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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Untersuchung von Neural Radiance Fields zur Modellrekonstruktion in der Fabrikplanung

Neural Radiance Fields  
in der Fabrikplanung
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Neural Radiance Fields (NeRF) bieten eine kostengünstige  
und effiziente Alternative im Vergleich zu herkömmlichen 
 Verfahren, um 3D-Modelle aus realen Objekten zu generieren. 
Dementsprechend bieten NeRF große Potenziale zur Nutzung 
in  diversen Anwendungsfällen, wie der Fabrikplanung. In 
 diesem Beitrag wird die NeRF-Technologie an einem Beispiel 
aus der Fabrikplanung angewendet und daran aktuelle Heraus-
forderungen sowie Möglichkeiten zur Nutzung der Technologie 
 diskutiert. 

On the applicability of Neural  
Radiance Fields for virtual model 
 reconstruction in factory planning

Campared to conventional methods, Neural Radiance Fields 
(NeRF) offer a cost-effective and efficient alternative for gene-
rating 3D models from real objects. Therefore, NeRF has great 
potential for use in diverse applications, such as factory plan-
ning. Accordingly, this paper applies the NeRF technology to 
an exemple use case from factory planning and discusses 
 current challenges and possibilities for using the technology.

1 Motivation

Neural Radiance Fields (NeRF) sind eine vielversprechende 
Technologie zur Generierung realistischer 3D-Modelle aus 
2D-Bildern [1]. Auch andere Formen von Eingangsdaten wie 
 etwa Videos [2] oder Punktwolken [3] sind für NeRF geeignet. 
Somit ermöglichen NeRF die Erstellung von 3D-Modellen mit 
hoher räumlicher Auflösung bei gleichzeitig hoher Flexibilität in 
Bezug auf die Eingangsdaten. Im Vergleich zu herkömmlichen 
3D-Modellierungstechniken, wie zum Beispiel der Verwendung 
von LiDAR-Sensoren (Light Detection and Ranging) oder 
3D-Laserscannern, bieten NeRF eine potenziell kostengünstige, 
schnelle und effiziente Alternative.

NeRF haben das Potenzial in einer Vielzahl von Anwendungen 
eingesetzt zu werden, wie der Gesichtserkennung, der Bild ver -
arbeitung, der Rekonstruktion von Denkmälern oder Gebäuden, 
der Robotik oder auch der Fabrikplanung [4]. In der Fabrik -
planung bieten NeRF die Möglichkeit, realistische 3D-Modelle 
von Fabriken zu generieren. Dadurch können Fabrikplaner virtu-
elle Umgebungen erstellen und testen, bevor physische Anlagen 
realisiert werden. Die Folge sind Kosteneinsparungen und die 
Vermeidung von Fehlern, die sonst zu teuren Nacharbeiten und 
Verzögerungen führen können [5]. Durch die einfache Erstellung 
von 3D-Modellen lassen sich verschiedene Planungsvarianten 
und -konfigurationen im Vergleich zu den genannten Methoden 
schneller analysieren, da lediglich Bilder der geplanten Fabrik -
flächen als Eingabedaten benötigt werden [6]. Ein weiterer mög-
licher Nutzen des Einsatzes von NeRF in der Fabrikplanung liegt 
in der Erstellung realistischer Simulationen von Produktionspro-
zessen. NeRF können dazu beitragen, Ineffizienzen in der aktuel-

len Ausgestaltung von Produktionssystemen, etwa häufige Staus 
im Materialfluss, visualisierbar und analysierbar zu machen. Dies 
führt dazu, dass gezielte Umplanungsprozesse in der Produktion 
durchgeführt werden können, die zu einer Steigerung der 
 Effizienz und Qualität der Produktion führen [7].

Vor dem Hintergrund dieser Potenziale wird in diesem Beitrag 
die NeRF-Technologie für den Anwendungsfall der Fabrikpla-
nung einer näheren Betrachtung unterzogen. Das nächste Kapitel 
beschreibt das Modell der NeRF und die Vorgehensweise bei der 
Implementierung. Anschließend wird dieses Verfahren auf einen 
Anwendungsfall aus dem Bereich der Fabrikplanung angewendet. 
Die Ergebnisse und die Diskussion der Herausforderungen und 
Möglichkeiten für den Einsatz von NeRF sind Gegenstand von 
Kapitel 3. Kapitel 4 fasst die Ergebnisse kurz zusammen und gibt 
einen Ausblick.

2 Mathematische Modellierung  
 und Vorgehen zur Anwendung von NeRF

Die NeRF repräsentieren eine Szene in einem vollständig ver-
bundenen künstlichen neuronalen Netzwerk (englisch: artificial 
neural network, ANN) Fθ. Das Training des ANN kann etwa aus 
vorhandenen Bildern einer statischen Szene mit bekannten 
 Kamerapositionen erfolgen. Dabei transformiert das ANN eine 
 gegebene Position (x,y,z) und Blickrichtung (θ,ϕ) in der trainier-
ten Szene in eine Dichte σ und eine Lichtfarbe c. Wenn Licht-
strahlen in der Szene von der Kameraposition aus anhand der 
Vektorbeschreibung r(t) verfolgt werden, können die Volumen-
dichte- und Farbinformationen entlang der Strahlen mit NeRF 
approximiert und mit Methoden des Volume-Rendering zu einem 
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2D-Bild kombiniert werden. Die Dichte- und Farbinformationen 
werden getrennt vom Netz bestimmt. Die Dichte an einem Punkt 
wird nur als Funktion der drei kartesischen Positionskoordinaten 
über acht ANN-Schichten mit je 256 Neuronen berechnet. Das 
Ergebnis dieser Faltung ist die Dichte und ein weiterer Merk-
malsvektor. Dieser Vektor ist mit der Blickrichtung verknüpft 
und dient als Input für die Berechnung des Farbwertes, welche 
über eine weitere ANN-Schicht erfolgt.

Durch eine blickrichtungsabhängige Berechnung der Farbe in 
einem Punkt können Reflexionen durch die NeRF abgebildet 
werden. Da die Blickrichtungen keinen Einfluss auf die Dichte 
 eines Objekts haben, sind sie für die Berechnung nicht nötig. 
Neue Blickrichtungen werden durch Strahlen synthetisiert, die 
von der gewünschten Position in die Szene gesendet werden. Um 
feine Details mit NeRF darstellen zu können, wird jede einzelne 
Einflussgröße (drei Ortskoordinaten (x,y,z) sowie die drei Kom-
ponenten des Richtungsvektors d) durch Sinus- und Kosinus -
transformationen in einen höher-dimensionalen Raum transfor-
miert. Der Informationsgehalt der eindimensionalen Einfluss -
größen wird so deutlich verbessert und gewährleistet das Lernen 
auch feiner Details innerhalb der Szene. Die Farb- und Dichte -
informationen der Strahlen werden von NeRF ermittelt, sodass 
die resultierende Farbe jedes Strahls bestimmt werden kann. 
 Diese Informationen werden durch zwei Netze, ein „grobes“ und 
ein „feines“, begrenzt und innerhalb eines Intervalls [tn,tf] aus -
gewertet, siehe Bild 1. Eine genaue mathematische Herleitung 
der Funktionsweise dieser Netze ist in [8] zu finden.

Die allgemeine Vorgehensweise bei der Verwendung von 
NeRF zur Erstellung eines virtuellen 3D-Modells in Form einer 
vernetzten STL (Stereolithografie)-Datei besteht aus sechs 
Schritten. Zuerst werden Bilder der Szene aufgenommen, sodass 
das Zielobjekt von allen Seiten vollständig erfasst wird. Für einen 
benutzerfreundlicheren Ansatz kann ein Video des Objekts ver-
wendet werden. Bei einer flüssigen Videoaufnahme können meh-
rere Bilder mit zeitdiskreter Abtastung extrahiert werden. Dies 
ermöglicht auch eine aufwandsarme Generierung von Trainings- 
und Testdaten, da nur die Abtastgröße verändert werden muss.

Im zweiten Schritt werden die Parameter für die Kamera -
kalibrierung und den 5D-Eingangsvektor bestimmt. Dies wird 
durch den Einsatz von Structure-from-Motion-Methoden [9] zur 
Strukturierung aus der Bewegung erreicht. Innerhalb dieser Pipe-
line werden Schritte bis zur Bildregistrierung betrachtet. Hier 
werden neue Bilder zum aktuellen Modell registriert, indem das 
Perspective-n-Point (PnP)-Problem [10] unter Verwendung von 
Merkmalskorrespondenzen zu triangulierten Punkten in bereits 
registrierten Bildern gelöst wird. Das Ergebnis ist die Ausgabe 
der Kamerapositionen und Blickwinkel in Form von Tensoren.

Von allen Verfahrensschritten ist dies der rechenintensivste 
und zeitaufwendigste, da er mit zunehmender Bildanzahl und 
Eingabeauflösung schlecht skalierbar ist. Mit geeigneter Hand -
habungstechnik können Kamerapositionen und Blickwinkel 
 direkt gesteuert und erfasst werden, sodass dieser Schritt über-
sprungen werden kann. Dabei ist zu beachten, dass bereits eine 
gute Näherung ausreicht und somit die Handhabung mit ein -
fachen Mitteln realisiert werden kann.

Bild 1. Allgemeines Konzept von NeRF (Neural Radiance Fields). Grafik: RPTU Kaiserslautern
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Im dritten Schritt wird die Parametrisierung der NeRF 
 bestimmt. Dazu muss sichergestellt werden, dass sich das Ziel -
objekt innerhalb der Grenzen der 3D-Szene befindet. Außerdem 
muss die Strahllänge so eingestellt werden, dass sie durch alle 
 relevanten Objekte der Szene verläuft.

Im vierten Schritt wird das eigentliche Modell trainiert, wobei 
verschiedene modellspezifische Parameter wie zum Beispiel die 
Verlustfunktion oder die Lernrate eingestellt werden können. 
 Eine vollständige Liste der Parameter findet sich in [8]. Im unter-
suchten Anwendungsszenario der Fabrikplanung werden die 
Standardparameter der NeRF verwendet. 

Im fünften Schritt kann das Modell entweder zur Erzeugung 
beliebiger neuer Sichten verwendet werden, eine Punktwolke 
durch strukturelles Sampling neuer Sichten im Modell erzeugt 
werden oder nur die Volumendichte ausgewertet werden.

Im sechsten und letzten Schritt können Nachbearbeitungs-
werkzeuge für Punktwolken, wie etwa der Marching-Cubes-
 Algorithmus, zur Vernetzung der Punktwolken und zur Repara-
tur der resultierenden 3D-Modelle entsprechend der weiteren 
Anwendungsanforderungen eingesetzt werden. 

Die allgemeinen Schritte zur Anwendung von NeRF sind in 
Bild 2 nochmals zusammengefasst.

3 Ergebnisse und Diskussion

Der Fabrikplanungsprozess profitiert von 3D-Modellen, die 
den aktuellen Zustand der Fabrik abbilden, wie in Kapitel 1 be-
schrieben. Im Anwendungsszenario werden daher die Möglich-
keiten von NeRF zur digitalen und flexiblen Layoutabbildung für 
Fabriken untersucht. Dazu wird ein bestehendes Produktionsge-

bäude als exemplarisches Anwendungsszenario verwendet. Dieses 
ist in Bild 3 dargestellt.

In Bild 3 sind im Szenario verschiedene Werkzeugmaschinen, 
Tische, Lagerregale, ein Brückenkran, Netzwerkinfrastruktur 
 sowie Medienver- und -entsorgungsinfrastruktur abgebildet. Zu 
den unterschiedlichen Objektmerkmalen gehören feine und grobe 
Strukturen, matte und reflektierende Oberflächen sowie helle und 
schlecht beleuchtete Bereiche. Somit ist eine Untersuchung der 
Fähigkeiten von NeRF in einer für die Industrie relevanten Um-
gebung möglich.

Die für das Training verwendeten Bilder werden mit einer 
Smartphone-Kamera aufgenommen und mit der Structure-from-
Motion-Methode von [9] vorverarbeitet, um die intrinsischen 
und extrinsischen Kameraparameter zu approximieren. Zudem 
wird sichergestellt, dass die Aufnahmeorte gleichmäßig über die 
gesamte Anlage verteilt sind, indem das aufgenommene Video in 
Intervallen von 3 bis 5 Bildern pro Sekunde gleichmäßig abgetas-
tet wird. Die Tabelle zeigt die Parameter des Modells, die für das 
Anwendungsszenario definiert wurden.

Die Ergebnisse zeigen, dass die Qualität des Modells stark 
vom Versuchsaufbau und den Parametern des Algorithmus 
 abhängt. Vor allem die Kartierung von Fabriken ist eine Heraus -
forderung, da die Fabrik nicht schnell von allen Seiten umrundet 
werden kann. Stattdessen werden Bilder aus dem Inneren des 
modellierten Objekts aufgenommen, was den Trainingsprozess 
von NeRF vor neue Schwierigkeiten stellt, da der primäre Fokus 
des Algorithmus auf der Konstruktion eines einzelnen zentrierten 
Objekts liegt. Außerdem beeinflussen die in der Tabelle auf -
geführten Parameter des Algorithmus die Qualität der Ergebnisse.

Bild 2. Allgemeines Vorgehen zur Anwendung von NeRF. Grafik: RPTU Kaiserslautern
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Die Trainingsbilder der ersten drei Modelle in Bild 4 wurden 
auf einer Plattform oben in der Fabrikhalle aufgenommen. Der 
einzige Unterschied zwischen erstem und zweitem Modell ist die 
Größe des Einheitswürfels, ein Hyperparameter, der das Zentrum 
der zu rekonstruierenden Szene beschreibt und vor dem Training 
definiert werden muss. 

Es ist zu beobachten, dass eine Vergrößerung des Einheits -
würfels zu einer Verschlechterung der Modellgüte führt, da die 
Komplexität des Fokuspunktes für die Rekonstruktion zunimmt. 
Der Einfluss ist in Bild 4 zu sehen, in dem die Unterschiede in 
der Modellqualität visualisiert sind. Zudem werden gut beleuch-
tete Kanten im Modell besser dargestellt als ebene Bereiche oder 
Bereiche mit geringer Lichtintensität. Das dritte Modell verwen-
det die gleichen Perspektiven und Trainingsparameter wie das 
erste Modell. Die Bildauflösung wurde jedoch auf 3840 x 2160 
erhöht. Das Rekonstruktionsziel des Modells ist identisch mit der 
Eingangsauflösung, daher führt eine höhere Auflösung ab einem 
bestimmten Punkt zu einer deutlichen Qualitätsverschlechterung, 
wenn die Modellparameter den Detailgrad nicht mehr erfassen 
können. Die Fräsmaschine steht im Mittelpunkt des letzten 

 Modells. Wie zu sehen ist, werden die Konturen auf der linken 
Seite der Fräsmaschine mit hoher Qualität rekonstruiert. Auf der 
rechten Seite der Maschine verbleiben jedoch einige Artefakte.

Für den erfolgreichen Einsatz von NeRF zur Rekonstruktion 
von Fabriklayouts ist eine mehrstufige Sequenz mit zunehmen-
dem Detaillierungsgrad vorteilhaft. Im ersten Schritt wird der 
 allgemeine Bereich des Layouts visualisiert. Modelle einzelner 
Entitäten (zum Beispiel ein Fräsmaschinenmodell) können dann 
verwendet werden, um Teile des Gesamtmodells zu ersetzen, die 
eine geringere Qualität aufweisen. Die Frage, wie einzelne 
 Modellteile ersetzt werden können, bleibt jedoch offen.

Zusammenfassend lässt sich sagen, dass die Auswahl der 
 geeigneten Kombinationen von Modell- und Szenenparametern 
mit zunehmender Komplexität des zu betrachtenden Objekts 
nicht mehr gelöst werden kann, indem alle Kombinationen aus-
probiert werden (curse of dimensionality). Zudem darf die 
Vorverar beitung der Trainingsdaten für die Blickwinkelschätzung 
nicht vernachlässigt werden. Denn die genaue Berechnung der 
Kameraposition hat mit zunehmender Komplexität einen größer 
werdenden Einfluss auf die Ergebnisqualität. Für größere Fabrik-

Bild 4. Ergebnisse zur Rekonstruktion einer Fabrikhalle mithilfe von NeRF. Foto: RPTU Kaiserslautern

Tabelle. Experimentelles Design für die Anwendung von NeRF für die Fabriklayoutplanung.

 Experiment

Szene

Einheitswürfel

Bildauflösung

1

Halle Vogelperspektive

klein

1920 x 1080

2

groß

1920 x 1080

3

klein

3840 x 2160

4

Einzelne Maschine

klein

1920 x 1080

Bild 3. Exemplarische Bildaufnahmen einer Fabrikhalle für das Training des NeRF. Foto: RPTU Kaiserslautern
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hallen erscheint es vielversprechend, Drohnen zur Bildaufnahme 
einzusetzen, was die Blickwinkelschätzung in Systemen mit hoher 
räumlicher Dynamik vor weitere Herausforderungen stellt.

4 Zusammenfassung und Ausblick

Effiziente und einfache Möglichkeiten für die Erstellung  
von virtuellen 3D-Modellen sind für die Planung von Fabriken 
von immer größerer Bedeutung. Daher wurde das Potenzial von 
NeRF für die Fabrikplanung untersucht und bewertet. Auf der 
Grundlage dieser Anwendungsszenarien können wir die Schluss-
folgerung ziehen, dass NeRF ein hohes Potenzial für die Lösung 
von Problemen im Zusammenhang mit Rekonstruktionsszenarien 
in einer Fabrik hat, wofür die Fotogrammetrie bisher zu teuer 
oder zu ungenau in der Berechnung oder Bilderfassung war. 

Um jedoch in der Fabrikplanung eingesetzt zu werden, besteht 
weiterer Forschungsbedarf zur Modellskalierung. In der derzeiti-
gen Struktur ist ein Modell kaum in der Lage, eine komplette 
Maschinenhalle in ausreichender Qualität zu rekonstruieren. Die 
Ergebnisse der Rekonstruktion einzelner Maschinen zeigen aber 
bereits heute ein großes Potenzial für Planungsaufgaben. Entlang 
des gesamten Fabrikplanungsworkflows, angefangen von der 
 Definition der Sichten und der Parametrisierung des Modells 
über die Segmentierung und Vernetzung der Objekte bis hin zur 
Dimensionierung und Zuordnung des vorhandenen Know-hows, 
gibt es noch viele ungelöste Herausforderungen.

Zukünftige Forschungsaufgaben sollten die Integration der 
NeRF-Technologie in den Fabrikplanungsprozess näher unter -
suchen, beispielsweise die Verwendung anwendungsspezifischer 
NeRF-Eingabeparameter im Kontext der Fabriklayoutplanung. 
Das Verständnis dieser Parameter könnte bei komplexen Szenen, 
vor allem bei Fabriklayouts, den Nachbearbeitungsaufwand für 
die Vernetzung der resultierenden Punktwolken und die Objekt-
segmentierung deutlich reduzieren.
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