Component Analysis No access
    1. Detector PerformanceMeasures No access
  3. Distributed Machine Learning Framework No access Pages 62 - 67
    1. Training Data Augmentation No access
      1. Experiments on Face Detection No access
      2. Experiments on Cell Data Set No access
    2. Discussion No access
      1. Fractals No access
      2. Fractal Features No access
      3. Fractal Properties No access
      4. Construction of Fractals No access
      5. Feature Types No access
      1. Face Detection No access
      2. Microscopic Cell Detection No access
      3. Training and Computing Time No access
    1. Discussion No access
    1. 2Rec Features No access
    2. Keypoint HOG Features No access
      1. Face Detection No access
      2. Lateral Car Detection No access
      3. Pedestrian Detection No access
      4. Insights into the Training Process No access
    3. Discussion No access
      1. Cascaded Classifier No access
      2. Dempster-Shafer Theory of Evidence No access
      3. Joint Confidence based on Dempster-Shafer No access
      4. Confidence-based Detection Merging No access
      1. Face Detection No access
      2. Lateral Car Detection No access
    1. Discussion No access
  4. Conclusion No access Pages 131 - 134
    1. L-System Defining Gosper Curve No access
    2. L-System Defining E-Curve No access
  5. Bibliography No access Pages 138 - 152

Similar publications

from the topics "Computer Science & Communications Technology", "IT & Computer Science General"