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ZUSAMMENFASSUNG Lange Rustzeiten beeintréchti-
gen die CNC-Werkzeugherstellung durch reduzierte Flexibilitat,
niedrige Maschinenauslastung und gesteigerten Planungs-
aufwand, was Lieferverzogerungen und Produktionsengpéasse
begiinstigt. Okonomisch binden sie Kapital, erhéhen die
Produktionskosten, limitieren die Auftragsflexibilitat, treiben
Lagerkosten hoch und lassen Marktchancen ungenutzt.
Erklarbare KI-Modelle konnen durch die Analyse von Prozess-
daten Muster in langen Rustzeiten identifizieren und Anhalts-
punkte flr Verbesserungen transparent aufzeigen und somit
die Effizienz steigern und Kosten reduzieren.
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1 Motivation

Die deutsche Produktionstechnik ist gepragt vom Mittelstand
mit spezialisierten Produkten und daher von hoher Variantenviel-
falt und geringen Stiickmengen [1-3]. Dies stellt die klassische
Kiinstliche Intelligenz (KI), die im Wesentlichen auf der statisti-
schen Auswertung extrem grofier Datenmengen beruht [4], vor
Herausforderungen. Machine Learning Modelle erzielen im
Bereich der Bildverarbeitung sowie in weiteren Bereichen grofle
Erfolge, zum Beispiel der Spracherkennung. Derzeit funktionie-
ren solche Modelle nur sehr eingeschrankt bei kleinen Daten-
sitzen, das heiflt bei Datensitzen mit einer kleinen Anzahl an
Stichproben mit hochdimensionalen Merkmalen [5].

Die Herausforderungen fiir die Produktion kundenspezifischer
Produkte sind grof, insbesondere fiir qualitativ hochwertige
Produkte. Hinsichtlich der Einhaltung von Qualititsparametern
besteht die Schwierigkeit darin, dass viele Faktoren Einfluss auf
die Riistzeit haben. So beeinflussen sowohl die Bauteile und deren
Beschaffenheit (geometrische Mafle, Abweichungen, Legierungen
etc.) als auch die Parametereinstellungen der Produktionsmaschi-
nen die Riistzeit. Auch die Kombination verschiedener Faktoren
konnen zu hohen Riistzeiten fithren, obwohl ein Faktor allein
unkritisch wire. Die Stiickzahlen bei Spezialprodukten sind in
der Regel klein, wihrend die Kombinationsmdoglichkeiten der
Faktoren einen groflen Parameterraum bilden. Zudem ist die
spezifische Auslegung der Produktion aufwendig [6] Die Mini-
mierung von Riistzeiten fiir eine maximale Maschinenauslastung
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Explainable Al approaches for setup
time optimization in CNC tool
manufacturing - Artificial intelligence
and production control

ABSTRACT Long set-up times impair CNC tool production
due to reduced flexibility, lower machine utilization and increa-
sed planning effort, which promotes delivery delays and
production bottlenecks. Economically, they tie up capital,
increase production costs, limit order flexibility, drive up stora-
ge costs and leave market opportunities untapped. By analy-
zing process data, explainable Al models can identify patterns
in long set-up times and transparently highlight points for im-
provement, thereby increasing efficiency and reducing costs.

und die Vermeidung von Qualititsmingeln sind entscheidende
Stellschrauben bei Produktionskosten fiir den Produktionsstand-
ort Deutschland [1, 6—8].

Die Wirkzusammenhinge der komplexen Produktionsprozesse
sind hiufig nur unvollstindig abgebildet und verstanden. Daten-
intensive Modellierungsverfahren aus dem Bereich der KI mit
dem Spezialgebiet des maschinellen Lernens bieten eine vielver-
sprechende Moglichkeit Korrelationen aufzudecken und Kausal-
zusammenhinge zu beschreiben [1].

Ziel dieser Arbeit ist es daher, Verfahren der KI speziell vor
dem Hintergrund der Produktionstechnik zu testen. Im Rahmen
eines exemplarischen Anwendungsfalles der Herstellung von
CNC-Spezialwerkzeuge durch einen CNC-Schleifprozess werden
Problemstellungen der Produktionstechnik erdrtert.

Die Optimierung der Riistzeiten von Schleifmaschinen zur
Herstellung von CNC-Werkzeugen, wie beispielsweise hochprizi-
se NutstoBwerkzeuge, ist ein entscheidender Faktor fir die
betriebliche Effizienz und die Produktionskapazitit [9] Langere
Riistzeiten fithren zu nicht produktiv nutzbaren Ressourcen, was
die Reaktionsfihigkeit auf die Marktnachfrage beeintrichtigt und
sich moglicherweise auf die finanzielle Leistungsfihigkeit aus-
wirkt [10]. Als Reaktion auf diese Herausforderung versucht die
Industrie kontinuierlich, ihre Riistverfahren zu verbessern, um
schnell zwischen verschiedenen Produktvarianten wechseln zu
konnen, ohne die Produktqualitit zu beeintrichtigen [11]. Die
inhdrente Komplexitit von Rustprozessen fithrt jedoch hiufig zu
Schwierigkeiten bei der Rationalisierung und Optimierung von
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Ablaufen [12]. Tn dieser Arbeit wird ein datengesteuertes Ent-
scheidungsmodell prisentiert, das erklirbare KI nutzt, um die
Rustzeiten von Schleifmaschinen zu verbessern [13]. Das Modell
zielt darauf ab, die komplizierten Beziehungen zwischen verschie-
denen Riistparametern zu entschliisseln, um
Verstindnis und eine Optimierung dieser Prozesse zu erlauben
[14]. Durch die Identifizierung von Engpéssen und gezielte Ver-

ein besseres

besserungen zielt das vorgeschlagene Modell darauf ab, die Riist-
zeiten erheblich zu reduzieren, die Produktivitit zu steigern und
zur wirtschaftlichen Nachhaltigkeit des Anwendungspartners in
der Industrie beizutragen [15].

In den nachfolgend beschriebenen Abschnitten werden Metho-
den der Erklirbaren KI behandelt und ein spezifisches KI-
gestiitztes Modell vorgestellt, einschlieflich seiner Entwicklung
und praktischen Anwendung. Zudem werden potenzielle Einsatz-
gebiete beleuchtet und zukiinftige Forschungsansitze zur Opti-
mierung der Riistzeiten in Schleifmaschinenprozessen diskutiert.

2 Erklarbare Kl

In komplexen betrieblichen Kontexten wird oft auf nichtlinea-
re Machine Learning Modelle zuriickgegriffen, um mehrdimen-
sionale Beziehungen abzubilden [16]. Die Interpretation der Ent-
scheidungsfindung in solchen Modellen ist jedoch nicht immer
intuitiv [17]. Zur Losung dieses Problems wurden Methoden ent-
wickelt, die die Nachvollziehbarkeit der Schlussfolgerungen nicht-
linearer Modelle verbessern. Diese Ansitze, bekannt unter dem
Sammelbegriff Erklarbare KI, fokussieren sich insbesondere auf
die Analyse der Merkmalswichtigkeit und die Zuschreibung von
Einfliissen auf spezifische Merkmale.

Bisher wurden die Konzepte der Merkmalswichtigkeit und der
Merkmalszuordnung in der Regel unabhingig voneinander be-
handelt. Im Folgenden werden beide Ansitze detailliert erldutert:
+ Die Bewertung der Merkmalswichtigkeit zielt darauf ab, den

Einfluss einzelner Merkmale auf die Ergebnisse eines Vorher-

sagemodells zu bestimmen. Eine Methode ist der Vergleich

der Modellleistung mit und ohne das betreffende Merkmal,

um dessen Beitrag unter Einbeziehung aller moglichen Wech-
selwirkungen zu bewerten. Eine weitere Methode misst die
Auswirkungen auf die Vorhersagegenauigkeit bei zufilliger

Modifikation eines Merkmals. Dariiber hinaus existieren

modellspezifische Techniken fiir die Ermittlung der Merkmals-

wichtigkeit, wie sie bei Entscheidungsbaumen und Support-
Vektor-Maschinen Anwendung finden. [18, 19]

+ Die Merkmalszuweisung bewertet den spezifischen Beitrag
eines Merkmals zur Vorhersage eines Modells. Dabei wird
untersucht, inwiefern eine Veranderung des Merkmals die Vor-
hersage beeinflusst. In linearen Modellen wird dieser Beitrag
durch die Koeffizienten dargestellt. Bei nichtlinearen Modellen
kann die Merkmalszuweisung mittels partieller Abhangigkeits-
diagramme oder durch lokal interpretierbare, modellunabhén-
gige Erklirungen erfolgen, um den Einfluss eines Merkmals
auf die Vorhersage zu quantifizieren. [13, 20]

Die SHAP-Wert-Methode vereint die Konzepte der Merkmals-

wichtigkeit und -zuweisung, um die Entscheidungsfindung in

Vorhersagemodellen transparent zu machen, indem sie Vorher-

sagen in einzelne Merkmalsbeitrige, die sogenannten SHAP-

Werte, aufgliedert. Sie basiert auf der Kombination aus lokalen

Modellerkldrungen wund spieltheoretischen Prinzipien, wobei

SHAP-Werte individuell fiir jede Beobachtung innerhalb eines
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Merkmalsvektors berechnet werden [21]. Diese Methode erlaubt
eine detaillierte Analyse sowohl auf lokaler als auch auf globaler
Ebene und findet in dieser Arbeit Anwendung, um komplexe Zu-
sammenhinge zwischen Produktionsparametern und der Riistzeit
in dem nachfolgenden beschrieben Fertigungssystem zu ent-
schliisseln.

3 Erklarbares Prognosemodell

In diesem Abschnitt wird ein auf Daten basierendes Prognose-
modell entworfen, um die Riistzeiten in der Produktion zu redu-
zieren. Dabei wird zunichst ein Produktionsumfeld skizziert, die
Problemstellung dargelegt und anschliefend die Spezifikationen
des Modells formuliert. In diesem Abschnitt wird ein KI-basiertes
Modell zur Entscheidungsunterstiitzung entwickelt, mit dem Ziel,
die Riistzeiten in der Fertigung zu reduzieren, insbesondere beim
Einrichten von Schleifmaschinen. Zunichst wird eine formale
Werkstattumgebung definiert, um anschlieffend das Problem der
Riistzeitineffizienz zu umreiffen und die detaillierten Spezifika-
tionen des Modells zu liefern.

3.1 Rahmenbedingungen des Produktionsumfeld

Das Produktionsumfeld umfasst zehn Gruppen von Arbeits-
plitzen, organisiert nach den spezifischen Produktfamilien, die sie
fertigen. Im Fokus der Betrachtung steht eine Gruppe, ausgestat-
tet mit CNC-gesteuerten 5-Achsen-Friasmaschinen. Diese Fris-
maschinen wurden vom Anwendungspartner aus der Industrie so
modifiziert, dass sie zum Schleifen statt zum Frisen verwendet
werden.

In dem Produktionsumfeld werden sequenzielle Prozesse ana-
lysiert, wobei jeder durch spezifische Parameter charakterisiert
wird, die potenziell auf die Riistzeit Einfluss nehmen. Das Ge-
samtergebnis dieser Prozesse wird anhand der Riistzeiten bewer-
tet. Der Riistvorgang wird als Gesamtheit aller Schritte definiert,
die notig sind, um eine Maschine von der Produktion des letzten
guten Stiicks eines Auftrags auf die Produktion des ersten guten
Stiicks des nichsten Auftrags umzustellen (siehe Gleichung 1)
[22]. Dies umfasst Aktivititen wie den Austausch von Werkzeu-
gen und Formen, Reinigungsarbeiten, die Anpassung von Maschi-
neneinstellungen sowie das Be- und Entladen von Rohlingen.

Gesamtriistzeit = X (Zeit fiir jede einzelne Ristaufgabe) (1)

In dem Produktionsumfeld werden Produktionsparameter wie
Wartungsdaten, Produktionsdaten, Sensorikdaten, Maschinen-
daten, Maschinenparameter, Werkzeugdaten und Produktdaten
erzeugt. Ein Datenmodell in Form eines Entity-Relationship-
Diagramms bildet die Beziehungen zwischen diesen Datentypen
ab und ermoglicht so eine effiziente Datenverwaltung und -analy-
se.

Das Fertigungssystem generiert Daten zu Produktionspara-
metern x und Riistzeitergebnisse y. Insgesamt gibt es j = /,..., N
Produktionsparameter und i = /,...M Messwerte (Rﬁstvor-

ginge).
3.2 Problembeschreibung

Ziel ist es, Kombinationen von Produktionsparametern N mit
langen Riistvorgingen M zu vermeiden. Es gibt Kombinationen
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Bild 1. Beispiel flr die zu erwartende Ristzeit vor und nach der Verbesserung. Grafik: ESB Business School, Reutlingen University

aber auch Abfolgen aufeinander, welche die Systemleistung, das
heiflt die Gesamtzeit des Riistvorgangs, wesentlich beeinflussen.
Dieses Ziel steht im Einklang mit der Qualititsmanagement-
theorie zur Verringerung von Riistzeiten, die vorschligt, die Ursa-
chen der Variation anzugehen [11, 23-25].

In der Praxis fiihrt jeder Riistvorgang zu Ergebnissen, die eine
unterschiedliche Dauer aufweisen. Fiir die Zwecke dieser Diskus-
sion gehen wir davon aus, dass kiirzere Riistzeiten wiinschens-
wert sind. Die Streuung um den Mittelwert der Riistzeit liefert
ein Maf} fiir die potenzielle Verbesserung des Systems. Wenn es
Schwankungen bei den Riistzeiten gibt, besteht die Moglichkeit,
aus schnelleren Rustzeiten zu lernen (Verteilungsanfang) und
langsamere zu vermeiden (Verteilungsende) siehe die Verteilung
in Bild 1.

Dabher ist das Ziel in einem Produktionsumfeld die Riistzeiten
vom rechten Ende Verteilung zu dem linken Start der Verteilung
zu verschieben. Das kann erreicht werden, wenn die Produktions-
parameterkombinationen, welche fiir Schwankungen der Gesamt-
riistzeiten verantwortlich sind, vermieden werden. Hierdurch
kann implizit die durchschnittliche Riistdauer verringert werden.

Ein Vorgehen hierbei kann sein, zunichst die Prozesse zu
identifizieren, die das grofite Verbesserungspotenzial bieten, und
dann Verbesserungsmafinahmen lediglich fiir diese ausgewdhlten
Prozesse und Parameter zu definieren. Die Umsetzung von Ver-
besserungsmafinahmen hingt von den spezifischen Eigenschaften
der Produktionsparameter ab. Bei einigen Produktionsparametern
ist es moglich, die absoluten Werte direkt anzupassen. Wenn bei-
spielsweise die Temperatur in einem bestimmten Prozess einen
Einfluss auf die Prozessqualitit hat, konnte eine Verbesserungs-
mafinahme darin bestehen, die Temperaturniveaus zu justieren.
Allerdings lassen sich in manchen Prozessen die Produktions-
parameter nicht direkt verindern.

3.3 Modell Definition

Ausgangspunkt fiir das Modell sind historische Fertigungs-
daten {<a>(x'y")}!,. Basierend auf diesen Daten wird ein nichtli-
neares Modell f erlernt, dass die Zusammenhinge zwischen
Produktionsparametern x” und der Riistzeit y nachbildet. Das
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Modell f: RN — R basiert auf einem, das auf Grundlage vergan-
gener Beobachtungen der Produktionsparameter und Riistzeiten
geschitzt wird.

Dies kann ein beliebiges Vorhersagemodell f sein, das hoch-
dimensionale und nichtlineare Beziehungen emulieren kann (zum
Beispiel Entscheidungsbaum-Verfahren, neuronale Netze). Das
Modell fwird mit dem Ziel geschitzt, den Fehler zwischen der
wahren und der geschitzten Riistzeiten zu minimieren,

()

wobei ¢ eine konvexe Verlustfunktion ist (zum Beispiel mittlerer
quadratischer Fehler). Wenn f'gut spezifiziert ist, erhalten wir ein
Metamodell der Prozesse, das erklirt, wie verschiedene Produkti-
onsparameter und die Riistzeit zusammenhingen.

m;n E [{’ (y,f(x))]

Die zugrundeliegenden Beziehungen im Produktionsumfeld
berechnen wir tiber die SHAP-Wert-Methode [21]. Konkret ver-
wenden wir SHAP-Werte, um zu erkldren, wie sich die geschitzte
Riistzeit dndert, wenn der Effekt eines Produktionsparameters
weggelassen wird. Hierbei erklirt die SHAP-Wert-Methode das
Modell f lokal bei jeder Beobachtung i. Die Erklirung erfolgt
formal durch additive Merkmalszuweisungen, die sich zur Aus-
gabe des Metamodells aufsummieren. In unserem Kontext gibt
ein SHAP-Wert die geschitzte Abweichung von der erwarteten
Ristzeit E[f(x)] an, die einem beobachteten Produktionspara-
meter x() zugeschrieben werden kann. Negative SHAP-Werte
deuten auf eine Verringerung, positive auf eine Erhohung der ge-
schitzten Riistzeit hin. Je grofer der absolute SHAP-Wert, desto
grofler die geschitzte Veranderung in der Ristzeit. Die Berech-
nung von SHAP-Werten wird fiir alle Beobachtungen wiederholt
und liefert so Merkmalszuweisungen.

Die SHAP-Wert-Methode garantiert drei Eigenschaften:

- Fehlzuweisung,

— Konsistenz,

- und lokale Genauigkeit.

In dem vorliegenden Kontext gewihrleistet die Fehlzuweisung,
dass abwesende Produktionsparameter keine Merkmalszuweisung
erhalten. Konsistenz ist erforderlich, um sinnvolle Vergleiche von
Merkmalszuweisungen tiber Produktionsparameter hinweg zu er-
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Bild 2. Histogramm der Normalisierten Ristzeit.
Grafik: ESB Business School, Reutlingen University

moglichen. Lokale Genauigkeit gewihrleistet, dass sich die Merk-
malszuweisungen zur Modellausgabe aufsummieren und somit
eine Schitzung der Verianderungen in der Riistzeit liefern.

4 Anwendung in der
CNC-Werkzeugherstellung

Die Herstellung von CNC-Werkzeugen umfasst in der Regel
mehrere miteinander verbundene Prozesse, deren Durchfithrung
Minuten bis Stunden in Anspruch nimmt. Aufgrund der hohen
Komplexitit, welche sich durch die Toleranzen des zu fertigenden
Werkzeugs ergeben, ist es eine Herausforderung, die treibenden
Faktoren der Riistzeit zu identifizieren.

Daher stehen Lohnfertiger beziehungsweise Werkzeugherstel-
ler hiufig vor erheblichen Engpissen in der Produktion. Die Eng-
piasse konnen durch die belegten Maschinen, wie aber auch im
Zuge des Fachkriftemangels durch die Facharbeiter kommen,
welche in langen Riistprozessen gebunden sind. Vor diesem Hin-
tergrund verspricht die Verbesserung der Riistzeit eine bedeuten-
de wirtschaftliche Auswirkung zu haben.

Der Anwendungspartner ist ein deutsches KMU, welches
fithrend in der Produktion von Sonder- und Standardwerkzeugen
ist. Das Ziel der Zusammenarbeit ist zum einen die Zusammen-
hinge und Muster von unvorteilhaft langen Riistzeiten transpa-
rent aufzuzeigen und zum anderen eine bessere Handlungsalter-
native vorzuschlagen beispielsweise in Form einer anderen zu
priferierende Maschine fiir das zu produzierende spezifische Pro-
dukt zu wihlen.

4.1. Historische Daten

Der Anwendungspartner hat dem Autorenteam historische
Daten von M=1875 Riistvorginge bereitgestellt. Jeder Riistvor-
gang ist beschrieben von N = 144 Produktionsparametern von
K = 8 verschiedenen Maschinen.

Das Unternehmen schiitzte vertrauliche Informationen, indem
es die Riistzeit zwischen 0 und 100 skaliert:

Y= [ggxm ( 3)

'umax_ 'umin
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Durch diese Normalisierung bleibt das Verteilungsmuster erhal-
ten, wodurch dennoch die tatsichlich erzielten Verbesserungen
angeben kénnen.

4.2 Deskriptive Statistik

Die Verteilung der normalisierten Riistzeit unserer Trainings-
daten ist in Bild 2 dargestellt.

Die durchschnittliche normalisierte Riistzeit liegt bei 28,01
(Standardabweichung von 22,95). Ungefahr 50 % der Riistpro-
zesse haben eine normalisierte Riistzeit von iiber 21,87. Laut un-
serem Industriepartner konnen Riistzeiten mit einer normalisier-
ten Riistzeit von mehr als 22,00 als verbesserungswiirdig einge-
stuft werden, da diese die vorgegebene Sollzeit nicht einhalten.

In Bezug auf den vorliegenden Datensatz entspricht dies in et-
wa 45 % der Ristprozesse. Das Ziel des hier prisentierten Mo-
dells besteht darin, Parameterkombinationen zu vermeiden, wel-
che dem rechten Teil der Verteilung zugehorig sind. Die Tabelle
listet beispielhafte Produktionsparameter auf, die in den Herstel-
lungsprozessen erfasst wurden.

Aus Griinden der Vertraulichkeit bezieht sich das Autorenteam
spiter nur auf die anonymisierten Produktionsparameter x(). Im
Allgemeinen unterscheidet man zwischen Produktionsparametern
auf Prozess- und Produktebene. Prozessparameter beschreiben
maschinenbezogene Eigenschaften (zum Beispiel der in einer
Maschine gemessene durchschnittliche Druck), wihrend sich
Produktparameter auf die physischen Produkteigenschaften wih-
rend der Herstellung beziehen.

4.3 Implementierungsinformation des Modells

Das Metamodell wird auf der Grundlage aller Produktionspa-
rameter und der normalisierten Riistzeit mithilfe von ,XGBoost“
geschitzt [26]. XGBoost gehort zur Kategorie der Boosting-
Baum-Ensemble-Algorithmen, die fiir ihre gute Leistung bei kom-
plexen Datensitzen bekannt sind und bereits in anderen betriebli-
chen Anwendungen eingesetzt wurden [16, 27]. Im vorliegenden
Kontext finden giingige Verfahren Anwendung, wobei die Daten
in einen Trainingssatz (80 % der Daten) zur Schitzung von Para-
metern und einen Holdout-Satz (20 %) zur Bewertung der Mo-
dellierungsleistung unterteilt werden. Der Trainingssatz enthilt
1500 Ristprozesse und der Holdout-Satz enthilt 375 Riistpro-
zesse. Das Metamodell wird ausschlie8lich auf der Grundlage des
Trainingssatzes trainiert und abgestimmt (Rastersuche mit
Kreuzvalidierung fiir die Optimierung der Hyperparameter). Be-
rechnet werden die Merkmalszuordnungen aller Produktionspa-
rameter mit der Baumimplementierung der SHAP-Wertmethode
(zu Einzelheiten siehe [21]).

5 Ergebnisse

Die Bestimmung des prognostizierten Behandlungseffekts er-
folgt durch statistische Analysen historischer Riistprozesse im
Holdout-Set. Um eine Uberanpassung zu vermeiden, muss der
prognostizierte Behandlungseffekt fiir die ausgewdhlten Verbesse-
rungsmafinahmen auf Beobachtungen beruhen, die nicht in die
Schitzung des Modells f" selbst eingeflossen sind. Zu diesem
Zweck werden die 375 Riistprozesse im Holdout-Set betrachtet.
Der Boxplot zeigt die normalisierte Riistzeit von den Beobach-
tungen aus dem Holdout-Set, welche auf den prognostizierten
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Tabelle. Beispielhafte Produktionsparameter.

Beschreibung Produktionsparameter “

Schleifdorn x101
Rohlingsdicke x202
Ahnlichkeitskoeffzient x203
Maschinenstérungen Anzahl x301

Normalisierte Riistzeit

0 10 20 30 40 50 60 70 80 90 100

Ohne Modell [ l——————————————{ ccococooscoocns

Mit Modell ||

Bild 3. Prognostizierter Effekt durch das Modell.
Grafik: ESB Business School, Reutlingen University

Kombinationen des Modells geriistet werden wiirden mit den Da-
ten, welche kein Modell hatten. Die Lange der Whisker ist durch
den 1,5er Interquartilsbereich gegeben, und das 50 %-Quantil ist
als Linie hervorgehoben.

Der Boxplot zeigt, dass durch das Modell die normalisierte
Riistzeit reduziert werden kann. Es sind vor allem zwei Dinge er-
sichtlich. Erstens werden Ausreifler reduziert, welche zu langen
Riistzeiten fithren. Zweitens wird hierdurch der Mittlere Wert der
Riistzeit reduziert. Die Riistzeiten mit Modell betragen im Durch-
schnitt 6 % niedrigere Werte. Der hochgerechnete Behandlungs-
effekt ergibt sich aus dem mittleren Unterschied im normalisier-
ten Ertrag, der sich auf 6 Einheiten belduft.

Bei 375 Riistvorgingen sind das bereits 2250 Einheiten, wo-
mit 160 mehr Riistvorginge in derselben Zeit, mit denselben Ma-
schinen, etc. absolviert werden kénnen. Das ermoglicht eine fle-
xiblere Produktionsplanung. Erste Schitzungen gehen von iiber
11500 mehr Riistvorgingen im Jahr aus, lediglich in der einen
betrachteten Arbeitsplatzgruppe.

Eine Analyse historischer Beobachtungen reicht nicht aus, um
nachzuweisen, dass das Modell auch in Zukunft wirksam sein
wird. Daher wird ein lingeres Feldexperiment bei dem Industrie-
partner vorgenommen.

5.1 Gesamtbedeutung von Erklarbaren KI-Ansatzen

Im vorherigen Abschnitt wurde davon ausgegangen, dass dem
Modell gefolgt worden ist in der Anwendung der Parameterkom-
bination. Forschung zeigt aber, dass die Mitarbeiter skeptisch ge-
gentiber einem KI-Modell sein kénnen. Die Autoren legen beson-
deren Wert auf die Vermittlung der Erkenntnis, dass die Parame-
ter die Riistzeit beeinflussen und ihre Werte diese in positiver
oder negativer Weise beeinflussen kénnen.

Hierdurch kann generell unternehmensweit ein neues Prozess-
verstindnis entwickelt werden, dass fiir Optimierungen genutzt
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Bild 4. Gesamtbedeutung der Parameter und Verteilung der SHAP-Werte.
Grafik: ESB Business School, Reutlingen University

werden kann. Bild 4 zeigt die Verteilung der Werte des jeweiligen
Parameters, den Einfluss auf die Riistzeit sowie ob hohere oder
niedrige Werte positive oder negative Einfliisse erzeugen. Solche
Musterzusammenhinge koénnen in Schulungen, in der Ausbil-
dung, in Shopfloor Meetings oder auch bei Qualititsproblemen
unterstiitzen.
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Bild 5. Beispiel fiir eine Vorhersage der Ristzeit an Maschine 1. Grafik: ESB Business School, Reutlingen University

5.2 Prognose von Riistzeiten
anhand Produktionskombinationen

Es ist geplant, dass der Arbeiter die Vorhersage fiir die Riist-
zeit fiir die niachste Produktionsart fiir alle verfiigbaren Maschi-
nen angezeigt bekommt. Die angezeigte Vorhersage ist in Bild 5
fiir eine Maschine dargestellt.

Der Werker bekommt diese Vorhersage beispielsweise fiir vier
verfiigbare Maschinen angezeigt. Er kann dann frei wihlen, an
welcher Maschine er riisten mochte. Durch die angezeigte Vor-
hersagezeit sowie die Parameter erhilt er entscheidende Informa-
tionen, warum eine Maschine besser geeignet ist als die andere.
Zum Beispiel kann der Parameter x,,, die Matrize sein, die be-
reits in der Maschine montiert ist. Wenn das folgende Produkt
mit der gleichen Matrize hergestellt werden kann, kann der Ar-
beiter 11 normalisierte Minuten fiir das Einrichten einsparen. Bei
anderen Maschinen miisste er zum Beispiel die Matrize wechseln.

Das Entscheidungsmodell sagt eine normalisierte Riistzeit von
39,87 Minuten voraus. Durch die Visualisierung wird deutlich,
welche Parameter die Riistzeit sowohl positiv als auch negativ be-
einflussen. Zum Beispiel liegt der Mittelwert der Riistzeit aus der
Datenverteilung bei 58 Minuten. Der Basiswert. Der Parameter
X4 reduziert die Riistzeit um 11 Minuten. Andere Parameter wie
X, ethohen die Ristzeit.

6 Zusammenfassung und Ausblick

In diesem Beitrag wird ein innovatives KI-Modell vorgestellt,
das darauf abzielt, die Riistzeiten in der CNC-Werkzeugherstel-
lung zu reduzieren. Durch die Analyse von Produktionskombina-
tionen identifiziert das Modell spezifische Muster, die zu langen
Riistzeiten beitragen, und nutzt diese Erkenntnisse, um effiziente
Riiststrategien zu entwickeln. Dadurch wird eine Reduktion der
Ristzeiten erreicht, was zu einer Steigerung der Produktions-
leistung und einer Reduzierung der Kosten fiihrt.

Das KI-Modell erméglicht eine Verringerung der Riistzeiten
um etwa 6 %, was zu einer Steigerung der Produktivitit und ei-
ner Senkung der Betriebskosten fiithrt. Allein durch diese Reduk-
tion kénnen im Jahr betrachtet voraussichtlich 11500 zusitzliche
Riistvorginge durchgefiihrt werden aufgrund der dadurch zusitz-
lich zur Verfiigung stehenden Zeit. Die verbesserte Vorhersage-
genauigkeit des Algorithmus optimiert die Produktionsplanung
und -steuerung und erméglicht eine hohere Flexibilitat sowie eine
bessere Anpassung an die Kundenbediirfnisse. Wenn die zusitz-
lich zu Verfiigung stehende Zeit genutzt werden kann, um Pro-
dukte zu produzieren, gehen wir von einem zusitzlichen Mehr-
umsatz bei gleichbleibenden Fixkosten im 6-stelligen Beriech bei
nur einer Arbeitsplatzgruppe aus.
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Die positiven Ergebnisse unterstreichen das Potenzial erklar-
barer KI in der CNC-Werkzeugherstellung zur Riistzeitoptimie-
rung. Zukiinftige Forschungen sollten die Genauigkeit von KI-
Prognosen verbessern, die Integration in Planungssysteme voran-
treiben und benutzerfreundliche Schnittstellen entwickeln, um
KI-Entscheidungen verstiandlicher zu machen.

Der Beitrag prisentiert ein Entscheidungsmodell, das auf Da-
tenanalyse basiert, um Riistzeiten in der Produktion zu reduzie-
ren. Das Modell zeichnet sich durch seine Fihigkeit aus, komple-
xe und nichtlineare Produktionsdaten zu verarbeiten und bietet
gleichzeitig Transparenz iiber die Bedeutung verschiedener Para-
meter. Dies ermoglicht es Herstellern, Priorititen fiir Prozessopti-
mierungen zu setzen, was zu Riistzeitverbesserungen fithren
kann.

Das Modell hat Grenzen, da es auf Korrelationen aufbaut, die
ohne klare Kausalitit zu Fehlinterpretationen fithren kénnen. Zu-
dem sind Erklirungsmethoden nachtriglich angreifbar, was die
Wichtigkeit der Einbeziehung von Experten in den Entwicklungs-
prozess unterstreicht, um solche Schwachstellen zu adressieren.

Das vorgestellte Entscheidungsmodell ermoglicht eine effizien-
te Integration in die Produktionsplanung und liefert neue Ein-
sichten aus bestehenden Daten. Es ist generisch gestaltet, benotigt
lediglich Produktionsparameter und reduziert Riistzeiten durch
optimierte Produktionskombinationen. Die Wirksamkeit dieses
Ansatzes wird durch die Kombination aus nichtlinearer Modellie-
rung und SHAP-Werten aus dem Bereich der erkldrbaren KI be-
statigt. Das Design des Modells verspricht breite Anwendbarkeit
in datenreichen Fertigungsumgebungen und erdffnet neue Mog-
lichkeiten fiir den Einsatz von erklirbarer KI in Produktions-
planung und -steuerung.
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