The p-Value Debate and Statistical (Mal)practice – Implications for the Agricultural and Food Economics Community
Table of contents
Bibliographic information

GJAE - German Journal of Agricultural Economics
Volume 72 (2023), Edition 01
- Authors:
- , , , , , , , ,
- Publisher
- dfv Mediengruppe, Frankfurt am Main
- Publication year
- 2023
- ISSN-Online
- 2191-4028
- ISSN-Print
- 2191-4028
Chapter information
Volume 72 (2023), Edition 01
The p-Value Debate and Statistical (Mal)practice – Implications for the Agricultural and Food Economics Community
- Authors:
- , , ,
- ISSN-Print
- 2191-4028
- ISSN-Online
- 2191-4028
- Preview:
A vivid debate is ongoing in the scientific community about statistical malpractice and the related publication bias. No general consensus exists on the consequences and this is reflected in heterogeneous rules defined by scientific journals on the use and reporting of statistical inference. This paper aims at providing an overview on the debate, discussing how it is perceived by the agricultural economics community, and deriving implications for our roles as researchers, contributors to the scientific publication process, and teachers. Following a ‘Mixed Methods Review’, we start by summarizing the current state of the p-value debate in the context of the replication crisis and commonly applied statistical practices in our community. This is followed by motivation, design, results and discussion of an explorative and descriptive survey on statistical knowledge and practice among the researchers in the agricultural economics community in Austria, Germany and Switzerland. Instead of providing specific guidelines or rules, we derive implications for our roles in the scientific process to support a needed long-term cultural change regarding empirical scientific practices. Acceptance of scientific work should largely be based on the theoretical and methodological rigor and where the perceived relevance arises from the questions asked, the methodology employed, and the data used but not from the results generated. Revised and clear journal guidelines, the creation of resources for teaching and research, and public recognition of good practice are suggested measures to move forward. Keywords statistical inference; p-hacking; publication bias; replication crisis; pre-registration DOI: 10.30430/gjae.2023.0231
Bibliography
No match found. Try another term.
- AAEA (Agricultural & Applied Association) (2021): Call for Papers for a Special Issue on ‘Replications in Agricultural Economics’ in Applied Economic Perspectives and Policy. http://blog.aaea.org/2020/09/call-for-papers-for-special-issue-on.html. Call: 28.10.2021. Open Google Scholar
- ACZEL, B., R. HOEKSTRA, A. GELMAN, E.-J. WAGENMAKERS, I.G. KLUGKIST, J.N. ROUDER, J. VANDEKERCKHOVE, M.D. LEE, R.D. MOREY, W. VANPAEMEL, Z. DIENES and D. VAN RAVENZWAAIJ (2020): Discussion points for Bayesian inference. In: Nature Human Behaviour 4 (6): 561-563. Open Google Scholar
- ALBERS, C. (2019): The problem with unadjusted multiple and sequential statistical testing. In: Nature Communications 10 (1): 1921. Open Google Scholar
- ALTMAN, D.G. and J.M. BLAND (1995): Absence of evidence is not evidence of absence. In: BMJ 311 (7003): 485. Open Google Scholar
- AMRHEIN, V., S. GREENLAND and B. MCSHANE (2019): Scientists rise up against statistical significance. In: Nature 567 (7748): 305-307. Open Google Scholar
- AMRHEIN, V., F. KORNER-NIEVERGELT and T. ROTH (2017): The earth is flat (p 0.05): significance thresholds and the crisis of unreplicable research. In: PeerJ 5: e3544. Open Google Scholar
- ANGRIST, J. and J.-S. PISCHKE (2008): Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press, Princeton. Open Google Scholar
- ARPINON, T. and R. ESPINOSA (2022): A Practical Guide to Registered Reports for Economists. Working Paper. https://papers.ssrn.com/sol3/papers.cfm?abstract_id= Open Google Scholar
- ASKAROV, Z., A. DOUCOULIAGOS, H. DOUCOULIAGOS and T.D. STANLEY (2022): The Significance of Data-Sharing Policy. In: Journal of the European Economic Association. Open Google Scholar
- BAKKER, M., C.L.S. VELDKAMP, M.A.L.M. VAN ASSEN, E.A.V. CROMPVOETS, H.H. ONG, B.A. NOSEK, C.K. SODERBERG, D. MELLOR and J.M. WICHERTS (2020): Ensuring the quality and specificity of preregistrations. In: PLOS Biology 18 (12): e3000937. Open Google Scholar
- BANERJEE, A., E. DUFLO, A. FINKELSTEIN, L. KATZ, B. OLKEN and A. SAUTMANN (2020): In Praise of Moderation: Suggestions for the Scope and Use of Pre-Analysis Plans for RCTs in Economics. Working Paper 26993. National Bureau of Economic Researc. Open Google Scholar
- BARKASZI, L., S. KESZTHELYI, E. K. CSATÁRI and C. PESTI (2009): FADN Accountancy Framework and Cost Definitions. FACEPA Deliverable No. D1.1.1 - July 2009. In: http://facepa.slu.se/documents/Deliverable_D1-1-1_ Open Google Scholar
- LEI.pdf. Call: 9.3.2020. Open Google Scholar
- BARREIRO-HURLÉ, J. (2021): Spanish Journal of Agricultural Research Editorial Policy Update: Pre-registration of submissions based on primary data. In: Spanish Journal of Agricultural Research 19 (4): e01105. Open Google Scholar
- BASTARDI, A., E. L. UHLMANN and L. ROSS (2011): Wishful thinking: belief, desire, and the motivated evaluation of scientific evidence. In: Psychological science 22 (6): 731-732. Open Google Scholar
- BEKKERMAN, A. (2015): The role of simulations in econometrics pedagogy. In: Wiley Interdisciplinary Reviews: Computational Statistics 7 (2): 160-165. Open Google Scholar
- BENDTSEN, M. (2018): A Gentle Introduction to the Comparison Between Null Hypothesis Testing and Bayesian Analysis: Reanalysis of Two Randomized Controlled Trials. In: Journal of Medical Internet Research 20 (10): e10873. Open Google Scholar
- BENJAMINI, Y. (2016): It's not the p-values' fault. In: The American Statistician, Online Discussion 70: 1-2. Open Google Scholar
- BINGHAM, E., J.P. CHEN, M. JANKOWIAK, F. OBERMEYER, N. PRADHAN, T. KARALETSOS, R. SINGH, P. SZERLIP, P. HORSFALL and N.D. GOODMAN (2019): Pyro: Deep Universal Probabilistic Programming. In: Journal of Machine Learning Research 20 (1): 973-978. Open Google Scholar
- BLANCO-PEREZ, C. and A. BRODEUR (2020): Publication Bias and Editorial Statement on Negative Findings. In: The Economic Journal 130 (629): 1226-1247. Open Google Scholar
- BRODEUR, A., N. COOK and A. HEYES (2020): Methods Matter: p-Hacking and Publication Bias in Causal Analysis in Economics. In: American Economic Review 110 (11): 3634-3660. Open Google Scholar
- BRODEUR, A., M. LÉ, M. SANGNIER and Y. ZYLBERBERG (2016): Star Wars: The Empirics Strike Back. In: American Economic Journal: Applied Economics 8 (1): 1-32. Open Google Scholar
- BRUNS, S.B., I. ASANOV, R. BODE, M. DUNGER, C. FUNK, S.M. HASSAN, J. HAUSCHILDT, D. HEINISCH, K. KEMPA, J. KÖNIG, J. LIPS, M. VERBECK, E. WOLFSCHÜTZ and G. BUENSTORF (2019): Reporting errors and biases in published empirical findings: Evidence from innovation research. In: Research Policy 48 (9): 103796. Open Google Scholar
- BRUNS, S.B. and M. KALTHAUS (2020): Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking. In: Research Policy 49 (1): 103877. Open Google Scholar
- BUCK, S. (2021): Beware performative reproducibility. In: Nature 595 (7866): 151. Open Google Scholar
- BUTTON, K.S., J.P.A. IOANNIDIS, C. MOKRYSZ, B.A. NOSEK, J. FLINT, E.S.J. ROBINSON and M.R. MUNAFÒ (2013): Power failure: why small sample size undermines the reliability of neuroscience. In: Nature Reviews Neuroscience 14 (5): 365-376. Open Google Scholar
- CAMERER, C.F., A. DREBER, E. FORSELL, T.-H. HO, J. HUBER, M. JOHANNESSON, M. KIRCHLER, J. ALMENBERG, A. ALTMEJD, T. CHAN, E. HEIKENSTEN, F. HOLZMEISTER, T. IMAI, S. ISAKSSON, G. NAVE, T. PFEIFFER, M. RAZEN and H. WU (2016): Evaluating replicability of laboratory experiments in economics. In: Science 351 (6280): 1433-1436. Open Google Scholar
- CHRISTENSEN, G., J. FREESE and E. MIGUEL (2019): Transparent and Reproducible Social Science Research. How to Do Open Science. University of California Press, Berkeley, California. Open Google Scholar
- CHRISTENSEN, G. and E. MIGUEL (2018): Transparency, Reproducibility, and the Credibility of Economics Research. In: Journal of Economic Literature 56 (3): 920-980. Open Google Scholar
- CLEMENS, M.A. (2017): The meaning of failed replications: A review and proposal. In: Journal of Economic Surveys 31 (1): 326-342. Open Google Scholar
- COLQUHOUN, D. (2014): An investigation of the false discovery rate and the misinterpretation of p-values. In: Royal Society Open Science 1 (3): 140216. Open Google Scholar
- DUMOUCHEL, W. and G.J. DUNCAN (1983): Sample Survey Weights in Multiple Regression Analyses of Stratified Samples. In: Journal of the American Statistical Association 78 (383): 535-543. Open Google Scholar
- ELLIOTT, M.R. and R. VALLIANT (2017): Inference for Nonprobability Samples. In: Statistical Science 32 (2): 249-264. Open Google Scholar
- FAUL, F., E. ERDFELDER, A.-G. LANG and A. BUCHNER (2007): G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In: Behavior Research Methods 39 (2): 175-191. Open Google Scholar
- FERRARO, P. J. and P. SHUKLA (2020): Feature—Is a Replicability Crisis on the Horizon for Environmental and Resource Economics? In: Review of Environmental Economics and Policy 14 (2): 339-351. Open Google Scholar
- FERRARO, P.J. and P. SHUKLA (2022): Credibility crisis in agricultural economics. In: Applied Economic Perspectives and Policy. Open Google Scholar
- FISHER, R.A. (1925): Statistical methods for research workers. Oliver and Boyd, Edinburgh. Open Google Scholar
- FRICKER, R.D., K. BURKE, X. HAN and W.H. WOODALL (2019): Assessing the Statistical Analyses Used in Basic and Applied Social Psychology After Their p -Value Ban. In: The American Statistician 73 (sup1): 374-384. Open Google Scholar
- GELMAN, A. (2016): The Problems With P-Values are not Just With P-Values. In: The American Statistician, Online Discussion. Open Google Scholar
- GELMAN, A. and J. CARLIN (2017): Some Natural Solutions to the p -Value Communication Problem—and Why They Won’t Work. In: Journal of the American Statistical Association 112 (519): 899-901. Open Google Scholar
- GEWEKE, J., G. KOOP and H. VAN DIJK (2011): Introduction. In: : The Oxford Handbook of Bayesian Econometrics: 1-8. Open Google Scholar
- GIGERENZER, G. (2004): Mindless statistics. In: The Journal of Socio-Economics 33 (5): 587-606. Open Google Scholar
- GIGERENZER, G. (2018): Statistical Rituals: The Replication Delusion and How We Got There. In: Advances in Methods and Practices in Psychological Science 1 (2): 198-218. Open Google Scholar
- GIOFRÈ, D., G. CUMMING, L. FRESC, I. BOEDKER and P. TRESSOLDI (2017): The influence of journal submission guidelines on authors' reporting of statistics and use of open research practices. In: PLOS ONE 12 (4): e0175583. Open Google Scholar
- GOODMAN, S.N. (2001): Of P-Values and Bayes: A Modest Proposal. In: Epidemiology 12 (3): 295. Open Google Scholar
- GRANT, M.J. and A. BOOTH (2009): A typology of reviews: an analysis of 14 review types and associated methodologies. In: Health information and libraries journal 26 (2): 91-108. Open Google Scholar
- GREENLAND, S. (2019): Valid P -Values Behave Exactly as They Should: Some Misleading Criticisms of P -Values and Their Resolution With S -Values. In: The American Statistician 73 (sup1): 106-114. Open Google Scholar
- GREENLAND, S. (2020): The causal foundations of applied probability and statistics. https://arxiv.org/pdf/2011.02677. Open Google Scholar
- GREENLAND, S., S.J. SENN, K.J. ROTHMAN, J.B. CARLIN, C. POOLE, S.N. GOODMAN and D.G. ALTMAN (2016): Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. In: European Journal of Epidemiology 31 (4): 337-350. Open Google Scholar
- HARVEY, C. (2017): Presidential Address: The Scientific Outlook in Financial Economics. In: The Journal of Finance 72 (4): 1399-1440. Open Google Scholar
- HAVEN, T.L. and L. VAN GROOTEL (2019): Preregistering qualitative research. In: Accountability in Research 26 (3): 229-244. Open Google Scholar
- HECKELEI, T., S. HÜTTEL, M. ODENING and J. ROMMEL (2023): Replication Data for: The p-value debate and statistical (mal)practice - implications for the agricultural and food economics community. GRO.data. Open Google Scholar
- HIRSCHAUER, N. (2021): The debate on p-values and statistical inference: What are the consequences for our community? Problems and solutions in statistical practice. GEWISOLA 2021 Pre-Conference Workshop. Open Google Scholar
- HIRSCHAUER, N., S. GRÜNER, O. MUßHOFF and C. BECKER (2021): A Primer on p-Value Thresholds and α-Levels - Two Different Kettles of Fish. In: German Journal of Agricultural Economics 70 (2): 123-133. Open Google Scholar
- HIRSCHAUER, N., S. GRÜNER, O. MUßHOFF, C. BECKER and A. JANTSCH (2019): Can p-values be meaningfully interpreted without random sampling? In: Statistics Surveys 14: 71-91. Open Google Scholar
- HIRSCHAUER, N., G. SVEN, O. MUSSHOFF, F. ULRICH, T. INSA and W. PETER (2016): Die Interpretation des p-Wertes - Grundsätzliche Missverständnisse. In: Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik) 236 (5): 557-575. Open Google Scholar
- HUNTINGTON‐KLEIN, N., A. ARENAS, E. BEAM, M. BERTONI, J.R. BLOEM, P. BURLI, N. CHEN, P. GRIECO, G. EKPE, T. PUGATCH, M. SAAVEDRA and Y. STOPNITZKY (2021): The influence of hidden researcher decisions in applied microeconomics. In: Economic Inquiry 59 (3): 944-960. Open Google Scholar
- IMBENS, G.W. (2021): Statistical Significance, p -Values, and the Reporting of Uncertainty. In: Journal of Economic Perspectives 35 (3): 157-174. Open Google Scholar
- IOANNIDIS, J.P.A., T.D. STANLEY and H. DOUCOULIAGOS (2017): The Power of Bias in Economics Research. In: The Economic Journal 127 (605): F236-F265. Open Google Scholar
- IONIDES, E.L., A. GIESSING, Y. RITOV and S.E. PAGE (2017): Response to the ASA’s Statement on p -Values: Context, Process, and Purpose. In: The American Statistician 71 (1): 88-89. Open Google Scholar
- KANG, H. (2021): Sample size determination and power analysis using the G*Power software. In: Journal of Educational Evaluation for Health Professions 18. Open Google Scholar
- KRANZ, S. and P. PÜTZ (2022): Methods Matter: p-Hacking and Publication Bias in Causal Analysis in Economics: Comment. In: American Economic Review 112 (9): 3124-3136. Open Google Scholar
- KRUEGER, J.I. and P.R. HECK (2019): Putting the P -Value in its Place. In: The American Statistician 73 (sup1): 122-128. Open Google Scholar
- LEMKEN, D. (2021): The price penalty for red meat substitutes in popular dishes and the diversity in substitution. In: PLOS ONE 16 (6): e0252675. Open Google Scholar
- LOGG, J.M. and C.A. DORISON (2021): Pre-registration: Weighing costs and benefits for researchers. In: Organizational Behavior and Human Decision Processes 167: 18-27. Open Google Scholar
- LOKEN, E. and A. GELMAN (2017): Measurement error and the replication crisis. In: Science 355 (6325): 584-585. Open Google Scholar
- MARGARIAN, A. (2022): Beyond P-Value-Obsession: When are Statistical Hypothesis Tests Required and Appropriate? In: German Journal of Agricultural Economics 71 (4): 213-226. Open Google Scholar
- MCCLOSKEY, D.N. and S.T. ZILIAK (1996): The Standard Error of Regressions. In: Journal of Economic Literature 34 (1): 97-114. Open Google Scholar
- MERVIS, J. (2014): Research Transparency. Why null results rarely see the light of day. In: Science 345 (6200): 992. Open Google Scholar
- NEUENFELDT, S. and A. GOCHT (2014): Integrating Econometric and Mathematical Programming Models into an Amendable A Handbook on the use of FADN Database in Programming Models. Thünen Working Paper No. 35. https://literatur.thuenen.de/digbib_extern/dn054328.pdf. Open Google Scholar
- NEYMAN, J. and E.S. PEARSON (1933): On the problem of the most efficient tests of statistical hypotheses. In: Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 231 (694-706): 289-337. Open Google Scholar
- O’BOYLE, E.H., G.C. BANKS and E. GONZALEZ-MULÉ (2017): The Chrysalis Effect. In: Journal of Management 43 (2): 376-399. Open Google Scholar
- OAKS, M. (1986): Statistical inference: A commentary for the social and behavioral sciences. Wiley, New York. Open Google Scholar
- OLKEN, B.A. (2015): Promises and Perils of Pre-Analysis Plans. In: Journal of Economic Perspectives 29 (3): 61-80. Open Google Scholar
- PÜTZ, P. and S.B. BRUNS (2021): The (Non‐)Significance of Reporting Errors In Economics: Evidence from Three Top Journals. In: Journal of Economic Surveys 35 (1): 348-373. Open Google Scholar
- RAHWAN, Z., E. YOELI and B. FASOLO (2019): Heterogeneity in banker culture and its influence on dishonesty. In: Nature 575 (7782): 345-349. Open Google Scholar
- ROMANO, J.P., A.M. SHAIKH and M. WOLF (2010): Multiple Testing. In: The New Palgrave Dictionary of Economics 4. Open Google Scholar
- ROMMEL, J. and M. WELTIN (2021): Is There a Cult of Statistical Significance in Agricultural Economics? In: Applied Economic Perspectives and Policy 43 (3): 1176-1191. Open Google Scholar
- SCHOOLER, J.W. (2014): Metascience could rescue the 'replication crisis'. In: Nature 515 (7525): 9. Open Google Scholar
- SERRA-GARCIA, M. and U. GNEEZY (2021): Nonreplicable publications are cited more than replicable ones. In: Science Advances 7 (21). Open Google Scholar
- SMITH, T.M.F. (1983): On the Validity of Inferences from Non-random Sample. In: Journal of the Royal Statistical Society. Series A (General) 146 (4): 394. Open Google Scholar
- STEEGEN, S., F. TUERLINCKX, A. GELMAN and W. VANPAEMEL (2016): Increasing Transparency Through a Multiverse Analysis. In: Perspectives on psychological science : a journal of the Association for Psychological Science 11 (5): 702-712. Open Google Scholar
- VAN DE MEENT, J.-W., B. PAIGE, H. YANG and F. WOOD (2018): An Introduction to Probabilistic Programming. In: https://arxiv.org/pdf/1809.10756. Open Google Scholar
- VERHULST, B. (2016): In Defense of P Values. In: AANA journal 84 (5): 305-308. Open Google Scholar
- WASSERSTEIN, R.L. and N.A. LAZAR (2016): The ASA Statement on p -Values: Context, Process, and Purpose. In: The American Statistician 70 (2): 129-133. Open Google Scholar
- WASSERSTEIN, R.L., A.L. SCHIRM and N.A. LAZAR (2019): Moving to a World Beyond “ p < 0.05”. In: The American Statistician 73 (sup1): 1-19. Open Google Scholar
- WEHRDEN, H. von, J. SCHULTNER and D.J. ABSON (2015): A call for statistical editors in ecology. In: Trends in Ecology and Evolution 30 (6): 293-294. Open Google Scholar
- YOUNG, C. and K. HOLSTEEN (2017): Model Uncertainty and Robustness. In: Sociological Methods & Research 46 (1): 3-40. Open Google Scholar
- ZILIAK, S. and D. MCCLOSKEY (2008): The Cult of Statistical Significance. How the Standard Error Costs Us Jobs, Justice, and Lives. University of Michigan Press, Ann Arbor, MI. Open Google Scholar
- ZILIAK, S.T. and D.N. MCCLOSKEY (2004): Size matters: the standard error of regressions in the American Economic Review. In: The Journal of Socio-Economics 33 (5): 527-546. Open Google Scholar