Untersuchung zweier Ringschlitzsonden zur isokinetischen Probenahme von Bioaerosolen an freibelüfteten Offenstallsystemen/Investigation of two ring slot probes for isokinetic sampling of bioaerosols in freely ventilated open barn systems

Table of contents

Bibliographic information


Cover of Volume: Gefahrstoffe Volume 85 (2025), Edition 09-10
No access

Reinhaltung der Luft

Volume 85 (2025), Edition 09-10


Authors:
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Publisher
VDI fachmedien, Düsseldorf
Publication year
2025
ISSN-Online
0949-8036
ISSN-Print
0949-8036

Chapter information


No access

Volume 85 (2025), Edition 09-10

Untersuchung zweier Ringschlitzsonden zur isokinetischen Probenahme von Bioaerosolen an freibelüfteten Offenstallsystemen/Investigation of two ring slot probes for isokinetic sampling of bioaerosols in freely ventilated open barn systems


Authors:
, , ,
ISSN-Print
0949-8036
ISSN-Online
0949-8036


Preview:

The basic suitability of two collection systems with wind direction-independent ring slot probes for the isokinetic sampling of bioaerosols in open-ventilated barn systems was investigated: firstly, in a test channel a newly developed ring slot inlet for a modified emission impinger with subsequent quantification of the collected cells, and secondly, in a cattle barn a standardized E-dust collection device with subsequent fluorometric quantification of the DNA collected. In principle, both devices are suitable for the respective applications. With the E-dust collection head, sampling under isokinetic conditions is only possible at low wind speeds, with the newly developed ring slot probe even in strong winds. Further trials are to follow in order to test the practical suitability of the systems over longer periods of time.

Bibliography


  1. [1] Clauß, M.: Emission von Bioaerosolen aus Tierhaltungsanlagen: Methoden und Ergebnisse verfügbarer Bioaerosoluntersuchungen in und um landwirtschaftliche …, (2020), No.138, Thünen Working Paper. Open Google Scholar
  2. [2] Kotimaa, M. H.; Oksanen, L.; Koskela, P.: Feeding and bedding materials as sources of microbial exposure on dairy farms. Scand J Work Environ Health 17 (1991), Nr. 2, S. 117-122. Open Google Scholar
  3. [3] Hartung, J.; Whyte, R. T.: Erfassung und Bewertung von Luftverunreinigungen in der Nutztierhaltung. Atemwegs-Lungenkr. (1994), Nr. 20, S. 17-25. Open Google Scholar
  4. [4] Heber, A. J.; Stroik, M.; Faubion, J. M. et al.: Size Distribution and Identification of Aerial Dust Particles in Swine Finishing Buildings. Transactions of the ASAE 31 (1988), Nr. 3, S. 882-887. Open Google Scholar
  5. [5] Chien, Y.-C.; Chen, C.-J.; Lin, T.-H. et al.: Characteristics of microbial aerosols released from chicken and swine feces. J Air Waste Manag Assoc 61 (2011), Nr. 8, S. 882-889. Open Google Scholar
  6. [6] VDI 4257 Blatt 2: Bioaerosole und biologische Agenzien – Messen von Emissionen – Probenahme von Bioaerosolen und Abscheidung in Flüssigkeiten, (2011), Berlin. Beuth Verlag. Open Google Scholar
  7. [7] VDI 2066 Blatt 1: Messen von Partikeln – Staubmessung in strömenden Gasen – Gravimetrische Bestimmung der Staubbeladung, (2021), Berlin. Beuth Verlag. Open Google Scholar
  8. [8] Verein Deutscher Ingenieure, VDI-Statusreport „Ausbreitungsmodellierung von Bioaerosolen“. VDI/DIN Kommission Reinhaltung der Luft (KRDL) – Normenausschuss Verein Deutscher Ingenieure (VDI), 2022. Open Google Scholar
  9. [9] VDI 4253 Blatt 3: Erfassen luftgetragener Mikroorganismen und Viren in der Außenluft – Verfahren zum quantitativen kulturellen Nachweis von Bakterien in der Luft – Verfahren nach Abscheidung in Flüssigkeiten, (2019), Berlin. Beuth Verlag. Open Google Scholar
  10. [10] VDI 4253 Blatt 4: Bioaerosole und biologische Agenzien – Bestimmung der Gesamtzellzahl mittels Fluoreszenzanalyse nach Anfärbung mit DAPI, (2013), Berlin. Beuth Verlag. Open Google Scholar
  11. [11] Seedorf, J.; Hartung, J.; Schröder, M. et al.: Concentrations and Emissions of Airborne Endotoxins and Microorganisms in Livestock Buildings in Northern Europe. Journal of Agricultural Engineering Research 70 (1998), Nr. 1, S. 97-109. Open Google Scholar
  12. [12] Chai, T. J.; Chai, J. Q.; Mueller, W.: Airborne microorganisms of a calf stable and spreading to its environment. Chin. J. Prev. Vet. Med 21 (1999), S. 311-313. Open Google Scholar
  13. [13] Predicala, B. Z.; Maghirang, R. G.; Jerez, S. B. et al.: Air quality in swine-finishing barns. Kansas Agricultural Experiment Station Research Reports (2000), Nr. 10, S. 144-149. Open Google Scholar
  14. [14] Kim, K. Y.; Ko, H. J.; Kim, H. T. et al.: Monitoring of aerial pollutants emitted from Swine houses in Korea. Environ Monit Assess 133 (2007), Nr. 1-3, S. 255-266. Open Google Scholar
  15. [15] Pak, H.; King, M.: Impact of seasonal variations on microbiome diversity and antibiotic resistance in aerosolized bacteria in a dairy facility. Journal of Aerosol Science 166 (2022), 106046. Open Google Scholar
  16. [16] Sanz, S.; Olarte, C.; Alonso, C. A. et al.: Identification of Enterococci, Staphylococci, and Enterobacteriaceae from Slurries and Air in and around Two Pork Farms. Journal of Food Protection 81 (2018), Nr. 11, S. 1 776-1 782. Open Google Scholar
  17. [17] Sake, B.; Butenholz, K.; Kempf, K. et al.: Hybrid barn: the switch from a naturally to a mechanically ventilated turkey barn to protect from harmful bioaerosols. Front. Vet. Sci. 12 (2025), 1443139. Open Google Scholar
  18. [18] Tseng, C.-C.; Hsiao, Chang, P.-K.; K.-C. et al.: Optimization of Propidium Monoazide Quantitative PCR for Evaluating Performances of Bioaerosol Samplers for Sampling Airborne Staphylococcus aureus. Aerosol Science and Technology 48 (2014), Nr. 12, S. 1 308-1 319. Open Google Scholar
  19. [19] Kaushik, R.; Balasubramanian, R.: Discrimination of viable from non-viable gram-negative bacterial pathogens in airborne particles using propidium monoazide-assisted qPCR. Sci Total Environ 449 (2013), S. 237-243. Open Google Scholar
  20. [20] Clauß, M.: Ein automatischer Bioaerosolsammler für die kontinuierliche Probenahme von luftgetragenen Mikroorganismen. Gefahrstoffe, Reinhaltung der Luft: air quality control 75 (2015), Nr. 4, S. 133-136. Open Google Scholar
  21. [21] VDI 4258 Blatt 2: Bioaerosole und biologische Agenzien – Herstellung von Prüfbioaerosolen – Anforderungen an Testsysteme, (2019), Berlin. Beuth Verlag. Open Google Scholar
  22. [22] VDI 4258 Blatt 1: Bioaerosole und biologische Agenzien – Herstellung von Prüfbioaerosolen – Grundlagen und Anforderungen an Prüfbioaerosole, (2017), Berlin. Beuth Verlag. Open Google Scholar
  23. [23] BacDive – The Bacterial Diversity Metadatabase, (2024) Staphylococcus xylosus DSM 20266. https://bacdive.dsmz.de/strain/14599. Open Google Scholar
  24. [24] Wikiital.com, (2024) Staphylococcus xylosus. https://de.wikiital.com/wiki/Staphylococcus_xylosus. Open Google Scholar
  25. [25] Laufer, I., Kühne, H., Jäckel, U.: Quantification of DNA in PM10 fraction of aerosols from rural ambient air. Gefahrstoffe 81 (2021), Nr. 09-10, S. 362-367. Open Google Scholar
  26. [26] Frielander, S. K.: Smoke, dust and haze: Fundamentals of aerosol behavior. Wiley, New York, (1977). Open Google Scholar
  27. [27] KTBL, Ermittlung von Emissionsdaten für die Beurteilung der Umweltwirkungen der Nutztierhaltung (EmiDaT). Abschlussbericht, (2024), Darmstadt. Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL). Open Google Scholar

Citation


Download RIS Download BibTex
No access
You do not have access to this content.