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Generieren wir eine Logik der Entdeckung durch Machine Learning?

Abstract
In der Literatur werden weitrechende Behauptungen aufgestellt, die Machine Learning eine Leistungsfä‐
higkeit attestieren, die bisher der traditionellen wissenschaftlichen Methode zugeschrieben worden ist. So
soll z.B. eine automatisierte Entdeckung von physikalischen Gesetzen möglich sein. Diese starke Behaup‐
tung wird in diesem Aufsatz einer Kritik unterzogen. Lernende Algorithmen können zwar als induktive
Methode charakterisiert werden, die dann unsichere Schlüsse auf neue Hypothesen erlauben - und somit
für den Menschen neues Wissen bereithalten können. Sie regulieren also die Entstehungs- und Entde‐
ckungsbedingungen von wissenschaftlichen Hypothesen in Teilen der modernen Wissenschaft, die mit
Machine Learning arbeiten.

Der Aufsatz wird dann aber erstens aufzeigen, welche Rolle maschinell lernende Algorithmen für den
Entdeckungszusammenhang einer Hypothese spielen können. Zweitens wird argumentiert, dass Machine
Learning nicht an die Stelle von wissenschaftlicher Theorie- und Hypothesenbildung treten kann. Die Ge‐
nerierung von Hypothesen kann nicht vollständig einem computerisierten Automatisierungsprozess über‐
geben werden, da dieser in Teilen von strukturellen Vorannahmen abhängt, die durch menschliche Ein‐
griffe zustande kommen.
Recent publications link the efficiency of machine learning methods to more standard scientific methods .
Under this interpretation, automated discovery of physical laws by machine learning methods could beco‐
me feasible. In this paper, I critically examine this claim. To this end, I first characterize machine learning
as an inductive method that facilitates the creation of a standard scientific hypothesis. I then show which
role machine learning methods typically play in the context of discovery. I argue that machine learning
cannot substitute traditional ways of theory construction based on the idea that the generation of a hypo‐
thesis depends on structural assumptions made by humans and therefore cannot fully be handed over to a
computerized automated process

Einführung

Rechtfertigungsstrategien in der Wissenschaft zu untersuchen und sie dann zu for‐
malisieren, war und ist eines der Interessensgebiete der Wissenschaftsphilosophie.
Mit deduktiver und induktiver Logik können wir die Schlussweisen studieren, mit
denen Ansprüche auf neues Wissen begründet werden. Logisch gültige Schlussfor‐
men, wie zum Beispiel der Modus ponens, sind in einem regelbasierten Kalkül des
natürlichen Schließens formalisierbar, das es erlaubt, wahre Aussagen aus wahren
Aussagen abzuleiten. Induktive Schlussweisen sind hingegen stets einem Hu‐
me’schen Skeptizismus ausgesetzt und können nicht mit deduktiver Sicherheit lo‐
gisch rekonstruiert werden. Parallel zu den Rechtfertigungsstrategien ist es dennoch
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lohnenswert, zu fragen, ob wir auch bei der Entstehung wissenschaftlicher Hypothe‐
sen ein (induktives) Regelsystem vorfinden, das steuernd die Hypothesenbildung
selbst vorantreibt? Solche Fragen waren durch den Einfluss des logischen Empiris‐
mus im 20. Jahrhundert in den Hintergrund gerückt. Der Entdeckungsakt selbst sei
der logischen Analyse unzugänglich, denn hierfür sei Folgendes nicht vorhanden:

»[…] a mechanical procedure analogous to the familiar routine for the multiplication of
integers, which leads, in a finite number of predetermined and mechanically performable
steps, to the corresponding product.«1

Auch Hans Reichenbach hält wenig davon, philosophisch die Wege zu studieren, die
zur Bildung einer Hypothese führen, denn

»[e]s gibt keine logischen Regeln, auf deren Grundlage eine Entdeckungsmaschine ge‐
baut werden könne, die die schöpferische Funktion des Genies übernehmen würde.«2

Eine wissenschaftsphilosophische Analyse sollte erst bei der fertig vorliegenden Hy‐
pothese zum Tragen kommen. Dieser Gedankengang geht zurück auf die wirkmäch‐
tige Unterscheidung Reichenbachs zwischen Entdeckungs- und Begründungszusam‐
menhang.3 Der Entdeckungszusammenhang umfasst dabei die Umstände und Bedin‐
gungen, die zur Formulierung einer Hypothese führen, ohne aber Aussagen über die
inhaltliche Korrektheit der Hypothese eine Aussage zu machen. Die Geltungsgründe
kommen erst im Rechtfertigungszusammenhang zum Tragen, der Aufschluss da‐
rüber gibt, auf welche Weise für eine Behauptung argumentiert, mit welchen Strate‐
gien eine Hypothese untermauert wird.

Die junge Disziplin des maschinellen Lernens scheint nun über interessante auto‐
matisierbare Strategien und Regelsysteme zur Generierung von Hypothesen zu ver‐
fügen. Hiermit soll eine automatisierte Entdeckung von physikalischen Gesetzen
oder die Bestimmung neuer erklärender Variablen (die sich selbst nicht aus der
Kombination schon bekannter Variablen ergeben) möglich sein. Man kann diese au‐
tomatisierbaren Strategien deutlicher fassen, wenn man Machine Learning als eine
Methode des unsicheren Schließens begreift. Ich möchte an dieser Stelle nicht ausar‐
beiten, inwiefern Inferenz im maschinellen Lernen als eine Form des induktiven
oder abduktiven Schließens zu beschreiben ist. Für diese Arbeit genügt es, Metho‐
den des maschinellen Lernens als unsichere Schlüsse aufzufassen, um zu verstehen,
welchen Beitrag ein algorithmisch orientierter Zugang zur Logik der Entdeckung
leisten kann; ich folge hier Jantzen, der schreibt:

1 Carl G. Hempel: Philosophy of natural science. [Nachdr.]. Upper Saddle River, NJ 1966 (Prenti‐
ce-Hall foundations of philosophy series), S. 14.

2 Hans Reichenbach: Der Aufstieg der Wissenschaftlichen Philosophie. Wiesbaden 1968 (Wissen‐
schaftstheorie Wissenschaft und Philosophie, 1), S. 260.

3 Hans Reichenbach: Experience and prediction: an analysis of the foundations and the structure
of knowledge, Chicago 1938.
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»A logic of discovery is a computable method or procedure for generating one or more
hypotheses from a set of empirical facts, preexisting theories, and theoretical constraints,
where each hypothesis generated is significant in that it is both consistent with existing
data and likely to be projectible over a substantial range of data not previously in evi‐
dence. In other words, a hypothesis is significant just if it is likely to make true predic‐
tions about previously unknown cases in its intended domain. […] As my definition sug‐
gests, I understand limited projectibility to be a necessary condition for a hypothesis to
be significant or to constitute a discovery. Note that I am not insisting that an assessment
or test of limited projectibility be part of a logic of discovery.«4

Die Bestimmung einer Logik der Entdeckung fokussiert hier also auf die Generie‐
rung von Hypothesen. Ebenso folge ich Jantzen, wenn er schreibt, dass

»The given definition also leaves open the form and content of a logic of discovery. Such
a logic need not resemble simple, ‘enumerative induction’, e.g., every raven we’ve seen
has been black, therefore hypothesize that all ravens are black. Nor need the method be
elegantly axiomatizable in some first-order language.«5

Ein lernender Algorithmus darf dabei theoretisch beliebig komplexe mathematische
Konstruktionen und Ausdrücke verwenden, solange dieser Algorithmus berechenbar
(im Sinne der algorithmischen Komplexität) ist. Das bedeutet, dass gegeben eine
endliche Datenmenge, die Berechnung des Algorithmus nach endlicher Zeit aufhört
und als Resultat eine Hypothese formuliert, die begrenzte Voraussagekraft besitzt.

Machine Learning ist also für Wissenschaftsphilosophen interessant, weil hier
vielleicht eine Disziplin im Aufbau begriffen ist, die so etwas wie eine Logik der
Entdeckung begründen könnte. In der Literatur werden sogar weitreichendere Be‐
hauptungen aufgestellt, die der Methode Machine Learning eine Leistungsfähigkeit
attestieren, die bisher der traditionellen wissenschaftlichen Methode zugeschrieben
worden ist. Hintergrund solcher Zuschreibungen (auf die ich gleich eingehen werde)
ist die immer noch offene philosophische Debatte, ob und wie Disziplinen wie Com‐
putersimulation und Machine Learning Wissenschaft und die empirische wissen‐
schaftliche Methode verändert. Paul Humphreys lieferte zu dieser Frage wichtige
Beiträge, in denen er zu zeigen versucht, wie sich Mathematik und Technik in den
oben genannten Disziplinen auf eine besondere Weise miteinander verschränken und
Computersimulationen das Verhältnis der Wissenschaftler zu ihrer Methode verän‐
dern.6

4 Benjamin C. Jantzen: »Discovery without a ›logic‹ would be a miracle«, in: Synthese 193
(2016), Heft 10, S. 3209–3238, S. 3211.

5 Ebd., S. 3212.
6 Vergleiche hierzu Paul Humphreys: Extending ourselves. Computational science, empiricism,

and scientific method, Oxford 2004, sowie Paul Humphreys: »The philosophical novelty of
computer simulation methods«, in: Synthese 169 (2009), Heft 3, S. 615–626.
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Machine Learning und Wissenschaftliche Entdeckung

Aus philosophischer Sicht ist die neue Disziplin Machine Learning deswegen inter‐
essant, weil sowohl zum Teil Autoren aus den Ingenieurswissenschaften, der Data
Science wie der Philosophie behaupten, dass der Entdeckungszusammenhang von
wissenschaftlichen Theorien bzw. die Herstellung von Hypothesen mithilfe von Ma‐
chine-Learning-Algorithmen automatisiert werden könne. So schreibt zum Beispiel
Freno:

»Machine Learning algorithms deliver models of the data they are trained on […]. My
claim is that such models are nothing but computational counterparts of what we com‐
monly regard as scientific theories.«7

Den Begriff Theorie entledigt er seiner philosophischen Bedeutungsschwere, wenn
er weiter schreibt:

»Theories are tools for performing (different kinds of) inference. Although a loose notion
of theory as an inferential device may fall short of the expectations of philosophers of
science, that notion has the important effect of encouraging us to turn our interest from
the reflection on the notion of theory to the identification of rational strategies for develo‐
ping (extending, revising, etc.) scientific theories. Viewing theories broadly as inferential
devices allows us to realize how machine learning methods are nothing but methods for
automating the construction of scientific theories.« 8

Wenn dies richtig ist, dann müsste folgerichtig auch behauptet werden, dass der rela‐
tive Anteil intellektueller menschlicher Arbeit bei der Generierung wissenschaftli‐
cher Thesen herabgesetzt ist. Aufgrund von Äußerungen wie z.B. von Chris Ander‐
son, dass mit der Möglichkeit von maschinell lernenden Algorithmen »the end of
theory« erreicht und »the scientific method obsolet« sei,9 scheint es mir ratsam, zu
klären, erstens was Machine Learning ist, zweitens wie in dieser Disziplin der Anteil
an intellektueller menschlicher Aktivität zu begreifen ist. Und drittens möchte ich
klären, ob mit dieser Disziplin eine Logik der wissenschaftlichen Entdeckung gege‐
ben ist, wie sie oben definiert worden ist.

Ich werde im Folgenden einerseits für die Existenz einer solchen Logik argumen‐
tieren. Andererseits werde ich aber auch die Reichweite und Grenzen einer solchen
Logik aufzeigen: Machine-Learning-Algorithmen sind keine ›Wundermaschinen‹.
Sie beschreiben einen nicht-trivialen diskreten Prozess, neue Struktur- oder Abhän‐
gigkeitsbeziehungen in Daten zu erfassen. Die Qualifikation als begriffliche Neuheit

2

7 Antonio Freno: »Statistical Machine Learning and the Logic of Scientific Discovery«, in: Iris.
European Journal of Philosophy and Public Debate (2009), Heft 2, S. 375–388, S. 377.

8 Ebd., S. 378.
9 Chris Anderson: »The End of Theory: The Data Deluge Makes the Scientific Method Obsole‐

te«, in Wired, 23.6.2008, https://www.wired.com/2008/06/pb-theory/ (aufgerufen: 26.7.2018).
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ist dabei aber in zweifacher Weise rückbezogen auf eine externe, hier menschliche
Bewertungsinstanz. Erstens weiß der Mensch in der Regel vorher noch nicht von
diesen Strukturen oder Mustern in den Daten. Und zweitens generiert ein maschinell
lernender Algorithmus eine Hypothese über neue Muster auf der Grundlage von Va‐
riablen, die im Vorhinein bekannt sind bzw. durch deren Wahl Daten beschrieben
werden. Daraus folgt, dass die begriffliche Neuheit des Inhalts einer maschinell-al‐
gorithmisch generierten Hypothese prinzipiell aus den beschreibenden Variablen ab‐
geleitet ist. Die Eigenschaft der (begrifflichen) Neuheit ist damit explanatorisch re‐
duzibel.

Um überzogene Erwartungen an das Feld des Machine Learning zu dämpfen, wä‐
re es sicherlich lohnenswert, die Beziehung von Statistik und Machine Learning zu
bestimmen. Wollen beide Disziplinen nicht dasselbe, nämlich Methoden entwickeln,
um aus (großen) Datenmengen etwas zu lernen und zu versuchen, Unsicherheit dies‐
bezüglich zu quantifizieren und zu kontrollieren? Bilden diese beiden Disziplinen
die Pole eines Kontinuums, das sich durch die Handhabe großer Datenmengen und
sehr hoher Rechenleistung moderner Computer aufgespannt hat? Sind also Machine-
Learning-Probleme im Wesentlichen statistische Probleme, die man im Prinzip per
Hand lösen könnte, dies aber praktisch nicht tut, weil schlicht zu viel Rechenarbeit
vonnöten wäre?10

Flach beginnt sein Buch über Machine Learning damit, allgemein die Methodik
von Machine Learning mit dem folgenden Slogan zu beschreiben: »Machine
Learning is all about using the right features to build the right models that achieve
the right tasks.«11

10 Eine Antwort auf diese Fragen kann an dieser Stelle aus Platzgründen leider nicht geleistet
werden und bleibt Aufgabe zukünftiger Arbeiten.

11 Peter Flach: Machine learning. The art and science of algorithms that make sense of data,
Cambridge 2012, S. 13.
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Ein schematischer Überblick von Flach über die Vorgehensweise von
maschinell lernenden Algorithmen.12

Features ist der Machine-Learning-Begriff für die Variablen, mit denen wir die Da‐
ten beschreiben. Die Task beschreibt die Aufgabe, die ein maschinell lernender Al‐
gorithmus ausführt. Die Aufgabe kann zum Beispiel darin bestehen, aufgrund von
Trainingsdaten eine Regressionsanalyse durchzuführen. Man versucht hierbei eine
Struktur in den Daten durch eine Regressionsfunktion näher zu charakterisieren. Mit
einer Lernstrategie kann dann ein Algorithmus die noch unbekannten Parameter der
Regressionsfunktion bestimmen und erzeugt somit das Modell (das hier durch die
Regressionsfunktion mit ihrem gefundenen Parameter gegeben ist).

Ein Learning Problem besteht dann darin, mithilfe von Trainingsdaten ein Modell
zu finden, das die gewählte Task ›korrekt‹ ausführt.

Das grundlegende Ziel von Machine Learning besteht also darin, Algorithmen zu
entwickeln, die Learning Problems lösen. Aus dieser Definition wird bereits ersicht‐
lich, dass ein sogenannter ›data-driven approach‹, wie Machine Learning, immer
noch auf der Wahl einer Lernstrategie beruht. Und diese Wahl ist von Menschen‐
hand und bedarf einer Rechtfertigung.

Welche Probleme Machine Learning angehen kann und wie genau hier das
Learning Problem gelöst wird, möchte ich anhand von linearen Methoden zeigen,

Abbildung 1:

12 Ebd., S. 11.
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die für Vorhersagen (darunter z.B. Klassifizierung, Wahrscheinlichkeitsschätzer und
Regressionsanalysen) eingesetzt werden.13

Diese Form von Learning Problems erinnert an eine induktive Schlussform, in
der von einer empirischen Datenbasis auf eine generische Regel hypothetisch ge‐
schlossen wird. Mit Machine Learning scheinen wir eine Methode zur Hand zu ha‐
ben, mit der zumindest (kontext-abhängige) Regeln angegeben werden können, wie
wir aus Daten und einem Modell auf eine Hypothese schließen können. In diesem
Sinne möchte ich Machine-Learning-Algorithmen als eine Logik der Entdeckung
begreifen.

Setzt man voraus, dass zwischen Statistik und Machine Learning keine klar defi‐
nierte Grenze verläuft, ist es legitim, die Aufgabe der Klassifikation als die einfachs‐
te Machine-Learning-Methode anzusehen. Klassifikation beschreibt den Prozess,
einen Input (z.B. ein Bild) einer Klasse (z.B. Hund oder Katze) zuzuordnen. Und tat‐
sächlich beruht zum Beispiel moderne Bilderkennung auf elaborierten Formen die‐
ser einfachen linearen Regression, die ich nun vorstelle.

Die Aufgabe bei der linearen Regression besteht darin, Inputdaten
x = x1, x2, …, xn   einem Label y über eine noch unbekannte Funktion f ⋅   zuzu‐
ordnen, die von weiteren Parametern ω = ω1, ω2, …, ωn   abhängt:

y = f x, ω  
In einer binären Klassifikation gibt es nur zwei Klassen, in die eingeteilt wird. Die
Entscheidungsfunktion oder Hypothese ℎ x   wäre dann die Signumsfunktion
sgn f x  , definiert als:

ℎ x = sng f x =   1,  falls f x ≥ 0
−1 sonst   

Diese Funktion f entscheidet dann über die Zuordnung. Die Aufgabe für den Men‐
schen besteht nun darin, erstens auszuwählen, welche Features in den Daten x rele‐
vant sind, zweitens die geeignete Funktionenklasse für f zu wählen und drittens die
richtigen Parameter ω  zu finden.

Feature-Wahl

Auch wenn dieser Prozess in Teilen automatisiert werden kann, muss der Mensch
diejenigen Variablen spezifizieren, die zur Problemlösung herangezogen werden sol‐
len. In der Statistik nennt man dies die Wahl der Prädiktoren. Ebenso müssen Grö‐

13 Die Eigenschaft der Linearität ist mathematisch gut verstanden, was diesen Ansätzen eine ge‐
wisse Einfachheit und Stabilität hinsichtlich Auswirkungen von Rauschen in den Trainingsda‐
ten verleiht.
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ßen in den Daten oft normalisiert werden, bevor man sie einem algorithmischen Ver‐
fahren übergeben kann.

Wahl der Funktionenklasse für f

Die Wahl der parametrisierten Funktion f setzt fest, nach welcher Vorschrift unsere
Daten einem Label y zugeordnet werden. Wenn die Aufgabe z.B. in einer Vorhersa‐
ge für die Nachfrage nach einem bestimmten Produkt besteht, dann müssen Funktio‐
nenklassen mit periodischen Eigenschaften gewählt werden, um zeitlich sich wieder‐
holende Ereignisse abzubilden. Grundsätzlich kann f jede Form einer parametrisier‐
ten Funktion annehmen. Zum Beispiel kann man sich f als ein Polynom dritter Ord‐
nung vorgeben:

f x = ω0 + ω1x + ω2x2 + ω3x3 
Das Learning Problem besteht hier nun also darin, die unbekannten Parameter
ω0, …, ω3   zu finden, um das Modell (hier die Funktion f) eindeutig zu bestimmen,
das die gegebenen Daten ›gut‹ repräsentiert.

Parameterwahl

Die Parameterwahl ist eine Optimierungsaufgabe (im Englischen loss function), wie
man sie bei ganz vielen Machine-Learning-Algorithmen antrifft. Hierbei sucht man
eine Objektfunktion zu bestimmen, die die Güte der Funktion f hinsichtlich der Trai‐
ningsdaten angibt. In unserem Beispiel haben wir die Trainingsdaten x1, …xn  und
die entsprechenden labels y1, …yn  gegeben. Mit welcher Zuordnungsvorschrift xi 
nun auf yi  abgebildet wird, ist das Problem. Wir müssen also die unbekannten Para‐
meter ω0, …, ω3  schätzen.

Für den bekanntesten Schätzer benutzt man die Methode der kleinsten Fehlerqua‐
drate (least squares method), die auf Carl Friedrich Gauß zurückgeht. Die Differenz
zwischen dem Wert yi  und dem Funktionswert der Regressionsfunktion an der Stelle
xi , d.h. f xi − yi  , ist der Fehler, den die Regressionsanalyse an einem Datenpunkt
xi, yi   macht.

Als Objektfunktion E wählt man hierbei die Summe der quadrierten Fehler
f xi − yi 2 : Der Fehler f xi − yi   soll nun für alle i = 1…n  klein werden. Folglich

sucht man ein Minimum der Objektfunktion. Hierfür müssen wir die partiellen Ab‐
leitungen nach ω0, ω1, …, ω3  bilden und diese Null setzen:
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Hierdurch entsteht ein lineares Gleichungssystem, dessen Lösung die gesuchten Pa‐
rameter ω0, ω1, …, ω3  liefert.

Hennig und Kutlukaya betonen dabei, dass die Wahl der Objektfunktion keine
mathematische Aufgabenstellung ist, sondern dass es sich vielmehr um ein Überset‐
zungsproblem aus einem nicht-formalen Kontext in eine mathematische Formel han‐
delt:

»[…] the task of choosing a loss function is about the translation of an informal aim or
interest that a researcher may have in the given application into the formal language of
mathematics. The choice of a loss function cannot be formalized as a solution of a mathe‐
matical decision problem in itself, because such a decision problem would require the
specification of another loss function. Therefore, the choice of a loss function requires
informal decisions, which necessarily have to be subjective, or at least contain subjective
elements.«14

So legen die beiden Autoren in einer Fallstudie dar, wie z.B. bei einer Regressions‐
analyse die (subjektive) Wahl zwischen dem quadrierten Fehler f xi − yi

2  und
dem einfachen Fehler  f xi − yi   starke Auswirkungen hatte auf die Güte verschie‐
dener Regressionsmethoden. Auf das subjektive Moment in einer sonst formal ab‐
laufenden Wissenschaft, wie der Statistik, gehen die beiden Autoren am Ende ihres
Aufsatzes ein:

»We use ›subjectivity‹ here in a quite broad sense, meaning any kind of decision which
can’t be made by the application of a formal rule of which the uniqueness can be justified
by rational arguments. ›Subjective decisions‹ in this sense should take into account sub‐
ject-matter knowledge, and can be agreed upon by groups of experts after thorough dis‐
cussion, so that they could be called ›intersubjective‹ in many situations and are certainly
well-founded and not ›arbitrary‹. However, even in such situations different groups of ex‐
perts may legitimately arrive at different decisions. This is similar to the impact of sub‐
jective decisions on the choice of subjective Bayesian prior probabilities.«15

14 Christian Hennig und Mahmut Kutlukaya: »Some thoughts about the design of loss functions«,
in: Revstat Statistical Journal 5 (2007), Heft 1, S. 19–39, S. 21.

15 Ebd., S. 36.
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Fallbeispiel: Der Support-Vector-Machine-Algorithmus

Wie mit einer weiterentwickelten Methode, die auf den Einsichten der linearen Re‐
gression beruht, gearbeitet wird, will ich nun anhand einer binären Klassifikation
darlegen. Ein Algorithmus lernt dabei anhand von Trainingsdaten neue Daten (die
nicht mit den Trainingsdaten übereinstimmen) in eine von zwei Klassen einzuteilen.

In einem Beispiel wollen wir eine Voraussage entwickeln, ob es regnen wird, in‐
dem wir Tage als regnerisch oder trocken klassifizieren, um dann daraus zu schlie‐
ßen. Als Trainingsdaten liegen die Durchschnittstemperaturen und die Feuchtigkeits‐
werte pro Tag vor. Wir wollen nun eine Trennlinie finden, die idealerweise alle Re‐
gentage von den Trockentagen trennt. Mit dieser Trennlinie kann man dann, gegeben
Temperatur- und Feuchtigkeitswerte, Voraussagen treffen, ob es sich um einen Re‐
gentag handelt oder nicht.

In der obigen Abbildung 2 werden die vorhandenen Temperaturdaten auf der x-,
die Feuchtigkeit auf der y-Achse abgebildet. Die Kreise sind dabei Regentage, die
Dreiecke repräsentieren trockene Tage. Die Linie, die die Daten in zwei Bereiche
einteilt, repräsentiert eine Hypothese über den Zusammenhang der unabhängigen
Variablen Temperatur, Feuchtigkeit und der abhängigen Variable Regen. Woher
kommt nun diese Hypothese, wie finden wir die Grenzlinie? Ein wichtiger lernender
Algorithmus für diese Aufgabe ist der SVM-Algorithmus. 

Ein Support-Vector-Machine-(SVM)-Algorithmus generiert eine Hy‐
pothese über den Zusammenhang zwischen Temperatur- und Luft‐
feuchtigkeitswerten, um sagen zu können, ob es in Zukunft regnen
wird.16

3

Abbildung 2:

16 Jantzen: »Discovery without a ‘logic’ would be a miracle«, in: Synthese, S. 8.
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Vereinfacht ausgedrückt, löst dieser SVM-Algorithmus wieder ein (hier ein qua‐
dratisches) Optimierungsproblem. Und zwar wird die beste Wahl der Trennlinie die‐
jenige sein, die den Abstand der Trainingsdaten zu der Trennlinie maximiert. Natür‐
lich ist dieser ›Abstand‹ a priori keine Größe, die der Computer oder der Algorith‐
mus versteht. Denn wie soll der Abstand zwischen einem Datenpunkt xi, yi   und
einer Trennlinie definiert werden? Es gibt unendlich viele Möglichkeiten. Wir müs‐
sen eine Wahl treffen und einen Abstandsbegiff definieren. In diesem Algorithmus
wurde nun die Wahl getroffen, die kürzeste orthogonale Strecke zwischen einem Da‐
tenpunkt und einer Trennlinie als Abstand zu definieren. Als Abstand eines Trai‐
ningsdaten Sets wird dann der maximale Abstand aller Trennlinien bezeichnet.

In der folgenden Abbildung 3 sieht man zwei mögliche Trennlinien (rote und
grün). Mit dem oben gewählten Abstandsbegriff sieht man, dass der Abstand z2  grö‐
ßer als z1  ist. Das bedeutet, dass in diesem Beispiel der Abstand von den Trainings‐
daten zur grünen Linie maximal wird. Die Daten können so maximal voneinander
separiert werden. Eingabedaten, die sich durch eine Trennlinie trennen lassen, wer‐
den linear separabel genannt.

 

Im SVM-Algorithmus wird diejenige Trennlinie gewählt, durch die
der Abstand der Trainingsdaten zu dieser Trennlinie maximal wird.17

Der SVM-Algorithmus lernt also anhand der Trainingsdaten, die im Sinne des be‐
schriebenen Optimierungsproblems „beste“ Trennlinie für die binäre Klassifikati‐
onsaufgabe zu finden. In der folgenden Abbildung 4 ist dies die grüne Gerade g(x).

Abbildung 3:

17 Thales Sehn Körting: How SVM (Support Vector Machine) algorithm works, in: YouTube,
6.1.2014, https://www.youtube.com/watch?v=1NxnPkZM9bc&t=178s (aufgerufen am
26.7.2018).
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Der SVM-Algorithmus findet die beste Wahl der Hypothese, hier re‐
präsentiert durch die grüne Linie.18

Die Entscheidungsfunktion oder Hypothese h(x), die bestimmt, wie Daten
x = x1, …, xn   gemäß der Trennlinie binär klassifiziert werden, lautet dann wie wei‐
ter oben beschrieben:

 

ℎ x = sng g x = 1,  für alle x in Klasse 1
−1,  für alle x in Klasse 2 

 
Diese Methode, über einen lernenden SVM-Algorithmus eine Hypothese zu gene‐

rieren, findet zum Beispiel Anwendung in der Bioinformatik.19 2007 nutzen Han u.a.
einen SVM-Algorithmus, um Proteine anhand ihrer Aminosäurenzusammensetzung,
Volumen, Polarität und Hydrophobie hinsichtlich einem bestimmten Wirkstoffpoten‐
tial zu beschreiben.20

Auch wenn der SVM-Algorithmus ein erfolgreich genutzter Hypothesen-Generie‐
rer ist, der wenig anfällig für Overfitting ist, sollte man bedenken, dass dieser Ansatz
nur dann ein nützliches Werkzeug für die Hypothesenbildung ist, wenn sich die Da‐
ten linear separieren lassen. Überschneiden sich zum Beispiel die Datensätze, kann

Abbildung 4:

18 Ebd.
19 Vgl. Zheng Rong Yang: »Biological applications of support vector machines«, in: Briefings in

Bioinformatics 5 (2004), Heft 4, S. 328–338, http://dx.doi.org/10.1093/bib/5.4.328.
20 Lian Yi Han u.a.: »Support vector machines approach for predicting druggable proteins: recent

progress in its exploration and investigation of its usefulness«, in: Drug Discovery Today 12
(2007), Heft 7, S. 304–313.
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der SVM-Algorithmus keine Hypothese bestimmen, er endet in einer Endlosschlei‐
fe.21

Wichtig hierbei ist aber, dass das Finden einer möglichst guten Trennung nicht se‐
parierbarer Daten mit der kleinsten Anzahl von Fehlern und Iterationsschritten NP-
vollständig ist. Um dieses Problem zu umgehen, wird ein sogenannter ›Kerneltrick‹
verwendet, der es erlaubt, das Problem wieder lösbar zu machen und auch nicht-se‐
parierbare Daten zu klassifizieren.

Der Einspruch gegen die automatisierte Erkennbarkeit von Strukturen

Angesichts vorzeigbarer Erfolge von Machine-Learning-Algorithmen auf verschie‐
denen Gebieten ist es unbestritten, dass sie hilfreiche Werkzeuge sind bei der For‐
mulierung von Hypothesen über empirische Regelmäßigkeiten und gesetzesähnliche
Beziehungen. So haben wir im obigen Beispiel der linearen Klassifikation gesehen,
dass wir über eine algorithmisierte Methode verfügen, eine Hypothese zu generie‐
ren, die eine gut gesicherte Vorhersagefähigkeit besitzt.

Darüber hinaus wird in der Literatur lernenden Algorithmen auf zwei Feldern
eine erstaunliche Leistungsfähigkeit attestiert, die bisher ausschließlich der traditio‐
nellen wissenschaftlichen Methode zugeschrieben worden ist. So werden einerseits
Machine-Learning-Algorithmen präsentiert, die eine automatisierte Entdeckung von
physikalischen Gesetzen versprechen. Andererseits wird behauptet, dass Machine-
Learning-Algorithmen neue erklärende Variablen bestimmen können, die sich selbst
nicht aus der Kombination schon bekannter Variablen ergeben. Ich werde Beispiele
für beide Fälle anführen, möchte jedoch erst darauf hinweisen, dass bereits früh in
der Geschichte der modernen Wissenschaftstheorie Bedenken geäußert worden sind
über Grenze und Reichweite algorithmisierter Methoden. So schrieb zum Beispiel
bereits Hempel:

»Scientific theories and hypotheses are usually couched in terms that do not occur at all
in the description of the empirical findings on which they rest. […] A logic of discovery
would have to provide a mechanical routine for constructing, on the basis of the given
data, a hypothesis or theory stated in terms of some quite novel concepts, which are
nowhere used in the description of the data themselves.«22

4

21 Eine Möglichkeit, dieses Problem zu umgehen, wäre, falsch klassifizierte Daten zuzulassen
und nach einer Trennlinie zu suchen, die einerseits die Anzahl der falschen Klassifikationen
und andererseits den Abstand dieser ›falschen‹ Daten zur Trennlinie minimiert. Auf diesen An‐
satz wird hier aber aus Platzgründen nicht eingegangen.

22 Hempel: Philosophy of natural science, S. 14.
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Ein ähnlicher Einwand findet sich etwas später bei Woodward:

»A computer programmer armed with an arsenal of concepts and definitions can write a
program that, employing random search procedures of varying sophistication, explores
the various possible interrelationships of the variables contained in those concepts. ›New‹
concepts can be generated by clustering the variables already present in different ways.
But such clustering will not produce conceptual shifts like that from the concept of impe‐
tus of the middle ages to the principle of inertia— the key idea in the Scientific Revoluti‐
on of the 16th and 17th centuries.«23

Beide Autoren argumentieren dafür, dass aus Machine-Learning-Methoden keine
conceptual novelty hervorgehen könne. Hempels und Woodwards Kritik könnte man
so zusammenfassen: Ausgehend von bekannten Variablen V, die ein Phänomen be‐
schreiben, können lernende Algorithmen keine neuen erklärenden Variablen V‘ ge‐
nerieren, sodass diese dann Voraussagen oder Erklärungen liefern für einen Phäno‐
menbereich, der nun von der Vereinigung V∪V‘ beschrieben wird.

Dagegen argumentieren zum Beispiel die Autoren Schmidt und Lipson. In ihrem
Artikel »Distilling Free-Form Natural Laws from Experimental Data« legen sie dar,
wie auf der Basis von experimentellen Daten u.a. aus einem harmonischen Feder‐
pendel mit symbolischer Regression24 die Bewegungsgleichungen abgeleitet werden
können:

»Without any additional information, system models, or theoretical knowledge, the se‐
arch with the partial-derivative-pairs criterion produced several analytic law expressions
directly from these data. [...] We have demonstrated the discovery of physical laws, from
scratch, directly from experimentally captured data with the use of computational search.
We used the presented approach to detect nonlinear energy conservation laws, Newtonian
force laws, geometric invariants […] without prior knowledge about physics, kinematics,
or geometry.«25

Es ist sicherlich richtig, dass durch diese automatisierte Entdeckung von Gesetzes‐
beziehungen eine menschenunabhängige Mechanisierung des Entdeckungszusam‐
menhangs vollzogen wird und wir tatsächlich von einer Logik der Entdeckung spre‐
chen können: Es gibt eine algorithmisierbare regelbasierte Methode zur Generierung
einer Hypothese (hier einer Gesetzesbeziehung).

Mithilfe von Hempel und Woodwards möchte ich aber zeigen, dass der Anspruch
der Autoren, »without any additional information analytic law expressions directly

23 James F. Woodward: »Logic of discovery or psychology of invention?«, in: Found Phys 22
(1992), Heft 2, S. 187–203, S. 200.

24 Bei der symbolischen Regression werden nicht nur die unbekannten Parameter einer vorher de‐
finierten Funktion bestimmt, wie wir es weiter oben in diesem Text gesehen haben. Vielmehr
wird hier selbst die Form der mathematischen Funktion selbst noch variiert und gemäß einer
Fehlerabschätzung dann die geeignetste ausgewählt.

25 Michael Schmidt und Hod Lipson: »Distilling free-form natural laws from experimental data«,
in: Science (New York, N.Y.) 324 (2009) Heft 5923, S. 81–85, S. 82 u. 85.
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from these data« zu generieren, falsch ist. Woodward sagt es deutlich, dass zwar
»›new‹ concepts can be generated by clustering the variables already present in dif‐
ferent ways. But such clustering will not produce conceptual shifts«. Und genau auf
diese Weise gehen die Autoren vor, schreiben sie doch selbst:

»Given position and velocity data over time, the algorithm converged on the energy laws
of each system (Hamiltonian and Langrangian equations). Given acceleration data also, it
produced the differential equation of motion corresponding to Newton’s second law for
the harmonic oscillator and pendulum systems.«26

Was Woodward also in Zweifel zieht, ist die Möglichkeit, über Machine-Learning-
Algorithmen neue erklärende Variablen aus den Daten zu gewinnen. Und dies findet
in der zitierten Arbeit nicht statt. Die betrachteten Variablen (das ist der Winkel der
Auslenkung sowie die Winkelgeschwindigkeit des Pendels) sind im Vorhinein be‐
kannt. Bei Schmidt und Lipson sind sogar die Gesetze, die approximiert werden sol‐
len, bekannt. Die Identifikation und Spezifizierung von potentiell erklärenden Varia‐
blen selbst ist eine nicht-triviale Aufgabe, die einfach mechanisiert oder automati‐
siert werden kann. Ein relevanter Suchraum muss zu allererst durch theoretische wie
praktische Einschränkungen eingegrenzt werden, um Kandidaten für Prädiktor-Va‐
riablen festzulegen. Erst dann können algorithmisierbare Heuristiken formuliert wer‐
den.

Anders fomuliert: Machine-Learning-Methoden hängen von strukturellen Voran‐
nahmen ab. Welche potentiellen Prädiktor-Variablen zieht man heran, um Daten zu
beschreiben? Wie kommt es zur Wahl der Modelle, mit denen Machine-Learning-
Algorithmen Learning Problems lösen sollen? Handelt es sich z.B. um eine Opti‐
mierungsaufgabe? Was genau wird in dem Verfahren minimiert oder maximiert?
Sind diese Verfahren eindeutig, in dem Sinne, dass immer ein Extremum gefunden
wird? Werden nur lokale Extrema gefunden oder gibt es Sicherheit, dass wir das glo‐
bale Extremum finden?

Als Konsequenzen aus diesen Überlegungen folgen zwei Dinge. Mit Machine-
Learning-Algorithmen ist erstens eine praktisch durchführbare Logik der Entde‐
ckung formuliert. Sie generiert regelgebunden Hypothesen mit beschränkter Voraus‐
sagekraft. Maschinelle Algorithmen regulieren die Entstehungs- und Entdeckungs‐
bedingungen von wissenschaftlichen Hypothesen in Teilen der modernen Wissen‐
schaft, die mit Machine Learning arbeiten.

Zweitens habe ich dafür argumentiert, dass datengetriebene Methoden jedoch
nicht an die Stelle von wissenschaftlicher Theorie- und Hypothesenbildung treten
können. Lernende Algorithmen detektieren nicht voraussetzungslos Strukturen, die
in Daten vorhanden sind. Wir können Daten nur mit denjenigen Variablen analysie‐
ren, die wir vorher definiert haben. Typische Probleme von Machine Learning be‐

26 Ebd., S. 83.
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treffen Klassifikations- oder Regressionsprobleme. Hier will man die Abhängig‐
keitsbeziehung einer Outputvariable von (meist mehreren hochdimensionalen) Prä‐
diktorvariablen auf der Grundlage von Daten herausfinden. Die Spezifizierung die‐
ser Abhängigkeitsbeziehung kann einem computerisierten Automatisierungsprozess
übergeben werden. Aber welche Prädiktorvariablen und strukturellen Vorannahmen
bezüglich Modellwahl diesem Automatisierungsprozess dann übergeben werden, ist
immer noch eine Aufgabe menschlich-wissenschaftlicher Praxis.

Man kann dann die Woodward’sche Kritik auch als ein Kreativitätsargument auf‐
fassen. Um dies zu tun, weise ich darauf hin, dass bereits Alan Turing in »Compu‐
ting Machinery and Intelligence« das Argument behandelt, dass Computermethoden
nicht verantwortlich für konzeptuelle Neuheit sein können.

»A variant of Lady Lovelace’s objection states that a machine can ›never do anything
new‹. […] A better variant of the objection says that a machine can never ›take us by
surprise‹.«27

Turing interpretiert diesen Einwand so, dass der Kritiker mit dem Überraschungsmo‐
ment ein Vermögen von Kreativität voraussetzt, das (fundamental) neue Konzepte
hervorbringen kann.

»He will probably say that surprises are due to some creative mental act on my part, and
reflect no credit on the machine.«28

Und Turing fährt nun fort, weiter zu entfalten, was ›sein Kritiker‹ hier mit Kreativi‐
tät meint:

»The view that machines cannot give rise to surprises is due, I believe, to a fallacy to
which philosophers and mathematicians are particularly subject. This is the assumption
that as soon as a fact is presented to a mind all consequences of that fact spring into the
mind simultaneously with it. It is a very useful assumption under many circumstances,
but one too easily forgets that it is false. A natural consequence of doing so is that one
then assumes that there is no virtue in the mere working out of consequences from data
and general principles.«29

Es spricht aus meiner Sicht vieles dafür, Woodwards Kritik analog zu dem Kreativi‐
tätsargument zu lesen, gegen das Turing argumentiert. Das Argument von Wood‐
ward als Machine-Learning-Kritiker lautete, dass Machine-Learning-Methoden – im
Gegensatz zu Menschen – keine neuen Konzepte hervorbringen können bzw. nicht

27 Alan Turing: »Computing Machinery and Intelligence«, in: Mind 59 (1950), S. 433–460,
S. 450.

28 Ebd., S. 451.
29 Ebd., S. 451.

118

https://doi.org/10.5771/9783845296548-103 - Generiert durch IP 216.73.216.36, am 17.01.2026, 21:44:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/9783845296548-103


imstande sind, konzeptuelle Veränderungen wie z.B. das Trägheitsprinzip von New‐
ton zu generieren.

Künstliche neuronale Netze als neue Form von maschinellem Lernen?

Zur Klasse der maschinell lernenden Algorithmen gehören auch die sogenannten
künstlichen neuronalen Netze (artificial neural networks, kurz: ANN). Ich möchte
hier noch darauf eingehen, wie diese Methode mit den in diesem Aufsatz erwähnten
maschinellen Algorithmen für Klassifizierungsaufgaben zusammenhängt. Ich argu‐
mentiere im Folgenden dafür, dass sich ANN mit linearer bzw. polynomialer Re‐
gression und Support Vector Machines (SVM) hinsichtlich des methodischen Vorge‐
hens gut vergleichen lassen. Zudem verfolgen beiden Methoden das gleiche Ziel, un‐
bekannte Datenmengen zu klassifizieren. Unter dieser Annahme lässt sich daher
meine im Aufsatz entwickelte These auch auf künstliche Netze ausdehnen.

Die Bezeichnung ›neuronale Netze‹ ist irreführend. Diese geht zurück auf die ur‐
sprünglich biologische Motivation bei der Entwicklung der ersten künstlichen Netze
in den 1940er Jahren, mit diesen Netzen die Funktionsweise des menschlichen Ge‐
hirns besser zu verstehen. Man beschreibt diese Methode tatsächlich mathematisch
präziser mit dem Begriff Funktionennetz, das benutzt wird, um ein funktionales Ver‐
hältnis von gegebenen Input- und Output-Daten zu approximieren.

5
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Neuronale Netze sollten als ein Funktionennetz verstanden werden,
das sich hier aus den Aktivierungsfunktionen f1, f2, f3  und f4  zusam‐
mensetzt.30

Künstliche neuronale Netze haben eine wie in Abbildung 6 abgebildete Struktur.
Das Funktionennetz kann hier als die Funktion F x, y, z   interpretiert werden. Die
Funktion F selbst ist die Komposition der Funktionen f1, f2, f3 und f4 . Jede Funkti‐
on f i  i = 1,2, 3,4   steht für die Aktivitätsfunktion eines Neurons, das auch Knoten
genannt wird. Ein ANN liefert nun eine Approximation an diese Funktion F. Knoten
sind durch Kanten verbunden. Die Stärke der Verbindung zweier Knoten wird durch
ein sogenanntes Gewicht (in der Abbildung α1, α2, α3, α4   angegeben. Der Input, den
ein Knoten von einem anderen empfängt, hängt von zwei Werten ab, die in der Re‐
gel multiplikativ miteinander verknüpft sind: dem Output des übertragenden Knoten
und dem Gewicht der entsprechenden Kante zwischen beiden Knoten. Die
Schicht(en) an Neuronen, die sich zwischen Input- und Output-Neuronen befinden,
nennt man verborgene Schicht(en). In der sogenannten Trainingsphase treffen Input‐
werte auf die erste Schicht von Neuronen, werden dann gemäß den Gewichten und
der Aktivierungsfunktion verändert und laufen so unter sukzessiver Veränderung an
jedem Knoten aller Schichten von Neuronen entlang bis ein Outputwert generiert
wird.

Abbildung 5:

30 Raúl Rojas und R.-H. Schulz (ed.): Was können neuronale Netze?, Mannheim 1994 (Mathema‐
tische Aspekte der Angewandten Informatik), S. 55–88.
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Ein schematischer Überblick eines einfachen neuronalen Netzes.31

Eine Menge von gegebenen Input/Output-Daten x1, y1 , …, xn, yn   sei Trainings‐
menge genannt. Das Lernproblem für ANN besteht nun darin, jene Funktion F zu
finden, die die Inputwerte ›am genauesten‹ den Outputwerten zuordnet. Wir suchen
also die Wahl der ›optimalen‹ Gewichte, die die beste Approximation an die Input/
Output-Daten erlaubt. Um die Gewichte in der Trainingsphase zu ändern, benötigt
man eine Lernregel, die angibt, wie eine Änderung vorgenommen werden soll. Die‐
se Regel besteht in einem Algorithmus, der ermittelt, welche Gewichte des neurona‐
len Netzes wie stark erhöht oder reduziert werden müssen. Hierfür hat sich der soge‐
nannte „Backpropagation-Algorithmus“32 (etabliert, der ein (lokales) Minimum der
folgenden Fehlerfunktion E sucht. Der Fehler E berechnet die quadratische Diffe‐
renz des korrekten Wertes der gegebenen Outputwerte y1, …, yn  und den durch das
neuronale Netz berechneten Output F x1 , …, F xn : 

E ω1, ω2, …, ωl =  ∑
i = 1

n
yi − F xi

2 
Der Backpropagation-Algorithmus versucht nun die Gewichte so zu verändern, dass
der resultierende Gesamtfehler E möglichst klein ausfällt. Das Netz wird mit zufälli‐
gen Anfangsgewichten initialisiert. Mithilfe des Gradientenabstiegsverfahrens wer‐
den nun rückwärts in jeder Schicht von Neuronen die Gewichte ein kleines Stück‐
chen in die Richtung angepasst, die den Fehler kleiner macht (Abstieg in die negati‐
ve Gradientenrichtung von E). Nachdem alle Gewichte angepasst wurden, erfolgt
ein erneuter Durchlauf des neuronalen Netzes mit den gegebenen Inputwerten und
der Fehler E wird erneut gemessen. Für die neu generierte Liste an Gewichten wird

Abbildung 6:

31 Diese Graphik wurde der Webseite https://becominghuman.ai/artificial-neural-networks-and-de
ep-learning-a3c9136f2137 entnommen.

32 Vgl. Rojas 1996, Kapitel 7.

121

https://doi.org/10.5771/9783845296548-103 - Generiert durch IP 216.73.216.36, am 17.01.2026, 21:44:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.5771/9783845296548-103


abermals der Gradient bestimmt und damit eine Modifikation der Gewichte erreicht.
Dieses Verfahren wiederholt man so lange, bis ein lokales Minimum gefunden wird
oder eine vorher festgelegte Anzahl an Iterationsschritten erreicht worden ist.

In der anschließenden Testphase wird auf der Grundlage der bereits ermittelten
Gewichte aus der Trainingsphase untersucht, ob das neuronale Netz von den Trai‐
ningsdaten abstrahieren kann und auch korrekte Klassifizierungsergebnisse für bis‐
her nicht gelernte Input-Daten liefern kann.

Das sogenannte universal approximation theorem besagt, dass ein neuronales
Netz mit nur einer verborgenen Schicht mit endlichen vielen Neuronen, unter gewis‐
sen Bedingungen an die Aktivierungsfunktion, lokal jede stetige Funktion approxi‐
mieren kann.33 Da neuronale Netze also auch sehr komplizierte Funktionen hinrei‐
chend gut annähern können, sollte das Problem des Overfitting beachtet werden.
Denn am Ende will man nicht die perfekte Funktion für die gegebenen Input-/
Output-Daten finden. Das Netz soll vielmehr in der Testphase in der Lage sein, In‐
putdaten, die nicht Teil der Trainingsdaten waren, richtig zu klassifizieren.

Ein Problem des Backpropagation-Algorithmus ist, dass ihm nur die lokale Um‐
gebung des Gradienten bekannt ist. Daher weiß der Algorithmus zum Beispiel nicht,
ob er ein lokales oder absolutes Minimum gefunden hat. Dies ist insbesondere bei
Netzen mit sehr vielen Verbindungen zwischen den Neuronen der Fall. Ebenso kann
aufgrund flacher Plateaus des Fehlergraphen der Gradient beim Gradientenabstiegs‐
verfahren so klein werden, dass das nächste ›Tal›‹ gar nicht mehr erreicht wird. Sta‐
gnation des Verfahrens ist die Folge. Oder es können Oszillationen des Fehlergra‐
phen entstehen, sodass der Backpropagation-Algorithmus weder ein globales noch
ein lokales Minimum entdeckt. Durch (menschlichen) Eingriff in das Gradientenab‐
stiegsverfahren können diese Probleme aber angegangen werden (u.U. treten dann
Folgeprobleme auf).

Bei einer linearen oder allgemein polynomialen Regressionsanalyse liegt ein ähn‐
liches Lernproblem vor wie bei künstlichen neuronalen Netzen. Denn hier ging es
darum, ein Polynom n-ten Grades bzw. deren Koeffizienten zu finden. Auch dieses
Lernproblem führt auf eine Optimierungsaufgabe, möglichst diejenigen Koeffizien‐
ten zu finden, sodass der Gesamtfehler im Abgleich mit den Testdaten ausreichend
gering ist. Xi Cheng u.a. argumentieren sogar in einem Preprint auf ArXiv.org, dass
»neural networks actually are polynomial regression models.«34 Argumentativer
Kern ihres Aufsatzes ist, dass die Aktivierungsfunktionen in neuronalen Netzen alle‐
samt durch Polynome approximiert werden können. Infolge wird dann auch die

33 George Cybenko: »Approximation by superpositions of a sigmoidal function«, in: Math. Con‐
trol Signal Systems 2 (1989), Heft 4, S. 303–314. DOI: 10.1007/BF02551274.

34 Xi Cheng u.a.: »Polynomial Regression As an Alternative to Neural Nets«, in: ArXiv.org
29.6.2018, https://arxiv.org/abs/1806.06850, (aufgerufen: 28.6.2018), S. 3, Hervorhebung im
Original.
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Funktion F ein Polynom sein, das durch polynomiale Regressionsmodelle approxi‐
miert werden kann.

Trotz methodischer Ähnlichkeiten bin ich vorsichtig, beide Ansätze als äquivalent
zu betrachten. Ein unterscheidendes Merkmal scheint die Vorhersageleistung bei der
Klassifikation unbekannter Datensätze zu sein. Hier scheinen künstliche neuronale
Netze deutlich besser zu sein. Eine Erklärung hierfür könnte in der nicht-polynomia‐
len Struktur künstlicher Netze im Gegensatz zu linearer bzw. polynomialer Regressi‐
on liegen.

Ich habe in diesem Aufsatz aufzuzeigen versucht, welche Rolle maschinell ler‐
nende Algorithmen für den Entdeckungszusammenhang einer Hypothese spielen.
Reichweite und Grenze dieser (wissenschaftlichen) Methode wurden in diesem Auf‐
satz so bestimmt, dass maschinelle Algorithmen zwar einen positiven Beitrag bei der
Aufstellung einer Hypothese leisten, überzogene Ansprüche an eine Automatisie‐
rung wissenschaftlicher Entdeckung und Hoffnungen auf eine automatisierte Theo‐
rie- und Hypothesenbildung allerdings zurückgewiesen wurden.

Machine-Learning-Methoden liefern Berechnungsmodelle, um Klassifikations-
und Regressionsprobleme (approximativ) zu lösen. Dabei können diese algorithmi‐
schen Ansätze sehr effizient darin sein, Abhängigkeitsbeziehungen einer Outputva‐
riablen zu (mehreren) Inputvariablen aufzudecken. Und damit verfügen wir über
einen computerisierten Automatisierungsprozess, Hypothesen über Zusammenhänge
in Daten zu formulieren. In diesem Sinne habe ich Machine Learning als Regulator
der Entstehungs- und Entdeckungsbedingungen von (wissenschaftlichen) Hypothe‐
sen aufgefasst. Ein begründeter Optimismus in die Reichweite dieser Technik darf
aber nicht vergessen lassen, dass lernende Algorithmen nicht voraussetzungslos
Strukturen in Daten detektieren können. Zuallererst sind dabei strukturelle Voran‐
nahmen zu treffen, die z.B. eine Auswahl der Prädiktorvariablen festlegen, mit de‐
nen wir Daten überhaupt erst beschreiben können. Welche theoretischen und prakti‐
schen Einschränkungen ergeben sich, damit ein Computer eine Optimierungsaufga‐
be im Sinne des gestellten Problems ausführt? Mithilfe der zuletzt genannten Wood‐
ward-Turing Analogie hinsichtlich einer ›Kreativität‹ von Computermethoden, sind
maschinell lernende Algorithmen immer in den Begriffen, mit denen sie initialisiert
wurden, ›gefangen‹. Eine vorschnelle Verabschiedung menschlich-wissenschaftli‐
cher Praxis in der computergestützten Naturwissenschaft wären daher verfrüht.
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