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VIII

A distinction is made in scalars, vectors, tensors, and matrices and the following
notation is introduced: scalars are written in italic letters A, vectors in the Eu-
clidean space are indicated by arrows d, second-order tensors are written with
an under-tilde S. This holds also for Greek letters. For high-order tensors calli-
graphic letters with an under-tilde C are used. Matrices are written in bold letters.
The combination of an italic and bold letter indicates local finite element matrices
A, whereas standard bold letters A refer to global matrices. In addition, lower-
case letters a or a are used for column matrices. This notation is used throughout
this thesis except where it is explicitly mentioned in the text.

Some frequently used tensor operations are also summarized in the following.
Further reading on tensor-algebra and tensor-analysis for continuum mechanics
is provided in [84, 13] for instance.

Tensors
A Scalar value
a=a;g First-order tensor (vector)
S =3SiG:® g Second-order tensor
C=0Ci i, 0 ®Gi, ®...07;,,  Tensors of higher order

Matrices / column matrices

Global column matrix
Global matrix

Local finite element column matrix

U ~R S

Local finite element matrix
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IX

Mathematical operators

UV =1uv;g; ® G;
S-F=25;F;

SEF =35 Fir§i ® G
§T =55 G; ® G;

g1

trS =S

det S

div, Div

grad, Grad
\Y

Dyadic product

Inner, scalar or dot product

Tensor product

Transposed tensor

Inverse of a tensor

Trace of a tensor (first invariant Ig)
Determinant of a tensor (third invariant Illg)
Divergence operator

Gradient operator

Nabla operator
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A list of the main symbols is given in the following. Subordinate variables of
minor importance — typically appearing only once in the text — are not listed and
are explicitly mentioned. Due to the multitude of different variables, a double
seizure of some symbols cannot be avoided. This is also mentioned in the text.

Scalars

> > = TSI oD
2 = X @ =R B8R

>

baﬂ‘rttﬁ

[SEY
)

Osb
%]

Absorptance

Thermal expansion coefficient
Linear temperature coefficient
Extinction coefficient
Thermo-elastic coupling term
Tolerance

Emissivity or emittance
Wave-number

Thermal stretch-ratio

Angle of colatitude
Temperature

Absorption coefficient
Wave-length

Iteration residual

First Lamé constant

Heat conduction coefficient
Electric conduction coefficient
Second Lamé constant / Shear modulus
Viscosity

Entropy per unit volume
Number of solver calls

Mass density

Charge density

Reflectance

Coupling iterations per time-step
Stefan-Boltzmann constant
Scatter coefficient

Entropy
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Transmittance
Wave-frequency

Solid angle

Electric potential

Angle of latitude

Scatter phase function
Angle of longitude
Helmbholtz free-energy
Relaxation coefficient
Domain / Configuration
Element volume

Area

Speed of light in vacuum
Heat capacity / specific heat
Dissipation

Specific internal energy
Emissive power
(Angular) Frequency
View factor

Incident radiation
Electric charge
Irradiation

Radiative intensity
Determinant of the deformation gradient
Bulk modulus

Length

Mass

Shape function
(Polynomial) Order
Fluid pressure

Point

Heat flux

Heat source

Path

Distance

Time

Time interval

Volumetric part of the strain-energy density function

Volume
Weights / weight function

Isochoric part of strain-energy density function

Strain-energy density function
Coordinates

Surface radiosity

Internal energy
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XII

Vectors

Lo R S F) TUFSITIQRITH N/ TR < S

S

=

s

~y

>

Tensors

U 0 2 2D 2L (N ITE Q. U 1 U

s @

=
@

1>

€

Kinetic energy
Thermal work
Mechanical work

Test function

Mapping function

Surface element vector

Body force density vector per unit mass
Domain displacement vector / boundary displacements
Electric field intensity

Force vector

Basis vector in current configuration
Basis vector in reference configuration
Rotational or angular momentum vector
Electric current density vector
Gravitation vector

Linear or translational momentum vector
Moment vector

Normal vector

Heat flux vector

Radiative heat flux vector

Location or distance vector

Direction vector

Traction vector

Displacement vector

Velocity vector

Coordinate vector

Linear strain tensor

Heat conductivity tensor
Electric conductivity tensor
Cauchy stress tensor

Left Cauchy-Green tensor
Right Cauchy-Green tensor
Rate of deformation tensor
Euler-Almansi strain tensor
Green-Lagrange strain tensor
Deformation gradient tensor
Displacement gradient tensor
Unit tensor

Velocity gradient tensor
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XIII

IS K RIS laki?oki=vRise]

Piola-Kirchhoff stress tensor
Rotation tensor

274 Pipola-Kirchhoff stress tensor
Right stretch tensor

Left stretch tensor

Spin tensor

Elasticity tensor

First fundamental tensor

Global matrices / column matrices

NP ORIt BX @R

K< M < gmao

Vector of interpolation coefficients

Discrete temperature vector

Global coordinates vectors

Basis function matrix

Discrete electric potential vector

System matrix

Broyden’s matrix

Data transfer vector

View factor matrix

Discrete black body emissive power

System of nonlinear equations

System of nonlinear equations of the mechanical field
System of nonlinear equations of the thermal field
System of equations of the electric field

Inverse of Broyden’s matrix

Jacobian matrix

Global tangential stiffness matrix of the mechanical field
Geometric part of K\

Constitutive part of Kty

Global tangential stiffness matrix of the thermal field
Global stiffness matrix of the electric field

Mass or system matrix

Nearest neighbors vector

Vector of polynomials

Matrix of polynomial vectors

Load vector of the mechanical field

Load vector of the thermal field

Load vector of the electric field

Discrete heat flux vector

Discrete (iteration) residual

Global displacement vector

Vector of a transformed sequence

Coordinate vector

Solution / sequence vector

Matrix of discrete solution vectors
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X1V

z
Z

Solution / sequence vector
Matrix of discrete solution vectors

Local finite element matrices / column matrices

e,
AL
AL
Pe

NEAS mE,

-

Element temperature vector

Heat conductivity matrix

Electric conductivity matrix
Element electric potential vector
Local coordinate vector

Matrix of shape function derivatives
Strain-displacement matrix
Element body force vector
Material matrix

Green-Lagrange strains in Voigt notation
Element deformation gradient
Element Jacobian matrix
Tangential element stiffness matrix
Thermal element stiffness matrix
Electric element stiffness matrix
Shape function matrix

Mechanical element load vector
Thermal element load vector
Electric element load vector
Mapping function

Stress tensor in Voigt notation
Element traction vector

Element displacement vector
Element coordinate vector

Functionals, operators and spaces

T30

System operator

Continuum body

Solution operator in fixed-point iteration
Solution operator in fixed-point iteration
Functional of the mechanical field
Functional of the thermal field
Functional of the electric field

Residual operator

Sequence of vectors

Transformed sequence of vectors

Test space

Frequently used sub- and superscripts

(Do

Reference / initial value
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XV

b
e

)
)
)
.)n
)
)
)
)

<

@

o —

*6

Black-body value

Finite element quantity (e-th element)
i-th iteration, i-th sequence

k-th coupling iteration

n-th time-step

Mechanical part of (-)

Thermal part of (-)

Electric part of (-)

Extra- or interpolated value

Abbreviations and acronyms

Acronym
BC

BR
CFD
Ccv
DAE
DAR
DSR
EXP
FAST
FEM
FSI
FVM
GJ
GMRES
GS

IMP
ION

LE
MLNA
\Y%15
MPI
ON
fvDOM
RTE
SIMPLE

SOR
SUR
P

VEM

Description

Boundary Conditions

Broyden Method

Computational Fluid Dynamics
Control-Volume
Differential-Algebraic Equation
Dynamic Aitken Relaxation
Dynamic Secant Relaxation

Explicit

Field Assisted Sintering Technology
Finite Element Method
Fluid-Structure Interaction

Finite Volume Method
Gauss-Jacobi

Generalized Minimal Residual Method
Gauss-Seidel

Implicit

Interface Quasi-Newton

Line Extrapolation

Multi-Level Newton Algorithm
Mechanical Predictor

Message Passing Interface
Quasi-Newton (Method)

finite volume Discrete Ordinate Method
Radiative Transfer Equation

Semi Implicit Method for Pressure Linked Equa-

tions

Successive Over Relaxation
Successive Under Relaxation
Thermal Predictor

View Factor Method
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XVI

With increasing computational capacity, simulations of multi-physically coupled
problems become of more interest in many industrial applications. The numerical
treatment of multi-field interactions calls for flexible and robust solution strate-
gies. A partitioned coupling strategy has the advantage of high flexibility and al-
lows for combinations of different software and specialized solvers for the phys-
ical fields involved. It divides the coupled system into iterations of subproblems
with repetitive data exchange.

As a multi-field example, the electro-thermo-mechanical process of the field as-
sisted sintering technology (FAST) is taken under consideration. FAST is an innova-
tive technique for the compaction of powder materials. It offers short production
cycles by simultaneously applying a uniaxial pressure and an electric current in
order to generate high heating rates and hot temperatures by means of Joule heat-
ing. During processing, the temperature development is an important feature to
obtain optimal process conditions. For high temperatures, the most prominent
mechanism to transfer thermal energy is thermal radiation, which is why a com-
prehensive simulation of FAST should comprise the effects of radiating surfaces.
This can be accomplished by treating the environment of the FAST machine tools
as an additional individual field, denoted as the radiation field. It is coupled to
the temperature and allows to model intricate interactions such as reflection or
irradiation with other surfaces. This finally leads to a numerically challenging
four-field problem that describes the FAST process. The electric, thermal and me-
chanical subproblems are solved using the finite element method (FEM) while
the finite volume method is applied for the radiation field. Different numerical
models are discussed to approximate the radiative transfer in vacuum and also
in participating media.

Regarding the partitioned coupling strategy, the flexibility attribute comes at
the expense of algorithmic stability. It is known that particularly strongly cou-
pled problems can be unstable even if an implicit time stepping method is cho-
sen for the subproblems. Here, external stabilization methods serve to increase
the chances of stability. Typically, methods like this are known from the field
of fluid-structure interaction (FSI), and they can be applied in connection with
black-box solvers. Further, they can be used to improve the convergence and to
reduce the computation time, as they accelerate the coupling iterations. In this
thesis, several stabilization procedures are discussed. Based on sequential solver
calls, a concept to design partitioned solution strategies for an arbitrary number
of physical fields is proposed and applied to several numerical examples.
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Introduction

The ambition of realistically simulating complex physical and engineering prob-
lems often requires a solution of coupled multi-field systems. Nowadays, com-
mercial solvers can be used to carry out coupled simulations for a large number
of different problems. However, these solvers are often limited to applications
of minor complexity: the physical fields either have to be solved on a common
domain, or they need to be discretized by the same procedure, or they are re-
stricted to weak coupling between the fields. In order to consider more compli-
cated multi-physics approaches, additional effort has to be spent on the numerical
solution procedure. It is mandatory to determine a suitable coupling algorithm
for the problem under consideration. In this thesis, robust partitioned solution
strategies are proposed that ensure high flexibility and that allow stable and effi-
cient simulations. Their applicability is demonstrated on the example of the field
assisted sintering technology (FAST), simulations of which are numerically chal-
lenging since it involves an interaction of electric, thermal and mechanical fields.

1.1 Motivation and state of the art

To begin with, the electro-thermo-mechanical process of the field assisted sin-
tering technology is briefly reviewed. Emphasis is placed on the multi-physical
modeling and on the thermal energy transfer during processing. Further aspects
are the motivation to employ partitioned coupling strategies as well as a sum-
mary of the current state-of-the-art.

1.1.1 Multi-physical simulation of FAST

The field assisted sintering technology® [125] is an innovative process to man-
ufacture sintering materials by means of high pressure and high temperatures.
During processing, a powder material is consolidated by simultaneously apply-
ing a uniaxial pressure and an electric current to induce Joule heating. This leads

'In literature, the FAST process is also known as spark plasma sintering or pulsed electric
current sintering, see [163| for instance.
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2 1. Introduction

to high heating rates and, thus, to short production cycles. The main tool-system
of a FAST-machine is depicted in Figures 1.1(a) and 1.1(b). It typically consists of
a die, a punch, a cone, and electrodes. All these tools are made of graphite, which
is why the entire setup is referred to as graphite tool-system. The reason for choos-
ing graphite can be seen in the good electric conductivity. Further, it is resistant
to very high temperatures [146].

The pressing force acts on the top of the system where the electric current is
applied as well. The powder material is placed inside the die and between the
punches, as illustrated in Figure 1.1(a). The whole graphite tool-system is em-
bedded in a vacuum chamber.

l Force

Cone
Electrode =
Powder Die Pulsed
Chamber _\Punch
(a) Schematic sketch of the graphite tools. (b) Graphite tools inside the vacuum

chamber, from [146].

Figure 1.1: The FAST process: graphite tool-system and vacuum chamber.

In a multi-physical context, the FAST process is governed by an electric, a ther-
mal and a mechanical field which are depending on each other. Thus, a coupled
electro-thermo-mechanical problem needs to be solved to obtain a realistic pre-
diction of the process. For this reason, the coupling effects between the involved
fields shall be outlined briefly. Since Joule heating is used to achieve high heat-
ing rates, the electric field is connected to the thermal field. The thermal field
is coupled to the stress field as temperature changes lead to thermal strains that
cause thermal stresses. Due to the temperature dependency of several material
parameters, concerning both graphite and the powder material, the thermal field
is coupled to the electric and the mechanical field. Moreover, the thermal and the
electric conductivity depend on the powder density and are therefore coupled
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to the mechanical field.In case of large deformations, the geometric changes also
influence the thermal and the electric field.

As reported in [176], the temperature evaluation inside the tool-system is im-
portant for attempts to optimize the process. To this end, all possible modes to
transfer thermal energy are taken into consideration. Forced convection is used
to cool the machine tools [163, 76], as the vacuum chamber and the electrodes
typically feature a water-cooling system. Natural convection inside the cham-
ber can be neglected due to nearly vacuum conditions [176]. Additionally, ther-
mal radiation is of particular interest as the FAST process involves high tempera-
tures at the tool surfaces. As thermal radiation is — simply spoken — proportional
to the temperature to the power of four, it can be considered as the dominat-
ing mode of transferring thermal energy at high temperatures. In many articles,
see [176, 163, 129, 76] for instance, thermal radiation is approximated as a bound-
ary condition in the thermal field by using

¢ =cox(0!—01) (1.1)

to prescribe the radiative heat flux across the radiating surfaces. In this relation,
denotes the emissivity, oy, the Stefan-Boltzmann constant, ©, the surface temper-
ature of the punch/die system, and O, is the ambient temperature. A slightly
more complex approximation is proposed by SONG ET AL. [155] who relate the
radiative heat loss to the chamber wall temperatures and the exposed surfaces of
the tool-system. However, a comprehensive investigation how the temperature
evolution is affected by the strongly radiating tool surfaces is — to the author’s
knowledge — not documented in literature.

1.1.2  Solution of coupled problems

In order to simulate the FAST process, a multi-physically coupled problem needs
to be solved. Coupled electric-thermal computations to gain knowledge of the
temperature evolution during processing were carried out in [176, 163], for in-
stance. In the literature, there are also approaches that take the whole electro-
thermo-mechanically coupled multi-field problem into consideration, see [114,
155, 129] for instance. In HARTMAN ET AL. [76], the temperature and stress dis-
tribution in the graphite tools and for fully compacted powder is computed and
compared to experiments.

Aspects regarding the numerical solution procedure of the electro-thermo-mech-
anical system have been investigated by ROTHE ET AL. [149]. A temperature-
dependent constitutive powder material model was proposed by ROTHE [146].
Therein, fully coupled electro-thermo-mechanical simulations using the commer-
cial finite element solver Abaqus were carried out and also compared to experi-
ments. Further reading can also be found in the literature listed in the references.

In the following, numerical procedures and coupling algorithms for the so-
lution of multi-field problems are brought into focus. Generally, two different
strategies are distinguished: a monolithic scheme that solves the entire problem
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simultaneously or a partitioned scheme that divides the physical fields into an it-
eration of subproblems. In the scope of the latter, the subfields can be treated as
separated — thus allowing the use of specialized solvers. During the computation
of one field, the variables of the other fields are kept constant. In order to balance
the fields, several coupling iterations are required with repetitive data exchange.
Under the assumption that balance is achieved within one iteration, with a suf-
ficient accuracy, the problem is said to be weakly coupled, leading to so-called
staggered schemes. In the literature, it is often not clearly defined if the term stag-
gered involves iterating between the fields or not. This is why a clear definition
is introduced here: A scheme that requires more than one iteration is denoted as
implicit or as multiple staggered, whereas the other case is referred to as an explicit
or single staggered scheme.

For the more obvious monolithic approach, balance between the fields in a con-
vergent computation is simultaneously achieved in one time-step. For an uncon-
ditional stable time-stepping method, this property can also be achieved by the
monolithic scheme, whereas the partitioned approach cannot guarantee stabil-
ity even if the solution of the subfields is stable. Further, the iterative character
can lead to poor convergence rates and, moreover, data need to be transferred
in every iteration. On the other hand, the partitioned approach has the great
advantage of being very flexible as it allows in many cases to combine differ-
ent software, black box solvers and also discretization schemes. In this thesis,
a partitioned strategy is followed for flexibility reasons. Such strategies have a
long tradition in the numerical treatment of coupled problems, as the works of
PARK & FELIPPA [132] and FELIPPA & GEERS [59] from the 1980s demonstrate.
The interaction between structure and thermal fields [58] and between fluid and
structure [60] were taken into consideration right from the beginning. Based on
these two examples, a simple classification can be made: the former is a typical
example for volume-coupled problems, whereas the latter is typical for surface-
coupled systems.

With respect to partitioned coupling approaches, important contributions to the
field of volumetrically coupled thermomechanics were made by SIMO & MIEHE
[153] who introduced the so-called isothermal split, where the heat conduction
problem is solved following the mechanical field. This split is only conditionally
stable — which is why ARMERO & SIMO [3] proposed the so-called adiabatic split
for problems of nonlinear thermoelasticity. In this split, the mechanical phase at
isothermal conditions is replaced by a mechanical phase at adiabatic conditions.
An extension to nonlinear coupled thermoplasticity can be found in [4].

Regarding surface-coupled fluid-structure interaction (FSI), a lot of research has
been conducted to retain algorithmic stability by means of special algorithms.
Such algorithms serve to increase the stability itself, and they also improve the
convergence properties of the partitioned approach. A prominent example is the
so-called Aitken method in a formulation given by KUTTLER & WALL [106] to
solve strongly coupled FSI problems. Another promising method applied to
FSI was proposed by DEGROOTE ET AL. [36] who developed an interface quasi-
Newton method. Extensions to this method were made in [37, 38, 39]. In ERBTS &
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DUSTER [50], it was shown, for nonlinear thermoelasticity, that both algorithms
can be used to achieve nearly unconditional stability when applying the isother-
mal split. There are several other numerical procedures to stabilize partitioned
solution approaches for FSI problems: For example, in [49] the Broyden method is
applied, whereas [107] utilizes so-called extrapolation methods . Further, Jacobian-
free Newton-Krylow methods are investigated in [116]. Special interface GMRES
solvers using subiteration were applied in [117, 118]. A performance study, in-
cluding a comparison of different methods with regard to FSI-application, can be
found in [119, 37].

1.2 Purpose and scope of the thesis

The purpose of the thesis is to propose a robust and efficient solution strategy for
multi-physically coupled problems based on a partitioned coupling approach.
In particular, this includes a framework for the class of coupled problems that
involve more than two physical fields and that include volume and also surface
coupling. The applicability of the coupling strategy is demonstrated in several
numerical investigations. Besides academic examples, the simulation of the FAST
process serves as an industrial application.

A further aspect to be addressed is the temperature evolution of the FAST pro-
cess. Apart from conduction and convection, emphasis is devoted to the energy
transfer by means of thermal radiation. In order to capture effects such as self-
irradiation due to the geometry of the FAST tools or reflection by the chamber
walls, radiation is considered as an individual physical field. This consequently
means that the FAST process in this thesis involves four fields: the mechanical,
thermal, electric and the radiation field, as shown in Figure 1.2.

Thanks to its flexibility, the proposed coupling strategy can be extended to sim-
ulate the complex four-field problem. To this end, special solvers for the solu-
tion of the thermal radiation field are integrated into the coupling procedure.
With regard to the mathematical formulation, a Dirichlet-Neumann coupling de-
composition between the thermal and the radiation field is proposed. This is
done for the case of vacuum and also for the more general case of a participating
medium. Further, a Dirichlet coupling between the radiation and the mechani-
cal field is provided. Since the thermal and the mechanical field are connected
to the radiation field by a common boundary, this coupling falls into the class
of surface-coupled problems. Finally, simulations of the FAST process based on
the Dirichlet-Neumann coupling formulation of the radiation field are compared
to those of minor complexity, i.e. when applying Eq. (1.1). It is shown that the
Dirichlet-Neumann coupling formulation can be used to approach experimental
data with higher accuracy.

Another objective of this thesis is to improve the performance and the stability
of partitioned coupling strategies. In order to improve the convergence and to re-
tain algorithmic stability, a wide range of external stabilization and acceleration
methods is investigated and studied with numerical examples. Some improve-
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Mechanical Field
v N
Radiation Field 4\ I J Electric Field

x‘r J
Thermal Field

Figure 1.2: Coupled multi-field problem of the FAST process.

ments to these methods are proposed, and their importance is demonstrated for
both volume- and surface-coupled problems. In the context of coupled three- or
four-field problems, the question arises what might be the "best" sequence for
the fields to be called in. Moreover, the point of application of the convergence
acceleration methods during the coupling sequence is of principle interest. Be-
sides these two points, there are further characteristics that might be of interest to
devise a well-suited and problem-oriented partitioned coupling procedure. An-
other purpose of this thesis is to try and find answers to these questions.

1.3 Outline of the thesis

The thesis is organized in six main chapters. This first chapter focuses on the
motivation to rely on partitioned coupling strategies to simulate the FAST pro-
cess and serves to outline the state-of-the-art of numerical solution procedures
for multi-physically coupled problems.

Chapter 2 serves to introduce the theoretical background and to briefly sum-
marize the governing equations to describe the mechanical, thermal, electric and
radiation fields. This is done in a strictly decoupled fashion to underline of the
specific use of a partitioned coupling strategy. Particular attention is placed on
the thermal radiation field, as the corresponding equations differ from the con-
ventional continuum approach used to formulate the mechanical or the thermal
field. For the coupling of the radiation field with the mechanical and the thermal
field, a Dirichlet-Neumann coupling formulation is proposed at the end of this
chapter.

In Chapter 3, numerical methods to approximate the solution of the subfields
are described. Aspects concerning the spatial and temporal discretization are
discussed and different models to tackle thermal radiation are provided. Further
objectives in this chapter are the introduction of the finite element method (FEM)
for the mechanical, thermal and electric fields with regard to spatial discretiza-
tion as well as a summary of the finite volume method (FVM) regarding the aspect
of radiation in a participating medium.
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Chapter 4 can be considered as the core of the thesis. In this chapter, par-
titioned solution strategies for an arbitrary number of coupled fields are pro-
posed. Different ways to solve multi-physics problems are recapitulated and
methods to improve the convergence properties are discussed. Since partitioned
coupling strategies allow to combine different solvers, software and discretiza-
tion schemes, methods to assure a consistent field transfer are required. Further,
this chapter includes recommendations to set up an appropriate partitioned so-
lution strategy.

Numerical examples for coupled four-field problems are given in Chapter 5.
Apart from serving as an academic example for electro-thermo-mechanical ra-
diative coupling, the proposed partitioned solution strategy is used to simulate
the FAST process. In this simulation, the temperature development during pro-
cessing of the tools and the chamber is computed and the results are compared to
experiments.

Finally, Chapter 6 summarizes the achievements of the thesis and offers an out-
look regarding future tasks, open questions and further research possibilities.
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Governing equations

Descriptions of multi-physically coupled engineering problems require a math-
ematical formulation of the process and a substantiated background in the me-
chanics of solids and fluids. To this end, a deep understanding in the field of
continuum mechanics is mandatory. The continuum theory of the mechanics
of solids and fluids is well documented in many textbooks and lecture notes;
see [77, 84,172,161, 5, 8, 13, 26] as a few selected examples. For this reason, only
a brief introduction into the theory will be given in this chapter. In addition to the
formulation of the mechanical field, which describes the behavior of solid bodies
under loads, special attention is placed on the formulation of the thermal and the
electric fields. If all dependencies between the three fields are taken into account,
this leads to a fully coupled electro-thermo-mechanical problem that substanti-
ates the underlying mathematical description of the FAST process.

As previously mentioned, thermal radiation can be the dominating mode of
heat transfer in many industrial applications. Unfortunately, the existence of
thermal radiation may increase the complexity of a simulation significantly, es-
pecially if the interaction between the thermal field and its environment is to be
studied in detail. This is due to the fact that the radiative transfer equation (RTE)
needs to be solved, which is coupled with the energy equation of the surrounding
fluid. This equation cannot be solved with the same procedures as used for the
mechanical, the thermal and the electric field. As a consequence, thermal radia-
tion is finally considered as a new additional field. Its theoretical formulation is
discussed in this chapter as well.

2.1 Basic continuum mechanics

In the classical theory of continuum mechanics, the body under investigation is
idealized as continuously distributed and homogeneous. In other words, smaller
scales of the material are ignored, and the existence of grains in solid materials or
particles in fluids are neglected. This idealization allows for an adequate descrip-
tion of the body which is subjected to loads and deformations. To begin with, this
section addresses the basic kinematics that describe the motion of a solid, contin-
uous body, followed by the stresses and balance equations. Finally, constitutive
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relations to formulate the behavior of materials are given.

2.1.1 Kinematics

2.1.1.1 Configuration, motion and deformation

Descriptions of kinematic relations can be seen as one of the core aspect of con-
tinuum mechanics. Starting point is the mathematical formulation of the motion
and deformation of a continuum body in the three-dimensional Euclidean space.
To this end, a fixed Cartesian coordinate system is introduced in which all points
P of a body By C R® can be identified by a unique vector X=X 7 él € By,
where the X; are the reference coordinates and the G 1 are the unit base vectors
referring to a Cartesian coordinate system. This configuration is called reference
or initial configuration, denoted by €y and defined at time ¢ = ¢,. If the body starts
to move or to deform, see also Figure 2.1, a new configuration €2, is introduced at
time ¢, > t,. This configuration is called current configuration. As shown in Fig-
ure 2.1, the point P is mapped by a nonlinear invertible mapping function y(X, t)
to the point P, at # = X(X,t) in the current configuration. The unique vector
f()? ,t) = x; ; € B, of the deformed body B; C R? is now given as a function of
the reference coordinates X and the time ¢.

By

Figure 2.1: Basic kinematic relations: coordinates, configurations and displacement vec-
tor.
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Thanks to the two configurations, there are two possible ways to formulate
the further equations. In this thesis, the method of choice is the material or La-
grangian formulation, which refers to the reference configuration. The other ap-
proach formulates all equations in the current configuration and is known as spa-
tial or Eulerian description [84]. In the scope of solid and structural mechanics,
the Lagrangian description has some advantages — which is why this approach is
used in the following.

The displacement vector @(X, t) follows directly from Figure 2.1 and is the dif-
ference between the position vector of the spatial point P, and its material coun-
terpart P

@(X 1) =7 X, t)— X = (X, 1) - X. (2.1)

Apart from the displacements, it is the change in deformation that is of interest
here. It can be computed by means of the so-called deformation gradient tensor F,
which reads

or =
F=— =Grad ¥(X,t ®G 2.2
F=—% XX 1) = 7 (22)

0x;
X, X Gi
Therein, the vectors g; and G s are the Cartesian basis vectors referring to the
current or the reference configuration. Moreover, the deformation gradient has
a large significance since it can be used to map material line dX , surface dA! or
volume elements dV" of the reference configuration to the current configuration:

dzZ = FdX, (2.3)
dd = (det F)F~TdA, (2.4)
dv = (det F) dV/ (2.5)

Henceforth, the determinant of the deformation gradient is abbreviated with J =
detF > 0, which has to be larger than zero for any admissible deformation. The
gradient of the displacement vector H is related to the deformation gradient by
means of

H=CGrad@(X,t)=F —1. (2.6)

Following [84, 77], the deformation gradient can be multiplicatively split into two
parts
F=RU= VR, (2.7)
where R is the rotation tensor, U the right stretch tensor related to the undeformed
reference configuration, and V is the left stretch tensor defined in the current con-
figuration. Generally, the rotation tensor describes rigid body rotations. Both
stretch tensors are symmetric and contain the stretches that are responsible for

IThe mapping of infinitesimal surface elements from the reference to the current configuration
is also known as Nanson’s formula.
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the deformation of the body, which will lead to stress and strain. This splitting
procedure of the deformation gradient is known as polar decomposition. The rela-
tion between both tensors can be determined by using the rotation tensor

U=R'VR, V=RUR". (2.8)

The rotation tensor R has the special property of being orthogonal, which means
that R” = R™! holds [84].

2.1.1.2  Strain tensors

In order to describe a stress state of a deformable body, it is necessary to intro-
duce strain measures that are independent of rations and rigid body motions.
Therefore, rigid body rotations can be excluded by means of

(2.9)

~

F'F = (RU)" (RU) = U° = C

where C is denoted as the right Cauchy-Green tensor. The next tensor to be intro-
duced is

1
B=5(C-D) =5 H+H +HH), (2.10)
which is known as the Green-Lagrange strain tensor? referring to the reference con-
figuration. As shown in the equation above, see Eq. (2.10), the tensor E can also
be expressed in terms of the displacement gradient H. In the small strain case,
the quadratic terms are neglected — which leads to the linear or infinitesimal strain
tensor

c= g (H+H) (2.11)

Further, a strain measure acting in the current configuration is known as the
Euler-Almansi strain tensor which reads [84]
1

5I=b7"). (2.12)

9 =

In this equation, the tensor b = V> = FF” is denoted as the left Cauchy-Green

tensor. In analogy to C, rigid body motions have also been excluded by this tensor.

For many material models, it is beneficial to decompose the deformation into

a volume-changing and a volume-preserving (isochoric) part. To this end, the
deformation gradient is multiplicatively split into

F=FF, (2.13)

2E can also be derived by considering the change in the squared lengths of the line elements dx
in the reference and d7 in the current configuration, see HOLZAPFEL [84], p. 79. With dZ =F ax
follows

di? —dL?=d7-df - dX -dX =2dX-EdX — 2E=FF-1=C-1.
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where F is related to the volumetric deformation and F to the isochoric part of
the deformation. Thus, the determinant can also be split into J = J.J such that
J = 1 holds. This multiplicative split, which was introduced by FLORY [63],
finally leads to

F=JY1 and F=J'°F. (2.14)
Based on this split, the right Cauchy-Green tensor can be split into
C=J%1 and C=J?3C. (2.15)

Accordingly, it is also possible to split the left Cauchy-Green tensor in the current
configuration as

b=J1 and b=J2"Db. (2.16)

2.1.1.3 Time dependency of motion and deformation

In order to describe the motion of points of a continuum body in time, the time
rates of many field variables are of particular interest. To begin with, the time
derivative of the displacement vector # = y(X,t) is taken into consideration,
which leads to the velocity vector

- AZ dE > -
7(X,t) = A?L‘Oﬁ - % - %;z(x, t) = (X, t). (2.17)
Here, the vector ¢ ()? ,t) is a spatial vector in the current configuration, yet formu-
lated in terms of reference coordinates X. It is identical with the velocity vector
expressed in spatial coordinates ¥(Z, t).

To compute the time derivative of an arbitrary vector-valued physical quan-
tity @, the so-called material time derivative is introduced. In Lagrangian descrip-
tion, this derivative is straightforward. It reads

D _ - 0 L2\ ooz
aa(X,t)—ﬁa(X,t)—a(X,t). (2.18)
In spatial coordinates, the material derivative can be calculated with the aid of
the chain rule, leading to

D% a7 1) = % R0, 1) %‘; w + % — grad (7, 1) 4+ % L (2.19)
Here, the material derivative consists of two parts, where the first part is known
as the convective derivative and the second part as the local derivative. As a physical
interpretation, the local part describes the change in time for an observer with
a fixed position, whereas the convective part incorporates the change in time if
the observer’s position is not fixed. The absence of the convective part in the
Lagrangian description might have some advantages and can simplify the nu-
merical solution process. More specifically, this part does not fulfil the material
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objectivity requirement, which is why it is not suitable for further numerical treat-
ment with finite elements [84].
To find the rate of deformation, the time derivative of the deformation gradient
is considered
Gk G}

F:iﬁ,:G‘dﬂﬂft = =
F=2% rad U(Z, t) 3

L

or
oX

<

= grado(z,t) F, (2.20)

8]

in which ] = grad ¢’ is known as the spatial velocity gradient tensor. This measure
can be decomposed in a symmetric and an anti-symmetric part

_ ==\ T 47} T 1 T —
1=grad (@, ) =FE ' = 2 (1+1") + 5 (1-1") =d +w, (2.21)

where d is the deformation rate tensor and w the so-called spin-tensor. Moreover,
the rate of strain measures is of interest. With the rate of the right Cauchy-Green
tensor C' = FTF + E”F, the rate of the Green-Lagrange strain tensor reads [13]

B= (FTF+ETF) = JET (U + ) E =FTdF, (222)
leading to an expression for the deformation rate tensor:

d=FTEF (2.23)
Another useful quantity is the material derivative of the determinant of the de-

formation gradient. According to [13], this can be expressed as

J:Jtrg:divﬁ:Jtr(g’lE):JQ’1~E:gQ’1~Q. (2.24)
Further, this relation can be used to obtain the rate of volume change by means
of

do = divede = JdV . (2.25)

2.1.1.4 Mass density and equation of continuity

The conventional theory of continuum mechanics postulates that the mass of a
body B is constant over time. In order to make a statement about the mass of a
body, the mass density p(Z,t) is introduced to the current configuration, relating
a current infinitesimal volume element dv to its infinitesimal mass element dm by

Am  dm
T, t) = li = —. 2.2
p(E,t) A’}III:U Av dv (2.26)
Since the mass is assumed to be constant, leading to
m= / p(Z,t) dv = / po(X)dV, (2.27)

v 14
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the mass density in the reference configuration can be related to current configu-
ration by using dv = det F dV to

Am(Z,t) = p(Z,t) dv = po(X)dV  —  po(X) = det F p(Z,1) . (2.28)

Mass conservation implies that i = 0 holds. Thus, the local form of the equation
of continuity in spatial description can be derived using Eq. (2.25) to

D
ﬁm(f,t):p'dv-l—pdi]:pdv-&-pdivﬁdv:() —  p+pdivi=0. (2.29)

In material description, one can conclude that the density po(X) > 0 is indepen-
dent of time and thus gy = 0.

2.1.2  Force, stress and balance equations

Following the description of the kinematic relations, the concept of stress and the
conservation laws of continuum mechanics are introduced.

2.1.2.1 Forces and stress tensor

Applying forces to a body B leads to stress — which can be seen as the intensity
of a force. Stress relates the applied force to a surface element and is responsible
for the deformation of the body. To begin with, the two most common forces —
the body force and the surface force — are introduced. The body forces (gravity
forces, for instance) act on the volume of the body, while surface stress results
from applied forces acting on a certain surface element of the boundary. Well-
known candidates are external loads, contact, friction or reaction forces.

Figure 2.2: Surface and volume loads acting on a body in the current configuration.

To describe a stress state, it is possible to employ the force vector f acting in the
current configuration on an arbitrary surface element a of the bodies” boundary,
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as depicted in Figure 2.2. In the infinitesimal case, there follows

. Af df
t= lim —=— 2.30
retoAa  da’ (2:30)
where # is known as surface traction vector or simply stress vector. This relation is
also valid if internal forces are considered, where it is used to describe the internal
stress state inside the body on an arbitrary surface. Cauchy’s theorem postulates
that

t=of (2.31)

holds in the spatial description — with ¢ being the symmetric® Cauchy stress tensor*
and 7 being the unit normal vector to the spatial surface element da = da - 7. The
traction vector depends upon the orientation of the surface element = #(i7) and
has to fulfil Newton’s third law of action and reaction t(7i) = —#(—), as illustrated in
Figure 2.3.

B,

Figure 2.3: Stress state of a body in the current configuration.

If the material surface element of the reference configuration dA = NdA is re-
lated to a force acting in the current configuration df by using Eq. (2.4), the so-
called first Piola-Kirchhoff stress tensor P is obtained:

df = JoF TdA=PdA. (2.32)

The stress tensor P has several special characteristics [13]: Generally, it is not
symmetric P # P7, i.e. it has nine independent components. Moreover, it is
a so called two-point tensor because it relates the current force in the deformed
configuration to the undeformed surface element of the reference configuration.

3In Section 2.1.2.2 , it is shown that ¢ = g7 holds.
4Cauchy stresses are also known as true stresses as they deliver the current stress state.
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In order to find a stress tensor that is completely related to the reference config-
uration, the infinitesimal force vector d f is transformed into material coordinates
by dF = F~'df. Relating this vector to the reference surface element dA leads to
the second Piola-Kirchhoff stress tensor 3

dF = JE g F TdA=F'PdA =SdA. (2.33)

The second Piola-Kirchhoff stress tensor is a symmetric stress tensor in material
coordinates of the reference configuration. Due to the fact that it correlates ma-
terial forces to material surface elements, there is no specific physical interpreta-
tion. Nevertheless, this stress tensor is used to describe the nonlinear mechanical
field, since a Lagrangian formulation of the coupled problem will be used in the
subsequent sections.

2.1.2.2  Equations of motion

In the following, two fundamental equations are introduced to constitute the ba-
sic laws of motion in continuum mechanics. The first law postulates the balance
momentum of the body B;. To begin with, all equations are formulated in spatial
description. The first law is also known as the conservation of linear momentum in
the global form, relating the sum of all forces f;’)’t (t) — surface and volume forces
— acting on B, to the temporal change in translational momentum I, (t). The mo-
mentum is defined by the product of the mass density and the velocity, see [84]
for instance, and one can deduce for equilibrium that

D - D L
i) = [ ovdo= [pido=futo). (2.34)
(o Q
holds, with the sum of all forces:
fr,(t) = /fdaJr/pl;dv:/divgvar/pgdv (2.35)
e o7 o o7

From this equation, the local form of linear momentum (known as Cauchy’s first
law of motion) can easily be derived to

pv=divg+pb, (2.36)

where b represents the body force vector per unit mass. It is also possible to find
a material description in which the translational momentum is formulated with
respect to the reference configuration. In that case, the local form of balance of
linear momentum reads [84]

po¥ = DivP + pob = DivFS + po b, (2.37)

which can either be written in terms of the first or the second Piola-Kirchhoff
stress tensor. In the stationary case — for quasi-static processes where mass and
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inertia effects can be neglected — the assumption that for the acceleration 7 ~
holds, leads to the quasi-static balance of linear momentum

0=DivP +pob=DivES + pyb. (2.38)

The second law of motion considers the rotational equilibrium and takes the
temporal change of the angular momentum into account. This leads to the con-
servation of moment of momentum. It postulates that the temporal change in the
angular momentum his(t) with respect to a given position 7y is equivalent to the
moments 773, (t) acting on the body B,

D - D

5 ()= [ 7 (p) dv =i (1) (2.30)

Q

Therein, ¥ = & ()? ,t) — @y can be viewed as the position vector of the force. Further,
the moment is furnished by

g, (t) = / 7x fda + / 7x (pb)dv. (2.40)
o0 Q

In the literature, this law is often referred to as Cauchy’s second equation of motion.
It can be shown, see [84] for instance, that the local form of the balance of angular
momentum leads to the requirement of a symmetric stress tensor ¢ = g7 or S =
s”.

2.1.2.3  Balance of energy and laws of thermodynamics

In order to model multi-physical problems that involve changes in the temper-
ature, a thermodynamically consistent framework is required. To this end, the
balance of energy and the entropy inequality of the thermodynamic continuum
body shall be outlined briefly. To begin with, the first law of thermodynamics is
introduced. This law postulates the conservation of energy and that energy can
be transformed from one type to another. In other words, the balance of energy
applied to a body B; states that the temporal change of the total energy equals the
external mechanical work plus the thermal work. According to [77], this can be
expressed by

D D
D Kz, (t) + D Ep, (1) = Wt (1) + Q(2) , (2.41)

where the first term accounts for the kinetic energy K, (¢), which reads

Kalt) = [ o7 and k()= [ 7T, (2.42)

Q Q¢
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Together with the second term on the left-hand side of Eq. (2.41), the rate of the
internal energy £ — the sum of thermal and elastic strain-energy — given by

D .
ESB’(t) = /ped@, (2.43)

Q

represents the total energy of a continuum body [84]. The quantity ¢ is the rate of
internal energy for a unit control-volume. Further, according to [77] for instance,
the external mechanical work can be written as

Wess(t) = /ﬁ'-fdaJr/pﬁ'-ljdvz/pﬁ'-z'7+g-gdv. (2.44)
o0 o o

The second part on the right-hand side of the energy balance (2.41) is related to
the thermal work and reads

Q(t):/—(j’-ﬁdS—i—/prdv:/(pr—divq’) dv. (2.45)

o0 Q4 Q

Using these definitions, the local form of the balance of energy in spatial descrip-
tion (which holds for any arbitrary volume) element can be expressed as

pe=g-d—divqi+pr. (2.46)

Therein, ¢'is the Cauchy heat flux vector and the scalar » denotes an external heat
source. In material description, the first law of thermodynamics reads

poé =P F—DivQ+pr=8-E-Div@+pr. (247)

Next, the second law of thermodynamics is introduced. This law allows to make
statements about the direction of energy transfer. It is related to the entropy in-
equality concept which will also be outlined briefly. To begin with, another funda-
mental physical quantity conjugated to the temperature is introduced. In order
to describe the thermodynamic state of the continuum body B;, the entropy

(1) = / pE(F 1) dv (2.48)

Q

is introduced, where ¢ is referred to as the specific entropy per unit mass. The
second law of thermodynamics postulates that the rate of the entropy is greater
or equal to the rate of externally induced entropy. In mathematical formulation,
this postulate reads, see e.g. [8],

. D 1
Z(t)zﬁ/ﬁpdvz/%pdvf/jtfﬁda (2.49)
Q Q 2o
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which can be rearranged by means of the divergence theorem to

/ (pé - pé + div%) dv > 0. (2.50)

Q
Since this must also hold in local form for an arbitrary volume element, one can
deduce that

pé—pé+(1iv% >0. (2.51)

For all reversible processes, Eq. (2.51) is zero. The other case is an irreversible
process — for which the inequality (2.51) is greater zero. This equation can be
recast using the energy equation given by Eq. (2.46), which eventually leads to

. 1
g~gfp<éf®§>76q’-grad(—)20. (2.52)

Introducing the thermodynamic function
U=c—0f with ¥ =¢—0¢f—06¢ (2.53)

which is known as the Helmholtz free-energy, and following [77], the so-called
Clausius-Duhem inequality can finally be obtained

o 1
g~g17p<\ll+®§>76(7-grad®20. (2.54)

ding de

What can be concluded from this fundamental inequality is that the dissipation
d = diny + do > 0 is non-negative. This must hold for the internal dissipation
dins > 0 as well as for the thermal dissipation dg > 0 [84]. From the latter part,
a fundamental physical observation can be derived: Since —1/© ¢ - grad©® > 0
must hold, there is a heat flow from the warmer to the colder region because
the absolute temperature given in Kelvin cannot be negative © > 0. This conse-
quently means that heat flows against the temperature gradient, which leads to
an important restriction of the heat flux vector. For a detailed introduction into
the concepts of continuum thermodynamics, the interested reader is referred to
the textbooks of [77, 169, 159]. Indeed, the Clausius-Duhem inequality can also
be formulated in material description resulting in

S-NE*p()(\ilJr(;)f)féQ-Grad@ZO. (2.55)

2.1.3 Constitutive relations and material models

Subsequent to the description of the kinematic relations and the balance equa-
tions, there is still a lack of information to determine the deformation or temper-
ature of the body B. This is due to the fact that the mathematical problem is in-
determinate, meaning that the number of unknowns is higher than the available
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number of equations. Obviously, information regarding the material behavior is
missing. To close this gap, constitutive relations need to be formulated to account
for the dependencies between the stress tensor and the deformation or between
the temperature and the heat flux, for instance. These relations characterize the
material and form the remaining equations in such a way that the mathematical
problem becomes determinate.

2.1.3.1 Mechanical behavior of materials

To begin with, the mechanical behavior of materials under isothermal conditions
is described. To this end, the so-called strain-energy density function W defined as

W = po¥(E) (2.56)

is introduced, where ¥ denotes the Helmholtz free-energy function. The explana-
tions in this section are limited to hyper-elastic materials. Inserting W = po¥(E)
in the Clausius-Duhem inequality, see Eq. (2.55), the relation

ow __ow
9E ~ " 0C

S= (2.57)

is achieved for the second Piola-Kirchhoff stress tensor, see also [84, 77] for in-
stance, and further
08 0w

C=2—==14

C=25¢=15050 (2.58)

which leads to the fourth-order material tensor C. The strain-energy function W
stores the information about how stress in a material is related to the deforma-
tion. There are several different expressions for W, of which only two selected
examples will be considered here. The very simplest elastic material model is the
Saint Venant-Kirchhoff model, represented by the following function

W(E) =2 (E)’ +pE-

=

E. (2.59)
Therein, A and 1 are material constants known as Lamé parameters. Applying
Eq. (2.57) and (2.58) to this function delivers the stress and elasticity tensor

S=ArEI+2uE, (2.60)
C=M®l+2uT. (2.61)

In the latter equation, the tensor Z is referred to as the first fourth-order fundamental
tensor®.

The Saint Venant-Kirchhoff material model is often used to describe the me-
chanical behavior of metals. However, it has some drawbacks. In particular,

5The first fourth-order fundamental tensor is also known as the fourth-order identity tensor
since ZE = E.
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large compressive deformations can lead to material instabilities and physically
wrong stress states. Several material models to avoid these effects can be found
in the literature. For a (weak) compressible hyper-elastic material, it is often as-
sumed that the strain-energy function W is additively split in an isochoric @ and
a volumetric part U(J):

W(C,J) = w(C) + U(J) (2.62)

For the isochoric part, a classical polynomial expression can be chosen [72]

n

w(C) =) ciilg —3)' (g = 3)7. (2.63)

=0
Therein, I~ and Il are the first and second invariant with respect to the isochoric

part of the right Cauchy-Green tensor, as introduced in Eq. (2.15). The parameter
¢;; denotes material constants, and choosing ¢ = 1 and j = 0° leads to a compress-
ible Neo-Hookean” type material

W(C,J) =cio (tr C=3) +U(J). (2.64)

For more details and for a comprehensive introduction into modeling the me-
chanical behavior of materials, the textbooks of [77, 172, 5] are recommended. A
detailed survey focusing on different types of strain-energy functions for hyper-
elastic materials can be found in [72], for instance.

2.1.3.2 Thermodynamic behavior of materials

With regard to the mechanical behavior of materials, a constitutive relation for the
heat flux and the entropy is needed. The heat flux outward through the surface
da of a control-volume is given as ¢ = ¢ 77, with ¢'being the heat flux vector. In
order to relate the heat flux to the temperature, Fourier’s law of heat conduction is
introduced

7= —Aggrad O(Z,t) . (2.65)

This guarantees a heat flux in the direction from the warmer to the colder re-
gion. The tensor ) is the heat conductivity tensor that takes the form Ay = Ao
for isotropic heat conduction. The material parameter Ag is denoted as the heat
conduction coefficient. The expression for the heat flux can be transformed into
the reference configuration by using grad © = F~7 Grad © and Nanson’s formula
iida=JFT. N dA such that

/(j’-ﬁda:/ —J (E’lggf’TGradG)-ﬁdA:/fjw\eGrad@-]\?dA‘ (2.66)
A

a

SWith i = 1 and j = 0, one obtains c;o — which can be related to the shear modulus by p = 2c10.
“The classical Neo-Hooke material holds for incompressible materials with W(C)
co (tr C —3), see [72] p. 70.
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Thus, the heat flux vector in material description reads

@ = —A, Grad ©(7,t) (2.67)

where A is the material conductivity tensor related to the reference configura-
tion.

Another physical quantity for which a constitutive relation is required is the en-
tropy. It is assumed that the Helmholtz free-energy function ¥ = ¥(E, ©) is given
in terms of the strain tensor and the temperature. Inserting the time derivative
of the Helmholtz free-energy function into the first part of the Clausius-Duhem
inequatlity, see Eq. (2.55), leads to

ov E+a—qj®+€)§)zo. (2.68)

S'E‘Po(‘jl-ﬁ-@f):g'g—ﬂo(ﬁ'N 50

Thus, it can be concluded from this inequality that

ov
=——=. 2.69
T (2.69)
As a conclusion, relations (2.69) and (2.65) define the constitutive laws for the
temperature and for the entropy. They are mandatory ingredients for the deriva-
tion of the governing equations of the thermal field discussed in Section 2.2.2.

2.2 Governing equations for electro-thermo-mechanical
coupling

This section serves to introduce the governing equations for electro-thermo-mech-
anically coupled problems. This leads to a coupled initial boundary value prob-
lem of a system of partial differential equations. The descriptive equation for
the mechanical field is the balance of linear momentum, whereas the equations
for the thermal and the electric field have not yet been introduced in detail. The
equation of heat conduction is used for the thermal field, and the electric field is de-
scribed by the conservation of electric charge in the stationary case. In addition, the
relevant constitutive relations are recapitulated, and the corresponding bound-
ary conditions are defined to obtain a mathematical determination of the coupled
problem.

2.2.1 Mechanical field

The governing equations for the mechanical field are the balance of linear mo-
mentum, see Eq. (2.38), and the constitutive model for the stress tensor (elastic-
ity), see Eq. (2.57). In this work, it is assumed that the electric field does not
cause any deformations or stresses. Further, the Helmholtz free-energy is a func-
tion of deformation-dependent variables and the temperature. For instance, if
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¥ = ¥(E, ©) is chosen, the stress tensor reads

S(E.©) (2.70)

& :/)Uﬁ-

In order to complete the mathematical description of the mechanical field, the
boundary surface 9 ), of the considered body is decomposed to

00 =008 UANS with QNI =0. (2.71)

To this end, two different types of boundary conditions are introduced. The
boundary displacements

i=a(X,t) with X e o0y (2.72)

which are prescribed on the so-called Dirichlet boundary 0§ and further, the trac-
tion vector

PN =T(X,t) with X € 00 (2.73)

which is prescribed on the so-called Neumann boundary 0€)]. Together with the
balance equation, the nonlinear boundary value problem for the mechanical field
reads

0=DivP+pob in € x[0,7] (2.74)
@=1u on 0O (2.75)
PN=T on OO (2.76)

O=dive+pb in Q x[0,T] (2.77)
@i=1u on OQ (2.78)
gi=f on OO (2.79)

in the current configuration.

2.2.2 Thermal field: the heat equation

The primary variable of the thermal field shall be the temperature. Thus, it is
desirable to find an equation out of which evolution of the temperature © can be
calculated promptly. This has some practical reasons. Since the mechanical field
is directly coupled to the temperature by thermal stresses due to thermal strains,
and since, moreover, some material parameters can be explicitly dependent on
©, the balance of energy (2.46) might not be the most appropriate formulation to
describe the thermal part. However, Eq. (2.46) is used to derive the heat equation
or the equation of heat conduction in which the temperature is the primary variable.
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To begin with, the definition of the Helmholtz free-energy is recapitulated, see
Eq. (2.53), and the time-derivative of ¥ is calculated to

V=¢—0¢—0¢. (2.80)

Substituting the rate of the internal energy é from the previous equation in Eq.
(2.46) leads- after a few mathematical rearrangements — to

g-gfp<\i/+@£>fp®§.fdivtf+p’r'20. (2.81)

ding

Therein, di,; represents the internal entropy increase due to dissipative mechan-
ical work. For inelastic deformations, this term would be larger than zero -
whereas the internal dissipation for pure elastic processes is zero, which is why
they are thermodynamic reversible. Rearranging Eq. (2.81) to

pEO =dyy — divg+pr (2.82)
and using the constitutive relation for the entropy, see Eq. (2.69), yields
D/ 0V L
pﬁ (7%> (S} _dint 7leq+/)7 (283)

in spatial description and
0 ov . A
Po 77 (*%) O =Dy —DivQ +po R (2.84)
In material description — where D, is the internal dissipation and @ the heat
flux vector, both related to the reference configuration. In order to complete the
heat equation, the derivative of the Helmholtz free-energy function ¥ (E, ©) with
respect to the temperature and the time is calculated, leading to

0 Qv 00 . 0% .
%(‘%) = 9020 geop & (2.85)
Inserting the expression into Eq. (2.84) results in
9%V . 02U .=
o <_a(—)2 —060E~E>@:Dim—D1VQ+p0R. (2.86)

This equation can be simplified by introducing the heat capacity or specific heat® [77]

) 2 92

ce(0) =20 =———

00 002

8The heat capacity is also known as specific heat at constant deformation, see [77] for instance.

This means that cg can be viewed as the amount of energy required for a unit increase in temper-
ature related to a unit volume at a constant deformation.

o, (2.87)
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such that one finally obtains the heat equation
2

poC@)(@)@ = pOG)m

B+ Dy — Div@ + po R. (2.88)

In practical applications, the heat capacity strongly depends on the material un-
der investigation and is often determined by means of experimental data.
The first term in Eq. (2.88) on the right hand side given by

ER
B
900E ~

Y(0,E) =po© (2.89)
is known as the thermo-elastic coupling term® due to elastic deformations. How-
ever, the influence of this effect can be neglected in many cases. Compared to
other heat sources, it is usually quite small.

In view of the electro-thermo-mechanical problem, the thermal field described
by the heat equation is coupled to the mechanical field through the internal dis-
sipation term, the thermo-elastic coupling effect and geometrical changes which
are reflected in the constitutive equation for the heat flux vector. The coupling to
the electric field is due to Joule heating that occurs as a heat source r,, in the heat
equation, see the following Section 2.2.3 for more details.

To complete the description of the thermal field, boundary and initial condi-
tions are required. In analogy to the mechanical part, the boundary of the body
B is split into

0 =005U0Q% with 9Q5NaNI=0. (2.90)
The term
0=0(X,t) with X € a0 (2.91)

denotes the prescribed temperature on the Dirichlet boundary 9Qf, and
Q-N=Q(X,t) with X € 90! (2.92)

is the prescribed heat flux on the Neumann boundary 9 Q. Moreover, the initial
condition of the thermal field G)()? ,0) = ©g att = 0is introduced. In material for-
mulation, the summarized initial boundary value problem for the thermal field
reads

poco(©)O =7+ Dy —Div@ + por, in Q x [0,7] (2.93)
©=6 on 90Y (2.94)
—~Q-N=Q on 0 (2.95)
0=0, at t=0 (2.96)

9Thermo-elastic coupling is also known as the Gough-Joule effect, see [84] p. 326 for instance,
which leads to structural heating (typically for rubber) or cooling (typically for metals).

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

26 2. Governing equations

and in the spatial formulation:

pco(©)O =7 +diy —divg+pr, in Q x[0,7] (2.97)
=6 on 907 (2.98)
—q-i=q on 9O (2.99)
©=0, at t=0 (2.100)

The heat flux g that enters a control-volume over the boundary 9} approaches
thermal interactions with the environment and the surfaces of other bodies. In
the following, it is assumed that the heat flux can be composed of five parts

G§=Gn+ @&+ @+ g+ Gec, (2.101)

where ¢, denotes the prescribed heat flux, ¢, the radiative heat flux, ¢, the gap
conductive heat flux, q. the convective heat flux and ¢.. the heat flux due to an
electric current.

A frequently used approximation of radiative heat transfer in thermal analysis
reads

G =coy (0" —0%) . (2.102)

For most applications, this is quite a strong idealization since the formula de-
scribes radiation from an infinitely long and wide plate in vacuum '°, see Sec-
tion 2.3 for more information about thermal radiation.

The gap conductance describes the heat transfer between two surfaces and can
be approached by

0 = A (O, — 0) (2.103)

where ), denotes the thermal gap conductance coefficient and ©; the tempera-
ture of the opposite surface.
Convective heat transfer can be idealized drawing on

4c = he(©) (0 —©) (2.104)

with A, being the heat convection or film coefficient and ©; being the temperature
of the surrounding fluid.

Heat transfer between two surfaces that exhibit different electric potential due
to an electric current'! — ¢, and ¢, — can be approximated by

Gec = )\ec (902 - 501)2 ) (2105)

where )\ denotes the electric gap conductance coefficient.

10The radiative heat flux is approximated by ¢, = € o5, F1_» (@4 — 6‘;0), where Fj_5 is known
as the view factor. For two infinitely long plates, that face each other directly, with h representing
the distance and w the plate width, this factor reads Fi_o = \/1 — (h/w)? — h/w, see [121] p. 842
for instance. If w & oo is assumed, one obtains

WILH;C Fi_o=1 and ¢ =cog ((—)4 — (—);‘c) .

The concept of view factor radiation is discussed in detail in Section 2.3.2.1.
See QUACH ET AL. [140], p. 260, for more details
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2.2.3 Electric field: the charge equation

The electric field in the FAST process is used to generate high heating rates and
high temperatures in the material by means of Joule heating. In order to describe
this process mathematically, it is necessary to formulate the equation of conser-
vation of charge, following from the Maxwell equations. Here, "conservation of
charge" indicates that the rate of charge in a control-volume is equal to the electric
current density entering this volume across a surface.

The charge of a control-volume reads

h:/pc(f,t) dv, (2.106)

Q¢

where p. denotes the electric charge density. The electric current across a surface
can be formulated using Gauss’ law to obtain

Jo=— / j.ﬁda:—/ divjde. (2.107)

12297 Q4

Therein, j(Z, t) defines the electric current density.

Similar to the heat flux, a constitutive law for the flow of electric current is
needed. This thesis employs Ohm’s law, which relates the gradient of the electric
potential to the current density
(©)e= -\ (O)grad p(7,t), (2.108)

Lo

j=-X

©

with € = grad ¢ as the electric field intensity, ¢ as the electric potential and
A, = A, Lrepresenting the isotropic electric conductivity tensor. Here, the electric
conductivity coefficient A\, (©) is typically temperature-dependent. This relation
can also be transformed into material coordinates in the same manner as the heat
flux vector, in such a way that

J=—JF ') (©)F " Gradp = —A _(©)Grade (2.109)

holds. For the global volume, the aspect of conservation of charge requires that

%h:/pc(.f,t)dw:jc - /(pc—l—div]') dv=0 (2.110)
Q

o
holds, which must also be valid for the local form at every material point:
pe+divi=0 (2.111)

Assuming that the rate of charge density is zero, which is a common assumption'?
in the modeling of FAST, see [155, 129, 76] for instance, it is possible to obtain

12A detailed discussion on this topic can be found in [146], for instance.
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the stationary conservation of charge to describe the electric field in the coupled
problem

divy=0. (2.112)

This equation is formulated in the current configuration. It can also be trans-
formed into material coordinates so that

DivJ =0. (2.113)

Next, the Joule heating term in the heat equation r, shall be discussed. Joule’s
law delivers the rate of electric energy which is dissipated by an electric current
flowing through a conducting material as

- 1
r,=——¢€-7=—grad ¢- ) _(©)grad ¢. (2.114)
p

L.
Ty =— E~J:p—Grad<p~A (©) Grad ¢ (2.115)

holds. In the frame of a multi-physical context, the conservation of charge is cou-
pled to the thermal field via the temperature-dependent electric conductivity and
to the mechanical field by changes in the configuration expressed by the defor-
mation gradient F.

In order to finalize the mathematical description of the electric field, the surface
of the body needs to be described. To this end, the boundary is decomposed into

O =005Ud0 with aQCNAQL =0, (2.116)
where
e=p(X,t) with X € 00¢ (2.117)

denotes the prescribed electric potential on the Dirichlet boundary 9 Qf. More-
over, the term

.

—J-N=JX,t) with X e a) (2.118)

is the prescribed current density at the Neumann boundary 9 ©2). The final bound-
ary value problem for the electric field ends up in

0=DivJ in Qx[0,7] (2.119)
p=¢ on 9O (2.120)
—J-N=J on 0% (2.121)
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related to the material description and

0=divj in Q x[0,7T) (2.122)
p=¢ on OO (2.123)
—j-i=j on 9 (2.124)

in spatial description. The current density j at the boundary 0} of a body may
have two different contributions

J = Jn+ e (2.125)

where j, is the prescribed current density and j. the electric current between the
interface of two bodies. This can be approximated by means of the following
linear relation [140]

Je = Aee (s — ), (2.126)

where )., denotes the electric gap conduction coefficient and ¢, the electric po-
tential on the surface of the other body.

2.2.4 Summary of the coupled initial boundary value problem

For the sake of clarity, the governing equations from the previous sections which
describe the electro-thermo-mechanically coupled problem are summarized in
Table 2.1. Further, the coupling effects between the fields are recapitulated. More-
over, the interactions of the fields involved are illustrated in Figure 2.4.

Table 2.1: Overview of the electro-thermo-mechanically coupled problem (Lagrangian for-

mulation).

Init. bound. qn ] q .

value prob. Constitutive Equations Field coupling
Mechanical _ Stress tensor
field ‘(EQq'm)(zm) S(E.0) = p ¥ Thermal field
(Elasticity) ' M po 0E

Heat flux .
Thermal Eq. (2.93) — Q(E,0) = —A;GradO(X,t)  Mechanical field
ficld (2.96) Entropy 0w Electric field
F,0)=—-——

Electric Eq. (2.119) Current density . Mechanical field
field (2.121) J(E,0) = —A_ Gradp(X,t)  Thermal field

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186345189

30 2. Governing equations

echanical
Div FS + po B=0

Figure 2.4: Interactions of the mechanical, thermal and electric field.

A statement regarding the coupling strength between the fields is a difficult is-
sue, and it strongly depends on the problem under consideration. For instance,
the thermo-elastic coupling effect + in the heat equation is often neglected, and
compared to the internal mechanical dissipation d;, in inelastic analysis it is usu-
ally small. On the other hand, with respect to the field assisted sintering process,
the energy dissipated as heat from di, is small compared to the energy dissipation
of the Joule heating term r,,. That is why the mechanical dissipation term is usu-
ally not taken into account in the FAST process [146]. Thus, it can be concluded
that different coupling effects may have a strong or weak impact. Basically, this
is a problem-dependent issue that cannot be stated universally.

2.3 Thermal radiation

Apart from convection and conduction, radiation is the third mode to transfer
thermal energy. The influence of thermal radiation is often neglected or only
treated approximately in numerical analysis. With increasing temperature, how-
ever, radiative effects become more important and can be the dominating mech-
anism to transfer thermal energy. This is due to the fact that the heat flux is
generally proportional to the fourth power in the temperature

qgx ©*—et . (2.127)

High temperature changes occur in many engineering applications, combustion
or manufacturing processes, to name a few, and a realistic simulation of such
problems should contain the physics of thermal radiation. Compared to the two
other mechanisms to transfer thermal energy — convection and conduction - ra-
diation does not require the presence of a medium. In other words, it is the only
mode of heat transfer in vacuum. There are several other distinguishing features
that are relevant to compare the modes of heat transfer which are summarized in
Table 2.2.
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Table 2.2: Comparison of the three main mechanisms to transfer thermal energy

Radiation Conduction Convection
. Emitted  electro- Interactions and Energy of particles

Physical nature . .. . .

magnetic waves by collisions of parti- carried away by
of heat transfer . :

temperature cles material carrier
Participating . . .
media Not required Required Required
Control-volume | Entire Infinitesimal Infinitesimal
Heat flux corre- " 1 00
lation qx ©*— 05, q= A@—ax q="h.(©—6)
Type .Of balance Dlﬁerentlal— Partial differential =~ Partial differential
equation integral

Up to 7 (space
Independent . LT . .
ndiep endent time, direction, 4 (space and time) 4 (space and time)
variables

wavelength )

An important difference is the fact that conduction and convection are so-called
short-range phenomena whereas radiation is, in this context, a long-range phe-
nomenon [121]. This means that an energy balance for a thermal radiation anal-
ysis must be applied to the entire volume, so the complete path through which
a ray travels must be taken into account instead. Thus, the mathematical model
to describe radiation leads to an integral equation since conduction and convec-
tion are described by partial differential equations. These facts make the thermal
radiation analysis a complicated and difficult issue'® with significant differences
compared to the "conventional" analysis of conduction and convection. To this
end, the basics and fundamentals of radiative heat transfer are briefly outlined in
the following section, and the governing equations are introduced. The nature of
thermal radiation is well documented in the literature. For a deep introduction
into the mathematical formulation, the textbooks of MODEST [121] and HOW-
ELL [86] are recommended.

13In addition, thermal radiation typically depends on three coordinates in space (,y, 2), two
angular directions (#,1) and the radiation wavelength (). That is why modeling radiation is
numerically challenging and computation-intensive.
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2.3.1 Basics of thermal radiation

To begin with, the fundamentals of radiative heat transfer are considered, and
the essential terms and definitions are established. The phenomenon of thermal
radiation is caused by electro-magnetic waves that travel at the speed of light'* ¢
and electro-magnetic waves are able to propagate through almost any medium.
Each wave can be described by its frequency v, the wave-length s, the wave-
number 7 or the angular frequency f. These properties identify a wave and can
be related to each other via the following formula

f c

v = % =_=a. (2.128)
The waves that effectuate thermal radiation are emitted by a medium due to
its temperature and typically fall in a range of wavelengths between 0.1 yzm and
100 pm [121].

Whenever an electro-magnetic wave of thermal radiation impinges a surface
of another medium, one part can be reflected whereas the other part can pene-
trate into the medium. In a transparent medium, all penetrating waves can pass
through. In the opposite case, if the waves cannot penetrate through at all, the
medium is called opague. A measure for transparency of media is the so-called
optical thickness or optical depth. This measure depends on the material under con-
sideration — metals for instance are nearly always opaque's. Surfaces that are
opaque and that do not reflect any radiation are denoted as perfect absorber or
simply as black. The described phenomena of a wave striking the surface of an-
other medium can be concluded by the following four fundamental properties of
thermal radiation [121]:

reflected part of incoming radiation
Reflectance : o= P - - .g, . (2.129)
total incoming radiation
absorbed part of incoming radiation
Absorptance : o = p. - bg - (2.130)
total incoming radiation

_ transmitted part of incoming radiation

Transmittance : 7

(2.131)

total incoming radiation

. energy emitted from a surface
Emittance :

m
M1l

2.132
energy emitted by a black surface ( )

The first three properties are related to the total incoming radiation so that
ota+T=1 (2.133)

must hold. Opaque media consequently means 7 = 0 so that ¢ + a = 1 holds. For
gray, diffuse surfaces, one also obtains that o = ¢ holds. For black surfaces, one
obtains a = 1 and therefore o = 7 = 0, whereas the emittance'¢ takes ¢ = 1.

1The speed of light in vacuum is co = 2.998 x 108 m/s

15 Apart from the material dependency, the optical thickness also depends on the thickness of
the medium itself.

16The emittance relates the heat flux emitted by a surface to that of a black-body. This is not to
be mistaken with the emissivity, which is a material property. Both are in the range of 0 < e < 1
and are indicated with same symbol.
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2.3.1.1 Emissive power

The emissive power E is the emitted radiative heat flux of a radiating surface.
The total emissive power is the integral over the whole frequency spectrum and
reads

B(O) = / Fu(6,0)dv. (2.134)

By this relation, the total black-body emissive power L}, can be derived. For the
sake of clarity, all measures related to a black-body are henceforth denoted with
the subscript b. Using Planck’s Law !7 for the black-body emissive power spec-
trum F, ,, an expression for £}, finally leads to

/Eb1 (0,v) dv = nloy,0*, (2.135)
0

where n = 1 is taken for the refractive index'® and oy, the Stefan-Boltzmann con-
stant!®. Equation Eq. (2.135) emphasizes the nonlinear nature of thermal radia-
tion. For a black surface, the emitted heat flux depends on the temperature to the
power of four.

2.3.1.2  Solid angles

In order to describe thermal radiation of a surface that radiates into another
medium, any possible direction has to be considered. To this end, the direction
vector §is introduced, stating that rays can travel through a medium in an infinite
number of possible directions. This vector is formulated using spherical or polar
coordinates in terms of the so-called solid angle denoted by Y.

A solid angle is basically the three-dimensional counterpart of the standard
angle in the two-dimensional plane, as depicted in Figure 2.5. The (infinitesimal)
solid angle is defined as

dY =sinfdfdy — Tz//sin&d@di/). (2.136)

"Named after Max Planck (German physicist, 1858-1947). He found that the spectrum for the
black-body emissive power reads

21 hvdn?
Ebo(©,0) = cZlexp(hv/k©) —1]°
18The refractive index is a dimensionless parameter that describes how radiation is refracted
while propagating through a medium. It is defined as the ratio of the speed of light in vacuum to
the speed of light in the medium n = ¢y/cy,. For air, this index is n = 1.00027 &~ 1 and for water
(also ice) n = 1.3325 [121].
9The Stefan-Boltzmann constant in SI units is g, = 5.670367 x 1073 W m~2 K4,
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Figure 2.5: Definition of the solid angle dY = sin # df dv, the normal vector 7, the direc-
tion vector § and the location vector 7.

Here, 6 is the colatitude and 1+ the longitude and dY can be viewed as an in-
finitesimal area projected on a unit sphere. Special angles are the total solid angle
above the surface T\, which defines the corresponding solid angle to a unit hemi-
sphere. From Figure 2.5 follows that, in this case, ¥ € {R | 0<¢ <27} and
0 € {R|0<6<m/2} holds so that the solid angle for a unit hemisphere is
calculated to

2r /2

Thz// sinfdf dy =27 . (2.137)
00

This is an important measure as it describes all possible directions of a radiating
surface from a given point P. According to T}, the total solid angle represents a
unit sphere and reads

2w
Y= // sin@dfdy = 4r. (2.138)
00

Typically, solid angles are measured in steradians (sr) which is a dimensionless
unit.

From Figure 2.5 it can further be concluded that the scalar product between the
direction vector and the normal vector reads

§-1 =cosf (2.139)

and moreover, that the solid angle of unit hemisphere is a geometric projection
onto the surface leading to the relation

cos

ar = =

dA, (2.140)
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where S denotes the distance between the point P and dA. The distance, how-
ever, for a unit hemisphere is one and therefore S* = 1.

2.3.1.3 Radiative heat flux and radiative intensity

As stated in previous sections, the physics of thermal radiation imply a strong di-
rectional dependence. In order to describe the radiation field, a variable is needed
that takes these directional dependencies into account. As the emissive power £
is independent of the direction, it cannot be used as the primary field variable.
Instead, a new measure is introduced — the radiative intensity I with the unit Watt
per steradians (W /sr) — which incorporates the directional dependence and which
can be viewed as the most appropriate variable to describe the energy transfer by
means of thermal radiation [121]. It is defined as the transferred radiative energy
per unit solid angle normal and per unit area normal to a pencil of rays at a given
point P(7). The vector is denoted as location vector. The fotal intensity I is the
integral over all spectral intensities ,, — the radiative intensity per wavelength —
and reads

I(8,7) 2/1%(5.,’7,%) dse. (2.141)

The emissive power, which can be seen as the total amount of emitted energy of a
surface element dA, can be calculated by integrating the radiative intensity I over
all possible directions

2r /2
E() =//1(ﬂ9,¢) cos fsin 6 d dy) = /1(ﬁ§)ﬁ-§dr. (2.142)
0 0

27

As the primary variable, the computation of the radiative intensity is of major
importance for the thermal radiation analysis. An expression for I can be found
by an energy balance on a small pencil of rays propagating through a medium.
For a detailed discussion, see Section 2.3.3.

Assuming that the radiative intensity is known, it is possible to calculate the
radiative heat flux at a certain point on a surface dA. The net radiative heat flux
¢: per unit wavelength is the difference

G M=q¢=0¢—q (2.143)

of the incident heat flux ¢;, which is also known as irradiation, and the outgoing
heat flux g,. Following MODEST [121], the infinitesimal heat fluxes read

dg = I(5}) cos6;dY; and dg, = I(3,) cosf,dY,. (2.144)

In order to obtain the net heat flux, it is necessary to perform an integration over
the intensity, which is known to be direction-dependent. As a consequence, all
possible ray directions of the surface point need to be taken into consideration.
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Accordingly, this leads to an integration over a unit hemisphere, or, in other
words, over the total solid angle above the surface that is 27. The incident ra-
diative heat flux reads

or /2 2
G = / / I(5) cos 0; sintp; d6; o)y = /[(5’1) cosf;dY;, (2.145)
0
and the outgoing heat flux results to
2T 27
Go = / / 1(3,) cos B, sin, db, dy, = /I(§0) cos 0, d Y, . (2.146)
0 7/2 0

It was shown by MODEST [121] that the net radiative heat flux can be calculated
by means of only one direction vector §, substituting s; and s;,. Then, the integra-
tion is carried out over the total range of solid angles — that is 47 for a unit sphere
—and by using cos = 5 7i, one obtains the net radiative heat flux

47

q;-ﬁ:qi—qo:-/l(?)iﬁd'r. (2.147)
0

In a thermal radiation analysis within a participating medium, Eq. (2.147) is the
term that appears in the energy balance equation of the fluid. In a vacuum, the
radiative heat flux ¢, has to be computed too, which is slightly less complicated
due to the absence of a medium. Both issues will be discussed in the following
sections.

2.3.2 Radiation in vacuum

As mentioned above, thermal radiation is the only heat transfer mode that allows
to transfer thermal energy in a vacuum. Here, "vacuum" means that there are
no other media involved, so the radiative intensity along a certain path s is not
affected. This insight leads to the conclusion that the intensity for any wave-
number 7 is constant in every direction 5:

dr,
ds

I,(5) = const and =0 (2.148)
Radiation in the absence of a participating medium is considered as pure surface
radiation transport. The energy transport between surfaces is carried out on ide-
alized enclosures which can be described by means of geometric properties, the so-
called view factors. The calculation of these factors is discussed in Section 2.3.2.1.
Apart from the geometry, the surface properties influence the thermal radiation
analysis. A simplification deals with ideal surfaces which are known as gray sur-
faces, see Section 2.3.2.2 for more details.
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2.3.2.1 View factors in thermal radiation

In a vacuum, every radiating surface A; exchanges energy with all other surfaces
A, that lie in the view field of A;. Apart from the surface conditions, the amount
of energy transfer between two surfaces also depends on the size of the surfaces,
the distance S between them and the orientation 7. These dependencies can be
described by geometric functions which are known as view factors. This means
that a view factor is a pure geometric quantity that follows from an energy bal-
ance between two surfaces.

Idealized
surface

Real — X\ A5
surface \

Figure 2.6: View factor in thermal radiation: idealized surface and geometric relations.

In this thesis, the definition introduced by MODEST [121] is used. It states that
the infinitesimal view factor dfia,_qa; between two infinitesimal surfaces dA;
and dA; is defined as

energy leaving dA; directly toward and intercepted by dA;
total energy leaving d4; into the hemispehere
I(7) cosb; cos0; dA; dA;/S?
B 7 1(7) dA;
Under the assumption that the intensity I(7) = I is constant across the surfaces,

this equation can be simplified in such a way that the infinitesimal view factor
reads

dFga,—aa; =

(2.149)

cosf;cos; dA; (il - AF)?

w52 w54
A more descriptive vector form can be obtained from Figure 2.6, using the geo-
metrical relations A7 = 7; — 7 and cos 6; = 71; - A7/.S with S = |A7]. However, the
factor defined by Eq. (2.150) holds for infinitesimal surfaces. To make this appli-
cable for the finite case, it is necessary to integrate Eq. (2.149) over the surfaces,
leading to the general definition of a view factor:

dFdAifdA] = A] . (2150)

(7)) cosb; cos 0; dA; dA;/S? ) v
Fa s, = Jada ! ! f—//wdfrd/l;

fAi ﬂ](mz dAZ
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(2.151)

For evaluating the view factors, one can take advantage of the following three
rules [86]:

Reciprocity Rule: A, Fi_; = A; Fj_; (2.152)
N

Summation Rule in enclosures: Z F_;=1 (2.153)
=1

K K
Subsurface summation: F;_; = Z Fi_r with A; = ZAM (2.154)
k=1 k=1

In the Appendix A.1, the interested reader can find a comprehensive example for
calculating view factors between different surfaces. There exist several methods
that deal with the calculation of view factors; the crossed-strings method [85], the
inside and the unit sphere method [121] to name a few. An overview of analytic,
numerical and also statistical methods can be found in the textbooks of MOD-
EST [121] and HOWELL [86]. These textbooks also contain a view factor catalogue
for various surface geometries.

2.3.2.2  Black and gray surface radiation

In order to conclude the thermal radiation analysis in a vacuum, ideal surface
conditions shall be taken into account. To begin with, the simplest case of black
surface conditions is considered. Assuming that the surface temperature is known,
the heat flux balance on this infinitesimal surface element dA reads

q() = En(r) — H(F) (2.155)

where Ei, = oy, ©* is the black-body emissive power and H the irradiation onto
dA. The latter part incorporates the heat flux irradiating from all other surfaces H;
at locations 7 plus contributions from outside of the enclosure H,. In accordance
with [121] the irradiation can be written as

HU) = B ) + Hulf) = [ () dFaaan, + Hol0). (2.156)
A

Introducing Eq. (2.156) into Eq. (2.155) gives the energy balance of an enclosure
with a smoothly distributed surface contour. For the discrete case with V finite
surfaces, an average heat flux on each A; can be calculated, where Eq. (2.155) is
recast following [121] as

N N
1 o
qi = X / q,(r,) dA; = Eb,/, - Z Eb,jE—j — Hy = Z Fv’,—j (Eb,i, - Eb,j) — Hy; .
i j=1 j=1
(2.157)
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Based on [86], an extension to gray diffuse surfaces with ¢ = o reads

0l7) = £(7) Eu()—<(7) H(7) = () | o) — [ ¥ (R)dFar-an, + Ho@)| © (2158)

which is again the heat flux balance on a surface element dA. Here, Y (7) denotes
the surface radiosity which can be related to the intensity as Y (7) = « I(7). Ac-
cording to [121], one can derive an equation that eliminates Y and that relates the
temperature to the heat flux of an surface element dA as

q(7) mm/(

1

— — 1) q(7%) — Ep(75) dFaa—aa, — Ho(7) . (2.159)
&(7) £(7%) )
Similar to black surface contours, one can deduce a discrete formulation for N
subsurfaces 4; so that Eq. (2.159) becomes

N
i 1
2 _ Z {(* - 1> Fijqi+Fij(Byi— Eb,j):| — Ho; - (2.160)

€ 3
E; = j

In this equation, either the surface temperatures ©; or the heat flux ¢; are un-
known. In engineering applications, it is usually the surface temperature that is
known - so that the radiative heat flux is the sought variable.

2.3.3 Radiation in participating media

After the radiation in vacuum, the presence of a participating medium shall be
considered. If a participating medium is involved, this means that the space be-
tween the surfaces where thermal energy is exchanged is filled with a fluid. In
many applications, this would be a compressible gas such as air. In this case, the
interaction between the surfaces and the surrounding gas needs to be taken into
account. Due to the fact that the thermal energy transfer by radiation shows a
strong temperature-dependence, the radiation field is accordingly coupled with
the thermal field of the participating medium. This has significant consequences:
The temperature evolution in the participating medium, which is affected by ra-
diation, needs to be calculated. This is done using the general form of the energy
conservation equation for a moving fluid particle in the Eulerian description. Fol-
lowing [121], the balance of energy reads

D 00
Cpf Pt Dfo Cpt Pt <W + - grad (—)) =div(Aergrad ©) —divg,,  (2.161)

where ¥ is the fluid particle velocity vector, © the fluid temperature and ¢, is the
heat flux due to thermal radiation. This equation also accounts for the two other
mechanisms of thermal energy transfer — heat conduction and convection. The
term of interest in (2.161) is div ¢; and in particular the calculation of the radiative
heat flux vector ¢;. This issue is addressed in the following.

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

40 2. Governing equations

As discussed in Section 2.3.1.3, the radiative heat flux is a function of the ra-
diative intensity. In contrast to radiation in vacuum, the intensity / along a path
s is not constant, which is due to the fact that the propagating electro-magnetic
waves are affected by the media through which they are travelling. To be more
specific, radiation in participating media is influenced by emission, absorption
and by scattering phenomena. In order to find a mathematical description that
covers these effects, the change in the intensity I of a small pencil of rays along
its way through a medium needs to be taken into consideration. This is equiva-
lent with formulating an energy balance of the radiative transport, finally lead-
ing to the so-called radiative transfer equation, henceforth abbreviated by RTE. This
equation incorporates all possible affections and reads in a general, in-stationary
form [121, 86]

191,
c ot

FE VI = gy — Byl + T / I,(s)®(s1, 5) AT (2.162)

4

where x, is the absorption coefficient, 3, the extinction coefficient, og the scatter-
ing coefficient, and @ is known as the scattering phase function. Before the terms
on the right hand side are discussed in detail, a first simplification of (2.162) can
be obtained by assuming that the in-stationary term is small and by consider-
ing only a certain wave-length or wave-number, i.e. 7 = const that defines gray
media:

" s . 101
§-VI=xl,—pI+ = I(s;)@(si,5)dY;  with T 0 (2.163)

This assumption is reasonable since the electro-magnetic waves of thermal radia-
tion travel almost at the speed of light. For the vast majority of engineering prob-
lems, this means that space between the radiating surfaces is passed so quickly
that any temporal changes are negligible. Simply spoken, most engineering ap-
plications are stationary when compared to the speed of light.

The RTE is given by Eq. (2.163), and the first term on the right hand side

dI = kI, ds (2.164)

is related to the emitted intensity. This can be viewed as the rate of emitted energy
which is proportional to the path length ds. This part incorporates the amount
of energy that a small pencil of rays gains due to emission while travelling in the
direction 5. As shown by Modest [121], the black-body intensity I;, can be used
here. The second term in (2.163) accounts for the energy loss due to attenuation
by absorption and scattering. This can be approximated by the linear relation

Al = —A1ds (2.165)

where the extinction coefficient 3 is the sum of two parts 5 = x+og. The part that
incorporates the decrease in the intensity in a pencil of rays due to attenuation by
absorption reads d/ = —xIds and by scattering dI = —og/ds. Attenuation
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by absorption means energy conservation when photons of a light beam collide
with particles or molecules of the medium. The other phenomena — attenuation
by scattering — is known as out-scattering as it considers the amount of energy
of a light beam that is redirected and not converted. These two effects lead to a
decrease in the intensity, indicated by the negative sign. However, within a pencil
of rays, out-scattering will occur in any direction — thus leading to in-scattering
effects for pencils nearby. Following Modest [121], the amount of energy which
is scattered into a pencil of rays in the direction 5 reads

ar) = 7 / 1(5)®(5:, 5) AT ds, (2.166)

4T

where 5; denotes all possible incoming directions. The phase function ® has a
probabilistic character, accounting for the probability that rays from incoming di-
rections are scattered into other directions. Two special cases for ¢ are mentioned:
for simple isotropic scattering, the phase function yields ¥ = 1. In-scattering ef-
fects are often approached as linear-anisotropic scattering resulting in

where the coefficient A; is known as the first scattering phase function coefficient.
Summing up all contributions from Eqns. (2.164)—(2.166) finally leads to the
radiative transfer equation. An illustration is given in Figure 2.7.

in-scattering

emission

~—~ 7 Transmitted

intensity

absorption

Figure 2.7: Effects that affect the intensity along its path ds: in- and out-scattering,
absorption and emission.

2.3.4 Coupling to other fields

There are different possibilities to approximate the phenomenon of thermal radia-
tion in a coupled multi-physics analysis; as a boundary condition by Eq. (2.102) in
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the heat equation that describes the thermal field, for example, or as an additional
individual field. The first method gives an approximation of minor accuracy, yet
it might be sufficient in many applications. The latter option, however, allows to
take the interaction of a radiating body with its environment into account. This is
of special interest if thermal radiation dominates the energy transfer and the ra-
diating surfaces consist of complex geometries or if the impact of a surrounding
fluid needs to be investigated. On the other hand, a full radiation analysis will
definitely increase the complexity of the multi-physical problem under consider-
ation.

If radiation is incorporated as an additional field, it is coupled to the thermal
as well as to the mechanical field. To this end, a surface Dirichlet-Neumann cou-
pling formulation is proposed, similar to fluid-structure interaction. In order to
describe the coupling, the body B, C R? with the domain ¥ is considered in the
current configuration. These domains hold for the thermal as well as for the me-
chanical field. Further, the environment of B; — that is the fluid region including
the radiation field ¥; C R® - is defined by the fluid domain 2. As depicted in
Figure 2.8, the coupling interface Q¢ C 90 and 9 C 9N* is the common
boundary between these domains and is termed as follows: In general, the cou-
pling domain is composed as Q¢ = 9P N 9 QF. However, if the body is fully
enclosed by 3;, which can be viewed as the standard case, one can conclude that
908 C 9OF must hold and, thus, Q5 C 9QF and also 9 Q¢ C 9 QP respectively.
In order to formulate the coupling between the fields, the equilibrium conditions

Figure 2.8: Surface boundary description of a radiating body QtB that is fully enclosed by
its environment (radiation field) ;.

at the interfaces are taken into consideration. On the coupling interface 9 the
equilibrium condition for the temperature is

O (T, 1) = Qo (T°,1) (2.168)
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where ©(7¢, ) is the surface temperature on the boundary and z* € 9. The
second equilibrium condition is the heat flux condition

Taas * Gras(T°) = —Taqz - Goar (T9) (2.169)

where 7i represents the unit normal vector that is pointing outwards of the do-
main boundary and §(z°) is the heat flux vector on 9. The equilibrium con-
ditions clearly state that the thermal field is coupled to the radiation over the
Neumann- and also over the Dirichlet-boundary. This is similar to FSI problems
where Dirichlet-Neumann coupling occurs too.

Indeed, there is also a coupling interface between the mechanical and the ra-
diation field. It is known as the kinematic condition. To fulfil the congition, the
displacements d(z°) for z° € 0€X at the interface must be equal. Here, d is used to
distinguish between interface displacements and the displacements of the whole
body denoted by . Accordingly, this leads to the following condition

Qs () = dygp (&) (2.170)

A dynamic condition that claims the equilibrium between the stresses on the
boundary is neglected. This is a reasonable assumption since the mechanical
problem is to be considered as a quasi-static field and the stresses due to the
pressure onto the boundary, which results from the fluid flow of the participating
medium, are not very high compared to the stresses from external forces applied
to the body B;. However, due to the kinematic change of the region of the solid,
the fluid domain of the radiation field must be updated constantly. This means
that the radiation problem needs to be solved on a moving configuration.

echanical F
DivE§+p0§=

Figure 2.9: Dependencies of the radiation field with the mechanical, thermal and electric
fields.
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So far, the coupling of the radiation field is formulated within the frame of a
participating medium. Since thermal radiation allows to transfer energy in a vac-
uum, this special case has to be discussed too. In vacuum, radiation reduces to
a geometric problem, and the interaction takes place between the boundary of
the body 9QF and the outer boundary that describes the environment 9 ;. Be-
tween these two boundaries, the temperatures and heat fluxes can be computed
by means of Eq. (2.159). This is the coupling of the radiation field in vacuum to
the thermal field of the body. However, the view factors which cover the geom-
etry need to be calculated between the infinitesimal surface elements dAZ € 9O
and dA}’ € 90;°. Since the surface elements of the body B; are not constant,
the view factors need to be calculated with respect to the current surface dis-
placement d(z°). Hence, the definition for the view factor given by Eq. (2.150) is
reformulated in dependence of the displacement vector to

cos 0 (d(7*)) cos 6 d AT
7 S2(d(i)) :

AFyu5_game = (2.171)

As a consequence, it can be concluded that in both cases, for vacuum as well
as for a participating medium, the radiation field is coupled to the thermal and
the mechanical field. With regard to the electro-thermo-mechanical problem in
Section 2.2.4, the interactions between the four fields are illustrated in Figure 2.9.
In this figure, all dependencies between the fields are depicted on an abstract
level, ultimately representing a volume- and surface-coupled problem.
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Numerical methods

The third chapter is concerned with numerical methods to find an approximate
solution to the coupled problem with the aid of computers. Special attention is
placed on numerical solution procedures for the governing equations of the me-
chanical, thermal, electrical and radiation field that were derived in the previous
chapter. Due to the fact that the descriptive field equations are of a differential
or integral type, both in space or time, a discrete formulation is desired for the
further solution process. To begin with, a variational formulation of the mechan-
ical, thermal and electrical field is presented, followed by a linearization of the
nonlinear terms. After that, the spatial discretization of the body B using the fi-
nite element method (FEM) is described and the time integration procedure for the
temporal discretization is discussed. In regard to the radiation field, the finite
volume method (FVM) is employed to discretize the fluid domain ¥ which can be
viewed as the environment of B. Moreover, several methods to tackle radiative
heat transfer numerically in vacuum and participating media are introduced. The
latter case involves an approximate solution of the radiative transfer equation (RTE)
which is also discussed in this chapter.

3.1 Variational formulation and linearization

With respect to the numerical solution of the electric, thermal and mechanical
fields with finite elements, the objective is to obtain a discrete formulation of the
underlying partial-differential equations. Since these equations contain contin-
uous mathematical operators, a conversion into discrete systems of equations is
desired. To achieve this, a variational form of the coupled problem is derived
which is also known as weak formulation. A differential equation can be converted
into its weak form by multiplying it with so-called test functions i and by inte-
grating over the domain €, C R" which is occupied by the body B under inves-
tigation. The result is a equation which now has weak solutions in Qq with respect
to the test functions. Such functions are chosen out of the following test space V

Xy ey, V= {ﬁ()?) with X € Qy| 7=0 on 390} . (3.1)
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Applying this concept to the balance equations of the involved fields leads to
equations that describe the equilibrium in a weak sense. Since these equations are
typically nonlinear, a linearization is required for the further numerical solution
process. To outline the concept of linearization, an arbitrary nonlinear equation
G(d) is considered, where the variable d is assumed to be vector-valued. The
formalism of linearization begins with a first-order Taylor series expansion of the
functional

G =G(d) +AG(a@,Aad)+ R (3.2)

where R corresponds to the residual. By omitting R, the linearized equation at a
given point @ reads

LinG|,_; = G(@) + DG - Ad (3.3)

in which Ad denotes the incremental value of d@. The first term in Eq. (3.3) is the
evaluation of the functional at the given point @, and the second part is known
as the directional derivative in the direction of AG. This part can be calculated with
the aid of the Gateaux derivative

DG - Ad = % AG = %[g(mmaﬂ R (3.4)

The linearization concept can be used, amongst other things, to linearize kine-
matic relations and constitutive equations. It forms the basis of the Newton-
Raphson procedure which is used in this thesis to solve nonlinear systems of
equations. In a multi-physically coupled context, a linearization would conse-
quently have to linearize the nonlinear problem with respect to all quantities un-
der consideration. This is referred to as a consistent linearization [89]. However,
if the coupled system is solved in a separated manner, which is indeed the case
when employing a partitioned coupling strategy, each of the fields only need to
be linearized with respect to its primary unknown.

3.1.1 Mechanical field

To begin with, the weak formulation of the mechanical field in the reference
and current configuration is derived. A variational form Gy is established by
multiplying the quasi-static balance of linear momentum with test functions 77
and by integrating over the whole domain. The test function is also known as
a weight function, and it is supposed to fulfil the Dirichlet-boundary condition
7 = {7]7 = 0 on 99}. The test functions 77 correspond to the virtual displace-
ments 0, leading to

O = / (DivE + po E) 6T AV = 0. (3.5)

Qo
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This equation can be rearranged by applying the divergence theorem which delivers
the principle of virtual work in engineering [171]

Gt ::/13~Grad6ﬁdV— / ﬁ&mm-/ pob - 6 dV = 0. (3.6)

Q 908 Q

This expression is the weak form of the mechanical field, formulated in terms of
the first Piola-Kirchhoff stress tensor P. In order to obtain a description that is
formulated in terms of the symmetric second Piola-Kirchhoff stress tensor, the
relation P = F§ is used. Following [171], it can be deduced that

P.Graddi =S -F'Graddéi =S - % (E"Grad 6@ + Grad" 64 F) = S-6E, (3.7)

where JE is the virtual Green-Lagrange strain tensor. This finally leads to the
virtual work formulated in the reference configuration

/5-65011/: / f-éﬁdA+/p05-5ﬁ(1v. (3.8)
Qo a0g Q

It follows by using the relation P = Jg F~7 and grad §ii = Grad §#F~' that
P.Gradéi = JogF " Graddi = Jg-Graddd F~' = Jg-grad 6.  (3.9)

holds. With dv = JdV, py = Jp and Nanson’s formula, given by Eq. (2.4), the
virtual work in the spatial configuration reads

/g~grad oudy = /g~ 1/2 (grad 617+gradT512') dv = / £-5i (1a+/ pg-éﬁdv.
o I 0y o

(3.10)

A physical interpretation can be given by considering that the part on the left-
hand side in Eq. (3.8) denotes the internal virtual work dW,,, performed by a
stress field due to virtual displacements. The other part on the right-hand side
denotes the external virtual work W,y performed by the applied loading. It can
thus be concluded that, in the state of equilibrium, the amount of internal work
is equivalent to the amount of external work

5Wint - 5cht =0. (311)

For the linearization of the mechanical field, only the internal mechanical work is
taken into consideration, whereas the external part is assumed to be independent
of the deformation'.

'Tf §Wey depends upon the displacements, this typically involves deformation-dependent loads
that are known as follower loads. Their numerical treatment is discussed in [171, p. 142-145], for
instance.
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Due to the fact that a partitioned solution strategy is employed, a consistent lin-
earization of §W,,, with respect to the temperature is not needed and is therefore
not shown in the following. Consequently, the displacements « are assumed to
be the unknown variable — and the Gateaux derivative thus reads

DiGy - AU =Dg Wiy - AU = di [6W(ﬁ+ EAﬁ, (511)] s (312)
€ e=0

and, following [84, 171], this leads under the assumption of an elastic material?
to the linearized internal virtual mechanical work related to the reference config-
uration

Dg Wit - AUl = é—l/g(g(ﬁ+ eAW)) - 0E(U + eAW) dV
€
o e=0 (313)
= /Gradéﬁ- Grad AuS+0E-CAEdV .
Qo

Therein, C denotes the fourth-order elasticity tensor in material coordinates. For
the computation of the Gateaux derivative, the incremental deformation gradient

AF = Grad A@ (3.14)
and the incremental strain tensor
AE = % (E"AF + AF"F) = % (E” GradAd + Grad" A F) (3.15)

are utilized, see [171] for instance. With respect to the current configuration, see
e. g.[84], the linearization of internal mechanical work follows by means of push-
forward operations to

Di Wi - AU = /grad i - grad At g + grad i - C, grad Aidv, (3.16)
Q

where C, is the fourth-order elasticity tensor referring to the spatial configuration.

3.1.2 Thermal field

In order to compute the thermal field with the finite element method, a weak
formulation of the heat conduction equation is required. To this end, Eq. (2.88)
is multiplied with the virtual temperature 60, and an integration throughout the
control-volume delivers the variational form Gg for the thermal field in the refer-
ence configuration:

g(_,:/(pocp@a@f ,/69fDima@+Din(5@fpoR,,5®)dv=o (3.17)

Qo

2For inelasticity, see the remark in Section 3.2.5
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Using Fourier’s law of heat conduction given by Eq. (2.65), the divergence term
of the heat flux @ can be rewritten by means of the divergence theorem to

/Divcja@dv = / Div(@ 60)dV — /cj - Grad 00 dV
Qo Qo Qo

=— / Q(SG)dAJr/Gr'ad6®~1}@G1’ad®dV7

o Qo

(3.18)

where Q = Q -V is the heat flux that enters a control-volume across the surface dA.
Substituting this expression into Eq. (3.17), the final weak form of the equation of
heat conduction yields

Go = / (,00 ¢p 060 + Grad 60 - A, Crad @) av+

@ ) (3.19)
— /('y—s—Di,,t +poR,)00dV — / QIOdA=0
Qo 00
in material description and
Go = / (p ¢, © 00 + grad 60 - A grad C—)) 00 dv
o (3.20)
- / (v + ding + p1y) 60 dv — / G660 da =10
O a9!

in spatial description.

Since Gg is nonlinear in the temperature, it has to be linearized. The nonlin-
earity is due to temperature-dependent material parameters, coupling terms and
the boundary conditions. Before proceeding with the linearization, the rate of
temperataure O is replaced by means of the following expression

Ot + At) — O(t)
At ’
where At denotes the time increment. A first-order accurate implicit Euler-Backward

method is used, for details see Section 3.2.2.5. Similar to the mechanical field, the
Gateaux derivative is applied at time ¢ + At to compute the linearization

Jc, © -0, 1
D@g@ AO = / Po (@ At + cPE) ABIO dV
Qo

+ / (Grad 90 - Ay Grad A© + Grad 6O -
Qo

07 0Dy OR, o e 0Q 4 oo

,/(6(—)+ 76 +p05(~)> AB O dV /%AO(SOdA.

Qo o0

6~ (3.21)

aA@G‘dOAO dv
ae (3.22)
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Computing the linearization with respect to the temperature typically requires
the calculation of derivatives of analytic functions that are used to approximate
the temperature-dependency of the material parameters or the boundary con-
dition. Thanks to the benefits of the partitioned approach, a linearization with
respect to the deformation and the electric potential is not taken into considera-
tion.

3.1.3 Electric field

The variational formulation of the stationary equation of charge — as given by
Eq. (2.113) — that describes the electric field reads

G, = / DivJdpdV =0, (3.23)
Qo

where d¢ denotes the virtual electric potential. Similar to the divergence term of
the heat flux vector in the previous section, one can conclude that

/Div JopdV = / Div (J6p)dV — / J - Grad dpdV

o o Q

=— / JopdA+ /Grad&p . {\¢ Grad o dV
2% Qo

(3.24)

can be obtained for the electric current density. Here, —J - N = .J and Ohm’s law
J= —A_ Grad ¢ were used to write Eq. (3.23) as
G, = /Grad dp- A, GradpdV — / JSpdA=0. (3.25)
Q EXoN

In the next step, a linearization of G, is carried out by means of the Gateaux
derivative, leading to

DG, Ap = / Grad dp - A\wGrad ApdV — / % ApdpdA. (3.26)
Qo 990
Since the electric conductivity A\, does not depend on the electric potential ¢, and
the derivative of .J/0¢ = A results in a constant value, see Eq. (2.126), the
equation for the electric field, see Eq. (3.25), is assumed to be linear in the electric
potential.

3.2 Finite element method

The following section serves to summarize the principles of the finite element
method (FEM). The FEM is known to be one of the most commonly used numer-
ical methods to solve partial differential equations and is nowadays an essential
tool in computational engineering.
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The underlying idea of the FEM can very briefly be summarized as follows:
The starting point is to subdivide a domain €2 into a finite number of elements
with a very simple shape on which the variables of interest and also the geometry
of the shape are interpolated by analytic functions. This concept is applied to the
weak forms of the balance equations, and the final outcome is a discrete nonlinear
system of equations to compute an approximate solution to the entire domain €.

The finite element methodology is well documented in many textbooks. For a
comprehensive description of the fundamentals, which typically involve linear
static procedures, the interested reader is referred to [7, 88, 180, 179, 145] who
also offer some historical background of the FEM. Besides, nonlinear procedures
are of particular interest, and many textbooks are devoted to this issue, see [29,
10, 144, 13, 171] as selected examples. The following introduction of the FEM is
given with close reference to the work of WRIGGERS [171].

3.2.1 Spatial discretization with the isoparametric concept

To begin with, the domain Q, of a body in the initial configuration is approxi-
mated by n, finite elements such that

Qom = O (3.27)
e=1

holds. Here, Q, is the approximation of Qp, and Q¢ C Q) denotes the domain of
one finite element. In the following, the expression | <, stands the union of all n,
finite elements. In the same manner, the boundary 9y ~ 0, is approximated
where 0Q° C 0 denotes the boundary of one finite element. All elements are
connected by nodes, see Figure 3.1. Together, they build a finite element mesh
that has to be continuous, meaning that no gaps or overlapping elements are
allowed.

Figure 3.1: Discretized domain of the body with eight-noded hexahedral elements.

In order to approximate the element geometry X ¢, the n nodal coordinates X,
are used to interpolate X as

X&) =) Ni(€) Xy, (3.28)
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where the N; are known as the shape functions. These functions are formulated
in local coordinates € = [£, n, ¢]T which are defined within a standard element (...
Such an element can have different shapes. In the three-dimensional case, for
example, hexahedrons or tetrahedrons are frequently employed elements. Here-
inafter, only hexahedral elements are taken under consideration. In this case, the
local coordinates of ), are given by £ € [-1,1], n € [-1,1] and ¢ € [-1,1]. In the
very simplest case, eight linear shape functions are chosen, one function for each
node. The functions used here are known as Lagrange polynomials

N1(£) = Ni(€) Na(n) N(C) = é(u& QU1+ ), T=1,2,...8, (3.29)

where &, = [£;, 11, ¢;]T denote the I-th node coordinate?, as given in Figure 3.2.
A more comprehensive discussion regarding shape functions is given in Sec-
tion 3.2.3, focusing particularly on the construction of high-order finite elements.

Figure 3.2: Physical and local coordinates for an eight-noded hexahedral element.

For the further finite element formulation, it is essential to define a mapping
between Q¢ and (2., as illustrated in Figure 3.3. To this end, a transformation
is required that relates the global to the local coordinates. In the following, a
transformation known as isoparametric transformation is utilized, giving the con-
cept its name as isoparametric concept. The advantage of this concept is that the
same shape functions can be used to interpolate the geometry and the primary
field variables.

In order to map quantities between the standard element €2, and Q¢, the Jaco-
bian transformation is introduced. Following the notation of WRIGGERS [171], the

3For example, if I = 1 then &; = [—1, —1, —1]% which leads to

ME)=51-90-n(1-0) (3:30)
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Figure 3.3: Isoparametric mapping concept.

Jacobian J¢ reads

I = Grade X°(6) = e X6 = Y. X1 ag’f) (331)
I=1

which has the important purpose of expressing the derivatives of the shape func-
tions N; with respect to £ or X*

N, OX°ON, N

0€  0f axe 7 axe (3:32)
ON,  9€ ON, .. 0N (3.33)

0X° 0X° Of = () €

So far, all relations have been formulated in terms of the material description.
However, they can easily rewritten in spatial coordinates by simply replacing X ;
with x; and X ° with ¢ such that

(€)= S Ni(€)x; and Ji = gradeat(€) =Y @@ 8];’5@ C (3.34)
I=1 I=1

It makes no difference whether the mapping onto the isoparametric reference
element is carried out from the initial or the current configuration [171]. In this
context, the element deformation gradient F* is introduced

n

LR ION 1 ON.
FC:Gradwe:a—;:Zw[@ L :Z:m@ {(JL) ! I} (3.35)

— oX° 0X°
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which still is the important measure to relate quantities of the initial configura-
tion to their counterparts in the current configuration. The different configura-
tions are depicted in Figure 3.3. In order to transform quantities between these
configurations, one can conclude that

dat = Jod¢, dX°=J°dg, F°=Jo(Jo)" (3.36)

holds. For any admissible deformation, it also follows that the determinants j¢ =
det J§ > 0, J® = det J® > 0 and det F** > 0 have to be greater zero.

3.2.2 Discretization of the weak forms

This section focuses on the discretization of the weak formulation of the mechan-
ical, the thermal and the electric field. The primary variables, their virtual coun-
terparts and the corresponding gradients of each field are discretized. For the
mechanical field, the finite element approximation of the displacement vector w
to the exact solution reads

:Z]Vl(g)ul:]\T“(ﬁ)ue7 Gradu=2u1®8(;\g((§) . (3.37)
=1

ZNI &) du; = N°(€)ous, Gradou =) ou® 0 aN)’(ff) . (3.38)
I=1

For the thermal and the electric field, however, it is necessary to discretize a scalar
— either the temperature or the electric potential.

$(€) =D Ni(§)¢r = N°(€) ¢, 06(&) = > Ni(£)d¢r = N°(£) 6¢°,

(3.39)

IN;(§)
0X°

Grad ¢ = ZaNI ¢ = B°(£)¢°, Graddo = Z

X 06r = BX(€)d¢* .

(3.40)
Therein, the scalar quantity ¢ can be replaced by the temperature © or by the
electric potential ¢, respectively.
3.2.2.1 Mechanical field
In a first step, the internal virtual work in material description is written as
Wiy = / S-oEdV (3.41)
Qo

where the virtual Green-Lagrange strain tensor reads [84]

SE = % (E” Grad 6@ + Grad” 64 F) . (3.42)
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Using the expression of the discretized deformation gradient Eq. (3.35), and for
the gradient of the virtual displacements Eq. (3.38), the virtual strains ¢E for one
element can be formulated as

SE° = %i [FET <(5u1 ® a(;v;((g)) + <aév)1((§) ® 6u1> F} : (3.43)

I=1

Since the strain tensor is symmetric, it has six instead of nine independent com-
ponents. This allows to use the so-called Voigt notation where the components
of the strain tensor are written as 60E = (0E11, dEa, 0F33, 20 F1a, 20 Eng, 26E13)T
resulting in a 6 x 1 vector. Based on this notation and following [171], it can be
shown that

6“1
n (5’(142
OE° = ZBLJ(;’U/] = BE [S'U/c, Bi = [BL,l BL72 Bi,n] s ou’ =
I=1 .
oun
(3.44)

where the strain-displacement matrix By, s is introduced as

Fi1 Nrx, Fxn Nrx, F3 Nrx,
Fia Nix, Fy Nix, F33 N x,
Fi3 Nix, Fy3 Nix, F33 Nix,

B —
LI FiiNrx, + Fia Nrx, Fo1 Nrx, + Foa Npx, Fs1 Nrx, + Fsa Npx,

FioNrx, + Fis Nix, Fy Nrx, + Fos Nix, Fso Npx, + Fis Nix,
FiuNrx, + Fis Nix, Fo1 Nrx, + Fos Nix,  Fs1 Npx, + Fzs Nix,
(3.45)

Together with the element stress tensor S in Voigt notation, one can conclude
that

Ny N

Wit = /5@-5(1(2 ~ U Zéu?/Bilse a0 —
Qe

Q0 e=1 I=1

| ous” / BiT §°dQ (3.46)

e=1 Qe

approximates the internal virtual mechanical work with n, elements. The exter-
nal virtual mechanical works needs to be discretized as well. By a multiplication
with the virtual displacements and an integration over the volume, this can be
accomplished in a straightforward manner:

WWext = / T-adA+ / pogﬁﬁd‘/zU(?ueT / NeTgedr + / NeThedQ |
098 Qo e=1 90 Qe

(3.47)
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where b° is the element body force vector and ¢ the element traction vector. At
equilibrium, it was stated that §Wy,; — 0Wey = 0 holds and — considering that the
virtual displacements are arbitrary — it follows that

Gu(w) = /B;Tse(m—/NeTbEdQ—/ NeTgedr | =o
e=1 \¢e Qe 8Qe (3.48)

= (wif(u) — pyy) = wn(u) —pu=0.

This equation needs to be linearized with respect to the displacement vector,
since there is a nonlinear dependency between wy; and u. To this end, the lin-
earized weak formulation given by Eq. (3.13) is taken under consideration. Fol-
lowing [171], the first contribution can be approximated for one element by

. e noon aN] T aNJ
Grad 6@ - Grad AT S dV =~ ZZ dur ® 7x° A'U/J@W 5dQ
=1 J=1g.

- i i Juc” / G%,5°Gs ;A Au’
Qe

I=1 J=1

Qo

— sucT / G5" 8¢ G5 A0 Auf = ducT K§ Au.
Qe
(3.49)

Therein, the matrices

Nix, Nix, Nix, O 0 0 0 0 0

ng = 0 0 0 Nrx, Nrx, Nrx, 0 0 0
' 0 0 0 0 0 0 Nix; Nrx, Nix,
S 0 0 S S Sis
S°=1|0 S 0| and S= |59 5w Sy
00 S S31 S3p sz
(3.50)

are introduced where the S;; are the components of the second Piola-Kirchhoff
stress tensor and the notation N; x;, i = 1,2, 3 denotes the derivative of the /-th
shape function with respect to X.

The matrix K¢ in Eq.(3.49) is only related to the current stress, which is why it
is often termed as initial stress matrix. For the second part of the linearization in
Eq. (3.13), one obtains

/ SE-CAEdV~Y " / (B 0u;)" C° By, AuydQ
9 I=1 J=1 ¢ (3 ’1)

= jucT / B:TCBS dQ Aut .
QE’
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Therein, the tensor C* is the incremental material tensor in Voigt notation. Due
to the symmetry of C*, it can be viewed as a 6 x 6 matrix in the three-dimensional
case. Summarizing Eqns. (3.49)-(3.51) delivers for one element

sucT / G5'8°Gi+ B C° By A0 Auf = suT (K§ + K§) Au® = duT K5y Au
Q(t

(3.52)

where Kty = ", K7y is the tangential stiffness matrix of the mechanical field.
So far, only the weak form related to the reference configuration has been dis-
cretized. In order to obtain a finite element formulation of the weak form in
spatial description, the discretization can be carried out in the same fashion. A
detailed derivation can be found in [13, 171], for instance, and is not discussed
here.

3.2.2.2 Thermal field

In the following, the weak form of the equation of heat conduction, see Eq.(3.19),
is discretized. Since the thermal field is assumed to be nonlinear, an expression
for the tangential stiffness matrix is required. A comprehensive discussion on the
discretization of the nonlinear heat equation was done by QUINT ET AL. [143].
For one element, using the discretizations given by Eqns. (3.39)—(3.40) leads to

Go ~ / p0.¢(0) (N“O°) (N*60°) + (B*60°)"AL(0) (B°O°) d2 —

Qe

/ [7(8) + Din(©) + po Ro(0)] N°GO° dQ — / Q(O) N°@°dl = 0.

Qe Qe
(3.53)
This can be rearranged for the whole domain using ne finite elements to
ne g . .
U §e°T / pocp(Q) NTN¢dQ ©° + / B°TAY(0)B*dN©°
e=1 Qe Qe
(3.54)
ne
|JserT / O() N*Tdr + / 4(©) + Dt (©) + po R,(0)] NTdQ
e=1 o0 S'Ie
or in a very compact notation
Mo(0) © + Ko (0)© = po(0) . (3.55)

ne

Therein, the expression Mg = |J°, M¢ denotes the thermal mass matrix, Ko =
Uie, K§ is the thermal stiffness matrix and pe = .2, p§ is the thermal load vector
related to one element. Since all of these terms are non-linearly dependent on
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the temperature, a linearization is required to set-up a tangential stiffness matrix
for the thermal field. This can be achieved by means of a discretization of the
incremental quantities A© and Grad A® in the linearized variational formulation
of the thermal field given by Eq. (3.22). This results in

de, O — O
DeGe - AO mi@cT/po( % neZ o )NGTNCdQA@E
2

00 At
5@(3T/B6TA%B6+BET
Q(‘,

, D; 3
5@”/ (0—7 4 2D +p00R“”> N<TN¢dQ AO° —

dAG

B°O°N°dQAO° —
00

(3.56)

00 00 00

Qe

2Q
50"
90

a0e

NeTNedl AG°.

For the whole domain, this finally leads to
ne
DeGoA® ~ | J 00T KS o AO°, (3.57)
e=1
where Kt o = %, K T, o is the tangential stiffness matrix of the thermal field.
Special attention shall be placed on the second contribution of Eq. (3.56) which
arises for a temperature-dependence of the heat conduction coefficient. In this
case, the contribution involves the calculation of the product B°®@°“N°¢, leading
to a non-symmetric tangential stiffness matrix. Further reading on the numerical
treatment of the nonlinear heat conduction equation can be found in [143].

3.2.2.3  Electric field

In order to discretize the weak formulation of the electric field, the interpolation
given by Eqns. (3.39)—(3.40) is used. The first part of the weak form (3.25) is
discretized for one element as

/Grad&p A Gradgod§2~(5<p“/BETAeBengo =0 TK, ¢, (3.58)
Qo

where K7, is the element stiffness matrix of the electric field. The element load
vector p¢, of the electric field follows from the second part of Eq. (3.25) and reads

/j&pdAz&peT / JNTAr = 6¢°" pt, (3.59)
900 Qe
For the whole domain with n,, finite elements, one obtains

Ny

Joe" /BFTAfBengo - / JNTAr | =o0. (3.60)

e=1 Qe 8¢
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In a compact notation and taking into account that the virtual electric potential is
arbitrary, this can be written as

where K, = /%, K7, is the electric stiffness matrix and p, = |J.2, p, the electric
load vector. B

As mentioned in Eq. (3.26), the current density J on the boundary can be linear
in the electric potential. In this case, a constant contribution

K% =— / Aee N¢TNedD (3.62)

Qe

needs to be added to the (element) stiffness matrix.

3.2.2.4 Remarks on the FE formulation of the coupled problem

In view of the further numerical solution, it might be of advantage to write the
equations in a more compact fashion. To this end, the FE equations of the mechan-
ical field Eq. (3.48), the thermal field Eq. (3.55) and the electric field Eq. (3.61) are
written as follows:

Te

Gu = | (ws(u) — p§;) =0, (3.63)
G@:O (M%(@>96+K%(@)®e—p%(®)) =0, (3.64)
G¢:O(K;<p‘f—p;;):0 (3.65)

e=1

A rigorous partitioned solution approach of the electro-thermo-mechanical prob-
lems is considered. This consequently means that also the FE formulation is given
in a separated manner and that every field can be solved individually by keeping
the discrete solution vectors of the other fields constant.

In addition, a remark on the size of the element matrices and vectors shall be
given. The size depends on the physical degree of freedom ny,, of the problem
and on the number of nodes n,, of the element. The mass and stiffness matrices
have the dimensions (n,ny - 70) X (7pny - 7m), and the force vectors are of the di-
mension (nphy - 7,). The physical degree of freedom for the mechanical field is
nphy = 3 for the three-dimensional case — and for the thermal as well as for the
electric field, it is n,n, = 1. For a linear hexahedral element with n, = 8 nodes,
one can conclude that Kf;, € R**? and K§ € R¥*®. However, the size of the
matrices specifically depends on the polynomial degree p which is chosen for
the shape functions. If p is increased, the size of the matrices increases as well.
This issue is discussed in more detail in the following Section 3.2.3, where a brief
summary of high-order finite elements is given.
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3.2.2.5 Temporal discretization

The further numerical solution procedure requires a temporal discretization of
the coupled initial boundary value problem given by Eqns. (3.63)—(3.65). Be-
cause the mechanical and the electric fields are assumed to be quasi-stationary
problems, only the heat equation needs to be discretized in time. To this end, the
global finite element equation of the thermal field (3.64) is rewritten as

O(t) =M ' [po — Ko O(1)] = £(©,1) with ©(ty) = 6y, (3.66)
and this first-order differential equation is discretized by means of the Euler method
to
6"%;@” — £(,1) + O(AR). (3.67)

Therein, O(At?) denotes the error of the method, At is the (time-) step size, and
the subscript n refers to the n-th time-step. Neglecting the error, the function
f(©,t) can either be evaluated at the time ¢,

o) ~

®'n+1 = ®n, + Atf(®1u tn) 3 (368)
which leads to the explicit Euler method or at t,,+1
97l+1 = en + Atf(@n+17 tn+1) ’ (369)

leading to the implicit Euler method*. The significant difference between both pos-
sibilities is that a system of equations needs to be solved for the implicit case,
whereas the explicit case allows a direct computation of the new value ©. This is
due to the fact that the function f(®,,,t,) is simply evaluated for known values
©,,. Since the implicit case is known to be unconditionally stable [10], it is used
here as the standard time integration method. Henceforth, all time-dependent
quantities are discretized using the implicit Euler method.

3.2.3 High-order finite elements

In subsequent numerical examples, the mechanical, thermal and electric fields
are solved with the in-house finite element code AdhoC [45]. Since this code uti-
lizes the p-version of the FEM, some important principles shall be briefly consid-
ered here. In the early 90s, SZABO & BABUSKA [157] conducted pioneering work
on the high-order finite element formulation. During the past years, the p-FEM
was studied in detail, in particular the performance and convergence properties
[157, 158] and the extension to curved and thin-walled structures [43, 42], but
also the application to nonlinear geometric and material behavior [46, 47, 44, 81].
Its applicability has also been demonstrated for compressible metal powder [82],
which is of interest for the simulation of the FAST process. Today, it is known

4In the literature, the explicit case is often referred to as the Euler-forward method, and the
implicit case is known as the Fuler-backward method.
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that the p-version has some meaningful advantages over the classical low-order
finite element formulation (h-FEM). For example, it is more robust with respect
to locking effects as well as to geometrical distortion. Additionally, the p-version
can achieve a higher accuracy within the same computational effort.

The main distinguishing feature between the p- and the h-version is manifested
in the order of the shape functions. The classical 2-FEM typically involves the
polynomial order p = 1 or p = 2. For the p-version, high-order polynomials are
utilized for the shape functions. In this context, a distinction is made between
Lagrange and hierarchic shape functions. In the one-dimensional case, the standard
Lagrange polynomials are defined by the following formula

p+1 f* §
N© = 1] =—=. (3.70)
J=1,j#i =&

where the nodes ¢; can be identified by N/(¢;) = d,; for the one-dimensional
standard element with Q¢ = [—1, 1]. From this definition, one can conclude that
one-dimensional Lagrange elements have n,, = p + 1 nodes — and the complete
set of element shape functions changes every polynomial degree. The other con-
cept is based on hierarchic shape functions and were introduced by SZABO &
BABUSKA [157] to

Ni(©) = 51— ), (3.11)
No() = 501 +8), (372)
Nl(é) :¢i—1(§)s i:3747'“7p+1‘ (373)

Here, N; and N, are referred to as the nodal shape functions, and the N, for i > 2
are known as the internal shape functions or bubble modes. They can be calculated
from

: 3
050 =L [ L@ = o 1O = Lol 5> 1. 67)

where the L;(£) are the orthogonal Legendre polynomials®. In contrast to the La-
grange polynomials, the application of hierarchic shape functions leads to N;(1) =
Ni(—1) = 0 for ¢ > 2 and, further, hierarchic elements have no internal nodes.
Moreover, all shape functions of polynomial order p — 1 are contained in the
shape function of order p. This allows a very efficient and elegant computer im-
plementation since only one new shape function needs to be added for every new
polynomial degree and since the stiffness matrix becomes hierarchic.

5Legendre polynomials can be evaluated by means of the so-called Rodriguez formula:

1 da»

2 n
- S @20, n=0,1,2,..
2nn! dam (@ )om T

L, (z)
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After the one-dimensional case, an extension to the three-dimensional case for
hexahedral elements is given®. Based on the standard hexahedral element, see
Figure 3.4, the following types of shape functions are introduced [157]:

o Nodal modes are the standard trilinear shape functions, given by

NY%4(6) = S0+ GO +mm(1 +G0). (375)

where &, is the local coordinate of the i-th node.

e Edge modes are used to describe each of the twelve edges. For example, the
shape function for first edge E4, see Figure 3.4, reads

NEL@) = 10— M- Qae), P> 1. (3.76)

e Face modes are defined to describe every single face. For first face F; in
Figure 3.4, one obtains

NEL(6) = 5= Qau@osn), 0> 1. (377

e Internal modes are locally defined and vanish at the faces. They read

In the previous classification, the indices ¢, j, k are the polynomial degrees in the
corresponding local direction £, 7,(. To be mentioned here, apart from the dif-
ferent modes, are the ansatz spaces out of which the polynomials are chosen.
There are three different spaces implemented in AdhoC: the trunk space, the ten-
sor product space and the anisotropic tensor product space. For further details and a
comprehensive discussion of the ansatz spaces, the reader is referred to [157, 158].

Comparing the p-version with the h-version of the FEM, there is another dis-
tinguishing feature to be considered, namely the mapping procedure. The p-
FEM reaches convergence by increasing the polynomial degree in a coarse mesh,
whereas h-FEM increases the number of elements to achieve convergence with
mesh refinement. In the latter case, the shape functions can be used to approx-
imate the solution as well as the shape of the elements. This is the well-known
isoparametric mapping concept, as outlined in Section 3.2.1. In order to accu-
rately capture complex geometries and curved boundaries, a different mapping
concept was developed for the p-version. Here, the so-called blending function
method is employed, allowing for a treatment of arbitrary parametric edges and
faces. The mapping function Q° of the element reads

8 6 12
2= Q6 =D NN Xi+ Y L&)+ eid) (3.79)

5The two-dimensional case — hierarchic shape functions for quadrilaterals — is discussed in [158],
for instance.
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Figure 3.4: Node, face and edge definition of a high-order hexahedral element.

and consists of three parts: The first part denotes the standard isoparametric map-
ping of trilinear shape functions of the eight-noded hexahedrahel element. The
second term is known as the face blending term and allows to map curved element
faces. The third term is referred as edge blending term, taking curved edges into
account. Expressions for f; and e; can be found in the literature, see e.g [19]. For
further reading on three- and two-dimensional mapping concepts for high-order
finite elements, a reference is made to [19, 43].

3.24 Numerical integration

So far, the computation of the integrals arising in the weak formulation has not
yet been discussed. However, this is mandatory for setting up a discrete sys-
tem of equations. Since polynomials have been applied for discretization, Gaus-
sian quadrature is used as it allows to integrate polynomials exactly. In the one-
dimensional case, this procedure reads

1
Ngp

[ 1o~ > 6. (3.80)

-1

Gaussian quadrature means that an integral can be approximated as follows: The
integrand f(¢) is evaluated at all quadrature points §; and multiplied with cor-
responding weighting factors 1,. The sum over all ny, Gauss points then ap-
proximates the integral. Before the Gaussian quadrature can be applied, a trans-
formation from global into local coordinates needs to be carried out. For a three-
dimensional hexahedral element, one can deduce

/f Mf/f ) J5(€) A0 = ///f@MJ%mOMMMB&)

-1-1-1
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with Q, = [(-1,41) x (=1,+1) x (=1,+1)] and J* = det J°. Afterwards, the
Gaussian integration can be applied to approximate the triple integral as

Tigpe Ngpy Tepc

1 1 1
[ [ ] 70 7@ dcanacm 30505 €m0 Iy 6 WelW, We,
1595 i=1 j=1 k=1

(3.82)

This procedure allows to approximate the integration of the finite element ma-
trices and vectors. As a simple example, the element stiffness matrix K, of the
electric field is taken under consideration. Applying Gaussian quadrature leads
to

Tepg Mgpy Tepc

K- (BB ans Y S (BN W

g i=1 j=1 k=1

(3.83)

In this expression, the term [B*"A¢B* needs to be evaluated at the cor-

} }guT]]ka
responding quadrature points. If this is done at all n,, integration points £

Eq. (3.83) can be rewritten as

gp’

Tlgp

K; = Z BET(gig)Az;(Sig)Be(Sig) ‘]e(Eig) W(fig) . (3.84)

ig=1

For the thermal and the mechanical field, there are more contributions to the stiff-
ness matrix due to their nonlinear nature. In view of the p-version of the finite
element method, the stiffness matrix computation is a crucial part. If the polyno-
mial degree is increased, the computational effort increases drastically. A way to
improve the numerical integration procedure for high-order finite elements can
be found in [83, 115].

3.2.5 Solution of the discrete problem

For the solution of the discrete finite element equations, the Newton-Raphson
procedure is applied to the nonlinear problem. Since the Newton method can
be seen as the standard solution method in the FEM, there are several detailed
descriptions to be found in the literature, see [29, 13, 171] for instance. As it is
also discussed in Chapter 4 in the scope of treating coupled systems, it will first be
introduced very briefly. A nonlinear system of equations is considered, denoted
by G(y) = 0, for instance. The expansion into a Taylor-Series and neglecting all
high-order terms leads to a linear system of equations that is solved repetitively.
In other words, the objective is to compute a new increment Ay’ in every i-th
Newton iteration such that the new solution is updated by

v+ = yi 4 Ayt (3.85)
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The increment can be computed by solving

oG i_ ;
By Ay' = -G(y"). (3.86)

y=y*

The Newton-Raphson iteration is terminated if a certain tolerance criteria, for ex-
ample ||Ay’|| < ¢, is satisfied. In view of the electric, thermal and mechanical
fields, the general vector y is replaced by the discrete vectors for the electric po-
tential, the temperature or the displacements. Further, the derivative 9 G/Jy can
be substituted by the tangential stiffness matrix, finally leading to

Kl Au' = —Gy(u) — ut'=u'+Ad, (3.87)

u=u’

for the mechanical field,

Krolg e AO' = —Ge(@) — O7'=0'+A0", (3.88)
for the thermal field and

Krgl,_pi Ap' = =Gy(¢) = ¢ ="+ A, (3.89)

for the electric field. As reported in [10, 171] for instance, the initial iterate of the
Newton method can be an important feature in nonlinear finite element analysis.
An initial iterate that is close to the solution leads to less iterations and therefore
reduces computational effort. Instead of using the converged solution from the
previous time-step, an extrapolated initial guess is used in [75, 141, 126], leading
to promising results. Besides, there are several other possible approaches to im-
prove the Newton-Raphson procedure. A detailed discussion of these methods
is provided in the textbooks of KELLEY [101, 102].

Finally, a remark on the solution of the mechanical field shall be given. For
example, in the computation of inelastic materials, the finite element formulation
can be interpreted as a differential-algebraic equation (DAE) system [72]. Apart
from the displacements u, the internal variables q are the unknowns. Based on
this interpretation, the discrete nonlinear DAE system for the mechanical field
can be written as

Gmm@:{gmm}:o7 (3.90)

wherel(u, q) denotes a local system on element level for the computation of the
internal variables and g(u, q) represents a system on global level for the global
equilibrium. Due to this special structure of the system, HARTMANN [72, 73]
and ELLSIEPEN & HARTMANN [48] proposed to use the multilevel-Newton method
(MLNA) in which the local and global parts are treated separately. For a discus-
sion of the MLNA in thermo-mechanically coupled processes, see e.g. [141, 147],
and for electro-thermo-mechanical applications see [146], for instance. Also, the
literature cited in the mentioned articles is able to provide further details.
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3.3 Numerical solution of the surrounding fluid field

This section addresses the numerical treatment of the fluid field, henceforth de-
noted as X, which describes the surroundings of the body B. Particularly, the
focus is placed on a numerical solution procedure of the energy equation using
the finite volume method (FVM). Since the conservation of energy in a participat-
ing medium is coupled with other conservation equations, this issue is also ad-
dressed in the following section. In addition, a brief introduction to the solution
algorithm for the coupled fluid equations is given.

3.3.1 Basic concepts and finite volume method

One of the most popular methods used in computational fluid dynamics (CFD) is
the finite volume method (FVM). It is well described in the literature, see textbooks
such as [133, 62, 164, 138]. Here, a brief introduction of some basic concepts will
therefore suffice. The formulation used in the following is strongly oriented to-
wards the work of PATANKAR [133].

In contrast to the finite element method, the FVM utilizes a constant weight
function n = 1 in order to make the mean residual vanish. To achieve this, a
so-called control-volume (CV) formulation is set up. In this formulation, the do-
main of interest is spatially discretized by means of n., control-volumes or finite
volume cells. In the three-dimensional case, the volume of one CV amounts to
AV = Ax Ay Az. The main idea is now to integrate the conservation equations
over the control-volumes in such a way that the balance is fulfilled in an integral
sense in every CV. Figure 3.5 shows the division into control-volumes (only for
the one- and the two-dimensional case, for the sake of clarity). Due to the aver-
aging nature of the FVM, the balance equation is fulfilled at the interior nodes,
denoted by P in Figure 3.5. Each point has n, = 2 X ngin neighborhood points,
with ngi, € {1,2, 3} accounting for the dimension of the problem.

In order to identify each neighboring points of P, the compass notation by
PATANKAR [133] is used, where all neighbor points can be identified by the sub-
scripts W, E, S, N, T, B, see also Figure 3.5. The bottom B and top T" points
are the remaining compass notation subscripts for the three-dimensional case. In
order to find a discrete system of equations, a mandatory ingredient is to approx-
imate the spatial derivatives of a variable ¢ by means of its neighboring points.
In the following, central finite differences are used to approximate the derivative
at P by

ox

_ @) —9@)w _ ¢@)p - o(@)w .

P Tp —Tw 5xf: + OIU;

(3.91)

For a finite volume formulation, the energy equation Eq. (2.161) is written in
index notation and is integrated over a control-volume

' 00 00 0 00
/ prhW +pf(3f’l/']'a.7rj - %A@f 67% — RdV = 0, (392)
v
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Figure 8.5: One-dimensional a) and two-dimensional b) control-volume definition and
compass notation of the neighboring points.

where the heat source term R is assumed to be constant. In the scope of the FVM,
the individual terms are approximated as follows: Following PATANKAR [133],
the integral of the in-stationary part is discretized as

er. —er
/—va "“At AV, (3.93)

where the implicit Euler method was used for the time-discretization of the inte-
rior node temperature OF. For the convective term, one obtains

96 AV
/ Vig AV =[(10)e = (1 ©)u] T~
]

v AZV AV (3.94)
+ [(020)5 — (12 0).] Ay + [(v30)¢ — (v3 O)y] As

In this part, the terms need to be evaluated at the locations in midway between
two neighbors. For example, in the expression (v ©),, a temperature between
P and E is required at the location denoted by e, see Figure 3.5. This can be
achieved by using a central difference scheme (CDS), such that the temperature is
approximated by

1
0. = 5(Or +6x). (3.95)

Another possibility is the so-called upwind scheme, see e.g [133], which is a case-
sensitive procedure with respect to the flow direction:

v.>0: ©6,=0p and v.,<0: ©O,=0g (3.96)
If the CDS is employed, the integral in Eq. (3.94) simplifies to
' 00 V1 AV (%)) AV U3 AV
[ o AV =[5 00— )] T3 0 —om] T+ [ O - 0m)] T
v
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(3.97)

After that, attention is placed on the third part of Eq. (3.92). Integrating over the
control-volume AV and assuming a continuous ) leads to

00 00 AV 00 00 AV
aT,AfaszV Af{(az);(az) ]Az Af{(ay);(aﬁ)iry

(28 (e 1ar
f@zt(‘)szz

In order to dispose of the derivatives, central finite differences given by Eq. (3.91)
are utilized. For example, if this is applied to the 2 coordinate at point e, one
obtains

659, () w2522 o

(3.98)

ox ox Ax 0% 0%y Az

This can be done analogously for the remaining derivatives in Eq. (3.98). The last
term in the energy equation is the constant heat Its discretization is straightfor-
ward:

/ RAV ~ Rp AV . (3.100)
14

Finally, all equations are formulated with respect to the interior volume node P
and its corresponding neighbors. For a finite volume mesh consisting of n., fi-
nite volumes, this leads to a system of equations that gives an approximation to
the energy equation. For more details, the textbooks [133, 164] are to be recom-
mended, as they also address the treatment of boundary conditions as well as
further schemes to compute the convective term.

3.3.2 Buoyancy-driven flow

During the solution of the energy equation, it was assumed that the fluid field is
known, i.e. the velocity vector ' and the density p; are given. This is, however, in
general not the case, which is why two other conservation equations need to be
taken into consideration. The first equation is the equation of motion, that describes
the balance of linear momentum (Eq. (2.36)), to obtain the velocity, and the second
is the continuity equation, see Eq. (2.29), for the computation of the density.

The coupling of fluid flow with temperature changes in the fluid field leads to
a phenomenon which is known as Buoyancy-driven flows”. It describes the effect
of induced fluid flow under the presence of gravitational forces in conjunction
with a density that varies with temperature. The corresponding forces drive the

"This effect is also known as natural convection.
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fluid flow and are known as Buoyancy forces. In order to cover all these effects,
the fluid field is described by three coupled conservation equations [133, 62]: The
first equation

—

o0v
PEay
delivers the velocity ' and is known as the equation of motion. Therein, p; denotes

the fluid pressure, v is the fluid viscosity and [ is the force vector. The second
equation reads

+ pr (grad @) 7 = —grad pr + 14 grad (div @) + f(p, ©) (3.101)

5}

P L div (pe ) = 0 (3.102)
ot

and is known as the continuity equation to obtain the density. Finally, the energy
equation

Cpf P (aa—? + ¥ grad @) =div (le, grad ©) + R (3.103)
is used to compute the temperature. In Eq. (3.101), p; denotes the pressure, and
the vector ]F can been seen as a source term that can involve gravity or buoyancy
forces. The interaction between temperature, density and fluid motion is quite a
complex problem, and the numerical solution is a challenging issue. Buoyancy
forces, which are responsible for the fluid motion due to natural convection, can
be approximated by means of the Boussinesq approximation. Therein, the buoyancy
force is related to the temperature difference and the volumetric expansion. It
reads®
1 dpe

F = O -0y k with By=-——=t | 3.104
f=ptBv( 0) Bv 00| ( )

where £ is the gravitation vector and Sy is the volumetric thermal expansion
coefficient at constant fluid pressure py.

Similar to the energy equation, the equation of motion is also discretized by
means of the FVM. Details can be found in many textbooks, see again [133, 164,
138] and the literature cited therein.

Another issue to be mentioned is the treatment of turbulence. Turbulent fluid
flow is characterized by chaotic changes in space and time of fluid properties such
as velocity, density or temperature. In order to cover these effects, the standard k-
¢ turbulence model is used — which is known as one of the most common methods
for turbulent flow. A detailed introduction is omitted here, due to the complexity
of the problem. Further reading regarding the modeling of turbulence is given
in the textbooks mentioned above. Apart from that, there are several specialized
works focusing on turbulence and its modelling; a comprehensive introduction
to which is given in [108, 139], for instance.

8See the textbook of KUNDU & COHEN [104] p.124 for details on the derivation of the Boussinesq
approzimation for liquids and gases.
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3.3.3 Solution algorithm

The previous sections served to address the discrete formulation of the fluid
equations and the coupling between the energy equation Eq. (3.103), the continu-
ity equation Eq. (3.102) as well as the equation of motion Eq. (3.101). However, a
solution requires a special treatment of the pressure gradient p; which occurs in
the equation of motion. There is no equation out of which p; can be computed
directly, so this has to be done in an indirect manner.

For compressible media, the density can be calculated from the continuity equa-
tion which can then further be used to find the pressure by means of the funda-
mental equation of state. This equation relates the pressure p; to the volume V/
and the temperature ©. This can, however, lead to difficulties for incompressible
media. To tackle both compressible and incompressible media with numerical
methods, it is possible to employ a combination of the equation of motion and
the continuity equation, yielding an equation for the pressure. This equation is
known as the pressure equation and reads

div(grad ps) = —div <pf % + pr (grad ¥) 0 + ¢ grad (div 0) + f) . (3.105)
For a detailed derivation of the pressure equation, the textbook of FERZIGER [62]
is recommended.

A special algorithm — referred to as the semi-implicit method for pressure linked
equations, typically abbreviated as the SIMPLE algorithm — serves to solve the
coupled system. This procedure was developed by PATANKAR [134] in the early
1970s. In the subsequent simulations, the fluid solver OpenFOAM?® [130] is ap-
plied. As the package also uses a SIMPLE-based procedure for the computation of
buoyancy-driven turbulent flow, the SIMPLE-algorithm shall be outlined briefly.
Following [134], the general procedure can be summarized as follows:

1. Give an initial guess pf for the fluid pressure.
2. Solve the equation of motion using p; to obtain the velocity vector ¢*.

3. Solve the pressure-correction equation Eq. (3.105) to obtain the corrected
pressure p'.

4. Calculate the pressure from ps = p; + pj.
5. Correct the velocities ¥ = ¥ + ¥ and set p; = py.

6. Solve with given velocity all other equations, for example the energy equa-
tion, to obtain the temperature © or all turbulence quantities.

7. Check convergence of the procedure. If not converged, go to step 2) and
repeat until convergence.

9The used OpenFOAM standard solver is the buoyantSimpleRadiationFoam package.

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

3.4. Numerical radiative heat transfer 71

So far, the SIMPLE algorithm does not include the solution of the radiative trans-
fer equation to obtain the radiative intensity. The impact of thermal radiation ap-
pears as an external heat source in the energy equation, so the computation can
be done during step 6) of the SIMPLE algorithm. In this step, while solving the
energy equation, the radiative source term R, = V - ¢, is assumed to be constant,
i.e. ¢ is given and has to be computed by an additional procedure. There exist
several numerical procedures to obtain g;, which are discussed in the following
section.

3.4 Numerical radiative heat transfer

In this section, three different methods to perform a numerical thermal radiation
analysis are introduced. It is assumed that the temperature on a radiating surface
is known and, moreover, that the radiative heat flux needs to be determined. For
radiation in vacuum, the view factor method is extended to a form that is suitable
for computer implementation. For participating media, two different methods
are presented, namely the discrete ordinate method and the method of spherical har-
monics. Following a brief description of the methods’ principles, they are applied
to a benchmark problem for the sake of verification.

3.4.1 View factor radiation

With respect to an elegant computer implementation of the view factor method
(VEM), the radiative exchange between black surfaces given by Eq. (2.157) is re-
capitulated

N N

G = Ep; — Z By Fij — Ho = Fi_j (Bvi — Ev;) — Ho; . (3.106)
j=1 j=1

By introducing the Kronecker delta function denoted by 4,5, one obtains [121]

N

N
G =Y (0 —F;) Bo;— Hy with By, =Y 06;FEy;, (3.107)
j=1

j=1
which can be rewritten in matrix form
q=Ae,—hy. (3.108)

Proceeding in a similar way for the radiative exchange between gray, diffuse sur-
faces described by Eq.(2.160) further leads to a system of equations given by

Dq=Ae,—hy. (3.109)
Therein, the matrices D and A include the view factors and have the following
components

0ij — Fij

Dij = % + —Fz’—j and AZJ = 6ij — E_]‘ . (3110)
J
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From this equation, it is possible to calculate the heat fluxes (¢;) or the temper-
atures (E,; = og, ©F) on every finite surface element 4;. In practical computer
applications, the radiating surfaces between which the energy transfer shall be
computed are discretized in n, finite subsurfaces.

In the next step, the matrices D € R"*™ and A € R™*"™ are computed. This
requires a view factor evaluation for every single surface element. Since these fac-
tors are only geometric properties depending on the surface orientation and the
distance between two surfaces, they can be calculated efficiently with computers.
The last step implies the solution of the system of equations given by Eq. (3.109),
either for q or for e,.

In the following, the fluid solver OpenFOAM serves to carry out a thermal
radiation analysis in vacuum, enabling the use of view factor radiation. Because
OpenFOAM is a finite volume solver, the space between the radiating surfaces is
discretized by finite volume cells. The boundary of this mesh is then used as the
interface discretization into ng subsurfaces between which the radiation analysis
is carried out.

3.4.2 Method of Spherical Harmonics

The method of spherical harmonics or Pn-approximation is a well-known method to
approach the radiative transfer equation in a participating medium. It transforms
the integral and differential equation of radiative transfer (RTE, see Eq. (2.163))
into a set of (N + 1)? simultaneous partial differential equations. Here, the coef-
ficient N denotes the order of the approximation. First introduced by JEANS [94]
for the one-dimensional case, it was generalized for high-order (N = 3) and three-
dimensions by YANG & MODEST [175, 122]. The great advantage of this method
can be seen in the transformation of the space- and direction-dependent radiative
transfer equation into relatively simply partial differential equations.

The frequently used and most popular method is definitely the lowest order P;-
approximation which is introduced in the following paragraph. Following [175],
the intensity (7, 5) is written as a Fourier series, and truncating after the first term
(N = 1) delivers the P;-approximation'®

~ Y Z (P)Y™(5) =~ 1YY + DY+ 1Y + 1y (3.111)
=0 m

Therein, I]*(7) are position-dependent coefficients, and Y;(s) are direction de-
pendent spherical harmonics given by

Yy

0, 0) = { cos(my) P (cosf) form >0, (3.112)

sin(ma) P (cosf)  form > 0.

Here, the direction vector §'is expressed in the polar () and azimuthal (¢) angles,

9For N — oo, the intensity is represented exactly.
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and P are the so-called associated Legendre polynomials''. Evaluating the spherical
harmonics, Eq.(3.111) can be written as

() sin @ cosp o
I(70,0) = I9F) + [ 7N | - [ sind siney | = a(7) + b(7) - 5(6,%) . (3.113)
I} (P) cos

As shown in [121], it has advantages to relate the intensity to physical quantities.
The incident radiative heat flux can be approximated as

G = / (7, 8)dT ~ / o(F) + B(F) - 50, 4) dT = dr a(F). (3.114)

4T

An approximation to the radiative heat flux vector can be obtained in a very sim-
ilar fashion:

47 = / I(F.5)§dY ~ /a(f) 5+ b(F) - 5(0,4) AT = 4/37b(F) . (3.115)

4

Finally, the intensity can be written in terms of incident radiation and the radia-
tive heat flux vector as
. 1 .
175 = o [6@+3a7 - 7] - (3.116)
7

This relation is substituted into the RTE given by Eq. (2.163) and, further, the re-
sulting expression is multiplied by the first spherical harmonics Y. Integrating
over all solid angles eliminates the direction dependency — and some mathemat-
ical rearrangements, following [121], yield an equation for the radiative heat flux

V- q() = &[4 (7) — G(7)] - (3.117)

To complete the set of equations, an expression for the incident radiation is needed.
To this end, the RTE is once again multiplied with the remaining spherical har-
monics Y, m € {—1,0,1} and a further integration over all possible directions
finally leads under the assumption if linear-anisotropic scattering to

VG(F) = —(38 — A10)q(7). (3.118)

Both equations are known as the governing equations for the P;-approximation,
which are now a function of space only. The treatment of boundary conditions
is not discussed here, and it is referred to [175, 122] for more details. In order
to solve the fluid field, the set of equations describing the P;-model needs to be
solved for every control-volume. This can be done with standardized solvers
for the numerical solution of PDEs and is included in the CFD software Open-
FOAM [130].

" The associated Legendre polynomials can be evaluated from the formula

. (1 _ aJ,Z)\m\/Z dntiml

onp! dzn+iml

PM(z) = (—1) (z>+1)".
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3.4.3 Finite Volume Discrete Ordinate Method

The second model for numerical radiative heat transfer in participating media is a
combination of the finite volume and the so-called discrete ordinate method (DOM),
henceforth denoted as finite volume discrete ordinate method (fvDOM). Similar to
the Py-approximation, it transforms the RTE into a set of NV PDEs and is often
referred to as Sy-approximation.

First, the DOM was proposed by CHANDRASEKHAR in [25]. Generally, the pro-
cedure is based on a discretization of the directional dependence by means of
finite differences and on solving the RTE with respect to a set of NV discrete direc-
tions for the total solid angle of 47. However, this can also be done by using finite
solid angle volumes leading to the name finite volume discrete ordinate method.
Using a control-volume formulation has several advantages since modern CFD
solvers are based on such a discretization and therefore, the extension to discrete
directions can be done elegantly. A complete introduction to the fvDOM is given
in [27], for instance.

An absorbing, emitting and anisotropically scattering medium is considered,
for which the change of intensity is described by the RTE. In the discrete ordinate
method (DOM), the integrals of the intensity over the solid angle are approxi-
mated by numerical quadrature. If the direction is discretized by ;3-, i=1,2,...,n
discrete ordinates, the heat flux can be expressed as

7 = / ORI SRAGES (3.119)

Therein, the coefficients v; are the quadrature weights. Proceeding in the same
fashion allows to write the incident radiation as

G(7) = / I8 A0 = Y () (3.120)

In order to perform the numerical quadrature, the discrete directions need to be
linked with the corresponding weights. This can be accomplished by a discretiza-
tion of the direction using so-called direction cosines u;, v;, w; such that

S_;' = 1Li€1 + ’Uz'f?g + wi€3 (3121)

holds. Therein, the € are the unit vectors in the corresponding global z,y, z di-
rection. There is a weight factor ~; for every direction cosine. Several quadrature
schemes have been developed and are discussed in [121], see also the literature
cited therein. Different sets of directions and weights can be chosen. The simplest
case utilizes N = 2 direction cosines in every principle direction. In the end, this
leads to a total number of n = N (N 4 2) = 8 different directions, each described
by one equation. Here, the S;-approximation leads to weight factors that are con-
stant v = 7/2 and the ordinates are also constant u; = v; = w; = «/6. Itis to
be mentioned that increasing the order of the scheme causes a drastic increase in
computational effort.
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In the next step, the RTE can be approximated under the assumption of linear
scattering by means of a set of n discrete equations to [121]

S+ VIi+ 81 =kl + 22 [GO) + Ay () - 5]

0y o Lo ] (3.122)
=rl,+ E; L [1+A8-5), i=12,..n.

Since G and ¢ are typically unknowns, the general, iterative solution procedure
reads as follows: Starting with an initial guess for G and ¢, the intensities I; are
determined from Eq. (3.122). Then, the incident radiation and the radiative heat
flux is updated and the procedure is repeated until convergence.

In the scope of computing numerical solutions, a finite volume formulation of
Eq. (3.122) is desired. To this end, the source term on the right hand side in this
equation is abbreviated by R;. Thus, an integration of discrete ordinate equation
Eq. (3.122) over the control-volume AV gives for i = 1,2, ..., n direction cosine §;
/ §-VI+BLdV = uia[i +u,.3]i +wial" +ALdV = / R;dV, (3.123)
J J Jdx dy Jz J

which can be expressed in a discrete manner as [27]

A
Ul(le, _qu)l +Uz(In

AV AV
Az IS )7—|—u7i(]t1—[b1)§+ﬂlgAv:sz AV (3124)

i s Ay

This equation is formulated in the compass notation, as used in the previous sec-
tion for the discretization of the energy equation, for example. Finally, Eq. (3.124)
can be recast into a system of equations to compute the intensity at every CV.
However, i = 1,2,...,n equations need to be taken into consideration for every
finite volume cell. As known from the literature, the usage of discrete ordinates
has some drawbacks. For example, it does not generally ensure radiative energy
conservation [121]. To this end, a fully finite volume approach has been devel-
oped in which the integration of the RTE is performed over a control-volume and
also over a control solid angle. This control solid angle is typically a unit sphere
with 47. For more details and further reading, it is referred to literature such as
[121, 86, 27].

3.4.4 Benchmark analysis for participating media

In this section, the Pj-approximation and the fvDOM shall be compared to ana-
lytic solutions of radiative heat transfer in participating media. To this end, the
focus lies on two parallel and infinitely long walls, facing each other directly at
the distance d. The radiating wall surfaces have the temperatures ©; and ©, and
feature different emission coefficients, ¢; and ¢,, as given in Table 3.1. The space
between the walls is filled with a participating medium, see Figure 3.6. Since it
is only the energy transfer by thermal radiation that is to be studied, the other
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transfer modes — convection and conduction — are suppressed. This can be ac-
complished by setting the gravitation to zero § = 0 and by neglecting turbulence
to avoid natural convection. Further, the heat conduction coefficient of the fluid
is set to Ao — 0, which leads to a suppression of thermal conduction in the fluid.
The two-dimensional fluid domain Q" is discretized by 40 x 40 finite volume cells.
With respect to the fvDOM, the direction angles are discretized by means of 24
discrete ordinates.
In the following, the results are presented using the dimensionless quantities

_ et(x) — 63

QT
=2 "% g g 3.125
T Tgr_er M (3125)

o (01 — 03)

related to the temperature (®y,) and to the wall heat flux (¥},). In Figure 3.7(a),
®,, is plotted against the dimensionless parameter h = x/d for different optical
thicknesses kp = adand k € {10,2,1} where « is the absorption coefficient.

P d >

~ 01, O, 200 K
(G2 100 K
O, €2 €1 1.0 -
E9 1.0 -

T Ao ~0 J/KgK

ogp  5.67-107% W/m?K*

Figure 3.6: Schematic sketch of two infinitely long Table 3.1: Geometrical and

radiating plates filled with a participat- physical set-up.

ing medium.

Both the P;-method and the fvDOM show a good agreement with the ana-
lytic solution of HEASLET ET AL. [78]. However, for a low optical thickness,
the Pj-approximation loses accuracy — which is in agreement with the literature,
see [121]. Thus, if the problem under consideration deals with small optical thick-
nesses, it is recommended to use the fvDOM since the P;-methods tends to un-
derestimates the temperature slightly. However, it is remarkable that for the fv-
DOM, the computational effort is much higher than compared to the P;-method.
For this example, it shall be mentioned that the computation time is increased by
a factor of 12 in of the case kp = 10.0.

Further, the dimensionless parameter ¥y, is plotted over the optical thickness
and compared to the analytic results given by HEASLET ET AL. [78]. Again, the
results show a good agreement of the fvDOM with the analytic solution, whereas
the P;-method results in a slight overestimation of the heat flux.
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(a) Normalized temperature. (b) Normalized heat flux.

Figure 3.7: Results of the Pj-method and the fvDOM compared to analytic results given
by HEASLET ET AL. [78].

3.45 Remark on numerical radiative heat transfer in a coupled
multi-field analysis

This section provides some concluding remarks on the application of the different
radiation models in a multi-physical context. Here, it is assumed that a body B
with radiating surfaces is coupled with the surrounding radiation field ¥.

To begin with, radiation in vacuum using the view factor method is taken into
consideration. According to the Dirichlet-Neumann coupling formulation given
in Section 2.3.4, the coupling procedure reads as follows: First, the surface tem-
perature and displacements of a body are transferred to the radiation solver, fol-
lowed by the calculation of the view factors based on the current configuration.
Then, Eq. (3.109) is solved to determine the radiative heat flux on the coupling
surface and transferred back to the thermal field. This procedure needs to be
repeated in every coupling iteration, as illustrated in Figure 3.8.

Cet OF Update Q3 Solve for q*

> | L
Get u” Compute FF ; Crtqgf = AFef —hf Send q

Figure 3.8: Sequence of the VFM in a partitioned multi-physics framework.

For the case of a participating medium, the procedure is slightly different from
that, see Figure 3.9. After the configuration update of the fluid domain Q] based
on the current deformation of the body 5, the energy equation of the fluid field
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is solved using the temperature on the surface as a new boundary condition, fol-
lowed by solving the RTE using the P;-method or the fvDOM. Since both equa-
tions are coupled, several iterations are required. If balance between the energy
equation and the RTE is accomplished, the new heat flux on the coupling domain
is transferred to the thermal field. This procedure is repeated in every coupling
iteration too.

Get ©F Solve Fluid Field with

. s, kL
Get uf Update 0; SIMPLE Algorithm Send g

T Iterate l

Solve RTE with
P; or fvDOM

Figure 3.9: Sequence of the Pj-method and the fvDOM in a partitioned multi-physics
framework.
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Solution of coupled problems

This chapter focuses on an in-depth discussion on solving coupled multi-field
problems, paying special attention to partitioned solution strategies. After a
comparison with monolithic schemes, algorithms to improve the convergence
by means of acceleration methods are proposed and concepts for an energy-
conserving data transfer are introduced. Finally, global coupling strategies on the
example of volume- and surface-coupled problems are devised and some aspects
of computer implementation are addressed.

4.1 Coupling algorithms: an introduction

Research on coupling algorithms for multi-field coupled problems has a long
tradition in computational mechanics. It is especially classical issues such as
thermo-mechanical problems or fluid-structure interaction that provide the mo-
tivation for the development of advanced algorithms and procedures. Besides,
several other multi-physics phenomena are taken under investigation, for ex-
ample electro-thermo-mechanics [76, 149, 51], chemical-thermo-mechanics [181],
electro-(magneto)-mechanics [160, 113, 40] or thermal-fluid-structure interaction
[12, 137], to name a few.

In all these examples, the question how to solve coupled problems like this
leads to a decision between a monolithic or partitioned scheme. Based on the
monolithic approach, it is possible to obtain a solution simultaneously in one step
during each time increment — while the partitioned approach requires several
coupling iterations to reach a result. Both approaches have different properties
as well as advantages and disadvantages over the other. This will be discussed
in the following section. In order to provide a very general description of both
approaches, the coupled physical problem is first reduced to a nonlinear system
of equations on an abstract level. This is motivated by the assumption that a
spatial and also a temporal discretization of the physical fields have been carried
out. Thus, a nonlinear and coupled problem, described by n; discrete systems of
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equations, can be formulated as

Gl(Z17 Z2, .. Z'n,f) = 0, Gl : Ierl — Rdl

GQ(Zl7 Zy, ..., Z’"rr) = 0, GQ : Rd2 — IR,dQ
. (4.1)

Gy (21, Z2, ooy Zn,) = 0, Gy, R — Riwr.
The global, discrete nonlinear system is finally written in a compact fashion as
G(z)=0, G: R' 5 R?, (4.2)

where the global solution vector z = (z1, 2z, ..., z,,)T includes the variables of n;
physical fields. For the sake of clarity and also to avoid confusions, a remark on
the used sub- and superscripts shall be given: Subscript n, which refers to the n-th
time-step, is used for the temporal discretization. The case in which the subscript
is dropped always refers to the current time-step. Further, the superscript & is
utilized, referring to the k-th coupling iteration. All other notations are explicitly
mentioned in the text.

4.1.1 Monolithic formulation

The monolithic approach solves G(z) = 0 simultaneously by means of the Newton-
Raphson procedure

oG
0z i

Z=27

Az" = —G(z") with AzF =z —2* (4.3)

If |G(zF*1)|| < tol, the procedure converged successfully. The required lineariza-
tion of the fully nonlinear system leads to

9G1 Han
0z T 0z
0G . .
e (4.4)
Z p
9G1 ﬁan
Ozny "7 Oz

The coupling algorithm is generally embedded in a time integration procedure, as
shown in Figure 4.1. This consequently means that a monolithic approach con-
sists of two loops: an outer time-stepping loop and an inner Newton-Raphson
iteration loop that can be seen as the coupling iteration loop. The main advan-
tage of this procedure over the partitioned scheme is the unconditional stability’
and, further, it can reach quadratic convergence rates of the Newton-Raphson
procedure. On the other hand, this scheme has some drawbacks. First of all, the
consistent linearization will lead to cross-derivatives, i.e. every field needs to lin-
earized with respect to the variables of the other fields. Apart from complicated

!In fact, this does not mean that the monolithic scheme convergences in any case. It is said to
be unconditionally stable when applying an implicit time integration procedure [3].
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Solve Full System
with Newtons’ method

Check Convergence

Zn+1

Zn 9G k41
t 9| auk -~ If |G(z 7)\\ < tol 11
z=zF = Zny1 = Z
ZFHl = gk Agk

2k — g+l
New Iteration
If not converged

Figure 4.1: Monolithic solution strategy.

derivatives, which may be difficult to compute, the global system matrix required
for the Newton-Raphson procedure might become extremely large and also un-
symmetrical. For some cases, the numerical effort might be extensive, and the
overall simulation run-time will turn out too high. Another restriction is given
by the fact that black box solvers cannot be used in a monolithic scheme. This
leads to approaches that are not very flexible — ruling out, for example, combina-
tions of different software products or the use of different discretization schemes.

Nevertheless, this approach is widely used in computational multi-physics,
and it is in particular applied to thermo-mechanical problems. A comparison
of a monolithic and a partitioned approach for thermo-mechanics can be found
in [30], the example of small-strain thermo-viscoplasticity is considered in [147],
where a detailed study on both algorithms was carried out based on a multi-level
Newton algorithm. Thermo-plasticity is also considered in [142] and for finite
strain thermoelasticity, reference is made to [70].

Further examples for other multi-physics problems that were solved simulta-
neously are, for example, fluid-structure interaction problems. A performance
analysis and comparison between a monolithic and a partitioned approach was
carried out by DEGROOTE ET AL. [36] and HEIL ET AL. [80]. For more details con-
cerning the treatment of FSI problems in a simultaneous manner, the interested
reader is referred to [79, 87, 61, 167] and the literature cited therein.

4.1.2 Partitioned formulation

Apart from monolithic approaches, it is possible to employ a partitioned formu-
lation that treats every field individually. This means that the coupled problem
is divided into an iteration of n¢ subproblems with repetitive data exchange. The
nonlinear subproblems are solved using the Newton-Raphson procedure, while
keeping the variables of the other fields constant. Iterating between the fields is
repeated until they are balanced, i.e. until a certain tolerance criterion is reached.
The general strategy of the partitioned scheme concerning the example of n¢ = 3
fields is depicted in Figure 4.2. A partitioned solution of G(z) = 0 basically ends
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up in the following formulation: The application of Newton’s method to solve
the first subproblem G (z,,z%, z£) = 0 leads to

0Gy
8Z1

i _ ik k : i _ il i
Az = —Gi(2),25,...,2,,) with Az =z — 2]

71=2} (4.5)
If |Gy(z™, 25, ..., 20 )|l < tol set zi"™" — 2™,

followed by the second nonlinear subproblem G (z¥!, 2y, 25) = 0
oG ; ; : i i
0Z22 s Azh = —Gy(2¥, 25, Z,’;r) with Az = zi™ — 7} (46)

If [|Ga(zi ™, 25 2] )| < tol set z5™' — z§*!,
and proceeding for the third problem G(z}*!,z5%! z3) = 0 in the same manner
leads to

0G3
0Z3

Azl = —Gy(2¥, 251 7)) with Azl =zt — 2
Zz3=23 (47)
If |Ga(zht!, 25% 25| < tol set zi™' — 2z,

In this context, the superscript i is related to the local Newton iteration of each
subproblem and & to the partitioned coupling iteration. The iteration process is
converged successfully if the k-th coupling iteration reaches ||G(z*+!)| < tol. In
contrast to the monolithic procedure, a partitioned approach requires three loops:
an outer loop for the time-stepping procedure, one global coupling iteration loop
and one local Newton-Raphson iteration loop for every field.

Solve Second Field zg“ Solve Third Field
Gy(z¥1 25,25) = 0 G281 25 25) = 0
41 = a1, ¥ o T
2 { Solve First Field Check Convergence _—
tn, E ok If ||G(zFY)]| < tol tnt1
{ Gi(z1,25,25) = 0 S gy = ZF? ‘
k=k+1
k _ kil
z" =12
New Iteration

If not converged

Figure 4.2: General sequential solution strategy after the partition into three subfields.

To avoid confusions regarding the literature, it is of advantage to distinguish
between implicit and explicit coupling strategies. In this context, an implicit cou-
pling algorithm is typically applied to problems that involve a tight coupling
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between the fields. Problems that are only loosely coupled can be treated with
an explicit scheme, i.e. iterating between the fields is neglected. In the literature,
see [60, 178, 58] for instance, this procedure is typically denoted as a staggered, sin-
gle staggered or one-pass scheme. Referring to this expression, the implicit case can
accordingly be denoted as a multiple staggered scheme. In many research papers,
these definitions are not clearly explained — which may lead to misinterpretations,
especially in cases using the term staggered.

A decision for a partitioned coupling scheme may have advantages over the si-
multaneous strategy: First of all, a separation into several subproblems offers the
possibility to employ different solvers, time-steps and discretization schemes. In
other words, the partitioned approach is much more flexible than its monolithic
counterpart. Other reasons to follow this strategy can be seen in the fact that no
cross-derivatives have to be computed and that the system matrices are much
smaller. All these benefits come at the expense of the following points:

o Unconditional stability of the algorithm cannot be guaranteed in general,
even if an implicit time-integration procedure is chosen for the subprob-
lems [3]. To circumvent this drawback, a lot of research has been con-
ducted to develop methods and algorithms to retain a stable algorithm.
Early pioneering work goes back to the 1970s and 1980s, see FELIPPA ET AL.
(1977) [60], PARK & FELIPPA (1983) [132], FELIPPA & GEERS (1988) [59]
and ZIENKIEWICZ ET AL. (1988) [178] for instance, and it remains an active
field of research until today.

o In the case of strongly coupled problems, too many iterations might be
needed to achieve a sufficient accuracy. This can lead to a drastic increase
in computational costs. In order to improve the convergence properties,
several methods have been employed, usually developed to tackle surface-
coupled fluid-structure interaction problems. A good overview and com-
parison of recently used procedures in FSI applications can be found in [119,
37], for instance.

e An accurate data transfer between the fields involved has to be guaran-
teed. Computations that are performed on the same mesh do not require
any transfer concept since the data transfer points of the coupling domains
have matching coordinates. Classical candidates might be volumetrically
coupled problems such as thermomechanics. Non-matching meshes can
appear, for instance, in fluid-structure or thermal-radiation interaction —
which are typical surface-coupled problems. Generally, all computations
that deal with non-matching coordinates need an additional mapping con-
cept to transfer the data between the coupling domains. Examples of these
concepts can be found in [57, 41, 14, 67, 34].

In the following sections, attention is devoted to these challenges, and possibili-
ties to circumvent such drawbacks are discussed. To begin with, however, several
mathematical procedures to formulate and to interpret a coupled system shall be
introduced. These procedures can be used to attain a decoupled formulation and
to increase the chances for a stable partitioned coupling approach.
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4.1.2.1 Gauss-Seidel method and fixed-point iteration

The general procedure to treat a coupled problem in a partitioned manner has
roughly been outlined by Eqns.(4.5)-(4.7). Proceeding in this way corresponds
to the block Gauss-Seidel method which is the commonly used coupling strategy
in FSI, see [170, 97, 38]. For the sake of simplicity, the statements are restricted to
two coupled fields. In discretized form, this can be written as

Gly,z) = {gzgzﬂ —0. (4.8)

The first equation is solved for y with given values for z, followed by the second
equation to compute z, for which y is known. However, this can also be formu-
lated as a fixed-point iteration or root-finding formulation, see [37] for instance, to
directly extract the solution vectors

y =F(z),
z=G(y)

in which 7 and G are so-called solution operators for z or y respectively. These
operators can also be seen as an abstract formulation for black-box solvers that
calculate the sought variable in dependence of the respective other. Formula-
tion (4.9) can be rewritten to

(4.9)

z=G(F(z)) . (4.10)

Both solvers are called alternately, meaning that the new solution z*! is a func-
tion of the actual solution z* and iterating between both fields until

RF=G(F(z")-2z"=0 (4.11)

holds. In this equation, R denotes the residual operator. An algorithmic sketch of
the Gauss-Seidel procedure is given in Algorithm A-1. For numerical reasons, the
iteration is performed until a certain tolerance is satisfied. A possible convergence
criterion is to relate the discrete, current residual to the very first one so that
iterating is terminated if

AF < eA? (4.12)
is achieved. Therein, ¢ is a small value denoting the tolerance criterion, and
AP =] = (|28 — 2| (4.13)

is the iteration residual at the k-th iteration.

4.1.2.2  Operator splitting methodology

Operator splitting techniques are mathematical procedures to decompose a sys-
tem of coupled partial differential equations into simpler subproblems. It goes

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

4.1. Coupling algorithms: an introduction 85

Algorithm A-1 Algorithmic formulation of the block Gauss-Seidel method.
Initialize: k = 0; z° = z,,

1: while [|r*|| > €||r°|| do

2. yFl = F(zF)

3zl =g (yk+1)

4 ph o= ghtl gk

5 k=k+1

6: end while

7. Go to next time-step: set t,.1 = t, + At and z, = z"*!

back to the 1950s and is often denoted as a fractional step method [174]. Much
effort has been conducted to enhance operator split methods, and different im-
provements from recent years can be found in [53, 55, 65]. To begin with, a simple
and arbitrary nonlinear system given by

0) = 2 (4.14)

is taken under consideration, where A defines a nonlinear operator. For multi-
physical problems, this operator represents different dependencies and physical
effects between the fields. Operator splitting means, according to [66], that A is
divided into N = p + 1 sub-operators such that

N
A=A+ M+ .+ Ay =) A, (4.15)

i=1

where the order of the method is given by p. For the widely used case that p = 1
holds, the first-order accurate operator split A = A; + A, is obtained.

After splitting the operator, the time interval is divided into sub-intervals (time-
steps) and linked over the initial conditions. The general procedure is then as
follows: First, the problem is solved using the first operator A, with the original
initial condition. After that, the solution is taken as the initial condition at the end
of the time-step for the second problem where A; is employed. Accordingly, for
the time interval [t,,, ¢,+1], this results in

71 =A1(21), z1(tn) =2Zn, 22 =A2(22), 2a(tn)=21(tns1) (4.16)

with z,1 = 25(t,4+1). Proceeding in this manner is known as sequential splitting
[53], which can be viewed in the partitioned solution context as — according to the
definitions of Section 4.1.2 — an explicit coupling scheme. Iterated splitting is also
possible, see e.g. [54, 66], and is comparable to an implicit coupling procedure.
A well-known application of operator splitting to multi-physical problems was
carried out by SIMO & MIEHE [153] who considered thermo-mechanical inter-
action. They introduced the so-called isothermal split which divides the coupled
problem into an isothermal mechanical phase at constant temperature and a sub-
sequent conduction step on a fixed configuration. For a thermo-elastic analysis,
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the coupled system of PDEs is written in operator notation. Following [153], it
reads

X v
#(t) = A(X(X,1),0(X,t) — {17} = { PVE’(% o) } )
) o DiVQ(Y.0) + 5 7(X. ©)

co

<~a\~

Employing an operator split A = Ay + Ae leads to a mechanical part and a
thermal part

v 6
Ay = {,}0 Div P(x, @)} and Ao = 0 (4.18)
0 Div((Y.0) + L 4(X, )
T e Po ce

that are described by the balance of linear momentum Eq. (2.37) and by the equa-
tion of heat conduction, see Eq. (2.88). Here, the operator split allows to de-
couple the physical fields and is applied prior to the discretization. This allows,
for example, to discretize both fields independently of each other with different
schemes or methods.

There are many articles related to the stability of those algorithms, and in the
textbook of YANENKO [174], it is stated that this split is unconditionally stable if
and only if the matrices of the discretized counterparts to the operators A, are
positive-definite. This issue was also discussed by ARMERO & SIMO [3], here
with special respect to thermo-elastically coupled systems. It was shown that
problems with strong coupling between the fields might be unstable even if the
sub-problems are stable. To this end, they proposed to use an adiabatic split -
demonstrated in [3] to be unconditionally stable when applying implicit time-
stepping — in which the splitting procedure leads to

{ v 0
z2={ 0 v, Au= p—ln DivP(y,©) and Ag = 0
o¢ 0 ~1DivG(¥.0)

0

Applying this split means that an adiabatic problem is solved to begin with, keep-
ing the entropy £(), ©) constant, followed by a heat conduction phase. In contrast
to the isothermal split, the adiabatic split is formulated by means of the energy
equation, see Eq. (2.82), to describe the thermal field.

The consequences of this split become apparent when considering aspects of
the numerical implementation with finite elements. During the mechanical phase,
one has to take into account that G)E = 0, which needs to be enforced in strong
form, holds. In consequence, this means that a nonlinear equation has to be
solved locally to begin with. More precisely, a so-called intermediate tempera-
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ture has to be computed at every integration point in order to treat the balance of
momentum in the weak form?.

The obvious drawback of this split is that it is either necessary to implement the
adiabatic split before it can be used, or at least to modify an existing code. Thus,
for the vast majority of finite element codes, it not possible to apply this splitting
procedure to a black box solver off the cuff. However, this split is unconditionally
stable and can also be applied to finite strain thermoplasticity [4]. Further details
regarding an efficient numerical implementation can also be found in [3].

4.2 Convergence acceeleration and stabilization

As reported in the beginning of this chapter, the main drawback of a partitioned
approach can be seen in its only conditional stability. Moreover, to avoid poor
convergence rates or divergent behavior during iteration, several external meth-
ods can be employed to improve both the chances for stability and the conver-
gence properties. These methods are henceforth denoted as external acceleration
methods as they operate independently of the field solver. This has the advantage
that the relating solver code must not be modified.

42.1 Vector prediction

The key feature of an efficient partitioned solution strategy is to balance all fields
involved in as few iterations as possible. Thus, if the iterative coupling process
is initialized at the beginning of every time-step with an initial guess that is close
to the sought solution, equilibrium will be achieved faster. In order to determine
an appropriate initial guess, converged solutions from previous time-steps are
taken into consideration. They are used to predict the starting value by means of
extrapolation methods. In [50] for instance, the prediction is based on polynomial
vector extrapolation, allowing to incorporate data from m = p + 1 older time-
steps. Another advantage is that this method is applicable to cases in which the
time increment is adapted to the problem and therefore might change during
simulation.

For a predictor of the polynomial order p, information from m = p+1 time-steps
is needed. The components of the predicted initial guess z* are extrapolated out
of the following polynomial

p
Z=ct+attet’+. et =chtj. (4.20)
=0

In this equation, the extrapolation coefficients ¢; are unknown and have to be
determined. To this end, the results of m previous time-steps are taken, leading

2Being more specific, this intermediate temperature can be calculated by solving the ordinary
differential equation ©¢ = 0. The constitutive assumption for the entropy £ = —9 ¥ /9 O is derived
in Section 2.1.3.2. Further, this relation is also employed during the heat conduction phase.
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to the following system of equations for the i-th component of the data vector z:

P

> eith=(z);, — Ac=b (4.21)
j=0
with
1oty 5 ...t Co (20):
Lt ] ... 4 c (z1);
A= . |, ec=|.], b= : . m=p+l. (422
1 tm tyzn e tﬁl Cm (Zm)i

In general, this system of equations has to be solved for all components at the
beginning of every time-step. Since the matrix A € R™ ™ is equivalent for all
components, it is enough to compute its inverse once. Afterwards the coefficient
vector ¢ € R™ can be computed by a simple vector-matrix multiplication. It has
to be noticed that A is small since m = p + 1 because the polynomial order is
usually between p = 1 and p = 4. Additionally, in the case where a constant time-
step size is chosen, the difference between two instants of time At = ¢, — t,_4
is constant. This simplifies the procedure considerably, and the predicted values
can be directly computed by

p = 1: z2°=22z,—2, 1, (4.23)
p = 2: 2°=32,—3%, 1+2, 5. (4.24)

Besides, there are several other possibilities to predict the starting value. DEG-
ROOTE ET AL. [36] employed a second-order predictor of the form

1
z" = 5 (5 Zy — 421 + Zn—Z) ) (425)
BRANDLI [15] mentions a least-square fit procedure that allows to consider more
than the m = p + 1 time-steps, while PIPERNO [136] also takes the velocities into
account, resulting in a first- and second-order predictor of

p = 1: Z*:ZTL+AtzTL

p = 2: z°=z,+At (§2,,,, — }Zn,l> . (4.26)
2 2

The great advantage of vector extrapolation is that the computer implementa-
tion is straightforward. Predicting the starting values is an effective method to
increase both the chance of stability and computational efficiency of the parti-
tioned approach. In addition, this method can also be applied to monolithic
schemes to determine an initial guess for the Newton-Raphson procedure, as
shown in [141, 126] for instance.

Vector prediction in the Gauss-Seidel iteration process is illustrated in Algo-
rithm A-2.
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Algorithm A-2 Algorithmic formulation of the Gauss-Seidel method with vector
prediction.

Initialize: k& = 0; Compute initial guess: z° = 32, — 32p_1 + Zp_o
1: while ||r*]| > ¢/[r°|| do

yit = F(zb)

3 2 =G (yk+1

4 pk = gkt gk

5 k=k+1

6

7

VA

: end while
: Go to next time-step: set t,.1 = t, + At and z, = z"*!

4.2.2 Vector sequence interpretation

In the following, the solution vectors in every coupling iteration of an implicit
coupling scheme are considered as a sequence of vectors S in R? converging to
an unknown limit z*. It is assumed, that this limit is exactly the solution that
balances the coupled problem. The vector sequence reads

S = {zk‘,zk’l7 BN R’i} , (4.27)
and can be accelerated by transforming it into another sequence
T = {vF v v v e R} (4.28)

with vectors v* that show better convergence properties. Hence, a sequence
transformation is sought that converges faster than the initial one, but to the same
limit z*, so that

lim v¥F — 2" =0 (4.29)
k—o0
holds. As shown in [17], one can conclude that the new vector sequence 7 con-
verges to z* faster than S if and only if

|vE — z*| _

=0 (4.30)

P o ]
can be achieved. The convergence acceleration of vector sequences is a solid re-
search field in mathematics, and many sequence transformations have been de-
veloped that exhibit better convergence properties. Since the vectors of the new
sequence are constructed by means of an extrapolation, these procedures are of-
ten called vector sequence extrapolation methods. The basic concept is to use a cer-
tain number of vectors of the old sequence to generate a transformation into a
new sequence. This transformation is based on a recursive relationship. One of
the most popular methods was introduced by AITKEN [2] for scalar sequences. It
is commonly known as Aitken’s A?-method and was extended to the vector case
in [91]. Apart from Aitken’s method, important contributions to this research
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field were made, among others, by WYNN who proposed the so-called vector e-
algorithm [173] and by BREZINSKI who proposed a sequence accelerator known
as vector 0-algorithm. In the subsequent sections, some of these methods are in-
troduced and applied to accelerate the convergence of the partitioned coupling
approach.

4.2.3 Aitken and related relaxation methods

To begin with, a class of procedures to accelerate the coupling process is intro-
duced that can be summarized as Aitken-type methods. In the literature, there are
several other terminologies for this class of accelerations methods, for example
Aitken relaxation [107, 37], Aitken extrapolation [119] or dynamic relaxation [106]. All
methods that are discussed in the following typically fall within these classifica-
tions.

4.2.3.1 Classical Aitken’s A? method

Section 4.2.2 serves to introduce a vector sequence interpretation of the parti-
tioned coupling strategy. One of the most famous methods to improve the con-
vergence properties of sequences is the so-called Aitken A2-process. This process
is originally a nonlinear sequence transformation to accelerate the convergence of
a scalar sequence that converges to an unknown limit. It is named after AITKEN,
who published this transformation in 1926 [2]. For the scalar case, the new accel-
erated value reads
k=1 Lk
AL = gl % , (4.31)

where A is the difference operator leading to Az* := 2% — 2#~1. In the denominator,

the second-order difference operator A? is used whose application results in
AP = AP — AP = 2 gkl k2 (4.32)

This operator is the reason why it is called Aitken’s A%-method. For the multi-
dimensional case, there exist several possibilities to generalize this procedure to
obtain a vectorial formulation. One way, probably the most straightforward pos-
sibility, is to use the Moore-Penrose inverse of a vector a € R¥!, see [135] for in-
stance, which is defined as

1 a a
== 433
a2~ Jal? 4

This gives rise to formulate Eq. (4.31) for a vector-valued sequence as
kTl — gh=1 _ WAZk. (4.34)

[[A2z|3

Regarding further extensions, another way to derive this expression will be dis-
cussed in the following, referring to [112]. Based on the solution vectors from
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the three previous iterations {z*,z"~!, 22} of a given sequence S, which are the

solution vectors from the three previous coupling iterations, the following ansatz
for a new sequence is made

VL o g (A g R) = g R A (4.35)
vho= Ty oh (2P -2 =2 P AR (4.36)

Therein, the scalar w*, which is known as the relaxation parameter, might change
during iteration. The value of interest for w” is the one that minimizes the expres-
sion

v = v — min, (4.37)
where the difference between both vectors results in
VEvFl = P bR R (2P — 2P - 2P 2R ) = AR WP AR (4.38)
Minimizing this expression finally delivers the relaxation coefficient

K (Azk—])TAQZk

o I AZR1 FAZZRI2
min |AZ" = + w*A%Z"|5 w A3

(4.39)
After setting z¥"! = v*, the new relaxed vector coincides exactly with the one
given in (4.34). In this method, the relaxation parameter w* is not constant, which
is why the procedure is henceforth denoted as dynamic Aitken relaxation (DAR).
Indeed, this method has an important constraint because it cannot be applied
in every coupling iteration. To compute the new relaxation parameter, at least
three vectors of the sequence must be known. Accordingly, this means that once
the DAR has been applied, two new iterations are required to employ the DAR
again. This can been seen as the main drawback of the procedure and was also
discussed in by KUTTLER [105]. On the other hand, a computer implementation is
straightforward — and with regard to the computational effort, only dot products
have to be performed.

In the literature, there exists a wide range of variants of Aitken’s A2-process
for convergence acceleration. Some of them shall be briefly reviewed here. A
detailed study was carried out by MACLEOD [112], who took a look at nine meth-
ods to accelerate the convergence of multi-dimensional vector sequences. The
drawback is that none of them can be applied recursively, yet the optimal point
of acceleration to reach the best results was discussed. Apart from this study, a
book by BREZINSKI lists several other methods, see [16]. All processes and algo-
rithms addressed in this section can be formulated to obtain the new accelerated
solution z*! by means of the following structure

Z"l =a+ Wb, (4.40)

Here, b € R? and a € R? are vectors, and w*” is a scalar parameter, the recently in-
troduced relaxation coefficient. Table 4.1 illustrates a selection of different meth-
ods to compute the new sequence vector z**1.
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Table 4.1: Different A2 acceleration formulas for multi-dimensional vector sequences.

Method ‘ a ‘ wk ‘ b ‘ Reference
1 zk—1 _% AzF Aitken [2]
9 Zh—1 _% AzF Graves-Morris [69]
5 + |- (AZZ(kA);k()ZZA_Z:H) 72— 72 | Iguchi in [112]
4 z" —((AAZZ:))iTTAAQZZ’; Az* Zienkiewicz [177]
5 P _% AzF Jennings [95]
6 7k 7(2%227;2?; A2zF Arthur in [112]

The very simplest way to relax the solution is to use a fixed or constant relax-
ation coefficient in the range of 0 < w < 2. This procedure is known as numerical
relaxation or, to be more precise, as successive over relaxation (SOR) if w > 1 and suc-
cessive under relaxation (SUR) if w < 1 is chosen. The threshold w € (0, 2) for the
relaxation parameter is originally related to the theorem of KAHAN, who consid-
ered the solution of systems of equations with the Gauss-Seidel method, see [98].
Finally, an algorithmic sketch of the Gauss-Seidel iteration process accelerated by
dynamic Aitken relaxation (DAR) is given in Algorithm A-3.

4.2.3.2  Secant A* method

The secant method follows directly from Aitken’s A%.-method and can therefore
been seen as an extension. IRONS & TUCK [91] published a modification that al-
lows to apply the Aitken relaxation in every iteration. This procedure, henceforth
denoted as dynamic secant relaxation (DSR), will be briefly outlined in the follow-
ing. DSR is widely used in the field of fluid-structure interaction and has been
proven suitable to solve problems with a strong interaction among each other, see
e.g. [106, 37, 119]. In addition, the convergence of volume-coupled problems that
involve large vectors can also be improved by means of this method, as reported
in [50, 51].

The key to a recursive application in every coupling iteration lies in using dif-
ferent and independent vector pairs to construct the difference operator Az. To
this end, it is now distinguished between modified (relaxed) and unmodified (un-
relaxed) values. All unmodified vectors are henceforth denoted with a tilde (z*)
and are equivalent to the solution vector of the fixed-point problem, see Eq. (4.9).
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Algorithm A-3 Algorithmic formulation of the Gauss-Seidel method with dynamic
Aitken relaxation.
Initialize: k& = 0; j = 1; Compute initial guess: z° = 32, — 32,1 + Zy_2

1: while [|r*]| > €/[r°|| do

2. yFl = F(z¥)

3. zk+1 — g ylc+1

4: rk — Zk+1 _ Zk

5. if j = 2 then

6: Compute w* from Table 4.1

7 Compute a and b from Table 4.1
8: Z"t=a+wkb

9: 7=0

10:  else

11 ZhHL — Rl

12:  end if

13: J=ji+Lk=k+1
14: end while

15: Go to next time-step: set t,41 = t,, + At and z, = zF!

Again, the ansatz made in (4.35) is taken, but slightly changed to

<
\

KoL gtk (38— g = g R AR (4.41)
vh o= 2P Wf (BT - 2F) = 2F + WP AR (4.42)

According to the previous Section 4.2.3.1, the relaxation coefficient is determined
by minimizing the expression ||v* — v*~1||, leading to

. (Azk:)TAZZk’-f—l
= 4.4
R VR (449)

Assuming that the relaxed vector from the previous iteration is computed by
2F =" L WTIAZY » 2F 2 = AR = W AR (4.44)

the expression Az* is used to substitute the difference in (4.43) so that the recur-
sively formulated relaxation coefficient finally reads
7k\T A257k+1
k r1(AZ°)T A%z
W= W e — 4.45
Zal )
This coefficient is recomputed in every coupling iteration, so that the new relaxed
vector follows by setting z**! = v* to

SK\T A25k+1

E+1 _ K jo1 (AZF)TA%Z Skl _ K kA k1
Z =7 —W WAZ =z"+tw AZ . (446)
The formula for the relaxation coefficient, see Eq. (4.45), has almost the same
structure as the coefficient in given by Eq. (4.39). In fact, they are different since
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the former one does not incorporate the relaxation parameter from the previous
iteration and does not distinguish between relaxed and unrelaxed vectors. It has
to be noticed that in the beginning at least two iterations have to be performed
before the scheme can be employed first. An alternative derivation can be found
in [105]. The usage of the dynamic secant method in the Gauss-Seidel procedure
is outlined in Algorithm A-4.

Algorithm A-4 Algorithmic formulation of the Gauss-Seidel method accelerated

by dynamic secant relaxation.

Initialize: & = 0; Compute initial guess: z° = 3z, — 32,_1 + Z,_9; set w® =
min (max(0.01, |w*]), 2)

1: while [|r*]| > ¢||r°|| do

2: yk+1 — ]_‘(Zk)

3. Zhl =g (yHt!

4 I.k — ik+1 _ Zk

5. if k<1 then

6: wh = w0

7. ZF L — Zk 4 0 (zkﬂ _ Zk)

8: else T A9kt

9: W = 7wk—1(AZ A
[|[A2zE+ 13

10: Zh+l = gk 4k (ik+1 _ zk)

11:  end if

12: k=k+1

13: end while

14: Go to next time-step: set t,.1 = t, + At and z, = z"!

In the literature, there are some other expressions for the relaxation coefficient
given by Eq. (4.45). In many works, see [120, 150, 64] for instance, the relaxation
coefficient is determined by the following notation

(AikJrl)T(Aik _ Aik+1)

k_ k-1 k1
= -1 4.47
R 85— A7 A
Therein, the relation v* = 1 — w* is introduced - and by using A%z = —(Az*F —
AzF+1), expression Eq.(4.47) can be rearranged to
AZFNT A27k+1
S SN G (4.48)

[[A2ZH 13

This can further be simplified by using the expression w* = 1 — v* for the relax-
ation coefficient to

1 3 (Aik+l)TA22k:+l

I (4.49)
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Moreover, this formula is completely equivalent to the one defined by Eq. (4.45)
which can be proved by showing that

B AZEVT A27F+1 B AZFT A27k+1
[ A2ZF+[3 [ A2ZF+[3

holds. Eliminating the denominator

—(AZNT A2 = | A2 — (AZFH)T A2 (4.51)
and setting this equation to zero leads to

(AZFT — AZF)TAPZFT — || A2 = 0. (4.52)
This finally implies that

(A1) T A — | A3 = (A%} — A%} = 0 (4.53)

can be obtained. In summary, both definitions for the relaxation coefficient given
by Eq. (4.49) and Eq. (4.45) are possible and yield exactly the same results. Im-
plementing this method is very simple and, concerning computational efficiency,
only dot products must be calculated. By definition, the relaxation coefficients
are limited to w* € (0,2), see Section 4.2.3.1. At the beginning of every time-step,
i.e. in the first coupling iteration of the partitioned approach, the relaxation coef-
ficient from the converged solution of the previous time-step w* is taken. As this
value is limited too, the starting value of the relaxation coefficient is defined as
wp = min (max(0.01, |w*|),2), and wy = 1 is chosen for the very first time-step.

4.2.3.3 Generalized version of Aitken’s method

In [18] and in his book [16], BREZINSKI proposed an extension of the A?-method
which can be seen as a generalization of the Aitken process. In particular, his
methods serve to accelerate the solution of nonlinear systems of equations by
iterative fixed-point methods. He considered the following algorithm, called A™-
method?

2= N ATAMZE with AT = (— 1)k (4.54)

In this algorithm, the superscript m denotes the order of the method. For example,
if m = 1 is chosen, the difference operator A™ leads to A'z* = z* — z¥~!, and this
method coincides exactly with the classical Aitken method, as described in Sec-
tion 4.2.3.1. For the general case with an increasing superscript m, the difference
operator reads

Ak — Am=1gk _ Am=1 k-1 (4.55)

3Originally, BREZINSKI named the method A*-method. However, as k is reserved for the
iteration counter, the letter m is used here for clarity reasons.
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Thus, more information is required to generate the new relaxed vector zF1 fe.
the sequence of vectors must contain m + 2 entries. According to [18, 16], the
relaxation coefficient takes the form

k—INT Am+1,k
k __ m (AZ ) A Z
W= (=1) (| Am+1gk |2 (4.56)
The proposed algorithm gives rise to a generalization of the secant method, again
distinguishing between relaxed and unrelaxed vectors so that the new vector is
generated by

ZM = gF — AmAmEEL (4.57)
Proceeding in a similar way as in Section 4.2.3.2, one can deduce that

(1) AzZF = —wWFIAMZE (4.58)
which leads to the recursively formulated relaxation coefficient

et (Amik)TAm+lik+1
HAm-f—lZlH—lH%

This procedure offers the possibility to use data from all previous coupling itera-
tions. This means, however, that more data vectors need to be stored compared
the DAR and DSR procedure where it is enough to memorize only three data
vectors. With a consecutive iteration process, the order m of the method can be
adapted to the current number of coupling iterations. Henceforth, this algorithm
is denoted as generalized dynamic secant relaxation (GDSR). The integration into
the Gauss-Seidel iteration process can be done similar to the dynamic secant re-
laxation method, see Algorithm A-4.

4.2.3.4 Extrapolation methods

Beside the previously described methods and algorithms, there exist several other
procedures which shall be briefly mentioned. In a performance study for nonlin-
ear algorithms applied to FSI [119], a so-called line extrapolation method is men-
tioned. It can be regarded as an extension of the dynamic Aitken relaxation for-
mula given by Eq. (4.34). The algorithm reads

Zk+1 _ wk zk + (1 o wk) Zk—l o C {wk A2k+1 4 (1 _ wk) Aik} (460)

in which ( is a line search parameter to be specified by the user. It serves to avoid
a situation in which the search space is limited to a single line, and it must be in
the range of ¢ € (0,1) [119]. The coefficient w* is again the relaxation coefficient
and can be computed by means of Eq. (4.39). Similar to the dynamic Aitken re-
laxation, it can easily be implemented. Also, the additional computational effort
is negligible. From now on, the line extrapolation method is abbreviated by LE.
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Two other methods shall be briefly mentioned. In view of the Aitken relaxation,
the relaxation coefficient w* can be calculated in the direction of the steepest de-
scent, which is known as the steepest descent method, see [106]. The main drawback
is that the search direction pointing to the steepest descent leads to an additional
Jacobian which needs to be calculated or at least approximated. This is the bot-
tleneck of this procedure, which will thus not be considered in the following.
In [107], so-called wvector extrapolation methods are employed to solve FSI prob-
lems. Such methods have been developed to accelerate vector sequences, similar
to Aitken’s method. However, [107] clearly shows that Aitken’s procedure is of-
ten the better choice, so that vector extrapolation methods are not taken under
consideration. A detailed introduction is given in [107] and also in the literature
cited therein.

424 Vector sequence acceleration methods

This section focuses on three famous methods for the acceleration of vector se-
quences. They are formulated in such a way that they can be applied to improve
the convergence of the partitioned coupling scheme. More information concern-
ing the applied methods can be found in Appendix A.2. There, it is further shown
how to derive a notation allowing to use these algorithms as a convergence accel-
eration method.

4.2.41 Wynn's e-method

One of the most famous algorithms to accelerate scalar sequences is Wynn's e-
algorithm, which was discovered by WYNN in the early 1950s. First applied to
scalar sequences, it was extended to the vector case and published as the vec-
tor e-algorithm (VEA) [173]. If this procedure is applied to the three last iterates
{z*, 2" 2872} of the partitioned coupling scheme, one obtains the new, im-
proved solution by the following formula

|AZ 1 A

k+1 _ ok _ - N2
SN V> 18773

Az (4.61)
A detailed derivation of this formula is given in the Appendix A.2.1. Similar to
dynamic Aitken relaxation (DAR), it can be applied after two new iterations.

Another interesting scheme that is mentioned in the literature is the topologi-
cal e-algorithm (TEA), see [16], for instance. Again, taking the three last solution
vectors into account, the acceleration formula reads

A k
2 =gk 4 z 7 (4.62)

T h h
(A7) (hTAz"‘ "~ hTAzF1

where h is an arbitrary non-zero vector with the same dimension as the data
vector z*.
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4.2.4.2 Brezinski's ©-method

Another promising vector sequence acceleration method is BREZINSKI'S vector ©-
algorithm (VTA) [16]. In order to accelerate the coupling iteration process, the last
four iterates of a sequence { z*, zF~!,z*=2, z"~3 } are required. Based on the VTA,
the new solution is calculated by

(AzF — Az (AZF — 20878 + Az, )

k+1 _ _k Sk Sk—1
2 = g 4 AT —2A7 T+ AF 2] (AZF — Az"") | (4.63)

where AZ" is defined as*
k_ k-1
I R
BRI
In [16], another version is proposed; the so-called generalized ©-algorithm (GTA),
which can be written as

(4.64)

TA k—1 A k—1
2 = gk % ! with df = z T . (4.65)
(hTAZk - hTAzkfl) Azt

In this formula, h and g are non-zero vectors, which can be chosen arbitrarily
with the same dimension as z. The vector d* is introduced for clarity reasons.
A detailed way to derive Eq. (4.63) and (4.65) is given in Appendix A.2.2. Note
that both algorithms can be applied after three new coupling iterations have been
carried out.

4.2.4.3 W-algorithm

As the third vector sequence acceleration method under investigation, the -
algorithm proposed by OSADA [131] is considered. Considering the four last it-
erates { z*, z¥71 2¥°2) 2¥=2} the Euclidean W-transformation [131] (EWT) is intro-
duced. For this transformation, the acceleration formula takes the form
K\NT A2,k—1
B+l _ k-1 (Az") A’z k-1

z =z - (AZF)TA2zk—1 — (Azh—2)T A2zF Az (4.66)
There is a further version, known as vector W-transformation (VWT) [131], which
can be rewritten in a similar way to accelerate the coupling process by

zk+1—zk’1+<1 (Azk—l)TAZk—‘Z)( AzF Azk-1 Azk—2 )1
=z

- —2
B 2272 ) AP~ Az TP a7

(4.67)

In this equation, the vector inverse of the last term needs to be computed with
Eq. (4.33). Further discussions to calculate Eqns. (4.66)—(4.67) are shifted to the
Appendix A.2.3. Itis to be noted that both algorithms can be employed after three
new coupling iterations have been performed.

. . . . . & -1
This expression coincides with the vector inverse Az" = (Az") ™.
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4.2.5 Newton and quasi-Newton methods

The iterative Gauss-Seidel coupling process of the partitioned approach can be
written as a fixed-point or root-finding formulation, see Section 4.1.2. The fixed-
point solution of two fields y = F(z) and z = G(y) are taken into consideration.
The solution operators F and G can be interpreted as specialized solvers for the
corresponding fields. In a fixed-point formulation, the coupled problem can be
written as

R(z) =G (F(z") —z=0, (4.68)

where R(z) is termed as the residual operator. In discrete form, the residual oper-
ator defines a nonlinear system of equations R(z) = 0, and the Newton-Raphson
method can be applied to solve this system. The objective is to correct the current
solution in such a way that both fields reach equilibrium. For the k-th fixed-point
or coupling iteration, this leads to

JR

—| Az =-R(z"). 4,

b Ad = -Riz (169)
Accordingly, the new, corrected solution z**! obeys

2" =28 AZF (4.70)

Applying Newton-Raphson iterations to balance the fields poses numerical dif-
ficulties and has several drawbacks. First of all, the computation of the Jacobian
matrix is not straightforward, in some cases maybe almost impossible. In partic-
ular, cases involving different solvers or discretization schemes will turn out to
be problematic. For this situation, it is not possible to give an exact representa-
tion of the Jacobian. Even in the simplest case where both fields are solved on
exactly the same discretization, knowledge about the Jacobian is indispensable.
Moreover, assuming access to the exact Jacobian, an additional linear system of
equation (4.69) must be solved in every coupling iteration. This might lead to a
considerable increase in computation time since the system is of the order R,
It is these two facts that deprive the partitioned approach of its two major advan-
tages — flexibility and computational efficiency.

On the other hand, the benefits of the Newton methods are that they are able
to significantly increase the chance of a stable coupling procedure and to reduce
the number of fixed-point iterations. Taking advantage of these methods would
clearly improve the partitioned coupling strategy and the convergence proper-
ties. To this end, several approximation techniques have been developed, which
are known as quasi- or inexact-Newton methods. In the following, some of these
methods are reviewed briefly.

4.2.5.1 Quasi-Newton reduced order method

DEGROOTE ET AL. [36] propose an interface quasi-Newton technique (IQN) for the
solution of surface-coupled FSI problems. This technique is based on the idea of
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approximating the Jacobian by means of reduced-order models [165] and was fur-
ther extended in several articles, see e.g. [37, 38, 39]. Additionally, it was shown
in [50] for instance, that this technique can also be applied to volume-coupled
problems involving huge sets of data. To this end, the procedure is henceforth
denoted as quasi-Newton method, abbreviated by QN. Applying the QN method
to the fixed-point procedure avoids the necessity to compute the exact Jacobian
and to solve a (large) system of equations.

Following [36], the underlying idea of the QN is given by considering the change
of the residual, i.e. the difference between two consecutive residuals

AR = R*! - R* (4.71)

and by assuming that the new residual R**! = R* + AR should be minimal.
This assumption is in agreement with the fixed-point iteration procedure, see
Eq. (4.68), where a zero residual operator is definitely the desired state. For the
discrete case, this can be achieved by minimizing

IR*+AR| — min. (4.72)

Following [36], the next step is to approximate the change in the residual AR by
means of a linear combination of residual increments from the previous iterations

k—1
AR(c!) ~ Y " afAR' = af AR’ + of AR' + ... + af ;ARF. (4.73)
=0

The outcome of this approximation is that it is now necessary to determine an un-
known vector of coefficients a* € R*~Y. This can be accomplished by inserting
Eq. (4.73) into Eq. (4.72), resulting in an over-determined minimization problem
which is solved in a least-square fit sense

k-1 2

RF+) " afAR

=0

min R**!'  —  min
ok ok

(4.74)

2

Before proceeding with the computation of the approximated Jacobian, emphasis
is placed on the residual increments AR'. Two possible ways to generate them
are contemplated

AR'=RF—R' or AR'=R"'—-R' with i=0,1,2,...,k—1. (4.75)

The first case is used in [36], whereas the latter definition is applied in [50] which
will henceforth be used in this thesis. The minimization problem in Eq. (4.73)
requires the solution of a linear system of equations, yet the additional compu-
tational effort remains acceptable because a* € R*~! has only k — 1 entries. The
new corrected solution was defined as z""! = z* + Az*.

The main goal in this context is to find the new increment Az*, which can be
computed by

AR=7-7z"-7"+2""'=Az7 - Az¢ — AzF=A7i- AR. (4.76)

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

4.2. Convergence acceeleration and stabilization 101

Following [36], the difference of the unmodified (fixed-point) solution Az corre-
sponds to the change in the residual AR such that it can be calculated similar to
Eq. (4.73) by using the known coefficients o*
k-1
A =" ol A7 = af AZ’ + ofAZ' + ..+ of  AZ (4.77)
=0
Again, the definition of Az’ has to be considered carefully. Similar to the defini-
tion of the residual increment in Eq. (4.75), there are two possible ways

Az =7"—3 or Az =71 —7 with i=0,1,2, ...k, (4.78)

where henceforth the second possibility is utilized. Due to minimizing Eq. (4.72),
the definition AR ~ —RF holds. Thus, the new increment can be written as
follows:
k-1
Az =R+ afA7 (4.79)
=0
Taking the definition of one Newton-Raphson iteration into account as given by
Eq. (4.70), the approximated Jacobian finally results in

IR, -1 k-1
AzF = — (E ) R(zk) ~RF + Z afAZl (4.80)
z=z2F i=0

Since this method creates an approximated Jacobian inverse from the change in
the residuals, at least two previous iterations are needed before the quasi-Newton
method can be applied for the first time. In computations where the initial values
are predicted by vector extrapolation as described in Section 4.2.1, this procedure
can be applied one iteration earlier. By taking the results from older time-steps
into consideration, the Jacobian can be updated constantly. The matrices intro-
duced in the following serve to store the vectors of the residual and the solution
increment from all iterations of the current time-step as follows:

Y= [AR"'.. AR' AR’] and Z'=[AZ'' .. AZ' AZ%]. (4.81)

Thus, the dimensions of the matrices are Y* € R¥(* =1 and Z*¥ € R™(* -1, with
d being the number of data stored in z, and k the current number of iterations
needed. In addition, two further matrices Y* and Z* are initialized, which in-
clude Y* or Z* respectively. Due to the data storage of m previous time-steps, the
solution vectors can be stored in one matrix as

Y=Yt . YEL,YE] and Z}=(Z, .. Z!

n—m n—m n—1 ZfL] . (482)
These two matrices now include the information from m time-steps, each one
containing data from k coupling iterations that were needed to converge success-
fully. Thanks to the data storage concept, it is possible to rearrange the minimiza-

tion problem (4.74) in the following compact fashion as

min [Yhe + RED = af =~ [(vhTYE " (YR (4.83)
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From this expression, one can deduce for the new increment that
AzF =RV + ZFa®. (4.84)

Using Eq. (4.70) and Eq. (4.83), the inverse of the Jacobian can be approximated
by
{QR

5 }7 = ZF [(YHYE] T (YT -1, (4.85)

zrzk

Storing the data in two large matrices allows to specify the number of reused
data from r previous iterations. This is not limited to the current time increment.
It further allows to store and reuse information across several older time-steps.
However, this raises the question which might be the best possible quantity of
stored vectors. Using all of the data of the computation requires a huge amount
of data storage and will not lead to the fastest convergence. In [51], several values
of r have been investigated, showing that a good choice lies between a range of
r € [5,15]. Moreover, the value depends on the problem, as remarked in [36],
and the optimal value is difficult to find. On the other hand, the algorithm is
quite robust to this parameter and its optimal range is widely spread. Indicating
that a certain number of data is reused, the method is henceforth abbreviated
by QN(r), where r denotes the number of stored previous iterations. Finally,
a possible computer implementation of the quasi-Newton algorithm is given in
Algorithm A-5.

4.2.5.2  Broyden method

Another method that is often referred to as a quasi-Newton procedure is the so-
called Broyden method (BR), developed by BROYDEN [21] in the 1960s. It can be
shown [22] that the Broyden algorithm is locally convergent and that the con-
vergence can be superlinear. Early applications in fluid mechanics can be found
in [49], for instance. Specific aspects of the computer implementation to solve
nonlinear systems of equation are addressed in [101, 102], and improvements
to reduce the memory storage to a minimum are made in [24]. Several exten-
sions and enhancements of the method finally lead to the so-called Broyden Class®,
where a class of effective quasi-Newton techniques are defined.

With respect to a partitioned solution strategy, the objective is that the discrete
residual

R(z)=0, R: R’ = R, (4.86)
vanishes in a few iterations, which can be accelerated by applying a Broyden step

B'AZ = —R¥ =  AzZf=—(BY) 'R’ (4.87)

5The class of Broyden methods includes several other algorithms, the BFGS-algorithm for
instance, which are often used in numerical optimization. A comprehensive introduction can be
found in [128]
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Algorithm A-5 Algorithmic formulation of the Gauss-Seidel method accelerated
by the reduced-order quasi-Newton method.
Initialize: & = 0; Compute initial guess: z° = 3z, — 32,1 + z,_2; Choose w €
(0.01,2)
1: while [|r*]| > €/[r°|| do
2.yt = F(2")
3 gkl — G yk+1
4 k= gkl gk
5. if k=0 then
6
7
8
9

2+ = gk 4 (4 — gF)

else
RF =1k
fori=0toi< (k—1)do
10: AR! =R — R!
11: Azl =zH — 7
12: end for

133 Add Y* = [ARF'.. AR' AR to Y}
14 Add ZF = [AZ L A7 AZ) fo ZF

15: Solve minimization problem for a*: min HYfak + RF ‘ }2
16: Azl = RF + ZF ¥

17: ZFt =78 + AzF

18:  end if

190 k=k+1

20: end while

21: Go to next time-step: set t,.1 = t,, + At and z, = zF!

In the literature, the Broyden procedure is often referred to as a secant method,
see [101, 102]. In order to avoid the computation of the Jacobian, it is possible
to introduce an according approximation B € R**?, which is known as Broyden’s
matrix. A new increment is computed in every coupling iteration, and the current
solution is corrected by

2" =2k AZF (4.88)

In order to obtain the increment Az, the inverse of Broyden’s matrix B* is re-
quired — and in view of the next iteration, this matrix needs to be updated. At the
beginning, an initial guess for B” must be given. According to [101], a typical
choice is B? = I, which leads to Az® = R?. After the computation of the incre-
ment, the update of B for the next iteration is carried out by means of the Broyden
formula [21]

B"! = B* + (y, — ByAZ") (AT ey ut(vh)" (4.89)
N Yk k (AzF)TAzZF ’ ’
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In this formula, the definitions

k k k-1 k. yi— BFAZ k Az*
y=R"-R", wWi=—""r—uVn>—, Vv i=——x (4.90)
|| Az]] || Az]]
are used. All of these vectors are based on known values and can easily be cal-
culated. The inverse H**! of Eq. (4.89) is computed using the Sherman-Morrison
formula® [6]

E+1 _ [k krok\T7—1 _ [Hkuk] (vh)" k
H' = [B" + u*(v")"] (I—W)T}Ikuk)H (4.91)

and following [101, 102], the inverse (B¥)~! = H* can be written as
ﬁ Azt (AT (4.92)

L R
With computing H**!, the increment in the next iteration can be evaluated by a
matrix-vector multiplication. For large systems, unfortunately, an update of the
Broyden matrix or its inverse will be cost-intensive due to several matrix-vector
operations. Moreover, a lot of data has to be stored, i.e. a d x d matrix has to be
memorized over the whole simulation. In order to avoid these drawbacks and
to make it applicable as an acceleration method, a restart version of Broyden’s
algorithm is employed that needs to update only a vector instead of a matrix. The
algorithm used here is given in [101, 102] and has been proven capable of solving
coupled FSI problems in [119]. Another positive feature is that the storage in this
version is reduced drastically. However, to accelerate the iteration process in a
multi-physical simulation, further mathematical steps are required — for which
the details are to be found in the literature [101, 102].

The final computer implementation is outlined in Algorithm A-6. The algo-
rithm is implemented by using a constant line search or relaxation parameter w,
and it further allows to specify the number of iterations used to update the Broy-
den matrix.

4.2.5.3 Krylov methods

Krylov subspace methods are a class of mathematical methods that can be applied
to solve linear and nonlinear systems of equations. For example, let Ax = b be
a system of equations that can only be solved drawing on explicit information
of the system matrix A. For a solution in the so-called Krylov subspace, however,
only the matrix-vector product needs to be known. This fact can be viewed as the

5The Sherman-Morrison formula states that

-1 B luv’ _
(B +uv) :<I*m B

holds, if B is invertible and if and only if 1 + v B~!u # 0.
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Algorithm A-6 Algorithmic formulation of the Gauss-Seidel method accelerated
by the Broyden Method.

Initialize: & = 0; Compute initial guess: z° = 3z, — 32,1 + z,_2; Choose w €

(0.01,2)
1: while [|r*|| > €||r°]| do
2y = F(a")
3 Zk+1 — g ylc+1
4:  rk =zl _ gk
5. if £ =0 then
6 sls7+1 — rk’
7 ZEHL = gk 4 gkt
8 else
9: b =rF
10: fori=0toi< (k—1)do
Tsi

11: b b+ 0 st

1113
12: end fmzu
13: a* = ——Dblsk

|Is¥]3
1 /k
14: sl = —— bf(lfw)a—s’C
1—a* w

15: zhtl = zF + wshtl
16:  end if
17 k=k+1

18: end while

19: Go to next time-step: set t,41 = t, + At and z, = z**!

key to use them in conjunction with Newton’s method since exact information
about the Jacobian is not needed. That is also why approaches in this manner
are often denoted as Jacobian-free Newton-Krylov methods [103]. In the following,
a hybrid Krylov method [20] is introduced that solves the system in the Krylov
subspace using the generalized minimal residual method, which is typically known
as GMRES-method.

To begin with, the discrete nonlinear system (4.69) that is to be solved during
the coupling iteration is rewritten in a more compact fashion

J(Z")AZF = —R(z") with Z" =2" + AZF (4.93)

The objective is to compute Az for every k-th iteration within a Krylov subspace
using j Krylov iterations. Consequently, every Krylov iteration can be viewed as
a Newton correction and is therefore denoted as a sub-iteration. The j-th Krylov
subspace K; reads

K; = span {rO,JI’O,J2 0. gt ro} with 1’ =—-R —JAgz, (4.94)

in which Az, = 0 is a reasonable [103] choice. Thus, the initial residual is r’ =
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—R. The increment in the j-th GMRES iteration is written as

j—1
AZ]‘ = AZO + Z Q; J’L 0 = AZQ + Oé]TVJ s (495)

=0

where V = [r® Jr° ... J71 17T is a vector containing the matrix-vector products
and the vector a = [ag a1 ... aj_1]T includes the parameters that minimize

min ||[JAz; + RJ| . (4.96)

However, an expression for the matrix-vector product Jv is required and, follow-
ing [20], it can be approximated by means of a simple function evaluation
R -R
gy~ R+ ) “RE) (1.97)
€

where the parameter ¢ is a small perturbation value. There exist further methods
for the evaluation of the matrix-vector product, see [103] for instance. After the
GMRES sub-iteration procedure, the new updated solution follows to

2 = 28+ Mgy = 2F + Mgy + V. (4.98)

An algorithmic sketch of this method can be found in Algorithm A-7. Despite
the fact that an exact computation of the Jacobian is not required, an approxi-
mation of its matrix-vector product is needed in every sub-iteration, see line 7 in
Algorithm A-7. It is from these products that the corresponding Krylov-subspace
is created. This can be done by means of Eq. (4.97), which is, however, a very
general approximation and might not be the most appropriate way to address
coupled problems. An eligible alternative would be to span the Krylov subspace
simply based on the differences Az’ = z' — z° or AR’ = R’ — R?. This proce-
dure was employed to solve FSI problems in [116, 117, 37], where it was named
interface-GMRES method. It can further be improved by reusing information from
previous coupling iterations, as carried out in [118]. Nevertheless, in order to
compute the vector-matrix products, the solvers still need to be called during the
sub-iteration.

42.6 Convergence and performance study

All methods discussed in the previous sections are studied on a simple example.
The aim is to carry out a pre-selection and to figure out which algorithms can
be used to accelerate the Gauss-Seidel iteration process. To this end, a nonlinear
system of equations G : R* — R* given by

1.4245470539476539

zf + 2129 + 0.523 — bz — 1 2
2 1.49686949063678742
2
2

—321 + 20+ 22 — 23+ 224

G = ot 2t e |77 |2 % T | 155963808695523331
T L e 1.047879574308079314
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Algorithm A-7 Algorithmic formulation of the Gauss-Seidel method accelerated
by Newton-Krylov iteration.

Initialize: k& = 0; Compute initial guess: z° = 32, — 32p_1 + Zp_o
1: while [|r*]| > ¢/|r°|| do
2. yFtl = F(zF)
Zk+1 — g ylc+1
ok — gkt gk
Initialize values for GMRES sub-iteration: ry = —r*; vo =r¢; j = 1
while ||r;|| > ¢ do
Build v; = Jv;_; using Eq. (4.97)
V= [Vm Vi, Vj]

. i1 X

a; = arg ming || > 15 @;vip1 + 1|
i—1

10: r; =YV +1*

11: AZ]‘ = ZZ;& a;V;

12: J+—J+1

13:  end while

14 zFtt=7F 4 Az,

15: k=k+1

16: end while

17: Go to next time-step: set t,41 = t, + At and z, = zF*!

(4.99)

is solved in a partitioned manner. Here, z; denotes the solution vector, and z, is
the initial vector. The Gauss-Seidel iteration process between the blocks is termi-
nated after the k-th iteration if |G(z*)|| < 107> was achieved. For a partitioned
formulation, the system is split into two blocks, resulting in

Gl(zh Zz)

G(z) = {G2(th2)] with z, = Ej and z, = {‘ﬂ . (4.100)

2
The general coupling iteration procedure between the subsystems is illustrated
in Figure 4.3.

The results are given in Table 4.2, comparing the number of iterations required,
denoted by ¢, and the number of solver calls, denoted by w, for all acceleration
methods. The computational effort is typically defined by the solver calls. For
the reference case without an acceleration scheme, ¢ = 55 iterations and w =
110 solver calls are needed to achieve an accuracy of e < 107'5. For the sake
of clarity, the convergence acceleration methods are classified in three groups:
the first group consists of Aitken-type methods which are highlighted in blue in
Table 4.2, the second group are the Newton-type schemes, marked green, and the
third group involves the vector sequence acceleration schemes (indicated by red).

o Aitken-type methods show good convergence properties. Even static un-
der relaxation (SUR) reduces the number of iterations from 55 to 23. Dy-

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

108

4. Solution of coupled problems

Solve Second System igkﬂ) Apply Acceleration Method
Gg(i'f“,zz) =0 z’;“ = zk + Az}
igk-;-l) 2 = [T gh T
Solve First System Check Convergence .
. It G2 < 1070
Gi(z,23) = 0 — Terminate Iteration

k=k+1

] ZF — g+l

New Iteration

Figure 4.3: Partitioned formulation of G(z) = 0 with application of acceleration methods.

Table 4.2: Convergence study of different convergence acceleration methods: comparison

of Gauss-Seidel coupling iterations (s) and number of solver calls ().

Method ‘ S ‘ w ‘ Parameter H Method ‘ S ‘ w ‘ Parameter

Ref 55 | 110 QN 18 |36 |w=1.0

SUR 23 |46 |w=038 QN(5) |19 |38

DAR1 |24 |48 QN(10) | 18 | 36

DAR2 |22 |44 BR 13 |26 |w=1.0,n,=10

DAR3 | 24 |48 JFNK | 6 80

DAR4 | 23 |46 VEA |23 |46

DAR5 | 23 |46 TEA 27 | 54

DAR6 | 23 |46 VTA 25 | 50

DSR 26 |52 |wy=1.0 GTA |32 |64

GDSR |25 |50 |m=3 EWT |27 |54

LE 12 |24 |w=1,(=06 | VWT |27 |54
namic Aitken relaxation (DAR), see Algorithm A-3, performs similarly: De-
pending on which scheme is used, between 22 and 27 iterations are needed.
Bearing in mind that the schemes are applied every third iteration, a recur-
sive application using the DSR (Algorithm A-4) and GDSR methods sur-
prisingly needs 26 iterations and does not lead to a further convergence ac-
celeration for this example. It turns out that the line extrapolation method
(LE) — with a chosen line search parameter of ¢ = 0.6, see also Eq. (4.60) —is
the fastest way to solve the system as it needs only 12 iterations.

e Newton-type methods deliver promising results as well. The QN method

(Algorithm A-5) reduces the iteration counter from 55 to 18, and the Broy-
den scheme (Algorithm A-6) performs even better with only 13 iterations.
The JENK method, see Algorithm A-7, allows to solve the system of equa-
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tions within 6 iterations. However, due to the Jacobian evaluation during
the GMRES iteration, 80 solver calls are required. Compared to the other
Newton type schemes, the JENK method cannot reach the same level of
performance for this example.

e Vector sequence acceleration methods from Section 4.2.4 can also be em-
ployed to improve the convergence. On the other hand, they perform slightly
worse than Newton or Aitken type methods. Here, the VEA (Eq. (4.62)) de-
livers the fastest results and reduces the number of required iterations from
55 to 26.

It is to be noticed that the performance of the acceleration methods depend on the
problem under investigation, on the starting values (z;) and also on the parame-
ters that have to be defined by the user, for example the line search parameter ¢
of the LE method. That is why a general statement about the "best" method is not
possible. A starting vector, however, that is close to the solution, can obviously
be an appropriate way to keep the number of coupling iterations on a low level.
On the other hand, the "optimal" user-defined parameters for the methods have
to be figured out for every problem under consideration.

4.3 Consistent field transfer

In a partitioned coupling strategy, data have to be transferred between all solvers
involved. It is mandatory to assure that energy is approximately conserved dur-
ing transmission such that the field transfer is called to be consistent. In special
cases where the data exchange takes place on the same mesh, a consistent field
transfer is automatically guaranteed. Otherwise, an additional mapping concept
to transfer the data has to be established. Several concepts are briefly reviewed in
this section. In this context, aspects of mesh adaptation to the current deforma-
tion are discussed as well. In many coupled simulations, this needs to be done in
every coupling iteration and is therefore referred to as dynamic mesh update.

43.1 Interpolation concepts

For the case of non-matching meshes, additional interpolation concepts need to
be initiated. An example is depicted in Figure 4.4, where two domains are cou-
pled over a common interface with non-matching interface discretization. In this
example, the transfer coordinates are different, which is why all physical quan-
tities at these points are projected on the coordinates of the other mesh. Typical
situations in which data interpolation concepts are required can be summarized
as follows:

o surface-coupled problems with different mesh interfaces such as a FEM-
FVM coupling

o volume-coupled problems which are solved on different meshes
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o other types of different discretization scheme combinations

o coupling of specialized black-box solvers without having access to the code
structure

Figure 4.4: Two domains — €y and 2y sharing one boundary 9 Q¢ — are discretized with
non-matching interface meshes.

There exist several possibilities to map data between non-matching coupling
domains. Many articles have been published that address energy-preserving
loads and mass transfer for FSI problems. An introduction to several methods for
surface-coupled problems can be found in [56, 57, 33, 34], for instance. Another
well-known procedure uses so-called Radial Basis Functions (RBF), see e.g. [35, 28],
to transfer data between a non-matching interface discretization.

Apart from the application in FSI, an accurate field transfer is also necessary
in the course of re-meshing or mesh adaptation within the analysis of inelastic
material models that use internal variables or history-dependent quantities. For
instance, [41] applied information transfer between incompatible meshes using
mortar techniques. The aspect of information transfer at the Gaussian points be-
tween non-matching finite element meshes is discussed in [14, 67]. In both arti-
cles, an efficient, accurate and adaptive re-meshing concept is obtained by fitting
a polynomial in a least-square fit sense. This idea can be taken to transfer data
between different meshes of volume-coupled problems where history-dependent
data are only locally available. This was studied in [147] on the example of small
strain thermo-viscoplasticity.

Anyway, depending on which data transfer concept is used, there might be
an increase in the computational effort. A higher accuracy typically leads to a
more time-consuming procedure. For certain methods, the extra computation
time might be negligible, in particular if they are used for coupling domains with
only a few transfer points. For example, surface-coupled problems typically con-
sist of less data points than volume-coupled problems. However, if the domain
embraces a huge amount of data points, the situation might change — and the ad-
ditional costs may downgrade the efficiency of the whole simulation. For some
special cases, it is thus necessary to devote special care to the applied interpola-
tion concept by carefully weighing up accuracy and computational efficiency.
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4.3.1.1 General considerations

In order to describe the data transfer between non-matching discretizations, some
general definitions are introduced. Let Q° or 0 Q° be a region that describes the
coupling domain of two fields, which can either be a volume or a surface. For
both fields, the global vectors x = [xo, x1,...,xy]7 and x* =[x, X}, ..., Xj]T
are introduced, including the discrete coordinate vectors of all transfer points in
which x; € Q%4 =0,1,.,Nand xj € Q¢ j = 0,1,.., N*. These points can be
nodes, integration points or cell center points. Further, let d = [dy, dy, ..., dy]* be
a discrete data vector corresponding to x containing the physical quantities that
need to be exchanged. The data vector d* = [d}, d3, ..., d%.]” corresponds to x*
where the interpolated quantities are stored. This vector needs to be computed.
Moreover, the vector n;f is introduced. It contains the n, nearest neighbors of x;
out of the global coordinate vector x. For example, consider Figure 4.5, where
data from the four nearest neighbors x; 1, X2, X;3, X;4 spanning the vector n} =
[Xj1, Xj2, X;3, X;4]" are mapped on the j-th point x’ to obtain d;.

T

Figure 4.5: Data transfer between two non-matching coupling domains: mapping, coordi-
nates and neighbor points definition.

In the following, the nearest neighbor search shall be brought into focus. For
huge data sets, it is recommended to employ special search algorithms for an effi-
cient nearest neighbor calculation. In [123, 124], a fast library for approximate nearest
neighbors (FLANN) is proposed. This library offers the possibility to compute a
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certain number of nearest neighbors by means of k-d-trees. On the other hand,
it additionally raises the option to define all points which lie within a specified
search radius 7, see Figure 4.6 for a two-dimensional example. Compared to the
brute-force method, where all points are checked individually against each other,
this method is considerably faster.

(N, yN) @)

O

(=1, 97)

Figure 4.6: 2D example of nearest neighbor search: classical search for n,, = 5 neighbors
(left) and radius search (right) with the search radius 7.

A simple comparison serves to demonstrate the effectiveness of this library:
Two coordinate sets are considered, where x consists of 250,000 data points and
x* of 100,000. The coordinates of all points are in the range of [0, 1]. The objective
is to find the n, = 5 nearest neighbors x;; € x, 7 = 1,...,n, to each data point
x; € x*. This is done with the brute-force method?, which is exact but time-
consuming, and with the FLANN search algorithm for a different number of k-
d-trees. The results are listed in Table 4.3. It is demonstrated that the k-d-tree
search algorithm reduces the CPU time drastically. However, if the dimension
of the k-d-tree is small (d = 2), the method is slightly inaccurate. It turns out
that there is a deviation of 1.83 % compared to the brute-force method. This
means that a wrong neighborhood is determined for 1,827 out of 100,000 data
points. FLANN delivers only an approximation of the nearest neighbor search
and offers several possibilities to increase the accuracy. If a tree of d = 8 is chosen,
the nearest neighbor search delivers the exact solution while, on the other hand,
the computation time increases. Compared to the brute-force method, it is still
considerably faster as it needs only 3.64% of the CPU time. In this thesis, a tree
with the dimension d = 8 is set to be the standard case.

"This can also be carried out with the FLANN library as it also provides a brute-force search
algorithm [123]
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Table 4.3: Comparison of nearest neighbor search algorithms: k-d-tree search algorithm
related to the brute-force method

Dimension Rel. CPU time [%] Deviation [%]

2 0.975 1.829
4 1.869 0.057
6 2.750 0.001
8 3.638 0.0

4.3.1.2  Nearest neighbor mapping

A straightforward way to transfer information from one mesh to another is to
simply use the data from the nearest neighbor, which can be denoted as a closest-
point projection. In that case, the neighborhood of every data point x} consists of
only one neighbor x; ;, which is why a closest-point projection at this point results
in

d:~d;,; . (4.101)

This means that the interpolated data d* are taken from the nearest point without
any modification or weighting. However, this procedure can be inaccurate as
only information of one single point is used.

4.3.1.3 Barycentric interpolation

Another scheme under consideration is the so-called barycentric interpolation [11]%.
It is also denoted as three-point triangle mapping in two-dimensional cases of sur-
face coupling or as four-point tetrahedron mapping in the three-dimensional case
for volume coupling. For the sake of clarity, the following statements focus on
the two-dimensional case which was used in [168] to transfer data between two
different interface discretizations. The unknown vector d} at the point of interest
can be approximated by using the data of its three adjacent points x; 1, X2, X3
spanning a triangle around xj. Further, S; = [|x; — x;;|| for i = 1, 2,3 defines the
distance between the point x} and x; ;. If the distance S; is less than a small user-
defined length ¢, information at this point is simply calculated by a closest-point
projection

In the other case, the following three-point interpolation formula is employed to
approximate the new value

d; = widj1 +wadja + (1 —w —wy)d;s. (4.103)

8This procedure is also known as barycentric Lagrange interpolation [11]
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Here, the barycentric weights w, and w, need to be calculated for x; = (xj y_j)9
based on the following formula

wﬂﬁ):(hz—%ﬂﬁﬁ—%0+4%5—$mﬂﬁ Y;3) (4.104)
(W2 = ¥33)(@j0 — w3) + (T3 — 252) (Y0 — ¥j.3)

() = (i3 — y5)(2 — x53) + (Tj0 — 23) (Y] — Yj3) (4.105)
Wi~y (@i — m8) + (50— 253) (Y50 — Yi)

A detailed discussion to derive the barycentric weights is provided in the Ap-
pendix A.3. The advantage of this procedure is that it is very easy to implement
and that it is not necessary to solve an additional system of equations. On the
other hand, three neighborhood points need to be determined, which can increase
the total computation time for huge data sets. It is therefore recommended to use
specialized search algorithms, as mentioned in the previous section. A possible
computer implementation is given in Algorithm A-8.

Algorithm A-8 Algorithmic sketch of the barycentric mapping concept.

Initialize: d = [dy, dy, ..., dy]"; x* =[x}, X7, ..., Xi-]"; X = [X0, X1, -, xn]"
=0 =0

2: for i < N* do

3:  Find set of three nearest neighbors { xg, X1, %2 } to x}

4:  Find corresponding set of data {dg, dy,d2 }
5:  Check if x} is inside the triangle

6: for j <3do

nS= k- x|

8: if S; < e then

9: d:K — d]'

10: i=1+1;7=0

11: Go to line 3

12: end if

13:  end for

14:  Compute barycentric weights wy, we using Eqns.(4.104)-(4.105)
15 df =widyp+wady + (1 —wy; —ws)dy

16 i=i+1;j=0

17: end for

4.3.1.4 Least-square fit procedure

This section addresses an accurate least-square fit procedure for non-matching fi-
nite element meshes, similar to [14]. This concept was applied to coupled thermo-
viscoplasticity in [52, 147]. Further reading on such procedures is also provided

9In this case, the third component z; has been dropped as the barycentric triangle interpolation
for non-matching interfaces can be seen as a plane problem. However, for volume coupling, the
four-point tetrahedron mapping is employed in which all three components need to be considered.
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in [156]. The procedure is set up for every transfer point and is based on a least-
square fit procedure using polynomial interpolation functions. The basic idea is
as follows: A projection is sought that minimizes the error between the known
quantity d and the interpolated data d* at all transfer points by

|[d*—dJ2 — min. (4.106)

In the following, every component d; of the unknown data vector dj is interpo-
lated with a polynomial by means of

d;=pTa and d}=[d, do, ..., dy,]", (4.107)

where the vector p denotes the polynomial basis and o = [ao., Qs anp]T is a
vector containing the coefficients of the polynomial basis. The number of co-
efficients increases with n, = (p + 1)® where p is the polynomial order of the
method.'® Every data point needs to be considered, and a certain number of
nearest neighbors for this point must be found. The n, nearest neighbors are
computed by means of the FLANN library, see Section 4.3.1.2. Here, the infor-
mation of n, > n, nearest neighbors is required to assure that the interpolation
scheme is determined mathematically.

The known quantities d from all neighbors n} = [x;,...,X;,] are used to ap-
proximate the quantity of interest d}. The objective is to calculate the unknown
coefficients o in a least squares sense based on all neighbors, leading to

on 2
> p"(xj0) @ = di(x) (4.108)
1=1

min
«

2

This minimization problem can easily be recast into a system of linear equations
which reads

Tin Tin

Ma=b with M=) p(x;)p’(x;;)) and b= p(x;)di(x;,). (4.109)
=1

=1

Solving this system may lead to numerical difficulties since the system matrix M
can be close to singular and also badly conditioned, which is especially likely if
almost all nearest neighbor points are located inside one plane. Figure 4.7 shows
a more detailed sketch of the problem for the two-dimensional case, illustrat-
ing different situations that con occur during a nearest neighbor search around a
given point (marked red).

In the first case, see Figure 4.7(a), a well-conditioned system matrix is obtained.
The arising equation system can be solved easily with standard algorithms, Q—R
decomposition and backward substitution for example. Figure 4.7(b) depicts an
example that results in an ill-conditioned system matrix, demanding a more so-
phisticated solution method. A possible approach would be to compute the

OWith increasing p, it is recommended to use orthogonal polynomials, Legendre polynomials
for instance, to improve the condition number of the resulting equation system.
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Figure 4.7: Nearest neighbors in 2D

pseudo-inverse of M by a singular value decomposition, see [147]. In contrast, the
third situation, see Figure 4.7(c), cannot be solved since all neighbor points lie in
one single line, leading to a singular system matrix. This situation can be avoided
by increasing the search radius for the neighbor point calculation.

Finally, the interpolated components of the data vector d; follow directly from
an evaluation of the polynomial vector p at the requested point x;

& =p"(x)a. (4.110)

An efficient and simple way to improve the mapping procedure regarding its
accuracy could be to weight the data such that the matrix M and the right-hand
side vector b are multiplied with a weighting function w

Tn Non

M = w(x))p(x;)p’ (x;1) and b= w(x))p(x;)di(x;1).  (4.111)

For every point x}, a weight function is sought to increase the influence of neigh-
bors that are very close to this point and, further, to reduce the influence of neigh-
bors that are further away. The following weight function — a similar one was
used in [14] — can fulfil these requirements

o a P B
() = (1 - ”’"‘”) <1+XX”> 7 (4.112)

Tmax rmax

where rmax defines the maximum search radius, which is accordingly the maxi-
mum distance between the given point at x; and its farthest neighborhood point.
The weight-function can easily be adjusted by the exponents o and 3. A computer
implementation of the least-square fit procedure is depicted in Algorithm A-9.
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Algorithm A-9 Algorithmic sketch of the least-square interpolation.

Initialize: d = [dg, dy, ..., dy]"; x* =[x}, X}, ..., Xi-]"; X = [X0, X1, ..., xn]"
1: Choose polynomial basis p
2:1=0
3: for i < N* do
4:  Find set of n, > p 4 1 nearest neighbors { x¢, x1, ..., Xp, } to X}
5 j=0,M=0
6: for j <n, do
T w=w(X)); p; = P(x;)
8: M =M + w;p]p;
9: end for

10:  Compute M~
11:  for all components of d} do

12: j=0;b=0

13: for j < n, do

14: w; = w(x;); p; = P(x;)
15: b=b+ Ujjpjdj(X]')

16: end for

17: a=M"1b

18: & =pT(x})

19:  end for

20: i=1+1

21: end for

4.3.1.5 Radial basis functions

Applying radial basis functions (RBF) is a common way to transfer data over dis-
crete, non-matching mesh interfaces [9, 35, 28]. Again, let d and d* be the discrete
data vectors containing the information of all data that need to be exchanged.
Assuming d as the known data vector to be transferred, d* is unknown and can
be approximated by means of the interpolation

d* =Md, (4.113)

where M is a mapping or transformation matrix. The objective is to compute
this matrix in an appropriate way using radial basis functions. Generally, an
interpolation with such functions reads [9]

S0 = aio(llx = xill) + P(x) (4.114)

where the «; are the interpolation coefficients, ¢ is the basis function and P(x)
denotes a polynomial. The polynomial induces n, additional coefficients into
Eq. (4.114) that need to be determined. This polynomial can be written as

np

P(x) =) P(x)a,=p"(x)a, (4.115)
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where the P, are the polynomial terms and a, the corresponding (unknown) poly-
nomial coefficients. In order to obtain a fully defined system, one can enforce
polynomial orthogonality such that

ZR,(X) a=p (x)a=0 (4.116)

holds. For the discrete case, all interpolation coefficients are computed based
on the given data d. This means, every single component of the data vector is
interpolated as

d; =Y i o(|1xi — x51) + P(x;) - (4.117)

i=1

For the whole vector d, this can be written in matrix notation as

d=®a+Pa, Pla=0 — [‘3}:[3} 1;} m , (4.118)
In this system, the components of the matrix ® follow from evaluating the basis
function ¢;; = ¢(||x; — x;||), the vector a contains all interpolation coefficients,
P is the polynomial matrix where the i-th row consists of the polynomial vector
p”(x;), and a is the vector of the polynomial coefficients. A solution with respect
to the unknown coefficient vectors allows to calculate the transfer matrix and also
the interpolated data vector d*. If a is known, Eq. (4.114) can be evaluated at any
position for a given x. For the discrete case involving all transfer points x7, this
leads to

-1

a=[@° P’ m = [ P {P"I)T f)’} [‘(ﬂ =Md. (4.119)
Therein, the matrix ®* has components based on the basis function ¢;; = ¢(||x; —
x,4||), and the polynomial matrix P* consists of p” (x}). However, two open issues
need to be discussed. First, the type of the applied polynomial. In [9], a linear
polynomial p(x) = [1, , y, 2|7 was chosen, which can be seen as the standard,
commonly employed polynomial. Second, there is no information concerning the
type of radial basis function. Different types of RBF are mentioned in [33, 32], the
selected examples including multi-quadratic bi-harmonic splines

o(lIxI) = VIxI[*+ ¢, (4.120)
where c is a scalar to control the shape of the functions and thin plate splines
o(|Ix[) = [Ix]|* log |x]| - (4.121)

In [33], both functions are denoted as robust, cost-effective and accurate.
Like the least-square fit procedure, transferring data between non-matching
meshes with RBF leads to an additional equation system. This system needs to
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be solved within every coupling iteration. This might increase the simulation
time significantly, in particular for problems which are coupled over the volume
where the coupling domain includes a huge amount of data points. Further as-
pects concerning the computer implementation of the data transfer with RBF can
be found in Algorithm A-10.

Algorithm A-10 Algorithmic sketch of the radial basis function interpolation.
T

Initialize: d = [d,, dy, ..., dN]T; x* =[x, X5, . X}‘V*}T; X = [X0, X1, -y XN|

1: Choose polynomial basis p; Choose radial basis ¢(||x||)
i=0:;5=0
: for i < N do
for j < N do

bij = o(|xi = 1)

[@]; « ¢

end for
[Pl « pf(x)
: end for
: Build M = {I?T 1;

s [} <[ 3] [

122 9 =0; 7 =

13: for : < N* do

14: for j < N do

15: bij = o(Ix7 —x1)
16: (®7];; « i

17:  end for

5 [P« plix)
19: end for

2: d* = [@* P] [Z}

R T A i

=
(=}

4.3.1.6  Shape function interpolation

Coupled problems that are discretized by finite elements give rise to another sim-
ple but efficient method: The requested data can be interpolated by using the
shape functions of the element. However, the quantity of interest of the sending
field must be given at the nodes, and one needs to have access the code itself, i.e.
the procedure cannot be carried out with a black-box solver. For this method,
there is no additional error that is related to the data interpolation since only the
shape functions need to be evaluated at the coordinates of the data points of the
other field. The extra computation time is also of minor interest.
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4.3.2 Dynamic mesh update

Multi-physically coupled simulations that involve large deformations or rigid
body motions often require a dynamic mesh update. This means that the mesh of
the other field is adapted to the current deformation of the mechanical field in ev-
ery coupling iteration. For this reason, two domains - {f and 2 — are considered,
which share a common boundary 0 Q°. The first domain is discretized with finite
elements (solid domain) and the second with finite volumes (fluid domain). They
are coupled over the common interface, and data has to be transferred between
two non-matching grids. However, if the body starts to deform, the shape of the
common boundary 0 ° changes as well. Also, the finite volume mesh must be
updated as illustrated in Figure 4.8. This consequently means that the boundary
motion of the finite element domain serves as a boundary condition that needs to
be enforced on the fluid domain.

Reference Configuration ¢ = ¢ Current Configuration ¢ > ¢
0
Lo = 7\\ 02
. -
( 0N ( [ oqc \
N\ Q(ll / _ Ql

Figure 4.8: Mesh deformation update due to changes in the configuration

The objective is to find the unknown position points Xy, of the new mesh cor-
responding to the prescribed displacements on 9Q°. The finite volume solver
OpenFOAM [130] offers several possibilities to treat dynamic mesh motion. A
brief review of some selected methods shall be given in the following. For a de-
tailed discussion and applications see [92, 93], for instance. In summary, three
different possibilities are outlined:

e Pseudo-solid smoothing: The mesh motion problem of the fluid mesh can
be viewed as a solid body under large deformations with prescribed dis-
placement boundary conditions. This is formally equivalent to an FEM so-
lution to compute the new positions of all fluid mesh nodes. For the sake
of simplicity and efficiency, a linear pseudo-solid equation with small de-
formations is solved to approximate the nonlinear deformation of the finite
volume mesh. This idea basically assumes that the motion of the mesh can
be tackled by means of the balance of linear momentum for linear elasticity.
This procedure was introduced by JOHNSON & TEZDUYAR [96].
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¢ Laplacian smoothing: Another way to compute the mesh motion is to solve
the Laplace equation on the fluid mesh, as proposed by LOHNER & YANG [109].
Since the new positions at the nodes are of interest, this is also equivalent to
solving the equation on a finite element mesh. Again, the displacements on
the common coupling interface are taken to define the prescribed displace-
ment boundary conditions. Let v be the mesh deformation velocity, then
the Laplace equation reads

div (ygrad v) =0, (4.122)

where ~ denotes the diffusion coefficient. Having discretized this equation,
one can calculate v at every mesh point so that, finally, the new node coor-
dinates read

Xpew = Xold TV At. (4123)

The diffusion coefficient ~ is used to improve the mesh quality by reducing
the distortion of the volumes. There exists several ways to choose 7. A
detailed study was carried out in [92]. Typically, v = ~(I) is a function of
the face center distances to the nearest boundary [, which can, for example,
be based on a linear v(I) = [7!, quadratic v(I) = [=2 or exponential (/) =
exp(—!) dependency.

e Mesh motion based on radial basis functions: [31] addresses a new method
to treat the mesh motion problem with the aid of radial basis functions. Sim-
ilar to the use of RBFs for transferring data across non-matching meshes,
see the previous Section 4.3.1.5, they can also be employed to determine the
node displacements of the whole finite volume mesh of the fluid domain.
To begin with, the interpolation coefficients o and a are computed based on
Eq. (4.118). Afterwards, one can use them to interpolate the displacement
Upey for all mesh points

Uneyw = [Prv Pry] {(ﬂ ) (4.124)

where ®py is the matrix containing the information of the basis functions
and Ppy is the polynomial matrix, both evaluated at all fluid mesh points.
The new positions of the mesh nodes follow directly to

Xnew = Xold + Unew - (4125)

Applying RBFs for mesh motion is said to be very efficient and robust,
also for large deformations, and the performance is superior to Laplacian
smoothing — as mentioned in [93, 31].

In partitioned coupling procedures, the mesh update has to be performed in ev-
ery iteration. This can be very costly. Thus, to reduce computational costs, it
might be sufficient to perform only one update at the beginning of the new time-
step, at least under certain conditions. For example, this could be the case if the
change of the deformation during the coupling iteration is small.
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4.4 Further improvements

There are different ways to improve the efficiency and accuracy of the partitioned
coupling strategy, and two approaches shall be briefly explained in the following.

441 Temporal discretization

To begin with, the temporal discretization is taken under consideration. High-
order time integration methods can be used to increase the accuracy of the sim-
ulation. In particular, DIRK - diagonally implicit Runge-Kutta — methods were
shown to be applicable for a wide range of nonlinear single- and multi-field finite
element analyses. In [71, 127], high-order time integration for finite strain vis-
coelasticity is considered, and the nonlinear heat conduction problem is treated
in [143]. High-order in time is also possible for multi-field problems, as shown
in [12], where FSI with thermal coupling is studied. Another improvement is
to choose an adaptive time-step size, which can be used to reduce the compu-
tation time and also to increase the accuracy. This can be combined by using
high-order time integration methods, as carried out by [148], for instance. For a
more detailed introduction into high-order finite element methods in time see the
aforementioned articles and also the literature cited therein.

Another approach to select the time increment for FSI applications can be found
in [100]. The authors proposed an error-based time-step selection using an ex-
plicit predictor. Here, a new time-step is chosen based on the error between the
current and the predicted solution. This procedure was also applied in [50] to
adapt the time increment in a coupled finite strain thermo-elastic simulation.

fn Atm Aty Atm Aty tn1

Mechanical—Q O O O Q
field 7 uk T\ uk

7o 7o

R At R

S ok

ITERRNLIGSS e E——

field

Figure 4.9: The idea of multi-scale time-stepping applied to thermo-mechanical coupling
in a Gauss-Seidel based coupling scheme.

Further, as the fields involved are treated separately, one can also use a different
time discretization for the individual sub-problems, as employed in [99]. This can
be denoted as multi-scale time-stepping and may be a useful procedure for prob-
lems in which one field requires a much smaller time increment than the other
field. Such candidates could be thermo-viscoplastic problems, for instance. The
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idea of different time-step sizes is illustrated in Figure 4.9, where the time incre-
ments between the thermal and the mechanical fields differ from each other. The
data needed to ensure that the field has a smaller time-step size can be obtained
by means of vector extrapolation based on Eq. (4.23).

4.4.2 TParallel simulation

Apart from improving the time integration, there are also methods to enhance
the efficiency by means of parallelizing the coupling approach. To be more spe-
cific, this means that the actual sub-systems are solved in parallel. However, this
is not possible when a block Gauss-Seidel (GS) based procedure is employed as
this requires to call the solvers in a serial or sequential manner as described in
Section 4.1.2.1.

The other option — solving the sub-systems in parallel — is known as a block
Gauss-Jacobi (G]) procedure. Figure 4.10 shows a schematic sketch of the methods.
The objective of a Gauss-Jacobi coupling scheme is evident: As the solvers do
not have to wait on each other, the parallel solver serves to reduce the global
computation time. Accordingly, coupling data are exchanged at the end of the
iteration, which might lead to a situation in which more coupling iterations might
be needed to achieve a converged solution. Recent work related to this coupling
was published by SICKLINGER ET AL. [152], who introduced the so-called interface
Jacobian-based co-simulation. They achieved promising results and demonstrated
— for simple examples — that a co-simulation can be significantly faster than a
serial simulation. However, they considered only problems involving a surface
coupling domain. Moreover, access to the interface Jacobians is required, which
can be a difficult and complex issue. In [151], the co-simulation of multi-field
problems was applied to industrial examples.

In [162], another parallel coupling algorithm was proposed for FSI which com-
bines the interface quasi-Newton (IQN) technique proposed by DEGROOTE ET
AL. [36], see Section 4.2.5.1, with the Gauss-Jacobi formalism. They introduced
two new algorithms, the vectorial interface quasi-Newton (VIQN) and the parallel
interface quasi-Newton (PIQN) technique, and demonstrated a better performance
compared to a sequential coupling algorithm. In [23], this scheme was extended
to three and more coupled fields.

4.5 Global partitioned solution strategies

So far, the partitioned approach for the coupled problem was contemplated on
a very abstract level. The physical fields are idealized as systems of nonlinear
equations which are solved using block Gauss-Seidel iterations. In this section,
numerical solution strategies for practical applications are developed, tailored to
the coupled problem under investigation. Such strategies have to answer several
questions that arise during the simulation process: For example, how to realize
the communication and the data transfer between the fields? What might be
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Figure 4.10: Schematic sketches of different coupling schemes: explicit Gauss-Seidel, ex-
plicit Gauss-Jacobi, implicit Gauss-Seidel and implicit Gauss-Jacobi.

the most efficient sequence to arrange the fields in? And what field should the
acceleration and stabilization methods be applied to? Attempts to answers these
questions will be given in the following section, based on examples of developing
strategies to match the problems under consideration.

Two different physically coupled systems are computed, and the characteris-
tics of the partitioned coupling strategy are studied in detail. In [51], strategies
for three interacting fields were discussed, showing that an appropriate strategy
is the key to a stable and efficient simulation. The proposed strategies were ex-
tended in [168], where volume coupling in conjunction with surface coupling
was considered. Here, it was also demonstrated that the need for an appropriate
strategy becomes more important with an increasing complexity of the problem.
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451 Implementation

Solving multi-field problems requires a computer environment that executes and
steers the simulation. In particular, it is desirable to take advantage of using dif-
ferent software and solvers for the fields involved. Consequently, it is necessary
to develop a coupling tool to manage the communication between individual
fields. To this end, the in-house communication software COMANA [15] was
developed. It allows to connect an arbitrary number of specialized solvers. The
tasks that COMANA has to tackle can be summarized as follows:

o Initializing the simulation: In the first step, the coupling tool connects with
the solvers involved and starts the communication.

¢ Exchanging coupling domains: COMANA requires information about the
coordinates of the data points within the coupling domains. The coupling
domain is a surface or a volume, and it describes a region over which data
between the solvers are exchanged. These regions are typically node sets,
integration points or face center point clouds.

¢ Communication with the solvers: The kernel of COMANA is the commu-
nication with the connected solvers. This means that is has to give instruc-
tions to the solvers about when to send what data to which domain — and
it also governs when the solvers are to receive data from other fields and
what to do with them.

o Transferring data: In situations where the domain coordinates between the
fields do not match, the data from the sending field need to be interpolated
or projected onto the other domain of the receiving field. This is done by
the coupling tool with the proposed methods of Section 4.3.

¢ Handling convergence issues: COMANA masters all issues related to the
convergence of the partitioned approach. If necessary, it applies stabiliza-
tion and acceleration methods, checks whether the iterative process con-
verged successfully, and it is also responsible for the time management, i.e.
updating the current time.

¢ Finalizing the simulation: At the end of the simulation, the coupling soft-
ware disconnects all solvers.

The general coupling concept of COMANA is illustrated in Figure 4.5.1, based
on the example of two sequentially coupled solvers. The communication and the
data transfer are done using the MPI'! package, which is a communication pro-
tocol that operates independently of the program language. An MPI application
allows to run several programs in parallel on a distributed memory system. In a
coupled simulation, each solver has its own process, and the MPI ensures com-
munication and fast data exchange between the processes involved.

HMPT is the abbreviation for message passing interface.
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Field A
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Send data points

Receive data

Solve field A

Send data

End coupled
MPI simulation

Field B

Send data points

(New time step)

(New iteration)

Figure 4.11: Communication flow chart of the implemented coupling procedure on the
example of two coupled fields.
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4.5.2  Volume-coupled problem: nonlinear thermoelasticity

The interaction of a thermal field with an elastic, mechanical field is a classical
candidate for volume coupling. With regard to the coupling strategy, two coupled
fields can be seen as the most straightforward combination. The driving field, i.e.
the field that is solved first during the iteration process, is typically the one that
acts and, thus, enforces a reaction of the second field.

A possible way to treat coupled thermo-mechanical problems is depicted in
Fig. 4.12, where the mechanical field is solved before the thermal field. A thermal
predictor is applied and the acceleration methods from Section 4.2 are employed
to correct the temperature. In the following, the proposed partitioned coupling
strategy is applied to nonlinear finite strain thermoelasticity. Here, the focus is
on the example introduced by ARMERO & SIMO [3], based on which they demon-
strated their adiabatic split. This was also discussed in [90, 50]. The variables
of interest that are exchanged between the solvers are the discrete deformation
gradients'? (F) and the discrete temperature values (©) at the Gauss points. The
problem is coupled over the volume so that the coupling domain includes the
whole geometry.

N
Apply Acceleration Method
Okl — ©F 4 A@H!

(™ Thermal Field o
Go(UM1,0) = 0

Okt o+

_ Thermal Predictor
0, = (00,041, 0nm)

Solve Mechanical Field Check Convergence Criteria
Gu(U, 0" = 0 IIR¥| < €||R|

k=k+1
New Iterati S
L i TF ot comverged

Figure 4.12: Partitioned coupling strategy for thermo-mechanical coupling.

4.5.2.1 Constitutive model for nonlinear thermoelasticity

The governing equations for nonlinear thermoelasticity were introduced in the
second chapter. The mechanical field is governed by the quasi-static balance of
linear momentum, and the corresponding boundary-value problem is given by
Eqns. (2.74)-(2.76). The thermal field is described by means of the equation of
heat conduction, see Eqns. (2.93)-(2.96) for the initial boundary-value problem.
However, some kinematic relations and also the choice of the free-energy function
shall be discussed in the following.

21n this example, it is more practical to transfer the deformation gradient (or the strain tensor)
instead of the displacements as the thermal field is directly coupled to these quantities.
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First, the deformation gradient is multiplicatively split into a mechanical and
thermal part I' = I, F, see [110, 166, 111, 74] and the literature cited therein
for detailed discussions. Employing this split consequently leads to detF = J =
Ju Jo > 0. For the mechanical part, the volumetric, isochoric split I, = EMEM
, see Eq. (2.15), is applied. The thermal part is assumed to be pure volumet-
ric. Based on this assumption, the thermal deformation gradient takes the form
Fo = 9(©)Iwith Jo = ¥?(0), where ¥ is known as the thermal stretch-ratio. Fol-
lowing [166], this parameter is connected to the volumetric thermal expansion
coefficient g (O) over a differential equation from which ¥ can be calculated by
a simple integration

o

9(0) = exp / 06(0)d6| ~ explae (6 — 6y)] . (4.126)

0

1dv

ag = ——

° 7 9de

For the Green-Lagrange strain tensor E = 1/2(C — I), some mathematical re-

arrangements serve as a basis to determine the expressions for the mechanical
(elastic) and the thermal strains

E-E

Ey=5(E—-E) and E,= % (?-1)1. (4.127)

Apart from kinematic relations, an expression for the free-energy function ¥ is
required. This is achieved by a function that, similar to an example in [3], consists
of two parts

U = Uyi(Ju, C) + Wo(O), (4.128)

a mechanical and a thermal part. For the mechanical contribution ¥y, the choice
~ K _ _

o ‘~I/M(JM7 g) = E IHZ(JM) + Cw(tl‘ QM — 3) = U(JM) + Uj(g) (4129)

is made. Here, K denotes the bulk modulus and y = 2¢;¢ is the shear modu-
lus. The mechanical part is also decomposed into a pure volumetric part U(Ju)
and an isochoric part w(C). The latter part is the classical Neo-Hooke model,
see [84] for instance, and the volumetric part is used, among others, in [154, 3]
for instance. Since thermal expansion is purely volumetric, U(Ju) comprises the
coupling between the mechanical and the thermal field. Using Jy = J/Jo and
Jo = exp [3ag (© — )], the volumetric portion can be rewritten in terms of J
and © to

U(J,0) = % n*(J/Jo) = % [InJ —InJo)* = g [InJ —3ae (0 -6y . (4.130)

The thermal contribution can be calculated by means of the expression for the
specific heat given by

0¥ 0? K
(0)=—=50=-0_——(-—[InJ—3ae (0 -6 + Ve
90 002 \ 2p,
, , (4.131)
- _0 9(1@K+d \If(_)
Po dez /-
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This example is based on the rough approximation that ¢, = ¢ is constant, so the
expression for ¥g can be obtained by a double integration — resulting in

(€]

€]
2 K - 72 K
Ve (0) = / / -9 “(ZU - %d@ 46 = (cp - 9(2’30 A@) AO—,61n (@%) :
©9 (SN}

(4.132)

Afterwards, it is possible to derive the constitutive relations for the stress tensor
and for the entropy

S =2py 88‘1’0““ =K(InJ—3agA0) C' +2¢,0J* (1-1/3tx(C)C") ,
. (4.133)
ov 0 1 3ag K InJ ©
(4.134)

Finally, the expression for the thermo-elastic coupling term, see Eq. (2.89), that
occurs in the heat equation of the thermal field can be calculated with Eq. (2.24)
to

——— »Q:—Sa@K(—)ij. (4.135)

4.5.2.2  The model problem: expansion of a hollow cylinder

The investigated problem serves as an example to demonstrate that the isother-
mal split, which is only conditionally stable, can be applied even for unrealisti-
cally high coupling strengths. To this end, the convergence acceleration methods
introduced in Section 4.2 are used to retain algorithmic stability and to improve
the convergence properties.

One-fourth of a hollow cylinder as depicted in Figure 4.13 is considered, which
coincides with the example used by ARMERO & SIMO [3]. In this thesis, 24 high-
order hexahedral finite elements with a polynomial degree of p = 5 are used
to discretize the geometry, whereas the mentioned authors used axis-symmetric
elements. Both fields are solved on the same mesh using the finite element code
AdhoC [45] so that data can easily be transferred without any interpolation.

The boundary conditions are given in Figure 4.5.2.2. At the inner radius, a lin-
ear increasing displacement u(t) = 1t mm/s is prescribed, and the outer surface
temperature is set to ©p = 293.15 K. Adiabatic conditions are assumed for the
top and the bottom surface, which is why ¢ = 0 is prescribed. Further, the ge-
ometric dimensions are given in Table 4.4 and all required material parameters
can be found in Table 4.5. In this study, special attention is placed on the ther-
mal expansion coefficient since it can be used to regulate the coupling strength
between the fields. In [3], a measure for the coupling strength of linear isotropic
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Pe

Figure 4.13: Geometric sketch of the cylinder.

Table 4./: Geometrical set-up

Inner radius r; 0.05 m
Outer radius 7, 0.1 m
Thickness ts 0.0 m

thermoelasticity was introduced, showing that the strength is proportional to a3
Assuming that this material parameter has a similar influence in the nonlinear
case, the degree of coupling is strengthen by increasing the thermal expansion

coefficient.

Table 4.5: Material parameters

Material parameter Symbol Value

Unit

Density Do 7800

Heat capacity Cp 460
Conductivity Ao 45

Thermal exp. coef. e 1.5 x 107°
Bulk modulus K 1.642 x 101!
Shear modulus 1 0.802 x 10™

kg/m3
J/kg K
N/sK
1/K
N/m?
N/m?

4.5.2.3 Results

To begin with, the temperature evolution at the result point Patz = 10,y =0,z =
0 is considered. In Figure 4.15(a) the temperature is plotted against the time for
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| ﬁ:[uzOuz]T

Figure 4.14: High-order finite element mesh of the cylinder.

two different time-step sizes At at the result point. Two different coupling proce-
dures are considered, as explained in Section 4.1.2: explicit coupling, henceforth
abbreviated with Exp and implicit coupling Imp with an iteration tolerance of
e = 10~*. Note that this tolerance needs to be satisfied by both fields. As depicted
in Figure 4.15(a), the simulation runs stable without any convergence problems.
The situation deteriorates dramatically if the thermal expansion coefficient is re-
set from ag = 1.5 x 107> 1/K to ag = 1.5 x 107* 1/K as shown in Figure 4.15(b).
Here, a stable solution cannot be obtained. The implicit procedure diverges in
the first time increment and is therefore not plotted in this figure. The explicit
method has no convergence criteria to fulfil, and a "zigzag"-shaped temperature
evolution is obtained for the larger time increment (At = 1s).

For the small time-step size (At = 0.1s), the situation is even worse, and the
temperature response becomes unstable at a certain time. Again, the temper-
ature evolution in the case of implicit coupling is not shown for this time incre-
ment. The instabilities are very similar to those observed by ARMERO & SIMO [3].
To avoid these difficulties, they proposed to use an adiabatic split as introduced
in Section 4.1.2.2. In [50], external convergence stabilization methods were em-
ployed to find a stable solution. As depicted in Figure 4.15(b), the dynamic se-
cant relaxation (DSR) and the quasi-Newton reduced-order method (QN) can be
used to obtain a stable temperature response. Both schemes are able to bring the
thermal and the mechanical field into equilibrium within an implicit coupling
procedure.

A remark concerning the results: Due to the fact that the thermal expansion co-
efficient was chosen unrealistically high, the temperature response is also physi-
cally unrealistic. Nevertheless, this example clearly demonstrates that the applied
acceleration schemes lead to a significant increase in the "chances" for a stable so-
lution, even for unrealistically high coupling strengths.
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(a) Stable response: ag = 1.5 x 107° 1 /K. (b) Unstable response: ag = 1.5 x 107*1/K.
Stable solution by applying QN / DSR.

Figure 4.15: Temperature evolution at the result point for different coupling strength lev-
els.

In the next step, some convergence properties of the DSR and the QN are deter-
mined. To this end, the coupling iteration residual A, see Eq. (4.13), for the very
first time increment is taken under consideration, as depicted in Figure 4.16(a).
Moreover, the number of Gauss-Seidel coupling iterations for every time-step is
given in Figure 4.16(b). Here, the iteration tolerance that needs to be satisfied is
set to e = 1073, A detailed overview of the results can also be found in Table 4.7.
It becomes apparent that the QN method performs slightly better than the DSR
method. The average number of iterations is lower, meaning that less solver calls
are needed and, thus, the overall computation time is lower too. An interesting
property might be the rate of convergence b of the acceleration method related
to the first time increment. Let A* be the iteration residual at the k-th iteration
and Ak = keng — Kstore @ certain interval of coupling iterations, then the rate of
convergence is defined as

7AlogAk _ 7logAk —log A*1

b= —
Ak kcnd - kstm“t

(4.136)

The parameters b* calculated for the first time increment are listed in Table 4.6.
A mean value b of the convergence rate is given in Table 4.7. With b = 1.28 (for
At = 1.0s), the QN method shows the fastest convergence.

For this example, both methods require many iterations to achieve convergence
at the beginning of the simulation. With temporal progress, this number reduces
until £ = 2 iterations for the QN method. This is interesting, since it seems
that only an initial aid by the acceleration methods is needed at the beginning
to achieve a stable solution.
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Table 4.6: Convergence rate (b¥) within the first time increment.

At = 1.0s At =0.1s
k DSR QN DSR QN
3 0.43 1.48 -0.19 1.59
4 1.77 0.81 1.86 0.87
5 1.16 1.50 0.54 0.76
6 0.27 1.22 0.86 0.86
7 0.98 1.21 0.69 0.82
8 1.41 1.48 0.77 0.97
9 0.51 0.70 1.07
10 0.55 0.59
11 0.38
12 1.12
8 'DSR At=0.1 —=—
R et QNAG=01 —=—
\ 7 DSR At=1.0 ]
N\ _ QNAt=1.0 —=—
102 X 3 ¢
= 0Acc —o— £
= DSR At=1.0 —=— g s T
Z ., N\ QN At=1.0 2 ‘
‘2 10 & DSR At=0.1 —+— 2 4l dbeoes
& x\\\ QN At=0.1 —— £ L\
10° AN =TT
« \ 2 & Bod
10 1
5 10 15 20 25 0 2 4 6 8 10 12 14
Iteration [-] Time [s]

(a) Coupling iteration residual (A*) within the (b) Number of coupling iterations for every
first time increment. time-step. The iteration tolerance is set to
e=10"3

Figure 4.16: Convergence behavior of the QN and DSR method for strong coupling levels.

4.5.2.4 Convergence study

Section 4.2.6 addresses a convergence study performed on a nonlinear system of
equations, which will be done with this exampleas well. To this end, the number
of iterations required per time-step ¢ is investigated to assess the performance
of the applied convergence acceleration method. The results of this study are
summarized in Table 4.8. Here, the values of the average number of iterations
are given for different time-step sizes, where At = {0.1, 1.0} s, and for a different
point of application of the acceleration methods, either after the mechanical or
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Table 4.7: Convergence properties for QN and DSR methods: average number of iterations

per time-step (¢) and average convergence rate (b) for the first time increment.

At = 1.0s At = 0.1s

S b S b
DSR 3.67 0.89 3.01 0.73
QN  3.13 1.28 2.59 0.99

after the thermal field. The sequence, however, of the fields remains unchanged
so that first the mechanical field is solved followed by the thermal field.

Nearly all methods can be used to find a convergent solution. Only the LE
method does not converge in case of At = 0.1s when applying it to the mechani-
cal field. The fastest acceleration can be achieved by means of the QN methods,
in particular if old values from previous time-steps are reused. Taking the so-
lutions from the last 10 iterations into account, an average of 2.05 iterations per
time-step can be accomplished. Besides, the DSR works well, and the BR shows
a promising enhancement of the convergence too. It turns out that the vector
sequence acceleration schemes (Section 4.2.4) cannot be used in this example as
they completely fail to balance the fields.

Table 4.8: Convergence study on the example of strongly coupled nonlinear thermoelas-
ticity: comparison of the number of coupling iterations per time-step (<) for
different acceleration methods applied to the mechanical or the thermal field.

Point of application: Mechanical field Thermal field
At =1.0s At =0.1s At =1.0s At =0.1s
DAR1 5.13 4.93 5.0 4.84
DSR 3.73 3.01 3.67 3.01
LE 5.4 NC 4.27 3.82
QN 4.33 4.11 3.13 2.59
QN (5) 3.87 2.54 2.8 2.05
QN (10) 2.87 2.13 2.67 2.04
QN (15) 3.33 2.19 2.67 2.05
BR 4.33 4.40 4.46 4.42

The methods to accelerate the convergence within the Gauss-Seidel coupling
iteration loop can be combined with the vector prediction method. As shown in
Table 4.9, a prediction of the starting values at the beginning of every time-step
will further reduce the number of iterations required. For this example, the tem-
perature is extrapolated for the mechanical field. In addition, the predicted data
serve as the very first solution of the iteration process and, thus, the acceleration
methods can be applied one iteration earlier. As demonstrated in Table 4.9, a
thermal predictor (TP) of the order p = 2 delivers the most effective initial guess
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for this example.

Table 4.9: Convergence study for different acceleration methods in conjunction with vector

prediction.
Point of application: Mechanical field Thermal field
At =1.0s At =0.1s At =1.0s At =0.1s
DSR + TP(1) 3.46 2.22 3.60 2.21
DSR + TP(2) 3.40 2.15 3.30 2.10
DSR + TP(3) 3.13 2.42 3.0 2.25
QN + TP(1) 433 3.0 3.01 2.11
QN + TP(2) 4.13 3.01 2.60 2.09
QN + TP(3) 3.60 3.36 2.67 2.85
QN(10) + TP(2) 293 2.41 2.73 2.07
DAR + TP(2) 4.73 3.39 44 3.35
LE + TP(2) 4.67 NC 3.13 2.38
BR + TP(2) 4.07 3.26 4.0 3.18

4.5.3 Coupled thermal-radiation analysis

In this example, the Dirichlet-Neumann coupling between a thermal (heat con-
duction) and a radiation field is investigated. The formulation of this surface
coupling was introduced in Section 2.3.4. The following study aims to verify
the proposed formulation with other codes as well as to study the performance,
possibilities and frontiers of the different numerical methods for the analysis of
radiative heat transfer.

4.5.3.1 Partitioned coupling strategy

First, some general remarks concerning a partitioned coupling strategy for the
coupled thermo-radiative problem: In contrast to the coupled nonlinear thermoe-
lasticity problem, two different solvers are employed. The finite element solver
AdhoC is used for the thermal field, while the radiation field is computed by the
finite volume solver OpenFOAM [130]. With respect to the coupling strategy, this
has serious consequences. Since both methods utilize different discretizations,
the coupling data need to be interpolated on the other mesh before they can be
transferred. In this example, the barycentric triangle mapping concept is applied,
see Section 4.3.1.3.

In a coupled thermal-radiation analysis, the temperature on the boundary sur-
face mesh ©; is mapped on the surface mesh of the radiation field. The other
quantity is the radiation heat flux vector q,, which is projected from the radia-
tion field on the mesh of the thermal field. A possible coupling strategy for this
problem is depicted in Figure 4.17. The driving field is the thermal field, and the
thermal solver is thus called before the radiation field is solved. No convergence
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acceleration methods are applied in this example, and the convergence properties
of the coupling approach are not taken under investigation. However, the start-
ing values of the thermal field are predicted at the beginning of every time-step.

S
Map ©, on Radiation Field o, Solve Radiation Field
] o .
6. = PO.(x).x,) qit!t = F, o Fo (@)
i+l QU+
6 An Radiative Predictor n Solve Thermal Field Check Convergence Criteria
" Ao = f(Qn: Qn1s oo Do) = Fo@) |[R¥[| < €IR[|
ar Not converged

Map q, on Thermal Field k=k+1 e—
= PO,(x)x,) ew Iteration

Figure 4.17: Partitioned coupling strategy for a surface-coupled thermal-radiation problem
with non-matching coupling interfaces.

4.5.3.2  Model problem: thermal analysis of a fin

The objective of this example is to verify the Dirichlet-Neumann coupling be-
tween the thermal and the radiation field. To this end, a problem is considered
for which the results were confirmed by numerical and experimental data — and
can therefore serve as a benchmark example. Here, the model problem proposed
by GLASS ET AL. [68] is recomputed, which is also included in the benchmark
example catalogue of the commercial finite element software Abaqus [1]. This
benchmark problem involves the heat and radiation analysis of a transient com-
bustion process where a fin is subjected to fire effects and loading.

The geometry is depicted in Figure 4.18. Due to symmetry, only one fin on the
inner block is taken under consideration. The space between the fin and the outer
wall is the fluid domain QF, which is filled with a gas and henceforth denoted as
outer fluid. The block, to which fins are attached in a right angle, is also sur-
rounded by a gas, here referred to as the inner fluid. In the following, the domain
of the thermal field 2® embraces one fin and a cutout of the inner block, and it is
discretized with n, = 92 high-order hexahedral finite elements with a polynomial
degree of p = 4, see also Figure 4.18. Further, the geometrical and physical data
for the thermal field are given in Table 4.10.

The outer fluid domain Q¥ is discretized by means of n, = 13500 finite volume
cells as shown in Figure 4.19. In the following, the high-order code AdhoC [45] is
utilized to solve the thermal field, and the finite volume solver OpenFOAM [130]
is applied to the outer fluid field. For the special case in which the outer fluid is
approached by vacuum conditions, OpenFOAM is used to calculate the view fac-
tors to account for view factor radiation. For the case of a participating medium,
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Figure 4.18: Schematic sketch of the finned wall, its surroundings and the finite element
mesh.

Table 4.10: Geometrical and physical data for the thermal field.

Fin width by 0.01 m
Base width by 0.06 m
Wall distance  hg  0.30 m
Fin height hy 0.15 m
Block height  hs  0.10 m
Heat capacity ¢, 500 J/kgK
Density p 7800 kg/m?3
Conductivity Xe 50 W/mK

both convection and radiation are taken under consideration. Here, the classical
k-¢ turbulence model is used to tackle the turbulent, convective heat transfer in
the outer fluid. Further, the P;-method, see Section 3.4.2, and the fvDOM, see
Section 3.4.3, are implemented to account for the thermal radiation.

Based on [68], the example consists of three different analysis phases:

1. The first phase is a steady-state heat transfer step for applying the initial
conditions.
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Figure 4.19: Portion of the finite volume mesh for the radiation field. The coupling inter-
face 0 Q5 with the thermal field is highlighted in green.

2. The second step deals with a 30-minutes combustion phase in the outer
fluid, leading to a transient heat transfer inside the fin. Energy is transferred
from the outer fluid through the fin and its block to the inner fluid.

3. The third phase is a 60-minutes transient cool down period in which the
conditions are reset to those of the first phase.

Since the thermal radiation analysis is coupled over the surfaces, special attention
must be paid to the description of the boundary. In this example, the coupling
domain is given by the common interface of the thermal and the radiation field
(outer fluid) and is denoted as 09, as shown in Figure 4.18. In view of thermal
radiation, a constant emissivity of &,, = 1.0 is assumed for the outer wall (92} yy),
and (092 e¢ = 0.8 is used for the fin and for the outer block walls. The wall tem-
perature is set to ©,, = 38°C. Besides, heat transfer due to convection must be
described on the interfaces. Between the inner fluid and the fin’s block, convec-
tion is approximated as a boundary condition by means of ¢. = hi, (© — ©;) on
902 where the inner fluid temperature is ©; = 373.15 K. Here, the film coefficient
hiy is temperature-dependent and reads h;,(©) = 500 (© — 6;)'/3 W/m?K. The
convection between the boundary of the outer fluid and the thermal field regard-
ing the coupling interface 0Q)¢ varies within the analysis phase and also with the
numerical method used to approximate the radiation field.
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Table 4.11: Heat convection between the outer fluid and the fin walls. All film coefficients
(in W/m?K) in case of the VFM are taken from [1] and the convection velocity
Ucony from [168].

Method Convection approach Phase 2 Phase 3
P1 Directly by the radiation solver 2 m/s 2m/s
fvDOM Directly by the radiation solver 2 m/s 2m/s

VFM Bound. cond. in heat equation hy = 10 hg = 2(6 — 6;)'/3

For the first phase, a steady state heat convection analysis with ¢. = h,(© — ©)
on 09 is carried out. During this phase, the film coefficient is set to h; = 2(© —
©r)/3. For the second and the third phase, convection is either approximated via
the boundary condition or directly computed by the radiation solver. The latter
case is used to apply the P-model or the fvDOM. Then, the convective fluid
velocity needs to be prescribed. Using the VEM, this is not possible since the
energy equation of the fluid is not solved for this method. Details can be found
in Table 4.11, which gives an overview of the different convection models used
for the outer fluid. Moreover, several material parameters are required to finalize
the model description. They are given in Table 4.12 and were taken from [168].
For a detailed explanation of the model problem, the interested reader is referred
to [68, 168].

Table 4.12: Physical properties of outer fluid at 20°C taken from [168].

Material parameter ~ Symbol Value Unit
Absorption o 0.70 1/m
Density p 1.20 kg/m3
Dynamic viscosity n 1.75x107%  kg/ms
Gravitation constant g 9.81 m/s?
Heat capacity p 1005 J/kg K
Prandtl number Pr 0.7 -
Pressure Do 1.00x10°  kg/ms?

4.5.3.3 Results for vacuum

To begin with, the outer fluid is neglected and the space between the fin and the
outer wall is described by a vacuum. Thus, there is no convective heat transfer
between the outer fluid and the fin and, therefore, only convection due to the
inner fluid is taken under consideration by means of ¢. = hi, (© — ©¢) where
the film coefficient is taken as hy,(©) = 500 (0 — 6¢)/* W/m?K and the fluid
temperature is 100°C. The initial temperature is set to ©(t = 0) = ©, = 0°C.
Moreover, the three analysis phases are reduced to one phase with a time period
of T'= 5000s.
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In the following, the temperature at the tip of the fin is compared for three
different cases: In the first case, the thermal radiation analysis is carried out
by means of the view factor method. Secondly, radiation is approximated as
a boundary model (BC-model) with ¢, = 04, (0* — ©%) where ¢ = 0.8 and
O. = 38°C is used and, lastly, thermal radiation is fully neglected ¢, = 0. In Fig-
ure 4.20, the temperature at the node NV, is plotted against the time for these three
cases. As depicted, the influence of thermal radiation increases with higher tem-
peratures. Assuming that the VEM delivers the most realistic results in this study
since it allows to take the geometric influence into account, one can conclude
that the boundary model underestimates the temperature — whereas no radiation
leads to an overestimation. This is physically correct since there is no thermal
energy transfer by radiation whereas the heat loss in the case of the boundary
model is too high. The reason for this is that incoming radiative heat flux due
to reflection with the outer wall and the other fins cannot be incorporated. For
this example, one can conclude that the boundary model shows larger deviations
than if thermal radiation were completely neglected. This clearly demonstrates
that the boundary model can only be used to give a rough approximation for
radiating surfaces that have complex geometries and that interact with other sur-
faces. However, with increasing the distance between the radiating surfaces, the
boundary model approaches the radiative heat transfer with increasing accuracy.
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Figure 4.20: Developing temperature for the case of vacuum at the fin tip (node Ny).

4.5.3.4 Results for participating medium

After computing the temperature evolution in vacuum, the space is now filled
with a fluid. In contrast to the vacuum, the convection between the fin walls
and the outer fluid needs to be taken into account, as described in Section 4.5.3.2.
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For the VFM, convection is prescribed on the coupling boundary, whereas for
the Pi-method and the fvDOM, the convective part is included in the solution of
the energy equation for the fluid. In contrast to the previous simulation, a full
computation over all three phases is carried out. First, the temperature evolution
at the result nodes N1, N2 and N3 is investigated. In Figures 4.21 and 4.22, the
nodal temperature for the different radiation models is compared to the reference
results obtained with the commercial finite element solver Abaqus.
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(a) Temperature at result node N1. (b) Temperature at result node N2.

Figure 4.21: Temperature increase at the result nodes and comparison of different numer-
ical radiation models.

At the beginning, the temperature development at the tip of the fin (node N1)
is taken under consideration. As depicted in Figure 4.21(a), the results in the first
and second phase (7, = 1800s) coincide well with the reference case, particularly
the fvDOM and the VFM. The P,-method underestimates the maximum tem-
perature, which demonstrates the rather conservative character of this method.
During the third phase, which describes the cooling period, the fvDOM and P;-
method have slight discrepancies to the reference case whereas the VFM nearly
reaches the decrease of the reference temperature. For the nodal temperature evo-
lution at V2, as depicted in 4.21(b), and at N3, given by Figure 4.22, the end tem-
perature of the heating period (phase 2) is slightly overestimated. Notwithstand-
ing, the results obtained with the different radiation models are in very good
agreement with the reference temperature. Referring to [168], the deviations can
be explained as follows: For the outer fluid, there is a lack of information con-
cerning the material properties. Thus, several assumptions for these properties
have been made, which might be the reason of the deviations occurring for the
fvDOM and the P;-model. The reference simulation was carried out by Abaqus,
where view factor radiation is implemented as well'®. Surprisingly, there are also

131t must be reminded that the commercial FE solver Abaqus (Version 6.13 in this case) is able
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deviations between the VFEM and the reference solution obtained by Abaqus. In
the present study, the view factors were calculated by means of the fluid solver
OpenFOAM [130] which unfortunately does not allow to take the symmetry of
the finned wall into account. This fact might be the source of the deviations be-
tween VEM and the reference solution.

140 T T T
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e O o x
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£ 110 /7,
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Figure 4.22: Temperature increase at the result node N3 and comparison of different nu-
merical radiation models.

A quantitative comparison of the results at the nodes Ny, N, and N3 is given in
Table 4.13. In addition to the numerical results, the experimental data for the tem-
peratures and its standard deviation is taken from [68]. Comparing the values to
the coupled thermal-radiation analysis reveals the good agreement of the results.
The maximum error is below 5% and can be found at N1 in the second phase
when applying the P;-method. Finally, it can thus be concluded that — in this
example — the coupled Dirichlet-Neumann problem of thermal-radiation leads to
promising results. The computations successfully combine different software as
well as discretization schemes and also allow to approach the radiative and con-
vective heat transfer in a participating medium. Thanks to the flexibility of the
partitioned coupling strategy, this problem can be extended such that geometric
changes of the structure can be included as well.

to perform view factor radiation analysis, but not in a multi-physics context. This means, for
example, that deformations of the geometry are not allowed during thermal radiation analysis.
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Table 4.13: Temperature at result nodes: comparison with benchmark results from Abaqus

and data from Glass et al. [68]

Phase Node Glass et al. [68] Abaqus [1] AdhoC | OpenFOAM®
(Time) Average | Deviation P,-method | fvDOM | VFM
Phase 1 Ny 75.8 0.2 75.7 79.2 76.7 74.0
(initial) Ny 93.0 0.3 92.9 94.0 93.5 92.3
Ny 97.0 0.1 96.9 97.3 97.1 96.7
Ny 652.2 4.9 649.9 619.6 647.9 | 653.8
Phase 2 .
(1800) No 238.6 6.6 237.2 249.1 252.1 246.3
N3 133.7 1.1 133.6 136.0 137.5 136.4
Phase 3 Ny 80.4 0.7 80.9 79.3 78.4 78.6
(54005) No 95.7 0.5 96.1 95.9 96.0 95.0
Nj 98.4 0.2 98.5 98.4 98.5 98.0

454 Three or more coupled fields

In a partitioned analysis with several fields, a suitable coupling strategy is the
key to obtain a fast simulation. If the number of fields is increased, the com-
plexity of the simulation commonly increases as well — and it becomes more and
more important to fine-tune the global coupling strategy. Unfortunately, a general
statement about which might be the best strategy can hardly be given since this
largely depends on the respective problem. Nevertheless, the following points
may help to construct a well-suited and problem-orientated coupling strategy:

o First of all, the sequential arrangement of the fields is important. Again, the
driving field should be the first one within the iteration process. If the whole
system is treated in an explicit manner — meaning that iterating between the
fields is neglected — the sequential arrangement is the only aspect that needs
to be taken into consideration.

e An appraisal of the coupling strengths between the fields can help. If one
field turns out to be only loosely coupled with the others, it may be excluded
from the implicit iteration process to avoid unnecessary solver calls. In this
case, it is solved only once in every time-step, either before or after the cou-
pling iterations. In [51], this idea was applied to electro-thermo-mechanical
problems and was referred to as implicit-explicit coupling. In cases where
a cost-intensive field can be excluded, a significant reduction of the global
simulation time is obtained.

In Figure 4.23, the idea of an explicit-implicit strategy is exemplary illus-
trated on a three-field problem. An extension of this idea is to use an adap-
tive switch between implicit or explicit coupling, individually for the dif-
ferent fields. This can be controlled by computing the error between a pre-
dicted solution and the solution of the first iteration. If the error is small
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enough, the iteration phase will be stopped and the solution from the first
iteration is taken as the converged solution. If the error starts to increase
again, one can switch back to the implicit procedure.

e The acceleration schemes need to be applied in such a way that they can
develop their entire potential. In particular, the efficacious point of appli-
cation has to be figured out. This again is a difficult issue that cannot be
generalized, but has to be investigated for every problem. A good choice
might be to accelerate the field that is expected to have the tightest coupling

with the others.
z /[ Solve Second Field ! Stabilize Solution 2
L Go(zy ! 25,25) = 0 e+l — @® L Ae®
zI]d»l ‘zé+|
7 ( Solve First Field Check Convergence Criteria
| Gilmshg) =0 IRF| < el|RY)

New Iteration

/

kL i .
Solve Third Field 2z = (2T 25T 25]T

Gz 2 2) = 0

Figure 4.23: Combination of implicit and explicit coupling strategy for a three-field system.

Chapter 5 addresses examples of three- and four-field problems in detail, based
on a coupling strategy that takes these three points into consideration. Special
attention is placed on electro-thermo-mechanical problems involving thermal ra-
diation, which finally leads to a volume- and surface-coupled problem.
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In this chapter, the proposed partitioned coupling strategy is applied to multi-
physical problems with n¢ > 2 fields. The general purpose is to find the best
suited strategy to the corresponding problem under consideration. To begin with,
an electro-thermo-mechanical problem with finite deformations is studied, where
thermal radiation is approximated as a boundary condition in the heat equation.
In a second step, this is extended to four-fields by treating radiation as an addi-
tional field. For this example, all issues discussed in Chapter 4 — convergence ac-
celeration, data transfer and dynamic mesh motion — are employed and different
possibilities to perform the partitioned coupling process are discussed. The final
example is to simulate the field assisted sintering process, first without powder
consolidation and finally using a material model for highly compressible copper
powder, which was developed by ROTHE [146].

5.1 Electro-thermo-mechanically coupled problem

Within the scope of the first example, the radiation field is excluded, and only the
interactions of an electric, thermal and mechanical field are taken into account.
An appropriate partitioned coupling strategy is developed to tackle the three-
field problem. This strategy basically follows ERBTS ET AL. [51] and is applied to
a nonlinear, thermo-elastic problem with a heat source resulting from an electric
current.

5.1.1 Model problem: bimetallic beam

This example deals with the electro-thermo-mechanical modeling of a bimetallic
beam consisting of two layers, one made of steel and one made of silver. This
serves as an academic example for an in-depth study of the coupling strategy,
from low up to unrealistically high coupling strengths.

The electrical field is used to generate high heating rates by means of Joule heat-
ing. Because the layers consist of different materials, the thermal strains in the
layers differ from each other as well — leading to a bending of the beam. The de-
flection is assumed to be elastic and geometrically nonlinear. The material model
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used here coincides exactly with the example of the thermo-elastic expansion of
the thick-walled cylinder from Section 4.5.2.

Silver Layer

e

Figure 5.1: Schematic sketch of the bimetallic beam consisting of two layers.

Steel Layer

Table 5.1: Geometrical set-up of bimetallic beam
Length [ 2 m
Width b 01 m
High h 001 m

The beam is discretized with n. = 12 high-order hexahedral finite elements
that have a polynomial degree of p = 5. All fields are solved on the same mesh,
which consequently means that the data transfer is exact and an interpolation
concept is not required. A schematic sketch of the beam is given in Figure 5.1
and the mesh is depicted in Figure 5.2. Concerning the boundary conditions, the
left-hand side of the beam is clamped (u = 0) and the electric potential is zero
(@ = 0) on this surface as well. On the right-hand side, the prescribed electric
potential increases exponentially in time with @(t) = Upax[l — exp(on /Unnax t)]-
The temperature boundary conditions are given as follows: Thermal radiation is
approximated as 7 = e04,(0* — 02%) = ¢, with ©,, = Oy = 0°C over all surfaces of
the beam, except at the clamped (wall) face where ¢ = 0 is assumed. All boundary
conditions are illustrated in Figure 5.2. The initial temperature is set to O(t =
0) = ©p = 0°C. The geometric dimensions are given in Table 5.1 and the material
parameters for steel and silver are summarized in Table 5.2. In this example, all
parameters except the electric conductivity are assumed to be constant, i.e. they
do not depend on the temperature. In the following, it is assumed that the electric
conductivity takes the form

A
< (5.1)

MO =T e—ey

where A\, o = A\,(Oy) is the reference electric conductivity at the reference temper-
ature Oy and «,, denotes the linear temperature coefficient.
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Figure 5.2: High-order mesh and boundary conditions of the bimetallic beam.

Table 5.2: Material parameters of steel and silver

Material parameter Symbol Steel Silver Unit
Density Po 7800 10500 Kg/m3
Heat capacity Cp 460 230 J/KgK
Conductivity Ao 45 430 N/sK
Electric conductivity at ©g Ay o 12.0 x 10° 62.0 x 108 A/Vm
Linear temperature coef. Qg 5.60 x 107*  3.80 x 1072 1/K
Thermal expansion coef. ae 155 x 107°  1.95x 10™° 1/K
Emissivity € 0.8 0.1 -

Bulk modulus K 1.642 x 10t 1.061 x 10! N/m?
Shear modulus w 0.802 x 10 0.303 x 10'* N/m?

5.1.2 Partitioned coupling strategy

In order to find an appropriate coupling strategy for the three-field problem, the
coupling between the fields involved shall briefly be recapitulated. For the me-
chanical and the thermal field, the same coupling appears as in the example of
Section 4.5.2. Besides, the interactions with the electric field shall be mentioned.
It is coupled to the thermal field by means of the Joule heating term in the heat
conduction equation. Due to the temperature-dependency of the electric conduc-
tivity, temperature changes also affect the electric field. Further, the electric field
is coupled to the mechanical field due to large deformations. Based on these as-
sumptions, the coupling strategy is developed. A fully implicit approach is cho-
sen, starting with the electric field, followed by the thermal field and concluding
with the mechanical field. For this example, the electric field can be viewed as
the driving field as it is responsible for inducing energy into the beam. Iterating
between the fields is carried out until all fields are balanced in the sense that the
iteration tolerance e, = 1074, z € {M, ©, ¢} is satisfied. Acceleration schemes
are employed to improve the convergence. The entire coupling strategy is out-
lined in Figure 5.3. In this figure, the acceleration scheme is applied at the end,
after the mechanical field. This is, however, only one possibility. It can also be
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used to accelerate the thermal or the electric field. Since there is no general state-
ment about the best point of application at hand, this needs to be figured out in
a convergence study. For the first iteration, the mechanical solution is predicted
by means of vector prediction methods so that the electric and thermal field are
solved on an estimated current configuration.

Solve Field

< k41
Gu(eh, 01 u) = 0

okt
u; | Solve Thermal Field Stabilize Solution
Go(p*1,0.u%) = 0 ubtl = uf 4 Ak
u, [ Mechanical Predictor P pon
ta W= f(Wn, W, W) } [*" u tot1

L Solve Electrical Field Check Convergence Criteria | | If converged
u, Go(p.0" ") = 0 |[RY| < ¢[R] J] o+t

¥ = P
0" 5 @,
k=k+1 Lt
New Iteration

If not converged

Figure 5.3: Partitioned coupling strategy for the electro-thermo-mechanical problem.

5.1.3 Results

In the following, the temperature evolution and the deflection are taken into
consideration. The deflection is defined as the maximum displacement u, in y-
direction, occurring at the free end (2 = [) of the beam. Both the temperature and
the displacement are taken from the result node as depicted in Figure 5.4.

Reference configuration

Result node

Current configuration

Displacement Uy (m)

Figure 5.4: Displacement in y-direction of the bimetallic beam at ¢ = 100 s.
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The results at this node are given in Figure 5.5(a) for the temperature evolution
and in Figure 5.5(b) for the deflection. Obviously, the electric current leads to
high temperatures which therefore lead to large deflections of the beam. After
t = 100 s, one obtains Ouax = 354.27°C and u, = —0.425m which is clearly a
large deformation, as illustrated in Figure 5.4.
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Temperat luti b) Displ in y-directi

Figure 5.5: Temperature and displacement plotted against time at the result node for an
implicit and explicit coupling strategy.

The further objectives are to study different coupling strategies and to investi-
gate the influence of convergence acceleration methods. At the beginning, a fully
explicit coupling strategy is taken under consideration. In this context, fully ex-
plicit means that no coupling iterations are performed between the fields. Hence,
each solver is called only once per time-step. The results are given in Figure 5.5(a)
with respect to the temperature evolution and in Figure 5.5(b) for the displace-
ment in y-direction. As depicted in both Figures, the differences between an im-
plicit and an explicit scheme are quite small and can hardly be detected. The
implicit case requires an average number of 2.18 iterations to achieve balance be-
tween the three fields. This means that every solver is called 2.18 times per time-
step, which leads to the fact that the computational costs for the explicit scheme
are approximately half the amount of the implicit scheme. For this special exam-
ple, one can conclude that the implicit solver calls are dispensable since they are
neither required to attain a sufficient accuracy nor are they needed to stabilize the
coupling process.

In the next stage, the coupling strength is increased successively. This can be ac-
complished in a straightforward manner by multiplying the thermal expansion
coefficients ag as well as the linear temperature coefficients «, with a constant
factor v € {2, 4, 6 }. The objective is to study the performance of the convergence
acceleration schemes. In particular, the Dynamic Secant Relaxation (DSR) and
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the Quasi-Newton least square method (QN) are applied to the coupled problem.
The number of required coupling iterations per time-step ¢ is given in Table 5.3
and compared to the reference case (Ref) where no acceleration method is em-
ployed. This averaging parameter is computed after the fifteenth load-step — or,
in other words, after T' = 30 s, since At = 2 s is chosen for the time increment.

Table 5.3: Convergence study of the bimetallic beam and comparison of iterations required
per time-step () for different acceleration methods (NC = no convergence).

v Ref QN(T) DSR(T) QN(M) DSR(M)

2 407 3.93 3.87 4.0 3.93
4 993 5.13 3.93 5.8 5.47
6 NC 6.13 4.61 NC NC

As shown in Table 5.3, the QN method and the DSR method serve to increase
the stability and accelerate the iteration process. There are only small improve-
ments for the case that v = 2 holds, but for v = 4 and v = 6, the positive influence
of the acceleration methods is quite obvious. For the case with the highest degree
of coupling (v = 6), a converged solution cannot be achieved without these meth-
ods. Further, it turns out that the point of application, either after the thermal (T)
or after the mechanical field (M), is important. Apparently, the better option is
to apply it after the thermal field, as this is the only way to achieve convergence
in the case of v = 6. In order to investigate this in a more detailed way, the cou-

. " Electric Field ——
10 Thermal Field —&—
Mechanical Field —e—

10
N
_:é 10 \ /::k\
. NN

Iteration [-]
Figure 5.6: Coupling iteration residuals A* of the electric, thermal and mechanical fields

for v = 6 using DSR(T).

pling iteration residual A* = ||r¥|| is plotted against the number of Gauss-Seidel
coupling iterations in Figure 5.6. This is done for v = 6, and the DSR method is
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applied to the thermal field. It seems that the electric field converges very fast and
can therefore been viewed as loosely coupled. The mechanical and the thermal
field however require more Gauss-Seidel coupling iterations. To reach the toler-
ance of e = 107, the thermal field requires 8 global coupling iterations whereas
the mechanical field requires only 4. This shows how important it is to stabilize
the crucial field during the simulation — and it also indicates why a converged
solution cannot be obtained when applying the acceleration methods to the me-
chanical field. Further, one can conclude that it is very important to check if all
fields are balanced. If only the convergence criterion of the electric field were to
be checked, two coupling iterations would suffice. However, this would lead to
at least very inaccurate results as the other fields would not be in equilibrium.

5.2 Multi-field problem with thermal radiation

In this example, thermal radiation is considered as an additional field to simulate
the interaction of a radiating body with its environment. Again, the bimetallic
beam from the previous example is taken under investigation. The coupling strat-
egy now requires an extension to treat four coupled fields, as proposed in [168].
Further, different methods to solve the radiative transfer equation (RTE) — the
view factor method (VEM), see Section 3.4.1, the methods of spherical harmonics
(P;-approximation), see Section 3.4.2, and the discrete ordinate method (fvDOM)
described in Section 3.4.3 — are studied, and their impact on the coupling strategy
is investigated.

5.2.1 Model problem: bimetallic beam coupled with radiation field

In the following, the model problem as given in Section 5.1.1 is extended as fol-
lows: The beam is placed inside a chamber and is fully enclosed by the walls
of the chamber, as depicted in Figure 5.7. When the beams starts to heat up,
the occurring surface radiation leads to incoming radiation at the inner chamber
walls. This incoming radiation can be reflected and will then irradiate into the
beam over its surface. In order to cover these effects, a thermal radiation solver
is used to simulate the interaction of the beam surface with the environment.
The space between the beam and the chamber walls is discretized by means of
50 x 40 x 30 = 60000 finite volume cells, see Figure 5.7. Here, only one half of the
chamber is shown. The dimensions of the chamber are given in Table 5.4. It is
presumed that the space between the beam and the chamber walls is filled with a
participating medium, an ideal gas that is homogeneous and that features a con-
stant emission and absorption coefficient of & = 0.5. The surfaces of the inner
chamber walls are adopted as ideal black, i.e. the emissivity is ¢ = 1.0. In this
example, the influence of convective heat transfer is neglected.
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Chamber FVM mesh

Bimetallic beam
FEM mesh

Figure 5.7: One half of the finite volume mesh (gray) of the chamber together with finite
element mesh (red) of the bimetallic beam.

Table 5.4: Geometrical set-up of the chamber.
Length [ 2 m
Width b6 0.51 m
High h 06 m

5.2.2 Partitioned coupling strategy

The coupling effects between the electro-thermo-mechanical problem were dis-
cussed in Section 5.1.2. However, the presence of the radiation field needs to be
taken into account. First of all, it is coupled with the thermal field. As outlined
in Section 2.3.4, the temperature and the heat flux must be at equilibrium on the
coupling domain — which, in this case, is the surface boundary of the bimetal-
lic beam. Moreover, as large displacements are assumed, the radiation field has
to be computed on the updated mesh. Thus, it is coupled with the mechanical
field through the displacements of the coupling domain. In both cases, a surface
coupling arises so that the whole problem can be seen as a surface- and volume-
coupled system.

Due to the surface coupling, data need to be transferred over interfaces with
non-matching meshes. The bimetallic beam is discretized with a very coarse high-
order finite element mesh, whereas the radiation field uses finer finite volume
cells. To this end, the data are interpolated before being transferred. In addition,
the finite volume mesh needs to be updated dynamically with respect to the cur-
rent deformation. Several possibilities to tackle these problems were discussed in
Section 4.3. In this example, the barycentric triangle interpolation is utilized and
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a Laplacian smoother is used to take mesh motion into account.

The three-field strategy proposed in the previous example is now extended to a
four-field problem. Again, a fully implicit strategy is employed so that balance is
achieved if all fields are converged. The general strategy is shown in Figure 5.8.
Thermal radiation is chosen to be the last field in the partitioned sequence. The
reason for this is that the radiation field shall be solved on the current updated
configuration. The point of application of the acceleration methods is chosen
after the thermal field, that means that the temperature is corrected by means of
the dynamic secant relaxation (DSR) method or the quasi-Newton (QN) method.

[ Solve Mechanical Field u*1 ["Map Data on Radiation Field ]

Gu(O" ("1, QL) ) = 0 par) Do Dynamic Mesh Update
: o
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Figure 5.8: Partitioned coupling strategy for a coupled four-field problem including a ra-
diation field.

5.2.3 Results

First of all, the influence of mesh deformation is investigated. Due to the kine-
matic coupling condition, the mesh of the surroundings needs to be updated dy-
namically in every iteration. As depicted in Figure 5.9, two different situations
are possible: The chamber walls can be fixed, as shown in Figure 5.9(a), allow-
ing only little deflection in comparison to the case where the chamber walls are
not constraint, see Figure 5.9(b). For the former situation, at a certain time, some
of the finite volume cells becomes so distorted that the computation is aborted.
Henceforth, the example using flexible chamber walls is taken under consider-
ation to allow larger beam deflections. Due to the large displacements, it is as-
sumed that the coupling strength might be higher and a partitioned solution is
therefore numerically more challenging. However, there is no physical reason to
use flexible chamber walls; in this study, they are used to test the four-field cou-
pling approach.
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(a) Deformed mesh with fixed wall boundary. (b) Deformed mesh without constraining the

wall boundary.

Figure 5.9: Mesh deformation for different boundary conditions of the chamber walls.
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Figure 5.10: Temperature and displacement plotted against time at the result node for
different thermal radiation models.

The temperature development and the displacement in y-direction are com-
pared to the results from the previous section where the influence of the chamber
was not simulated. The results for the three different radiation models — the VFM,
the P-method and the fvDOM- are depicted in Figure 5.10. The variable of in-
terest is the temperature, and the temporal course is given in Figure 5.10(a). It
turns out that, with increasing temperatures, the differences between the simple
boundary model and the more complex radiation models increase as well. How-
ever, these are only slight deviations, the maximum difference amounts to only
6% between the P, and the standard boundary model at the end of the simu-
lation. The reason for this is that there are no complex geometries and that an
approximation of radiation via the boundary condition thus delivers acceptable
results.

Similar to the previous section, the aim is to study the performance of acceler-
ation methods. To this end, the thermal expansion coefficient is once more mul-
tiplied with the factor v € {2, 4, 6 }. The results are given in Table 5.5, in which
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the averaged coupling iterations per time-step for different radiation models are
compared. In this study, the convergence acceleration methods are applied to
the thermal field. The results clearly reveal a need for additional stabilization
schemes to achieve convergence for strong coupling levels (y = 6). Without the
DSR or the QN, a converged solution cannot be accomplished. Further, it turns
out that the number of iterations varies with the radiation model. For example,
the combination of v = 2 and the fvDOM seems to require the fewest number
of iterations. However, the differences between the radiation models are small,
also for higher coupling strengths. It is demonstrated that both the DSR and the
QN methods allow to accelerate and to stabilize the four-field problem, indepen-
dently of which radiation model is used. A comparison between the QN and the
DSR shows that the latter method performs slightly better. In the case of v = 6,
the QN requires up to ¢ = 2.2 iterations per time-step more (P,-method) than the
DSR.

Table 5.5: Convergence study on the example of the bimetallic beam for different radiation
models: comparison of the average number of coupling iterations.

\ VFM Pi-method fvDOM
v |Ref DSR QN |[Ref DSR QN |Ref DSR QN

4.80 4.47 4.53 447 4.20 4.47 3.67 3.20 3.20
11.73  5.87 5.87 12.07  5.93 6.87 NC 6.15 6.67
NC 7.25 9.35 NC 6.67 8.89 NC 7.55 8.78

D = N

In order to get a better insight of the convergence behavior of the radiation
field, the coupling iteration residual is plotted against the number of iterations in
Figure 5.11(a) for the DSR scheme and in Figure 5.11(b) for the QN method. In
these figures, the convergence in the first time-step is considered at high coupling
strengths (v = 6). The results show that the VFM and the P;-method exhibit a
very similar convergence behavior, whereas the fvDOM performs slightly worse.
To achieve an accuracy in the coupling iteration residual of ¢ < 10~*, both ac-
celeration schemes require 8 Gauss-Seidel iterations when applying the VFM or
P-method — and 9 in the case of the fvDOM.

Another interesting aspect has to do with how different radiation models influ-
ence the total computation time. In order to make the comparison as fair as pos-
sible, the example with the coupling strength of v = 4 is considered. In the case
where the DSR method is applied, all radiation models require approximately
six iterations to reach convergence. Figure 5.12(a) lists the results, with the nor-
malized computation time plotted against the time. As mentioned in Section 3.4,
the fvDOM is a very cost-intensive method. This is also reflected in the example.
At the end of the simulation (¢ = 30s) the total computation time is approxi-
mately 77% higher compared to the P-method and even 85% higher compared
to the VEM. A comparison to the three-field problem, which is based on the sim-
ple boundary radiation model, is difficult — due to the fact that it reaches a con-
verged solution in approximately four coupling iterations, see Table 5.3, whereas

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

156 5. Numerical examples

VEM —— " VEM ——
0 Py —— 0 Py —=—
10 . 10 .
fvDOM —o— fVDOM —o—
_—
107! \\ 107! ‘\
= 10?2 = 10?2 B
E E AN
z 107 N z 1073 O\
& N &
10—4 ,\’4 10—4 =
I "I
107 107
10° 10
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Iteration [-] Iteration [-]

(a) Application of the DSR to the thermal field. (b) Application of the QN to the thermal field.

Figure 5.11: Coupling residual of the radiation field plotted against the number of itera-
tions for different radiation models at high coupling strengths (v = 6).

the other radiation models require about six. For this reason, the computation of
this example is carried out once again, this time ensuring that the coupling al-
gorithm also requires six iterations per time-step. This can be done by setting a
very sharp iteration tolerance and terminating after six iterations, allowing for an
almost fair comparison. Figure 5.12(b) depicts the relative overall computation
time related to the most time-consuming method, the f{vDOM. Not surprisingly,
the boundary radiation model is the fastest way to incorporate radiation. For this
example, the computation time compared to the fvDOM takes only 8%.

1
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- 08
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(a) Relative computation time over the total time. (b) Comparison of radiation models to
BC-model.

Figure 5.12: Relative computation time for different radiation models.
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5.3 Simulating the FAST process

In this example, a partitioned coupling strategy for the simulation of the field
assisted sintering technology (FAST) is proposed. The process is governed by an
electric, thermal and mechanical field plus a radiation field to tackle the thermal
conditions of the surroundings. Two different simulations are carried out: In the
first step, the temperature evolution inside the FAST tools and the chamber is
computed without taking the powder compaction process into account. In the
second simulation, the powder material is added and the results are compared to
monolithic simulations and to experimental data from [146].

5.3.1 Temperature evolution

The first simulation serves to determine the temperature evolution in the FAST
tools for fully consolidated copper powder where the relative density is approxi-
mately p,ei = 1. This means that the compaction process itself is not studied. Nev-
ertheless, to gain information of how the graphite tool-system influences the final
temperature, the stress distribution of the powder and the material parameters of
the sintering process, such an investigation is of principle interest. HARTMANN
ET AL. [76] studied the punch/die system and applied a monolithic coupling ap-
proach to solve the electro-thermo-mechanically coupled problem. However, the
influence of the chamber in which the graphite tool-system is located was dis-
regarded. The objective of the following investigation is to take the complex in-
teractions of the radiating surfaces with the surroundings and the chamber walls
into account. To this end, an additional radiation field is introduced. This conse-
quently means that a simulation of the FAST process now requires the solution of
four coupled fields.

5.3.1.1 Constitutive relations

Referring to HARTMANN ET AL. [76], the same constitutive model and material

parameters are utilized. Concerning the kinematic relations, the strain tensor is

assumed to be an additive decomposition of a mechanical and a thermal part
E=E

~ ~M

+Eg (5.2)

where the latter contribution is purely volumetric Eg = ae (© — ©o)I. Further,
the free-energy function ¥ (E, , ©) consists of a mechanical and a thermal part

U(E,,,0) = Uy(Ey,) + Vo(O). (5.3)

SavE

HARTMANN ET AL. [76] assumed a small strain thermoelasticity material model
and used

| >

2
pUn(Ey) =3 (v By)" + 1By By (5.4)
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as the mechanical part of the specific free-energy function. Based on this function,
the expressions for the stress tensor and the entropy can be calculated to

gngzM=/\trElJrQuEfa@A@(S/\JrQ;L)L (5.5)
~M
ov d \IJ@ 0(9(3)\ + 2#)
=T =— E — 300 AB) . .
§ 76 726 + p (tr E — 3ap AB) (5.6)

Following [76], the thermo-elastic coupling term results to
Y(E,8) = a6 (3 +21) Ot E. (5.7)

Further reading on modeling small strain thermoelasticity is provided in [76].
The thermal field is considered drawing on the equation of heat conduction,
which features nonlinear dependencies of the material parameters. Further, the
electric field is once again modeled by the conservation of charge with the as-
sumption of a stationary electric current.

5.3.1.2 Model description

In Figure 5.13, the geometry and the dimensions of the graphite tool-system are
depicted on a rotation-symmetric drawing in the 2-y-plane. The specifications of
this machine tool are taken from [76]. As only the temperature evolution inside
the graphite-powder system is investigated, the powder, die, punch, and cone
part are assumed as a contiguous region.

— |0 (= | =

< o
<

L1
k

Figure 5.13: Rotation-symmetric drawing of the graphite tool-system and dimensions, ro-
tated counterclockwise by 90°.

The finite element mesh of the graphite system is depicted in Figure 5.14(a).
Due to the symmetry, only one-eighth of the geometry is taken under consider-
ation. As shown in Figure 5.14(a), it is distinguished between the graphite and
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Table 5.6: Dimensions in mm of the FAST tools system based on [76].
a_|b Jc |d Je |f g |h i |j |k
27.5 ‘ 5.0 ‘ 15.5 ‘ 104 ‘ 25.0 ‘ 48.0 ‘ 73.6 ‘ 115.1 ‘ 135.1 ‘ 10.0 ‘ 79.7

the powder domain. The mesh consists of 384 high-order hexahedral elements
with a polynomial degree of p = 4. All finite element computations are carried
out with the high-order finite element code AdhoC. The FAST tools are located
inside a chamber which has the simple geometry of a box with the dimensions
110 x 135.1 x 110 mm?. The space between the punch/die system and the cham-
ber walls defines the radiation field. This field enables radiative heat transfer be-
tween the radiating surfaces of the graphite tools and the surroundings. For the
spatial discretization, a finite volume mesh consisting of 13171 finite volume cells
is used. As depicted in Figure 5.14(b), only one-eighth of the chamber volume
is discretized due to symmetry conditions. This finite volume mesh is employed
when applying the fvDOM and the P;-method. For the VEM, only the discretized
surfaces of the chamber walls and the graphite tools are required. The surface
mesh is extracted from the finite volume mesh in Figure 5.14(b). Since there are
no symmetry conditions available for the VEM in OpenFOAM, the whole model
needs to be discretized for the radiation field. The resulting finite volume mesh
consists of 88344 volumes.!

Graphite

Result node

Powder

(a) High-order finite element mesh of the (b) Finite volume mesh of the space between the
graphite tools. tools and the chamber walls.

Figure 5.14: Used meshes for simulating the FAST process.

1The finite element mesh is not affected when using the VFM. In this case, the surface temper-
atures are simply mirrored before they are transferred to the radiation field.
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The boundary conditions of the mechanical, the thermal and the electric field
are presented in Figure 5.16. Regarding the thermal field, water-cooling of the
graphite tools is modeled by forced convection heat flux at the top of the cone
part. The rising flow can be described by g. = h(© — Oy,), where h = 88 W/m?K
denotes the heat transfer coefficient and ©,, = 295.15 K is the constant water tem-
perature. In Figure 5.16, the radiating surfaces are colored turquoise. This surface
is either the coupling interface to the radiation field over which the radiative heat
flux and temperature are exchanged — or, in the case of the boundary model, ther-
mal radiation is approximated as ¢, = £ 04,(©* — O% ). Here, an ambient tempera-
ture O, = 303.15 K is assumed and the surface emission coefficient is ¢ = 0.8. For
the electrical field, a time-dependent electric current is applied, providing a heat
source based on Joule heating. This was determined experimentally [76], and the
temporal course is shown in Figure 5.15.

450
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350 N
300

yd VoV

250

1[A]

200

N\
150

V
100

50 \
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
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Figure 5.15: Experimentally determined electric current applied to the graphite tools,
taken from |[76].

The boundary conditions for the radiation field are depicted in Figure 5.17. The
coupling interface (red) defines the coupling domain between the radiation and
the thermal field. At the chamber walls, the velocity of the fluid, which is the
rarefied gas that approaches vacuum conditions, is prescribed to be zero, and the
wall temperature coincides with the ambient temperature .

The material properties for the consolidated copper powder and for graphite
are summarized in Table 5.7. For realistic simulations, the temperature depen-
dency of several material parameters for both materials was experimentally de-
termined by HARTMANN ET AL. [76]. In the following, the thermal and electric
conductivity (Ae, A,) and the heat capacity (co) are described by temperature-
dependent functions. Following [76], the parameters are approximated by ana-
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Figure 5.16: Boundary conditions of the graphite tools system for the a) mechanical, b)
the thermal and c¢) the electric field.

Wall

Wall
Sym

Couplin,
Sym

x Coupling Wall

Figure 5.17: Boundary and interface conditions of the space between tools and chamber
walls.

lytic ansatz functions

Ao (0) = by e + by e "0, (5.8a)
Mo(©) = c1 6729 — cze74O, (5.8b)
co(©) = dy + d© + ds tanh(d,© — ds) (5.8¢)

for graphite and, with the help of a linear ansatz functions, for copper powder

Xo,cu(©) = €10 + ey, (5.9a)
Apcu(©) = 1O+ fo, (5.9b)
co,cu(©) =910+ go. (5.9¢)
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The coefficients needed in Eqns. (5.8a) — (5.9¢) are depicted in Tab. 5.8 and Tab. 5.9.

Table 5.7: Material properties for graphite and copper.

Material parameter Symbol  Graphite Copper Unit
Young’s modulus E 1.15x1070  1.2x10*"  N/m?
Poisson ratio v 0.2 03 -
Density P 1.85x1079  8.92x10%%  kg/m?
Linear temp. coef. ag  4.55x107% 1.60x107% 1/K
Thermal conductivity ) (5.8a) (5.92) W/mK
Electric conductivity Ao (5.8b) (5.9b) S/m
Heat capacity co (5.8¢) (5.9¢c) m?/s’K

Table 5.8: Coeflicients of the temperature-dependent material properties (1/2).

;=1 i=2 1=3

b, 85700107 W 51241073 L 8.81-1071
¢ 169001070 S 2168-107% & 1.66-107° 2
di 58630-10%2 gl 3507-107 pdn 8.39-107 o
er —7.8335-102 W 4332.107 W

fi o 3800-1077 S 550001040 £

g 82214107 P 3737-107 o

Table 5.9: Coeflicients of the temperature-dependent material properties (2/2).

i=4 i=5
b 3.292-107%
¢ 2.089-107° &
d; 3.247-107% L 09431 [

The simulation is carried out with a constant time increment of At = 2s, and
the time period under consideration is set to T' = 2200s. A partitioned coupling
strategy is applied, similar to the one used in the previous section, see Figure 5.8.
However, the radiation field and the mechanical field are assumed to be decou-
pled. Following [76], the fully coupled electro-thermo-mechanical problem incor-
porates thermoelasticity at small strains. As this does not lead to substantial geo-
metric changes, the radiation field can be solved on a fixed configuration. Further,
this implies that the view factors are constant during the computation and, there-
fore, the computational costs for the VFM can be reduced drastically.? Besides,

2This is due to the fact that a QR-decomposition of the D matrix of Eq. (3.109) needs to be
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the electric and the thermal field are coupled against each other via temperature-
dependent material parameters and via the Joule heating term. Between the me-
chanical and the thermal field, the coupling occurs due to thermal expansion and
the thermo-elastic coupling term in the heat equation.

A further remark on the numerical treatment of the radiation field: Since air
would cause oxidation of the tools under high temperatures, a vacuum is created
inside the chamber by technical means. However, to apply the fvDOM or the P;-
method, a participating medium is required. To this end, a very thin gas is used
as a participating fluid such that vacuum conditions are nearly reached. This
can be obtained choosing a small absorption coefficient (o = 0.01) such that the
optical depth is much smaller than one and the transmittance 7 approaches one.

5.3.1.3 Results

To begin with, the results under perfect vacuum conditions are presented. The
temperature is compared to the experimentally and numerically determined re-
sults from [76], where the standard boundary radiation model is employed.
There is no participating media, so that the VFM is applied to simulate the ra-
diation field. In the following, three different cases are computed:

e Case a) involves the standard conditions for the chamber. The emission
coefficient £, = 0.8 is assumed for oxidized steel chamber walls. Further,
O, = 305.15 K is taken for the constant chamber wall temperature.

e In case b), the emission coefficient is changed to €,, = 0.2, which approaches
blank steel, whereas the wall temperature remains unchanged.

o Case c) also uses ¢, = 0.2 and prescribes a time-dependent wall tempera-
ture. The chamber walls are water-cooled, as usual, which is why the wall
temperature is not constant. As there is no experimental data for the tem-
perature, it is interpolated as

On = 0.5 [O4(t) + 305.15K] , (5.10)
where©y is the maximum temperature on the surface of the graphite tools.

The temperature evolution at the result node for the three different cases is de-
picted in Figure 5.18, together with the experimental and numerical data from [76].
It turns out that the computed temperature is considerably higher when using the
VEM, and it approaches the experimentally determined temperature with a bet-
ter accuracy. The reason for this is that the VFM allows to capture the influence of
the complex geometry and, further, it allows to simulate effects such as reflections
and irradiation between the tool surfaces and the chamber walls. Furthermore,
the influence of the emission coefficient and the temperature for the chamber
walls was studied. It turned out that the third case — the one using ¢,, = 0.2 and

done only once at the beginning of the simulation. It can then be reused in every iteration and in
every time-step, so the unknown heat fluxes can simply be obtained by backward substitution.
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a variable wall temperature — delivers the most suitable approach to the experi-

ments.
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simulation data given in |76]

Next, the vacuum chamber is approached by an optically very thin medium
which allows to apply the fvDOM and the P;-method to the radiation field. Again,
the temperature evolution at the result point is considered, and the results for
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the different radiation models are shown in Figure 5.19. The fvDOM and the P;-
method lead to reasonable temperatures too, whereas the former is slightly above
the VEM (case a). The P;-method slightly underestimates the temperature, which
is due to the known fact that it is not well-suited for optically thin media.

However, all radiation models deliver promising results, thus constituting bet-
ter approaches to the experiments than the boundary radiation model. Unfortu-
nately, there are still deviations compared to the experimental data, in particular
for the cooling period, which starts almost in the second half of the simulation.
In order to reduce the remaining deviations and to improve the numerical re-
sults, knowledge about the surface temperature of the chamber walls is required.
In addition, it was mentioned by HARTMANN ET AL. [76] that such deviations
might be due to an inaccurate modeling of the water-cooling convection at the
upper surface. Further, they suppose that there is a strong influence of the elec-
tric and thermal contact conditions between contact surfaces of the punch/die
system and that this leads to an imperfect resistance and Joule heating.

Figure 5.20 shows a comparison between the temperature distribution at 7" =
1100 s for the VFM (case 3) and the boundary model. Moreover, the temperature
values at the result point at ' = 1100 s for the different radiation models are
listed in Table 5.10. The minimal difference between the experimental data and
the numerical solution is A® = 62.3 K.

a) b)
0[°C]
Exp. [76] 699.0
: i BC [76] 4505
e o VFM (1) 577.6
- 500

VFM (2) 601.6
- VFM (3) 636.7

Y Y
' Iaoo fvDOM  589.9
Figure 5.20: Temperature distribution in the machine Table 5.10: Absolute temperature
tools for a) VFM (case 3) and b) the at result point at 7' =

boundary model. 1100 s and deviation
to experimental data.

In the following, the results of the whole radiation field obtained with the VFM
(case 3) will be addressed). Figure 5.21(a) depicts the temperature, and Fig-
ure 5.21(b) shows the heat flux after T' = 1100 s. Here, it is defined that a heat flux
that leaves the graphite tool-system is indicated by a negative sign. As shown in
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Figure 5.21(b), there is a region at the end of the tool-system that has a positive
sign, i.e. the incoming heat flux is higher than the outgoing portion. Since the am-
bient temperature of this region is below the surface temperature, the reason for
the very high incoming heat flux must consequently lie in the strongly radiating
center of the FAST tool-system. This effect is called self-irradiation and describes
the radiative transfer between surfaces of the graphite tool-system. This leads
thermal energy back into the punch/die system and therefore results in higher
temperatures.

Taking the heat flux under consideration underlines the superiority of a Dirichlet-
Neumann coupling formulation between the radiation and thermal field over the
standard boundary radiation model, which is not able to capture effects like self-
irradiation.

Incident
Radiation

Q
T ' fiwiss
| 'n
=
Iz, e
(a) Plot of the temperature distribution. (b) Plot of the radiative heat flux.

Figure 5.21: Radiative heat flux and temperature distribution after 7 = 1100 s of the
VFEM.

5.3.2 Consolidation of copper powder

In the second FAST example, a constitutive model for copper powder is ap-
plied for a realistic simulation of the compaction process. In the following, a
thermo-viscoplastic model for highly compressible copper powder developed by
ROTHE [146] is employed, covering large deformations as well as the material’s
temperature dependency.

The basis of the constitutive formulation is a multiplicative split of the defor-
mation gradient into four parts

F=FFFF,. (5.11)

where I is a reversible elastic part, I a reversible thermal part, ' an irre-
versible plastic and I, denotes an irreversible creep part. Due to the complexity
of the powder material model, a further description is not given in this work.

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

5.3. Simulating the FAST process 167

The basic constitutive equations are summarized in the Appendix A.4. A very
detailed derivation of the constitutive equations can be found in [146].

5.3.2.1 Model description

The thermal and electric fields are solved on the same mesh with the same bound-
ary conditions as utilized in the previous simulation, see the Figures 5.13, 5.14(a)
and 5.16. The applied current is shown in Figure 5.22(a) and the applied axial
force in Figure 5.22(b), both taken from [146].

Table 5.11: Coefficients for the heat capacity of graphite and copper powder from [146].
Material Cp0 Cps
Copper  397.83 J(kgK) 2.07 x107* 1/K
Graphite  896.0 J(kgK) 1.62 x1073 1/K
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Figure 5.22: Applied electric current and axial force based on [146].

In this sintering simulation, different thermal and electric material parameters
are chosen. Based on experimental data, ROTHE [146] proposed the ansatz

Ao (©) = —agO + be tanh (preld_ c@> +eo, (5.12a)
©

Ao(8) = plu(a,07" —¢,), (5.12b)

ce(©) = cpo [1 + ¢ps(© — ©y)] (5.12¢)

tersagt, m mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186345189

168 5. Numerical examples

for the specific heat capacity, the electric and thermal conductivity for copper
powder and

Ao () = agPe, (5.13a)
A (0) = a0, (5.13b)
C@(@) = Cpo [1 + Cps(@ - @0)] . (513C)

for graphite. The coefficients based on the metric SI unit system are given in Ta-
ble 5.12 for the thermal conductivity A\e, in Table 5.13 for the electric conductivity
A, and in Table 5.11 for the heat capacity ce. All coefficients are taken from [146].

Table 5.12: Coefficients for the thermal conductivity of graphite and copper powder

from [146].
Material ae be co de eo
Copper  0.05 W/(mK?) 214.60 W/(mK) 0.83 0.17 259.80 W/(mK)
Graphite 1130 W/(mK) -0.425 - - -

Table 5.13: Coefficients for the electric conductivity of graphite and copper powder
from [146].
Material a, b, Cyp
Copper  2.69x10'° S/m 1.08 1.21x10% S/m
Graphite 1.49x10* S/m  3.04x107! -

Figure 5.23: Powder mesh and boundary conditions.

As shown in Figure 5.23, only the powder region is discretized for the mechan-
ical field. Based on the assumption that the graphite tools are rigid compared
to the initial state of the powder, the force is directly applied on the top of the
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powder region, see Figure 5.23. This assumption further allows to approach the
contact between powder and the tools by simply constraining the displacement
on the Neumann boundary of the powder domain.

In the following simulation, the results of the partitioned formulation are com-
pared to monolithic computations and experiments carried out by ROTHE [146].
In view of the partitioned formulation, the following assumptions and simplifi-
cations are made:

o The graphite tools are assumed to be rigid and are therefore not modeled
for the mechanical field. Thus, the contact conditions between the powder
and the tools can be covered by constraining the displacement boundary
conditions, and the load is directly applied to the powder.

o As reported in [146], there are also electric and thermal contact interfaces
between the FAST tools and between the powder and the tools. These con-
tact conditions are also not modeled in this work.

o Coupling effects resulting from geometric nonlinearity are neglected, i.e.
the electric and the thermal field are solved on a fixed configuration.

In this simulation, the radiation field is not taken under investigation, and the
radiating surfaces are treated with the simple boundary radiation model. The
coupling strategy is based on a three-field problem, following Figure 5.3.

5.3.2.2 Results

600 — . 1 — ,
Partitioned Partitioned
Monolithic Monolithic -
500 Experimental 09 Experimental /
O 400 > 08
2 300 2 07
2 2
£ £
S 200 = 06
. /
100 / 0.5
0 0.4
0 200 400 600 800 0 200 400 600 800
Time [s] Time [s]
(a) Temperature evolution at thermocouple (b) Relative density during processing.
point.

Figure 5.24: Comparison of temperature evaluation and relative density. Monolithic and
experimental data is taken from [146].
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The results of the sintering simulation are depicted in Figure 5.24(a), where
the temperature development is shown, and in Figure 5.24(b), where the evolu-
tion of the relative density is plotted. Compared to the results obtained with the
monolithic approach [146], there is a significant deviation in both courses, yet
the tendency of the temperature and density evolution during processing seems
to agree. At the end of the simulation after ' = 860 s, the deviations in the
temperature compared to the monolithic approach are around 15.5% and for the
relative density approximately 15.2%. The reason for the discrepancies is not so
much a problem of the partitioned coupling algorithm, but is rather due to the
assumptions and simplifications made for this computation, particularly because
of neglecting the mechanical, thermal and electric contact conditions. Since all
fields depend on each other, it is difficult to determine the source of the deviation
clearly. For example, a lower relative density also has influence on the thermal
and electric conductivity, which leads to lower temperatures in the graphite tool-
system and also in the powder. Presumably, it is the combination of these effects
that leads to such strong deviations compared to the sintering computations and
experiments of [146].
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Conclusions and outlook

Within the scope of this thesis, partitioned solution approaches are applied to
solve multi-physically coupled problems. The intended purpose is to develop a
flexible coupling strategy for an arbitrary number of physical fields that can be
treated with specialized solvers. Further emphasis is placed on increasing the
chances for algorithmic stability and to provide an accurate data transfer in the
case of incompatible meshes. The proposed strategy was shown to be applicable
for several numerical computations. Apart from academic examples serving to
test the partitioned scheme, an industrial application is taken under investigation.
Here, the simulation focuses on complex interactions of four physical fields that
describe the field assisted sintering technology (FAST).

The FAST process is governed by electric, thermal and mechanical fields. To
this end, the descriptive equations of these fields are introduced and the cor-
responding coupled initial-boundary value problem is formulated. It is known
from the literature, see e.g. [176, 76], that the temperature development during
processing is of principle interest. As FAST deals with high heating rates and hot
temperatures, the effect of thermal radiation becomes an important issue. That
is why the radiative heat transfer is treated as an additional physical field in this
thesis. A radiation solver is coupled to the thermal field and, in the event of large
deformations, also to the mechanical field. For the former coupling, a Dirichlet-
Neumann partition is proposed that describes the interaction of radiating surfaces
with their surroundings. The latter coupling describes a situation in which the
field must be related to the current configuration, leading to a one-way Dirichlet-
coupling, i.e. iterating is not required to achieve balance. As radiation transfers
thermal energy in vacuum, the coupling is also formulated for the absence of a
participating medium. In summary, the FAST process is described by four phys-
ical fields which are coupled over the volume and the surface.

The spatial discretization of the FAST tools for the electric, thermal and me-
chanical fields is carried out by means of the finite element method (FEM). Fur-
ther, the ambient of the tools is the radiation field, which is discretized by the
finite volume method (FVM). In this context, different numerical models for the
radiative transfer are discussed. For the special case of vacuum conditions, the
view factor method (VFM) is utilized. For a participating medium, however, the
method of spherical harmonics (P;-approximation) and the finite volume discrete ordi-
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nates method (fvDOM) are applied.

A further objective is to provide a robust and efficient solution strategy based
on a separated treatment of the coupled problem. The proposed strategy fol-
lows the classical Gauss-Seidel iteration process with repetitive data exchange be-
tween the solvers. Algorithmic stability is increased by means of external stabi-
lization methods. Several such procedures are investigated in this thesis. Apart
from schemes that fall in the class of Aitken relaxation or quasi-Newton methods,
so-called vector sequence acceleration methods are applied. However, in-depth per-
formance studies on simple and academic examples show that these procedures
cannot achieve the same convergence rates as Aitken relaxation or quasi-Newton
methods. In this context, strongly coupled nonlinear thermoelasticity is solved
by applying an isothermal split. As reported in [3], this split is only conditionally
stable. It is demonstrated in this thesis that the convergence stabilization meth-
ods even allow to solve unrealistically high coupling levels based on this split.
Further, they are able to drastically reduce the required coupling iterations and,
accordingly, to reduce the overall computation time as well.

In another simulation, the proposed Dirichlet-Neumann coupling between the
radiation and the thermal field is investigated and also compared to experimen-
tal data. To this end, the finite element solver AdhoC for the thermal field is
coupled with the finite volume solver OpenFOAM of the radiation field. It can be
shown that the thermal-radiative coupling formulation delivers reliable results
and a good agreement with the experiments. Further, the three different numeri-
cal radiation models are investigated and compared to the standard, but the less
complex, boundary model — which approximates radiation as a boundary condi-
tion in the heat equation of the thermal field. This model is not coupled with an
additional radiation solver. It turns out that the boundary model cannot repro-
duce the results with the same accuracy as the other radiation models. Another
advantage of an external radiation solver is, that — in case of participating media
— the surrounding fluid field is simulated. This allows to take Buoyant-forces into
account, which are responsible for the effect of natural convection.

As selected numerical examples for the radiation-electro-thermo-mechanical
four-field problem, a bimetallic beam in a chamber is considered, followed by
the simulation of the FAST process. The example of the bimetallic beam serves
to find an appropriate coupling strategy for the fields involved. Again, different
coupling strengths between the fields are studied and the convergence accelera-
tion methods are applied. As demonstrated for this example, the point of applica-
tion of these methods, i.e. which of the four fields is stabilized, is a crucial point.
It turns out that the thermal field is apparently the best choice as it is directly
coupled to all other fields. Moreover, the computational effort for the different
radiation models is compared. Here, it shows that it is especially the fvDOM that
leads to a significant increase in the total simulation time.

Finally, the partitioned coupling approach is applied to simulate the FAST pro-
cess. To begin with, the temperature evolution during processing is computed
inside the graphite tools under the assumption of fully compacted powder. The
objective is to gain a better understanding of thermal radiation and effects such as
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self-irradiation of the FAST tools and reflection between the tools and the cham-
ber walls. Again, radiation is considered as a physical field of its own —leading to
promising results. Compared to the experimental data from [76], the temperature
evolution can be treated better than with the simple boundary radiation model.
The reason for this is that self-irradiation and reflection are covered, leading ther-
mal energy back into the tools. Another interesting issue is that the vacuum of
the chamber can be modeled by means of a very rarefied gas. This allows to ap-
ply the P;-method and the f{vDOM, which require the presence of a participating
medium.

At the end, a constitutive powder model [146] is used to simulate the consolida-
tion process of copper powder. Unfortunately, the simulation cannot reproduce
the experimentally obtained data and the numerical results given in [146]. There
are several reasons for those discrepancies, which are not so much related to the
partitioned strategy but rather to the black-box solver used for the electric, ther-
mal and mechanical fields.

In the following, some open questions shall be discussed - followed by an
outlook concerning prospective research possibilities. With respect to the parti-
tioned coupling approach, a parallel treatment of the fields involved poses inter-
esting opportunities. Instead of solving the fields in a sequential manner (Gauss-
Seidel formulation), a parallel approach (Gauss-Jacobi formulation) can lead to
considerable savings of computation time. This can be of interest for problems
that require an in-depth analysis of thermal radiation, which can be very cost-
intensive. Attempts for a parallel solution of multi-physic problems can be found
in [162, 152, 151, 23], for instance. Further research is required for aspects of sta-
bility regarding the Gauss-Jacobi procedure and the convergence.

Another interesting point is concerned with an improved time integration of
the partitioned coupling strategy. Due to the flexibility, different time steps for the
fields involved can be chosen, and an error-based time step selection combined
with high-order time integration would complete this issue. Applied to a Gauss-
Jacobi scheme, this offers further research possibilities and has — to the author’s
knowledge — not yet been investigated and, thus, might be a challenging open
issue for the future.

It has been demonstrated that a comprehensive thermal radiation analysis can
be an important ingredient to accurately simulate the temperature development
of the FAST process. Further research needs to be conducted in this field to con-
firm these findings. Regarding simulations of the entire compaction process of
a powder material, it would be an interesting aim for future work to focus on
a coupled computation that involves the four physical fields and that can also
handle aspects such as contact between the tools.
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Appendix

A.1 View factor radiation

ry

Ty

Figure A.1: Schematic sketch of two finite perpendicular rectangles with one common edge.

In the following an example for view factor radiation is considered. For the enclo-
sure given in Figure A.1 — two perpendicular rectangles — the view factor F4,_ 4,
between the surface A; and A, shall be calculated. To begin with, the geometric
relations as depicted in Figure A.1 are described. First, for arbitrary points P
and P, lying on the surfaces A; and A, the normal vectors n; and the coordinate
vectors r; pointing from the origin to P, are introduced

0 1 1 0
n; = 0 5 ny = 0 , 't = |y and To = (Y2 (Al)
1 0 0 29
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and, moreover, the distance vectors s; between the points are determined

—X1 X1
S12 =Ty —I't = (Y2 — Y1 and sy =r; -1y = Y1 —Y2| - (A~2)
Z9 —2Z9

Recapitulating the formula for infinitesimal view factor calculation

(g - rip)(mp - 1)

dFya,—aa, = e

dA,, (A.3)
requires the distance between two points on the surface

S% = s’ = s =27 + (g2 —0n)* + 23 (A4)
and also the following scalar products

n;rp=2 and ny-ry =I. (A.5)

Introducing this into Eq. (A.3) and integrating over dA; dA, = dx; dy; dz dys,
leads to

Faa, = / / / / 20 ~ dzo dyy dy dy, . (A.6)
(22 + (g2 — y1)? + 22)°

1 Y1 Y2 22

Integrating four times using special computer software delivers the view factor
1 1 1 1
i =7 {VV tan™! W + H tan™! T~ L tan™ I

L (WA 5 (W21 4 17) V(1 + 121"
e 1+ L2 {(1+W2)L2} {(HH?)L?}

(A7)

)

where the geometrical abbreviations H = h/l, W = w/l and L = vH? +W? are
utilized for clarity reasons. With! = 30cm, w =20cm, h = 10cm, A; = wx! = 0.6
m?, and Ay = h x | = 0.3 m? the view factor reads

Fa, 4, = 0.1595 . (A.8)
The reciprocity rule delivers the remaining view factor

Fayn, = j—; Fay—ay =2 Fa,_a, =0.3190. (A.9)
Assuming that the temperatures ©, = 350 K and ©, = 300 K and the emission

coefficient ¢; = 0.8 and ¢; = 0.5 are given, the unknown heat fluxes can be calcu-
lated by

Dg=Ae (A.10)
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where D and A have the following components

0ij — Fij .
=~ + F'i,]' and A” = ()ij — E,j .

€

D..

)

Evaluating both matrices leads to
1.25 —0.1595] @] [ 1.0 —0.1595] [04,01
—0.07975 2 ¢  |[-0.319 1.0 0,04

Finally, the unknown heat fluxes on both surfaces read

ol 125  —0.1595] ' [©! - 0.1595 6}
e P |-0.07975 2 0! —0.3196*

(A.11)

_ . [et-015950]
7 et —0.3190!
(A.12)

B {637.308

/. (A1
119.336}“ (A.13)
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A.2  Vector sequence acceleration methods

The vector sequence acceleration methods generate sets of transformed vectors
which can be summarized by means of the following table:

J =
il 2 7! 9 ) z0,
7 z z} z!
% TR B B
z z 73 73
z, 77
z, 7 75"
z) 75"
z7 !
zy

In order to locate every vector of the sequences, two indices i and j are required
and by definition, for j = 0 all vectors z}, are known. In other words, the z} span
the known vector sequence S

S = {Zo,zl, L= ]Rd} , (A.14)

which are the solution vectors from the partitioned coupling iteration. To acceler-
ate the iteration process, the sequence S shall be transformed into a new sequence
that exhibits better convergence properties. Based on this definition, j is the col-
umn index that denotes the j-th sequence and i is the row index that refers to the
i-th vector of the corresponding sequence.

A2.1 Wynn’'s e-algorithm

One of the most famous algorithm to accelerate vector sequences is the so-called
vector e-algorithm (VEA) which was discovered by WYNN in the early 1960s [173].
It states that the vectors of the new sequences are calculated by using the vector
inverse based on the following formulas

€,=0 and ¢ =2', i=0,1,..

i+1 i
v ) , . , T — € (A.15)
i i+l i+l i\l il J J ioi—
=it (g —€) =g+ Hr—1, =12
e;" — €l
J J
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where the z' are known vectors of the given sequence S. Based on this formula,
the pattern of this algorithm reads

Jj—

T
Zi ., 2 Zi
2t gt
z;13

Based on this pattern, the new vector is computed by using three other vectors.
In order to apply the VEA to accelerate the convergence of the partitioned cou-
pling strategy, the three last iterates {z", z"~!,z"=2} are considered. To make
this procedure available as an acceleration scheme, the sequence index j is set
to one j = 1 which allows to design a procedure that can be applied after two
new coupling iterations have been performed. For the new vector z¥! = €} one
obtains

. i 275 — 27 gk _ k1 gh—1 _ k=2

27" With oz = ——— =
R e Pl A P R

(A.16)

This formula can now utilized to accelerate the coupling process in every third
iteration. Beside this algorithm, an other generalization of the e-algorithm for
the acceleration of vector sequences was developed by Brezinski, see [16] for in-
stance. This algorithm was called topological e-algorithm (TEA) and which obtains
an accelerated sequence by means of the following rule

631:0 and ef):zi7 1=0,1,...,

) ) h
€. :elfi 4+ —_— i, 7=0,1,...,
2j+1 2j-1 hTAe'Z'].’ (A.17)
) ) Aestt
€ 2:6?'2*,'14,-.7’_7 i, 7=0,1,...
" ! (Ae‘"z?l)TAGlzm

where the vector h is an arbitrary non-zero vector. Setting j = 0 and taking the
last three iterates, leads after some mathematical rearrangements to a formula,
see Eq. (4.62), which is similar to the VEA and which can be applied to accelerate
the partitioned coupling algorithm.

A.2.2 Brezinski’s #-algorithm

Another method which shall be discussed is Brezinski’s ©-algorithm for scalar se-
quences and which was afterwards extended to the vector case, see [16] for in-
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stance. In the multi-dimensional case, this transformation reads

0, =0 and 0=z, i=0,1,..,

. . AG.

0., =0 +— 2 =012,

2j+1 2j-1 HAQZQJ'HQ (A.18)
i+1 i

0. .. :0?*1+MA0?“. i,j=0,1,2,....

2j+2 2j (A29;j+1)TA20§j+1 25 ’ s Ly &y

and is called vector 0-algorithm (VTA). Further, there exist a second technique
which was also proposed by BREZINSKI [16]. It reads

0 ,=0 and 0)=7z', i=01,..,

i i g .
02j+1 :02-;i1+gTT0i7 23] :071727"'7
2j
. _ ) AG. v hTAQLH
0, ., =0 tuwi——2  with w=——2 4 j=0,1,2,..
22 =02 T (NG TAG, T Twraeyl Y /
(A.19)

where g € R??! and h € R%! are arbitrary non-zero vectors used to avoid the case
that the denominators vanish. Following BREZINSKI [16] this method is named
as the generalized 0-algorithm (GTA) used. For both methods, setting j = 0 and
taking the last four iterates into account, an applicable formula to accelerate the
convergence of the partitioned coupling process can be obtained, see Eqns. (4.63)
and (4.65).

A23 W-algorithm

The third vector sequence acceleration method under consideration was pro-
posed by Osada [131] and is named as Euclidean W-transformation (EWT). Fol-
lowing [131], the EWT scheme reads
Wi=2z, i=0,1,2 ..
wiowe o BWRAWLL Ly
T (AW TAYWIT — (AW TAPW T T T
j=1,2,..., i=353j+1,..

There exist a second procedure which is designated as the vector W-transformation
(VWT) [131] based on the following formula

Wi=27", i=0,1,2, ...,

Wi = Wi+
( B (Aw;.ﬁ)mw;:i;>< AW AWEE AW )‘1
(AWEIDTAW] |\ JAWZ])2 AW JAWZ)?
j=1,2,..., i=35,3+1,...
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(A.21)

Similar to the previous method, the limitation to j = 0 and taking the last four
iterates into account leads to an acceleration formula for the convergence of the
partitioned coupling process given by Eqns. (4.66) and (4.67).
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A.3 Barycentric coordinates

Figure A.2: Barycentric coordinates on the triangle ABC

For the Barycentric mapping procedure it is necessary to express the Cartesian
coordinates (z,y) in Barycentric coordinates wy, ws, w;. For the sake of clarity, the
two-dimensional case is considered first and extended to the three dimensions at
the end of this paragraph. Cartesian coordinates can be expressed as

T =W TA+WaTy+ wW3Tco, (A.22)

Y =wiya+wrya+wsyc- (A.23)
The w; are also known as Barycentric weights and since w; + wy + w3 = 1 must
hold, one can deduce that

r=wiTa+wrza+ (1 —w —ws)ac, (A.24)

y=wiyatwrya+ (1 —w —w)yc. (A.25)

In this system of equations, the weights w; and w, are unknown. However, they
can easily be calculated by solving

({EA—IC .TB—Ic) (uq) _ (I—:Ec> (A 26)
Ya—Yc Ys —Yc Wa Y—Yc

Finally, one can find that

(3 = B —yo)(x —zc) + (xc — 25)(y — yc)
w; (T) s — yo)(@a —20) + (o — 75)(Ya —yo) (A.27)
(i) — W = ya)(@ = x0) + (w4 — zc)(y — yc)

12 (%) Wo —ya)(@a —70) + (@a—25) (s — o)’ (A.28)
w3 () = 1 — wy () — wa(7) . (A.29)
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Barycentric mapping means that data d given at the points A, B, C is projected on
the point P by

—

J(fp) = w(Zp) da(Za) +w2(Tp) jB(fB)JF[l —wi(Zp) — wa(Zp)] ‘iC(fC)~ (A.30)

There is another way to determine the barycentric weights by considering the
area of the triangle. Let ABC' the area of the entire triangle, then one can deduce
that

ABC = ABP+PBC+APC — 1= %@ (ABP + PBC + APC) . (A.31)

Based on the area of the sub-triangles the barycentric weights can be calculated
to

ABP N PBC N APC
ABC ABC ABC

wy + wy + wy = (A.32)
Consequently, it follows that the interpolation procedure is related to the per-
centage area of each sub-triangle. This procedure can easily be generalized to
the three-dimensional case. Instead of a triangle, a tetrahedron is defined by
four points which is spanned by four triangles. The calculation of the barycen-
tric coordinates can be obtained in exactly the same way, however, now four
points need to be considered and therefore, three weights wy, w,, w3 — since 1 =
wy + wy + w3 + wy must hold — need to be determined.
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A.4 Constitutive model for copper powder

Elasticity relation
K |tr(CCT)

8= 292 9?2

3o+ £ {C cot — Ly (cc?) C;l}

i 94 N N N IS

Plastic flow-rule: elasticity (¢ < 0) or plasticity (¢ =0 A é>0)

.f(f £
ﬁ(l*gp) ¢<0
) 2,00 n 2,100, 100 p
gp_ chaJ2i§4g+ch |:8[11 38J2i194t1(wp QH g
+%@—QQ d=0A¢>0

Interpolated single surface convex yield function

egl/(ck)-%—ﬁ“/("'k)
¢ =cklIn ) 9= Jo + ol 4 3¢)% —

gr= VITE — k+ Agesh

Creep flow-rule

.9 -
Qc = ggv <Ilc> gc: v = Ac(@ - @0) (1 - CT)

Co= fol, fo= 2AO ~O0)(fe — ex) (1), e = fetrS

Isotropic hardemng

Sk (Ie) 11 ¢ <0
; W [0 a¢
k=< A-— I + 3&y 2——Jy
M ™ (E)Ih( 1+ 3&u) + R >
—AWMM+3k<hJLL $=0N9>0
Hydrostatic kinematic hardening
ber 1 1
§M = —age bery + Cely — Wﬁ' ry = 5 hl( /detgi )
\/det U,

Hydrostatic Tensile Hardening
Iy = Buprae” = + I, B = c5(1— ) (O — Os)
Miscellaneous

Iy =tr (QIS) Joi =
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1
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The constitutive material model for copper powder that is used for the sintering
simulations shall briefly be outlined. This model implies finite strain thermo-
viscoplastic behavior and has been developed by ROTHE [146]. For a detailed
explanation of the constitutive equations and the corresponding parameters ref-
erence is made to [146]. Therein, aspects of the implementation are provided and
numerical sintering simulations are presented.

IP 216.73.216.36, am 18.01.2026, 21:45:10. Inhalt.
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186345189

A.5. Unit system 185

A.5 Unit system
In order to describe physical quantities and the material parameters, the stan-

dard metric SI unit system is utilized. The international base units are given in
Table A.1.

Table A.1: SI base unit system.

Base unit name Symbol Unit Unit symbol
Length l Meter m

Mass m Kilogram kg

Time t Second s

Electric current 1 Ampere A
Temperature G} Kelvin K

Based on this system, the following special units used in this thesis for the phys-
ical quantities can be established, as shown in Table A.2

Table A.2: Special units based on the SI system.

Quantity Symbol Unit SI units SI base units
Force N Newton m kg/s?
Pressure Pa Pascal ~ N/m? kg/m s72
Energy J Joule N m m? kg /s?
Power W Watt J/s m? kg/s?
Voltage \Y Volt W/A m? kg/s® A7t
Electric resistance Q Ohm V/A m? kg/s® A2
Electric conductivity S Siemens A/V m~2 kg &3 A2
1P 2167321636, am 012025, 214540 it
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