Wasserstoff-Freisetzungen aus Ausbläsern/Hydrogen releases from exhausts

Bibliographic information


Cover of Volume: Technische Sicherheit Volume 13 (2023), Edition 05-06
No access

Technische Sicherheit

Volume 13 (2023), Edition 05-06


Authors:
, , , , , , , , , ,
Publisher
VDI fachmedien, Düsseldorf
Publication year
2023
ISSN-Online
2191-0073
ISSN-Print
2191-0073

Chapter information


No access

Volume 13 (2023), Edition 05-06

Wasserstoff-Freisetzungen aus Ausbläsern/Hydrogen releases from exhausts


Authors:
,
ISSN-Print
2191-0073
ISSN-Online
2191-0073


Preview:

With increasing production and use of hydrogen, the question arises to what extent established free-jet models are suitable for calculating the release of hydrogen from exhausts with sufficient accuracy in order to be able to make statements on explosion protection based on this. A comparison with experimental investigations shows that thecalculations of models, which e.g. B. are suitable for natural gas, for very light gases may result in larger deviations. Modifications for the integral model by Schatzmann and the empirical model by Chen/Rodi have therefore been developed and compared with experimental investigations. In the case of a delayed ignition of the hydrogen gas cloud, relevant explosion overpressures have been measured in experimental investigations, which should be taken into account in a risk assessment. For this purpose, a calculation approach has been developed in connection with the multi-energy model.

Bibliography


  1. [1] Explosionsschutz-Regeln (EX-RL) DGUV Regel 113–001, Anlage 4: Beispielsammlung (03.2022) Open Google Scholar
  2. [2] Merkblatt DVGW G 442 (M) Explosionsgefährdete Bereiche an Ausblaseöffnungen von Leitungen zur Atmosphäre an Gasanlagen. (2015) Open Google Scholar
  3. [3] https://www.gexcon.com Open Google Scholar
  4. [4] https://www.pronuss.de Open Google Scholar
  5. [5] https://energy.sandia.gov/programs/sustainable-transportation/hydrogen/hydrogen-safety-codes-and-standards/hyram/ Open Google Scholar
  6. [6] W. Houf, R. Schefer: Analytical and experimental investigation of small-scale unintended releases of hydrogen. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 33. S. 1 435-1 444 (2008) Open Google Scholar
  7. [7] M. Schatzmann: An Integral Model of Plume Rise; Atmospheric Environment Vol. 13 (1979), 721–731 Open Google Scholar
  8. [8] M. Schatzmann: Ausbreitung von Propangas – Freistrahlen aus innenliegenden 1“-Sicherheitsventilen von Behältern nach DIN 4680 / 4681; Gutachten im Auftrag des DVFG (1990) Open Google Scholar
  9. [9] M. Schatzmann: Auftriebsstrahlen in natürlichen Strömungen – Entwicklung eines mathematischen Modells; Dissertation Uni. Karlsruhe (1976) Open Google Scholar
  10. [10] B. Schalau, S. Schalau: Freistrahlmodellierung für geringe Austrittsgeschwindigkeiten. Technische Sicherheit 10, Nr. 6, S. 17-21 (2020) Open Google Scholar
  11. [11] W.R. Keagy; A.E. Weller: A Study of Freely Expanding Inhomogeneos Jets. Heat Transfer and Fluid Mech. Inst., Vol 2, pp. 89-98, (1949) Open Google Scholar
  12. [12] Chen, C.J. and Rodi, W.: Vertical turbulent buoyant jets – a review of experimental data. The Science and Applications of Heat and Mass Transfer; Pergamon Press; Vol. 4 (1980) Open Google Scholar
  13. [13] https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/ausbreitungsmodelle-fuer-anlagenbezogene/uebersicht (zuletzt aufgerufen: 17.02.2023) Open Google Scholar
  14. [14] VDI-Richtlinie 3783 Blatt 1, Entwurf: Ausbreitung von störungsbedingten Freisetzungen, Beuth Verlag GmbH (2019) Open Google Scholar
  15. [15] S. Schalau, S. Michel, B. Schalau, T. Schalau: Ein prognostisches Windfeldmodell für die neue VDI-Richtlinie 3783 Blatt 1. Technische Sicherheit 13, Nr. 03-04 (2023) Open Google Scholar
  16. [16] S. Schalau, A. Habib, S. Michel: A Modified k-ε Turbulence Model for Heavy Gas Dispersion in Built-Up Environment. Atmosphere 2023, 14, 161. https://doi.org/10.3390/atmos14010161 Open Google Scholar
  17. [17] D. Miller: Hydrogen Jet Vapor Cloud Explosions: Test data and Comparison with Predictions. 11th Global Congress on Process Safety (2015). Open Google Scholar
  18. [18] K. Takeno, K. Okabayashi, A. Kouchi, T. Nonaka, K. Hashiguchi, K. Chitose: Dispersion and explosion field tests for 40 Mpa pressurized hydrogen. International Journal of Hydrogen Energy 32. S. 2 144-2 153, (2007). Open Google Scholar
  19. [19] J. Daubech, J. Hebrard, S. Jallais, E. Vyazmina, D. Jamois, F. Verbecke: Unignited and ignited high pressure hydrogen releases: Concentration – turbulence mapping and overpressure effects, J. Loss Prev. Process Ind. 36, S. 439-446, (2015). Open Google Scholar
  20. [20] D.B. Willoughby, M. Royle: The interactions of hydrogen jet releases with walls and barriers, Int. J. Hydrogen Energy 36, S. 2 455-2 461, (2011). Open Google Scholar
  21. [21] J. Grune, K. Sempert, M. Kuznetsov, W. Breitung: Experimental study of ignited unsteady hydrogen releases into air. Int. J. Hydrogen Energy 36, S. 2 497-2 504, (2011). Open Google Scholar
  22. [22] A.C. van den Berg: A framework for vapour cloud explosion blast prediction. Journal of Hazardous Materials. 12, S. 1-10, (1985). Open Google Scholar
  23. [23] J. Xiao, J.R. Travis, W. Breitung: Hydrogen release from a high-pressure GH2 reservoir in case of a small leak. 3rd Internat. Conf. on Hydrogen Safety (ICHS 3), Ajaccio, F, September 16 to 18, (2009) Open Google Scholar
  24. [24] E. Ruffin, Y Mouilleau, J Chaineaux: Large scale characterization of the concentration field of supercritical jets of hydrogen and methane. J. Loss Prev. Process lnd. Vol. 9. No. 4. S. 219-284, (1996). Open Google Scholar
  25. [25] S. Jallais, E. Vyazmina, D. Miller, J.K. Thomas: Hydrogen jet vapor cloud explosion: A Model for predicting blast size and application to risk assessment. Process Safety Progress ,Vol. 37, No. 3. S. 397-410 (2018) Open Google Scholar
  26. [26] American Institute of Chemical Engineers, Center for Chemical Process Safety. Guidline for Evaluation the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. 1994 Open Google Scholar
  27. [27] Y. Xu, D. Worthington, A.Oke: CORRECTING THE PREDICTIONS BY BAKER-STREHLOW-TANG (BST) MODEL FOR THE GROUND EFFECT. SYMPOSIUM SERIES NO. 155. Hazards XXI. S. 318-325, IChemE (2009) Open Google Scholar

Citation


Download RIS Download BibTex
No access
You do not have access to this content.