, um zu prüfen, ob Sie einen Vollzugriff auf diese Publikation haben.
Monographie Kein Zugriff

Deep Homography Estimation for Micro-Topographic Measurement Data

Autor:innen:
Reihe:
Berichte aus dem imr, Band 01/2024
Verlag:
 2024

Zusammenfassung

Surface characteristics can significantly impact the functionality of a component. Accurately measuring and describing these characteristics therefore plays an important role in precision engineering and manufacturing fields, such as aerospace, automotive, biomedical, and semiconductor manufacturing. Optical measurement systems face a trade-off between high lateral resolution, necessary for resolving small features, and the need for a large measuring field for comprehensive results. A common solution is stitching multiple high-resolution images to effectively create a large measuring field. However, conventional registration algorithms often require extensive overlaps between individual images, lack robustness against large image variations, are susceptible to noise, and necessitate manual parameter adjustments. This work presents a comprehensive investigation and development of image registration techniques in optical metrology, aiming to improve the registration of micro-topographic image data compared to conventional methods. A key contribution is the development and validation of a novel registration approach based on convolutional neural networks, specifically a two-stage architecture named Coarse-to-Fine Image Registration (CoFiR) Net. This method enables significant improvements over conventional registration techniques in terms of accuracy, robustness against large image variations and image noise, as well as computational speed. The development and validation of the CoFiR Net are conducted using an extensive dataset of micro-topographic measurements. This dataset comprises over 70 000 measurements with two confocal laser scanning microscopes at various magnifications, on samples involving a wide range of materials, machining methods, manufacturing processes, and different surface roughnesses. This dataset offers a valuable resource for future work in areas such as defect detection, surface classification, image super-resolution, or monocular depthestimation. Additional contributions of this work include the novel use of convolutional neural networks for the registration of non-overlapping images. In conclusion, this work makes a significant contribution to surface metrology and image processing. The improvements – increased accuracy, robustness against large image variations and noise, reduced computation time, and the elimination of manual parameter adjustment – extend the application areas and utility of image registration.

Schlagworte


Publikation durchsuchen


Bibliographische Angaben

Copyrightjahr
2024
ISBN-Print
978-3-95900-922-5
ISBN-Online
978-3-95900-922-5
Verlag
TEWISS, Garbsen
Reihe
Berichte aus dem imr
Band
01/2024
Sprache
Deutsch
Seiten
189
Produkttyp
Monographie

Inhaltsverzeichnis

KapitelSeiten
  1. Titelei/Inhaltsverzeichnis Kein Zugriff Seiten I - XX
    1. 1.1 Motivation Kein Zugriff
    2. 1.2 Related Work Kein Zugriff
    3. 1.3 Scientific Contribution Kein Zugriff
    4. 1.4 Structure of the Work Kein Zugriff
    1. 2.1 Surface Metrology Kein Zugriff
    2. 2.2 Image Registration Kein Zugriff
    3. 2.3 Machine Learning and Deep Learning Kein Zugriff
    1. 3.1 Measurement Systems Kein Zugriff
    2. 3.2 Data Acquisition and Micro-Topographies Kein Zugriff
    1. 4.1 Data Processing and Dataset Generation Kein Zugriff
    2. 4.2 Conventional Image Registration Kein Zugriff
    3. 4.3 Machine Learning-Based Image Registration Kein Zugriff
    4. 4.4 Experiments Kein Zugriff
    1. 5.1 Conventional Image Registration Kein Zugriff
    2. 5.2 Machine Learning-Based Image Registration Kein Zugriff
    3. 5.3 Coarse-to-Fine Image Registration Kein Zugriff
    4. 5.4 Computation Time Kein Zugriff
    5. 5.5 Generalizability Kein Zugriff
    1. 6.1 Conclusion Kein Zugriff
    2. 6.2 Outlook Kein Zugriff
  2. Bibliography Kein Zugriff Seiten 147 - 170
    1. A. Samples Kein Zugriff
      1. B.1 Keyence VK-X210 Kein Zugriff
      2. B.2 Keyence VK-X3000 Kein Zugriff
      1. C.1 Preliminary Assessment of Feature Detector and Descriptor Combinations Kein Zugriff
      2. C.2 Experiment 3: Batch Size and Learning Rate Kein Zugriff
  3. Curriculum Vitae Kein Zugriff Seiten 187 - 189

Ähnliche Veröffentlichungen

aus dem Schwerpunkt "Materialfluss & Fördertechnik", "Fertigungstechnik"
Cover der Ausgabe: f+h Jahrgang 75 (2025), Heft 8
Ausgabe Kein Zugriff
Fördertechnik Materialfluss Logistik 4.0
Jahrgang 75 (2025), Heft 8
Cover der Ausgabe: f+h Jahrgang 75 (2025), Heft fokus-KMU
Ausgabe Kein Zugriff
Fördertechnik Materialfluss Logistik 4.0
Jahrgang 75 (2025), Heft fokus-KMU
Cover der Ausgabe: wt Werkstattstechnik online Jahrgang 115 (2025), Heft 09
Ausgabe Vollzugriff
Forschung und Entwicklung in der Produktion
Jahrgang 115 (2025), Heft 09
Cover der Ausgabe: f+h Jahrgang 75 (2025), Heft 7
Ausgabe Kein Zugriff
Fördertechnik Materialfluss Logistik 4.0
Jahrgang 75 (2025), Heft 7
Cover der Ausgabe: wt Werkstattstechnik online Jahrgang 115 (2025), Heft 07-08
Ausgabe Vollzugriff
Forschung und Entwicklung in der Produktion
Jahrgang 115 (2025), Heft 07-08