Integration von Low-Cost-Modulen in Roboter mit Bildverarbeitung/Low-Cost Robot Vision Modules

Table of contents

Bibliographic information


Cover of Volume: Konstruktion Volume 76 (2024), Edition 10
No access

Organ der VDI-Gesellschaften Produkt- und Prozessgestaltung (VDI-GPP) und Materials Engineering (VDI-GME)

Volume 76 (2024), Edition 10


Authors:
, , ,
Publisher
VDI fachmedien, Düsseldorf
Publication year
2024
ISSN-Online
0720-5953
ISSN-Print
0720-5953

Chapter information


No access

Volume 76 (2024), Edition 10

Integration von Low-Cost-Modulen in Roboter mit Bildverarbeitung/Low-Cost Robot Vision Modules


Authors:
, , ,
ISSN-Print
0720-5953
ISSN-Online
0720-5953


Preview:

Robotic assistance systems are complex and expensive systems. For studies on new applications, however, inexpensive and flexible systems that can be modified would be desirable. This article therefore describes how robots can be assembled from low-cost modules and self-constructed axes. It is shown how the robot control for different kinematics can be developed in a modular manner using function blocks according to PLCopen. A gripper with intelligent cameras is constructed for autonomous gripping. Further function blocks for image processing are developed and integrated into the modular robot control. This means that individual axis groups can be controlled, camera images can be evaluated and sequential fuction charts for movement sequences can be programmed with one programming system. First experiments show possibilities and limitations of the approach.

Bibliography


  1. [1] Miseikis, J., Caroni, P., Duchamp, P., Gasser, A., Marko, R., Miseikiene, N., Zwilling, F., de Castelbajac, F., Eicher, L., Früh, M., Früh, H. (2020). Lio-A Personal Robot Assistant for Human-Robot Interaction and Care Applications. IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5339–5346, doi: 10.1109/LRA.2020.3007462. Open Google Scholar
  2. [2] Ricken, K., Verzano, N. (2020). Cloud Robotik – Ein Kubernetes-basierter Ansatz zu Cloud-Edge Integration. Springer Nature. doi: https://doi.org/10.1365/s40702–020–00672–1 Open Google Scholar
  3. [3] Feldmann, S. (2019). Low Cost Robotics. https://www.igus.eu/robolink/robot Open Google Scholar
  4. [4] Duivon, A., Kirsch, P., Mauboussin, B., Mougard, M., Woszczyk, J, Sanfilippo, F. (2022) The Redesigned Serpens, a Low-Cost, Highly Compliant Snake Robot. Robotics 2022, 11, 42. https://doi.org/10.3390/robotics11020042 Open Google Scholar
  5. [5] PLCopen Technical Committee 2 – Task Force (2008). Function Blocks for motion control: Part 4 –Coordinated Motion. plcopen.org Open Google Scholar
  6. [6] Seitz, M. (2021). Speicherprogrammierbare Steuerungen in der Industrie 4.0, Hanser Vlg., ISBN 978–3–446–46579–4. Open Google Scholar
  7. [7] Corke, P. (2017) Robotics, Vision and Control, 2nd Edition, Springer Tracts in Advanced Robotics. Open Google Scholar
  8. [8] Seitz, M. (2023). SPS-Lern-und-Übungsseite. www.seitz.et.hs-mannheim.de Open Google Scholar
  9. [9] Seitz, M., Khushairi, M., Jürgens, A., Peter, H. (2022). Remote-Engineering und bildgestützte Inbetriebnahme mit einer Web-SPS, ISBN 978–3–910103–00–9, Tagungsband AALE 2022, 18. Fachkonferenz | Pforzheim. Open Google Scholar
  10. [10] Beckhoff (2023). ATRO: Automation Technology for Robotics – der modulare Industrieroboter-Baukasten. www.beckhoff.com/de-de/produkte/motion/atro-automation-technology-for-robotics Open Google Scholar

Citation


Download RIS Download BibTex
No access
You do not have access to this content.