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Hence, on the whole, BOLD fMRI images are best understood as intermediary

inscriptions whose function is, first and foremost, to bridge the otherwise

insurmountable gap between the subject’s active brain and the functional maps. As the

output of the measurement procedure, BOLD fMRI images have a fixed material form.

Owing to this fixedmaterial form, they can be archived, copied and transported, shared

within the scientific community and even reused in later studies.269 However, as the

following sections will make evident, the key feature of fMRI images is their mutability,

which arises from the fact that various mathematical operations can be performed on

them. Owing to their mutability, these images are able to fulfil their primary epistemic

function as the working material for subsequent transformations. In what follows, we

will examine these transformations and discuss their epistemic implications.

3.3 Preprocessing: Constituting the Analysability of fMRI Data

Having collected the imaging data for all their study participants, researchers then

move on to the subsequent stages of the experiment, during which they process the

raw datasets. Across these stages, researchers aim to translate the illegible and noisy

fMRI datasets into visually accessible functional brain maps. Called the processing

pipeline, this procedure entails a sequence of algorithmic steps that systematically

address various types of noise. In the following sections, I will examine these steps

by focusing on how researchers make judgments about what counts as noise in their

data and which operations they perform to remove it. I will show that by making

these judgments, researchers inscribe a range of both explicit and implicit theoretical

assumptions into the imaging data. It is important to unpack these assumptions since

they are invisible in the functional maps as the products of the analytical pipeline. Yet,

although invisible, these assumptions inform the maps’ potential scientific validity and

their ability to produce new insights into hysteria or, at a more general level, any other

phenomenon under study.270

Generally speaking, a processing pipeline comprises two distinct stages. Each stage

is tailored to deal with a specific type of noise—random or systematic. The primary

sources of randomnoise in an fMRI experiment include, first, brain processes unrelated

to the experimental task, and second, variations in how the subjects performed the

task at hand.271 This type of noise is study-specific because it depends on the concrete

experimental task and the subjects selected. To remove it, researchers deploy statistical

analysis during the main stage of processing. But before statistical analysis can be

269 As discussed previously, the underlying structure of each slice is a matrix—an array of numbers

arranged in rows and columns.

270 To demonstrate the analytical variability of fMRI processing pipelines, one meta-study focused

on ten standard preprocessing andmodelling steps. By considering between two and four default

options for each step and then taking into account their various combinations, the authors arrived

at 6,912 different pipelines.When applied to the samedataset, each pipeline resulted in a different

functional map. See Carp, “Analytic Flexibility.”

271 How a task is performed varies not just among different subjects but also over a single subject's

repeated trials during the experiment. See Huettel, Song, and McCarthy, Imaging, 262.
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used to translate them into functional maps, raw imaging data must first be prepared

for analysis through preprocessing. The purpose of preprocessing is to remove non-

meaningful changes in the MR signal caused by more or less predictable measurement

constraints.272 This type of noise is called systematic as it affects all fMRI studies

independently of the task chosen.

Since systematic noise is not study-specific, its removal entails applying standard

preprocessing steps. Therefore, many researchers tend to consider preprocessing

less challenging than statistical analysis, which has to be tailored to each study.273

As a result, researchers often report the preprocessing steps they implemented

only summarily. For example, de Lange, Roelofs, and Toni described their entire

preprocessing in a single sentence: “First, functional images were realigned, slice-time

corrected, normalized to a common stereotactic space (MNI: Montreal Neurological

Institute, Canada) and smoothed with a 10 mm FWHM Gaussian kernel.”274 However,

in what follows, my analysis will show that researchers make far-reaching epistemic

decisions at each of the steps listed above.More precisely, I will argue that preprocessing

disciplines and standardises raw fMRI data by altering them to fit researchers’—often

tacit—assumptions about what constitutes valid datasets for statistical analysis.

To perform preprocessing and the subsequent statistical analysis, researchers rely

on specialised computer programmes. To begin with, they can choose among different

software packages, most of which are freely available for research purposes. SPM, FSL,

and AFNI are the most widely used open-source packages.275 Significantly, although

a shared analytical approach informs them, the programmes differ considerably in

the sequence of the single steps, underlying theoretical concepts and mathematical

modelling.276 Besides, all packages are regularly updated with “substantial theoretical,

algorithmic, structural and interface enhancements over previous versions.”277 Thus,

both the differences across single packages and among various versions of the same

software affect the outcome of processing.278 Researchers are, therefore, obliged to

specify which particular version of which software they used in their study. My analysis

in the following will focus on the SPM—Statistical Parametric Mapping—which was the

272 Huettel, Song, and McCarthy, 267. By referring to imaging data as raw, I am merely emphasising

that they are a direct output of the measurement and have yet to undergo preprocessing and

statistical analysis.

273 Ashby, Statistical Analysis, 80.

274 De Lange, Roelofs, and Toni, “Self-Monitoring,” 2053.

275 Developed by Karl Friston and colleagues, SPM is maintained by the Wellcome Trust Centre for

Neuroimaging, University College London. FSL was created at the University of Oxford and AFNI

at the National Institute of Mental Health in Maryland. See Poldrack, Mumford, and Nichols,

Handbook, 8–9.

276 The different software packages predominantly rely on the general linear model (GLM) approach,

which I will analyse in sections 3.4.1 and 3.4.2. For details, see also Poldrack,Mumford, andNichols,

7–10.

277 http://www.fil.ion.ucl.ac.uk/spm/software/. Accessed on January 10, 2020. In the words of one of

the SPM’s developers: “The term ‘SPM’ does not really refer to a single piece of software, as many

changes are made between each release.” Ashburner, “SPM: A History,” 792.

278 Carp, “Analytic Flexibility,” 2, article 149.
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first widely used software for fMRI analysis and continues to be the most popular.279

Moreover, the SPM was used in our case study.

Notably, the analytical flexibility with which researchers can approach their

data only begins with choosing the software. Each software version can be applied

to the same dataset in immensely variable ways, both during preprocessing and

even more so during statistical analysis. We will see that at each processing step,

researchers can either choose among several pre-given standard options or define

custom-made parameters. In doing so, they gradually construct a distinct chain of

transformations tailored to the purposes of their study. Since these decisions have

epistemic implications for the outcome of the processing, my analysis will examine

how human judgment both guides and intervenes in the software-based operations

throughout the chain of transformations that starts with raw imaging data and

ends with functional maps. I will argue that the imaging data’s mathematical and

visual aspects fulfil distinctly different functional roles during this process. But before

turning to the discussion of statistical analysis, in the following sections, I will first

focus on illuminating the epistemic implications of the four major preprocessing

steps: visual quality control, head motion correction, acquisition time correction and

normalisation.280

In the remainder of this chapter, my analysis is based on close reading of

fMRI studies of hysteria and multiple, more general publications that deal with the

methodological aspects of functional neuroimaging. Importantly, my analysis is also

substantially informed by practice-based insights I have gainedwhile learning to use the

SPM for fMRI data analysis. For this purpose, I participated in two courses for graduate

students held by Dr. rer. nat. Torsten Wüstenberg at the Department of Psychiatry and

Psychotherapy, Charité Campus Mitte Berlin in March 2014 and January 2015.

3.3.1 Identifying Visually Recognisable Noise

Strictly speaking, preprocessing comprises a sequence of algorithm-based steps.281

Having selected the parameter settings at each preprocessing step, researchers let the

software perform black-boxed mathematical operations on the fMRI slices. Since all

transformations are conducted at the level of the numerical image matrix, it can be

said that throughout preprocessing, fMRI images are treated as mathematical objects.

This means that, at least in principle, researchers could clean their imaging data

of systematic noise without even so much as glancing at them. However, standard

textbooks on fMRI emphatically recommend that before submitting them to any

algorithmic transformations, researchers should always look very closely at their

279 Poldrack, Mumford, and Nichols, Handbook, 8.

280 Preprocessing pipeline may comprise additional steps. For details, see Jenkinson and Chappell,

Neuroimaging Analysis, 116–17, 122–30. I will not discuss such additional steps here, as they were

not performed in our case study.

281 Recently, new methods have been developed that simultaneously combine all algorithmic

preprocessing steps. Nevertheless, sequential preprocessing is still the dominant approach and

will, therefore, remain the focus ofmy enquiry. See Jenkinson and Chappell,NeuroimagingAnalysis,

121–22.
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imaging data.282 But what exactly can researchers see in the fMRI brain slices if these,

as I have claimed, are visually illegible? Although it is impossible to determine the

presence of task-induced brain activity by merely looking at fMRI brain slices, my

analysis will demonstrate that, based on the visual appearance of the imaging data,

researchers can make judgments about the data’s tangential features. Specifically, we

will discuss how researchers can assess the data quality by visually inspecting the fMRI

slices.

Before they start processing themmathematically, researchers first examine the raw

imaging data for potential measurement errors. This step is highly significant because,

if overlooked, such measurement errors could lead to the creation of invalid functional

maps. Typical sources of unwanted artefacts include potential technical problems

with the scanner, various acquisition mistakes, errors in image reconstruction, and

the experimental subjects’ excessive head motion.283 Researchers can use a range of

automated software tools to check the quality of their data.284 Yet, in addition to

such quantitative examination, visual inspection of fMRI data on the computer screen

is considered an indispensable part of quality control.285 Many of the measurement

artefacts listed above are visually discernible when the functional imaging data are

viewed on the screen as grey-scale brain slices. Hence, it is considered that controlling

the quality of fMRI images “is usually best done by eye, by just looking at the data.”286

Indexically inscribed traces of various measurement artefacts can take different

visual forms. For instance, some errors that arise from technical imperfections or

scannermalfunction are visually detectable within single fMRI image slices. Such errors

can appear as regularly repeating patterns of stripes or as unusual variations in the

brightness spreading from the centre to the periphery of a 2D image.287 Other artefacts

take the form of a horizontal compression of the image towards the bottom or an

unusual darkening of individual regions of a 2D slice. Less frequently, a shifted and

warped version of the image may be superimposed on the original.288 An experienced

researcher can identify such visual distortions by merely glancing at a single fMRI slice.

In other cases, the artefacts are not immediately apparent. Thus, to make the presence

of an underlying anomaly visible, researchers must actively interact with the viewing

software, for instance, by changing the default brightness setting.289

However, not all errors are detectable based on the inspection of single slices.

More insidious artefacts are caused by unwanted changes that happen between the

acquisitions of successive slices. Such errors become visually identifiable only when a

time series of raw fMRI images are viewed in quick succession as a movie. To perform

282 Huettel, Song, andMcCarthy, Imaging, 268; Jenkinson and Chappell,Neuroimaging Analysis, 89; and

Poldrack, Mumford, and Nichols, Handbook, 37.

283 Huettel, Song, and McCarthy, Imaging, 267–68.

284 Huettel, Song, and McCarthy, 267–68.

285 Huettel, Song, and McCarthy, 267–68.

286 Jenkinson and Chappell, Neuroimaging Analysis, 89.

287 Huettel, Song, and McCarthy, Imaging, 268.

288 This particular artefact is called ‘ghosting.’ See Jenkinson and Chappell, Neuroimaging Analysis, 36,

fig. 2.6.

289 Poldrack, Mumford, and Nichols, Handbook, 36.
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such an inspection, researchers use various tools to animate all slices that constitute a

single brain volume. In this way, they can examine the entire dataset, volume by volume,

looking for rapid jerks in the animation or some other visual aspect that pops out of

sequence.290 Such visual disturbances are potentially significant, as they could point to

a missing imaging slice or indicate that the experimental subject has abruptly moved

the head during the measurement.

If they detect a visual anomaly in their data, researchers have to decide what

further action to take. In some cases, they can remove the detected artefacts through

mathematical processing and thus save the data. Yet, some measurement errors might

be so extensive as to be beyond repair. In such cases, researchers have no choice but to

exclude single slices, corrupt brain volumes or even an entire subject’s dataset from

further analysis.291 Since the starting point of such far-reaching actions lies in the

human inspection of the data’s visual features, I argue that during preprocessing,

various kinds of data visualisations are used operatively in the sense defined by Sybille

Krämer. According to Krämer, when used operatively, visualisations function as tools

that open new possibilities of actively engaging with and reasoning about the objects

to which they refer. 292

The above examples have shown that to look for potential traces of measurement

errors in the data, researchers deploy different visual interventions, such as changing

the brightness of individual slices or turning them into an animation. In doing so,

they selectively articulate particular relations within the dataset and thus determine

which kinds of artefacts are made visible in the form of particular visual patterns.

Various artefacts might be present simultaneously in the same fMRI dataset. But to

be visually brought forth and thus uncovered, each such artefact requires that the

same dataset be visualised differently. It can, therefore, be said that various static and

dynamic visualisations of the fMRI data are deployed during the quality control as

flexible tools. Using these tools requires researchers to make active choices about how

to visually configure their fMRI data to search for traces of possible acquisition errors,

which would otherwise remain unnoticed. Significantly, such choices, in turn, enable

researchers to classify the imaging data as either correct or corrupted.

Hence, although the fMRI data’s numerical and visual forms contain the same

information, they are not equivalent at the operative level. As we have seen, targeted

visualisations can differentially display the pertinent relations in the data, which in the

numerical form would remain inaccessible to researchers.Whereas the numerical form

is crucial in enabling automated algorithms to transform the data mathematically, it is

the visual form that addresses the human eye. In doing so, the data’s visual form plays

a central role in facilitating human judgments about the outcome of computer-based

processes.

Although the process of visual quality control, as described above, may appear

simple, it requires highly specific visual expertise. Functional imaging data are fuzzy

and pixelated grey-scale images of brain slices. As I can testify from my experience, an

290 Huettel, Song, and McCarthy, Imaging, 268.

291 See, e.g., Espay et al., “Functional Tremor,” 180.

292 Krämer, “Operative Bildlichkeit,” 104–5.
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untrained eye is unable to discern potential visual anomalies either in individual slices

or in their animations. For this reason, researchers new to fMRI must first learn how to

look for the visual features that could indicate underlying acquisition errors.293 Novice

researchers gradually acquire the visual expertise through practice by “repeatedly

examining data from the same scanner.”294 The key aspect of this experiential learning

is to develop implicit visual knowledge of “what ‘good data’ should look like.”295 In

relation to what they know to be ‘good data’, experienced researchers can recognise

pertinent visual distortions in a dataset. In other words, to differentiate between proper

and corrupted data, researchers rely on an implicit comparison of what they have

learned to see as salient visual features in a particular type of visualisation. Yet, although

they can visually recognise such patterns and point to them on the computer screen,

researchers are often unable to define them in verbally explicit terms.296

It appears to me that precisely the implicit character of researchers’ expertise

contributes to the ambivalent epistemic status of visual inspection in fMRI. On the

one hand, the visual judgment of the human expert is accorded a crucial role in

controlling and evaluating the output of the automated algorithmic processes. The

relevant literature repeatedly advises researchers to visually examine not only the raw

data following the acquisition but also the outcome of each preprocessing step to ensure

that the algorithms did not accidentally introduce artefacts.297 An expert human eye is

thus deemed capable of identifying errors made by the ‘blind’ computer. But on the

other hand, a visual inspection performed by a human expert is regarded as possibly

biased and not entirely reliable unless complemented with automated calculations.298

Moreover, by relying on their implicit expertise, researchers may recognise a visual

indicator of an artefact. However, to pinpoint the exact source and the extent of the

underlying problem and possibly remove it from the data, researchers must employ

the software’s algorithms. Whereas such algorithmic steps are typically reported in

published articles, visual inspection remains unmentioned.299

***

Overall, this section has foregrounded the importance of visually examining the fMRI

imaging data, especially during the initial quality control. I have emphasised how

researchers’ active and targeted engagement with different types of visualisations, both

static and dynamic, and the researchers’ implicit knowledge of what good data should

look like underpin the process of visual data inspection. But I have also emphasised

293 For a pertinent analysis of how novice researchers acquire this kind of knowledge through

embodied practice during training sessions with experienced colleagues, see Alac, Digital Brains,

67–145.

294 Huettel, Song, and McCarthy, Imaging, 268.

295 Huettel, Song, and McCarthy, 268.

296 Michael Polany has designated as ‘tacit knowledge’ the kind of knowledge “that cannot be put into

word.” Polanyi, Tacit Dimension, 4.

297 Huettel, Song, andMcCarthy, Imaging, 272–73; and Poldrack, Mumford, and Nichols,Handbook, 35,

47.

298 Huettel, Song, and McCarthy, Imaging, 268; and Poldrack, Mumford, and Nichols, Handbook, 37.

299 See, e.g., Baek et al., “Impaired Awareness,” 3; and Espay et al., “Functional Dystonia,” 138.
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that, despite its importance, visual inspection appears to be considered less ‘objective’

than clearly delineated algorithms.The reason for this, I suggest, is because the implicit

knowledge that enables the visual judgment of the data’s quality is neither quantifiable

nor describable in clear-cut terms. It can only be transferred implicitly from researcher

to researcher through the joint practice of working with and looking at images.

3.3.2 Erasing Temporal and Spatial Inconsistencies from fMRI Datasets

After passing the comprehensive quality control, raw fMRI data are submitted

to two routine preprocessing steps—acquisition time correction and head motion

correction. However, even deciding which of these two steps to perform first is

a non-trivial matter. The problem is that, depending on the sequence of their

application, these preprocessing steps could mutually interact, thus introducing errors

into the data.300 This fact alone already indicates that fMRI data undergo massive

transformations during preprocessing. But what exactly happens to the images during

these transformations, and what are the resulting epistemic implications?

Acquisition time correction targets temporal inconsistencies in the fMRI data

caused by the sequential acquisition of 2D slices. For example, in the de Lange, Roelofs,

and Toni study, each subject’s brain volume was virtually divided into thirty-two slices

collected sequentially over a period of 2.54 seconds.301 This process was then repeated

to acquire 547 brain volumes altogether. Due to this kind of acquisition, each slice in

a single brain volume was collected at a different time point.302 As a result, BOLD

responses that occurred simultaneously across the brain were sampled at different

stages of their temporal developments, depending on their relative spatial locations.303

Yet, the problem is that the ensuing relative temporal displacement across slices counts

as noise from the perspective of statistical analysis. This is because the underlying

premise of the analysis is that BOLD responses in all slices within a single brain volume

weremeasured simultaneously and that each two adjacent brain volumes were acquired

at equidistant temporal intervals.304

To circumvent this problem, researchers submit fMRI data to the procedure called

temporal interpolation during the acquisition time correction. This mathematical

transformation enables researchers to use the actually measured data from

neighbouring voxels to estimate the value of the MR signal that would have been

obtained at each voxel had all the voxels in a single brain volume been sampled

at once.305 Importantly, to enable this calculation, researchers must first specify

300 Poldrack, Mumford, and Nichols, Handbook, 48.

301 De Lange, Roelofs and Toni, “Self-Monitoring,” 2053.

302 Consequently, themost pronounced temporal delay is between the first and the last slice acquired

in each volume, which in our case study amounts to 2.46 seconds.

303 “The slices acquired later in the volume show an apparently earlier response because the

hemodynamic response has already started by the time that they are acquired.” Poldrack,

Mumford, and Nichols, Handbook, 41.

304 Sladky et al., “Slice-Timing Effects,” 588–94.

305 Different mathematical methods can be used for combining the values from neighbouring data

points to calculate the estimated signal value in each voxel. See Huettel, Song, and McCarthy,
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the exact temporal order of the slice acquisition and then choose a reference slice

from their dataset. As their reference slice, researchers can select the slice acquired

at the beginning, halfway through the volume or at any other time point of the

measurement.306The automated algorithms then temporally align all slices comprising

a single volume to match the timing of the reference slice. They do so by shifting the

sampling points (i.e., the value of the signal intensity measured) in all other 2D images,

either forwards or backwards in time.

Significantly, at the end of the acquisition time correction, the spatial characteristics

of the functional slices remain unchanged. Yet, the signal intensity measured initially

at each voxel is replaced by a newly calculated numerical value. Hence, through this

preprocessing step, the raw dataset with its temporally mismatching sequentially

acquired slices has been transformed into a corrected dataset. This new dataset

comprises a collection of brain volumes containing slices with a matching timing.

Such mathematical modelling thus allows researchers to satisfy the requirements of

statistical analysis by constructing a temporally consistent functional dataset.

Either before or after acquisition time correction,307 the functional dataset must

undergo an additional preprocessing step called head motion correction. This step

aims tominimise a particularly vexing problem of image acquisition—the experimental

subjects’ unintended headmotion,which could render the data unusable if excessive.308

Although the subject’s head is often fixed with padding during the data acquisition,

it is nevertheless impossible to entirely avoid small-scale movements caused by an

array of normal physiological reactions.309 For example, subjects may reposition their

shoulders due to tiredness, briefly hold their breath, or unintentionally move their

head while performing the experimental task.310 Crucially, even a displacement smaller

than a millimetre changes the brain’s relative position within the scanner’s coordinate

system, thus causing a misalignment between successively sampled brain volumes.311

In such a case, the voxels with the same set of coordinates across subsequently acquired

volumes no longer refer to the same location in the physical space of the brain. This, in

turn,means that the same neuroanatomical structures occupy different locations across

successive 3D fMRI images.312 The resulting spatial mismatch violates the assumption

Imaging, 271. The SPM, however, does not offer researchers the possibility of a choice since the

method called Fourier phase shift interpolation is hard-coded into the software. See Ashburner et

al., “SPM12 Manual,” 21–22.

306 Ashburner et al., “SPM12 Manual,” 22–23.

307 Poldrack, Mumford, and Nichols, Handbook, 48.

308 Poldrack, Mumford, and Nichols, 44.

309 Huettel, Song, and McCarthy, Imaging, 272.

310 Even minimal head movements that arise from breathing and heartbeat cause motion artefacts

referred to as physiological noise. However, if researchers choose to remove this particular type

of noise, they have to deploy an additional preprocessing step, which I will not analyse here. For

details on removing physiological noise from fMRI data, see Poldrack, Mumford, and Nichols,

Handbook, 49–50.

311 Huettel, Song, and McCarthy, Imaging, 271.

312 It should be noted that apart from resulting in a spatial mismatch across fMRI volumes, head

motion also additionally causes significant changes in the MR signal intensities stemming from

misaligned voxels. In some cases, due to head motion, a portion of the brain might “move out of
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of statistical analysis that “the brain is always in the same position” in images collected at

different time points.313 If uncorrected, this misalignment leads to incorrect functional

brain maps.

To be able to erase the spatial mismatch between successive brain volumes,

researchers must first estimate the head motion that caused it. Achieving this is far

from simple because the subject’s head motion arises from an individual interplay

of many behavioural and physiological factors. In effect, the exact details of the

brain’s displacement during the acquisition remain necessarily unknown to researchers.

Nevertheless, by employing computer algorithms to mathematically analyse the spatial

mismatch across the collected images, researchers can derive assumptions about

the brain’s most likely position at each time point of the measurement. To do this,

researchers must first choose a single fMRI volume from their dataset as a reference.314

The automated algorithms then computationally superimpose all images in the dataset

to this common reference and calculate the amount of each volume’s misalignment.

The brain is thereby treated as a rigid body—an object whose size and shape remain

constant over the time of the data acquisition.315

Based on this assumption, the brain’s presumed motion during the acquisition

is modelled mathematically as a combination of three movements along and three

rotations around the respective axes of the Cartesian coordinate system.316 To obtain

an estimate of the brain’s motion, the black-boxed algorithms iteratively test different

combinations of these six basic types of motion. They search for the combination that

best describes the spatial mismatch between the reference image and the rest of the

data. The goodness of fit of the estimate is determined mathematically by a quantity

called cost function that measures how the intensities across different 3D images relate

the imaging volume, with an irreversible loss of data from the affected regions.” Huettel, Song,

and McCarthy, 271. And even if this does not happen, there are other problems. For instance,

movements of the brain along the z-axis might cause some slices to “miss the [RF] excitation

pulse, whereas others will experience two (or more) excitation pulses in rapid succession,” thus

leading to changes in “the relative BOLD signals recorded from each” of these slices. Ibid., 273–74.

Moreover, the spatial displacement of the brain’s magnetic field within the scanner’s magnetic

field elicitsmutual interactions between these fields, producing unwanted field inhomogeneities.

Finally, as a result of head motion, the locations of the brain’s voxels in relation to the spatial

encoding gradients necessarily change. All these changes induce distortions of the MR signals.

See Jenkinson and Chappell, Neuroimaging Analysis, 118, box 3.5. Importantly, none of the motion-

induced distortions of the MR signals can be removed through the deployment of head motion

correction. Instead, additional processing steps have been developed that explicitly address this

specific problem. But more often, and this is a point to which we will return later, motion-induced

signal changes are filtered out during the stage of statistical analysis. For details, see Jenkinson

and Chappell, 203–5.

313 Huettel, Song, and McCarthy, Imaging, 276.

314 Typically, the reference volume is a set of image slices acquired either in the middle or at the

beginning of the measurement. Poldrack, Mumford, and Nichols, Handbook, 45. Alternatively,

some studies compute themean of the time series as the reference. See, e.g., Baek et al., “Impaired

Awareness,” 1626.

315 Poldrack, Mumford, and Nichols, Handbook, 45.

316 Poldrack, Mumford, and Nichols, 45.
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to one other. Researchers can choose among different cost functions, each of which

relies on a different mathematical model.317

Upon finished calculations, the algorithms construct amathematical representation

of how the subject’s brain had presumably moved during the experiment. This

mathematical representation is visualised by two sets of curves, which plot the brain’s

estimated displacements along and rotations around the respective Cartesian axes

as the function of time (fig. 3.8).318 Next, researchers can use the thus estimated

motion to correct the spatial misalignment in the data. Having selected one of several

available methods of spatial interpolation,319 researchers use algorithms to calculate

the data values that would have been acquired had the experimental subject remained

motionless during the scanning.

First, the images are realigned (i.e., spatially transformed), which means that the

original coordinates of the voxels are replaced by newly calculated ones. As a result of

this operation, the 3D images are shifted from their native space (as determined by

the measurement) into a newly defined image space.320 After that, every 3D image is

resliced—i.e., based on the values measured in the neighbouring voxels, the algorithms

compute the signal intensities that would have been obtained at each new spatial point

of the registered image.321 In specialist terms, reslicing is referred to as ‘bringing’ or

‘writing’ the original image into the new image space.322Thus, in a two-step procedure,

voxels are first shifted in place and then assigned new numerical values that designate

the estimated signal intensities at the new locations.

As my analysis has shown, motion correction entails massive mathematical

interventions into the spatial structure of the fMRI data. The native image space—i.e.,

the set of coordinates attributed to the imaging data by the measurement—is

transformed into a ‘corrected’ image space, which is defined by newly calculated

coordinates. The output of motion correction is a spatially more consistent dataset

in which all fMRI volumes have been transformed to match the location of the

reference volume. To ensure that this correction was performed accurately, researchers

are recommended to inspect the dataset visually by viewing it as a movie.323 If the

correction has been successful, the resulting animation should be devoid of any jerky

movements.

317 For details, see Jenkinson and Chappell, Neuroimaging Analysis, 169.

318 These estimations are stored additionally, as they play a role in statistical analysis. See Poldrack,

Mumford, and Nichols, Handbook, 46. We will return to this point later in the chapter.

319 Different methods implement different mathematical relations between spatially neighbouring

voxels to compute the estimated signal value. More accurate methods are computationally more

demanding and thus take a considerably longer time to calculate. See Ashburner et al., “SPM12

Manual,” 29. See also Poldrack, Mumford, and Nichols, Handbook, 46–47.

320 Jenkinson and Chappell, Neuroimaging Analysis, 160, 173–76.

321 Ashburner et al., “SPM 12 Manual,” 29–32. See also see Jenkinson and Chappell, Neuroimaging

Analysis, 176–79: and Poldrack, Mumford, and Nichols, Handbook, 28–30, 44–47.

322 Ashburner et al., “SPM 12 Manual,” 29. See also Jenkinson and Chappell, Neuroimaging Analysis,

174–76. Jenkinson and Chappell use the term ‘resampling’ to refer to reslicing.

323 Poldrack, Mumford, and Nichols, Handbook, 47.
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Figure 3.8. Visualisation of an experimental

subject’s estimated head motion during the

fMRI data acquisition. From Ashburner

et al., “SPM12 Manual,” 259, fig. 32.5.

©Wellcome Centre for Human Neuroimaging,

London.

***

In sum, the combined aim of the preprocessing steps analysed above is to replace the

signal intensities measured initially at respective time points and spatial locations with

values that could not be sampled directly. We have seen that these interpolated values

are necessarily estimates. Importantly, these estimates are not arbitrary. Instead, they

are obtained by transforming the information contained in the original data through the

application of standardised mathematical methods. As my analysis has underscored,

all transformations are derived from a mathematical analysis of the original images.

In effect, the algorithmic transformations recombine the initial signal measurements

across the original images to generate the cleaned-up data. The algorithmic operations

are black-boxed, with many of their aspects hard-coded into the software. Yet, I have

shown that researchers make interpretational decisions throughout the process, such

as choosing the reference image and selecting among the available parameter options,

which include the type of cost function and interpolation method. These decisions are

significant because each option entails different modelling strategies whose underlying
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theoretical assumptions are inscribed into the new dataset. Thus, the adequacy of the

steps chosen determines the potential accuracy of the outcome.

This extensive mathematical modelling serves to minimise the consequences

of unavoidable technological and human-based measurement contingencies that

introduce temporal and spatial inconsistencies into a single subject’s fMRI dataset.

In a group study, this procedure is performed separately for each subject’s dataset.

Through this procedure, each subject’s newly calculated dataset is standardised and

disciplined. In effect, it can be said that the implicit purpose of this standardisation is

to mathematically approximate, as far as possible, an ideal situation, which no actual

fMRI measurement can ever achieve. This ideal situation would entail generating a

sequence of instantaneously acquired brain volumes from a motionless subject.324 And

although they cannot fulfil these ideal conditions, the corrected brain volumes—and the

individual slices comprising them—are constructed as considerably more temporally

and spatially consistent than those in the original raw dataset.

3.3.3 Establishing Anatomical Compatibility Across Data Types and Datasets

Once the temporal and spatial inconsistencies of each subject’s functional dataset

have been dealt with, the preprocessing moves to the subsequent stage. In this

stage, researchers deploy two preprocessing steps specifically tailored to address

multiple incompatibilities between different types of data and, in group studies,

the inconsistencies across the individual subjects’ datasets. In what follows,

I will trace how the two designated preprocessing steps—coregistration and

normalisation—standardise the imaging data. I will, in particular, foreground the

epistemic implications of such standardisation.

In a single-subject study and many group studies, the next preprocessing step is

coregistration.325 Coregistration aims to enable the mapping of brain activations to

anatomical locations after statistical processing has been completed. As mentioned

previously, although fMRI images are not devoid of anatomical details, these are

too imprecise to allow reliable identification of the brain’s anatomical structures.

This poses a significant problem since the aim of fMRI studies is to establish the

anatomical locations of the task-induced brain activations of interest. To circumvent

this problem, each fMRI study starts with acquiring a 3D high-resolution structural

image that contains precise information about the subject’s brain anatomy. However,

although they refer to the same physical brain as the subject’s fMRI images, structural

slices are sampled with a different set of parameters. Hence, structural slices are

characterised by a different spatial resolution, type of contrast, brain coverage, and

324 One caveat is that, as mentioned in footnote 312 above, motion correction cannot removemotion-

induced changes inMR signal intensities from the fMRI data. Hence, even after this preprocessing

step has been successfully applied, additional headmotion artefacts remain in the data andmust

be dealt with during statistical analysis. See section 3.4.1.

325 In a single-subject fMRI study, coregistration is an individual step. Aswill become apparent shortly,

in a group study, coregistration represents an optional substage of normalisation.
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even artefacts.326 Such differences make any direct comparison between structural and

functional imaging data difficult, even when they stem from a single individual.

To combine the information contained in the two imaging modalities, researchers

rely once again on computer algorithms. The use of algorithms enables the researchers

to map the corresponding anatomical locations across functional and structural images

through the process called coregistration.327 Such algorithmic mapping is driven by

a particular cost function chosen by researchers. The cost function quantifies the

misalignment of the anatomical content between structural and functional images

of the same subject by comparing pertinent image structures in both imaging

modalities.328 Through such quantitative image analysis, the algorithms estimate the

parameters of the mathematical transformation that can best align the two different

image spaces. By applying the transformation thus determined, fMRI images are

realigned to match the image space of the structural image voxel-by-voxel. After that,

researchers choose an interpolation method that uses the original data to compute the

estimated signal intensities at the new locations.329

Through this chain ofmathematical operations, coregistration constructs the spatial

compatibility across the different imaging modalities. As a result, the anatomical

information from the structural image can, at a later point, be deployed to anatomically

designate the locations of activations in functional maps calculated from the fMRI

images.330 Using Ludwig Jäger’s term,331 we can thus say that during coregistration,

researchers perform an intramedial transcription. They construct the anatomical

legibility of the information obtained from fMRI brain slices by establishing a

referential link to another type of image, i.e., structural imaging data.

Group studies, however, need to go beyond merely designating the anatomical

locations of the experimentally detected activities in individual brains. Because they

aim to produce generalisable results, group studies must combine data across multiple

subjects. To enable comparison across subjects, researchers must first counter the

problem that individual brains differ significantly. Notably, the individual differences

326 The differences in spatial resolutions and the types of contrasts that characterise these two

imaging modalities were discussed in detail in sections 3.2.1 and 3.2.2.

327 Huettel, Song, and McCarthy, Imaging, 280–81. In fact, this step includes multiple operations

since structural images have to be prepared for coregistration. Researchers first have to clean the

images of various measurement artefacts, as well as algorithmically strip the brain of the skull

and other non-brain tissue. They then proceed to segment the brain tissue into different types.

These transformations rely on extensivemathematicalmodelling and require researchers tomake

interpretational decisions. For details, see Poldrack, Mumford, and Nichols, Handbook, 56–58.

328 The cost function typically used in coregistration is called boundary-based registration. It focuses

on the boundaries between grey and white matter in both types of images while ignoring the rest

of the visual content. See Jenkinson and Chappell, Neuroimaging Analysis, 212–13.

329 Ashburner et al., “SPM12 Manual,” 43. See also Jenkinson and Chappell, Neuroimaging Analysis,

187–90.

330 This will be discussed in detail in section 3.5.1. At this point, it is important to emphasise that

functional maps are devoid of any anatomical information and, therefore, cannot be coregistered

directly onto structural images. For this reason, coregistration has to be performedwith functional

images. See also Jenkinson and Chappell, Neuroimaging Analysis, 170–71.

331 Jäger, “Epistemiology of Disruption,” 72.
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are not limited to the overall size and shape of each brain. Instead, they also include

considerable variations in the positions and orientations of single anatomical structures

across different subjects.332 The crucial point is that brains of various shapes and sizes

occupy arbitrarily different positions within the scanner’s fixed coordinate system.

Consequently, the same anatomical structures appear in divergent locations in images

from different subjects and are thus designated by different sets of coordinates.

Such inconsistencies hinder statistical analysis since automated algorithms can only

calculate accurate group-level functional maps if the spatial coordinates of various

neuroanatomical structures across all study participants are mutually aligned.333

To enable the comparison of fMRI datasets across individuals, researchers have

to construct their mutual anatomical compatibility through a series of computerised

steps jointly referred to as spatial normalisation. These steps transform each subject’s

image space—which is characterised by a contingent relation between that individual’s

neuroanatomical structures and the set of coordinates attributed to them through the

measurement—into a shared space. In principle, spatial normalisation is similar to

motion correction described in the previous section because it also mathematically

transforms the imaging data to match them to a chosen reference image.334 However,

there are two crucial differences.

First, the underlying mathematical modelling in spatial normalisation is markedly

more complex since the brain is no longer treated as a rigid body with a constant

size and shape. During normalisation, the brain’s size and gross anatomical structures

are algorithmically transformed through “stretching, squeezing, and warping,” thus

substantially changing the geometry of the fMRI images in the process.335 But although

extensive, such spatial interventions are not arbitrary. Instead, they are limited by

one crucial constraint—“an individual [anatomical] structure cannot be split up into

separate structures and cannot disappear.”336 As in the previous processing steps,

also in this case, researchers can select among various mathematical methods and

levels of modelling complexity. Nevertheless, it is important to note that the software

predetermines the range of available options of cost functions and interpolation

methods researchers can choose.337

Second, unlike the preprocessing steps analysed so far, the reference image

used in normalisation stems neither from the same fMRI dataset nor from

the same measurement. When performing normalisation, researchers deploy an

external reference image, which they can select from the software’s various standard

templates.338 The most straightforward approach is to match the fMRI data to the

software’s standard functional template. Even though this approach is considered

332 Poldrack, Mumford, and Nichols, Handbook, 53.

333 Poldrack, Mumford, and Nichols, 17.

334 Huettel, Song, and McCarthy, Imaging, 282.

335 Huettel, Song, and McCarthy, 282.

336 Jenkinson and Chappell, Neuroimaging Analysis, 163.

337 Poldrack, Mumford, and Nichols, Handbook, 60–63.

338 Poldrack, Mumford, and Nichols, 59.
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inaccurate,339many fMRI studies of hysteria—including the study by de Lange, Roelofs,

and Toni—have implemented it. The more accurate but computationally considerably

more elaborate approach is a multistep procedure. In the latter case, researchers first

perform coregistration as described above and then align the subjects’ structural images

to one of the software’s standard structural templates.340 In both cases, the outcome of

normalisation is a new fMRI dataset, whose image space matches the one defined by

the template chosen.

All standard templates deployed by different software packages for fMRI processing

are associated with one of the commonly used brain atlases.Their purpose is to provide

what in the neuroimaging context is called a ‘standard space.’That is, the templates offer

a common 3D frame of reference in which a standardised set of Cartesian coordinates

uniquely and consistently determines each neuroanatomical structure.341 As opposed

to the arbitrary positioning of the brain within the native space of each measurement,

the standards space is defined by a fixed zero point and a fixed orientation of the

coordinate axes in relation to particular anatomical landmarks.342 For example, the

zero point of the standard space is placed in the anatomical structure called the anterior

commissure.343 What happens during normalisation at the level of functional images

is the following. The coordinates that the measurement had initially attributed to each

voxel are translated into the standard space coordinates provided by the template.

Ideally, through this translation, large anatomical structures across subjects should

acquire the same set of standard coordinates by which these structures are uniquely

determined in the given atlas.

In effect, the procedure of normalisation aims to homogenise the fMRI data by

erasing the anatomical differences that characterise individual brains. In the process,

all idiosyncratic anatomical features of an individual brain are treated as noise because

they introduce spatial ambiguities into the data. Therefore, only by stripping each

subject’s dataset of individual anatomical specificities—and thus subsuming it to a

standardised model—can the fMRI datasets of different subjects be made anatomically

compatible. Such mathematically constructed anatomical compatibility is, in turn, a

precondition for the mutual comparability of fMRI datasets across different subjects

within a single study. Once they have been normalised, fMRI datasets of different

subjects can be combined to compute group-level activation maps. Yet, at a more

general level, normalisation of fMRI data also makes possible a direct comparison of

imaging results across different studies. Specifically, “if data from two different studies

have been normalized in the same fashion, then the areas of activity found in each study

can be compared.”344 Hence, nowadays, even single-subject studies typically entail the

step of spatial normalisation, as it facilitates the comparison of their results with other

339 “[A]lthough the overall outline of the brain will be accurate, structures within the brain may not

be accurately aligned.” Poldrack, Mumford, and Nichols, 59.

340 Poldrack, Mumford, and Nichols, 59–60.

341 Poldrack, Mumford, and Nichols, 54.

342 Poldrack, Mumford, and Nichols, 54.

343 Poldrack, Mumford, and Nichols, 54.

344 See Huettel, Song McCarthy, Imaging, 283.
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studies.345 Using Jäger’s term,346 it can be said that the anatomical consistency and the

resulting mutual comparability of normalised fMRI datasets are constructed through

their intramedial transcriptive transformation in relation to the software’s standardised

image templates.

There are two caveats, however. First, despite extensive mathematical modelling,

the normalised fMRI datasets still retain residual anatomical differences. Hence, an

additional preprocessing step called spatial filtering is often applied, which further

reduces the residual anatomical differences by blurring the images.347 Second, the

concept of the standard space is not as stable or homogenous as it may appear at a

superficial glance. Earlier neuroimaging studies deployed the Tailarach & Tournoux

standard space derived from the identically named atlas.348 This atlas is based on the

dissection of a single hemisphere of a 60-year-old French woman’s brain. However,

the use of the Tailarach & Tournoux standard space is no longer considered “a good

choice” in the neuroimaging community, as it is deemed unrepresentative of the general

population and thus “provides a false sense of precisions and accuracy.”349

For this reason, more recent studies have mostly relied on the template called

MNI152 that was developed by the Montreal Neurological Institute (MNI) “as an average

of structural MRI images from 152 young healthy adult subjects.”350 But the MNI152

is only the latest in several generations of MNI population-based templates, none of

which are identical.351 Moreover, because the MNI152 template is based on the brains

of young, healthy subjects, it is unrepresentative of neurological patients.352 Overall,

my succinct overview has foregrounded that the standard space is a convention that

continues to evolve with the ongoing research. The apparent consequence is that fMRI

studies have implemented different standard spaces to align their data in the last two

decades. This unavoidably resulted in inconsistencies in how researchers attributed

anatomical locations to the activation patterns registered in their functional data.353

Finally, since there are no automated tools for assessing the quality of coregistration

and normalisation, researchers are emphatically advised to visually inspect the results

of the black-boxed mathematical operations that massively transform their data.354

One way of doing it is to inspect the thus obtained volumes as a movie. Additionally,

researchers can use various digital viewing tools to superimpose a single fMRI slice over

the template and then “flick” back and forth between them to check if they sufficiently

345 See Huettel, Song McCarthy, 283. For a pertinent example, see Roy et al., “Dysphonia,” 186.

346 Jäger, “Transcriptivity Matters,” 50.

347 For details on spatial smoothing, as well as additional reasons why this preprocessing step is

performed, see Poldrack, Mumford, and Nichols, Handbook, 50–52.

348 Poldrack, Mumford, and Nichols, 178.

349 For details, see Poldrack, Mumford, and Nichols, 177–78.

350 Jenkinson and Chappell, Neuroimaging Analysis, 191.

351 The initial MNI template was the so-called MNI305, with a lower resolution than the MNI152. See

Poldrack, Mumford, and Nichols, Handbook, 55–56.

352 See Huettel, Song, and McCarthy, Imaging, 284.

353 Jenkinson and Chappell, Neuroimaging Analysis, 191.

354 Huettel, Song, andMcCarthy, Imaging, 283; Jenkinson and Chappell,Neuroimaging Analysis, 183–84;

and Poldrack, Mumford, and Nichols, Handbook, 65.
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overlap.355 Alternatively, they can extract the tissue boundaries from the template and

overlay them on the normalised image to see how well they fit.356 As in the case of

visual inspection of raw imaging data, researchers have to learn through practice how

to recognise potential artefacts and inconsistencies in their normalised imaging data.

***

My analysis in the last three sections has shown that, although considered to

be the same for all experiments, preprocessing steps require researchers to make

interpretational decisions about what counts as systematic noise in their datasets and

which of the available transformation options to use to delete this noise. Automated

algorithms then perform the chosen transformations at the numerical level of the

imaging data. Yet, throughout my analysis, I have emphasised that the visual character

of fMRI data nevertheless plays a crucial role during preprocessing. By interacting with

the fMRI data’s visual features, researchers determine if the automated algorithmic

operations were carried out adequately.Moreover,we have seen that all these operations

aim to reduce various idiosyncratic aspects of the measurement that introduced

ambiguity into the data. Through these operations, fMRI datasets are mathematically

constructed as increasingly mutually compatible.

Drawing on Latour, I argue that each preprocessing step is characterised by a trade-

off between gain and loss.357 What is lost at each step is the unwanted idiosyncrasy of

the measurement, which arose either from the fMRI’s technological limitations or from

the experimental subjects’ behavioural and physiological contingencies.My analysis has

underscored that this deletion is performed under specific constraints. The images are

transformed first by shifting the voxels to locations defined by new sets of coordinates.

Then the corresponding signal intensities at these new locations are calculated by using

the values from the neighbouring voxels. The values thus computed are only estimates

of the data that would have been collected in an unattainable situation, which would

have allowed the instantaneous acquisition of successive fMRI volumes from a static

brain of a standard size and shape. Nevertheless—and this is crucial—the use of the

Cartesian coordinate system and a particular set of mathematical operations ensure

that the transformation of the original raw dataset into a corrected one is traceable,

at least in principle.358 Provided that they did not result in errors, the mathematical

operations retain an unbroken referential link to the original signal,359 which, in turn,

is indexically related to the individual subject’s active brain.

Conversely, what is gained through preprocessing is the temporal, spatial, and

anatomical consistency within and across the newly calculated datasets. Through

355 Jenkinson and Chappell, Neuroimaging Analysis, 183–84.

356 Jenkinson and Chappell, 183–84.

357 Latour, Pandora’s Hope, 70–71.

358 It should be noted that all interpolations “involve some degradation of the image, as some

information from the original image is lost.” Jenkinson and Chappell, Neuroimaging Analysis, 178.

Put simply, the price researchers pay for deleting systematic noise is a partial loss of potentially

meaningful information.

359 I am using the term ‘referential’ in Latour’s sense. See Latour, Pandora’s Hope, 71–72.
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algorithmic operations of mutually aligning the fMRI images to one another, as well

as matching them to other imaging modalities and external image-based templates,

researchers create a dataset that is “compatible with already-established centres of

calculation.”360 Importantly, the output of these transformations are 4D functional

datasets that are still illegible—when preprocessed fMRI datasets are submitted to

visual inspection, even experts cannot ‘read’ them. In short, by looking at these images,

it is still impossible to determine which voxels exhibit task-induced activity and which

do not. Nevertheless, thus standardised, the images can now finally undergo statistical

analysis that will translate them into legible brain maps. Hence, as shown by my

analysis, the purpose of preprocessing is to construct the analysability of the fMRI

datasets while at the same time preserving their indexicality via a chain of traceable

mathematical operations.

3.4 Statistical Analysis: Articulating the Task-Induced Neural Activity of
Interest

Preprocessed functional 4D datasets remain illegible because the pertinent information

concerning the brain activity of interests they entail is still spread across multiple brain

volumes and buried under random noise. To construct the legibility of their fMRI data,

researchers must determine which areas of the subjects’ brains can be declared active.

They do this by using statistical analysis, which enables them to make judgments about

the “underlying patterns in the data” ridden with random noise.361 Instead of more

commonly known descriptive statistics that merely summarise the data, fMRI studies

apply inferential statistics.This type of statistics permits researchers to use the datasets

from their subject sample to make claims about a larger population.362

Inferential data analysis is based on the process called hypothesis testing. Generally

speaking, this type of statistical analysis starts with the formulation of two opposing

claims—the null hypothesis and the alternative hypothesis.363 In the subsequent step,

statistical tests are used to evaluate which of the two hypotheses describes the data with

a higher probability. In fMRI, the null hypothesis amounts to the claim that the task had

no effect on the data, or in other words, that there is no temporal correlation between

the variation in the BOLD time series and the different experimental conditions. The

alternative hypothesis states that themeasured differences in the BOLD signal’s average

intensities between the task and the control condition are temporally correlated with

the experimental intervention.364

During hypothesis testing, the analysis software executes automated statistical

tests for each voxel independently. This voxel-by-voxel approach is known as mass

360 Latour, 71–72.

361 Worsley, “Statistical Analysis,” 251.

362 Worsley, 251.

363 Huettel, Song, and McCarthy, Imaging, 331.

364 Huettel, Song, and McCarthy, 331.
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