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Seite II 

Kurzfassung 

 

Punktgestützte Stahlbetonflachdecken haben sich aufgrund zahlreicher wirtschaftlicher, 

konstruktiver und architektonischer Vorzüge als fester Bestandteil des Hochbaus etabliert. In 

jüngerer Zeit werden neben konventionellen Stahlbetonstützen auch besonders tragfähige Verbund- 

und Schleuderbetonstützen sowie Stützen aus hochfestem Beton als Auflagerelemente eingesetzt. 

Für diese Konstruktionsarten wurden Knotendetails entwickelt, bei denen die Lastdurchleitung 

durch den Stützen-Decken-Knoten über im Querschnitt reduzierte, hochfeste Kerne erfolgt, die die 

Decke durchdringen. Für die Einleitung der Deckenlast in die Stütze steht hier nicht der gesamte 

Stützenquerschnitt zur Verfügung, sondern nur eine reduzierte Lasteinleitungsfläche in der 

Stützenrandzone. Die Auflagerung ist dann nicht mehr kontinuierlich punktgestützt, sondern es 

stellt sich eine Lochrandstützung mit kleiner Lasteinleitungsfläche ein. 

Während der Versagensmechanismus und die wesentlichen Einflussfaktoren beim Durchstanzen 

normal punktgelagerter Platten bekannt sind und hierfür zahlreiche theoretische Modelle hergeleitet 

wurden, ist die Anzahl der Untersuchungen an lochrandgestützten Platten überschaubar. Die 

vorliegenden Arbeiten wurden hauptsächlich im Zusammenhang mit dem Hubdeckenverfahren 

verfasst und sind aufgrund verschiedener Aspekte ungeeignet, um das Durchstanzen bei 

lochrandgestützten Platten mit kleiner Lasteinleitungsfläche zu beschreiben. 

Im Rahmen dieser Arbeit wird das Tragverhalten lochrandgestützter Platten mit kleiner 

Lasteinleitungsfläche mittels FEM-Simulationen untersucht. Auf Grundlage der 

Simulationsergebnisse werden Bemessungsvorschläge für verschiedene Konstruktionsarten 

angegeben. Abschließend werden Vorschläge für ein Versuchsprogramm und einen Versuchsaufbau 

gemacht, mit denen die Simulationsergebnisse in einem zweiten Schritt überprüft werden können. 

 

Abstract 

 

Flat slabs have been established due to a number of economic, structural and architectural 

advantages as an integral part of building construction. More recently, in addition to conventional 

reinforced concrete columns also composite and spun concrete columns and columns of high-

strength concrete are used as supports. Characteristic of these kinds of constructions is that the load 

transmission through the node between column and slab is made by high-strength cores with a 

reduced cross-section, which penetrate the slab. The reaction force of the slab then is passed to the 

column by a small load application area in the fringe of the column. These slabs are characterized as 

hole edge supported slabs with a small load application area. 

While the failure mechanism and the essential factors in normal flat slabs are well known and 

numerous theoretical models for this purpose have been developed, there is only a small number of 

investigations on hole edge supported slabs. These papers were mainly written relating to lift slabs. 

Due to several aspects, they are unsuitable to describe the punching in hole edge supported slabs 

with a small load application area. 

In this paper the structural behavior of hole edge supported slabs with a small load application area 

is investigated by means of FEM simulations. Based on the simulation results, design approaches 

are proposed for different kinds of construction. Finally, suggestions for a test series and a test set-

up are made in order to check the simulation results in a second step. 
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Seite VII 

Einheiten und Bezeichnungen 

 

Nachstehend werden die wichtigsten in dieser Arbeit verwendeten Einheiten und Formelzeichen 

angegeben. Nicht aufgeführte Bezeichnungen werden im Text erläutert. 

 

Einheiten: 

 

Kräfte:  kN, MN 

Momente: kNm 

Spannungen: KPa, MPa 

Längen: mm, cm, m 

Flächen: mm², cm², m² 

Winkel: rad, Grad 

 

Bezeichnungen: 

 

Kleine lateinische Buchstaben 

c  Stützenbreite, Stützendurchmesser 

d  statische Nutzhöhe 

h  Bauteilhöhe 

e  Lastausmitte 

l  Stützweite 

r  Radius 

u  kritischer Rundschnitt im Abstand d/2 vom Anschnitt 

w  Durchbiegung 

x  Druckzonenhöhe  

 

Große lateinische Buchstaben 

E  Elastizitätsmodul 

G  Schubmodul 

V  Stützenlast 

 

Kleine lateinische Buchstaben mit Indizes 

cx, cy  Abmessungen einer Rechteckstütze 

dcol  Durchmesser einer kreisrunden Stütze 

dcore  Durchmesser eines Stahlkerns 

dfixed  Durchmesser eines Stahlkerns mit daran fixierter Betonstahlbewehrung 

dg  Größtkorndurchmesser 

dhole  Durchmesser eines Sacklochs 

ds  Stabdurchmesser der Betonstahlbewehrung 

fc  Einaxiale Zylinderdruckfestigkeit des Betons 

fck  Charakteristische Zylinderdruckfestigkeit des Betons nach 28 Tagen 

fcm,cube150 Mittelwert der Betondruckfestigkeit eines Würfels mit 150 mm Kantenlänge nach 28 

Tagen 
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fcm,cube200 Mittelwert der Betondruckfestigkeit eines Würfels mit 200 mm Kantenlänge nach 28 

Tagen 

fcm,cyl  Mittelwert der einaxialen Zylinderdruckfestigkeit des Betons 

fct  zentrische Zugfestigkeit des Betons 

fct,fl  Biegezugfestigkeit des Betons 

fctm  Mittelwert der zentrischen Zugfestigkeit des Betons 

ftk  Charakteristische Zugfestigkeit der Betonstahlbewehrung 

fy  Streckgrenze der Betonstahlbewehrung 

fyw  Streckgrenze der Durchstanzbewehrung 

fywd,ef  wirksamer Bemessungswert der Streckgrenze der Durchstanzbewehrung 

kcore Abminderungsbeiwert zur Ermittlung der rechnerischen Versagenslast 

lochrandgestützter Platten mit einem Kern in Plattenmitte 

khole,2 Abminderungsbeiwert zur Ermittlung der rechnerischen Versagenslast 

lochrandgestützter Platten mit einem Sackloch in Plattenmitte, bilinearer Ansatz 

khole,3 Abminderungsbeiwert zur Ermittlung der rechnerischen Versagenslast 

lochrandgestützter Platten mit einem Sackloch in Plattenmitte, kubischer Ansatz 

lcol Stützenlänge 

lw  Länge des schubbewehrten Bereichs 

mcr  Rissmoment 

mr  radiales Plattenmoment (erzeugt Dehnungen in radialer Richtung / tangentiale Risse) 

mt tangentiales Plattenmoment (erzeugt Dehnungen in tangentialer Richtung / radiale 

Risse) 

rc  Radius einer kreisrunden Stütze 

rq  Radius der Lasteinleitungspunkte 

rs  Außenradius eines kreisrunden Deckenausschnitts 

sr  radialer Abstand einer Durchstanzbewehrungsreihe 

u0  Stützenumfang 

u1  Umfang des kritischen Rundschnitts 

uout,ef  Umfang des äußeren Rundschnitts 

vmin  Mindestwert des Querkraftwiderstands 

vq  über den Umfang verteilte Belastung eines kreisrunden Deckenausschnitts 

vRd,c Bemessungswert des Durchstanzwiderstands längs des kritischen Rundschnitts einer 

Platte ohne Durchstanzbewehrung  

vRd,c,core Bemessungswert des Durchstanzwiderstands längs des kritischen Rundschnitts einer 

lochrandgestützten Platte mit einem Kern in Plattenmitte ohne Durchstanzbewehrung  

vRd,c,hole Bemessungswert des Durchstanzwiderstands längs des kritischen Rundschnitts einer 

lochrandgestützten Platte mit einem Sackloch in Plattenmitte ohne 

Durchstanzbewehrung  

vRd,cs  Bemessungswert des Durchstanzwiderstands für Platten mit Durchstanzbewehrung 

vRd,c,out  Bemessungswert des Durchstanzwiderstands längs des äußeren Rundschnitts einer 

Platte mit Durchstanzbewehrung  

vRd,max Bemessungswert des maximalen Durchstanzwiderstands je Flächeneinheit längs des 

Stützenumfangs 

vRd,s  Bemessungswert des Durchstanzwiderstands der Durchstanzbewehrung  
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wk Rissbreite 

x5% 5%-Quantil 

xm Mittelwert 

 

Große lateinische Buchstaben mit Indizes 

Ac  Betonquerschnittsfläche 

Acol  Stützenquerschnittsfläche 

ALoad  Lasteinleitungsfläche 

ALoad,red Infolge Lochrandstützung reduzierte Lasteinleitungsfläche 

Asw Querschnittsfläche der Durchstanzbewehrung in einer Bewehrungsreihe  

Ec Elastizitätsmodul des Betons 

Ecm Mittelwert des Elastizitätsmoduls des Betons 

Ec0m Mittelwert des Elastizitätsmoduls des Betons als Tangente im Ursprung der 

Spannungs-Dehnungslinie nach 28 Tagen 

EI0 Biegesteifigkeiten vor Erstrissbildung 

EI1 Biegesteifigkeiten nach Erstrissbildung 

Es Elastizitätsmodul der Betonstahlbewehrung 

Gf  Bruchenergie 

VE,k   charakteristischer Wert der Stützenlast 

Vflex  bei Erreichen der Biegetragfähigkeit wirkende Querkraft  

VR,cs  Durchstanztragfähigkeit im durchstanzbewehrten Bereich 

VR,out  Durchstanztragfähigkeit außerhalb des durchstanzbewehrten Bereichs 

VR,max Durchstanztragfähigkeit der Druckstrebe 

Vu  Versagenslast 

Vu,core  Versagenslast einer lochrandgestützten Platte mit Kern in Plattenmitte 

Vu,core,cal rechnerische Versagenslast einer lochrandgestützten Platte mit Kern in Plattenmitte 

Vu,core,EC rechnerische Versagenslast einer lochrandgestützten Platte mit Kern in Plattenmitte 

unter Verwendung eines Ansatzes nach Eurocode 2 

Vu,disp  Versagenslast einer Vollplatte mit ausgelagerter Bewehrung 

Vu,fixed  Versagenslast einer lochrandgestützten Platte mit Kern und daran fixierter 

Längsbewehrung in Plattenmitte 

Vu,fixed,cal rechnerische Versagenslast einer lochrandgestützten Platte mit Kern und daran 

fixierter Längsbewehrung in Plattenmitte 

Vu,fixed,EC rechnerische Versagenslast einer lochrandgestützten Platte mit Kern und daran 

fixierter Längsbewehrung in Plattenmitte unter Verwendung eines Ansatzes nach 

Eurocode 2 

Vu,hole  Versagenslast einer lochrandgestützten Platte mit Sackloch in Plattenmitte 

Vu,hole,cal2 rechnerische Versagenslast einer lochrandgestützten Platte mit Sackloch in 

Plattenmitte unter Verwendung eines bilinearen Ansatzes 

Vu,hole,cal3 rechnerische Versagenslast einer lochrandgestützten Platte mit Sackloch in 

Plattenmitte unter Verwendung eines kubischen Ansatzes 

Vu,hole,EC rechnerische Versagenslast einer lochrandgestützten Platte mit Sackloch in 

Plattenmitte unter Verwendung eines Ansatzes nach Eurocode 2 
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