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VIII

A distinction is made in scalars, vectors, tensors, and matrices and the following
notation is introduced: scalars are written in italic letters A, vectors in the Eu-
clidean space are indicated by arrows d, second-order tensors are written with
an under-tilde S. This holds also for Greek letters. For high-order tensors calli-
graphic letters with an under-tilde C are used. Matrices are written in bold letters.
The combination of an italic and bold letter indicates local finite element matrices
A, whereas standard bold letters A refer to global matrices. In addition, lower-
case letters a or a are used for column matrices. This notation is used throughout
this thesis except where it is explicitly mentioned in the text.

Some frequently used tensor operations are also summarized in the following.
Further reading on tensor-algebra and tensor-analysis for continuum mechanics
is provided in [84, 13] for instance.

Tensors
A Scalar value
a=a;g First-order tensor (vector)
S =3SiG:® g Second-order tensor
C=0Ci i, 0 ®Gi, ®...07;,,  Tensors of higher order

Matrices / column matrices

Global column matrix
Global matrix

Local finite element column matrix

U ~R S

Local finite element matrix
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Mathematical operators

UV =1uv;g; ® G;
S-F=25;F;

SEF =35 Fir§i ® G
§T =55 G; ® G;

g1

trS =S

det S

div, Div

grad, Grad
\Y

Dyadic product

Inner, scalar or dot product

Tensor product

Transposed tensor

Inverse of a tensor

Trace of a tensor (first invariant Ig)
Determinant of a tensor (third invariant Illg)
Divergence operator

Gradient operator

Nabla operator
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A list of the main symbols is given in the following. Subordinate variables of
minor importance — typically appearing only once in the text — are not listed and
are explicitly mentioned. Due to the multitude of different variables, a double
seizure of some symbols cannot be avoided. This is also mentioned in the text.

Scalars

> > = TSI oD
2 = X @ =R B8R

>

baﬂ‘rttﬁ

[SEY
)

Osb
%]

Absorptance

Thermal expansion coefficient
Linear temperature coefficient
Extinction coefficient
Thermo-elastic coupling term
Tolerance

Emissivity or emittance
Wave-number

Thermal stretch-ratio

Angle of colatitude
Temperature

Absorption coefficient
Wave-length

Iteration residual

First Lamé constant

Heat conduction coefficient
Electric conduction coefficient
Second Lamé constant / Shear modulus
Viscosity

Entropy per unit volume
Number of solver calls

Mass density

Charge density

Reflectance

Coupling iterations per time-step
Stefan-Boltzmann constant
Scatter coefficient

Entropy
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NN SNEmT QRSO &
>

3
S

=

=

TNT e 3R g3 T 2
IO

<

Transmittance
Wave-frequency

Solid angle

Electric potential

Angle of latitude

Scatter phase function
Angle of longitude
Helmbholtz free-energy
Relaxation coefficient
Domain / Configuration
Element volume

Area

Speed of light in vacuum
Heat capacity / specific heat
Dissipation

Specific internal energy
Emissive power
(Angular) Frequency
View factor

Incident radiation
Electric charge
Irradiation

Radiative intensity
Determinant of the deformation gradient
Bulk modulus

Length

Mass

Shape function
(Polynomial) Order
Fluid pressure

Point

Heat flux

Heat source

Path

Distance

Time

Time interval

Volumetric part of the strain-energy density function

Volume
Weights / weight function

Isochoric part of strain-energy density function

Strain-energy density function
Coordinates

Surface radiosity

Internal energy
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Vectors

1S Sl TUTUS AL TUIQRUITH DL Ry TURL < Sy

s

~y

N
¥e)
(ZE"? QT
E
g
6T
@, U
il
Tensors
£
3‘@7 /N\@
A, A
Lo Mo
g
b
C
d
e
E
E
a
1
1

Kinetic energy
Thermal work
Mechanical work

Test function

Mapping function

Surface element vector

Body force density vector per unit mass
Domain displacement vector / boundary displacements
Electric field intensity

Force vector

Basis vector in current configuration
Basis vector in reference configuration
Rotational or angular momentum vector
Electric current density vector
Gravitation vector

Linear or translational momentum vector
Moment vector

Normal vector

Heat flux vector

Radiative heat flux vector

Location or distance vector

Direction vector

Traction vector

Displacement vector

Velocity vector

Coordinate vector

Linear strain tensor

Heat conductivity tensor
Electric conductivity tensor
Cauchy stress tensor

Left Cauchy-Green tensor
Right Cauchy-Green tensor
Rate of deformation tensor
Euler-Almansi strain tensor
Green-Lagrange strain tensor
Deformation gradient tensor
Displacement gradient tensor
Unit tensor

Velocity gradient tensor
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XIII

IS K RIS laki?oki=vRise]

Piola-Kirchhoff stress tensor
Rotation tensor

274 Pipola-Kirchhoff stress tensor
Right stretch tensor

Left stretch tensor

Spin tensor

Elasticity tensor

First fundamental tensor

Global matrices / column matrices

NP ORIt BX @R

K< M < gmao

Vector of interpolation coefficients

Discrete temperature vector

Global coordinates vectors

Basis function matrix

Discrete electric potential vector

System matrix

Broyden’s matrix

Data transfer vector

View factor matrix

Discrete black body emissive power

System of nonlinear equations

System of nonlinear equations of the mechanical field
System of nonlinear equations of the thermal field
System of equations of the electric field

Inverse of Broyden’s matrix

Jacobian matrix

Global tangential stiffness matrix of the mechanical field
Geometric part of K\

Constitutive part of Kty

Global tangential stiffness matrix of the thermal field
Global stiffness matrix of the electric field

Mass or system matrix

Nearest neighbors vector

Vector of polynomials

Matrix of polynomial vectors

Load vector of the mechanical field

Load vector of the thermal field

Load vector of the electric field

Discrete heat flux vector

Discrete (iteration) residual

Global displacement vector

Vector of a transformed sequence

Coordinate vector

Solution / sequence vector

Matrix of discrete solution vectors
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X1V

z
Z

Solution / sequence vector
Matrix of discrete solution vectors

Local finite element matrices / column matrices

e,
AL
AL
Pe

NEAS mE,

-

Element temperature vector

Heat conductivity matrix

Electric conductivity matrix
Element electric potential vector
Local coordinate vector

Matrix of shape function derivatives
Strain-displacement matrix
Element body force vector
Material matrix

Green-Lagrange strains in Voigt notation
Element deformation gradient
Element Jacobian matrix
Tangential element stiffness matrix
Thermal element stiffness matrix
Electric element stiffness matrix
Shape function matrix

Mechanical element load vector
Thermal element load vector
Electric element load vector
Mapping function

Stress tensor in Voigt notation
Element traction vector

Element displacement vector
Element coordinate vector

Functionals, operators and spaces

T30

System operator

Continuum body

Solution operator in fixed-point iteration
Solution operator in fixed-point iteration
Functional of the mechanical field
Functional of the thermal field
Functional of the electric field

Residual operator

Sequence of vectors

Transformed sequence of vectors

Test space

Frequently used sub- and superscripts

(Do

Reference / initial value

216.73.216.36, am 18.01.2026, 21:51:30. @

tersagt, m mit, fr oder in Ki-Syster


https://doi.org/10.51202/9783186345189-I

XV

b
e

)
)
)
.)n
)
)
)
)

<

@

o —

*6

Black-body value

Finite element quantity (e-th element)
i-th iteration, i-th sequence

k-th coupling iteration

n-th time-step

Mechanical part of (-)

Thermal part of (-)

Electric part of (-)

Extra- or interpolated value

Abbreviations and acronyms

Acronym
BC

BR
CFD
Ccv
DAE
DAR
DSR
EXP
FAST
FEM
FSI
FVM
GJ
GMRES
GS

IMP
ION

LE
MLNA
\Y%15
MPI
ON
fvDOM
RTE
SIMPLE

SOR
SUR
P

VEM

Description

Boundary Conditions

Broyden Method

Computational Fluid Dynamics
Control-Volume
Differential-Algebraic Equation
Dynamic Aitken Relaxation
Dynamic Secant Relaxation

Explicit

Field Assisted Sintering Technology
Finite Element Method
Fluid-Structure Interaction

Finite Volume Method
Gauss-Jacobi

Generalized Minimal Residual Method
Gauss-Seidel

Implicit

Interface Quasi-Newton

Line Extrapolation

Multi-Level Newton Algorithm
Mechanical Predictor

Message Passing Interface
Quasi-Newton (Method)

finite volume Discrete Ordinate Method
Radiative Transfer Equation

Semi Implicit Method for Pressure Linked Equa-

tions

Successive Over Relaxation
Successive Under Relaxation
Thermal Predictor

View Factor Method
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XVI

With increasing computational capacity, simulations of multi-physically coupled
problems become of more interest in many industrial applications. The numerical
treatment of multi-field interactions calls for flexible and robust solution strate-
gies. A partitioned coupling strategy has the advantage of high flexibility and al-
lows for combinations of different software and specialized solvers for the phys-
ical fields involved. It divides the coupled system into iterations of subproblems
with repetitive data exchange.

As a multi-field example, the electro-thermo-mechanical process of the field as-
sisted sintering technology (FAST) is taken under consideration. FAST is an innova-
tive technique for the compaction of powder materials. It offers short production
cycles by simultaneously applying a uniaxial pressure and an electric current in
order to generate high heating rates and hot temperatures by means of Joule heat-
ing. During processing, the temperature development is an important feature to
obtain optimal process conditions. For high temperatures, the most prominent
mechanism to transfer thermal energy is thermal radiation, which is why a com-
prehensive simulation of FAST should comprise the effects of radiating surfaces.
This can be accomplished by treating the environment of the FAST machine tools
as an additional individual field, denoted as the radiation field. It is coupled to
the temperature and allows to model intricate interactions such as reflection or
irradiation with other surfaces. This finally leads to a numerically challenging
four-field problem that describes the FAST process. The electric, thermal and me-
chanical subproblems are solved using the finite element method (FEM) while
the finite volume method is applied for the radiation field. Different numerical
models are discussed to approximate the radiative transfer in vacuum and also
in participating media.

Regarding the partitioned coupling strategy, the flexibility attribute comes at
the expense of algorithmic stability. It is known that particularly strongly cou-
pled problems can be unstable even if an implicit time stepping method is cho-
sen for the subproblems. Here, external stabilization methods serve to increase
the chances of stability. Typically, methods like this are known from the field
of fluid-structure interaction (FSI), and they can be applied in connection with
black-box solvers. Further, they can be used to improve the convergence and to
reduce the computation time, as they accelerate the coupling iterations. In this
thesis, several stabilization procedures are discussed. Based on sequential solver
calls, a concept to design partitioned solution strategies for an arbitrary number
of physical fields is proposed and applied to several numerical examples.

216.73.216.36, am 18.01.2026, 21:51:30. © Urheberrechtiich geschutzter Inhak k.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186345189-I

