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Nomenclature

A distinction is made in scalars, vectors, tensors, and matrices and the following
notation is introduced: scalars are written in italic letters A, vectors in the Eu-
clidean space are indicated by arrows �a, second-order tensors are written with
an under-tilde ∼S. This holds also for Greek letters. For high-order tensors calli-
graphic letters with an under-tilde ∼C are used. Matrices are written in bold letters.
The combination of an italic and bold letter indicates local finite element matrices
A, whereas standard bold letters A refer to global matrices. In addition, lower-
case letters a or a are used for column matrices. This notation is used throughout
this thesis except where it is explicitly mentioned in the text.

Some frequently used tensor operations are also summarized in the following.
Further reading on tensor-algebra and tensor-analysis for continuum mechanics
is provided in [84, 13] for instance.

Tensors

A Scalar value
�a = ai �gi First-order tensor (vector)

∼S = Sij �gi ⊗ �gj Second-order tensor

∼C = Ci1...in �gi1 ⊗ �gi2 ⊗ ...⊗ �gin Tensors of higher order

Matrices / column matrices

a Global column matrix
A Global matrix
a Local finite element column matrix
A Local finite element matrix
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IX

Mathematical operators

�u⊗ �v = ui vj �gi ⊗ �gj Dyadic product

∼S · ∼F = Sij Fij Inner, scalar or dot product

∼S ∼F = Sij Fjk �gi ⊗ �gk Tensor product

∼S
T = Sij �gj ⊗ �gi Transposed tensor

∼S
−1 Inverse of a tensor

tr ∼S = Sii Trace of a tensor (first invariant IS)
det ∼S Determinant of a tensor (third invariant IIIS)
div, Div Divergence operator
grad, Grad Gradient operator
∇ Nabla operator
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X

List of symbols

A list of the main symbols is given in the following. Subordinate variables of
minor importance – typically appearing only once in the text – are not listed and
are explicitly mentioned. Due to the multitude of different variables, a double
seizure of some symbols cannot be avoided. This is also mentioned in the text.

Scalars

α Absorptance
αΘ Thermal expansion coefficient
αϕ Linear temperature coefficient
β Extinction coefficient
γ Thermo-elastic coupling term
ε Tolerance
ε Emissivity or emittance
η Wave-number
ϑ Thermal stretch-ratio
θ Angle of colatitude
Θ Temperature
κ Absorption coefficient
κ Wave-length
Λ Iteration residual
λ First Lamé constant
λΘ Heat conduction coefficient
λϕ Electric conduction coefficient
μ Second Lamé constant / Shear modulus
ν Viscosity
ξ Entropy per unit volume
� Number of solver calls
ρ Mass density
ρc Charge density
� Reflectance
ς Coupling iterations per time-step
σsb Stefan-Boltzmann constant
σS Scatter coefficient
Σ Entropy
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XI

τ Transmittance
υ Wave-frequency
Υ Solid angle
ϕ Electric potential
φ Angle of latitude
Φ Scatter phase function
ψ Angle of longitude
Ψ Helmholtz free-energy
ω Relaxation coefficient
Ω Domain / Configuration
Ωe Element volume
a, A Area
c0 Speed of light in vacuum
cp Heat capacity / specific heat
d, D Dissipation
e Specific internal energy
E Emissive power
f (Angular) Frequency
F View factor
G Incident radiation
h Electric charge
H Irradiation
I Radiative intensity
J Determinant of the deformation gradient
K Bulk modulus
l, L Length
m, M Mass
N Shape function
p (Polynomial) Order
pf Fluid pressure
P Point
q, Q Heat flux
r, R Heat source
s Path
S Distance
t Time
T Time interval
U Volumetric part of the strain-energy density function
v, V Volume
w Weights / weight function
w̄ Isochoric part of strain-energy density function
W Strain-energy density function
x, X Coordinates
Y Surface radiosity
E Internal energy
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XII

K Kinetic energy
Q Thermal work
W Mechanical work

Vectors

�η Test function
�χ Mapping function
�a, �A Surface element vector
�b Body force density vector per unit mass
�d Domain displacement vector / boundary displacements
�e, �E Electric field intensity
�f, �F Force vector
�g Basis vector in current configuration
�G Basis vector in reference configuration
�h Rotational or angular momentum vector
�j, �J Electric current density vector
�k Gravitation vector
�l Linear or translational momentum vector
�m Moment vector
�n, �N Normal vector
�q, �Q Heat flux vector
�qr, �Qr Radiative heat flux vector
�r Location or distance vector
�s Direction vector
�t, �T Traction vector
�u, �U Displacement vector
�v Velocity vector
�x, �X Coordinate vector

Tensors

∼ε Linear strain tensor
∼λΘ

, ∼ΛΘ
Heat conductivity tensor

∼λϕ
, ∼Λϕ

Electric conductivity tensor

∼σ Cauchy stress tensor
∼b Left Cauchy-Green tensor
∼C Right Cauchy-Green tensor
∼d Rate of deformation tensor
∼e Euler-Almansi strain tensor
∼E Green-Lagrange strain tensor
∼F Deformation gradient tensor
∼H Displacement gradient tensor
∼I Unit tensor
∼l Velocity gradient tensor
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∼P Piola-Kirchhoff stress tensor
∼R Rotation tensor
∼S 2nd Piola-Kirchhoff stress tensor
∼U Right stretch tensor
∼V Left stretch tensor
∼w Spin tensor
∼C Elasticity tensor
∼I First fundamental tensor

Global matrices / column matrices

α Vector of interpolation coefficients
Θ Discrete temperature vector
χ Global coordinates vectors
Φ Basis function matrix
ϕ Discrete electric potential vector
A System matrix
B Broyden’s matrix
d Data transfer vector
D View factor matrix
eb Discrete black body emissive power
G System of nonlinear equations
GM System of nonlinear equations of the mechanical field
GΘ System of nonlinear equations of the thermal field
Gϕ System of equations of the electric field
H Inverse of Broyden’s matrix
J Jacobian matrix
KT,M Global tangential stiffness matrix of the mechanical field
KS Geometric part of KT,M

KC Constitutive part of KT,M

KT,Θ Global tangential stiffness matrix of the thermal field
Kϕ Global stiffness matrix of the electric field
M Mass or system matrix
n Nearest neighbors vector
p Vector of polynomials
P Matrix of polynomial vectors
pM Load vector of the mechanical field
pΘ Load vector of the thermal field
pϕ Load vector of the electric field
q Discrete heat flux vector
r, R Discrete (iteration) residual
u Global displacement vector
v Vector of a transformed sequence
x Coordinate vector
y Solution / sequence vector
Y Matrix of discrete solution vectors
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z Solution / sequence vector
Z Matrix of discrete solution vectors

Local finite element matrices / column matrices

Θe Element temperature vector
Λe

Θ Heat conductivity matrix
Λe

ϕ Electric conductivity matrix
ϕe Element electric potential vector
ξ Local coordinate vector
B Matrix of shape function derivatives
BL Strain-displacement matrix
be Element body force vector
Ce Material matrix
Ee Green-Lagrange strains in Voigt notation
F e Element deformation gradient
J e Element Jacobian matrix
Ke

T,M Tangential element stiffness matrix
Ke

Θ Thermal element stiffness matrix
Ke

ϕ Electric element stiffness matrix
N Shape function matrix
pe
M Mechanical element load vector

pe
Θ Thermal element load vector

pe
ϕ Electric element load vector

Qe Mapping function
Se Stress tensor in Voigt notation
t̄e Element traction vector
ue Element displacement vector
xe, Xe Element coordinate vector

Functionals, operators and spaces

A System operator
B Continuum body
F Solution operator in fixed-point iteration
G Solution operator in fixed-point iteration
GM Functional of the mechanical field
GΘ Functional of the thermal field
Gϕ Functional of the electric field
R Residual operator
S Sequence of vectors
T Transformed sequence of vectors
V Test space

Frequently used sub- and superscripts

( · )0 Reference / initial value
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( · )b Black-body value
( · )e Finite element quantity (e-th element)
( · )i i-th iteration, i-th sequence
( · )k k-th coupling iteration
( · )n n-th time-step
( · )M Mechanical part of ( · )
( · )Θ Thermal part of ( · )
( · )ϕ Electric part of ( · )
( · )∗ Extra- or interpolated value

Abbreviations and acronyms

Acronym Description Page
BC Boundary Conditions 124
BR Broyden Method 91
CFD Computational Fluid Dynamics 59
CV Control-Volume 59
DAE Differential-Algebraic Equation 59
DAR Dynamic Aitken Relaxation 81
DSR Dynamic Secant Relaxation 82
EXP Explicit 115
FAST Field Assisted Sintering Technology 1
FEM Finite Element Method 6, 41
FSI Fluid-Structure Interaction 4, 37
FVM Finite Volume Method 59
GJ Gauss-Jacobi 109
GMRES Generalized Minimal Residual Method 4, 94
GS Gauss-Seidel 109
IMP Implicit 115
IQN Interface Quasi-Newton 89
LE Line Extrapolation 86
MLNA Multi-Level Newton Algorithm 59
MP Mechanical Predictor 132
MPI Message Passing Interface 112
QN Quasi-Newton (Method) 89
fvDOM finite volume Discrete Ordinate Method 66
RTE Radiative Transfer Equation 7, 35
SIMPLE Semi Implicit Method for Pressure Linked Equa-

tions
63

SOR Successive Over Relaxation 82
SUR Successive Under Relaxation 82
TP Thermal Predictor 119
VFM View Factor Method 64
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Abstract

With increasing computational capacity, simulations of multi-physically coupled
problems become of more interest in many industrial applications. The numerical
treatment of multi-field interactions calls for flexible and robust solution strate-
gies. A partitioned coupling strategy has the advantage of high flexibility and al-
lows for combinations of different software and specialized solvers for the phys-
ical fields involved. It divides the coupled system into iterations of subproblems
with repetitive data exchange.

As a multi-field example, the electro-thermo-mechanical process of the field as-
sisted sintering technology (FAST) is taken under consideration. FAST is an innova-
tive technique for the compaction of powder materials. It offers short production
cycles by simultaneously applying a uniaxial pressure and an electric current in
order to generate high heating rates and hot temperatures by means of Joule heat-
ing. During processing, the temperature development is an important feature to
obtain optimal process conditions. For high temperatures, the most prominent
mechanism to transfer thermal energy is thermal radiation, which is why a com-
prehensive simulation of FAST should comprise the effects of radiating surfaces.
This can be accomplished by treating the environment of the FAST machine tools
as an additional individual field, denoted as the radiation field. It is coupled to
the temperature and allows to model intricate interactions such as reflection or
irradiation with other surfaces. This finally leads to a numerically challenging
four-field problem that describes the FAST process. The electric, thermal and me-
chanical subproblems are solved using the finite element method (FEM) while
the finite volume method is applied for the radiation field. Different numerical
models are discussed to approximate the radiative transfer in vacuum and also
in participating media.

Regarding the partitioned coupling strategy, the flexibility attribute comes at
the expense of algorithmic stability. It is known that particularly strongly cou-
pled problems can be unstable even if an implicit time stepping method is cho-
sen for the subproblems. Here, external stabilization methods serve to increase
the chances of stability. Typically, methods like this are known from the field
of fluid-structure interaction (FSI), and they can be applied in connection with
black-box solvers. Further, they can be used to improve the convergence and to
reduce the computation time, as they accelerate the coupling iterations. In this
thesis, several stabilization procedures are discussed. Based on sequential solver
calls, a concept to design partitioned solution strategies for an arbitrary number
of physical fields is proposed and applied to several numerical examples.
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