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Bei diesem Beitrag handelt es sich um einen wissenschaftlich
begutachteten und freigegebenen Fachaufsatz (,,reviewed paper”).
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Datenmodell und Algorithmen

Exakte Trajektoriengenerierung
In der CNC-Technik

A. Elser

ZUSAMMENFASSUNG Bei der direkten Trajektorien-
generierung auf Flachen in der Numerischen Steuerung (NC)
wird die Trajektorie mit dem Wissen uber die zu fertigende
Freiformflache erzeugt. Der Vorteil ist, dass bei der Datentiber-
tragung vom Computer Aided Manufacturing (CAM) zur NC
keine Diskretisierung der Bahn erfolgt. So kann genauer und
schneller gefertigt werden. Dieser Ansatz fordert die Ubergabe
von Flacheninformation an die NC sowie die Definition und
algorithmische Verarbeitung von Bahnen auf Flachen.
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1 Direkte Trajektoriengenerierung
auf Flachen

In der klassischen Kette von Computer-Aided-Design (CAD)-
CAM-NC wird die Zielgeometrie des Bauteils iiber meist para-
metrische Freiformflichen wie B-Splines oder Non-Uniform-
Rational-B-Splines (NURBS) beschrieben. In der Regel findet
diese Beschreibung ihren Weg maximal bis in das CAM-System.
Teilweise werden Fertigungsbahnen bereits auf diskretisierten
Flichen (= unter Verwendung des Standard Tesselation Language
(STL) -Formats tessellierte Fléichen) bestimmt, teilweise wird die
Flachenbeschreibung noch bei der Bahnberechnung verwendet.
Spitestens nach der Bestimmung der geometrischen Bahn ist
jedoch eine Diskretisierung nétig: Der NC-Code als Schnittstelle
zwischen CAM und NC sieht in seinem Standard keine Beschrei-
bung fiir gekriitmmte, parametrische Bahnen vor. Damit muss die
Bahn aus historischen Griinden in Punkte unterteilt und als
Punktefolge iibergeben werden.

Aufgabe der NC ist es, in einem festen Takt Antriebssollwerte
fiir alle Maschinenachsen zu generieren. Die resultierende Bewe-
gung des Werkzeuges verliuft moglichst exakt entlang der im
CAM definierten geometrischen Bahn. Da die Diskretisierung im
CAM in der Regel nicht jener Diskretisierung entspricht, die
durch die Taktung fiir die Antriebe benotigt wird, miissen Zwi-
schenpunkte erzeugt werden. Dies geschieht ohne das Wissen um
die tatsichliche Bahn und ist damit per Definition fehlerbehaftet.
Die Zwischenpunkte werden iiber eine Hilfsgeometrie, wiederum
hiufig B-Splines, NURBS und Polynome oder Filterverfahren,
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Exact trajectory planning in CNC-systems -
data model and algorithms

ABSTRACT With direct trajectory generation on surfaces in
numerical control (NC), the trajectory is generated by defining
the free-form surface to be produced. The advantage is that
there is no dicretization of the path during data transfer from
Computer Aided Manufacturing (CAM) to NC. This enables
more accurate and faster production. The approach requires
the transfer of surface information to the NC as well as the
definition and algorithmic processing of paths on surfaces.

interpoliert. Diese
Geschwindigkeitsplanung und dem Takt diskretisiert.

Fiir eine fehlerfreie Sollwerterzeugung wurde das Prinzip der
Direkten Trajektoriengenerierung auf Flichen (DTF) entwickelt

[1]. Da hier die Flichenbeschreibung an die Steuerung tibergeben

Hilfsgeometrie wird entsprechend einer

wird, entfillt der Schritt der Diskretisierung in Punkte. Die
Rekonstruktion der kontinuierlichen Bahn ist nicht mehr nétig,
sodass Fehler in den Bahnsollwerten ausgeschlossen sind. Zudem
ist die geometrische Bahn meist ruhiger im Verlauf als etwa eine
iiber B-Splines rekonstruierte Bahn. Dadurch kénnen potenziell
hohere Bahngeschwindigkeiten erreicht werden: Bild 1 zeigt den
Vergleich von Bahngeschwindigkeiten fiir das klassische, tessellie-
rungsbasierte Vorgehen sowie das flichenbasierte Vorgehen.

Fiir das klassische Vorgehen wurden die tessellierte Fliche mit
einer Ebene geschnitten, die Schnittpunkte in Form von NC-
Code an eine industrielle Steuerung iibergeben und ein B-Spline-
Verfahren zur Glittung ausgewihlt. Durch diese Interpolation
mittels B-Splines innerhalb der NC entstehen unruhigere Kurven
[1]- Um die Dynamikgrenzen der Maschinenachsen einzuhalten,
muss die Bahngeschwindigkeit gegeniiber der Wunschgeschwin-
digkeit reduziert werden, Bild 1 (a). Im Falle der DTF, Bild 1 (b),
erbt die Bahn das Kriimmungsverhalten der Fliche und die pro-
grammierte Bahngeschwindigkeit kann umgesetzt werden.

Es gibt Steuerungen, welche die Definition von Splines oder
Polynomen im NC-Code erlauben. Dieses Vorgehen ist weiterhin
fehlerbehaftet, da eine beliebige Bahn (zum Beispiel ein Schnitt
zwischen NURBS-Flichen), nicht tiber solche expliziten parame-
trischen Kurven exakt beschrieben werden kann [2]. Dennoch
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Bild 1. Bahngeschwindigkeit auf einer gekrimmten Flache: (a) Bei Verwen-
dung von Splines zur Interpolation von Bahnpunkten, (b) unter Verwen-
dung der Direkten Trajektoriengenerierung auf Flachen (DTF). Grafik: ISW

ermoglicht dieses Vorgehen eine genauere und schnellere Fla-
chenbearbeitung, wie in [1] gezeigt wurde.

Die Vorteile der DTF liegen auf der Hand, trotzdem stehen
der Anwendung zwei Dinge im Wege. Zum einen ist die mit dem
klassischen Verfahren erreichbare Qualitit fiir viele Anwendun-
gen ausreichend. Erst fiir Prozesse, die Schnelligkeit und Genau-
igkeit im hochsten Mafle fordern, wird dieser Ansatz interessant.
Zum anderen erfordert die Umstellung auf ein flichenbasiertes
Konzept eine grundsitzliche Uberarbeitung von Daten und Algo-
rithmen in der NC.

In der Literatur zur NC-Technik wird das STEP-NC-Format
[3] meistens als Referenzlosung fiir eine standardisierte Beschrei-
bung von Bearbeitungsflichen und Bearbeitungsschritten gefiihrt
[4, 5]. Wihrend Fliachen, Kurven und Features wie Taschen oder
Fasen vollstindig beschrieben werden kénnen, tiberldsst der Stan-
dard die Algorithmik dem Anwender. Trotzdem erscheint die
grundsitzliche Idee von STEP-NC als ein guter Ausgangspunkt,
um die notwendigen Geometrien und Werkzeugbahnen fiir eine
DTF zu beschreiben und zu berechnen.

2 Datenmodell und Algorithmen

Fiir eine DTF miissen Flichen und Bahnen auf Flichen defi-
niert und an die NC iibergeben werden. In diesem Kapitel wer-
den die Anforderungen an das Datenmodell und die Algorithmen
definiert. Dafiir wird betrachtet, welche Informationen notwendig
sind und welche berechnet werden miissen. Dies ergibt sich aus
den Bahnplanungsverfahren und den Algorithmen, die in der NC
ausgefithrt werden miissen, um Antriebssollwerte zu berechnen.

2.1 Definition von Bahnen

Prinzipiell muss unterschieden werden, ob Bahnen im euklidi-
schen Raum oder im Parameterraum der Fliche definiert werden.
Wihrend die Berechnung von euklidischen Koordinaten aus den
Flichenparametern iiber die Flichendefinition sehr einfach ist, ist
der umgekehrte Weg rechenaufwendig. Daher sollte bei den ent-
sprechenden Bahnplanungsmethoden eine simultane Bestimmung
der Koordinaten angestrebt werden. Nachfolgend werden die
wichtigsten Bahnplanungsmethoden [6] vorgestellt, die durch das
Datenmodell abgedeckt werden sollten.

Bei der parametrischen Bahnplanung wird die Bahn im Para-
meterraum der Fliche definiert. Bei der iso-parametrischen
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P —» c(p) = S(u(p),v(p))

Bild 2. Folge von Kurven auf Flachen. Grafik: ISW

Bahnplanung im Speziellen wird ein Parameter der Fliche kon-
stant gehalten, wihrend der andere in seinem Definitionsbereich
variiert wird. Nach Vollendung einer Bahn wird der lokal kon-
stante Parameter verdndert und anschliefend wiederum der
zweite Parameter variiert.

Bei der iso-planaren Bahnplanung wird eine Ebene im euklidi-
schen Raum definiert, zu der alle weiteren Bahnen parallel sein
sollen. Hiufig ist dies eine Ebene senkrecht zu einer Koordina-
tenachse, zum Beispiel die x-z-Ebene.

Vektorfeld-basierte Ansitze legen ein Vektorfeld fest, entlang
welchem sich die Bahnen orientieren sollen. Dieses Vektorfeld
kann zum Beispiel iiber Flicheneigenschaften wie die Kriimmung
definiert werden, oder iiber weitere Informationen wie das Er-
gebnis einer Lastanalyse.

Iso-Distanz-Kurven werden iiber eine Leitkurve definiert. Alle
weiteren Kurven sind parallel zu dieser Leitkurve, wobei die Dis-
tanz entlang der Fliche gemessen wird. Fiir Fertigungsverfahren
wie die additive Fertigung, bei denen es wichtig ist, dass Bahnab-
stande konstant sind, ist diese Art der Bahnplanung wichtig.

In der NC-Technik werden hiufig Kurven-Offsets benétigt.
Dabei ist die Idee, dass eine Kurve entlang eines Vektors um
einen (konstanten) Wert verschoben wird. Ein Beispiel ist die
Verschiebung der Kurve entlang des Normalenvektors um den
Radius des Werkzeuges.

Gerade in der Erzeugung von Freiformflichen, werden hiufig
Oberflichen tiiber Verbunde von Flichen beschrieben. Daher
muss das Datenmodell neben der Definition von einzelnen Bah-
nen auch Bahnfolgen beschreiben kénnen. Ubergangsbahnen (die
nicht auf einer Fliche liegen) miissen ebenfalls abgedeckt sein.
Diese treten entweder beim Absetzen von einer Bahn und Uber-
gang zu einer weiteren, nicht direkt angrenzenden, Bahn, auf
oder wenn zwei Flichen nicht G2-stetig ineinander {ibergehen
und iiberschliffen werden miissen. Eine Bahnfolge ist beispielhaft
in Bild 2 dargestellt. Jeder der farbigen Abschnitte ist als Kurve
auf Fliche definiert. Am Beispiel der hellblauen Kurve wird dar-
gestellt, dass der Kurvenparameter p die Flichenparameter u,v
bestimmt und diese wiederum iiber die Flichendefinition einen
Punkt x,y,z im euklidischen Raum.

2.2 Algorithmen der NC

Nachfolgend wird betrachtet, welche Information durch die
NC zur Erzeugung der Antriebssollwerte benotigt wird. Fiir die
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Bild 3. Datenmodell fir die DTF. Grafik: ISW

Sollwerterzeugung miissen die definierten Bahnen pro Takt aus-
gewertet werden, um euklidische Werte zu erhalten. Diese wer-
den tiber die inverse Kinematik der Maschine auf die Maschinen-
achsen transformiert. Dementsprechend miissen alle Flichen und
Kurvenelemente des Datenmodells an einem beliebigen Parameter
des jeweiligen Definitionsbereichs ausgewertet werden konnen.
Fir die Geschwindigkeitsplanung werden jedoch einige weitere
Werte der Bahnen benétigt. Die Geschwindigkeit wird in der NC
entsprechend den Grenzwerten der Maschinenachsen und der
gewliinschten Bahngeschwindigkeit ausgelegt. Fiir die Berechnung
dieser Grenzen miissen die ersten drei Ableitungen der Bahn
nach dem Bogenmaf} berechnet werden [7]. Hierbei treten die
Kurvenableitungen und die Ableitungen des Kurvenparameters
nach dem Bogenmaf} auf.

Der Zusammenhang zwischen Bahnparameter und Bogenmaf}
wird auch fiir die Abtastung der geometrischen Bahn entspre-
chend der geplanten Geschwindigkeit benétigt: Die Geschwindig-
keitsplanung legt den Zusammenhang zwischen zuriickgelegtem
Weg und der Zeit fest. Die Dauer eines Zeitschritts des NC-Takts
lasst, in Kombination mit der bestimmten Bahngeschwindigkeit,
darauf riickschliefen, welcher Weg in jedem Takt zuriickgelegt
werden soll. Insofern definiert die Zeit den Weg, der Weg den
Kurvenparameter und der Kurvenparameter gegebenenfalls den
Flichenparameter. Je nach Methodik der Geschwindigkeits-
planung wird die Kriitmmung der Kurve bendétigt, berechnet tiber
die ersten beiden Ableitungen der Kurve. Bei Bahnen auf Flichen
schlieft das die Berechnung der Flichenableitungen mit ein. Um
dies nachzuvollziehen, wird beispielhaft die zweite Ableitung
einer im Parameterraum der Fliche S(u(p),v(p)) definierten
Bahn ¢(p) nach dem Parameter p aufgestellt:

dep) 'S (du)z oSdu &S dudv 05 &v . o’s (dv)~’ .

dp> o \dp Oudp?® ~oudvdpdp oOvdp? OV \dp )
Durch die Kettenregel treten Ableitungen der Kurve, der Fliche
und der Flachenparameter auf. Diese Werte miissen entsprechend
bestimmt werden. Fiir die Ableitung nach dem Bogenmaf} miisste

obige Formel (1) um die Ableitungen von p nach s erweitert
werden.
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Die Reparametrierung von Kurven im Bogenmaf, wird hiufig
iiber eine Abbildungsvorschrift p(s) vom Bogenmaf} auf den Kur-
venparameter vorgenommen [8]. Diese Vorschrift kann durch
numerische Integration des Betrags der ersten Ableitung der Kur-
ve, also |dc(p)/dp| bestimmt werden, liefert jedoch fiir fast alle
Kurvenarten nur eine Niherung der Reparametrierung. Fiir die
Berechnung der Werte dp/ds, d"2p/ds™2, d"3p/ds"3 kann zwar
diese Abbildungsvorschrift p(s), wenn sie zweimal stetig differen-
zierbar ist, verwendet werden, dieser Wert ist dann jedoch fehler-
behaftet. Vielmehr kénnen die Tangente, die Kriimmung und die
Torsion diese Werte lokal exakt liefern. Beispielhaft gilt fir die
ersten beiden Ableitungen:

dc  dcdp )
ds 7dpds

de dccf’p a’zc(af_p)2

i S 3
dsz " dp ds? +dp2 ds (3)

Mit den Formeln (2) und (3) konnen die Werte dp/ds und
d"2p/ds"2 somit tiber die intrinsischen Eigenschaften Tangente ¢,
Normale » und Kriitmmung « der Kurve ¢ bis auf numerische
Fehler exakt berechnet werden.

2.3 Datenmodell

Angelehnt an STEP-NC wird ein objektorientiertes Datenmo-
dell nach Bild 3 definiert.

Notwendige Objekte sind Flichen und Kurven. Das Datenmo-
dell wird fiir parametrische Flichen genauer beschrieben, andere
Flachenbeschreibungen miissen jedoch ebenfalls die geforderten
Werte aus diesem Kapitel liefern. Parametrische Kurven und Fli-
chen wie B-Spline-Flichen werden einfach iiber Knotenvektoren,
den Grad pro Dimension und (ein Netz von) Kontrollpunkten
definiert und berechnet [9} Alle Objekte miissen an einem vor-
gegebenen Wert oder Wertepaar auswertbar sein. Die hierfiir not-
wendigen Algorithmen konnen der Literatur entnommen werden
[9]. Wie beschrieben, werden mindestens die ersten drei Ablei-
tungen nach dem Objektparameter benotigt. Diese Werte werden
durch striktes Einhalten der Kettenregel wie in Gleichung (1)
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Bild 4. (a) Iso-parametrische Kurven auf einem Flachenverbund im euklidi-
schen Raum, (b) und (c) iso-parametrische Kurven im jeweiligen Parame-
terraum. Grafik: ISW

bestimmt. Die Ableitung eines B-Splines ist wiederum ein B-Spli-
ne mit gekiirztem Knotenvektor und neu berechneten Kontroll-
punkten, sieche [10], auch fir die Ableitung von NURBS. Uber
diese Ableitungen lassen sich Kriitmmung, Torsion und Kurven-
linge berechnen.

Das Hauptobjekt des Datenmodells ist eine Kurve. Eine expli-
zite Kurve ist zum Beispiel eine parametrische Kurve, wie ein
B-Spline, ein Polynom oder ein NURBS. Sie kann im euklidi-
schen Raum (Dimension drei) oder im Parameterraum der Kurve
(Dimension zwei) definiert sein. Beim Uberschleifen zwischen
Flachen entsteht zum Beispiel eine explizite Kurve im euklidi-
schen Raum. Ebenso konnen Ubergangsbahnen iiber solche expli-
ziten Kurven beschrieben werden. Um die Stetigkeit der Ab-
leitungen mit Blick auf die Geschwindigkeitsplanung sicherzu-
stellen, miissen Kurven und Flichen mindestens den Grad drei
aufweisen.

Eine CurveOnSurf ist eine Kurve, die im Kontext einer Fliche
definiert ist, sie erbt viele Eigenschaften von der unterlagerten
Fliche. Eine ExplicitCurveOnSurf ist eine Kurve auf einer Fliche,
die iiber eine explizite Kurvenbeschreibung im Parameterraum
der Fliche definiert werden kann. Dementsprechend enthilt sie
eine explizite Kurvenbeschreibung und eine parametrische Fli-
chenbeschreibung. Iso-parametrische Bahnen konnen als Explicit-
CurveOnSurf definiert werden. Auch eine Offset-Kurve ist eine
explizite Kurve, fir den Offset werden aber weitere Informatio-
nen in Form der Normale und des Offsetwertes benétigt. Bei
einer impliziten Kurve auf einer Fliche wird die Bahn nicht
direkt im Parameterraum der Fliche bestimmt. Sie ergibt sich in-
direkt aus Bedingungen an die Bahn - es muss ein Gleichungs-
system gelost werden.

Mit der Bereitstellung dieser Daten und Algorithmen kann
eine NC, die eine DTF unterstiitzt, realisiert werden.

3 Beispiele

In diesem Abschnitt werden Beispielkurven entsprechend des
Datenmodells definiert. Dabei werden die vorgestellten Bahnpla-
nungsverfahren aus Kapitel 2 herangezogen. Es wird gezeigt, dass
das Datenmodell diese Verfahren abbilden kann.

Die iso-parametrische Bahn ist offensichtlich eine im Para-
meterraum der Flidche explizit beschreibbare Kurve. Die Anwen-
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dung der beschriebenen Transformationsregeln fithrt direkt zu
allen notwendigen Werten. Bild 4 (a) zeigt iso-parametrische
Kurven auf einem Flichenverbund ohne Uberschleifen. Bild 4 (b)
und Bild 4 (c) zeigen, wie die jeweiligen Kurven im Parameter-
raum verlaufen.

Iso-planare Kurven stellen per Definition eine Bedingung an
die Kurvenrichtung. Es handelt sich somit um eine implizite Be-
schreibung. Verallgemeinert man die Definition der iso-planaren
Kurve, sodass die Kurven in einer Ebene mit dem Normalenvek-
tor n verlaufen sollen, dann kann folgendes Gleichungssystem
aufgestellt werden:

oS(u,v)  0S(uv)
- al;v b atv (4)
0=n-d (5)

= 8S(u,v)T oS(u,v) +2ab 6S(u,v)r oS (u,v) T ﬁS(u,v)TﬁS(u,v)
Ou ou ou ov ov ov

(©)

Dabei ist d der Vektor, entlang welchem die Kurve lokal im
euklidischen Raum auf der Fliche verlaufen soll. In der lokalen
Tangentialebene ldsst sich d iiber eine Linearkombination
(Faktoren a,b) der beiden ersten partiellen Flichenableitungen
berechnen.

Die dritte Gleichung normiert den Vektor d auf den Wert 1.
Dies ist zunichst nicht zwingend notwendig, fithrt jedoch dazu,
dass bei numerischer Integration der Vektoren die Kurve direkt
im Bogenmafl parametriert ist. Es zeigt sich, dass diese Methode
auch eine vektorfeld-basierte Methode ist, da fiir jeden Punkt der
Fliche ein Vektor definiert wird, entlang welchem die Bahn ver-
laufen soll. Iso-distante Kurven lassen sich ebenfalls durch ein
Gleichungssystem beschreiben. Zum Beispiel iiber Geoditen-
gleichungen, welche ein Differenzialgleichungssystem bilden [11].
Theoretisch ist es hier wiederum mdoglich iiber eine Leitkurve
und den Kurvenabstand die Kurve implizit zu beschreiben. Aller-
dings steigt aufgrund der Komplexitit der Gleichungen der
Berechnungsaufwand.

Offset-Kurven werden sehr hiufig verwendet, um eine Radius-
korrektur durchzufithren. Sie konnen explizit tiber eine Basiskur-
ve ¢, einen Radius R und den Normalenvektor n der Fliche be-
schrieben werden. Im Gegensatz zum klassischen Ansatz, bei dem
zum Beispiel der Offset im CAM approximativ berechnet wird,
konnen so zu jedem Takt exakte Werte auf der Offset-Fliche be-
rechnet werden:

Coffset ([7) :C(P) +R”(U(P),V(P)) (7)

Aus Gleichung (7) wird ersichtlich, dass fiir solche Offsets die
Normale der Kurve und deren Ableitungen benétigt werden. Die-
se Werte wurden von Farouki etal. iibersichtlich in [12] zusam-
mengefasst. Zu beachten ist, dass die Normale sich tiber die ers-
ten beiden Fldchenableitungen berechnet. Damit muss die Fliche
selbst fiir hohere Ableitungen der Kurve ausreichend stetig diffe-
renzierbar sein.

Bild 5 zeigt Offset-Kurven (a) entlang der Flichennormalen
und iso-planare Kurven (b). Bei letzteren wurde die x-y-Ebene
und damit der Vektor d=/0,0,1] ausgewihlt.
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Bild 5. (a) Offset-Kurven entlang der Normalen und (b) iso-planare Kurven. Grafik: ISW

4 Zusammenfassung

Mit dem Datenmodell und den vorgestellten Algorithmen sind
die wesentlichen Grundlagen fiir eine DTF in einer NC gegeben.
Eine prototypische Implementierung erfolgte bisher in ,Matlab®.
Gingige Bahnplanungsverfahren koénnen damit abgebildet wer-
den. Algorithmen fiir Glittungsverfahren an Flichengrenzen wur-
den ebenfalls bereits betrachtet [13]. Auch wurde gezeigt, dass
die berechneten Sollwerte in der Fertigung verwendet werden
konnen (siehe Bild 1). Kritisch ist die Berechnungszeit der ein-
zelnen Algorithmen. Gerade bei der Auswertung von Flichen und
der Berechnung von Ableitungen, miissen schnelle und intelligen-
te Berechnungsmethoden herangezogen werden, sodass keine
iiberfliissigen Iterationen erfolgen.

Das Konzept zieht Teile des CAM in die Steuerung. Sicher ist,
dass, wie im Falle der Offset-Kurven, kritisch hinterfragt werden
muss, welche Berechnungen im CAM und welche Berechnungen
in der Steuerung stattfinden. Das Datenmodell erlaubt jedoch
weiterhin den klassischen Weg, oder als Zwischenschritt die Ap-
proximation von Bahnen durch parametrische Kurven im Para-
meterraum der Fliche. Letzteres sichert, dass Sollwerte auf der
Flache liegen, auch wenn sie innerhalb der Fliche eine Abwei-
chung von der urspriinglich definierten Bahn haben.
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