Big Data in der Forschung! Big Data in der Lehre? Ein Vorschlag zur Erweiterung der bestehenden Methodenausbildung
Table of contents
Bibliographic information

Full access
Journal of Political Science
Volume 24 (2014), Edition 1-2
- Authors:
- | | | | | | | | | | | | | |
- Publisher
- Nomos, Baden-Baden
- Publication year
- 2014
- ISSN-Online
- 1430-6387
- ISSN-Print
- 1430-6387
Chapter information
Full access
Volume 24 (2014), Edition 1-2
Big Data in der Forschung! Big Data in der Lehre? Ein Vorschlag zur Erweiterung der bestehenden Methodenausbildung
- Authors:
- ISSN-Print
- 1430-6387
- ISSN-Online
- 1430-6387
- Preview:
Bibliography
No match found. Try another term.
- Barberá, Pablo, im Erscheinen: Birds of the Same Feather Tweet Together. Bayesian Ideal Point Estimation Using Twitter Data, in: Political Analysis. Open Google Scholar
- Blätte, Andreas, 2014: Das parlamentarische Diskursverhalten von Abgeordneten und die Kohäsion der Bundestagsfraktion 1996-2013: Plenarprotokollkorpora als Grundlage von Wordscore und Wordfish. Vortrag bei der Jahrestagung der Sektion Methoden der Politikwissenschaft am 24. Mai an der Universität Duisburg-Essen. Open Google Scholar
- Bonica, Adam, 2013: Mapping the Ideological Marketplace, in: American Journal of Political Science 58 (2), 367-386. Open Google Scholar
- Chen, Xi/Nordhaus, William D., 2011: Using luminosity data as a proxy for economic statistics, in: Proceedings of the National Academy of Sciences 108 (21), 8589-8594. Open Google Scholar
- Döring, Holger/Regel, Sven, 2014: Data collection 2.0: Ein moderner Parteien-Almanach. Vortrag bei der Jahrestagung der Sektion Methoden der Politikwissenschaft am 24. Mai an der Universität Duisburg-Essen. Open Google Scholar
- Grimmer, Justin, 2010: A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases, in: Political Analysis 18 (1), 1-35. Open Google Scholar
- Grimmer, Justin/Stewart, Brandon M., 2013: Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts, in: Political Analysis 21 (3), 267-297. Open Google Scholar
- Henderson, Vernon/Storeygard, Adam/Weil, David N., 2011: A Bright Idea for Measuring Economic Growth, in: The American Economic Review 101 (3), 194-199. Open Google Scholar
- Hopkins, Daniel/King, Gary, 2010: A Method of Automated Nonparametric Content Analysis for Social Science, in: American Journal of Political Science 54 (1), 229-247. Open Google Scholar
- King, Gary, 2011: Ensuring the Data-Rich Future of the Social Sciences, in: Science 331 (11), 719-721. Open Google Scholar
- King, Gary/Pan, Jennifer/Roberts, Margaret E., 2013: How censorship in China allows government criticism but silences collective expression, in: American Political Science Review 107 (2), 326-343. Open Google Scholar
- King, Gary, 2014: Restructuring the Social Sciences: Reflections from Harvard’s Institute for Quantitative Social Science, in: PS: Political Science & Politics 47 (1), 165-172. Open Google Scholar
- Kuhn, Patrick M./Weidmann, Nils B., im Erscheinen: Unequal We Fight: Between- And Within-Group Inequality And Ethnic Civil War, in: Political Science Research and Methods. Open Google Scholar
- Laney, Doug, 2001: 3D management: Controlling data volume, velocity, and variety, in: Application Delivery Strategies, META Group, Inc., 6. Februar. Open Google Scholar
- Laver, Michael/Benoit, Kenneth/Garry, John, 2003: Extracting Policy Positions from Political Texts Using Words as Data, in: American Political Science Review 97 (2), 311-331. Open Google Scholar
- Linzer, Drew A., 2013: Dynamic Bayesian Forecasting of Presidential Elections in the States, in: Journal of the American Statistical Association 108 (501), 124-134. Open Google Scholar
- Mellon, Jonathan, 2013: Where and When Can We Use Google Trends to Measure Issue Salience?, in: PS: Political Science & Politics 46 (2), 280-290. Open Google Scholar
- Monroe, Burt L., 2013: The Five Vs of Big Data Political Science, in: Political Analysis, Virtual Issue on Big Data in Political Science, 1-9. Open Google Scholar
- Munzert, Simon/Rubba, Christian/Meißner, Peter/Nyhuis, Dominic, im Erscheinen: Automated Data Collection with R. A Practical Guide to Web Scraping and Text Mining. Hoboken, NJ. Open Google Scholar
- Norvig, Peter, 2001: Teach Yourself Programming in Ten Years, http://norvig.com/21-days.html (Stand: 05.08.14). Open Google Scholar
- Nyhuis, Dominic/Faas, Thorsten, 2014: Capturing real-time political evaluations using Twitter. Vortrag bei der Jahrestagung der Sektion Methoden der Politikwissenschaft am 23. Mai an der Universität Duisburg-Essen. Open Google Scholar
- Shaw, Aaron/Hill, Benjamin M., 2014: Laboratories of Oligarchy? How the Iron Law Extends to Peer Production, in: Journal of Communication 64 (2), 215-238. Open Google Scholar
- Silver, Nate, 2012: Special Coverage: The 2012 Presidential Election. FiveThirtyEight, http://fivethirtyeight.blogs.nytimes.com/2012/11/06/live-blog-the-2012-presidential-election/ (Stand: 25.07.14). Open Google Scholar
- Slapin, Jonathan B./ Proksch, Sven-Oliver, 2008: A Scaling Model for Estimating Time-Series Party Positions from Texts, in: American Journal of Political Science 52 (3), 705-722. Open Google Scholar
- Squire, Peverill, 1988: Why the 1936 Literary Digest Poll Failed, in: Public Opinion Quarterly 52 (1), 125-133. Open Google Scholar