Meinungsdynamik und -manipulation durch Social Bots
Eine Untersuchung sozialer Online-Netzwerke auf Basis eines agentenbasierten Modells- Autor:innen:
- Reihe:
- Politik begreifen, Band 28
- Verlag:
- 2022
Zusammenfassung
Wie reagieren Menschen in sozialen Online-Netzwerken auf andere Meinungen? Und wie kann online die öffentliche Meinung mithilfe von Social Bots manipuliert werden? Diese Fragen sind durch die weitgehende Verlagerung gesellschaftlicher Öffentlichkeit in digitale Räume durch die COVID-19-Pandemie von herausragender Relevanz. Ausgehend von empirischen Befunden aus psychologischen und politikwissenschaftlichen Studien und der Netzwerkforschung wird ein agentenbasiertes Modell entwickelt, um mögliche Antworten zu liefern. Dabei zeigt sich, dass eben die Faktoren, die einen mehrheitsfähigen Konsens ermöglichen, auch die Manipulation der digitalen Öffentlichkeit erleichtern können.
Schlagworte
Publikation durchsuchen
Bibliographische Angaben
- Copyrightjahr
- 2022
- ISBN-Print
- 978-3-8288-4754-5
- ISBN-Online
- 978-3-8288-7858-7
- Verlag
- Tectum, Baden-Baden
- Reihe
- Politik begreifen
- Band
- 28
- Sprache
- Deutsch
- Seiten
- 150
- Produkttyp
- Monographie
Inhaltsverzeichnis
- Titelei/Inhaltsverzeichnis Kein Zugriff Seiten I - XVIII
- 1.1 Die Digitalisierung der Öffentlichkeit Kein Zugriff
- 1.2 Zielsetzung, Forschungsfragen und Überblick Kein Zugriff
- 2 Methodologische Vorüberlegungen zur agentenbasierten Modellierung Kein Zugriff Seiten 9 - 14
- 3.1 Strukturelle Eigenschaften komplexer sozialer Netzwerke Kein Zugriff
- 3.2.1 Theoretische Verortung des Backfire-Effekts Kein Zugriff
- 3.2.2 Sozialer Einfluss und Konformität Kein Zugriff
- 3.2.3 Formale Modelle von Meinungsdynamiken und sozialem Einfluss Kein Zugriff
- 3.3 Interaktion von Menschen und Social Bots in sozialen Online-Netzwerken Kein Zugriff
- 3.4 Meinungsmanipulation durch Social Bots Kein Zugriff
- 3.5 Zusammenfassung und Beschreibung des konzeptuellen Modells Kein Zugriff
- 4.1 Echokammerhypothese und Meinungsdiversität in sozialen Online-Netzwerken Kein Zugriff
- 4.2 Simulation von Meinungsdynamiken Kein Zugriff
- 5.1 Modellwelt Kein Zugriff
- 5.2 Verhalten menschlicher Agenten Kein Zugriff
- 5.3 Verhalten von Social Bots Kein Zugriff
- ticks Kein Zugriff
- network-size Kein Zugriff
- m Kein Zugriff
- Opinion-distribution Kein Zugriff
- number-of-bots Kein Zugriff
- bot-opinion Kein Zugriff
- bot-strategy Kein Zugriff
- epsilon Kein Zugriff
- backfire-strength Kein Zugriff
- 6.2.1 Verifizierung der Modell-Implementierung Kein Zugriff
- 6.2.2 Einfluss des Toleranzparameters auf die Meinungsdynamik im Basis-Modell Kein Zugriff
- 6.2.3 Einfluss von Netzwerkdichte und Zentralität der Agenten auf die Meinungsdynamik im Basis-Modell Kein Zugriff
- 7.1 Meinungsdynamik im Backfire-Modell Kein Zugriff
- 7.2.1 Einfluss von Social Bots im Modell mit bounded confidence Kein Zugriff
- 7.2.2 Einfluss von Social Bots im Modell mit Backfire-Effekt Kein Zugriff
- 8.1 Einfluss des Backfire-Effekts auf Meinungsdynamiken in sozialen Online-Netzwerken Kein Zugriff
- 8.2 Bedingungen einer erfolgreichen Manipulation der öffentlichen Meinung in sozialen Online-Netzwerken Kein Zugriff
- 9 Limitationen Kein Zugriff Seiten 107 - 110
- 10 Zusammenfassung und Ausblick Kein Zugriff Seiten 111 - 114
- 11 Literaturverzeichnis Kein Zugriff Seiten 115 - 122
- ODD-Protokoll Kein Zugriff
- Purpose and Patterns Kein Zugriff
- Entities, State Variables, and Scales Kein Zugriff
- Process Overview and Scheduling Kein Zugriff
- Basic principles. Kein Zugriff
- Emergence. Kein Zugriff
- Adaptation. Kein Zugriff
- Sensing. Kein Zugriff
- Interaction. Kein Zugriff
- Stochasticity. Kein Zugriff
- Collectives. Kein Zugriff
- Observation. Kein Zugriff
- setup Kein Zugriff
- generate-output Kein Zugriff
- setup-humans Kein Zugriff
- initialize-human-variables Kein Zugriff
- setup-bots Kein Zugriff
- initialize-bot-variables Kein Zugriff
- layout Kein Zugriff
- Input Data Kein Zugriff
- do-motivated-reasoning Kein Zugriff
- update-output Kein Zugriff
- test-motivated-reasoning Kein Zugriff
- recolor Kein Zugriff
- Effekt von epsilon auf die Dynamik des Basis-Modells Kein Zugriff
- Effekt der Netzwerkdichte auf die Dauer der Simulation im Basis-Modell Kein Zugriff
- Effekt von Epsilon auf die Varianz der finalen Meinungsverteilung für unterschiedliche Werte von m im Basis-Modell Kein Zugriff
- Koeffizientenplots der linearen Regressionsmodelle zur Analyse des Einflusses von Social Bots Kein Zugriff
Literaturverzeichnis (105 Einträge)
Es wurden keine Treffer gefunden. Versuchen Sie einen anderen Begriff.
- Abokhodair, N., Yoo, D. & McDonald, D.W., 2015, ‘Dissecting a social botnet: Growth, content and influence in Twitter’, Proceedings of the 18th ACM conference on computer supported cooperative work & social computing, pp. 839–851. Google Scholar öffnen doi.org/10.5771/9783828878587
- Asch, S.E., 1955, ‘Opinions and Social Pressure’, Scientific American 193(5), 31–35, from http://www.jstor.org/stable/24943779. Google Scholar öffnen doi.org/10.5771/9783828878587
- Asch, S.E., 1956, ‘Studies of independence and conformity: I. A minority of one against a unanimous majority’, Psychological Monographs: General and Applied, 70(9), 1–70, Psychological Monographs: General and Applied 70(9), 1–70. Google Scholar öffnen doi.org/10.5771/9783828878587
- Bail, C.A., Argyle, L.P., Brown, T.W., Bumpus, J.P., Chen, H. & Hunzaker, M.B.F., et al., 2018, ‘Exposure to opposing views on social media can increase political polarization’, Proceedings of the National Academy of Sciences of the United States of America 115(37), 9216–9221. Google Scholar öffnen doi.org/10.5771/9783828878587
- Bakshy, E., Messing, S. & Adamic, L.A., 2015, ‘Exposure to ideologically diverse news and opinion on Facebook’, Science 348(6239), 1130–1132, from https://science.sciencemag.org/content/348/6239/1130. Google Scholar öffnen doi.org/10.5771/9783828878587
- Barabasi & Albert, 1999, ‘Emergence of scaling in random networks’, Science (New York, N.Y.) 286(5439), 509–512. Google Scholar öffnen doi.org/10.5771/9783828878587
- Barberá, P., 2014, ‘How social media reduces mass political polarization. Evidence from Germany, Spain, and the US’, Job Market Paper, New York University 46. Google Scholar öffnen doi.org/10.5771/9783828878587
- Bessi, A. & Ferrara, E., 2016, ‘Social Bots Distort the 2016 US Presidential Election Online Discussion’, First Monday 21(11). Google Scholar öffnen doi.org/10.5771/9783828878587
- Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C. & Settle, J.E., et al., 2012, ‘A 61-million-person experiment in social influence and political mobilization’, Nature 489(7415), 295–298, from https://www.nature.com/articles/nature11421. Google Scholar öffnen doi.org/10.5771/9783828878587
- Brachten, F., Stieglitz, S., Hofeditz, L., Kloppenborg, K. & Reimann, A., 2017, Strategies and Influence of Social Bots in a 2017 German state election – A case study on Twitter, from https://arxiv.org/pdf/1710.07562. Google Scholar öffnen doi.org/10.5771/9783828878587
- Cialdini, R.B. & Goldstein, N.J., 2004, ‘Social influence: compliance and conformity’, Annual review of psychology 55, 591–621. Google Scholar öffnen doi.org/10.5771/9783828878587
- Cinelli, M., Francisci Morales, G. de, Galeazzi, A., Quattrociocchi, W. & Starnini, M., 2021, ‘The echo chamber effect on social media’, Proceedings of the National Academy of Sciences of the United States of America 118(9). Google Scholar öffnen doi.org/10.5771/9783828878587
- Coleman, J.S., 1986, ‘Social Theory, Social Research, and a Theory of Action’, American Journal of Sociology 91(6), 1309–1335. Google Scholar öffnen doi.org/10.5771/9783828878587
- Conover, M., Ratkiewicz, J., Francisco, M., Goncalves, B., Menczer, F. & Flammini, A., 2011, ‘Political Polarization on Twitter’, Proceedings of the International AAAI Conference on Web and Social Media 5(1), from https://ojs.aaai.org/index.php/ICWSM/article/view/14126. Google Scholar öffnen doi.org/10.5771/9783828878587
- Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G. & Kertesz, J., et al., 2012, ‘Manifesto of computational social science’, The European Physical Journal Special Topics 214(1), 325–346. Google Scholar öffnen doi.org/10.5771/9783828878587
- Cusimano, C. & Lombrozo, T., 2021, ‘Morality justifies motivated reasoning in the folk ethics of belief’, Cognition 2021, 104513, from https://www.sciencedirect.com/science/article/pii/S0010027720303322. Google Scholar öffnen doi.org/10.5771/9783828878587
- Das, A., Gollapudi, S. & Munagala, K., 2014, ‘Modeling opinion dynamics in social networks’, in B. Carterette (ed.), Proceedings of the 7th ACM International Conference on Web Search and Data Mining: February 24 – 28, 2014, New York, NY, USA, New York, New York, USA, 2/24/2014 – 2/28/2014, pp. 403–412. Google Scholar öffnen doi.org/10.5771/9783828878587
- David, B. & Turner, J.C., 1999, ‘Studies in self-categorization and minority conversion: The in-group minority in intragroup and intergroup contexts’, British Journal of Social Psychology 38(2), 115–134, from https://bpspsychub.onlinelibrary.wiley.com/doi/10.1348/014466699164086. Google Scholar öffnen doi.org/10.5771/9783828878587
- Deffuant, G., Amblard, F., Weisbuch, G. & Faure, T., 2002, ‘How Can Extremism Prevail? A Study Based on the Relative Agreement Interaction Model’, Journal of artificial societies and social simulation 5(4), from http://jasss.soc.surrey.ac.uk/5/4/1.html. Google Scholar öffnen doi.org/10.5771/9783828878587
- Deffuant, G., Neau, D., Amblard, F. & Weisbuch, G., 2000, ‘Mixing beliefs among interacting agents’, Advances in Complex Systems 03(01n04), 87–98. Google Scholar öffnen doi.org/10.5771/9783828878587
- Degroot, M.H., 1974, ‘Reaching a Consensus’, Journal of the American Statistical Association 69(345), 118–121. Google Scholar öffnen doi.org/10.5771/9783828878587
- Deutsch, M. & Gerard, H.B., 1955, ‘A study of normative and informational social influences upon individual judgement’, Journal of abnormal psychology 51(3), 629–636. Google Scholar öffnen doi.org/10.5771/9783828878587
- Dodds, P.S., Muhamad, R. & Watts, D.J., 2003, ‘An experimental study of search in global social networks’, Science 301(5634), 827–829. Google Scholar öffnen doi.org/10.5771/9783828878587
- Dommers, S., van der Hofstad, R. & Hooghiemstra, G., 2010, ‘Diameters in Preferential Attachment Models’, Journal of Statistical Physics 139(1), 72–107. Google Scholar öffnen doi.org/10.5771/9783828878587
- Dubois, E. & Blank, G., 2018, ‘The echo chamber is overstated: the moderating effect of political interest and diverse media’, Information, Communication & Society 21(5), 729–745. Google Scholar öffnen doi.org/10.5771/9783828878587
- Edwards, C., Edwards, A., Spence, P.R. & Shelton, A.K., 2014, ‘Is that a bot running the social media feed? Testing the differences in perceptions of communication quality for a human agent and a bot agent on Twitter’, Computers in Human Behavior 33, 372–376, from http://www.sciencedirect.com/science/article/pii/S0747563213003129. Google Scholar öffnen doi.org/10.5771/9783828878587
- Effing, R., van Hillegersberg, J. & Huibers, T., 2011, ‘Social Media and Political Participation: Are Facebook, Twitter and YouTube Democratizing Our Political Systems?’, in E. Tambouris (ed.), Electronic participation: Third IFIP WG 8.5 international conference, EPart 2011, Delft, The Netherlands, August 29 – September 1, 2011; proceedings, Berlin, Heidelberg, 2011, pp. 25–35. Google Scholar öffnen doi.org/10.5771/9783828878587
- EU vs DISINFORMATION, 2021, Vilifying Germany; Wooing Germany – EU vs DISINFORMATION, viewed 10 March 2021, from https://euvsdisinfo.eu/villifying-germany-wooing-germany/. Google Scholar öffnen doi.org/10.5771/9783828878587
- Everett, R.M., Nurse, J.R.C. & Erola, A., 2016, ‘The anatomy of online deception’, in S. Ossowski (ed.), Proceedings of the 31st Annual ACM Symposium on Applied Computing – SAC '16, Pisa, Italy, 04.04.2016 – 08.04.2016, pp. 1115–1120. Google Scholar öffnen doi.org/10.5771/9783828878587
- Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A., 2016, ‘The rise of social bots’, Communications of the ACM 59(7), 96–104. Google Scholar öffnen doi.org/10.5771/9783828878587
- Festinger, L., 1962, A theory of cognitive dissonance, Stanford university press. Google Scholar öffnen doi.org/10.5771/9783828878587
- French, J. R., 1956, ‘A formal theory of social power’, Psychological review 63(3), 181–194. Google Scholar öffnen doi.org/10.5771/9783828878587
- Friedkin, N.E. & Johnsen, E.C., 1990, ‘Social influence and opinions’, The Journal of Mathematical Sociology 15(3–4), 193–206. Google Scholar öffnen doi.org/10.5771/9783828878587
- Friedkin, N.E. & Johnsen, E.С., 1999, ‘Social influence networks and opinion change’, Advances in Group Processes 16, 1–29. Google Scholar öffnen doi.org/10.5771/9783828878587
- Fu, F., Liu, L. & Wang, L., 2008, ‘Empirical analysis of online social networks in the age of Web 2.0’, Physica A: Statistical Mechanics and its Applications 387(2–3), 675–684, from http://www.sciencedirect.com/science/article/pii/S0378437107010631. Google Scholar öffnen doi.org/10.5771/9783828878587
- Gilbert, N., 2007, Agent-based models, Sage publications, Thousand Oaks. Google Scholar öffnen doi.org/10.5771/9783828878587
- Gómez-Serrano, J., Graham, C. & Le Boudec, J.-Y., 2010, The Bounded Confidence Model Of Opinion Dynamics, Cornell University, from http://arxiv.org/pdf/1006.3798v3. Google Scholar öffnen doi.org/10.5771/9783828878587
- Graebner, C., 2018, ‘How to Relate Models to Reality? An Epistemological Framework for the Validation and Verification of Computational Models’, Journal of Artificial Societies and Social Simulation 21(3). Google Scholar öffnen doi.org/10.5771/9783828878587
- Granovetter, M.S., 1973, ‘The strength of weak ties’, American Journal of Sociology 78(6), 1360–1380. Google Scholar öffnen doi.org/10.5771/9783828878587
- Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V. & Giske, J., et al., 2006, ‘A standard protocol for describing individual-based and agent-based models’, Ecological Modelling 198(1–2), 115–126. Google Scholar öffnen doi.org/10.5771/9783828878587
- Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J. & Railsback, S.F., 2010, ‘The ODD protocol: A review and first update’, Ecological Modelling 221(23), 2760–2768. Google Scholar öffnen doi.org/10.5771/9783828878587
- Habermas, J., 1982, Strukturwandel der Öffentlichkeit: Untersuchungen zu einer Kategorie der bürgerlichen Gesellschaft, Luchterhand. Google Scholar öffnen doi.org/10.5771/9783828878587
- Hagen, L.M., Au, A.-M. in der & Wieland, M., 2017, ‘Polarisierung im Social Web und der intervenierende Effekt von Bildung: eine Untersuchung zu den Folgen algorithmischer Medien am Beispiel der Zustimmung zu Merkels "Wir schaffen das!’, kommunikation @ gesellschaft 18, 1–20. Google Scholar öffnen doi.org/10.5771/9783828878587
- Haglin, K., 2017, ‘The limitations of the backfire effect’, Research & Politics 4(3), 205316801771654. Google Scholar öffnen doi.org/10.5771/9783828878587
- Hansen, P.G., Hendricks, V.F. & Rendsvig, R.K., 2013, ‘Infostorms’, Metaphilosophy 44(3), 301–326. Google Scholar öffnen doi.org/10.5771/9783828878587
- Harary, F., 1959, ‘A criterion for unanimity in French's theory of social power’, Studies in social power, pp. 168–182, Univer. Michigan, Oxford, England. Google Scholar öffnen doi.org/10.5771/9783828878587
- Hegselmann, R. & Krause, U., 2002, ‘Opinion dynamics and bounded confidence.: models, analysis, and simulation’, Journal of artificial societies and social simulation 5(3). Google Scholar öffnen doi.org/10.5771/9783828878587
- Howard, P.N. & Kollanyi, B., 2016, ‘Bots, #Strongerin, and #Brexit: Computational Propaganda During the UK-EU Referendum’, SSRN Electronic Journal 2016. Google Scholar öffnen doi.org/10.5771/9783828878587
- Jansen, D., 1999, Einführung in die Netzwerkanalyse, VS Verlag für Sozialwissenschaften. Google Scholar öffnen doi.org/10.5771/9783828878587
- Jost, J.T., Barberá, P., Bonneau, R., Langer, M., Metzger, M. & Nagler, J., et al., 2018, ‘How Social Media Facilitates Political Protest: Information, Motivation, and Social Networks’, Political Psychology 39, 85–118. Google Scholar öffnen doi.org/10.5771/9783828878587
- Kaplan, A.M. & Haenlein, M., 2010, ‘Users of the world, unite! The challenges and opportunities of Social Media’, Business Horizons 53(1), 59–68, from http://www.sciencedirect.com/science/article/pii/S0007681309001232. Google Scholar öffnen doi.org/10.5771/9783828878587
- Keuschnigg, M., 2012, ‘Konformität durch Herdenverhalten’, KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie 64(1), 1–36. Google Scholar öffnen doi.org/10.5771/9783828878587
- Klein, D., Marx, J. & Fischbach, K., 2018, ‘Agent-Based Modeling in Social Science, History, and Philosophy. An Introduction’, Historical Social Research / Historische Sozialforschung 43(1 (163)), 7–27, from http://www.jstor.org/stable/26395042. Google Scholar öffnen doi.org/10.5771/9783828878587
- Knobloch-Westerwick, S., 2007, ‘Kognitive Dissonanz »Revisited«’, Publizistik 52(1), 51–62. Google Scholar öffnen doi.org/10.5771/9783828878587
- Kollanyi, B., Howard, P.N. & Woolley, S.C., 2016, ‘Bots and automation over Twitter during the first US presidential debate’, Comprop data memo 1, 1–4. Google Scholar öffnen doi.org/10.5771/9783828878587
- Kunda, Z., 1990, ‘The case for motivated reasoning’, Psychological bulletin 108(3), 480–498. Google Scholar öffnen doi.org/10.5771/9783828878587
- Lee, J.K., Choi, J., Kim, C. & Kim, Y., 2014, ‘Social Media, Network Heterogeneity, and Opinion Polarization’, Journal of Communication 64(4), 702–722. Google Scholar öffnen doi.org/10.5771/9783828878587
- Lischka, K. & Stöcker, C., 2017, Digitale Öffentlichkeit. Google Scholar öffnen doi.org/10.5771/9783828878587
- Loader, B.D., Vromen, A. & Xenos, M.A., 2014, ‘The networked young citizen: social media, political participation and civic engagement’, Information, Communication & Society 17(2), 143–150. Google Scholar öffnen doi.org/10.5771/9783828878587
- Lorenz, J., 2007, ‘Continous Opinion Dynamics Under Bounded Confidence: A Survey’, International Journal of Modern Physics C 18(12), 1819–1838. Google Scholar öffnen doi.org/10.5771/9783828878587
- Macy, M.W. & Willer, R., 2002, ‘From Factors to Actors: Computational Sociology and Agent-Based Modeling’, Annual Review of Sociology 28(1), 143–166. Google Scholar öffnen doi.org/10.5771/9783828878587
- Mallinson, D.J. & Hatemi, P.K., 2018, ‘The effects of information and social conformity on opinion change’, PLOS ONE 13(5), e0196600, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196600. Google Scholar öffnen doi.org/10.5771/9783828878587
- Matakos, A., Terzi, E. & Tsaparas, P., 2017, ‘Measuring and moderating opinion polarization in social networks’, Data Mining and Knowledge Discovery 31(5), 1480–1505, from https://link.springer.com/article/10.1007/s10618-017-0527-9. Google Scholar öffnen doi.org/10.5771/9783828878587
- McPherson, M., Smith-Lovin, L. & Cook, J.M., 2001, ‘Birds of a Feather: Homophily in Social Networks’, Annual Review of Sociology 27(1), 415–444. Google Scholar öffnen doi.org/10.5771/9783828878587
- Milgram, S., 1967, ‘The small world problem’, Psychology today 2(1), 60–67. Google Scholar öffnen doi.org/10.5771/9783828878587
- Miller, B., 2016, ‘Three and a half degrees of separation’, Facebook Research, 4 February, viewed 22 March 2021, from https://research.fb.com/three-and-a-half-degrees-of-separation/. Google Scholar öffnen doi.org/10.5771/9783828878587
- Moscovici, S. & Faucheux, C., 2000, ‘Social Influence, Conformity Bias, and the Study of Active Minorities’, in L. Berkowitz (ed.), Advances in experimental social psychology, vol. 6, pp. 149–202, Elsevier, Amsterdam, Heidelberg, from https://www.sciencedirect.com/science/article/pii/S0065260108600271. Google Scholar öffnen doi.org/10.5771/9783828878587
- Murthy, D., Powell, A.B., Tinati, R., Anstead, N., Carr, L. & Halford, S.J., et al., 2016, ‘Automation, Algorithms, and Politics| Bots and Political Influence: A Sociotechnical Investigation of Social Network Capital’, International Journal of Communication 10(0), 20. Google Scholar öffnen doi.org/10.5771/9783828878587
- Myers, D.G. & Lamm, H., 1975, ‘The Polarizing Effect of Group Discussion: The discovery that discussion tends to enhance the average prediscussion tendency has stimulated new insights about the nature of group influence’, American Scientist 63(3), 297–303, from www.jstor.org/stable/27845465. Google Scholar öffnen doi.org/10.5771/9783828878587
- Neubaum, G., Rösner, L., Ganster, T., Hambach, K. & Krämer, N.C., 2018, ‘United in the name of justice: How conformity processes in social media may influence online vigilantism’, Psychology of Popular Media Culture 7(2), 185–199. Google Scholar öffnen doi.org/10.5771/9783828878587
- Newman, N., Fletcher, R., Schulz, A., Simge, A. & Nielsen, R.K., 2020, Digital News Report 2020. Google Scholar öffnen doi.org/10.5771/9783828878587
- Nickerson, R.S., 1998, ‘Confirmation Bias: A Ubiquitous Phenomenon in Many Guises’, Review of General Psychology 2(2), 175–220. Google Scholar öffnen doi.org/10.5771/9783828878587
- Noelle-Neumann, E., 1974, ‘The Spiral of Silence a Theory of Public Opinion’, Journal of Communication 24(2), 43–51. Google Scholar öffnen doi.org/10.5771/9783828878587
- Nyhan, B. & Reifler, J., 2010, ‘When Corrections Fail: The Persistence of Political Misperceptions’, Political Behavior 32(2), 303–330. Google Scholar öffnen doi.org/10.5771/9783828878587
- Nyhan, B. & Reifler, J., 2015, ‘Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information’, Vaccine 33(3), 459–464. Google Scholar öffnen doi.org/10.5771/9783828878587
- O’Connor, C. & Weatherall, J.O., 2018, ‘Scientific polarization’, European Journal for Philosophy of Science 8(3), 855–875. Google Scholar öffnen doi.org/10.5771/9783828878587
- O'Connor, C. & Weatherall, J.O., 2019, The misinformation age: How false beliefs spread, Yale university press, New Haven, Conn., London. Google Scholar öffnen doi.org/10.5771/9783828878587
- Pariser, E., 2011, The filter bubble: What the internet is hiding from you, The Penguin Press, New York. Google Scholar öffnen doi.org/10.5771/9783828878587
- Postmes, T., Spears, R., Sakhel, K. & Groot, D. de, 2001, ‘Social Influence in Computer-Mediated Communication: The Effects of Anonymity on Group Behavior’, Personality and Social Psychology Bulletin 27(10), 1243–1254. Google Scholar öffnen doi.org/10.5771/9783828878587
- Railsback, S.F. & Grimm, V., 2019, Agent-based and individual-based modeling: A practical introduction, 2nd edn., Princeton University Press, Princeton, NJ. Google Scholar öffnen doi.org/10.5771/9783828878587
- Ratkiewicz, J., Conover, M.D., Meiss, M., Gonçalves, B., Flammini, A. & Menczer, F.M., 2011, ‘Detecting and tracking political abuse in social media’, Fifth international AAAI conference on weblogs and social media, pp. 297–304. Google Scholar öffnen doi.org/10.5771/9783828878587
- Rau, J.P. & Stier, S., 2019, ‘Die Echokammer-Hypothese: Fragmentierung der Öffentlichkeit und politische Polarisierung durch digitale Medien?’, Zeitschrift für Vergleichende Politikwissenschaft 13(3), 399–417. Google Scholar öffnen doi.org/10.5771/9783828878587
- Reeves, B. & Nass, C.I., 1996, The media equation: How people treat computers, television, and new media like real people and places, Cambridge university press. Google Scholar öffnen doi.org/10.5771/9783828878587
- Rosenstock, S., Bruner, J. & O’Connor, C., 2017, ‘In Epistemic Networks, Is Less Really More?’, Philosophy of Science 84(2), 234–252. Google Scholar öffnen doi.org/10.5771/9783828878587
- Ross, B., Pilz, L., Cabrera, B., Brachten, F., Neubaum, G. & Stieglitz, S., 2019, ‘Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks’, European Journal of Information Systems 28(4), 394–412. Google Scholar öffnen doi.org/10.5771/9783828878587
- Scheller, S., 2019, ‘The Strategic Use of Fear Appeals in Political Communication’, Political Communication 36(4), 586–608. Google Scholar öffnen doi.org/10.5771/9783828878587
- Schweiger, W., Weber, P., Prochazka, F. & Brückner, L., 2019, Algorithmisch personalisierte Nachrichtenkanäle: Begriffe, Nutzung, WIrkung, Springer VS, Wiesbaden. Google Scholar öffnen doi.org/10.5771/9783828878587
- Sherif, M., 1936, ‘The psychology of social norms’ 1936. Google Scholar öffnen doi.org/10.5771/9783828878587
- Sola Pool, I. de & Kochen, M., 1978, ‘Contacts and influence’, Social Networks 1(1), 5–51, from https://www.sciencedirect.com/science/article/pii/0378873378900114. Google Scholar öffnen doi.org/10.5771/9783828878587
- Stella, M., Ferrara, E. & Domenico, M. de, 2018, ‘Bots increase exposure to negative and inflammatory content in online social systems’, Proceedings of the National Academy of Sciences of the United States of America 115(49), 12435–12440. Google Scholar öffnen doi.org/10.5771/9783828878587
- Suárez-Serrato, P., Roberts, M.E., Davis, C. & Menczer, F., 2016, ‘On the Influence of Social Bots in Online Protests’, in E. Spiro (ed.), Social informatics: 8th International Conference, SocInfo 2016, Bellevue, WA, USA, November 11–14, 2016 proceedings, part II, Cham, 2016, pp. 269–278. Google Scholar öffnen doi.org/10.5771/9783828878587
- Sunstein, C.R., 2001, Echo chambers: Bush v. Gore, impeachment, and beyond, Princeton University Press, Princeton, N.J. Google Scholar öffnen doi.org/10.5771/9783828878587
- Taber, C.S. & Lodge, M., 2006, ‘Motivated Skepticism in the Evaluation of Political Beliefs’, American Journal of Political Science 50(3), 755–769. Google Scholar öffnen doi.org/10.5771/9783828878587
- Travers, J. & Milgram, S., 1969, ‘An Experimental Study of the Small World Problem’, Sociometry 32(4), 425. Google Scholar öffnen doi.org/10.5771/9783828878587
- Ugander, J., Karrer, B., Backstrom, L. & Marlow, C., 2011, The Anatomy of the Facebook Social Graph, from https://arxiv.org/pdf/1111.4503. Google Scholar öffnen doi.org/10.5771/9783828878587
- Wason, P.C., 1968, ‘Reasoning about a rule’, Quarterly Journal of Experimental Psychology 20(3), 273–281. Google Scholar öffnen doi.org/10.5771/9783828878587
- Watts, D.J. & Strogatz, S.H., 1998, ‘Collective dynamics of 'small-world' networks’, Nature 393(6684), 440–442. Google Scholar öffnen doi.org/10.5771/9783828878587
- Weisbuch, G., 2004, ‘Bounded confidence and social networks’, The European Physical Journal B – Condensed Matter 38(2), 339–343. Google Scholar öffnen doi.org/10.5771/9783828878587
- Weisbuch, G., Deffuant, G., Amblard, F. & Nadal, J.-P., 2003, ‘Interacting Agents and Continuous Opinions Dynamics’, in N. Jonard and R. Cowan (eds.), Heterogenous agents, interactions and economic performance, vol. 521, pp. 225–242, Springer, Berlin. Google Scholar öffnen doi.org/10.5771/9783828878587
- Wells, C., Reedy, J., Gastil, J. & Lee, C., 2009, ‘Information Distortion and Voting Choices: The Origins and Effects of Factual Beliefs in Initiative Elections’, Political Psychology 30(6), 953–969. Google Scholar öffnen doi.org/10.5771/9783828878587
- Wilensky, U., 1999, NetLogo, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL., from http://ccl.northwestern.edu/netlogo/. Google Scholar öffnen doi.org/10.5771/9783828878587
- Wood, T. & Porter, E., 2019, ‘The Elusive Backfire Effect: Mass Attitudes’ Steadfast Factual Adherence’, Political Behavior 41(1), 135–163. Google Scholar öffnen doi.org/10.5771/9783828878587
- Woolley, S.C., 2016, ‘Automating power: Social bot interference in global politics’, First Monday 2016. Google Scholar öffnen doi.org/10.5771/9783828878587
- Xia, H., Wang, H. & Xuan, Z., 2011, ‘Opinion Dynamics: A Multidisciplinary Review and Perspective on Future Research’, International Journal of Knowledge and Systems Science 2(4), 72–91. Google Scholar öffnen doi.org/10.5771/9783828878587
- Zollman, K.J., 2012, ‘Social network structure and the achievement of consensus’, Politics, Philosophy & Economics 11(1), 26–44. Google Scholar öffnen doi.org/10.5771/9783828878587





