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X

Zusammenfassung
In der vorliegenden Arbeit wird ein spezielles hybrides Trefftz-Element zur Simulation
von Rissen in dünnen Platten unter Modus III-Belastung entwickelt. Das Element wird
zur Erweiterung etablierter Modus I/II-Elemente verwendet und kann zur Simulation
beliebiger Belastungen an der Rissspitze im Rahmen der linear-elastischen Bruchmechanik
eingesetzt werden.

Die Elementformulierung basiert auf der bekannten analytischen Lösung der Bipotenti-
algleichung aus der Kirchhoffschen Plattentheorie. Mit Hilfe der Funktionentheorie wird
die allgemeine Lösung an das spezielle Problem einer Platte mit Innenriss angepasst, so
dass die Spannungsrandbedingungen entlang des Rissufers exakt erfüllt werden. Die Ver-
schiebungsrandbedingungen am verbleibenden Elementrand werden durch ein erweitertes
elastisches Potential berücksichtigt. Die freien Parameter des Lösungsansatzes ergeben sich
schließlich aus der Minimierung des erweiterten Potentials. Die Validierung der neuentwi-
ckelten Elementformulierung zeigt die Konvergenz der Lösung bei Erhöhung der Anzahl
der berücksichtigten Ordnungen des Lösungsansatzes gegen die Vergleichslösung aus einem
feinvernetzten Finite-Elemente-Modell.

In der linear-elastischen Theorie sind die Freiheitsgrade für Modus I/II- und Modus III-
Belastung entkoppelt und das Mixed-Mode-Element ergibt sich durch Zusammenfügen
beider Anteile. Für die Simulation von Risswachstum in einem Bauteil wird das Trefftz-
Element innerhalb eines Finite-Elemente-Modells eingesetzt. Die Standardelemente im
Bereich der Rissspitze werden dabei durch das spezielle Element ersetzt. Bei Risswachstum
breitet sich der Riss zunächst innerhalb des Elementgebiets aus und bei Bedarf wird
das Trefftz-Element automatisch in Richtung des fortschreitenden Risses neu positioniert.
Dabei werden weitere Standardelemente ersetzt und das Element bewegt sich im weiteren
Verlauf des Rissfortschritts mit der Rissspitze durch das Finite-Elemente-Netz.

Zur Simulation von Risswachstum wird der materialspezifische Risswiderstand benötigt.
Für größere Rissverlängerungen unter Modus III-Beanspruchung stehen keine standar-
disierten Verfahren zur Ermittlung des Risswiderstands zur Verfügung. Daher wird im
Rahmen der vorliegenden Arbeit eine direkte Auswertung der verformten Rissflanken
durchgeführt, wozu das 3D-Bildkorrelationsverfahren eingesetzt wird. Mit Hilfe eines
neuentwickelten Auswertungsalgorithmus wird aus den damit gemessenen Geometrie-
daten der Verlauf des Rissfortschritts und der Rissöffnungswinkel berechnet. Daraus
kann der kritische Spannungsintensitätsfaktor KIIIc mit Hilfe einer Detailsimulation des
Versuchsaufbaus gewonnen werden. Als Rissfortschrittskriterium wird dann der aktuell
vorliegende Spannungsintensitätsfaktor direkt aus dem Trefftz-Element berechnet und mit
dem experimentell ermittelten Risswiderstand verglichen.

Der Rissfortschrittsalgorithmus für die gekoppelte Simulation von Bauteilen mit dem
Trefftz-Element im Rahmen der expliziten Finite-Elemente-Methode wird am Beispiel
der durchgeführten Versuche getestet. Insgesamt zeigt sich dabei, dass das vorgestellte
Verfahren erfolgreich zur Simulation von Rissfortschritt in einem Bauteil eingesetzt werden
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Abstract XI

kann. Abschließend werden Konzepte für eine Weiterentwicklung der Elementformulierung
vorgestellt. Eine Möglichkeit zur Erweiterung des Einsatzgebiets stellt dabei die Modellie-
rung rissschließender Kräfte am Rissufer durch partikuläre Lösungsansätze dar, wie sie
zum Beispiel beim Dugdale-Modell auftreten.

Abstract
Within the present work, a special purpose hybrid Trefftz-element for mode III cracks in
thin plates is developed. The element is used as an extension of well-established mode I/II
elements. Therefore, the proposed element enables the simulation of arbitrary mixed mode
crack tip loading within the framework of linear elastic fracture mechanics.

The element formulation is based on the analytical solution of the bipotential equation
of the Kirchhoff plate theory. Using complex analysis the general solution is adapted to
fulfill the natural boundary conditions at the crack edges, too. The essential boundary
conditions along the remaining part of the element boundary are taken into account for
by an extended elastic potential. The remaining degrees of freedom of the solution are
calculated from the minimization of the extended potential. Validation of the element
formulation shows convergence of the solution to the finite element reference solution by
increasing the number of orders included in the calculation.

Within linear elastic theory mode I/II is decoupled from mode III, and the mixed mode
Trefftz element is formed by assembling both parts into one element. For the simulation
of crack growth in a structural component the special purpose element is used within a
standard finite element model, where some of the elements are replaced by the Trefftz
element. The crack starts growing inside the element at first and after some crack growth
the element position is changed in the direction of crack growth, replacing additional
standard elements. Along with the growing crack the Trefftz element can move through
the entire structure.

For a crack growth algorithm the specific resistance of the material against crack growth
is needed as well. Since there are no appropriate standard procedures for the evaluation
of the mode III fracture resistance available, within this work a direct evaluation of
the deformed crack edges is performed. The data aquisition is carried out using three
dimensional digital image correlation. With a newly developed evaluation algorithm, crack
propagation and crack tip opening angle are calculated from the geometry data. Using
these results the critical stress intensity factor KIIIc is found by performing a detailed
simulation of the experiment. For the evaluation of the crack growth criterion the actual
stress intensity factor is calculated from the Trefftz mixed mode element and compared to
the critical value of the material obtained from experiments.

Finally, the proposed algorithm is demonstrated by the simulation of a simple structural
component within an explicit finite element analysis. It is shown, that the concept is
capable of simulating the crack behaviour accurately. Finally, future enhancement of the
crack propagation algorithm with a crack tip plasticity model is outlined.
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