@book{2025:syed:hybride_mo, title = {Hybride Modellierung für die Vorhersage und Überwachung des Wachstums von Mikroalgen}, year = {2025}, note = {Microalgae hold significant potential for biofuel, biomaterial, and bio-based chemical production, necessitating advanced modeling approaches for optimizing cultivation. This dissertation evaluates machine learning (ML) models, specifically Long Short-Term Memory (LSTM) and Support Vector Regression (SVR), against traditional Monod and Haldane models for predicting microalgae growth under varying light conditions in outdoor flat-panel airlift photobioreactors. Contents Abbreviations IX 1. Introduction 1 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4. Overview of the dissertation . . . . . . . . . . . . . . . . . . . . 6 2. Literature Review 9 2.1. Factor affecting the microalgae growth . . . . . . . . . . . . . . 9 2.1.1. Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2. Nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3. Temperature . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4. pH . . . . . . . . . . . . . . . . . . . . . . . ...}, edition = {1}, publisher = {VDI Verlag}, address = {Düsseldorf}, series = {Rechnerunterstützte Verfahren}, volume = {482}, author = {Syed, Tehreem} }