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Hence, on the whole, BOLD fMRI images are best understood as intermediary
inscriptions whose function is, first and foremost, to bridge the otherwise
insurmountable gap between the subject’s active brain and the functional maps. As the
output of the measurement procedure, BOLD fMRI images have a fixed material form.
Owing to this fixed material form, they can be archived, copied and transported, shared
within the scientific community and even reused in later studies.?®® However, as the
following sections will make evident, the key feature of fMRI images is their mutability,
which arises from the fact that various mathematical operations can be performed on
them. Owing to their mutability, these images are able to fulfil their primary epistemic
function as the working material for subsequent transformations. In what follows, we
will examine these transformations and discuss their epistemic implications.

3.3 Preprocessing: Constituting the Analysability of fMRI Data

Having collected the imaging data for all their study participants, researchers then
move on to the subsequent stages of the experiment, during which they process the
raw datasets. Across these stages, researchers aim to translate the illegible and noisy
fMRI datasets into visually accessible functional brain maps. Called the processing
pipeline, this procedure entails a sequence of algorithmic steps that systematically
address various types of noise. In the following sections, I will examine these steps
by focusing on how researchers make judgments about what counts as noise in their
data and which operations they perform to remove it. I will show that by making
these judgments, researchers inscribe a range of both explicit and implicit theoretical
assumptions into the imaging data. It is important to unpack these assumptions since
they are invisible in the functional maps as the products of the analytical pipeline. Yet,
although invisible, these assumptions inform the maps’ potential scientific validity and
their ability to produce new insights into hysteria or, at a more general level, any other
phenomenon under study.*”°

Generally speaking, a processing pipeline comprises two distinct stages. Each stage
is tailored to deal with a specific type of noise—random or systematic. The primary
sources of random noise in an fMRI experiment include, first, brain processes unrelated
to the experimental task, and second, variations in how the subjects performed the
task at hand.?”*
experimental task and the subjects selected. To remove it, researchers deploy statistical

This type of noise is study-specific because it depends on the concrete

analysis during the main stage of processing. But before statistical analysis can be

269 As discussed previously, the underlying structure of each slice is a matrix—an array of numbers
arranged in rows and columns.

270 To demonstrate the analytical variability of fMRI processing pipelines, one meta-study focused
on ten standard preprocessing and modelling steps. By considering between two and four default
options for each step and then taking into account their various combinations, the authors arrived
at 6,912 different pipelines. When applied to the same dataset, each pipeline resulted in a different
functional map. See Carp, “Analytic Flexibility.”

271 How a task is performed varies not just among different subjects but also over a single subject’s
repeated trials during the experiment. See Huettel, Song, and McCarthy, Imaging, 262.
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used to translate them into functional maps, raw imaging data must first be prepared
for analysis through preprocessing. The purpose of preprocessing is to remove non-
meaningful changes in the MR signal caused by more or less predictable measurement

constraints.2”2

This type of noise is called systematic as it affects all fMRI studies
independently of the task chosen.

Since systematic noise is not study-specific, its removal entails applying standard
preprocessing steps. Therefore, many researchers tend to consider preprocessing
less challenging than statistical analysis, which has to be tailored to each study.?”?
As a result, researchers often report the preprocessing steps they implemented
only summarily. For example, de Lange, Roelofs, and Toni described their entire
preprocessing in a single sentence: “First, functional images were realigned, slice-time
corrected, normalized to a common stereotactic space (MNI: Montreal Neurological
Institute, Canada) and smoothed with a 10 mm FWHM Gaussian kernel.”?74 However,
in what follows, my analysis will show that researchers make far-reaching epistemic
decisions at each of the steps listed above. More precisely, I will argue that preprocessing
disciplines and standardises raw fMRI data by altering them to fit researchers’—often
tacit—assumptions about what constitutes valid datasets for statistical analysis.

To perform preprocessing and the subsequent statistical analysis, researchers rely
on specialised computer programmes. To begin with, they can choose among different
software packages, most of which are freely available for research purposes. SPM, FSL,
and AFNI are the most widely used open-source packages.?”> Significantly, although
a shared analytical approach informs them, the programmes differ considerably in
the sequence of the single steps, underlying theoretical concepts and mathematical

276 Besides, all packages are regularly updated with “substantial theoretical,

modelling.
algorithmic, structural and interface enhancements over previous versions.”?’” Thus,
both the differences across single packages and among various versions of the same
software affect the outcome of processing.2’® Researchers are, therefore, obliged to
specify which particular version of which software they used in their study. My analysis

in the following will focus on the SPM—Statistical Parametric Mapping—which was the

272 Huettel, Song, and McCarthy, 267. By referring to imaging data as raw, | am merely emphasising
that they are a direct output of the measurement and have yet to undergo preprocessing and
statistical analysis.

273 Ashby, Statistical Analysis, 80.

274 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.

275 Developed by Karl Friston and colleagues, SPM is maintained by the Wellcome Trust Centre for
Neuroimaging, University College London. FSL was created at the University of Oxford and AFNI
at the National Institute of Mental Health in Maryland. See Poldrack, Mumford, and Nichols,
Handbook, 8—9.

276 The different software packages predominantly rely on the general linear model (GLM) approach,
which I will analyse in sections 3.4.1and 3.4.2. For details, see also Poldrack, Mumford, and Nichols,
7-10.

277  http://www fil.ion.ucl.ac.uk/spm/software/. Accessed on January 10, 2020. In the words of one of
the SPM’s developers: “The term ‘SPM’ does not really refer to a single piece of software, as many
changes are made between each release.” Ashburner, “SPM: A History,” 792.

278 Carp, “Analytic Flexibility,” 2, article 149.
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first widely used software for fMRI analysis and continues to be the most popular.???
Moreover, the SPM was used in our case study.

Notably, the analytical flexibility with which researchers can approach their
data only begins with choosing the software. Each software version can be applied
to the same dataset in immensely variable ways, both during preprocessing and
even more so during statistical analysis. We will see that at each processing step,
researchers can either choose among several pre-given standard options or define
custom-made parameters. In doing so, they gradually construct a distinct chain of
transformations tailored to the purposes of their study. Since these decisions have
epistemic implications for the outcome of the processing, my analysis will examine
how human judgment both guides and intervenes in the software-based operations
throughout the chain of transformations that starts with raw imaging data and
ends with functional maps. I will argue that the imaging data’s mathematical and
visual aspects fulfil distinctly different functional roles during this process. But before
turning to the discussion of statistical analysis, in the following sections, I will first
focus on illuminating the epistemic implications of the four major preprocessing
steps: visual quality control, head motion correction, acquisition time correction and
normalisation.28°

In the remainder of this chapter, my analysis is based on close reading of
fMRI studies of hysteria and multiple, more general publications that deal with the
methodological aspects of functional neuroimaging. Importantly, my analysis is also
substantially informed by practice-based insights I have gained while learning to use the
SPM for fMRI data analysis. For this purpose, I participated in two courses for graduate
students held by Dr. rer. nat. Torsten Wiistenberg at the Department of Psychiatry and
Psychotherapy, Charité Campus Mitte Berlin in March 2014 and January 2015.

3.3.1 Identifying Visually Recognisable Noise

Strictly speaking, preprocessing comprises a sequence of algorithm-based steps.?8!
Having selected the parameter settings at each preprocessing step, researchers let the
software perform black-boxed mathematical operations on the fMRI slices. Since all
transformations are conducted at the level of the numerical image matrix, it can be
said that throughout preprocessing, fMRI images are treated as mathematical objects.
This means that, at least in principle, researchers could clean their imaging data
of systematic noise without even so much as glancing at them. However, standard
textbooks on fMRI emphatically recommend that before submitting them to any
algorithmic transformations, researchers should always look very closely at their

279 Poldrack, Mumford, and Nichols, Handbook, 8.

280 Preprocessing pipeline may comprise additional steps. For details, see Jenkinson and Chappell,
Neuroimaging Analysis, 11617, 122—30. | will not discuss such additional steps here, as they were
not performed in our case study.

281 Recently, new methods have been developed that simultaneously combine all algorithmic
preprocessing steps. Nevertheless, sequential preprocessing is still the dominant approach and
will, therefore, remain the focus of my enquiry. See Jenkinson and Chappell, Neuroimaging Analysis,
121-22.
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imaging data.?8? But what exactly can researchers see in the fMRI brain slices if these,
as I have claimed, are visually illegible? Although it is impossible to determine the
presence of task-induced brain activity by merely looking at fMRI brain slices, my
analysis will demonstrate that, based on the visual appearance of the imaging data,
researchers can make judgments about the data’s tangential features. Specifically, we
will discuss how researchers can assess the data quality by visually inspecting the fMRI
slices.

Before they start processing them mathematically, researchers first examine the raw
imaging data for potential measurement errors. This step is highly significant because,
if overlooked, such measurement errors could lead to the creation of invalid functional
maps. Typical sources of unwanted artefacts include potential technical problems
with the scanner, various acquisition mistakes, errors in image reconstruction, and
the experimental subjects’ excessive head motion.283 Researchers can use a range of
automated software tools to check the quality of their data.?84 Yet, in addition to
such quantitative examination, visual inspection of fMRI data on the computer screen
is considered an indispensable part of quality control.?8> Many of the measurement
artefacts listed above are visually discernible when the functional imaging data are
viewed on the screen as grey-scale brain slices. Hence, it is considered that controlling
the quality of fMRI images “is usually best done by eye, by just looking at the data.”?8¢

Indexically inscribed traces of various measurement artefacts can take different
visual forms. For instance, some errors that arise from technical imperfections or
scanner malfunction are visually detectable within single fMRI image slices. Such errors
can appear as regularly repeating patterns of stripes or as unusual variations in the
brightness spreading from the centre to the periphery of a 2D image.?®” Other artefacts
take the form of a horizontal compression of the image towards the bottom or an
unusual darkening of individual regions of a 2D slice. Less frequently, a shifted and
warped version of the image may be superimposed on the original.28% An experienced
researcher can identify such visual distortions by merely glancing at a single fMRI slice.
In other cases, the artefacts are not immediately apparent. Thus, to make the presence
of an underlying anomaly visible, researchers must actively interact with the viewing
software, for instance, by changing the default brightness setting.8°

However, not all errors are detectable based on the inspection of single slices.
More insidious artefacts are caused by unwanted changes that happen between the
acquisitions of successive slices. Such errors become visually identifiable only when a
time series of raw fMRI images are viewed in quick succession as a movie. To perform

282 Huettel, Song, and McCarthy, Imaging, 268; Jenkinson and Chappell, Neuroimaging Analysis, 89; and
Poldrack, Mumford, and Nichols, Handbook, 37.

283 Huettel, Song, and McCarthy, Imaging, 267—68.

284 Huettel, Song, and McCarthy, 267—68.

285 Huettel, Song, and McCarthy, 267—68.

286 Jenkinson and Chappell, Neuroimaging Analysis, 89.

287 Huettel, Song, and McCarthy, Imaging, 268.

288 This particular artefact is called ‘ghosting.’ See Jenkinson and Chappell, Neuroimaging Analysis, 36,
fig. 2.6.

289 Poldrack, Mumford, and Nichols, Handbook, 36.
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such an inspection, researchers use various tools to animate all slices that constitute a
single brain volume. In this way, they can examine the entire dataset, volume by volume,
looking for rapid jerks in the animation or some other visual aspect that pops out of
sequence.??® Such visual disturbances are potentially significant, as they could point to
a missing imaging slice or indicate that the experimental subject has abruptly moved
the head during the measurement.

If they detect a visual anomaly in their data, researchers have to decide what
further action to take. In some cases, they can remove the detected artefacts through
mathematical processing and thus save the data. Yet, some measurement errors might
be so extensive as to be beyond repair. In such cases, researchers have no choice but to
exclude single slices, corrupt brain volumes or even an entire subject’s dataset from

291 Since the starting point of such far-reaching actions lies in the

further analysis.
human inspection of the data’s visual features, I argue that during preprocessing,
various kinds of data visualisations are used operatively in the sense defined by Sybille
Krimer. According to Krimer, when used operatively, visualisations function as tools
that open new possibilities of actively engaging with and reasoning about the objects
to which they refer. 2>

The above examples have shown that to look for potential traces of measurement
errors in the data, researchers deploy different visual interventions, such as changing
the brightness of individual slices or turning them into an animation. In doing so,
they selectively articulate particular relations within the dataset and thus determine
which kinds of artefacts are made visible in the form of particular visual patterns.
Various artefacts might be present simultaneously in the same fMRI dataset. But to
be visually brought forth and thus uncovered, each such artefact requires that the
same dataset be visualised differently. It can, therefore, be said that various static and
dynamic visualisations of the fMRI data are deployed during the quality control as
flexible tools. Using these tools requires researchers to make active choices about how
to visually configure their fMRI data to search for traces of possible acquisition errors,
which would otherwise remain unnoticed. Significantly, such choices, in turn, enable
researchers to classify the imaging data as either correct or corrupted.

Hence, although the fMRI data’s numerical and visual forms contain the same
information, they are not equivalent at the operative level. As we have seen, targeted
visualisations can differentially display the pertinent relations in the data, which in the
numerical form would remain inaccessible to researchers. Whereas the numerical form
is crucial in enabling automated algorithms to transform the data mathematically, it is
the visual form that addresses the human eye. In doing so, the data’s visual form plays
a central role in facilitating human judgments about the outcome of computer-based
processes.

Although the process of visual quality control, as described above, may appear
simple, it requires highly specific visual expertise. Functional imaging data are fuzzy
and pixelated grey-scale images of brain slices. As I can testify from my experience, an

290 Huettel, Song, and McCarthy, Imaging, 268.
291 See, e.g., Espay et al., “Functional Tremor,” 180.
292 Kramer, “Operative Bildlichkeit,” 104—s5.
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untrained eye is unable to discern potential visual anomalies either in individual slices
or in their animations. For this reason, researchers new to fMRI must first learn how to
look for the visual features that could indicate underlying acquisition errors.>?> Novice
researchers gradually acquire the visual expertise through practice by “repeatedly
examining data from the same scanner.”*** The key aspect of this experiential learning
is to develop implicit visual knowledge of “what ‘good data’ should look like.”2%% In
relation to what they know to be ‘good data, experienced researchers can recognise
pertinent visual distortions in a dataset. In other words, to differentiate between proper
and corrupted data, researchers rely on an implicit comparison of what they have
learned to see as salient visual features in a particular type of visualisation. Yet, although
they can visually recognise such patterns and point to them on the computer screen,
researchers are often unable to define them in verbally explicit terms.2

It appears to me that precisely the implicit character of researchers’ expertise
contributes to the ambivalent epistemic status of visual inspection in fMRI. On the
one hand, the visual judgment of the human expert is accorded a crucial role in
controlling and evaluating the output of the automated algorithmic processes. The
relevant literature repeatedly advises researchers to visually examine not only the raw
data following the acquisition but also the outcome of each preprocessing step to ensure
that the algorithms did not accidentally introduce artefacts.*®” An expert human eye is
thus deemed capable of identifying errors made by the ‘blind’ computer. But on the
other hand, a visual inspection performed by a human expert is regarded as possibly
biased and not entirely reliable unless complemented with automated calculations.?%3
Moreover, by relying on their implicit expertise, researchers may recognise a visual
indicator of an artefact. However, to pinpoint the exact source and the extent of the
underlying problem and possibly remove it from the data, researchers must employ
the software’s algorithms. Whereas such algorithmic steps are typically reported in

published articles, visual inspection remains unmentioned.**°

sk

Overall, this section has foregrounded the importance of visually examining the fMRI
imaging data, especially during the initial quality control. I have emphasised how
researchers’ active and targeted engagement with different types of visualisations, both
static and dynamic, and the researchers’ implicit knowledge of what good data should
look like underpin the process of visual data inspection. But I have also emphasised

293 For a pertinent analysis of how novice researchers acquire this kind of knowledge through
embodied practice during training sessions with experienced colleagues, see Alac, Digital Brains,
67—145.

294 Huettel, Song, and McCarthy, Imaging, 268.

295 Huettel, Song, and McCarthy, 268.

296 Michael Polany has designated as ‘tacit knowledge’ the kind of knowledge “that cannot be put into
word.” Polanyi, Tacit Dimension, 4.

297 Huettel, Song, and McCarthy, Imaging, 272—73; and Poldrack, Mumford, and Nichols, Handbook, 35,
47.

298 Huettel, Song, and McCarthy, Imaging, 268; and Poldrack, Mumford, and Nichols, Handbook, 37.

299 See, e.g., Baeketal., “Impaired Awareness,” 3; and Espay et al., “Functional Dystonia,” 138.
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that, despite its importance, visual inspection appears to be considered less ‘objective’
than clearly delineated algorithms. The reason for this, I suggest, is because the implicit
knowledge that enables the visual judgment of the data’s quality is neither quantifiable
nor describable in clear-cut terms. It can only be transferred implicitly from researcher
to researcher through the joint practice of working with and looking at images.

3.3.2 Erasing Temporal and Spatial Inconsistencies from fMRI Datasets

After passing the comprehensive quality control, raw fMRI data are submitted
to two routine preprocessing steps—acquisition time correction and head motion
correction. However, even deciding which of these two steps to perform first is
a non-trivial matter. The problem is that, depending on the sequence of their
application, these preprocessing steps could mutually interact, thus introducing errors
into the data.3°® This fact alone already indicates that fMRI data undergo massive
transformations during preprocessing. But what exactly happens to the images during
these transformations, and what are the resulting epistemic implications?

Acquisition time correction targets temporal inconsistencies in the fMRI data
caused by the sequential acquisition of 2D slices. For example, in the de Lange, Roelofs,
and Toni study, each subject’s brain volume was virtually divided into thirty-two slices
collected sequentially over a period of 2.54 seconds.>! This process was then repeated
to acquire 547 brain volumes altogether. Due to this kind of acquisition, each slice in
a single brain volume was collected at a different time point.>°* As a result, BOLD
responses that occurred simultaneously across the brain were sampled at different
stages of their temporal developments, depending on their relative spatial locations.3*3
Yet, the problem is that the ensuing relative temporal displacement across slices counts
as noise from the perspective of statistical analysis. This is because the underlying
premise of the analysis is that BOLD responses in all slices within a single brain volume
were measured simultaneously and that each two adjacent brain volumes were acquired
at equidistant temporal intervals.3°4

To circumvent this problem, researchers submit fMRI data to the procedure called
temporal interpolation during the acquisition time correction. This mathematical
transformation enables researchers to use the actually measured data from
neighbouring voxels to estimate the value of the MR signal that would have been
obtained at each voxel had all the voxels in a single brain volume been sampled
at once.>® Importantly, to enable this calculation, researchers must first specify

300 Poldrack, Mumford, and Nichols, Handbook, 48.

301 De Lange, Roelofs and Toni, “Self-Monitoring,” 2053.

302 Consequently, the most pronounced temporal delay is between the first and the last slice acquired
in each volume, which in our case study amounts to 2.46 seconds.

303 “The slices acquired later in the volume show an apparently earlier response because the
hemodynamic response has already started by the time that they are acquired.” Poldrack,
Mumford, and Nichols, Handbook, 41.

304 Sladky et al., “Slice-Timing Effects,” 588—94.

305 Different mathematical methods can be used for combining the values from neighbouring data
points to calculate the estimated signal value in each voxel. See Huettel, Song, and McCarthy,
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the exact temporal order of the slice acquisition and then choose a reference slice
from their dataset. As their reference slice, researchers can select the slice acquired
at the beginning, halfway through the volume or at any other time point of the
measurement.3°® The automated algorithms then temporally align all slices comprising
a single volume to match the timing of the reference slice. They do so by shifting the
sampling points (i.e., the value of the signal intensity measured) in all other 2D images,
either forwards or backwards in time.

Significantly, at the end of the acquisition time correction, the spatial characteristics
of the functional slices remain unchanged. Yet, the signal intensity measured initially
at each voxel is replaced by a newly calculated numerical value. Hence, through this
preprocessing step, the raw dataset with its temporally mismatching sequentially
acquired slices has been transformed into a corrected dataset. This new dataset
comprises a collection of brain volumes containing slices with a matching timing.
Such mathematical modelling thus allows researchers to satisfy the requirements of
statistical analysis by constructing a temporally consistent functional dataset.

397 the functional dataset must

Either before or after acquisition time correction,
undergo an additional preprocessing step called head motion correction. This step
aims to minimise a particularly vexing problem of image acquisition—the experimental
subjects’ unintended head motion, which could render the data unusable if excessive.3°8
Although the subject’s head is often fixed with padding during the data acquisition,
it is nevertheless impossible to entirely avoid small-scale movements caused by an
array of normal physiological reactions.>®® For example, subjects may reposition their
shoulders due to tiredness, briefly hold their breath, or unintentionally move their
head while performing the experimental task.3'® Crucially, even a displacement smaller
than a millimetre changes the brain’s relative position within the scanner’s coordinate
system, thus causing a misalignment between successively sampled brain volumes.3"*
In such a case, the voxels with the same set of coordinates across subsequently acquired
volumes no longer refer to the same location in the physical space of the brain. This, in
turn, means that the same neuroanatomical structures occupy different locations across

successive 3D fMRI images.?'* The resulting spatial mismatch violates the assumption

Imaging, 271. The SPM, however, does not offer researchers the possibility of a choice since the
method called Fourier phase shift interpolation is hard-coded into the software. See Ashburner et
al., “SPM12 Manual,” 21-22.

306 Ashburneretal., “SPM12 Manual,” 22—-23.

307 Poldrack, Mumford, and Nichols, Handbook, 48.

308 Poldrack, Mumford, and Nichols, 44.

309 Huettel, Song, and McCarthy, Imaging, 272.

310 Even minimal head movements that arise from breathing and heartbeat cause motion artefacts
referred to as physiological noise. However, if researchers choose to remove this particular type
of noise, they have to deploy an additional preprocessing step, which | will not analyse here. For
details on removing physiological noise from fMRI data, see Poldrack, Mumford, and Nichols,
Handbook, 49-50.

311 Huettel, Song, and McCarthy, Imaging, 271.

312 It should be noted that apart from resulting in a spatial mismatch across fMRI volumes, head
motion also additionally causes significant changes in the MR signal intensities stemming from
misaligned voxels. In some cases, due to head motion, a portion of the brain might “move out of

https://dol.org/10.14361/9783839461761-015 - am 14.02.2026, 22:09:21. - EE—

335


https://doi.org/10.14361/9783839461761-015
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/

336

From Photography to fMRI

of statistical analysis that “the brain is always in the same position” in images collected at
different time points.3? If uncorrected, this misalignment leads to incorrect functional
brain maps.

To be able to erase the spatial mismatch between successive brain volumes,
researchers must first estimate the head motion that caused it. Achieving this is far
from simple because the subject’s head motion arises from an individual interplay
of many behavioural and physiological factors. In effect, the exact details of the
brain’s displacement during the acquisition remain necessarily unknown to researchers.
Nevertheless, by employing computer algorithms to mathematically analyse the spatial
mismatch across the collected images, researchers can derive assumptions about
the brain’s most likely position at each time point of the measurement. To do this,
researchers must first choose a single fMRI volume from their dataset as a reference.**
The automated algorithms then computationally superimpose all images in the dataset
to this common reference and calculate the amount of each volume’s misalignment.
The brain is thereby treated as a rigid body—an object whose size and shape remain
constant over the time of the data acquisition.?*

Based on this assumption, the brain’s presumed motion during the acquisition
is modelled mathematically as a combination of three movements along and three
rotations around the respective axes of the Cartesian coordinate system.3'® To obtain
an estimate of the brain’s motion, the black-boxed algorithms iteratively test different
combinations of these six basic types of motion. They search for the combination that
best describes the spatial mismatch between the reference image and the rest of the
data. The goodness of fit of the estimate is determined mathematically by a quantity
called cost function that measures how the intensities across different 3D images relate

the imaging volume, with an irreversible loss of data from the affected regions.” Huettel, Song,
and McCarthy, 271. And even if this does not happen, there are other problems. For instance,
movements of the brain along the z-axis might cause some slices to “miss the [RF] excitation
pulse, whereas others will experience two (or more) excitation pulses in rapid succession,” thus
leading to changes in “the relative BOLD signals recorded from each” of these slices. Ibid., 273-74.
Moreover, the spatial displacement of the brain’s magnetic field within the scanner’s magnetic
field elicits mutual interactions between these fields, producing unwanted field inhomogeneities.
Finally, as a result of head motion, the locations of the brain’s voxels in relation to the spatial
encoding gradients necessarily change. All these changes induce distortions of the MR signals.
See Jenkinson and Chappell, Neuroimaging Analysis, 118, box 3.5. Importantly, none of the motion-
induced distortions of the MR signals can be removed through the deployment of head motion
correction. Instead, additional processing steps have been developed that explicitly address this
specific problem. But more often, and this is a point to which we will return later, motion-induced
signal changes are filtered out during the stage of statistical analysis. For details, see Jenkinson
and Chappell, 203-5.

313 Huettel, Song, and McCarthy, Imaging, 276.

314 Typically, the reference volume is a set of image slices acquired either in the middle or at the
beginning of the measurement. Poldrack, Mumford, and Nichols, Handbook, 45. Alternatively,
some studies compute the mean of the time series as the reference. See, e.g., Baek et al., “Impaired
Awareness,” 1626.

315 Poldrack, Mumford, and Nichols, Handbook, 45.

316  Poldrack, Mumford, and Nichols, 45.
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to one other. Researchers can choose among different cost functions, each of which
relies on a different mathematical model.>"”

Upon finished calculations, the algorithms construct a mathematical representation
of how the subject’s brain had presumably moved during the experiment. This
mathematical representation is visualised by two sets of curves, which plot the brain’s
estimated displacements along and rotations around the respective Cartesian axes
as the function of time (fig. 3.8).3® Next, researchers can use the thus estimated
motion to correct the spatial misalignment in the data. Having selected one of several

319 researchers use algorithms to calculate

available methods of spatial interpolation,
the data values that would have been acquired had the experimental subject remained
motionless during the scanning.

First, the images are realigned (i.e., spatially transformed), which means that the
original coordinates of the voxels are replaced by newly calculated ones. As a result of
this operation, the 3D images are shifted from their native space (as determined by
the measurement) into a newly defined image space.?*° After that, every 3D image is
resliced—i.e., based on the values measured in the neighbouring voxels, the algorithms
compute the signal intensities that would have been obtained at each new spatial point
of the registered image.*! In specialist terms, reslicing is referred to as ‘bringing’ or
‘writing the original image into the new image space.** Thus, in a two-step procedure,
voxels are first shifted in place and then assigned new numerical values that designate
the estimated signal intensities at the new locations.

As my analysis has shown, motion correction entails massive mathematical
interventions into the spatial structure of the fMRI data. The native image space—i.e.,
the set of coordinates attributed to the imaging data by the measurement—is
transformed into a ‘corrected’ image space, which is defined by newly calculated
coordinates. The output of motion correction is a spatially more consistent dataset
in which all fMRI volumes have been transformed to match the location of the
reference volume. To ensure that this correction was performed accurately, researchers
are recommended to inspect the dataset visually by viewing it as a movie.?** If the
correction has been successful, the resulting animation should be devoid of any jerky
movements.

317 For details, see Jenkinson and Chappell, Neuroimaging Analysis, 169.

318 These estimations are stored additionally, as they play a role in statistical analysis. See Poldrack,
Mumford, and Nichols, Handbook, 46. We will return to this point later in the chapter.

319 Different methods implement different mathematical relations between spatially neighbouring
voxels to compute the estimated signal value. More accurate methods are computationally more
demanding and thus take a considerably longer time to calculate. See Ashburner et al., “SPM12
Manual,” 29. See also Poldrack, Mumford, and Nichols, Handbook, 46—47.

320 Jenkinson and Chappell, Neuroimaging Analysis, 160, 173—76.

321 Ashburner et al.,, “SPM 12 Manual,” 29-32. See also see Jenkinson and Chappell, Neuroimaging
Analysis, 1776—79: and Poldrack, Mumford, and Nichols, Handbook, 28—30, 44—47.

322 Ashburner et al., “SPM 12 Manual,” 29. See also Jenkinson and Chappell, Neuroimaging Analysis,
174—76. Jenkinson and Chappell use the term ‘resampling’ to refer to reslicing.

323 Poldrack, Mumford, and Nichols, Handbook, 47.
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Figure 3.8. Visualisation of an experimental
subject’s estimated head motion during the
MRI data acquisition. From Ashburner

et al., “SPM12 Manual,” 259, fig. 32.5.
©Wellcome Centre for Human Neuroimaging,
London.
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In sum, the combined aim of the preprocessing steps analysed above is to replace the
signal intensities measured initially at respective time points and spatial locations with
values that could not be sampled directly. We have seen that these interpolated values
are necessarily estimates. Importantly, these estimates are not arbitrary. Instead, they
are obtained by transforming the information contained in the original data through the
application of standardised mathematical methods. As my analysis has underscored,
all transformations are derived from a mathematical analysis of the original images.
In effect, the algorithmic transformations recombine the initial signal measurements
across the original images to generate the cleaned-up data. The algorithmic operations
are black-boxed, with many of their aspects hard-coded into the software. Yet, I have
shown that researchers make interpretational decisions throughout the process, such
as choosing the reference image and selecting among the available parameter options,
which include the type of cost function and interpolation method. These decisions are
significant because each option entails different modelling strategies whose underlying
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3 Using fMRI as an Investigation Tool in Hysteria Research

theoretical assumptions are inscribed into the new dataset. Thus, the adequacy of the
steps chosen determines the potential accuracy of the outcome.

This extensive mathematical modelling serves to minimise the consequences
of unavoidable technological and human-based measurement contingencies that
introduce temporal and spatial inconsistencies into a single subject’s fMRI dataset.
In a group study, this procedure is performed separately for each subject’s dataset.
Through this procedure, each subject’s newly calculated dataset is standardised and
disciplined. In effect, it can be said that the implicit purpose of this standardisation is
to mathematically approximate, as far as possible, an ideal situation, which no actual
fMRI measurement can ever achieve. This ideal situation would entail generating a
sequence of instantaneously acquired brain volumes from a motionless subject.3** And
although they cannot fulfil these ideal conditions, the corrected brain volumes—and the
individual slices comprising them—are constructed as considerably more temporally
and spatially consistent than those in the original raw dataset.

3.3.3 Establishing Anatomical Compatibility Across Data Types and Datasets

Once the temporal and spatial inconsistencies of each subject’s functional dataset
have been dealt with, the preprocessing moves to the subsequent stage. In this
stage, researchers deploy two preprocessing steps specifically tailored to address
multiple incompatibilities between different types of data and, in group studies,
the inconsistencies across the individual subjects’ datasets. In what follows,
I will trace how the two designated preprocessing steps—coregistration and
normalisation—standardise the imaging data. I will, in particular, foreground the
epistemic implications of such standardisation.

In a single-subject study and many group studies, the next preprocessing step is
coregistration.>®> Coregistration aims to enable the mapping of brain activations to
anatomical locations after statistical processing has been completed. As mentioned
previously, although fMRI images are not devoid of anatomical details, these are
too imprecise to allow reliable identification of the brain's anatomical structures.
This poses a significant problem since the aim of fMRI studies is to establish the
anatomical locations of the task-induced brain activations of interest. To circumvent
this problem, each fMRI study starts with acquiring a 3D high-resolution structural
image that contains precise information about the subject’s brain anatomy. However,
although they refer to the same physical brain as the subject’s fMRI images, structural
slices are sampled with a different set of parameters. Hence, structural slices are
characterised by a different spatial resolution, type of contrast, brain coverage, and

324 One caveatis that, as mentioned in footnote 312 above, motion correction cannot remove motion-
induced changes in MR signal intensities from the fMRI data. Hence, even after this preprocessing
step has been successfully applied, additional head motion artefacts remain in the data and must
be dealt with during statistical analysis. See section 3.4.1.

325 Inasingle-subject fMRI study, coregistrationisanindividual step. As will become apparentshortly,
in a group study, coregistration represents an optional substage of normalisation.
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even artefacts.32° Such differences make any direct comparison between structural and
functional imaging data difficult, even when they stem from a single individual.

To combine the information contained in the two imaging modalities, researchers
rely once again on computer algorithms. The use of algorithms enables the researchers
to map the corresponding anatomical locations across functional and structural images
through the process called coregistration.3*” Such algorithmic mapping is driven by
a particular cost function chosen by researchers. The cost function quantifies the
misalignment of the anatomical content between structural and functional images
of the same subject by comparing pertinent image structures in both imaging
modalities.3?8 Through such quantitative image analysis, the algorithms estimate the
parameters of the mathematical transformation that can best align the two different
image spaces. By applying the transformation thus determined, fMRI images are
realigned to match the image space of the structural image voxel-by-voxel. After that,
researchers choose an interpolation method that uses the original data to compute the
estimated signal intensities at the new locations.?*’

Through this chain of mathematical operations, coregistration constructs the spatial
compatibility across the different imaging modalities. As a result, the anatomical
information from the structural image can, at a later point, be deployed to anatomically
designate the locations of activations in functional maps calculated from the fMRI
images.?*° Using Ludwig Jiger’s term,?* we can thus say that during coregistration,
researchers perform an intramedial transcription. They construct the anatomical
legibility of the information obtained from fMRI brain slices by establishing a
referential link to another type of image, i.e., structural imaging data.

Group studies, however, need to go beyond merely designating the anatomical
locations of the experimentally detected activities in individual brains. Because they
aim to produce generalisable results, group studies must combine data across multiple
subjects. To enable comparison across subjects, researchers must first counter the
problem that individual brains differ significantly. Notably, the individual differences

326 The differences in spatial resolutions and the types of contrasts that characterise these two
imaging modalities were discussed in detail in sections 3.2.1and 3.2.2.

327 Huettel, Song, and McCarthy, Imaging, 280-81. In fact, this step includes multiple operations
since structural images have to be prepared for coregistration. Researchers first have to clean the
images of various measurement artefacts, as well as algorithmically strip the brain of the skull
and other non-brain tissue. They then proceed to segment the brain tissue into different types.
These transformations rely on extensive mathematical modelling and require researchers to make
interpretational decisions. For details, see Poldrack, Mumford, and Nichols, Handbook, 56-58.

328 The cost function typically used in coregistration is called boundary-based registration. It focuses
on the boundaries between grey and white matter in both types of images while ignoring the rest
of the visual content. See Jenkinson and Chappell, Neuroimaging Analysis, 212—13.

329 Ashburner et al., “SPM12 Manual,” 43. See also Jenkinson and Chappell, Neuroimaging Analysis,
187-90.

330 This will be discussed in detail in section 3.5.1. At this point, it is important to emphasise that
functional maps are devoid of any anatomical information and, therefore, cannot be coregistered
directly onto structural images. For this reason, coregistration has to be performed with functional
images. See also Jenkinson and Chappell, Neuroimaging Analysis, 1770—71.

331 Jager, “Epistemiology of Disruption,” 72.
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are not limited to the overall size and shape of each brain. Instead, they also include
considerable variations in the positions and orientations of single anatomical structures

332 The crucial point is that brains of various shapes and sizes

across different subjects.
occupy arbitrarily different positions within the scanner’s fixed coordinate system.
Consequently, the same anatomical structures appear in divergent locations in images
from different subjects and are thus designated by different sets of coordinates.
Such inconsistencies hinder statistical analysis since automated algorithms can only
calculate accurate group-level functional maps if the spatial coordinates of various
neuroanatomical structures across all study participants are mutually aligned.3?

To enable the comparison of fMRI datasets across individuals, researchers have
to construct their mutual anatomical compatibility through a series of computerised
steps jointly referred to as spatial normalisation. These steps transform each subject’s
image space—which is characterised by a contingent relation between that individual’s
neuroanatomical structures and the set of coordinates attributed to them through the
measurement—into a shared space. In principle, spatial normalisation is similar to
motion correction described in the previous section because it also mathematically
transforms the imaging data to match them to a chosen reference image.>** However,
there are two crucial differences.

First, the underlying mathematical modelling in spatial normalisation is markedly
more complex since the brain is no longer treated as a rigid body with a constant
size and shape. During normalisation, the brain’s size and gross anatomical structures
are algorithmically transformed through “stretching, squeezing, and warping,” thus
substantially changing the geometry of the fMRI images in the process.3* But although
extensive, such spatial interventions are not arbitrary. Instead, they are limited by
one crucial constraint—“an individual [anatomical] structure cannot be split up into
separate structures and cannot disappear.”336 As in the previous processing steps,
also in this case, researchers can select among various mathematical methods and
levels of modelling complexity. Nevertheless, it is important to note that the software
predetermines the range of available options of cost functions and interpolation
methods researchers can choose.>’

Second, unlike the preprocessing steps analysed so far, the reference image
used in normalisation stems neither from the same fMRI dataset nor from
the same measurement. When performing normalisation, researchers deploy an
external reference image, which they can select from the software’s various standard
templates.?*® The most straightforward approach is to match the fMRI data to the
software’s standard functional template. Even though this approach is considered

332 Poldrack, Mumford, and Nichols, Handbook, 53.

333 Poldrack, Mumford, and Nichols, 17.

334 Huettel, Song, and McCarthy, Imaging, 282.

335 Huettel, Song, and McCarthy, 282.

336 Jenkinson and Chappell, Neuroimaging Analysis, 163.
337 Poldrack, Mumford, and Nichols, Handbook, 60—63.
338 Poldrack, Mumford, and Nichols, 59.
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39 many fMRI studies of hysteria—including the study by de Lange, Roelofs,

inaccurate,
and Toni—have implemented it. The more accurate but computationally considerably
more elaborate approach is a multistep procedure. In the latter case, researchers first
perform coregistration as described above and then align the subjects’ structural images

$.3%° In both cases, the outcome of

to one of the software’s standard structural template
normalisation is a new fMRI dataset, whose image space matches the one defined by
the template chosen.

All standard templates deployed by different software packages for fMRI processing
are associated with one of the commonly used brain atlases. Their purpose is to provide
what in the neuroimaging context is called a ‘standard space. That is, the templates offer
a common 3D frame of reference in which a standardised set of Cartesian coordinates

341 As opposed

uniquely and consistently determines each neuroanatomical structure.
to the arbitrary positioning of the brain within the native space of each measurement,
the standards space is defined by a fixed zero point and a fixed orientation of the

342 For example, the

coordinate axes in relation to particular anatomical landmarks.
zero point of the standard space is placed in the anatomical structure called the anterior
commissure.>*® What happens during normalisation at the level of functional images
is the following. The coordinates that the measurement had initially attributed to each
voxel are translated into the standard space coordinates provided by the template.
Ideally, through this translation, large anatomical structures across subjects should
acquire the same set of standard coordinates by which these structures are uniquely
determined in the given atlas.

In effect, the procedure of normalisation aims to homogenise the fMRI data by
erasing the anatomical differences that characterise individual brains. In the process,
all idiosyncratic anatomical features of an individual brain are treated as noise because
they introduce spatial ambiguities into the data. Therefore, only by stripping each
subject’s dataset of individual anatomical specificities—and thus subsuming it to a
standardised model—can the fMRI datasets of different subjects be made anatomically
compatible. Such mathematically constructed anatomical compatibility is, in turn, a
precondition for the mutual comparability of fMRI datasets across different subjects
within a single study. Once they have been normalised, fMRI datasets of different
subjects can be combined to compute group-level activation maps. Yet, at a more
general level, normalisation of fMRI data also makes possible a direct comparison of
imaging results across different studies. Specifically, “if data from two different studies
have been normalized in the same fashion, then the areas of activity found in each study
can be compared.”** Hence, nowadays, even single-subject studies typically entail the
step of spatial normalisation, as it facilitates the comparison of their results with other

339 “[A]lthough the overall outline of the brain will be accurate, structures within the brain may not
be accurately aligned.” Poldrack, Mumford, and Nichols, 59.

340 Poldrack, Mumford, and Nichols, 59—60.

341 Poldrack, Mumford, and Nichols, 54.

342 Poldrack, Mumford, and Nichols, 54.

343 Poldrack, Mumford, and Nichols, 54.

344 See Huettel, Song McCarthy, Imaging, 283.
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studies.?*5 Using Jiger's term,3#® it can be said that the anatomical consistency and the
resulting mutual comparability of normalised fMRI datasets are constructed through
their intramedial transcriptive transformation in relation to the software’s standardised
image templates.

There are two caveats, however. First, despite extensive mathematical modelling,
the normalised fMRI datasets still retain residual anatomical differences. Hence, an
additional preprocessing step called spatial filtering is often applied, which further
reduces the residual anatomical differences by blurring the images.3*” Second, the
concept of the standard space is not as stable or homogenous as it may appear at a
superficial glance. Earlier neuroimaging studies deployed the Tailarach & Tournoux

$.348 This atlas is based on the

standard space derived from the identically named atla
dissection of a single hemisphere of a 60-year-old French woman's brain. However,
the use of the Tailarach & Tournoux standard space is no longer considered “a good
choice” in the neuroimaging community, as it is deemed unrepresentative of the general
population and thus “provides a false sense of precisions and accuracy.”>4°

For this reason, more recent studies have mostly relied on the template called
MNI152 that was developed by the Montreal Neurological Institute (MNI) “as an average
of structural MRI images from 152 young healthy adult subjects.”**° But the MNI152
is only the latest in several generations of MNI population-based templates, none of
which are identical.>>* Moreover, because the MNI152 template is based on the brains

352 Overall,

of young, healthy subjects, it is unrepresentative of neurological patients.
my succinct overview has foregrounded that the standard space is a convention that
continues to evolve with the ongoing research. The apparent consequence is that fMRI
studies have implemented different standard spaces to align their data in the last two
decades. This unavoidably resulted in inconsistencies in how researchers attributed
anatomical locations to the activation patterns registered in their functional data.?
Finally, since there are no automated tools for assessing the quality of coregistration
and normalisation, researchers are emphatically advised to visually inspect the results
of the black-boxed mathematical operations that massively transform their data.3%*
One way of doing it is to inspect the thus obtained volumes as a movie. Additionally,
researchers can use various digital viewing tools to superimpose a single fMRI slice over
the template and then “flick” back and forth between them to check if they sufficiently

345 See Huettel, Song McCarthy, 283. For a pertinent example, see Roy et al., “Dysphonia,” 186.

346 Jager, “Transcriptivity Matters,” 50.

347 For details on spatial smoothing, as well as additional reasons why this preprocessing step is
performed, see Poldrack, Mumford, and Nichols, Handbook, 50-52.

348 Poldrack, Mumford, and Nichols, 178.

349 For details, see Poldrack, Mumford, and Nichols, 177-78.

350 Jenkinson and Chappell, Neuroimaging Analysis, 191.

351 Theinitial MNI template was the so-called MNI305, with a lower resolution than the MNI152. See
Poldrack, Mumford, and Nichols, Handbook, 55-56.

352 See Huettel, Song, and McCarthy, Imaging, 284.

353 Jenkinson and Chappell, Neuroimaging Analysis, 191.

354 Huettel, Song, and McCarthy, Imaging, 283; Jenkinson and Chappell, Neuroimaging Analysis, 183—84;
and Poldrack, Mumford, and Nichols, Handbook, 65.
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overlap.3® Alternatively, they can extract the tissue boundaries from the template and
overlay them on the normalised image to see how well they fit.35
visual inspection of raw imaging data, researchers have to learn through practice how

As in the case of

to recognise potential artefacts and inconsistencies in their normalised imaging data.

My analysis in the last three sections has shown that, although considered to
be the same for all experiments, preprocessing steps require researchers to make
interpretational decisions about what counts as systematic noise in their datasets and
which of the available transformation options to use to delete this noise. Automated
algorithms then perform the chosen transformations at the numerical level of the
imaging data. Yet, throughout my analysis, I have emphasised that the visual character
of fMRI data nevertheless plays a crucial role during preprocessing. By interacting with
the fMRI data’s visual features, researchers determine if the automated algorithmic
operations were carried out adequately. Moreover, we have seen that all these operations
aim to reduce various idiosyncratic aspects of the measurement that introduced
ambiguity into the data. Through these operations, fMRI datasets are mathematically
constructed as increasingly mutually compatible.

Drawing on Latour, I argue that each preprocessing step is characterised by a trade-
off between gain and loss.3” What is lost at each step is the unwanted idiosyncrasy of
the measurement, which arose either from the fMRI’s technological limitations or from
the experimental subjects’ behavioural and physiological contingencies. My analysis has
underscored that this deletion is performed under specific constraints. The images are
transformed first by shifting the voxels to locations defined by new sets of coordinates.
Then the corresponding signal intensities at these new locations are calculated by using
the values from the neighbouring voxels. The values thus computed are only estimates
of the data that would have been collected in an unattainable situation, which would
have allowed the instantaneous acquisition of successive fMRI volumes from a static
brain of a standard size and shape. Nevertheless—and this is crucial—the use of the
Cartesian coordinate system and a particular set of mathematical operations ensure
that the transformation of the original raw dataset into a corrected one is traceable,
at least in principle.3®
operations retain an unbroken referential link to the original signa

Provided that they did not result in errors, the mathematical
1,35% which, in turn,
is indexically related to the individual subject’s active brain.

Conversely, what is gained through preprocessing is the temporal, spatial, and

anatomical consistency within and across the newly calculated datasets. Through

355 Jenkinson and Chappell, Neuroimaging Analysis, 183—84.

356 Jenkinson and Chappell, 183-84.

357 Latour, Pandora’s Hope, 70-71.

358 It should be noted that all interpolations “involve some degradation of the image, as some
information from the original image is lost” Jenkinson and Chappell, Neuroimaging Analysis, 178.
Put simply, the price researchers pay for deleting systematic noise is a partial loss of potentially
meaningful information.

359 |am using the term ‘referential’ in Latour’s sense. See Latour, Pandora’s Hope, 71-72.
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3 Using fMRI as an Investigation Tool in Hysteria Research

algorithmic operations of mutually aligning the fMRI images to one another, as well
as matching them to other imaging modalities and external image-based templates,
researchers create a dataset that is “compatible with already-established centres of
calculation.”®®® Importantly, the output of these transformations are 4D functional
datasets that are still illegible—when preprocessed fMRI datasets are submitted to
visual inspection, even experts cannot ‘read’ them. In short, by looking at these images,
it is still impossible to determine which voxels exhibit task-induced activity and which
do not. Nevertheless, thus standardised, the images can now finally undergo statistical
analysis that will translate them into legible brain maps. Hence, as shown by my
analysis, the purpose of preprocessing is to construct the analysability of the fMRI
datasets while at the same time preserving their indexicality via a chain of traceable
mathematical operations.

3.4 Statistical Analysis: Articulating the Task-Induced Neural Activity of
Interest

Preprocessed functional 4D datasets remain illegible because the pertinent information
concerning the brain activity of interests they entail is still spread across multiple brain
volumes and buried under random noise. To construct the legibility of their fMRI data,
researchers must determine which areas of the subjects’ brains can be declared active.
They do this by using statistical analysis, which enables them to make judgments about
the “underlying patterns in the data’ ridden with random noise.>®! Instead of more
commonly known descriptive statistics that merely summarise the data, fMRI studies
apply inferential statistics. This type of statistics permits researchers to use the datasets
from their subject sample to make claims about a larger population.3>

Inferential data analysis is based on the process called hypothesis testing. Generally
speaking, this type of statistical analysis starts with the formulation of two opposing
claims—the null hypothesis and the alternative hypothesis.?®? In the subsequent step,
statistical tests are used to evaluate which of the two hypotheses describes the data with
a higher probability. In fMRI, the null hypothesis amounts to the claim that the task had
no effect on the data, or in other words, that there is no temporal correlation between
the variation in the BOLD time series and the different experimental conditions. The
alternative hypothesis states that the measured differences in the BOLD signal’s average
intensities between the task and the control condition are temporally correlated with
the experimental intervention.3%*

During hypothesis testing, the analysis software executes automated statistical
tests for each voxel independently. This voxel-by-voxel approach is known as mass

360 Latour, 71-72.

361 Worsley, “Statistical Analysis,” 251.

362 Worsley, 251.

363 Huettel, Song, and McCarthy, Imaging, 331.
364 Huettel, Song, and McCarthy, 331.
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