Mikrobiologische Bewertung technischer Wassersysteme in Abluftreinigungsanlagen von Schweinemastbetrieben/Microbiological assessment of technical water systems in exhaust air purification systems at pig farms

Table of contents

Bibliographic information


Cover of Volume: Gefahrstoffe Volume 85 (2025), Edition 09-10
No access

Reinhaltung der Luft

Volume 85 (2025), Edition 09-10


Authors:
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Publisher
VDI fachmedien, Düsseldorf
Publication year
2025
ISSN-Online
0949-8036
ISSN-Print
0949-8036

Chapter information


No access

Volume 85 (2025), Edition 09-10

Mikrobiologische Bewertung technischer Wassersysteme in Abluftreinigungsanlagen von Schweinemastbetrieben/Microbiological assessment of technical water systems in exhaust air purification systems at pig farms


Authors:
, , ,
ISSN-Print
0949-8036
ISSN-Online
0949-8036


Preview:

Air purification systems in pig-fattening farms provide favorable conditions for the growth of potentially pathogenic microorganisms such as Legionella pneumophila, due to moderate temperatures, high nutrient availability, and water stagnation. Previous studies have already shown that both the process water and the emitted clean air can pose a health risk. The drinking water used to supply these systems has been suspected as a potential source of Legionella contamination; however, comprehensive investigations have so far been lacking. This study addresses this gap, with a particular focus on emergency showers that would be fed from the same water source. If not flushed regularly, the emergency showers may contribute not only to the introduction of Legionella into the air purification systems but also pose a direct occupational health risk: the release of Legionella-containing aerosols during use. In two pig-fattening farms, freshwater and shower samples were analyzed using immunomagnetic separation combined with flow cytometry (IMS-FCM) and a so-called standard addition quantitative PCR (SA-qPCR). Legionella – including viable L. pneumophila – was detected in all samples, with partly significantly higher concentrations found in emergency showers compared to the corresponding freshwater. These results point to a previously underestimated health hazard for farm personnel and provide indications of possible sources for the presence of Legionella in the clean air of the air purification systems. As a relevant occupational safety measure, it is recommended documented in order to effectively minimize Legionella exposure during daily operations. On-site analysis using IMS-FCM proved to be an effective tool for rapid microbiological assessment to identify sources of health hazards in unparalleled response time.

Bibliography


  1. [1] Strohmaier, J.C.L.: Exhaust Air Treatment Systems for the Mitigation of Dust, Ammonia and Odour from Poultry Housing. Doctoral dissertation. Rheinische Friedrich-Wilhelm-University, Bonn, 2020. Open Google Scholar
  2. [2] Hahne, J.: Die Situation in Der Schweinehaltung. Institut für Agrartechnologie. https://www.thuenen.de/de/themenfelder/klima-und-luft/abluftreinigung-in-tierstaellen/die-situation-in-der-schweinehaltung (Zugriff am 11. Juni 2025) Open Google Scholar
  3. [3] DLG – Deutsche Landwirtschafts-Gesellschaft, Merkblatt 483. Hinweise Zum Betrieb von Abluftreinigungsanlagen Für Die Schweinehaltung, 2023. Open Google Scholar
  4. [4] DGUV – Deutsche Gesetzliche Unfallversicherung, Information 204-022 „Erste Hilfe im Betrieb“, 2017. Open Google Scholar
  5. [5] Technische Regel für Gefahrstoffe: Laboratorien (TRGS 526). Ausg. 2/2008. GMBl. (2008) Nr. 15, S. 294 Open Google Scholar
  6. [6] Bundesamt für Justiz. Verordnung über Sicherheit und Gesundheitsschutz bei der Verwendung von Arbeitsmitteln (Betriebssicherheitsverordnung – BetrSichV), 2025. Open Google Scholar
  7. [7] DIN – Deutsches Institut für Normung e. V. Sicherheitsnotduschen – Teil 5: Körperduschen über Kopf mit Wasser Für andere Standorte als Laboratorien; Deutsche Fassung EN 15154-5:2019, 2019. Open Google Scholar
  8. [8] Walser, S.M.; Brenner, B.; Wunderlich, A.; Tuschak, C.; Huber, S.J.; Kolb, S.; Niessner, R.; Seidel, M.; Höller, C.; Herr, C.: Detection of legionella-contaminated aerosols in the vicinity of a bio-trickling filter of a breeding sow facility – a pilot study. Sci. Total Environ. 575, 1 197-1 202, 2017. Open Google Scholar
  9. [9] Schwaiger, G.; Matt, M.; Bromann, S.; Clauß, M.; Elsner, M.; Seidel, M. Rapid: Quantification of Legionella in Agricultural Air Purification Systems from Fattening Pig Houses with Culture-Independent Methods. International Journal of Hygiene and Environmental Health, 266, 114547, 2025. Open Google Scholar
  10. [10] VDI – Verein Deutscher Ingenieure, Richtlinie VDI 4250 Blatt 2 Bioaerosole und Biologische Agenzien – Beurteilung der Gefährdung durch Legionellenhaltige Aerosole aus Sicht des Umweltbezogenen Gesundheitsschutzes und der Prävention; VDI/DIN-Kommission Reinhaltung der Luft (KRdL) – Normenausschuss. https://www.beuth.de/de/-/-/298483564 (Zugriff 11 Juni 2025). Open Google Scholar
  11. [11] Kiwull, B.; Wunderlich, A.; Herr, C. E. W.; Nießner, R.; Seidel, M. Bioaerosolkammer für Legionellenhaltige Duschaerosole. Gefahrstoffe – Reinhaltung der Luft, 76 (9-September), 344-350, 2016. Open Google Scholar
  12. [12] Mouchtouri, V. A.; Goutziana, G.; Kremastinou J.; Hadjichristodoulou, C.: Legionella species colonization in cooling towers: risk factors and assessment of control measures, Am. J. Infect. Control, 38(1), 50-55, 2010. Open Google Scholar
  13. [13] Paranjape, K.; Bédard, É.; Whyte, L. G.; Ronholm, J.; Prévost, M; Faucher, S. P.: Presence of Legionella spp. in cooling towers: The role of microbial diversity, Pseudomonas, and continuous chlorine application, Water Res., 169, 115252, 2020. Open Google Scholar
  14. [14] Crook, B.; Willerton, L.; Smith, D.; Wilson, L.; Poran, V.; Helps, J.; McDermott, P.: Legionella risk in evaporative cooling systems and underlying causes of associated breaches in health and safety compliance, Int. J. Hyg. Environ. Health, 224, 113425, 2020. Open Google Scholar
  15. [15] DIN – Deutsches Institut für Normung. Wasserbeschaffenheit – Zählung von Legionellen, DIN EN ISO 11731:2019-03, 2019. Open Google Scholar
  16. [16] Schwaiger, G.; Matt, M.; Streich, P.; Bromann, S.; Clauß, M.; Elsner, M.; Seidel, M.: Standard Addition Method for Rapid, Cultivation-Independent Quantification of Legionella pneumophila Cells by qPCR in Biotrickling Filters. Analyst, 149 (10), 2 978-2 987, 2024. Open Google Scholar
  17. [17] Heining L.; Welp, L.; Hugo A.; Elsner M.; Seidel, M.: Immunomagnetic separation coupled with flow cytometry for the analysis of Legionella pneumophila in aerosols, Anal. Bioanal. Chem., 415, 5 139-5 149, 2023. Open Google Scholar
  18. [18] Pang S.; Cowen, S.: A generic standard additions based method to determine endogenous analyte concentrations by immunoassays to overcome complex biological matrix interference, Sci. Rep., 7(1), 17542, 2017. Open Google Scholar
  19. [19] Bundesamt für Justiz. Trinkwasserverordnung (TrinkwV). BGBI. I Nr. 159, S. 2. 2023. https://www.gesetze-im-internet.de/trinkwv_2023/TrinkwV.pdf (Zugriff am 15 Juni 2025). Open Google Scholar

Citation


Download RIS Download BibTex
No access
You do not have access to this content.