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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Erklärbare KI-Ansätze zur Rüstzeitoptimierung in der CNC-Werkzeugherstellung

Künstliche Intelligenz  
und Produktionssteuerung
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Z U S A M M E N FA S S U N G  Lange Rüstzeiten beeinträchti-
gen die CNC-Werkzeugherstellung durch reduzierte Flexibilität, 
niedrige Maschinenauslastung und gesteigerten Planungs -
aufwand, was Lieferverzögerungen und Produktionsengpässe 
 begünstigt. Ökonomisch binden sie Kapital, erhöhen die 
 Produktionskosten, limitieren die Auftragsflexibilität, treiben 
Lagerkosten hoch und lassen Marktchancen ungenutzt. 
 Erklärbare KI-Modelle können durch die Analyse von Prozess-
daten Muster in langen Rüstzeiten identifizieren und Anhalts-
punkte für Verbesserungen transparent aufzeigen und somit 
die Effizienz steigern und Kosten reduzieren.

Explainable AI approaches for setup  
time optimization in CNC tool  
manufacturing – Artificial intelligence  
and production control

A B ST R A C T  Long set-up times impair CNC tool production 
due to reduced flexibility, lower machine utilization and increa-
sed planning effort, which promotes delivery delays and 
 production bottlenecks. Economically, they tie up capital, 
 increase production costs, limit order flexibility, drive up stora-
ge costs and leave market opportunities untapped. By analy-
zing process data, explainable AI models can identify patterns 
in long set-up times and transparently highlight points for im-
provement, thereby increasing efficiency and reducing costs.

1 Motivation

Die deutsche Produktionstechnik ist geprägt vom Mittelstand 
mit spezialisierten Produkten und daher von hoher Variantenviel-
falt und geringen Stückmengen [1-3]. Dies stellt die klassische 
Künstliche Intelligenz (KI), die im Wesentlichen auf der statisti-
schen Auswertung extrem großer Datenmengen beruht [4], vor 
Herausforderungen. Machine Learning Modelle erzielen im 
 Bereich der Bildverarbeitung sowie in weiteren Bereichen große 
Erfolge, zum Beispiel der Spracherkennung. Derzeit funktionie-
ren solche Modelle nur sehr eingeschränkt bei kleinen Daten -
sätzen, das heißt bei Datensätzen mit einer kleinen Anzahl an 
Stichproben mit hochdimensionalen Merkmalen [5].

Die Herausforderungen für die Produktion kundenspezifischer 
Produkte sind groß, insbesondere für qualitativ hochwertige 
 Produkte. Hinsichtlich der Einhaltung von Qualitätsparametern 
 besteht die Schwierigkeit darin, dass viele Faktoren Einfluss auf 
die Rüstzeit haben. So beeinflussen sowohl die Bauteile und deren 
Beschaffenheit (geometrische Maße, Abweichungen, Legierungen 
etc.) als auch die Parametereinstellungen der Produktionsmaschi-
nen die Rüstzeit. Auch die Kombination verschiedener Faktoren 
können zu hohen Rüstzeiten führen, obwohl ein Faktor allein 
 unkritisch wäre. Die Stückzahlen bei Spezialprodukten sind in 
der Regel klein, während die Kombinationsmöglichkeiten der 
Faktoren einen großen Parameterraum bilden. Zudem ist die 
 spezifische Auslegung der Produktion aufwendig [6]. Die Mini-
mierung von Rüstzeiten für eine maximale Maschinenauslastung 

und die Vermeidung von Qualitätsmängeln sind entscheidende 
Stellschrauben bei Produktionskosten für den Produktionsstand-
ort Deutschland [1, 6-8].

Die Wirkzusammenhänge der komplexen Produktionsprozesse 
sind häufig nur unvollständig abgebildet und verstanden. Daten-
intensive Modellierungsverfahren aus dem Bereich der KI mit 
dem Spezialgebiet des maschinellen Lernens bieten eine vielver-
sprechende Möglichkeit Korrelationen aufzudecken und Kausal-
zusammenhänge zu beschreiben [1].

Ziel dieser Arbeit ist es daher, Verfahren der KI speziell vor 
dem Hintergrund der Produktionstechnik zu testen. Im Rahmen 
eines exemplarischen Anwendungsfalles der Herstellung von 
CNC-Spezialwerkzeuge durch einen CNC-Schleifprozess werden 
Problemstellungen der Produktionstechnik erörtert.

Die Optimierung der Rüstzeiten von Schleifmaschinen zur 
Herstellung von CNC-Werkzeugen, wie beispielsweise hochpräzi-
se Nutstoßwerkzeuge, ist ein entscheidender Faktor für die 
 betriebliche Effizienz und die Produktionskapazität [9]. Längere 
Rüstzeiten führen zu nicht produktiv nutzbaren Ressourcen, was 
die Reaktionsfähigkeit auf die Marktnachfrage beeinträchtigt und 
sich möglicherweise auf die finanzielle Leistungsfähigkeit aus-
wirkt [10]. Als Reaktion auf diese Herausforderung versucht die 
Industrie kontinuierlich, ihre Rüstverfahren zu verbessern, um 
schnell zwischen verschiedenen Produktvarianten wechseln zu 
können, ohne die Produktqualität zu beeinträchtigen [11]. Die 
inhärente Komplexität von Rüstprozessen führt jedoch häufig zu 
Schwierigkeiten bei der Rationalisierung und Optimierung von 
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Abläufen [12]. In dieser Arbeit wird ein datengesteuertes Ent-
scheidungsmodell präsentiert, das erklärbare KI nutzt, um die 
Rüstzeiten von Schleifmaschinen zu verbessern [13]. Das Modell 
zielt darauf ab, die komplizierten Beziehungen zwischen verschie-
denen Rüstparametern zu entschlüsseln, um ein besseres 
 Verständnis und eine Optimierung dieser Prozesse zu erlauben 
[14]. Durch die Identifizierung von Engpässen und gezielte Ver-
besserungen zielt das vorgeschlagene Modell darauf ab, die Rüst-
zeiten erheblich zu reduzieren, die Produktivität zu steigern und 
zur wirtschaftlichen Nachhaltigkeit des Anwendungspartners in 
der Industrie beizutragen [15].

In den nachfolgend beschriebenen Abschnitten werden Metho-
den der Erklärbaren KI behandelt und ein spezifisches KI-
 gestütztes Modell vorgestellt, einschließlich seiner Entwicklung 
und praktischen Anwendung. Zudem werden potenzielle Einsatz-
gebiete beleuchtet und zukünftige Forschungsansätze zur Opti-
mierung der Rüstzeiten in Schleifmaschinenprozessen diskutiert. 

2 Erklärbare KI

In komplexen betrieblichen Kontexten wird oft auf nichtlinea-
re Machine Learning Modelle zurückgegriffen, um mehrdimen-
sionale Beziehungen abzubilden [16]. Die Interpretation der Ent-
scheidungsfindung in solchen Modellen ist jedoch nicht immer 
intuitiv [17]. Zur Lösung dieses Problems wurden Methoden ent-
wickelt, die die Nachvollziehbarkeit der Schlussfolgerungen nicht-
linearer Modelle verbessern. Diese Ansätze, bekannt unter dem 
Sammelbegriff Erklärbare KI, fokussieren sich insbesondere auf 
die Analyse der Merkmalswichtigkeit und die Zuschreibung von 
Einflüssen auf spezifische Merkmale.

Bisher wurden die Konzepte der Merkmalswichtigkeit und der 
Merkmalszuordnung in der Regel unabhängig voneinander be-
handelt. Im Folgenden werden beide Ansätze detailliert erläutert:
• Die Bewertung der Merkmalswichtigkeit zielt darauf ab, den 

Einfluss einzelner Merkmale auf die Ergebnisse eines Vorher-
sagemodells zu bestimmen. Eine Methode ist der Vergleich  
der Modellleistung mit und ohne das betreffende Merkmal,  
um dessen Beitrag unter Einbeziehung aller möglichen Wech-
selwirkungen zu bewerten. Eine weitere Methode misst die 
Auswirkungen auf die Vorhersagegenauigkeit bei zufälliger 
Modifikation eines Merkmals. Darüber hinaus existieren 
 modellspezifische Techniken für die Ermittlung der Merkmals-
wichtigkeit, wie sie bei Entscheidungsbäumen und Support-
Vektor-Maschinen Anwendung finden. [18, 19]

• Die Merkmalszuweisung bewertet den spezifischen Beitrag 
 eines Merkmals zur Vorhersage eines Modells. Dabei wird 
 untersucht, inwiefern eine Veränderung des Merkmals die Vor-
hersage beeinflusst. In linearen Modellen wird dieser Beitrag 
durch die Koeffizienten dargestellt. Bei nichtlinearen Modellen 
kann die Merkmalszuweisung mittels partieller Abhängigkeits-
diagramme oder durch lokal interpretierbare, modellunabhän-
gige Erklärungen erfolgen, um den Einfluss eines Merkmals 
auf die Vorhersage zu quantifizieren. [13, 20]

Die SHAP-Wert-Methode vereint die Konzepte der Merkmals-
wichtigkeit und -zuweisung, um die Entscheidungsfindung in 
Vorhersagemodellen transparent zu machen, indem sie Vorher -
sagen in einzelne Merkmalsbeiträge, die sogenannten SHAP-
 Werte, aufgliedert. Sie basiert auf der Kombination aus lokalen 
Modellerklärungen und spieltheoretischen Prinzipien, wobei 
SHAP-Werte individuell für jede Beobachtung innerhalb eines 

Merkmalsvektors berechnet werden [21]. Diese Methode erlaubt 
eine detaillierte Analyse sowohl auf lokaler als auch auf globaler 
Ebene und findet in dieser Arbeit Anwendung, um komplexe Zu-
sammenhänge zwischen Produktionsparametern und der Rüstzeit 
in dem nachfolgenden beschrieben Fertigungssystem zu ent-
schlüsseln.

3 Erklärbares Prognosemodell

In diesem Abschnitt wird ein auf Daten basierendes Prognose-
modell entworfen, um die Rüstzeiten in der Produktion zu redu-
zieren. Dabei wird zunächst ein Produktionsumfeld skizziert, die 
Problemstellung dargelegt und anschließend die Spezifikationen 
des Modells formuliert. In diesem Abschnitt wird ein KI-basiertes 
Modell zur Entscheidungsunterstützung entwickelt, mit dem Ziel, 
die Rüstzeiten in der Fertigung zu reduzieren, insbesondere beim 
Einrichten von Schleifmaschinen. Zunächst wird eine formale 
Werkstattumgebung definiert, um anschließend das Problem der 
Rüstzeitineffizienz zu umreißen und die detaillierten Spezifika-
tionen des Modells zu liefern.

3.1 Rahmenbedingungen des Produktionsumfeld

Das Produktionsumfeld umfasst zehn Gruppen von Arbeits-
plätzen, organisiert nach den spezifischen Produktfamilien, die sie 
fertigen. Im Fokus der Betrachtung steht eine Gruppe, ausgestat-
tet mit CNC-gesteuerten 5-Achsen-Fräsmaschinen. Diese Fräs -
maschinen wurden vom Anwendungspartner aus der Industrie so 
modifiziert, dass sie zum Schleifen statt zum Fräsen verwendet 
werden.

In dem Produktionsumfeld werden sequenzielle Prozesse ana-
lysiert, wobei jeder durch spezifische Parameter charakterisiert 
wird, die potenziell auf die Rüstzeit Einfluss nehmen. Das Ge-
samtergebnis dieser Prozesse wird anhand der Rüstzeiten bewer-
tet. Der Rüstvorgang wird als Gesamtheit aller Schritte definiert, 
die nötig sind, um eine Maschine von der Produktion des letzten 
guten Stücks eines Auftrags auf die Produktion des ersten guten 
Stücks des nächsten Auftrags umzustellen (siehe Gleichung 1) 
[22]. Dies umfasst Aktivitäten wie den Austausch von Werkzeu-
gen und Formen, Reinigungsarbeiten, die Anpassung von Maschi-
neneinstellungen sowie das Be- und Entladen von Rohlingen.

Gesamtrüstzeit = Σ (Zeit für jede einzelne Rüstaufgabe) (1)

In dem Produktionsumfeld werden Produktionsparameter wie 
Wartungsdaten, Produktionsdaten, Sensorikdaten, Maschinen -
daten, Maschinenparameter, Werkzeugdaten und Produktdaten 
erzeugt. Ein Datenmodell in Form eines Entity-Relation  ship-
 Diagramms bildet die Beziehungen zwischen diesen Datentypen 
ab und ermöglicht so eine effiziente Datenverwaltung und -analy-
se.

Das Fertigungssystem generiert Daten zu Produktions para -
metern x und Rüstzeitergebnisse y. Insgesamt gibt es j = 1,…, N 
 Produktionsparameter und i = 1,…,M Messwerte (Rüstvor -
gänge).

3.2 Problembeschreibung

Ziel ist es, Kombinationen von Produktionsparametern N mit 
langen Rüstvorgängen M zu vermeiden. Es gibt Kombinationen 
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aber auch Abfolgen aufeinander, welche die Systemleistung, das 
heißt die Gesamtzeit des Rüstvorgangs, wesentlich beeinflussen. 
Dieses Ziel steht im Einklang mit der Qualitätsmanagement -
theorie zur Verringerung von Rüstzeiten, die vorschlägt, die Ursa-
chen der Variation anzugehen [11, 23–25].

In der Praxis führt jeder Rüstvorgang zu Ergebnissen, die eine 
unterschiedliche Dauer aufweisen. Für die Zwecke dieser Diskus-
sion gehen wir davon aus, dass kürzere Rüstzeiten wünschens-
wert sind. Die Streuung um den Mittelwert der Rüstzeit liefert 
ein Maß für die potenzielle Verbesserung des Systems. Wenn es 
Schwankungen bei den Rüstzeiten gibt, besteht die Möglichkeit, 
aus schnelleren Rüstzeiten zu lernen (Verteilungsanfang) und 
langsamere zu vermeiden (Verteilungsende) siehe die Verteilung 
in Bild 1.

Daher ist das Ziel in einem Produktionsumfeld die Rüstzeiten 
vom rechten Ende Verteilung zu dem linken Start der Verteilung 
zu verschieben. Das kann erreicht werden, wenn die Produktions-
parameterkombinationen, welche für Schwankungen der Gesamt-
rüstzeiten verantwortlich sind, vermieden werden. Hierdurch 
kann implizit die durchschnittliche Rüstdauer verringert werden.

Ein Vorgehen hierbei kann sein, zunächst die Prozesse zu 
identifizieren, die das größte Verbesserungspotenzial bieten, und 
dann Verbesserungsmaßnahmen lediglich für diese ausgewählten 
Prozesse und Parameter zu definieren. Die Umsetzung von Ver-
besserungsmaßnahmen hängt von den spezifischen Eigenschaften 
der Produktionsparameter ab. Bei einigen Produktionsparametern 
ist es möglich, die absoluten Werte direkt anzupassen. Wenn bei-
spielsweise die Temperatur in einem bestimmten Prozess einen 
Einfluss auf die Prozessqualität hat, könnte eine Verbesserungs-
maßnahme darin bestehen, die Temperaturniveaus zu justieren. 
Allerdings lassen sich in manchen Prozessen die Produktions -
parameter nicht direkt verändern.

3.3 Modell Definition

Ausgangspunkt für das Modell sind historische Fertigungs -
daten  . Basierend auf diesen Daten wird ein nichtli-
neares Modell f erlernt, dass die Zusammenhänge zwischen 
 Produktionsparametern x(i) und der Rüstzeit y(i) nachbildet. Das 

Modell f: ℝN → ℝ basiert auf einem, das auf Grundlage vergan -
gener Beobachtungen der Produktionsparameter und Rüstzeiten 
geschätzt wird.

Dies kann ein beliebiges Vorhersagemodell f sein, das hoch -
dimensionale und nichtlineare Beziehungen emulieren kann (zum 
Beispiel Entscheidungsbaum-Verfahren, neuronale Netze). Das 
Modell f wird mit dem Ziel geschätzt, den Fehler zwischen der 
wahren und der geschätzten Rüstzeiten zu minimieren,

  (2)

wobei ℓ eine konvexe Verlustfunktion ist (zum Beispiel mittlerer 
quadratischer Fehler). Wenn f gut spezifiziert ist, erhalten wir ein 
Metamodell der Prozesse, das erklärt, wie verschiedene Produkti-
onsparameter und die Rüstzeit zusammenhängen.

Die zugrundeliegenden Beziehungen im Produktionsumfeld 
berechnen wir über die SHAP-Wert-Methode [21]. Konkret ver-
wenden wir SHAP-Werte, um zu erklären, wie sich die geschätzte 
Rüstzeit ändert, wenn der Effekt eines Produktionsparameters 
weggelassen wird. Hierbei erklärt die SHAP-Wert-Methode das 
Modell f lokal bei jeder Beobachtung i. Die Erklärung erfolgt 
 formal durch additive Merkmalszuweisungen, die sich zur Aus -
gabe des Metamodells aufsummieren. In unserem Kontext gibt 
ein SHAP-Wert die geschätzte Abweichung von der erwarteten 
Rüstzeit E[ f  (x)] an, die einem beobachteten Produktionspara -
meter x(i) zugeschrieben werden kann. Negative SHAP-Werte 
deuten auf eine Verringerung, positive auf eine Erhöhung der ge-
schätzten Rüstzeit hin. Je größer der absolute SHAP-Wert, desto 
größer die geschätzte Veränderung in der Rüstzeit. Die Berech-
nung von SHAP-Werten wird für alle Beobachtungen wiederholt 
und liefert so Merkmalszuweisungen.

Die SHAP-Wert-Methode garantiert drei Eigenschaften:
– Fehlzuweisung,
– Konsistenz,
– und lokale Genauigkeit.
In dem vorliegenden Kontext gewährleistet die Fehlzuweisung, 
dass abwesende Produktionsparameter keine Merkmalszuweisung 
 erhalten. Konsistenz ist erforderlich, um sinnvolle Vergleiche von 
Merkmalszuweisungen über Produktionsparameter hinweg zu er-

Bild 1. Beispiel für die zu erwartende Rüstzeit vor und nach der Verbesserung. Grafik: ESB Business School, Reutlingen University
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möglichen. Lokale Genauigkeit gewährleistet, dass sich die Merk-
malszuweisungen zur Modellausgabe aufsummieren und somit 
 eine Schätzung der Veränderungen in der Rüstzeit liefern.

4 Anwendung in der  
 CNC-Werkzeugherstellung

Die Herstellung von CNC-Werkzeugen umfasst in der Regel 
mehrere miteinander verbundene Prozesse, deren Durchführung 
Minuten bis Stunden in Anspruch nimmt. Aufgrund der hohen 
Komplexität, welche sich durch die Toleranzen des zu fertigenden 
Werkzeugs ergeben, ist es eine Herausforderung, die treibenden 
Faktoren der Rüstzeit zu identifizieren.

Daher stehen Lohnfertiger beziehungsweise Werkzeugherstel-
ler häufig vor erheblichen Engpässen in der Produktion. Die Eng-
pässe können durch die belegten Maschinen, wie aber auch im 
Zuge des Fachkräftemangels durch die Facharbeiter kommen, 
welche in langen Rüstprozessen gebunden sind. Vor diesem Hin-
tergrund verspricht die Verbesserung der Rüstzeit eine bedeuten-
de wirtschaftliche Auswirkung zu haben.

Der Anwendungspartner ist ein deutsches KMU, welches 
 führend in der Produktion von Sonder- und Standardwerkzeugen 
ist. Das Ziel der Zusammenarbeit ist zum einen die Zusammen-
hänge und Muster von unvorteilhaft langen Rüstzeiten transpa-
rent aufzuzeigen und zum anderen eine bessere Handlungsalter-
native vorzuschlagen beispielsweise in Form einer anderen zu 
präferierende Maschine für das zu produzierende spezifische Pro-
dukt zu wählen. 

4.1. Historische Daten

Der Anwendungspartner hat dem Autorenteam historische 
 Daten von M=1875 Rüstvorgänge  bereitgestellt. Jeder Rüstvor-
gang ist beschrieben von N = 144 Produktionsparametern von 
K = 8 verschiedenen Maschinen.

Das Unternehmen schützte vertrauliche Informationen, indem 
es die Rüstzeit zwischen 0 und 100 skaliert:

  (3)

Durch diese Normalisierung bleibt das Verteilungsmuster erhal-
ten, wodurch dennoch die tatsächlich erzielten Verbesserungen 
angeben können.

4.2 Deskriptive Statistik

Die Verteilung der normalisierten Rüstzeit unserer Trainings-
daten ist in Bild 2 dargestellt.

Die durchschnittliche normalisierte Rüstzeit liegt bei 28,01 
(Standardabweichung von 22,95). Ungefähr 50 % der Rüstpro-
zesse haben eine normalisierte Rüstzeit von über 21,87. Laut un-
serem Industriepartner können Rüstzeiten mit einer normalisier-
ten Rüstzeit von mehr als 22,00 als verbesserungswürdig einge-
stuft werden, da diese die vorgegebene Sollzeit nicht einhalten.

In Bezug auf den vorliegenden Datensatz entspricht dies in et-
wa 45 % der Rüstprozesse. Das Ziel des hier präsentierten Mo-
dells besteht darin, Parameterkombinationen zu vermeiden, wel-
che dem rechten Teil der Verteilung zugehörig sind. Die Tabelle 
listet beispielhafte Produktionsparameter auf, die in den Herstel-
lungsprozessen erfasst wurden.

Aus Gründen der Vertraulichkeit bezieht sich das Autorenteam 
später nur auf die anonymisierten Produktionsparameter x(i). Im 
Allgemeinen unterscheidet man zwischen Produktionsparametern 
auf Prozess- und Produktebene. Prozessparameter beschreiben 
maschinenbezogene Eigenschaften (zum Beispiel der in einer 
Maschine gemessene durchschnittliche Druck), während sich 
Produktparameter auf die physischen Produkteigenschaften wäh-
rend der Herstellung beziehen.

4.3 Implementierungsinformation des Modells

Das Metamodell wird auf der Grundlage aller Produktionspa-
rameter und der normalisierten Rüstzeit mithilfe von „XGBoost“ 
geschätzt [26]. XGBoost gehört zur Kategorie der Boosting-
Baum-Ensemble-Algorithmen, die für ihre gute Leistung bei kom-
plexen Datensätzen bekannt sind und bereits in anderen betriebli-
chen Anwendungen eingesetzt wurden [16, 27]. Im vorliegenden 
Kontext finden gängige Verfahren Anwendung, wobei die Daten 
in einen Trainingssatz (80 % der Daten) zur Schätzung von Para-
metern und einen Holdout-Satz (20 %) zur Bewertung der Mo-
dellierungsleistung unterteilt werden. Der Trainingssatz enthält 
1500 Rüstprozesse und der Holdout-Satz enthält 375 Rüstpro-
zesse. Das Metamodell wird ausschließlich auf der Grundlage des 
Trainingssatzes trainiert und abgestimmt (Rastersuche mit 
Kreuzvalidierung für die Optimierung der Hyperparameter). Be-
rechnet werden die Merkmalszuordnungen aller Produktionspa-
rameter mit der Baumimplementierung der SHAP-Wertmethode 
(zu Einzelheiten siehe [21]). 

5 Ergebnisse

Die Bestimmung des prognostizierten Behandlungseffekts er-
folgt durch statistische Analysen historischer Rüstprozesse im 
Holdout-Set. Um eine Überanpassung zu vermeiden, muss der 
prognostizierte Behandlungseffekt für die ausgewählten Verbesse-
rungsmaßnahmen auf Beobachtungen beruhen, die nicht in die 
Schätzung des Modells f selbst eingeflossen sind. Zu diesem 
Zweck werden die 375 Rüstprozesse im Holdout-Set betrachtet. 
Der Boxplot zeigt die normalisierte Rüstzeit von den Beobach-
tungen aus dem Holdout-Set, welche auf den prognostizierten 

Bild 2. Histogramm der Normalisierten Rüstzeit. 
Grafik: ESB Business School, Reutlingen University
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Kombinationen des Modells gerüstet werden würden mit den Da-
ten, welche kein Modell hatten. Die Länge der Whisker ist durch 
den 1,5er Interquartilsbereich gegeben, und das 50 %-Quantil ist 
als Linie hervorgehoben.

Der Boxplot zeigt, dass durch das Modell die normalisierte 
Rüstzeit reduziert werden kann. Es sind vor allem zwei Dinge er-
sichtlich. Erstens werden Ausreißer reduziert, welche zu langen 
Rüstzeiten führen. Zweitens wird hierdurch der Mittlere Wert der 
Rüstzeit reduziert. Die Rüstzeiten mit Modell betragen im Durch-
schnitt 6 % niedrigere Werte. Der hochgerechnete Behandlungs -
effekt ergibt sich aus dem mittleren Unterschied im normalisier-
ten Ertrag, der sich auf 6 Einheiten beläuft.

Bei 375 Rüstvorgängen sind das bereits 2250 Einheiten, wo-
mit 160 mehr Rüstvorgänge in derselben Zeit, mit denselben Ma-
schinen, etc. absolviert werden können. Das ermöglicht eine fle-
xiblere Produktionsplanung. Erste Schätzungen gehen von über 
11500 mehr Rüstvorgängen im Jahr aus, lediglich in der einen 
betrachteten Arbeitsplatzgruppe.

Eine Analyse historischer Beobachtungen reicht nicht aus, um 
nachzuweisen, dass das Modell auch in Zukunft wirksam sein 
wird. Daher wird ein längeres Feldexperiment bei dem Industrie-
partner vorgenommen.

5.1 Gesamtbedeutung von Erklärbaren KI-Ansätzen

Im vorherigen Abschnitt wurde davon ausgegangen, dass dem 
Modell gefolgt worden ist in der Anwendung der Parameterkom-
bination. Forschung zeigt aber, dass die Mitarbeiter skeptisch ge-
genüber einem KI-Modell sein können. Die Autoren legen beson-
deren Wert auf die Vermittlung der Erkenntnis, dass die Parame-
ter die Rüstzeit beeinflussen und ihre Werte diese in positiver 
oder negativer Weise beeinflussen können.

Hierdurch kann generell unternehmensweit ein neues Prozess-
verständnis entwickelt werden, dass für Optimierungen genutzt 

werden kann. Bild 4 zeigt die Verteilung der Werte des jeweiligen 
Parameters, den Einfluss auf die Rüstzeit sowie ob höhere oder 
niedrige Werte positive oder negative Einflüsse erzeugen. Solche 
Musterzusammenhänge können in Schulungen, in der Ausbil-
dung, in Shopfloor Meetings oder auch bei Qualitätsproblemen 
unterstützen.

Bild 3. Prognostizierter Effekt durch das Modell. 
Grafik: ESB Business School, Reutlingen University

Tabelle. Beispielhafte Produktionsparameter. 

Beschreibung

Schleifdorn

Rohlingsdicke

…

Ähnlichkeitskoeffzient 

Maschinenstörungen Anzahl 

Produktionsparameter

x101

x202

…

x203

x301

Einheit

-

Millimeter

…

-

-

Level

Prozess

Produkt

…

Produkt

Maschine

Bild 4. Gesamtbedeutung der Parameter und Verteilung der SHAP-Werte. 
Grafik: ESB Business School, Reutlingen University
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5.2 Prognose von Rüstzeiten  
 anhand Produktionskombinationen

Es ist geplant, dass der Arbeiter die Vorhersage für die Rüst-
zeit für die nächste Produktionsart für alle verfügbaren Maschi-
nen angezeigt bekommt. Die angezeigte Vorhersage ist in Bild 5 
für eine Maschine dargestellt.

Der Werker bekommt diese Vorhersage beispielsweise für vier 
verfügbare Maschinen angezeigt. Er kann dann frei wählen, an 
welcher Maschine er rüsten möchte. Durch die angezeigte Vor-
hersagezeit sowie die Parameter erhält er entscheidende Informa-
tionen, warum eine Maschine besser geeignet ist als die andere. 
Zum Beispiel kann der Parameter x166 die Matrize sein, die be-
reits in der Maschine montiert ist. Wenn das folgende Produkt 
mit der gleichen Matrize hergestellt werden kann, kann der Ar-
beiter 11 normalisierte Minuten für das Einrichten einsparen. Bei 
anderen Maschinen müsste er zum Beispiel die Matrize wechseln.

Das Entscheidungsmodell sagt eine normalisierte Rüstzeit von 
39,87 Minuten voraus. Durch die Visualisierung wird deutlich, 
welche Parameter die Rüstzeit sowohl positiv als auch negativ be-
einflussen. Zum Beispiel liegt der Mittelwert der Rüstzeit aus der 
Datenverteilung bei 58 Minuten. Der Basiswert. Der Parameter 
x166 reduziert die Rüstzeit um 11 Minuten. Andere Parameter wie 
x178 erhöhen die Rüstzeit.

6 Zusammenfassung und Ausblick

In diesem Beitrag wird ein innovatives KI-Modell vorgestellt, 
das darauf abzielt, die Rüstzeiten in der CNC-Werkzeugherstel-
lung zu reduzieren. Durch die Analyse von Produktionskombina-
tionen identifiziert das Modell spezifische Muster, die zu langen 
Rüstzeiten beitragen, und nutzt diese Erkenntnisse, um effiziente 
Rüststrategien zu entwickeln. Dadurch wird eine Reduktion der 
Rüstzeiten erreicht, was zu einer Steigerung der Produktions -
leistung und einer Reduzierung der Kosten führt.

Das KI-Modell ermöglicht eine Verringerung der Rüstzeiten 
um etwa 6 %, was zu einer Steigerung der Produktivität und ei-
ner Senkung der Betriebskosten führt. Allein durch diese Reduk-
tion können im Jahr betrachtet voraussichtlich 11500 zusätzliche 
Rüstvorgänge durchgeführt werden aufgrund der dadurch zusätz-
lich zur Verfügung stehenden Zeit. Die verbesserte Vorhersage-
genauigkeit des Algorithmus optimiert die Produktionsplanung 
und -steuerung und ermöglicht eine höhere Flexibilität sowie eine 
bessere Anpassung an die Kundenbedürfnisse. Wenn die zusätz-
lich zu Verfügung stehende Zeit genutzt werden kann, um Pro-
dukte zu produzieren, gehen wir von einem zusätzlichen Mehr-
umsatz bei gleichbleibenden Fixkosten im 6-stelligen Beriech bei 
nur einer Arbeitsplatzgruppe aus. 

Die positiven Ergebnisse unterstreichen das Potenzial erklär-
barer KI in der CNC-Werkzeugherstellung zur Rüstzeitoptimie-
rung. Zukünftige Forschungen sollten die Genauigkeit von KI-
Prognosen verbessern, die Integration in Planungssysteme voran-
treiben und benutzerfreundliche Schnittstellen entwickeln, um 
KI-Entscheidungen verständlicher zu machen.

Der Beitrag präsentiert ein Entscheidungsmodell, das auf Da-
tenanalyse basiert, um Rüstzeiten in der Produktion zu reduzie-
ren. Das Modell zeichnet sich durch seine Fähigkeit aus, komple-
xe und nichtlineare Produktionsdaten zu verarbeiten und bietet 
gleichzeitig Transparenz über die Bedeutung verschiedener Para-
meter. Dies ermöglicht es Herstellern, Prioritäten für Prozessopti-
mierungen zu setzen, was zu Rüstzeitverbesserungen führen 
kann.

Das Modell hat Grenzen, da es auf Korrelationen aufbaut, die 
ohne klare Kausalität zu Fehlinterpretationen führen können. Zu-
dem sind Erklärungsmethoden nachträglich angreifbar, was die 
Wichtigkeit der Einbeziehung von Experten in den Entwicklungs-
prozess unterstreicht, um solche Schwachstellen zu adressieren.

Das vorgestellte Entscheidungsmodell ermöglicht eine effizien-
te Integration in die Produktionsplanung und liefert neue Ein-
sichten aus bestehenden Daten. Es ist generisch gestaltet, benötigt 
lediglich Produktionsparameter und reduziert Rüstzeiten durch 
optimierte Produktionskombinationen. Die Wirksamkeit dieses 
Ansatzes wird durch die Kombination aus nichtlinearer Modellie-
rung und SHAP-Werten aus dem Bereich der erklärbaren KI be-
stätigt. Das Design des Modells verspricht breite Anwendbarkeit 
in datenreichen Fertigungsumgebungen und eröffnet neue Mög-
lichkeiten für den Einsatz von erklärbarer KI in Produktions -
planung und -steuerung.
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