Klimapositive Landwirtschaft
Mehr Wohlstand durch naturbasierte Lösungen- Herausgeber:innen:
- | |
- Verlag:
- 2021
Zusammenfassung
Dieses Buch beleuchtet die wichtige Rolle der naturbasierten Lösungen bei der Erreichung der weltweiten Energie-, Entwicklungs- und Klimaziele durch eine Transformation der Land- und Forstwirtschaft. Sie sind der heute einzige verfügbare, in großem Umfang nutzbare und bezahlbare Mechanismus, um CO2 wieder aus der Atmosphäre herauszuholen (Negativemissionen). Der beschriebene Ansatz erlaubt Afrika, Indien und anderen Schwellenländern dem Entwicklungsweg Chinas zu folgen – und dies ohne negative Klimawirkung. Die Überlegungen der AutorInnen aus dem Umfeld des Senats der Wirtschaft und seiner Stiftung sind teilweise auch in enger Abstimmung mit dem Bundesministerium für Entwicklung und wirtschaftliche Zusammenarbeit entstanden. Mit Beiträgen vonHarry Assenmacher, Dirk Walterspacher; Dr. Christoph Brüssel; Azadeh Farajpour; Felix Finkbeiner; Prof. Dr. Franz-Theo Gottwald; Siegfried Griese; Prof. Estelle Herlyn; Dr. Anita Idel; Bundesminister Dr. Gerd Müller; Jan Plagge; Prof. Dr. Franz-Josef Radermacher; Martin Seitle, Martin Wild und Holger Stromberg.
Schlagworte
Publikation durchsuchen
Bibliographische Angaben
- Copyrightjahr
- 2021
- ISBN-Print
- 978-3-8288-4678-4
- ISBN-Online
- 978-3-8288-7760-3
- Verlag
- Tectum, Baden-Baden
- Sprache
- Deutsch
- Seiten
- 236
- Produkttyp
- Sammelband
Inhaltsverzeichnis
- Titelei/Inhaltsverzeichnis Kein Zugriff Seiten I - XIV
- Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- 1 Klimapositive Land- und Forstwirtschaft funktioniert Kein Zugriff Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- 2 Zum Buch – ein Überblick Kein Zugriff Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- 3 Und die Politik? Kein Zugriff Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- Dank Kein Zugriff Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- Literaturverzeichnis Kein Zugriff Franz-Theo Gottwald, Franz Josef Radermacher, Jan Plagge
- 1 Einführung Kein Zugriff
- 2 Mangelnde Finanzierung Kein Zugriff
- 3 Aktivitäten von Unternehmen Kein Zugriff
- 4 Wald Kein Zugriff
- 5 Landwirtschaft und Böden Kein Zugriff
- 6 Ausblick Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Eine Welt in Wohlstand ist möglich Kein Zugriff
- 2 Was ist zu tun? Kein Zugriff
- 3 Carl von Carlowitz und die große Transformation Kein Zugriff
- 4 Ist Dekarbonisierung die Lösung? Kein Zugriff
- 5 Das Referenzszenario: Methanolökonomie Kein Zugriff
- 6 Die Ankersubstanz Methanol Kein Zugriff
- 7 Warum erfolgt eine vierfache Recyclierung des Kohlenstoffs? Kein Zugriff
- 8 Die biologische Seite/naturbasierte Lösungen Kein Zugriff
- 9 Europa und Afrika können allein vorangehen Kein Zugriff
- 10 Jüngste Entwicklungen zum Thema Kein Zugriff
- Danksagung Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Bedeutung von Humus für die landwirtschaftliche Produktion Kein Zugriff
- 2 Politische und gesellschaftliche Hebelpunkte Kein Zugriff
- 3 Verursacht und betroffen – Wie Humus zum Politikum wurde Kein Zugriff
- 4 Umweltleistungen honorieren – Wie Humus zur Ware wird Kein Zugriff
- 5 Wie ein Kostendeckungsbeitrag von bäuerlicher Leistung ermittelt werden kann Kein Zugriff
- 6 Der politische Förderrahmen Kein Zugriff
- 7 Schlussfolgerungen Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Einleitung Kein Zugriff
- 2 Was ist zu tun? Kein Zugriff
- 3 Umfangreiche Beiträge zu den Sustainable Development Goals (SDGs) Kein Zugriff
- i. Auf Betriebs- bzw. Farmebene Kein Zugriff
- ii. Auf Projektebene Kein Zugriff
- iii. Auf Landes- und nationalstaatlicher Ebene Kein Zugriff
- iv. Auf globaler Ebene Kein Zugriff
- 4.2 Ableitung befördernder Faktoren für die Projektumsetzung Kein Zugriff
- 4.3 Zusätzliche Empfehlungen für das Projekt-Setup Kein Zugriff
- 4.4 Empfehlungen für in Projektentwicklung, Politik und Praxis Tätige Kein Zugriff
- 5 Möglichkeit für eine schnelle Hochskalierung Kein Zugriff
- 5.1 Mindest-CO2-Bindung bei Wald Kein Zugriff
- 5.2 Mindest-CO2-Bindung bei Land- und Humuswirtschaft Kein Zugriff
- 6 Schlussfolgerung Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Dauergrünland – ein auch für die Menschheitsentwicklung entscheidendes Ökosystem Kein Zugriff
- 2 Die Agrarindustrie verdient vorrangig am Ackerbau Kein Zugriff
- 3.1 Die Steppengenese der Kornkammern Kein Zugriff
- 3.2 Gräser brauchen den Biss Kein Zugriff
- 3.3 Mangel an Daten Kein Zugriff
- 3.4 Mehr Kohlenstoff in Grünland- als in Wald-Ökosystemen Kein Zugriff
- 3.5 Gräser / Dauergrasland und Bäume / Wald im Vergleich Kein Zugriff
- 4.1 Irreführende Blickwinkel Kein Zugriff
- 4.2 Zur häufigen Beschränkung auf Emissionen (statt Bilanz aus Emissionen und Sequestrierung) Kein Zugriff
- 4.3 Zur mangelhaften Erhebung bzw. Zuordnung von Daten Kein Zugriff
- 4.4 Zur Nichtberücksichtigung des Dauergrünlandes in der Bodenforschung Kein Zugriff
- 4.5 Zur problematischen Berücksichtigung des Dauergrünlandes in der Bodenforschung Kein Zugriff
- 5.1 …Rinder sind schlechte Futterverwerter und deshalb nicht effizient Kein Zugriff
- 5.2 …Rinder sind Klimakiller Kein Zugriff
- 5.3 …Rinder verbrauchen viel Fläche und sind deshalb nicht effizient Kein Zugriff
- 6 Ausblick Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Der Organic Garden als Konzeptbeispiel für eine sinnvolle und effiziente Kreislaufwirtschaft in den Bereichen Lebensmittel, Bodenkultur und Energie Kein Zugriff
- 2 Unser Kompass für eine lebenswerte Zukunft: ein klares Bekenntnis zur Nachhaltigkeit Kein Zugriff
- 3.1 Regionaler Umwelt- und Klimaschutz Kein Zugriff
- 3.2 Ernährungssicherheit und Gesundheit Kein Zugriff
- 3.3 Energieeffizienz und Ressourcenschonung Kein Zugriff
- 3.4 Nachhaltiger Konsum und hochwertige Bildung Kein Zugriff
- 3.5 Wirtschaftswachstum und Gemeinwohl Kein Zugriff
- 4 Für eine intakte Umwelt und eine gesunde Wirtschaft Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Notwendigkeit für Carbon-Standards Kein Zugriff
- 2 Was prüfen, überwachen und leiten Carbon-Standards bei naturbasierten Klimaschutzprojekten? Kein Zugriff
- 3 Welche Carbon-Standards für naturbasierte Projekte im freiwilligen Markt gibt es? Kein Zugriff
- 4 Unser Anliegen Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Bäume pflanzen gibt Hoffnung und verbindet Generationen Kein Zugriff
- 2 Bäume pflanzen mobilisiert Kinder und Jugendliche Kein Zugriff
- 3 Plant-for-the-Planet setzt Ziele Kein Zugriff
- 4 Von der Milliarde zur Billion – from Billion to Trillion Kein Zugriff
- 5 Plant-for-the-Planet stärkt die Wissenschaft Kein Zugriff
- 6 Stop talking. Start planting. Kein Zugriff
- 7 Plant-for-the-Planet ist eine offene Plattform Kein Zugriff
- 8 Wir starten eigene Wiederaufforstung Kein Zugriff
- 9 Wir fördern Transparenz Kein Zugriff
- 10 Wir starten eine eigene Forschungsstation in Mexiko Kein Zugriff
- 11 Kohlenstoff in Baum und Boden – Investition in unsere Zukunft Kein Zugriff
- 12 Wiederaufforstung und Waldschutz muss Spaß machen Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1 Ökonomische Theorie und Wirklichkeit Kein Zugriff
- 2 Mit Bäumen ganze Regionen verwüsten Kein Zugriff
- 3 Wald machen heißt Werte schaffen Kein Zugriff
- 4 Das kann man doch reparieren Kein Zugriff
- 5 ‚Never miss a good crisis‘ Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- 1.1 Zivilgesellschaft und Verbände Kein Zugriff
- 1.2 Lebensmittelkonzerne und Einzelhandel Kein Zugriff
- 1.3 Verbraucherinnen und Verbraucher Kein Zugriff
- 2.1 Zivilgesellschaft und Verbände Kein Zugriff
- 2.2 Lebensmittelkonzerne und Einzelhandel Kein Zugriff
- 2.3 Verbraucherinnen und Verbraucher Kein Zugriff
- 3 Europäische und nationale Politik zum Klimaschutz in der Landwirtschaft Kein Zugriff
- 4.1 Deutschland Kein Zugriff
- 4.2 Europäische Union Kein Zugriff
- 5.1 Neue GAP-Regelungen ab 2022 Kein Zugriff
- 5.2 Europäischer Green Deal Kein Zugriff
- 6 Zur Weiterentwicklung der Landnutzung Kein Zugriff
- Literaturverzeichnis Kein Zugriff
- Danksagung Kein Zugriff
- Die Autorinnen und Autoren Kein Zugriff Seiten 229 - 236
Literaturverzeichnis (296 Einträge)
Es wurden keine Treffer gefunden. Versuchen Sie einen anderen Begriff.
- Klimapositive Landwirtschaft und andere naturbasierte Lösungen – eine Einführung | Franz-Theo Gottwald, Franz Josef Radermacher und Jan Plagge Google Scholar öffnen
- 4 per 1000 (o.J.): Homepage. www.4p1000.org (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- BMZ (Allianz für Entwicklung und Klima des Bundesministeriums für Zusammenarbeit) (o.J.): Homepage. www.allianz-entwicklung-klima.de (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- Edenhofer, Ottmar & Flachsland, Christian (2018): Eckpunkte einer CO2-Preisreform für Deutschland. Potsdam. https://www.pik-potsdam.de/en/news/latest-news/archive/files/eckpunkte-einer-co2-preisreform-fur-deutschland (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- Forsa Politik- und Sozialforschung GmbH (2019): Zukünftige Ausrichtung der deutschen und europäischen Agrarpolitik: Eine Befragung von Landwirten in Deutschland. Berlin 09.04.2019, S. 12 https://www.nabu.de/imperia/md/content/nabude/landwirtschaft/agrarreform/190412-forsa-umfrage-landwirtschaft.pdf (letzter Aufruf: 07.05.2019). Google Scholar öffnen
- Herren, Hans R. et al. (2020): Transformation of our food systems. The making of a paradigm shift. Zukunftsstiftung Landwirtschaft und Biovision. Google Scholar öffnen
- INKOTA-netzwerk e.V. (Hrsg.) (2019): Agrarökologie stärken: Für eine grundlegende Transformation der Agrar- und Ernährungssysteme. Berlin. https://www.worldfuturecouncil.org/wp-content/uploads/2019/02/190118_Positionspapier_Agrar%C3%B6kologie_st%C3%A4rken.pdf (letzter Aufruf: 8.5.2019).eng Google Scholar öffnen
- terraton (o.J.): Homepage. www.terraton.indigoag.com (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- von Weizsäcker, E.-U. & Wijkman, A. (2017): Come On! Capitalism, Short-termism, Population and the Destruction of the planet, New York: Springer. Google Scholar öffnen
- Weltagrarbericht (o.J.): Homepage. https://www.weltagrarbericht.de/fileadmin/files/weltagrarbericht/EnglishBrochure/BrochureIAASTD_en_web_small.pdf Google Scholar öffnen
- Naturbasierte Lösungen – aktuelle Herausforderungen und zukünftige Potenziale | Estelle Herlyn Google Scholar öffnen
- Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I. et al. (2020): Towards a global-scale soil climate mitigation strategy. In: Nature Communications 11, Artikelnr. 5427. https://doi.org/10.1038/s41467-020-18887-7 (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- Barber, C.V., Petersen, R., Young, V., Mackey, B. & Kormos, C. (2020): The Nexus Report: Nature Based Solutions to the Biodiversity and Climate Crisis. F20 Foundations, Campaign for Nature. https://www.foundations-20.org/wp-content/uploads/2020/11/The-Nexus-Report.pdf (letzter Aufruf: 4.1.2021). Google Scholar öffnen
- ClimatePartner (2021): Hydropower for the habitat of mountain gorillas. https://www.climatepartner.com/en/carbon-offset-projects/hydropower-virunga-dr-congo (letzter Aufruf: 30.1.2021). Google Scholar öffnen
- Frick, M. (2019): The Power of Soil, Interview bei der COP25 in Madrid. https://www.youtube.com/watch?v=xWK59zT6YHE (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- Fuss, S., Golub, A. & Lubowski, R. (2021): The economic value of tropical forests in meeting global climate stabilization goals. In: Global Sustainability 4. https://doi.org/10.1017/sus.2020.34. Google Scholar öffnen
- Guterres, A. (2021): Rede anlässlich des One Planet Summit am 11. Januar in Paris. https://www.un.org/sg/en/content/sg/speeches/2021-01-11/remarks-one-planet-summit (letzter Aufruf: 21.1.2021). Google Scholar öffnen
- Herlyn, E. (2019): Die Agenda 2030 als systemische Herausforderung – Zielkonflikte und weitere Umsetzungsherausforderungen. In: Herlyn, E. & Lévy-Tödter, M. (Hrsg.), Die Agenda 2030 als Magisches Vieleck der Nachhaltigkeit (S. 43–58). Wiesbaden: Springer Gabler. Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2018): IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press. Google Scholar öffnen
- Kühne + Nagel (2021): Net Zero Carbon – Our commitment to sustainability in logistics. https://home.kuehne-nagel.com/documents/20124/72221/company-csr-environment-Carbon-Offsetting-Flyer.pdf (letzter Aufruf: 29.1.2021). Google Scholar öffnen
- McKinsey (2020): How the voluntary carbon market can help address climate change. https://www.mckinsey.com/business-functions/sustainability/our-insights/how-the-voluntary-carbon-market-can-help-address-climate-change# (letzter Aufruf: 21.1.2021). Google Scholar öffnen
- McKinsey (2021): Consultation: Nature and Net Zero. http://www3.weforum.org/docs/WEF_Consultation_Nature_and_Net_Zero_2021.pdf (letzter Aufruf: 28.1.2021). Google Scholar öffnen
- Miller, D., Mansourian, S. & Wildburger, C. (Hrsg.) (2020): Forests, Trees and the Eradication of Poverty: Potential and Limitations. A Global Assessment Report. IUFRO World Series 39. Vienna. https://www.iufro.org/fileadmin/material/publications/iufro-series/ws39/ws39.pdf (letzter Aufruf: 25.10.2020). Google Scholar öffnen
- myclimate (2021): Efficient Cook Stoves save Habitat for the last of the Mountain Gorillas. https://www.myclimate.org/information/carbon-offset-projects/detail-carbon-offset-projects/rwanda-efficient-cook-stoves-7213/ (letzter Aufruf: 30.1.2021). Google Scholar öffnen
- Nestlé (2020): Accelerate, Transform, Regenerate: Nestlé’s Net Zero Roadmap. https://www.nestle.com/sites/default/files/2020-12/nestle-net-zero-roadmap-en.pdf (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- OECD/UNCDF (2020): Blended Finance in the Least Developed Countries 2020: Supporting a Resilient COVID-19 Recovery. Paris: OECD Publishing. https://doi.org/10.1787/57620d04-en. Google Scholar öffnen
- Radermacher, F. J. (2018): Der Milliardenjoker – Freiwillige Klimaneutralität und das 2°C-Ziel. Hamburg: Murmann. Google Scholar öffnen
- Radermacher, F. J. (2020): Das Rio/Kyoto/Paris-Dilemma. In: Kursbuch 202 Donner. Wetter. Klima. Hamburg: Kursbuch Kulturstiftung gGmbH. Google Scholar öffnen
- Raupp, J. (2020): Baum für Baum. In: Süddeutsche Zeitung vom 7./8. November 2020. https://projekte.sueddeutsche.de/artikel/wirtschaft/baum-fuer-baum-e161364/ (letzter Aufruf: 30.1.2021). Google Scholar öffnen
- Schmidt, M. (2010): Niebel erteilt Ecuador eine Absage. In: Der Tagesspiegel vom 16.9.2010. https://www.tagesspiegel.de/politik/entwicklungshilfe-niebel-erteilt-ecuador-eine-absage/1935452.html (letzter Aufruf: 7.2.2021). Google Scholar öffnen
- Smith, P., Adams, J., Beerling, D., Beringer, T., Calvin, K., Fuss, S., Griscom, B., Hagemann, N., Kamman, C., Kraxner, F., Minx, J., Popp, A., Renforth, P., Vicente, J. & Keesstra, S. (2019): Impacts of Land-Based Greenhouse Gas Removal Options on Ecoystem Services and the United Nations Sustainable Development Goals. In: Annual Review of Environment and Resources. https://doi.org/10.1146/annurev-environ-101718-033129. Google Scholar öffnen
- Statista (2021): Rodung im Amazonasbecken nimmt wieder zu. https://de.statista.com/infografik/23935/abgeholzte-waldflaeche-im-amazonasgebiet/ (abgerufen am 21.1.2021). Google Scholar öffnen
- TFSVCM (Task Force on Scaling Voluntary Carbon Markets) (2020): About Us. https://www.iif.com/tsvcm/ (letzter Aufruf: 21.1.2021). Google Scholar öffnen
- TFSVCM (Task Force on Scaling Voluntary Carbon Markets) (2021): Final Report. https://www.iif.com/Portals/1/Files/TSVCM_Report.pdf (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- TUM (Technische Universität München) (2019): Pressemitteilung: Prof. Ingrid Kögel-Knabner für Pionier-Arbeit im Umweltschutz ausgezeichnet – Deutscher Umweltpreis für Bodenforscherin. https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35685/ (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- UNEP (United Nations Environment Programme) (2021): Adaptation Gap Report 2020. https://www.unenvironment.org/resources/adaptation-gap-report-2020 (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- Varney, R.M., Chadburn, S.E., Friedlingstein, P. et al. (2020): A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat Commun 11, 5544 (2020). https://doi.org/10.1038/s41467-020-19208-8 (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- VELUX (2021): It’s our nature. https://www.velux.com/what-we-do/sustainability/sustainability-strategy (letzter Aufruf: 29.1.2021). Google Scholar öffnen
- Verra (2020a): VM0042 Methodology for Improved Agricultural Land Management, v1.0. https://verra.org/methodology/vm0042-methodology-for-improved-agricultural-land-management-v1-0/ (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- Verra (2020b): Verra to Undertake Development of a VCS Biochar Methodology to Unlock its Potential to Mitigate Climate Change. https://verra.org/request-for-proposals-development-of-a-vcs-biochar-methodology/ (letzter Aufruf: 31.1.2021). Google Scholar öffnen
- WBCSD (World Business Council for Sustainable Development) (2020a): Accelerating business solutions for climate and nature – Report I: Mapping nature-based solutions and natural climate solutions. https://www.wbcsd.org/Programs/Food-and-Nature/Nature/Nature-Action/Resources/Accelerating-business-solutions-for-climate-and-nature-Report-I-Mapping-nature-based-solutions-and-natural-climate-solutions (letzter Aufruf: 4.1.2020). Google Scholar öffnen
- WBCSD (World Business Council for Sustainable Development) (2020b): COVID-19: A Dashboard to Rebuild with Nature. https://www.wbcsd.org/Programs/Food-and-Nature/Resources/COVID-19-a-dashboard-to-rebuild-with-nature (letzter Aufruf: 4.1.2021). Google Scholar öffnen
- WEF (World Economic Forum) (2020): A 10-year plan to save the world’s soil. https://www.weforum.org/agenda/2020/12/a-10-year-plan-to-save-our-soil/ (letzter Aufruf: 4.1.2021). Google Scholar öffnen
- WWF (World Wildlife Fund) (2013): The Economic Value of Virunga National Park. https://awsassets.panda.org/downloads/the_economic_value_of_virunga_national_park_lr_2.pdf (letzter Aufruf: 30.1.2021). Google Scholar öffnen
- Naturbasierte Lösungen – ein zentraler Baustein zur Lösung der internationalen Energie- und Klimakrise | Franz Josef Radermacher Google Scholar öffnen
- 4 per 1000 (o.J.): Homepage. www.4p1000.org (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- BDBe, DVFG, MEW, MVaK, MWV, UFOP, UNITI und VDB Verbände (2019): Allianz für grüne Kraftstoffe: Klimaziele im Verkehr sind nur mit CO2-armen Kraftstoffen zu erreichen. Berlin, 03.04.2019. Google Scholar öffnen
- Bertau, M., Offermanns, H., Plass, L. & Wernicke, H.-J. (Hrsg.) (2014): Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger’s Vision Today. Berlin/Heidelberg: Springer. Google Scholar öffnen
- Club of Rome & Senat der Wirtschaft (2017): Migration, Nachhaltigkeit und ein Marshall-Plan mit Afrika. Denkschrift für die Bundesregierung. Sonderausgabe SENATE. http://wp5.senat-deutschland.de/wp-content/uploads/2019/11/Denkschrift_Marshallplan_mit_Afrika_Materialband.pdf (letzter Aufruf: 14.6.2021). Google Scholar öffnen
- Crowther, T.W. et al. (2015): Mapping tree density at a global scale. Nature 525, S. 201–205. Google Scholar öffnen
- Crowther, T.W. et al. (2017): Predicting Global Forest Reforestation Potential. bioRxive. doi:https://doi.org/10.1101/210062. Google Scholar öffnen
- European Biochar Certificate (o.J.): Homepage. www.european-biochar.org (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- Finkbeiner, F. & Plant-for-the-Planet (2019): Wunderpflanze gegen Klimakrise entdeckt: Der Baum!: Warum wir für unser Überleben pflanzen müssen! Komplett Media GmbH, 1. Auflage. Google Scholar öffnen
- Gabriel, S., Radermacher, F.J. & Rüttgers, J. (2019): Europa fit machen für die Zukunft – Ein Beitrag zur Europawahl. Ultrakurzvariante. Senat der Wirtschaft Deutschland und Senate of Economy Europe, März, Berlin. Google Scholar öffnen
- Herlyn, E. & Lévy-Tödter, M. (2019): Die Agenda 2030 als ‚Magisches Vieleck‘ der Nachhaltigkeit: Systemische Perspektiven. Wiesbaden: SpringerGabler. Google Scholar öffnen
- Herlyn, E. (2021): Nature-based Solutions – Aktuelle Herausforderungen und zukünftige Potenziale. In: Gottwald, F.-Th.., Plagge, J. & Radermacher, F.J., (Hrsg.), Klimapositive Landwirtschaft und andere Nature-based Solutions. Senat der Wirtschaft e.V., Berlin. Google Scholar öffnen
- Hüttl, R.F., Bens, O. & Schneider, B.U. (2012): Klimaänderung im System Erde: Minderung oder Anpassung? Deutsches GeoForschungsZentrum GFZ, Potsdam. Google Scholar öffnen
- IEA (2018): World Energy Balances database. © OECD/IEA, www.iea.org/statistics (letzter Aufruf: 14.6.2021). Google Scholar öffnen
- Johnston, P. (2019): Protecting the climate, biodiversity and sustainable diets – rethinking land-use for bio-sequestration. Presentation at the ceremony for the Abbot Jerusalem Prise in Braunschweig, 26th November 2019, www.fawn-ulm.de. Google Scholar öffnen
- Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources 44, S. 255–286. Google Scholar öffnen
- Müller, G. (2017): UNFAIR! Für eine gerechte Globalisierung. Hamburg: Murmann Publishers. Google Scholar öffnen
- Müller, G. (2020): UMDENKEN – Überlebensfragen der Menschheit. Hamburg: Murmann Publishers. Google Scholar öffnen
- Nair, C. (2018): The Sustainable State – The Future of Government, Economy, and Society. Broadway, CA: Berrett-Koehler Publishers. Google Scholar öffnen
- Offermanns, H. (2016): Ein Institut und eine Vision. In: Nachrichten aus der Chemie 64, www.gdch.de/nachrichten (letzter Aufruf: 14.6.2021). Google Scholar öffnen
- Offermanns, H., Effenberger, F., Keim, W. & Plass, L. (2017): Solarthermie und CO2: Methanol aus der Wüste. In: Chemie – Ingenieur – Technik. Google Scholar öffnen
- Olah, G.A., Goeppert, A. & Prakash, G.K.S. (2018): Beyond Oil and Gas: The Methanol Economy. 3. Auflage. Weinheim: Wiley-VCH. Google Scholar öffnen
- Quicker, P. & Weber, K. (Hrsg.) (2016): Biokohle. Herstellung, Eigenschaften und Verwendung von Biomassekarbonisation. Wiesbaden: Springer Vieweg. Google Scholar öffnen
- Radermacher, F.J. & Beyers, B. (2014): Welt mit Zukunft. Die ökosoziale Perspektive (1. Aufl. 2007, überarb. Aufl. 2014). Hamburg: Murmann Verlag. Google Scholar öffnen
- Radermacher, F.J. (2018a): Der Milliarden-Joker – Freiwillige Klimaneutralität und das 2oC-Ziel. Hamburg: Murmann Verlag. Google Scholar öffnen
- Radermacher, F.J. (2018b): SDGs neu denken – Der nationale Fokus als Problem. FAW/n Ulm, August 2018. Google Scholar öffnen
- Radermacher, F.J. (2019a): Der Marshall Plan mit Afrika – ein Ansatz zur Umsetzung der Agenda 2030?! In: Herlyn, E. & Lévy-Tödter, M. (Hrsg.), Die Agenda 2030 als ‚Magisches Vieleck‘ der Nachhaltigkeit: Systemische Perspektiven. Wiesbaden: SpringerGabler. Google Scholar öffnen
- Radermacher, F.J. (2019b): Die internationale Energie- und Klimakrise überwinden – Methanolökonomie und Bodenverbesserung schließen den Kohlenstoffzyklus. In: Senat der Wirtschaft (Hrsg.), Europa fit machen für die Zukunft. Impulsbeiträge für eine gemeinwohlorientierte Europapolitik. Berlin: Senat der Wirtschaft-Verlag. Google Scholar öffnen
- Radermacher, F.J. (2019c): Greta Thunberg: „How dare you?” Eine Kommentierung, FAW/n Ulm, 16.10.2019. Google Scholar öffnen
- Radermacher, F.J. (2019d): Klimawandel und Klimaschutz – Methanol hilft! In: Klima und Kapital. Audit Committee Quaterly 1. Das Magazin für Corporate Governance. Audit Committee Institute e.V. Google Scholar öffnen
- Siegemund, S. et al. (2017): The potential of electricity-based fuels for low-emission transport in the EU, “E-FUELS” Study. Nov. Deutsche Energie-Agentur GmbH (dena) und Ludwig-Bölkow-Systemtechnik GmbH (LBST). Berlin: schöne drucksachen GmbH. Google Scholar öffnen
- Terraton (o.J.): Homepage. www.terraton.indigoag.com (letzter Aufruf: 18.6.2021). Google Scholar öffnen
- World Energy Council/Weltenergierat Deutschland (2018): Internationale Aspekte einer Power-to-x Roadmap. frontier economics. 18. Oktober 2018. Google Scholar öffnen
- Bodenverbesserung und Humusaufbau als Beitrag zur Kompensation | Jan Plagge und Sigrid Griese Google Scholar öffnen
- Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U. & Mäder, P. (2020): Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years. Scientific Reports 10, S. 4430. Google Scholar öffnen
- Sanders, J. & Heß, J. (Hrsg.) (2019): Leistungen des ökologischen Landbaus für Umwelt und Gesellschaft. 2. überarbeitete und ergänzte Auflage. Braunschweig: Johann Heinrich von Thünen-Institut, Thünen Rep 65. https://www.thuenen.de/media/publikationen/thuenen-report/Thuenen_Report_65.pdf (letzter Abruf 22.6.2021). Google Scholar öffnen
- Skinner, C., Gattinger, A., Müller, A., Mäder, P., Fließbach, A., Stolze, M., Ruser, R. & Niggli, U. (2014): Greenhouse gas fluxes from agricultural soils under organic and non-organic management – A global meta-analysis. Science of the Total Environment 468–69, S. 553–563. Google Scholar öffnen
- Bautze et al (2018) Klimafreundliche Landwirtschaft – eine praktische Handreichung, https://solmacc.eu/solmacc-publications/ Google Scholar öffnen
- https://bioland-stiftung.org/was-wir-tun/ Google Scholar öffnen
- Wiesmeier, M., Mayer, S., Paul, C., Helming, K., Don, A., Franko, U., Steffens, M. & Kögel-Knabner, I. (2020): CO2-Zertifikate für die Festlegung atmosphärischen Kohlenstoffs in Böden: Methoden, Maßnahmen und Grenzen. BonaRes Series 1, S. 1–24. Google Scholar öffnen
- IG Boden (o.J.): Positionspapier der IG gesunder Boden e. V. zum CO2-Zertifikate-Handel in der Landwirtschaft. https://www.ig-gesunder-boden.de/Presse/Positionspapiere (letzter Abruf 22.6.2021). https://www.ig-gesunder-boden.de/Portals/0/doc/Positionspapiere/CO2-Zertifikate/2020-11-28_deutsch.pdf Google Scholar öffnen
- https://www.bundesregierung.de/breg-de/themen/buerokratieabbau/eu-agrarrat-1803234 Google Scholar öffnen
- https://ec.europa.eu/environment/strategy/circular-economy-action-plan_en Google Scholar öffnen
- Bioland e.V. (2019): Bioland verabschiedet neue Richtlinie „Biodiversität“ 26.11.2019, https://www.bioland.de/presse/pressemitteilungen/news-detail/bioland-verabschiedet-neue-richtlinie-biodiversitaet (letzter Abruf 22.6.2021). Google Scholar öffnen
- BioSiusse (2021): Biodiversitätscheck. https://www.bio-diversitaet.ch/de (letzter Abruf 22.6.2021). Google Scholar öffnen
- WWF (2021): Modellprojekt „Landwirtschaft für Artenvielfalt“. https://www.wwf.de/zusammenarbeit-mit-unternehmen/edeka/modellprojekt-landwirtschaft-fuer-artenvielfalt/ (letzter Abruf 22.6.2021). Google Scholar öffnen
- Humuswirtschaft und klimapositive Landwirtschaft | Azadeh Farajpour Javazmi Google Scholar öffnen
- Allen, M.F (2007) ‘Mycorrhizal fungi: highways for water and nutrients in arid soils’. Soil Science Society of America, Vadose Zone Journal Vol 6 (2) pp. 291–297. <www.vadosezonejour-nal.org> Google Scholar öffnen
- Alvaredo, F., Chancel, L., Piketty, T., Saez, E. & Zucman, G. (Hrsg.) (2018): World inequality report 2018. Belknap Press. Google Scholar öffnen
- Atela, J. O. (2012): The politics of Agricultural carbon finance: The case of the Kenya Agricultural Carbon Project. Google Scholar öffnen
- Callahan, M.T., Micallef, S.A. & Buchanan, R.L. (2016): Soil type, soil moisture, and field slope influence the horizontal movement of Salmonella enterica and Citrobacter freundii from floodwater through soil. J. Food Prot. 80, 189–97. Google Scholar öffnen
- Cavanagh, C. J., Anthony K. C., Vedeld, P. O. & Petursson, J. G. (2017): Old wine, new bottles? Investigating the differential adoption of ‘climate-smart’ agricultural practices in western Kenya. Journal of rural studies 56, 114–123. Google Scholar öffnen
- Desjardins, R. L., Smith, W., Grant, B., Campbell, C. & Riznek, R. (2005): Management strategies to sequester carbon in agricultural soils and to mitigate greenhouse gas emissions. In: Increasing Climate Variability and Change (S. 283–297). Dordrecht: Springer. Google Scholar öffnen
- Dunst, G. (2015): Humusaufbau: Chance für Landwirtschaft und Klima. Verein Ökoregion Kaindorf. Google Scholar öffnen
- Hassard, F. et al. (2016): Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments—a review. Front. Microbiol. 7, 1692. Google Scholar öffnen
- Hashmiu, I. (2012): Carbon Offsets and Agricultural Livelihoods: Lessons Learned From a Carbon Credit Project in The Transition Zone Of Ghana, STEPS Working Paper 50, Brighton: STEPS Centre Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2000): Global Carbon Cycle Overview. https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=3 (letzter Aufruf: 21.6.2021). Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2006): IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H.S., Buendia L., Miwa K., Ngara T. & Tanabe K. (Hrsg.). IGES, Japan. Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2014): Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. August. Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel & J.C. Minx (Hrsg.). Cambridge, UK/New York: Cambridge University Press. Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2019): Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley, (Hrsg.). Google Scholar öffnen
- IPCC (Intergovernmental Panel on Climate Change) (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies (IGES), Japan, S. 210. Google Scholar öffnen
- Jindal, R., Swallow, B. & Kerr, J. (2008): Forestry‐based carbon sequestration projects in Africa: Potential benefits and challenges. Natural Resources Forum 32(2), 116–130. Oxford, UK: Blackwell Publishing Ltd. Google Scholar öffnen
- Jindal, R. (2006): Carbon sequestration projects in Africa: Potential benefits and challenges to scaling up. EarthTrend. Google Scholar öffnen
- Johnson, D., Ellington, J., & Eaton, W. (2015): Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix (No. e789v1). PeerJ PrePrints. Google Scholar öffnen
- Johnson, I., & Coburn, R. (2010): Trees for carbon sequestration. Prime Facts, Industry and Investment. NSW Government. Google Scholar öffnen
- Jones, C. E. (2008): Liquid carbon pathway unrecognised. Australian Farm Journal 8(5), 15–17. Google Scholar öffnen
- Kamunde-Aquino, N. (2017): Who Owns Soil Carbon in Communal Lands? An Assessment of a Unique Property Right in Kenya. In: International Yearbook of Soil Law and Policy (S. 321–338). Cham: Springer. Google Scholar öffnen
- Lal, R., Singh, B. R., Dismas, L., Mwaseba, D. K., Hansen, D. O. & Eik, L. O.(Hrsg.) (2015): Sustainable intensification to advance food security and enhance climate resilience in Africa. Cham: Springer. Google Scholar öffnen
- Lee, J. (2017): Farmer participation in a climate-smart future: Evidence from the Kenya Agricultural Carbon Project. Land use policy 68, 72–79. Google Scholar öffnen
- Leach, M. & Scoones, I. (Hrsg.) (2015): Carbon conflicts and forest landscapes in Africa. Routledge. Google Scholar öffnen
- Le Quéré, C. (2010): Filling the gap in scientific institutions to support global carbon management. S. 5–7. Google Scholar öffnen
- Lipper, L., Neves, B., Wilkes, A., Tennigkeit, T., Gerber, P., Henderson, B., Branca, G. & Mann, W. (2011): Climate change mitigation finance for smallholder agriculture: a guide book to harvesting soil carbon sequestration benefits. Food and Agriculture Organization of the United Nations (FAO). Google Scholar öffnen
- Lawlor, K., Madeira, E. M., Blockhus, J. & Ganz, D. J. (2013): Community participation and benefits in REDD+: A review of initial outcomes and lessons. Forests 4(2), 296–318. Google Scholar öffnen
- Losi, C. J., Siccama, T. G., Condit, R. & Morales, J. E. (2003): Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management 184(1–3), 355–368. Google Scholar öffnen
- Luske, B. & van der Kamp, J. (2009): Carbon sequestration potential of reclaimed desert soils in Egypt. Google Scholar öffnen
- Nord, J. (2014): Farming for Carbon Credits: The economic integration of greenhouse gases through smallholder agriculture in the Kenya Agricultural Carbon Project. Google Scholar öffnen
- Pachepsky, Y.A., Yu, O., Karns, J.S., Shelton, D.R., Guber, A.K. & Van Kessel, J.S. (2008): Strain-dependent variations in attachment of E. coli to soil particles of different sizes. Int. Agrophys. 22, 61. Google Scholar öffnen
- Ponti, M. (2011): Uncovering causality in narratives of collaboration: Actor-network theory and event structure analysis. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research. 13(1). Google Scholar öffnen
- Reynolds, T. W. (2012): Institutional determinants of success among forestry-based carbon sequestration projects in Sub-Saharan Africa. World Development 40(3), 542–554. Google Scholar öffnen
- Ringius, L. (2002): Soil carbon sequestration and the CDM: opportunities and challenges for Africa. Climatic change 54(4), 471–495. Google Scholar öffnen
- Shames S, Wollenberg E, Buck LE, Kristjanson P, Masiga M and Biryahaho B. (2012): Institutional innovations in African smallholder carbon projects. CCAFS Report no. 8. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Available online at: www.ccafs.cgiar.org Google Scholar öffnen
- Smith, P., Adams, J., Beerling, D., Beringer, T., Calvin, K., Fuss, S., Griscom, B., Hagemann, N., Kamman, C., Kraxner, F., Minx, J., Popp, A., Renforth, P., Vicente, J. & Keesstra, S. (2019): Impacts of Land-Based Greenhouse Gas Removal Options on Ecosystem Services and the United Nations Sustainable Development Goals, Annual Review of Environment and Resources. https://doi.org/10.1146/annurev-environ-101718-033129. Google Scholar öffnen
- Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N. H., Rice, C. W., Robledo Abad, C., Roma-Novskaya, A., Sperling, F. & Tubiello, F. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In: Edenhofer, O. et al. (Hrsg.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK/New York: Cambridge University Press. Google Scholar öffnen
- Stone, A.G., Scheurell, S.J. & Darby, H.M. (2004): Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping and other cultural practices. In: Magdoff, F. & Weil, R.R. (Hrsg.), Soil Organic Matter in Sustainable Agriculture (S. 131–77). Boca Raton, FL: CRC Press LLC. Google Scholar öffnen
- Vereinten Nationen auf dem World Soil Day (2019): Pressemitteilung. https://news.un.org/en/story/2019/12/1052831 (letzter Aufruf: 21.6.2021). Google Scholar öffnen
- Von Unger, M. & Emmer, I. E. (2018): Carbon Market Incentives to Conserve. Restore and Enhance Soil. Google Scholar öffnen
- Wollenberg, E., Tapio-Bistrom, M.-L., Grieg-Gran, M. & Nihart, A. (Hrsg.) (2013): Climate change mitigation and agriculture. Routledge. Google Scholar öffnen
- Zhao, W., Liu, X., Huang, Q. & Cai, P. (2015): Streptococcus suis sorption on agricultural soils: role of soil physicochemical properties. Chemosphere 119, 52–58. Google Scholar öffnen
- Grasland und die Potenziale nachhaltiger Beweidung für Bodenfruchtbarkeit, Biodiversität, Klima und (Tier-)Gesundheit | Anita Idel Google Scholar öffnen
- Bakker, P. A.H. M., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C. A. & Pieterse, C. M. J. (2013): The rhizosphere revisited: root microbiomics. In: Front. Plant Sci. https://www.frontiersin.org/articles/10.3389/fpls.2013.00165/full (letzter Aufruf: 11.01.2021). Google Scholar öffnen
- Bandel, T., Kayatz, B., Doucet, T. & Leutner, N. (2020): Der teure Preis des Billigfleischs. Eine Studie der Soil & More Impacts GmbH für Green Peace Deutschland. https://www.greenpeace.de/sites/www.greenpeace.de/files/publications/s03201_landwirtschaft_studie_wahre_kosten_fleisch_2020.pdf (letzter Aufruf: 18.12.2020). Google Scholar öffnen
- Bailey, V L, Hicks Pries, C, & K Lajtha (2019): What do we know about soil carbon destabilization? Environ. Res. Lett. 14 083004. https://doi.org/10.1088/1748-9326/ab2c11. Google Scholar öffnen
- Bastos, A. & Fleischer, K. (2021): An analysis of experiments in which the air around terrestrial plants or plant communities was enriched with carbon dioxide reveals a coordination between the resulting changes in soil carbon stocks and above-ground plant biomass. 532 | Nature 591. Google Scholar öffnen
- Bohner, A., Foldal, C. B. & Jandl, R. (2016): Kohlenstoffspeicherung in Grünlandökosystemen – eine Fallstudie aus dem österreichischen Berggebiet. In: Die Bodenkultur: Journal of Land Management, Food and Environment 67(4), 225–237. DOI: 10.1515/boku-2016–0018. Google Scholar öffnen
- Bunzel-Drüke, M., Drüke, J., Hauswirth, L. & H. Vierhaus (1999): Großtiere und Landschaft – von der Theorie zur Praxis. Natur und Kulturlandschaft 3, 210–229. Google Scholar öffnen
- Bunzel-Drüke, M., Reisinger, E. et al. (2019): Naturnahe Beweidung und NATURA 2000. Ganzjahresbeweidung im Management von Lebensraumtypen und Arten im europäischen Schutzgebietssystem NATURA 2000. 2. Auflage. Hrsg.: Arbeitsgemeinschaft Biologischer Umweltschutz im Kreis Soest e.V. (ABU), Bad Sassendorf – Lohne. https://www.abu-naturschutz.de/projekte/laufende-projekte/naturnahe-beweidung. Google Scholar öffnen
- Buse, Jörn (2020): Auswirkungen der Parasitenbehandlung bei Weidetieren auf Nicht-Ziel-Organismen am Beispiel von Dungkäfern. https://www.naturstiftung-david.de/fileadmin/Medien/Downloads/NNE_Infoportal/Veranstaltungen/2020-01-21_Tierwohl_in_der_Landschaftspflege/Vortrag_Parasitenbehandlung_bei_Weidetieren_Buse.pdf (letzter Aufruf: 20.12.2020).eng Google Scholar öffnen
- Canadell, J. G., Le Quérec, C., Raupacha, M. R. et al. (Hrsg.) (2007): Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Harvard University, Cambridge, MA. http://www.pnas.org/content/pnas/104/47/18866.full.pdf (letzter Aufruf: 10.12.2020). Google Scholar öffnen
- Cavicchioli, R., Ripple, W.J., Timmis, K.N. et al. (Hrsg.) (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5. Google Scholar öffnen
- Cebra, C., Vaughan, J. & Gauly, M. (2010): Neuweltkameliden: Haltung, Zucht, Erkrankungen. Stuttgart: Georg Thieme. Google Scholar öffnen
- Conant, Richard T. (2010): Challenges and opportunities for carbon sequestration in grassland systems. A technical report on grassland management and climate change mitigation. FAO Rome 9. Google Scholar öffnen
- Conant, T., Cerri, C., Osborne, B. & K. Paustian (2017): Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668. Google Scholar öffnen
- Covey, K., Soper, F., Pangala, S. et al. (2021): Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. Front. For. Glob. Change. https://doi.org/10.3389/ffgc.2021.618401. Google Scholar öffnen
- Deutscher Bundestag (2020): Auswirkungen aktueller Vorgaben auf den Grünlanderhalt. Wissenschaftliche Dienste WD 5 – 3000 086/20. https://www.bundestag.de/resource/blob/794026/3613f67ce498172e2bbb5382229c8931/WD-5-086-20-pdf-data.pdf (letzter Aufruf: 06.01.2021). Google Scholar öffnen
- Diepolder, M., Raschbacher, S., Brandhuber, S., Demmel, M. & R. Walter (2015): Mechanische Bodenbelastung im Grünland – ein Thema? Seminar Pflanzliche Erzeugung am 30.11.2015. Institut für Ökologischen Landbau, Bodenkultur und Ressourcenschutz. https://www.lfl.bayern.de/mam/cms07/iab/dateien/mechanische-bodenbelastung-gruenland-ein-thema_foliensatz.pdf (letzter Aufruf: 19.01.2021). Google Scholar öffnen
- Dietrich, P., Cesarz, S., Liu, T. et al. (2021): Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia, 06 DOI: 10.1007/s00442–021–04956–1. Google Scholar öffnen
- Eshel, G., Sheponb, A., Makovc, T. & Milob, R. (2014): Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. PNAS 111 (33). 11996–12001. www.pnas.org/cgi/doi/10.1073/pnas.1402183111. Google Scholar öffnen
- FAO (o.J.): Key, facts and findings. http://www.fao.org/news/story/en/item/197623/icode/ (letzter Aufruf: 20.12.2020). Google Scholar öffnen
- Fileccia, T., Guadagni, M. & Hovhera, V. (2014): Ukraine: Soil fertility to strengthen climate resilience. Preliminary assessment of the potential benefits of conservation agriculture FAO and WB (Hrsg.) Rom. https://www.researchgate.net/publication/312136260_Ukraine_-_Soil_fertility_to_strengthen_climate_resilience_preliminary_assessment_of_the_potential_benefits_of_conservation_agriculture_Main_report_English. Google Scholar öffnen
- Flachowsky, G. & Brade, W. (2007): Potenziale zur Reduzierung der Methan-Emissionen bei Wiederkäuern. Züchtungskunde 79(6) 417–465. Google Scholar öffnen
- Flessa, H., Müller, D., Plassmann, K. & Osterburg, B. (2012): Studie zur Vorbereitung einer effizienten und gut abgestimmten Klimaschutzpolitik für den Agrarsektor. Von Thünen Institut Sonderheft 361. Google Scholar öffnen
- Ford, H., Garbutt, A. et al. (2016): Soil stabilization linked to plant diversity and environmental context in coastal wetlands. Journal of vegetation science 27(2), 259–268. https://doi.org/10.1111/jvs.12367. Google Scholar öffnen
- Global Soil Week (2019): Webseite. https://globalsoilweek.org (letzter Aufruf: 24.06.2021). Google Scholar öffnen
- GRAIN & IATP (Institute for Agriculture and Trade Policy) (2018): Emissions impossible: How big meat and dairy are heating up the planet. Joint publication. Madrid and Minneapolis. https://grain.org/article/entries/5976-emissions-impossible-how-big-meat-and-dairy-are-heating-up-the-planet. Google Scholar öffnen
- Gyssels, G., Poesen, J., Bochet, E. & Li, Y. (2005): Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography: Earth and Environment 29(2). https://doi.org/10.1191/0309133305pp443ra. Google Scholar öffnen
- Hargita, Y., Gerber, K., Oehmichen, K. et al. (2016): Die Umweltauswirkungen der Landnutzung, Landnutzungsänderungen und Forstwirtschaft (LULUCF) in einem zukünftigen Klimaschutzabkommen. Im Auftrag des Umweltbundesamtes. https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/2016-11-15_lulucfpost2020_uba-abschlussbericht_final.pdf (letzter Aufruf: 20.12.2020). Google Scholar öffnen
- Herndl, M., Kandolf, M., Bohner, A., Krautzer, B., Graiss, W. & Schink, M. (2011): Wurzelparameter von Gräsern, Kräutern und Leguminosen als Grundlage zur Bewertung von Trockenheitstoleranz im Grünland. 1. Tagung der Österreichischen Gesellschaft für Wurzelforschung, S. 45–54. https://www.researchgate.net/publication/281608980_Wurzelparameter_von_Grasern_Krautern_und_Leguminosen_als_Grundlage_zur_Bewertung_von_Trockenheitstoleranz_im_Grunland. Google Scholar öffnen
- Hewins, D. B. et al. (2018): Grazing and climate effects on soil organic carbon concentration and particle-size association in northern grasslands. Sci. Rep. 8. Google Scholar öffnen
- Hülsbergen, H.-J. & Rahmann, G. (Hrsg) (2015): Klimawirkungen und Nachhaltigkeit ökologischer und konventioneller Betriebssysteme – Untersuchungen in einem Netzwerk von Pilotbetrieben: Forschungsergebnisse 2013–2014. Braunschweig: Johann Heinrich von Thünen-Institut, Thünen Rep 29, doi:10.3220/REP_29_2015. Google Scholar öffnen
- Huyghe C., De Vliegher, A. & Goliński, P. (2014): European grasslands overview: temperate region. Grassland Sci. Europe 19, 29–40. Google Scholar öffnen
- Idel, A. (2010): Die Kuh ist kein Klima-Killer! Marburg: Metropolis (8. Auflage 2021). Google Scholar öffnen
- Idel, A. (2018): Der Wert nachhaltiger Beweidung mit Rind & Co. für Bodenfruchtbarkeit, Klima und biologische Vielfalt. In: Idel, A. & Beste, A. (Hrsg.), Vom Mythos der klimasmarten Landwirtschaft. – Martin Häusling MdEP/Die Grünen im Europäischen Parlament, Brüssel. https://www.martin-haeusling.eu/presse-medien/publikationen/2130-studie-vom-mythos-der-klimasmarten-landwirtschaft.html (letzter Aufruf: 11.01.2021). Google Scholar öffnen
- Idel, A. (2020): Zur (Nicht-)Wahrnehmung landwirtschaftlich genutzter Tiere als fühlende Lebewesen: gestern – heute – morgen, in: Schäffer, J. (Hrsg.) (2020): Zukunft braucht Vergangenheit: Die Bedeutung der Geschichtsforschung für die Tiermedizin. Freie Themen (20. Jahrestagung der DVG-Fachgruppe Geschichte), Giesen, S. 173–190. Google Scholar öffnen
- Idel, A. (2020): The value of sustainable grazing for soil fertility, climate and biodiversity. In: Idel, A. & Beste, A., The myth of climate smart agriculture – why less bad isn’t good. Martin Haeusling/The Greens EFA in the European Parliament, Brussels (Hrsg.). https://www.martin-haeusling.eu/images/publikationen/Klimawandel2020_EnglischeVersion_final.pdf (letzter Aufruf: 19.01.2021). Google Scholar öffnen
- Idel, A. & Reichert, T. (2013): Livestock production and food security in a context of climate-change and environmental and health challenges. In: Hoffmann, U. (Hrsg.), Wake up before it is too late. Transforming Agriculture to cope with climate change and assure food security. UNCTAD Trade and Environment Review 2013, Geneva. http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=666/; https://unctad.org/en/PublicationsLibrary/ditcted2012d3_en.pdf (letzter Aufruf: 18.01.2021). Google Scholar öffnen
- Isermeyer, F., Heidecke, C. & Osterburg, B. (2019): Einbeziehung des Agrarsektors in die CO2-Bepreisung. Thünen Working Paper 136. Braunschweig, https://www.thuenen.de/media/publikationen/thuenen-workingpaper/ThuenenWorkingPaper_136.pdf (letzter Aufruf: 20.01.2021). Google Scholar öffnen
- Jacobs A., Flessa H., Don A. et al. (2018): Landwirtschaftlich genutzte Böden in Deutschland – Ergebnisse der Bodenzustandserhebung. Braunschweig: Johann Heinrich von Thünen-Institut, 316 p, Thünen Rep 64, DOI:10.3220/REP1542818391000. Google Scholar öffnen
- Jotz, S., Konold, W., Suchomel, C. & Rupp, M. (2017): Lichte Wälder und biotische Vielfalt. 13. Ber. Naturf. Ges. Freiburg i. Br., 107, 13–153. Google Scholar öffnen
- Jaubert, J., Verheyden, S., Genty, D. et al. (2016): Early Neanderthal constructions deep in Bruniquel Cave in southwestern France. Nature 534, 111–114. https://doi.org/10.1038/nature18291. Google Scholar öffnen
- Landzettel, M. (2020): Vielleicht haben wir noch 10 Jahre: US-amerikanische Bauern gehen neue Wege im Kampf gegen die Folgen der Klimakrise. Hamm: AbL. Google Scholar öffnen
- Loza, C., Reinsch, T., Loges, R. et al. (2021): Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures. Agriculture 11, 175, https://doi.org/10.3390/agriculture11020175. Google Scholar öffnen
- Luo, Z., Wang, E. & Sun, O. J. (2010): Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment 139 (1–2), 224–231. Elsevier. Google Scholar öffnen
- McIntyre, B. D., Herren, H. R., Wakhungu, J. & Watson, R. T. (Hrsg.) (2009): International Assessment of Agricultural Knowledge, Science and Technology for Development: Global Report. Washington DC: Island Press. Google Scholar öffnen
- MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B. & Steinfeld, H. (2013): Greenhouse gas emissions from pig and chicken supply chains – A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome. Google Scholar öffnen
- McSherry, M. E. & Ritchie, M. E. (2013): Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19, 1347–1357. Google Scholar öffnen
- Melo, T. P., Ribeiro, A. M., Martinelli, A. G. & Bento Soares, M. (2019): Early evidence of molariform hypsodonty in a Triassic stem-mammal. NATURE COMMUNICATIONS 10, 2481. https://doi.org/10.1038/s41467-019-10719-7. Google Scholar öffnen
- Möckel, S. (2018): Gute fachliche Praxis, Eingriffsregelung und Landwirtschaft. Helmholtz-Zentrum für Umweltforschung, Leipzig: https://www.ufz.de/export/data/2/206009_Moeckel_DNRT2018.pdf (letzter Aufruf: 19.01.2021). Google Scholar öffnen
- Mueller, K. E., Tilman, D., Fornara, D. & Hobbie, S. E. (2013): Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment. Ecology, 94(4), 787–793, Ed. Ecological Society of America. Google Scholar öffnen
- Nickel, H., Reisinger, E., Sollmann, R. et al. (2016): Außergewöhnliche Erfolge des zoologischen Artenschutzes durch extensive Ganzjahresbeweidung mit Rindern und Pferden. Ergebnisse zweier Pilotstudien an Zikaden in Thüringen, mit weiteren Ergebnissen zu Vögeln, Reptilien und Amphibien. Landschaftspflege und Naturschutz in Thüringen 53 (1) 2016: 5–20 5. Google Scholar öffnen
- Oelmann, Y., Lange, M., Leimer, S. et al. (2021). Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat Commun 12, 4431 (2021). https://doi.org/10.1038/s41467-021-24714-4. Google Scholar öffnen
- Ogino, A. et al. (2007): Evaluating environmental impacts of the Japanese beef cow-calf system by the life cycle assessment method. Animal Science Journal 78(4), 424–432. DOI: 10.1111/j.1740 – 0929.2007.00457.x. Google Scholar öffnen
- Peyraud, J. L., van den Pol‐van Dasselaar, A., Collins, R. P., Huguenin‐Elie, O., Dillon, P. & Peter, A. (2014): Multi‐species swards and multi scale strategies for multifunctional grassland‐base ruminant production systems: an overview of the FP7‐MultiSward project. Grassland Sci. Europe 19, 695–715. Google Scholar öffnen
- Pfadenhauer, J. & Klötzli, F. (2014): Vegetation der Erde. Grundlagen, Ökologie, Verbreitung. Berlin/Heidelberg: Springer Spektrum. Google Scholar öffnen
- Pimentel, D. J. et al. (1997): Water resources: Agriculture, the environment, and society. BioSci. 47, 97–106. Google Scholar öffnen
- Pimentel, D. & Pimentel, M. (2003): World population, food, natural resources, and survival. World Futures 59, 145–167. Google Scholar öffnen
- Poeplau, C. H. et al. (2011): Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Global Change Biology 17, 2415–2427. Google Scholar öffnen
- Poeplau, C. & Don, A. (2013): Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192(1): 189–201. Google Scholar öffnen
- Poeplau, C. (2016): Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with the RothC model. Plant and Soil 407, 293–305. www.jstor.org/stable/44136927. (Letzter Aufruf: 16.07.2021). Google Scholar öffnen
- Prairie dogs (o.J.). https://defenders.org/wildlife/prairie-dog (letzter Aufruf: 10.12.2020). Google Scholar öffnen
- Reisinger, E., Luick, R., Freese, J., Schoof, N., Kämmer, G. & Solmann, R. (2019): Vorschlag/Forderungen für eine verbesserte Förderung von extensiven Weidesystemen in einer neuen GAP im Detail. In: Bunzel-Druke, M., Reisinger, E. et al. (Hrsg.): Naturnahe Beweidung und NATURA 2000. Ganzjahresbeweidung im Management von Lebensraumtypen und Arten im europäischen Schutzgebietssystem NATURA 2000. Arbeitsgemeinschaft Biologischer Umweltschutz, 2. Auflage. Google Scholar öffnen
- Roque, B.M., Venegas, M., Kinley, R.D., de Nys, R., Duarte, T.L., Yang, X. et al. (2021): Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 16(3): e0247820. https://doi.org/10.1371/journal. Google Scholar öffnen
- Roser, M. & Ritchie, H. (2018): Yields and Land Use in Agriculture. https://ourworldindata.org/yields-and-land-use-in-agriculture (letzter Aufruf: 19.05.2018). Google Scholar öffnen
- Rumpel, C., Creme, A., Ngo, P.T. et al. (2015): The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. J. Soil Sci. Plant Nutr. 15(2), 353–371. http://dx.doi.org/10.4067/S0718-95162015005000034. Google Scholar öffnen
- Rupp, Mattias (2013). Beweidete lichte Wälder in Baden-Württemberg: Genese, Vegetation, Struktur, Management. Inaugural-Dissertation zur Erlangung der Doktorwürde der Fakultät für Umwelt und Natürliche Ressourcen der Albert-Ludwigs-Universität Freiburg i. Brsg. Google Scholar öffnen
- Saatkamp, A., Poschlod, P. and Venable, D.L. (2014): Seeds: The Functional Role of Soil Seed Banks in Natural Communities. CAB International 2014. The Ecology of Regeneration in Plant Communities,3rd Edition (Gallagher, R.S. Hrsg.), S. 263–295. https://www.researchgate.net/publication/260797489_The_Functional_Role_of_Soil_Seed_Banks_in_Natural_Communities. Google Scholar öffnen
- Sanders, J. & Heß, J. (Hrsg.) (2019): Leistungen des ökologischen Landbaus für Umwelt und Gesellschaft. 2. überarbeitete und ergänzte Auflage. Braunschweig: Johann Heinrich von Thünen-Institut, Thünen Rep 65, DOI:10.3220/REP1576488624000. Google Scholar öffnen
- Sexlinger, K. (2020): Bodenverdichtung – Ursachen, Auswirkungen und Vorsorgemaßnahmen. Umweltinstitut – Bericht UI-02/2020 (Hrsg.). https://vorarlberg.at/documents/302033/473021/Bodenverdichtung+-+Ursachen%2C+Auswirkungen+und+Vorsorgema%C3%9Fnahmen.pdf/0e10a79b-846c-eb91-7283-bbad97d3fd49 (letzter Aufruf: 25.07.2021). Google Scholar öffnen
- Sobotik, S., Eberwein, R.K., Bodner, G. et al. (2020): Pflanzenwurzeln: Wurzeln begreifen – Zusammenhänge verstehen – In der Praxis anwenden. DLG Verlag Frankfurt aM. Google Scholar öffnen
- Soussana, J. F. et al. (2007): Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agricult. Ecosyst. Environ. 121, 121–134. Google Scholar öffnen
- Soussana, J. F., Tallec, T. & Blanfort, V. (2010): Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4(3), 334–350. Google Scholar öffnen
- Stahl, H. (2009): Gute fachliche Praxis für Grünland: Bodengefüge- und Narbenschutz. Bodendruck im Grünland. Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie Heft 3. Google Scholar öffnen
- Sutton, M.A., Howard, C.M., Erisman, J.W. et al. (Hrsg.) (2011): The European Nitrogen Assessment. Sources, Effects and Policy Perspectives. Cambridge: Cambridge University Press. Google Scholar öffnen
- Takeshi, H. & Tamae, K. (2011): Review Earthworms and Soil Pollutants. Sensors 2011, 11, 11157–11167; doi:10.3390/s111211157. Google Scholar öffnen
- Taube, F. (2021): Die Regelungen zur guten fachlichen Praxis der Düngung (DüV 2020) widersprechen der Zweckbestimmung des Düngegesetzes und tragen zur Verfehlung der Umweltziele Deutschlands und der EU bei. Expertise zur Bewertung des neuen Düngerechts (DüngeG, DüV, AVV GeA) von 2020 in Deutschland aus Sicht des Trinkwasserschutzes. Google Scholar öffnen
- Gutachten im Auftrag von: BDEW – Bundesverband der Energie- und Wasserwirtschaft e. V. https://www.bdew.de/media/documents/PI_20210707_Expertise-Prof-Taube-Bewertung-D%C3%BCngerecht-2020.pdf (letzter Aufruf 24.07.2021). Google Scholar öffnen
- Terrer, C.; Phillips, R.P.; Hungate, B.A. et al. (2021): A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, pp 599–616. https://doi.org/10.1038/s41586-021-03306-8. Google Scholar öffnen
- UBA (2020): Factsheet Moore. Deutsche Emissionshandelsstelle (DEHSt) im Umweltbundesamt, Berlin. https://www.dehst.de/SharedDocs/downloads/DE/publikationen/Factsheet_Moore.pdf;jsessionid=E163F66FCF08FDE28C4474D37A939DFC.2_cid321?__blob=publicationFile&v=9 (letzter Aufruf 16.07.2021). Google Scholar öffnen
- Ungar, P. S. (2015): Mammalian dental function and wear: A review. Department of Anthropology, University of Arkansas. Biosurface and Biotribology 1, 25–41. Google Scholar öffnen
- Vanselow, R. (2010): Grasendophyten in Lolium und Festuca – Gifte, Symptome und Gegenmaßnahmen. Pferde Spiegel 13(03), 129–133. doi:10.1055/s-0030–1250271. Google Scholar öffnen
- Velthof, G.L., Lesschen, J.P., Schils, R.L.M., Smit, A., Elbersen, B.S., Hazeu, G.W., Mucher, C.A. & Oenema, O. (2014): Grassland areas, production and use. Wageningen. http://ec.europa.eu/eurostat/documents/2393397/8259002/Grassland_2014_Final+report.pdf/58aca1dd-de6f-4880-a48e-1331cafae297 (letzter Aufruf: 23.01.2021). Google Scholar öffnen
- van Vuure, C. (2002): History, morphology and ecology of the auerochs bos. https://www.researchgate.net/publication/228762518_HISTORY_MORPHOLOGY_AND_ECOLOGY_OF_THE_AUROCHS_BOS/citation/download (letzter Aufruf: 12.12.2020). Google Scholar öffnen
- Vera, F. (2002): Grazing ecology and forest history. Cab Intl. https://www.researchgate.net/publication/273108489_Grazing_Ecology_and_Forest_History (letzter Aufruf: 01.12.2020). Google Scholar öffnen
- Wang, W. & Fang, J. (2009): Soil respiration and human effects on global grasslands. Global and Planetary Change 67, 20–28. Google Scholar öffnen
- Wang, X. et al. (2016): Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis. Sci. Rep. 6, 33190. Google Scholar öffnen
- White, R.P., Murray, S. & Rohweder, M. (2000): Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington, DC. Google Scholar öffnen
- Witzke, H. von & Noleppa, S. (2007): Methan und Lachgas – Die vergessenen Klimagase. Herausgeber: WWF Deutschland, Frankfurt am Main, 1. Auflage, S. 8. Google Scholar öffnen
- Würger, T. (2010): Das Rülpsen der Rinder. Der Spiegel 42 18.10.2010. Google Scholar öffnen
- Young, O.P. (2015): Predation on dung beetles (Coleoptera: Scarabaeidae): A literature review. Trans. Am. Entomol. Soc. 141, 111–155. Google Scholar öffnen
- Zhou, X., Passow, F. H., Rudek, J., Von Fisher, J. C., Hamburg, S. P. & Albertson, J. D. (2019): Estimation of methane emissions from the U.S. ammonia fertilizer industry using a mobile sensing approach. Elem Sci Anth. 7(1). 19 DOI: 10.1525/elementa.358. Google Scholar öffnen
- Praxisbeispiel Organic Garden: die Bioökonomie-Idee für Lebensmittel, Bodenkultur und Energie | Martin Wild, Martin Seitle und Holger Stromberg Google Scholar öffnen
- Juncker, J. (2017, 20.07.2021). Verordnung (EU) 2017/893 DER KOMMISSION vom 24. Mai 2017 zur Änderung der Anhänge I und IV der Verordnung (EG) Nr. 999/2001 des Europäischen Parlaments und des Rates sowie der Anhänge X, XIV und XV der Verordnung (EU) Nr. 142/2011 der Kommission in Bezug auf die Bestimmungen über verarbeitetes tierisches Protein. https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32017R0893&from=de Google Scholar öffnen
- Organic Garden AG (2021, 20.07.2021). From farm to fork.https://www.organicgarden.de/farm Google Scholar öffnen
- Prolignis (2021, 20.07.2021). Wir tragen Verantwortung. https://www.prolignis.de/de/vision/wir-tragen-verantwortung-1 Google Scholar öffnen
- Statista (2021, 27.07.2021). Umfrage. Zuwachs der Weltbevölkerung https://de.statista.com/statistik/daten/studie/1816/umfrage/zuwachs-der-weltbevoelkerung/ Google Scholar öffnen
- Stromberg, H. (2019). Essen ändert alles. 6. Auflage. Südwest. 7ff, 114ff. Google Scholar öffnen
- Woolf, D., Amonette, J., Street-Perrott, F. et al. (2010). Sustainable biochar to mitigate global climate change. Nat Commun 1, 56. https://doi.org/10.1038/ncomms1053 Google Scholar öffnen
- Carbon-Standards für naturbasierte Klimaschutzprojekte für den freiwilligen Markt – CO2-Kompensation durch Unternehmen | Dirk Walterspacher Google Scholar öffnen
- Gold Standard (o.J.): Webseite. https://www.goldstandard.org/tags/gs4gg (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- Greenhouse Gas Protocol (o.J.): Webseite. https://ghgprotocol.org/ (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- ISO (o.J.): ISO 14064–1:2018. https://www.iso.org/standard/66453.html (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- REDD+ (o.J.): Eintrag REDD+. https://de.wikipedia.org/wiki/REDD%2B (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- Science Based Targets (o.J.): Webseite. https://sciencebasedtargets.org/ (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- Verra (o.J.a): Webseite. https://verra.org/project/vcs-program/ (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- Verra (o.J.b): REDD+ Projects: Delivering Positive Impacts. https://verra.org/redd-projects-positive-impacts/ (letzter Aufruf: 25.06.2021). Google Scholar öffnen
- Bäume pflanzen für ein besseres Weltklima – ein emotionaler Einstieg in die Wiederherstellung der Ökosysteme | Felix Finkbeiner Google Scholar öffnen
- Bastin, J. F. et al. (2015): Seeing Central African forests through their largest trees. Sci Rep 5, 13156. https://doi.org/10.1038/srep13156. Google Scholar öffnen
- Bastin, J.-F. et al. (2019): The global tree restoration potential. Science 365(6448), S. 76–79. https://science.sciencemag.org/content/365/6448/76 (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Cairns, M. A., Olmsted, I., Granados, J., & Argaez, J. (2003). Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. Forest Ecology and Management, 186(1–3), 125–132. doi:10.1016/S0378–1127(03)00229–9 Google Scholar öffnen
- Climate Strike (o.J.): Webseite. www.climatestrike.net (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Crowther, T. W., Glick, H. B. & Bradford, M. A. (2015): Mapping tree density at a global scale. Nature 525, S. 201–205. http://dx.doi.org/10.1038/nature14967. Google Scholar öffnen
- Paquette, A., Hawryshyn, J., Vyta Senikas, A. & Potvin, C. (2009): Enrichment planting in secondary forests: a promising clean development mechanism to increase terrestrial carbon sinks. Ecology and Society 14(1): 31. https://www.ecologyandsociety.org/vol14/iss1/art31/ (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Phoenix (2019): Bundespressekonferenz zur Senkung der Erderwärmung durch Waldaufbau am 03.07.19. https://www.youtube.com/watch?v=T1PTUjPHd8A (Minute 16:00) (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Ramirez, G. R. et al. 2017, Evaluación de ecuaciones alométricas de biomasa epigea en una selva mediana subcaducifolia de Yucatán. Verano 23(2). https://myb.ojs.inecol.mx/index.php/myb/article/view/1452 (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Smith, K. F. et al. (2014): Global rise in human infectious disease outbreaks. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2014.0950. Google Scholar öffnen
- Wir wollen wählen (o.J.): Webseite. www.wir-wollen-waehlen.de (letzter Aufruf: 28.06.2021). Google Scholar öffnen
- Wälder machen statt CO2-Müllhalden! Kritik ökonomischer Rechenmodelle | Harry Assenmacher Google Scholar öffnen
- Bundesministerium für Wirtschaft und Energie (2019): Ein CO2-Preis – aber wie? https://www.bmwi.de/Redaktion/DE/Schlaglichter-der-Wirtschaftspolitik/2019/08/kapitel-1-6-ein-co2-preis-aber-wie.html (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- Claussen, M. (2015): Vegetation und ihre Wechselwirkungen mit dem globalen Klima. In: Marotzke, J. & Stratmann, M. (Hrsg.), Zukunft des Klimas. München: Beck. https://mpimet.mpg.de/fileadmin/staff/claussenmartin/lectures/vegetation/claussen_fliegengewicht_2015.pdf (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- IPCC (2019): IPCC-Sonderbericht über Klimawandel und Landsysteme (SRCCL). https://www.de-ipcc.de/254.php (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- UBA (Umweltbundesamt) (2019): Gesellschaftliche Kosten von Umweltbelastungen. https://www.umweltbundesamt.de/daten/umwelt-wirtschaft/gesellschaftliche-kosten-von-umweltbelastungen (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- Wille, J. (2020): Klimawandel: „Das Schlimmste bereits in Gang gesetzt“. Frankfurter Rundschau, 24.1.2020. https://www.fr.de/politik/klimawandel-schlimmste-bereits-gang-gesetzt-13482150.html (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- Xu, Y. et al. (2019): Die Welt wird viel schneller heiß. Spektrum. https://www.spektrum.de/kolumne/die-welt-wird-viel-schneller-heiss/1626358 (letzter Aufruf: 29.06.2021). Google Scholar öffnen
- Klimapositiv ist naturpositiv! Was die Gesellschaft fordert und welchen politischen Rahmen es braucht | Franz-Theo Gottwald Google Scholar öffnen
- agrarheute.com (2020): GAP-Reform: EU-Agrarminister und Parlament erzielen Einigungen. https://www.agrarheute.com/politik/gap-steht-eu-agrarminister-einigen-agrarreform-574135 ((letzter Aufruf: 30.10.2020). Google Scholar öffnen
- Agrarsoziale Gesellschaft e.V. (2019): Ländlicher Raum: Die Stellung der Landwirtschaft in der Gesellschaft. https://www.asg-goe.de/pdf/LR0419.pdf (letzter Aufruf: 23.07.2020). Google Scholar öffnen
- Aldi-SÜD (2019): Wir sind Bio-Händler Nr. 1. https://nachhaltigkeit.aldi-sued.de/bio/ (letzter Aufruf: 29.07.2020). Google Scholar öffnen
- AöL (2018): Biodiversität und Boden. https://www.aoel.org/wp-content/uploads/2018/03/20180329-Position-Biodiversit%C3%A4t-und-Boden-1.pdf (letzter Aufruf: 04.06.2020). Google Scholar öffnen
- BfN (o.J.): Die Nationale Strategie zur biologischen Vielfalt. https://biologischevielfalt.bfn.de/nationale-strategie/ueberblick.html// (letzter Aufruf: 27.05.2020). Google Scholar öffnen
- BMEL (2019a): Diskussionspapier: Ackerbaustrategie 2035. https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/Ackerbaustrategie.pdf;jsessionid=71B6CCF17EB0A336863996ED4A3D5C8E.internet2841?blob=publicationFile&v=13 (letzter Aufruf: 28.05.2020). Google Scholar öffnen
- BMEL (2019b): Agrarpolitischer Bericht der Bundesregierung 2019. BMEL, Berlin. Google Scholar öffnen
- BMEL (2020): GAP-Strategieplan für die Bunderepublik Deutschland. https://www.bmel.de/DE/themen/landwirtschaft/eu-agrarpolitik-und-foerderung/gap/gap-strategieplan.html (letzter Aufruf: 01.10.2020). Google Scholar öffnen
- BMU & BfN (2020): Naturbewusstsein 2019: Bevölkerungsumfrage zu Natur und biologischer Vielfalt. https://www.bmu.de/publikation/naturbewusstsein-2019/ Google Scholar öffnen
- BMU (2019a): Klimaschutzprogramm 2030 der Bundesregierung zur Umsetzung des Klimaschutzplans 2050. BMU Berlin. Google Scholar öffnen
- BMU (2019b): Biologische Vielfalt in Europa. https://www.bmu.de/themen/natur-biologische-vielfalt-arten/naturschutz-biologische-vielfalt/biologische-vielfalt-international/biologische-vielfalt-in-europa/ (letzter Aufruf: 27.05.2020). Google Scholar öffnen
- BMU (2020): EU-Klimapolitik. https://ww.bmu.de/themen/klima-energie/klimaschutz/eu-klimapolitik/ letzter Aufruf: 25.06.2020). Google Scholar öffnen
- Business and Biodiversity Kampagne (o.J.): Aktuelle bundesdeutsche Gesetzgebung. https://www.business-biodiversity.eu/de/biodiversitaet/gesetzliche-regelungen/deutsche-gesetzgebung (abgerufen 28. Mai 2020). Google Scholar öffnen
- Cargill (o.J.): Unseren Planeten schützen: Landnutzung optimieren, Klimalösungen vorantreiben und Wasserressourcen schützen. https://www.cargill.de/de/unseren-planeten-sch%C3%BCtzen (letzter Aufruf: 23.09.2020). Google Scholar öffnen
- DBV (2019a): Klimastrategie 2.0 des Deutschen Bauernverbandes. https://www.bauernverband.de/fileadmin/user_upload/dbv/positionen/Klimastrategie_2.0_2._Auflage_Januar_2019.pdf Google Scholar öffnen
- DBV (2019b): Erklärung zur Artenvielfalt in der Agrarlandschaft. https://www.bauernverband.de/fileadmin/user_upload/dbv/pressemitteilungen/2019/06/2019-06-26_Artenvielfalt_in_der_Agrarlandschaft_Juni_2019.pdf (letzter Aufruf: 04.06.2020). Google Scholar öffnen
- DBV (2019c): Situationsbericht 2019/20: Trends und Fakten zur Landwirtschaft. Deutscher Bauernverband e.V. https://www.bauernverband.de/situationsbericht-19 Google Scholar öffnen
- EDEKA (o.J.): Das EDEKA und WWF-Projekt: Landwirtschaft für Artenvielfalt. https://www.edeka.de/nachhaltigkeit/unsere-wwf-partnerschaft/die-kooperation/landwirtschaft_fuer_artenvielfalt.jsp (letzter Aufruf: 25.09.2020). Google Scholar öffnen
- EDEKA-Verbund (o.J.): Nachhaltiger Klimaschutz. https://www.edeka.de/nachhaltigkeit/unsere-wwf-partnerschaft/klima/index.jsp (letzter Aufruf: 29.07.2020). Google Scholar öffnen
- Europäische Kommission (o.J.): Vom Hof auf den Tisch: Unsere Ernährung, unsere Gesundheit, unser Planet, unsere Zukunft. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu/farm-fork_de (letzter Aufruf: 30.09.2020). Google Scholar öffnen
- Europäische Kommission (2020a): Grüner Deal: Kommission verabschiedet Strategien für biologische Vielfalt und nachhaltige Lebensmittel. https://ec.europa.eu/germany/news/20200520-gruener-deal-biologische-vielfalt-und-lebensmittel_de (letzter Aufruf: 30.09.2020). Google Scholar öffnen
- Europäische Kommission (2020b): Mitteilung der Kommission an das Europäische Parlament, den Rat, den Europäischen Wirtschafts- und Sozialausschuss und den Ausschuss der Regionen: „Vom Hof auf den Tisch“ -eine Strategie für ein faires, gesundes und umweltfreundliches Lebensmittelsystem. https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0003.02/DOC_1&format=PDF (letzter Aufruf: 30.09.2020). Google Scholar öffnen
- FAO (o.J.): Agroecology Knowledge Hub. www.fao.org/agroecology (letzter Aufruf: 30.09.2020). Google Scholar öffnen
- INKOTA (o.J.): Klimawandel: Die Rolle der konventionellen Landwirtschaft. https://www.inkota.de/news/suedlink-zur-agraroekologie-erschienen Google Scholar öffnen
- IPCC (o.J.): https://www.ipcc.ch/srccl/ und https://ipbes.net/global-assessment (letzter Aufruf: 30.09.2020). Google Scholar öffnen
- IVA (2020): Landwirtschaft und Biodiversität – kein Gegensatz. https://www.iva.de/umwelt/biologische-vielfalt (letzter Aufruf: 04.06.2020). Google Scholar öffnen
- NABU (2020): Was hat die Landwirtschaft mit dem Klima zu tun? Forderungen an die Landwirtschaft für mehr Klimaschutz. https://www.nabu.de/natur-und-landschaft/landnutzung/landwirtschaft/klimaschutz/25508.html (letzter Aufruf: 23.07.2020). Google Scholar öffnen
- NABU (o.J.): Wie sollen Europas Äcker und Wiesen in Zukunft bewirtschaftet werden? https://www.nabu.de/natur-und-landschaft/landnutzung/landwirtschaft/agrarpolitik/eu-agrarreform/27386.html (letzter Aufruf: 25.09.2020). Google Scholar öffnen
- Naturschutzinitiative (2017) https://www.naturschutz-initiative.de/naturschutz/biologische-vielfalt/10-forderungen-schutz-biodiversitaet Google Scholar öffnen
- Nestlé (o.J.a): Klimaschutz: Vom Feld bis zum Verbraucher, https://www.nestle.de/verantwortung/planet/klimaschutz (letzter Aufruf: 23.07.2020). Google Scholar öffnen
- Nestlé (o.J.b): Biodiversität in landwirtschaftlichen Lieferketten. https://www.nestle.de/verwantwortung/planet/artenvielfalt/landwirtschaftliche-lieferketten (letzter Aufruf: 25.09.2020) Google Scholar öffnen
- REWE Group (2020): Fortschrittsbericht der REWE Group. https://www.business-and-biodiversity.de/fileadmin/user_upload/documents/Die_Initiative/Fortschrittsbericht/REWE_Group_Fortschrittbericht2018-2020.pdf (letzter Aufruf: 25.09.2020). Google Scholar öffnen
- Schwarz-Gruppe (2019): Verantwortungsvoll handeln. https://jobs.schwarz/wir-als-arbeitgeber/unsere-verantwortung/dokumente/csr-broschuere-deutsch (letzter Aufruf: 29.07.2020). Google Scholar öffnen
- Schwarz-Gruppe (o.J.): Ökosysteme. https://csr.schwarz/nachhaltigkeitsbericht/oekosysteme/ (letzter Aufruf: 25.09.2020). Google Scholar öffnen
- UBA (2018): Deutsche Anpassungsstrategie. https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/anpassung-auf-bundesebene/deutsche-anpassungsstrategie#die-deutsche-anpassungsstrategie-an-den-klimawandel (letzter Aufruf: 27.05.2020). Google Scholar öffnen
- UBA (2020): Umweltbewusstsein in Deutschland. https://www.umweltbundesamt.de/themen/nachhaltigkeit-strategien-internationales/gesellschaft-erfolgreich-veraendern/umweltbewusstsein-in-deutschland (letzter Aufruf: 02.10.2020). Google Scholar öffnen
- Union for Ethical BioTrade (2019): UEBT Biodiversity Barometer. http://www.biodiversitybarometer.org/ (letzter Aufruf: 28.05.2020). Google Scholar öffnen
- VCI (2020): Argumente und Positionen: Agrar und Biodiversität. https://www.vci.de/vci/downloads-vci/top-thema/argumente-positionen-agrar-biodiversitaet.pdf (letzter Aufruf: 25.09.2020). Google Scholar öffnen
- WWF (2019): Vielfalt auf dem Acker: Ansätze für eine nachhaltigere Landwirtschaft in Deutschland. https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF-Studie-Vielfalt-auf-dem-Acker-Zusammenfassung.pdf (letzter Aufruf: 24.09.2020). Google Scholar öffnen





