Fortschritt-Berichte VDI

iy

Reihe 8
Mess-, M.Sc. Haitham Elfahaam,
Steuerungs- und Aachen

Regelungstechnik

Nr. 1267 A Runtime Adaptation
Concept to reinforce
Versatility in
Industrial Automation

Lehrstuhl fir
Prozessleittechnik

AACHENER der RWTH Aachen

https://doi.org/10.51202/9783186267085

146, © nhalt.

IP 216.73.216.36, am 20.01.2026, 15:13:46.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

A Runtime Adaptation Concept to reinforce
Versatility in Industrial Automation

Der Fakultéat fiir Georessourcen und Materialtechnik der
Rheinisch-Westfélischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
vorgelegte Dissertation

von
Haitham Elfahaam, M. Sc.

aus Giza, Agypten

Berichter: Univ.-Prof. Dr.-Ing. Ulrich Epple
Univ.-Prof. Dr.-Ing. Birgit Vogel-Heuser

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

146, © nhalt.

IP 216.73.216.36, am 20.01.2026, 15:13:46.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Fortschritt-Berichte VDI

| Reihe 8

Mess-, Steuerungs- M.Sc. Haitham Elfahaam,
und Regelungstechnik Aachen

[Nr. 1267 | A Runtime Adaptation
Concept to reinforce
Versatility in
Industrial Automation

Lehrstuhl fir
Prozessleittechnik
AAC

ENER der RWTH Aachen

https://doi.org/10.51202/9783186267085

Elfahaam, Haitham

A Runtime Adaptation Concept to reinforce Versatility in Industrial
Automation

Fortschr-Ber. VDI Reihe 08 Nr. 1267. Disseldorf: VDI Verlag 2019.
130 Seiten, 63 Bilder, 10 Tabellen.

ISBN ©78-3-18-526708-6 ISSN 0178-9546,

€ 52,00/VDI-Mitgliederpreis € 46,80.

Fir die Dokumentation: Prozessleittechnik — Laufzeitadaption — Redeployment — Lastverteilung,
f\gentensySTeme — Dezentrale Systeme — Industrie 4.0 — Wandelbarkeit — Optimierung — Stabi-
itat

Unter dem Stichwort VWandelbarkeit wird die Féhigkeit verstanden, Industrieanlagen in die lage
zu versefzen, auf ungeplante Anderungen zu reagieren. Daher muss das Automatisierungssys-
tem bereit sein auf Anderungen auf allen Ebenen in der Automatisierungspyramide reagieren zu
kénnen. In dieser Dissertation wird ein Konzept zur Laufzeitadaption vorgestelli. Das Konzept
adressiert die Prozessleitebene und stellt ein Adaptionssystem vor, das die Softwarekomponen-
ten im Netzwerk nach den verschiedenen Optimierungskriterien stabil verteilt und damit das

Automatisierungssystem zur VWandelbarkeit befchigt.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
[{German National Bibliography); detailed bibliographic data is available via Infemnet at
www.dnb.de.

D82 (Diss. RWTH Aachen University, 2019)
Tag der mindlichen Prifung: 03. Juni 2019

© VDI Verlag GmbH - Dissseldorf 2019

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
[Fotokopie, Mikrokopie], der Speicherung in Datenverarbeitungsanlagen, im Infernet und das der Ubersefzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISSN 01789546

ISBN 978-3-18-526708-6

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Preface

This dissertation was written during my employment as an academic researcher at the
Chair of Process Control Engineering of RWTH Aachen University under the supervision
of Prof. Dr.-Ing. Ulrich Epple and Prof. Dr.-Ing. Birgit Vogel-Heuser. The research was
supported by the German Federal Ministry of Education and Research in the framework
of the project BaSys4.0 (Forderkennzeichen 01-—S16022).

I thank Prof. Epple for his mentoring, guidance and above all his trust that offered
me freedom to think innovatively, encounter great experiences and gain exposure. His
great insight and deep understanding of process automation and interdisciplinary research
offered me a great chance to learn and grow as a researcher, for that I am and will be
forever grateful. I also thank Prof. Vogel-Heuser for co-supervising my dissertation, for
her keen remarks and careful revision.

I thank the former and current team members of the Chair of Process Control En-
gineering namely (in alphabetical order) Mahyar Azarmipour, Torben Deppe, Dr. Lars
Evertz, Julian Grothoff, Holger Jeromin, Dr. David Kampert, Lars Nothdurft, Florian
Palm, Christian von Trotha, Constantin Wagner for the fruitful discussions and cooper-
ation. I also thank Margarete Milescu, Martina Uecker for their organization and efforts
that helped me present this work.

I would like to express my deepest appreciation for the great work contributed by my
student assistants Mariia Anapolska, Zolboo Erdenebayar and Michael Thies. Further-
more, I would like to express my sincere appreciation for the collaboration and fruitful
discussions with project partners, Dr. Sten Griiner and Tarik Terzimehic.

I am immensely grateful to my parents, my brother, my grandmother and my family for
their unconditional love, support and for being there through thick and thin.

Finally, I dedicate my dissertation to my late grandfather who helped and wished to
see this work come to light. May your memory be eternal.

Haitham Elfaham
Aachen, March 2019

111

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

146, © nhalt.

IP 216.73.216.36, am 20.01.2026, 15:13:46.
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Contents

Abstract

Kurzfassung

1

Introduction

1.1

1.2
1.3

Motivation

1.1.1

State of the Art

2.1
2.2
2.3

2.4

2.6

2.7

Dynamic RunTime Environments (RTE)
Virtual Machines
Container Technology
Docker-Daemon
2.3.2 Load Distribution
2.3.3 Compatibility
Migration and States Synchronization
Service Migration in Automation
2.4.2 Redundancy Migration
Components in Automation
Single Control Unit (SCU)
Group Control Unit (GCU)
Procedures

2.3.1

2.4.1

2.5.1
2.5.2
2.5.3
2.54
2.5.5

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8

Methodology - Load Distribution
Load Distribution Algorithms
2.7.2 Multi-Core Processing Analysis

2.7.1

Applications and Scenarios
1.1.2 Problem Definition
Objective of this Work
Structure of the Dissertation

Inner Structure of a Process Control Component

Adaptation in Industrial Automation Systems
Methodological Fundamentals - Graph Theory
Bipartite Graph
Adjacency Matrix
Star Topology
Hub and Spoke Topology
Mesh Topology
K, — K,, Topology

Neighbor
Valency

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©

ot, m mit, flir oder in Ki-Syster

X

x

=W W N e

© 00 0o~

el el e e e e e e e e e e e e e e e
[R T A R i e B en e

https://doi.org/10.51202/9783186267085

Contents

VI

2.7.3 Consensus Networks
2.74 Semi-Definite Programming
2.7.5 MATLAB-YALMIP
2.7.6 Simulated Annealing L

2.7.7 Optimal Distribution Solvers - Z3 SMT Solver

2.7.8 Deployment in Automotive Open System Architecture (AUTOSAR)

2.8 Agents Systems
2.9 Market-based Multi-Agent-System Approach
2.10 Agents Systems Hierarchy in Automation
2.11 Agent-Based Planning of Production Sequences
2.12 Recipes Definitions
2.13 Tools - Discovery e
2.13.1 Bonjour Protocol L o
2.13.2 Mechanism of Operation
2.13.3 Reconfiguration of Real-Time Fieldbus
Runtime Adaptation Concept
3.1 Terminology and Definitionso
3.2 Concept Overview
3.3 Process. e
3.3.1 Component redeployment L.
3.3.2 Container Redeployment,
34 Controller
3.4.1 Optimization Criteria and Constraints
3.4.2 Boundary Conditions oo

3.4.3 Stability, Performance Analysis and Performance Enhancement
3.5 Actuatoro

3.5.1 Load Distribution Executor
3.6 Sensor e
3.6.1 Resources & Component Manifestation
3.7 Disturbance
3.8 Architecture Overview

Modeling Fundamentals

4.1 The Load Balancing Model
4.1.1 Network Model
4.1.2 Load Model
4.1.3 Mathematical Model

Methodology Investigation - Analytical Approach - Linear Model

5.1 Modeling of the Adaption Algorithms
5.2 Model Characteristics
53 Model
5.3.1 Stability and Convergence Analysis
5.3.2 System Dynamic and Performance Analysis
5.4 Modeling of Multidimensional Loads
5.4.1 MD Problem Classification
IP 218.73.216.36, am 20.01.2026, 15:13:46. © Urheberrechtlich geschQtzter Inhalt .

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Contents

5.4.2 MD Problem Modeling 44

5.5 Performance Enhancement via Regression Models 48
5.5.1 Optimizing the Transfer Coefficient 48
5.5.2 Ring Hub and Spoke Networks 49
5.5.3 Regression Model oo 51
Methodology Investigation - Empirical Approach - Non-Linear Model 55
6.1 Model Characteristics 55
6.2 Performance Assessment Lo 55
6.3 KPIs Preliminaries L o 55
6.3.1 Network Topology 56
6.3.2 Load Description oo 56
6.3.3 Initial Conditions 56
6.3.4 Node Capacity 56
6.3.5 Probabilistic Algorithms 56
6.3.6 Foreknowledge of Terminating Conditions 56

6.4 KPIs . . . 57
6.4.1 Qualitative KPIso oo 57
6.4.2 Quantitative KPIs oo 0o 57
6.4.3 Modular Benchmark oo oo 60
6.4.4 Benchmark Testing 60
Use-Case - Implementation Approach 65
7.1 Demonstrator - SMS-SEMAG Cold Rolling Mill 65
711 Devices e 69
7.1.2 Single and Group Function Units (SFU and GFU) 70

7.2 Load Balancing 71
Implementation - Reality Approach 73
8.1 Decentral Algorithm (Resources Perspective) 73
8.1.1 Preliminaries 74

8.1.2 Objective 74
8.1.3 The BRAD Algorithm - Mechanism of Operation 75
8.1.4 Simulation Assessment L 76

8.2 Agents Systems Approach (Components Perspective) 83
Scenario 1 - Decentralized Algorithm 85
9.1 Realization L 85
9.1.1 Sync. State Machine BRAD 86
9.1.2 Application Monitor 86
9.1.3 Node to Node (N2N) Discovery 86
9.1.4 Device Resources Monitoring 88
9.1.5 Neighbor Informer 90
9.1.6 Neighbor Data Bank 90
9.1.7 TSE Optimizer - Sender End 90
9.1.8 Request Sender 92
9.1.9 Request Receiver oL, 92

VIL

IP 218.73.216.36, am 20.01.2026, 15:13:46. © Urheberrechtlich geschQtzter Inhalt .

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Contents

9.1.10 TSE Optimizer - Receiver End 92

9.1.11 Acceptance Notifier o 92

9.1.12 Send Initiator oo 92

9.1.13 Redeployer 92

9.2 Performance Assessment 93

9.2.1 Setup 93

9.2.2 Scenario 95

10 Scenario 2 - Agents System 97

10.1 Realization 97

10.1.1 Agent Load Balancing Algorithm 100

10.2 Performance Assessment 100

10.2.1 Setup 100

10.2.2 Scenario 101

11 Conclusion and Outlook 105

11.1 Outlook 105

11.1.1 Algorithm Enhancement 105

11.1.2 Synchronization 106

11.1.3 Improvements for Load Model 108

11.1.4 Improvements in the Decentralized Algorithm 108

11.2 Improvements in the Infrastructure 109

11.3 Further Utilizations of Agents Systems Approach 109

Bibliography 110
VIII

IP 218.73.216.36, am 20.01.2026, 15:13:46. © Urheberrechtlich geschQtzter Inhalt .

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Abstract

In the process control engineering domain, various initiatives around the world (e.g. “In-
dustry 4.0” in Germany) play a crucial role in directing the research and development.
In the new generation of industrial automation, a new architecture is introduced where
the communication hierarchy of the automation pyramid is dissolved in order to increase
the flexibility of the production systems. One of the objectives of this architecture is to
achieve “Adaptability” or in other words to enable industrial plants to react to unplanned
changes. Furthermore, design principles like decentral decision making and interconnect-
edness are widely promoted. In order to achieve the aforementioned goals, various new
functionalities (e.g., Self-X functionalities and optimizations) and information (e.g., asset
administration shell) are being introduced to the current production systems which did not
exist in the conventional ones thus causing a dynamic overhead to the available resources
(computation, communication, dynamic memory, etc.).

In the conventional systems, during the engineering phase, control logic and functionali-
ties are designed and then deployed to the computation nodes in the automation network.
In some cases, an optimized distribution profile for the loads are computed prior to the
initial deployment and accordingly the load is distributed amongst the network endpoints.
However, the dynamic aspect of the load variations introduced in the newly introduced
automation paradigm is not taken into consideration.

System adaptation to the varying loads is required to readjust the loads and balance
the resources consumption in the network. In industrial automation, safety aspects play a
crucial role. Hence, a prerequisite for this framework is to not compromise the stability of
the production system.

The objective of this dissertation is to establish a framework for a seamless integration of
a deployment platform that can, through redeployment and adjustment of software com-
ponents, balance the resources consumption overhead amongst the automation network
participants, establish redundancy of the different components, improve the communica-
tion quality of service and adapt the system according to the rapid and dynamic changes
imposed.

Thorough analysis and investigations for stability and the production system dynamics
are conducted. The goal of these investigations is to ensure that the introduced frame-
work does not affect the performance in any undesired manner, e.g., causing the loads to
oscillate in the network or affecting the system performance with a non converging rede-
ployment processes of the software components. Hence, additional to these investigations,
a multi optimization criteria load balancing model is constructed to investigate the be-
havior or multidimensional optimizations. Moreover, performance enhancements analysis
is conducted through investigating the automation networks and constructing regression
models to compute the optimal parameters for load redeployment.

Furthermore, a prototype implementation to reinforce the presented concepts and vali-
date the conducted investigations is realized. The prototype considers an aluminum cold
rolling mill use-case and utilizes two different approaches namely decentral algorithms and

IX

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Abstract

agent systems approaches to perform the load balancing from two different perspective
namely resources and component perspectives respectively. In the former approach, the
algorithm uses mathematical formulas (e.g., total square error) to compute the optimum
load balancing profile from a decentral perspective and cooperates with other network par-
ticipants to achieve the optimum load distribution profile on a global scale. On the other
hand, in the latter approach, the components are considered as independent agents that
wander the network. The information incubated within an agent is used (e.g. optimal
routed path according to a given recipe) to anticipate the load distribution in the network
and thus adjust the placement of the components (agents) accordingly.

The presented prototype implementation uses the runtime environment ACPLT/RTE
and acts as extension library to provide the load balancing functionalities. The imple-
mentation uses the demonstrator from the SMS-group that simulates a cold rolling mill
plant.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Kurzfassung

Die Prozessleittechnik als ein Teil der Automatisierungstechnik erfahrt durch Initiativen
wie , Industrie 4.0¢. In der Prozessleittechnik sind verschiedene Initiativen auf der ganzen
Welt (z. B. ,Industrie 4.0“ in Deutschland) derzeit in Forschung und Entwicklung rich-
tungsweisend. Die Auflésung der Kommunikationshierarchie in der Automatisierungspyra-
mide wird als zielfithrend erachtet, um den zunehmenden Anforderungen an Flexibilitit in
Produktionssystemen gerecht zu werden. Unter dem Stichwort , Wandelbarkeit“ wird die
Fahigkeit verstanden, Industrieanlagen in die Lage zu versetzen, auf ungeplante Anderun-
gen zu reagieren. Ansitze dazu sind Gestaltungsprinzipien wie dezentrale Entscheidungs-
findung und vollstdndige Vernetzung. Um die zuvor genannten Ziele zu erreichen, werden
verschiedene neue Funktionalitdten (z. B. Self-X-Funktionalitdten und -Optimierungen)
und Informationen (z. B. die Verwaltungsschale) in die derzeitigen Produktionssysteme
eingefiithrt, wodurch eine Dynamik und ein Overhead zu den verfligharen Ressourcen
(Berechnung, Kommunikation, dynamischer Speicher usw.) erzeugt wird.

In den konventionellen Systemen werden wéihrend der Engineering-Phase Steuerlogik und
Funktionalititen entworfen und dann an die Rechenknoten im Automatisierungsnetzwerk
verteilt. In einigen Féllen wird ein optimiertes Verteilungsprofil fiir die Lasten vor der
ersten Bereitstellung berechnet, und dementsprechend wird die Last auf die Netzwerk-
endpunkte verteilt. Der dynamische Aspekt der Lastschwankungen des neu eingefiithrten
Automatisierungsparadigmas wird jedoch nicht beriicksichtigt. Eine Systemanpassung
an die unterschiedlichen Lasten ist erforderlich, um die Lasten neu verteilen und den
Ressourcenverbrauch im Netzwerk auszugleichen. In der industriellen Automatisierung
spielen Sicherheitsaspekte eine entscheidende Rolle. Eine Voraussetzung fiir diesen Rah-
men ist daher, die Stabilitét des Produktionssystems nicht zu beeintrachtigen.

Das Ziel dieser Dissertation ist die Schaffung eines Rahmens fiir die nahtlose Integra-
tion einer Implementierungsplattform, die durch die erneute Bereitstellung und Anpassung
von Softwarekomponenten den Ressourcenverbrauch zwischen Teilnehmern eines Automa-
tisierungsnetzwerks ausgleicht, die Redundanz der verschiedenen Komponenten herstellt
und die Kommunikation verbessert in Bezug auf Servicequalitidt und sowie die Anpassung
des Systems an die schnellen und kontinuierlichen Anderungen.

Griindliche Analysen und Untersuchungen zur Stabilitdt und zur Dynamik des Pro-
duktionssystems werden durchgefiihrt. Das Ziel dieser Untersuchungen besteht darin,
sicherzustellen, dass das eingefiihrte Framework die Leistung nicht auf unerwiinschte Weise
beeinflusst, z. B. indem die Lasten im Netzwerk oszillieren oder die Systemleistung durch
nicht konvergierende Umverteilungsprozesse der Softwarekomponenten beeinflusst wird.
Zusétzlich zu diesen Untersuchungen wird daher ein Lastausgleichsmodell fiir mehrere Op-
timierungskriterien erstellt, um das Verhalten oder mehrdimensionale Optimierungen zu
untersuchen. Dartiber hinaus wird die Analyse der Leistungsverbesserungen durchgefiihrt,
indem die Automatisierungsnetzwerke untersucht und Regressionsmodelle erstellt werden,
um die optimalen Parameter fiir die Lastumschichtung zu berechnen. Dariiber hinaus wird
eine Prototyp-Implementierung realisiert, um die vorgestellten Konzepte zu verstarken und

XI

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Kurzfassung

die durchgefithrten Untersuchungen zu validieren. Der Prototyp betrachtet den Anwen-
dungsfall eines Aluminium-Kaltwalzwerks und verwendet zwei unterschiedliche Ansétze,
namlich dezentrale Algorithmen und Ansétze von Agentensystemen, um den Lastausgle-
ich unter zwei verschiedenen Gesichtspunkten durchzufiihren, ndmlich Ressourcen- und
Komponentenperspektiven.

Die vorgestellte Prototypimplementierung verwendet die Laufzeitumgebung ACPLT/RTE
und fungiert als Erweiterungsbibliothek, um die Lastenausgleichsfunktionen bere-
itzustellen. Die Implementierung verwendet den Demonstrator der SMS-Gruppe, der eine
Aluminium-Kaltwalzanlage simuliert.

XII

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

1 Introduction

The German initiative “Industry 4.0” (140) has gained a lot of attention in the automa-
tion community. Topics like cyber physical systems, cloud computing and Internet of
Things (IoT) play a crucial role in the initiative [36]. 140 aims to introduce a fourth indus-
trial revolution that establishes a paradigm shift in the classical automation infrastructure
by promoting computerization of manufacturing. A challenge that is faced in 140 is the
“Wandelbarkeit” or adaptability of the plant to unplanned changes in the environment
and conditions [3] [82]. In Industry 3.0 or the classic infrastructure, there exists a com-
munication hierarchy between the different layers of the automation shown in Fig. 1.1.
This can hinder the interconnectedness between all layers and consequently the concept
of adaptability. Adaptability describes the ability to accommodate unplanned disruptions
or changes [1]. One of the objectives of 140 is to dissolve the communication hierarchy
and offer a more interoperable environment through higher interconnectedness between
the industrial systems on the different layers.

Control

Field

Figure 1.1: Automation Pyramid

1.1 Motivation

In the 140 automation-paradigm, the environment is constantly changing in a highly dy-
namic pace pertaining to all layers in the automation pyramid. Contrary to the classic
paradigm for instance, where initially the resources and the tasks are determinately dis-
tributed in the planning stage and the strategy is held for long times until claimed otherwise
[93]. Although this might be adequate for the classic paradigm, nowadays resources, ca-
pabilities and even the tasks dynamically change requiring a continuous adaptation of the

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

1 Introduction

set plan so that it can accommodate to the newly introduced modifications [79]. In order
to accomplish this, a strategy is required to analyze an automation network and attain
the required adaptation objectives. In this contribution, a concept is introduced with a
prototype implementation to demonstrate how runtime adaption using redeployment can
enhance and optimize the resources utilization in the automation domain.

1.1.1 Applications and Scenarios

Scenarios and applications that can be attained by the redeployment process:

Availability: Having such dynamic changes dictates a continuous monitoring of
the load change over the network and consequently a redistribution of the load such
that there is enough resources reserve at each node. Resources in that sense can
be seen as the computation, communication or storage power whereas load is seen
to be the software components being redistributed. A unified load distribution and
consequently a unified resources reserve distribution can increase the readiness of
each node to react in critical situations.

Redundancy: Maintaining a certain degree of redundancy in a network by produc-
ing backup copies of a component and distributing copies in the network.

Node Outage: Ensuring an uninterrupted execution in the case of a node outage.
Whether the node outage is planned due to maintenance or an unexpected due to
failure, the components running on that node as well as their states can be redeployed
on another node provided that the states are synchronized and the components either
are stored in the cloud or a redundant version exists in other nodes.

Communication Quality of Service (QoS): The quality of communication can
be enhanced through reducing the communication overhead. The overhead reduction
can be established either by reducing the distance between two communication end-
points thus guaranteeing a better QoS, or by (temporarily) reducing the frequency
of requests produced by other components in the communication path reducing the
bandwidth depletion.

Process Control Component Upgrade/Replacement: Upgrading or replacing
an already available PCC with another from the cloud. This can take place due to
different reasons, e.g., purchasing an upgraded functionality or modification of the
planned role of a device, updating the control logic, etc.

Functionality Enhancement: Some components are equipped with additional
tools that caters luxurious functionalities, e.g., achieving higher precision than re-
quired. In critical conditions during redeployment, these functionalities are usually
disabled as an adjustment procedure to increase the resources reserves at a node to
provide slack for other components to be deployed. However, after handling through
the critical conditions, the adjustment procedures are not rectified to normal condi-
tions again. Redeployment can increase the resources reserves at a node by redeploy-
ing the components available at the node to another node. Providing the maximum
resources to be depleted by the component enables the component to reach its highest
precision as well as to activate luxury functionalities.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

1.2 Objective of this Work

e Boundary Conditions: A boundary condition here can indicate hardware de-
pendencies, e.g., the availability of certain communication infrastructure, real time
requirements, e.g., after upgrading a process control component, the current commu-
nication channel bandwidth cannot support the required QoS, etc.

e Parallelization: Redeploying branches in PCCs that can be parallelized (e.g., par-
allel branching in sequential state charts) on other computation nodes to enhance
processing performance.

1.1.2 Problem Definition

The problem can be primarily seen in the lack of autonomy in the present automation
systems. This lack of autonomy is due to the absence of the interrelationships between
the available tools and established information. For example, nowadays, the systems are
engineered according to fixed recipes and reacting to changes and the dynamic modification
in the shop floor is limited. During the engineering phase, engineering costs and months
are spent designing and developing control logic for devices that are later deployed on
fixed computation endpoints. However, during the production process, the conditions are
dynamically changing which results in continuous change of the loads (i.e., computation,
communication or dynamic memory loads) in the network. Furthermore, computing an
optimal plausible solution for the allocation problem of the given software components
is a complicated task and is proven to be an NP-hard problem [61]. Establishing an
autonomous system that can redistribute the load in the network is a crucial prerequisite
for adaptability in 140. The adaption systems can precisely evaluate the dynamic situations
the network is experiencing and adapts it by adjusting the load in the network accordingly.
Redeployment can offer a solution that increases the resources reserve in the computation
nodes and eventually the readiness of the system for critical situations.

1.2 Objective of this Work

Runtime Adaption Concept

Empirical Use-Case Driven

Stability Anal
Objective Convergence nalyze Reality Gap
Response Dynamics Compare

[Method Control Theory Distributed Intelligence Automation
l Model Linear Non-Linear Non-Linear
[Tools Performance Tuning Performance Metrics Decentral Algorithm

Figure 1.2: Concept Overview

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

1 Introduction

The objective of this dissertation is to introduce a concept that establishes a runtime
adaption system that optimizes the utilization of the available resources in dynamic con-
ditions. The optimization is achieved through the rearrangement of the components in
the network ensuring an optimal distribution in terms of the resources utilization. The
introduced concept focuses on industrial automation scenarios and is demonstrated on
a use-case in discrete manufacturing. Furthermore, decentral control and system auton-
omy are considered as design requirements. The former sustains the Industry 4.0 design
principle decentral decisions. The latter ensures a minimal human intervention reducing
personnel overheads. The concept considers three fundamental perspectives as shown in
Fig. 1.2:

e Analytical Perspective: During load balancing, coordinating different optimization
objectives (e.g., load distribution, redundancy insurance, etc.) can possibly introduce
undesired behaviors (e.g., load oscillations) or even compromise the stability of the
system. In this perspective, the following objectives are investigated: maintaining
system stability and state convergence, controlling system response dynamics and
enhancing its performance. A formal model to describe the system introduces an
analytical perspective of the load balancing problem hence a control theory method-
ology is utilized. A linear model is introduced in this perspective which provides a
tuning tool for performance enhancement as a result.

e Empirical perspective: Various decentral algorithms in the informatics and system
engineering domain address the load balancing problem. However, due to non-
linearity in the system, it is difficult to model the load balancing problem on that
level. Thus, in order to analyze the existing algorithms and also to evaluate their
performance under different initial and boundary conditions (e.g., initial load dis-
tributions, network topologies, network sizes, etc.), a performance metrics list is
defined. The list produces a comparative scheme for the different algorithms which
helps understand the advantages of the algorithms in the different conditions.

e Use-case driven perspective: Through the acquired knowledge, an algorithm can be
developed and implemented in the industrial automation domain. However, due to
the reality gap, it is essential to examine a use-case from an industrial automation
perspective which considers the nature of the software applications (e.g., control hi-
erarchy), communication protocols and real time requirements. A demonstrator that
simulates an aluminum cold rolling mill plant is considered to assess the developed
concept.

1.3 Structure of the Dissertation

The rest of the dissertation is structured as follows:

e In Chapter 2, the state of the art is presented. In this chapter, relevant work, impor-
tant concepts and previously published contributions that are used as preliminary
work or lie in the scope of this dissertation are discussed. Additionally, an overview
is given for the technologies utilized in the implementation.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

1.3 Structure of the Dissertation

Chapter 3 explains the presented adaption concept thoroughly. An overview of the
concept of adaption and redeployment in automation and how it can be realized are
presented. In this chapter, only a collective perspective is discussed. Nevertheless,
exclusive separate chapters are assigned to discuss the analytical areas in more details.

In Chapter 4, the modeling fundamentals are discussed. An analytical abstract model
is discussed. This model is adjusted to fit the different approaches discussed in the
following chapters.

In Chapter 5 and 6, analytical and empirical approaches of the redeployment process
are presented respectively. In the former approach, the dynamics of the system
response and the performance enhancements are discussed. While in the latter, a
performance analysis from a software perspective is presented and a benchmark to
test the different available algorithms is introduced.

Chapter 7 discusses a realistic perspective of the problem by introducing an aluminum
cold rolling mill use-case.

Chapter 8 presents the two approaches for the realistic perspective namely the de-
centralized algorithm and the agents systems approach respectively.

Chapter 9 and 10 demonstrate the prototype implementations for both approaches,
decentralized algorithm and agents systems, respectively. Furthermore, testing of
the different functionalities provided is presented as well as the results delivered by
the implementations.

Chapter 11 concludes the dissertation and gives an outlook for the presented work.

ot

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

The presented work combines various concepts from different disciplines, hence the wide
diversity of topics presented in this chapter. Each section provides either an overview for
previous work that was done within the focus of this contribution or an insight into a
utilized technology or tool.

2.1 Dynamic RunTime Environments (RTE)

In process control applications, the functional realization typically takes place on the basis
of the function block concept of IEC 61131 [87]. As shown in Fig. 2.1, this concept has a
development phase (where programming of libraries is performed), as well as an operating
phase in the life cycle of the automation software (where components and systems are
engineered). In the development phase, new function block types are created [97]. This
can be conducted using a variety of languages. In many cases this is done by the manufac-
turer of the automation system. The result is ready-made, checked and verified libraries
of function module types. In the engineering phase, instances of these types are created
and interconnected through communication relationships in such a way that the desired
application functionality arises. Especially in the field of process control technology, real-
time functional block operating systems have been developed from the outset, which allow
engineering and re-engineering of the block structure at runtime. These operating systems
are also referred to as dynamic runtime environments where instances and connections can
be recreated, reconfigured, or deleted at runtime [94]. This is done on the basis of loaded
type libraries. Rebuilding or modifying type libraries is generally not possible at runtime.
There are a few exceptions: some systems allow the modification of special types written
for example in the Structured Text (ST) programming language, while others allow for dy-
namic reloading of libraries. The ability to reconfigure the instance system at runtime also
opens up the possibility to dynamically move functionality between the system components
and is therefore a prerequisite for dynamic redeployment. However, there are a number
of boundary conditions to consider like the compatibility of the underlying platform and
other conditions that are covered later in Sec. 3.4.2. Underlying platforms must provide a
basis layer to ensure compatibility, thus allowing an undisrupted redeployment operation.
Hypervisors (type 1 or 2) and Containerization technology offer a good preliminary work
to design and construct the underlying layer for redeployment (cf. Fig. 2.2).

2.2 Virtual Machines

Virtualization is the abstraction of functional realization from the concrete assignment
to software and hardware objects. The best known form of virtualization is the Virtual
Machine (VM). A VM encapsulates an operating system within a base operating system.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.3 Container Technology

System
- Engineering

:gzzssages)[“”“] > s > E%m Q

S 55
)

e ‘

Figure 2.1: Phases of Development, Engineering and Operation of Applications

Development Engineering

A VM system platform allows the handling of complete operating systems with the ap-
plications implemented on them as encapsulated components. Such a component can be
exchanged between different nodes of a VM system. The prerequisite is the compatibility
of the underlying basic operating systems. While the components are securely encap-
sulated in content by the VM system, from the point of view of real-time requirements
crucial weaknesses, it is the sole responsibility of the underlying base system to organize
the allocation of resources (computing time, storage space, communication channels) and
to guarantee the applications. So the usual operating systems (RT Linux, etc.), for ex-
ample, as basic systems do not guarantee the execution of the different VM in real time.
Hypervisor solutions can provide a workaround, as basis operating systems that are able
to provide such guarantees to their container-packed VMs [7].

2.3 Container Technology

Containerization offers a medium for deployment which is used to inspire the concept
presented in the dissertation. The term container has been used in different concepts. In
order to avoid confusion, Fig. 2.2 shows the three different types of containers. In the first
form, a hypervisor container is shown. A hypervisor container (sometimes referred to as
a partition as well) is used when a hypervisor of type 1 is utilized. The second form of
containers also known as a virtual machine is when hypervisor of type 2 is utilized. The
difference is that the former type is in direct contact with the hardware and distributes the
resources amongst the Operating Systems (OS) running on it, while the latter is running
directly on the operating system layer and emulates a different system architecture. The
third type is a deployment container that does not pack any operating systems. The
prerequisite for this container is the installation of the container administration platform on
all nodes participating in the deployment. Container virtualization has been used more and
more for e-commerce in recent years (PayPal, VISA [25]) because it offers the possibility
of application-level rather than virtual machine-based operating system-level support to
virtualize. A distinct advantage is the fact that resource consumption can be significantly
reduced in terms of memory and computational load, as a single kernel is shared by multiple
containers. Within a container, only the necessary dependencies such as libraries, tools,

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

Virtual Container
Hypervisor- o Machine (e.g., Docker)
Container [RTE][RTE]; {RTE + Libs |
RTE]|RTE]} [_os | Container |
os][os]fos]: [APP] Hypenisor |: {APP]| Verwaltung
Hypervisor | Operatina System | | Operating System |
[Hardware | Hardware | | Hardware |

Hypervisor Type 1 Hypervisor Type 2

Figure 2.2: lllustration of the different containers

and configurations are packed (see Fig. 2.2). Similar to a VM, containers isolate the virtual
environment from other containers. This makes it possible to run multiple applications in
separate containers on a host system and still meet security requirements [25]. Docker is
a popular and widespread implementation for container virtualization that simultaneously
provides an ecosystem with the necessary management functionality for the deployment
and operation of distributed containers. For this reason, containerization with Docker is
exclusively considered. Furthermore, Docker offers various tools, e.g., load distribution
and redundancy mechanism, not only the containerization technology. Essential elements
of Docker are listed below and explained in more detail:

2.3.1 Docker-Daemon

The deployment requires the presence of a Docker platform (daemon). The daemon allows
the download and upload of containers from and to a repository (Docker cloud). In the
optimization domain, Docker utilizes a consensus algorithm called “Raft” [68] in its swarm
mode for electing master nodes that can administer redundancy and load distribution
operations centrally.

2.3.2 Load Distribution

In the “Swarm” mode, Docker can structure the computing capacities (computer nodes)
into so-called groups of swarms. The nodes can be set as a Master or as a Worker. The
load is either uniformly or redundantly distributed to the nodes according to the specified
setting [84].

2.3.3 Compatibility

Container technology enables deployment between different systems that have different
infrastructures. To do this, a container must contain all libraries needed to capture all
dependencies. In the case of different operating systems between the host and the guest,
the container can contain a minimal image of the operating system and can thus function
in principle as a VM.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.4 Migration and States Synchronization

2.4 Migration and States Synchronization

In case of performing a redeployment of a component that has internal states, a syn-
chronization of the states is necessary to ensure an uninterrupted and a stable handover
between the deployed and the original component. A drawback can be seen in some cases
while establishing a communication channel with a certain Quality of Service (QoS) be-
tween the components. This requires the handling of network communication channels of
the Docker container which can pose some limitations.

The migration is measured by two crucial metrics. Firstly, the downtime which de-
scribes the duration during migration where the service is in a completely halted state.
Secondly, the migration time which corresponds to the time duration from triggering the
migration process till the service full functionality restoration on the destination server.
The down time is surely a more important metric as not meeting the industrial applica-
tion response time requirement can jeopardize the process control stability [19]. In this
section, the different exploited concept to perform a state synchronization are discussed.
The terms source server and destination server are used to refer to the servers processing
the component before and after migration respectively.

2.4.1 Service Migration in Automation

In automation, migrating a service is performed over two main stages: migrating the ser-
vice itself and the memory it uses to synchronize the states. The service itself is considered
static and is not altered during runtime. On the contrary, the memory of a service is dy-
namic and is constantly changing during an execution. Different mechanisms exist that
perform service migrations. The mechanisms differ in terms of the sequence of execu-
tion, e.g., copying sequence of the service and the memory (which is performed first and
which is second). The following mechanisms demonstrate the proposed mechanisms in the
literature:

Pre-copy Migration

This scheme proposes a two phase migration, push phase and stop-and-copy phase. In
the push phase, the corresponding memory, that the service uses, is copied. The copying
process is performed on the fly, i.e, the memory pages can be altered. Hence, the copying
process is performed iteratively until either the number of alteration reduces to or exceeds
a certain threshold [86]. The stop-and-copy phase is when the downtime occurs. Here the
source server shortly halts the service to ensure state synchronization consistency. During
this time, the service becomes unavailable and is restored on the destination server upon
successful synchronization.

Post-copy Migration

Similar to the Pre-copy migration, this scheme comprises two stages, stop-and-copy and
pull Phases. However, the post-copy executes the migration in an opposite sequence.
The freezing of the service occurs in the initial phase when only the state of the CPU is
transferred to the destination server and not the service itself [48]. The destination server
restores and resumes the service, albeit experiencing a degraded service due to glitches of

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

page faults during requests of memory pages that are not yet retrieved from the source
server. At this point, the pull phase is initiated requesting the memory pages causing a
jittery response as well as unpredictable response times.

Hybrid

In [57], endeavors to combine the complementing performances of the aforementioned Pre-
and Post-copy migration schemes using the hybrid scheme. This scheme introduces a three
phase migration namely push, stop-and-copy and pull phases. The phases operate in the
same manner as described in the two previous sections.

Disruption-free Software Updates

Further approaches are presented in [83] and [95]. In [95], a controller of an automation
system without disrupting the system’s operation is updated. As a use case, the author
uses a magnetic levitation example application to validate the approach. The controller is
synchronized and a handover is performed.

2.4.2 Redundancy Migration

Redundancy migration surpasses the performance of the aforementioned methods in terms
of downtime [42]. This migration scheme is evaluated using LinuX Containers (LXC). It
comprises four phases namely Buffer and Routing initialization phase, Copy and Restore
phase, Replay phase and Switch phase. In the first phase, when the migration is triggered,
the communication is rerouted such that the client messages are no longer directly sent
to the source server rather via the destination server. This is performed by the “traffic
controller” components that are available on both sides (source and destination). The
traffic controller on the destination end forwards the messages from client further to the
source traffic control. Simultaneously, the destination traffic controller initializes a packet
buffer wherein all the forwarded messages are stored. In the copy and restore phase, the
snapshot procedure is initialized. The snapshot creates a checkpoint of the process is
obtained, during which the service is not available (downtime) ensuring a consistent state
snapshot. Afterwards, the migration is executed through the migration controllers available
on both ends allowing a consistent state copy to be transmitted to the destination server
and resumed by restoring the provided snapshot. The replay phase is then started. In this
phase, the destination server attempts to catch up the source server state by replaying the
packets starting at the checkpoint time stamp. Furthermore, the output of both servers
are consistently compared through out the phase by the traffic controller. Finally, once
the packet buffer is processed, i.e., empty, the switch phase takes place. In this phase,
the traffic controller compares the outputs one last time. If the output show consistency,
the destination server is then declared ready to take over and the corresponding network
communication is thus readjusted. Figure 2.3 illustrated the explained procedure.

2.5 Components in Automation

A component represents an important aspect within the framework of the dissertation since
it is the entity being modified or deployed. A component according to ISO/IEC 10746-2

10

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.5 Components in Automation

Source Server Destination Server

its service
C igration C
related data
Destination Controller
Source Controller
Read c)
7

Write -

Forwards application
related data

Traffic C: Traffic Controller

o
LS
NETP
Sl

Client

Figure 2.3: Redundancy Migration [42]

[73] is defined as “An object that encapsulates its own template, so that the template can
be interrogated by interaction with the component. The template and other instantiation
parameters are expressed in a form that allows them to be updated during the lifetime of
any system of which the component is to form a part, allowing alternative realizations of
the component to be substituted.”. In the standard ISA-88 modes (standard ISA-88.00.01,
7.3 Table 1) for batch modes are presented, which can be used as operating mode for the
components. A distinction is made between procedural units and units for resources. This
roughly corresponds to the distinction between Single Control Units (SCU) and Group
Control Units (GCU) similarly as introduced in [32] and [43].

2.5.1 Single Control Unit (SCU)

A SCU can be fundamentally seen as the software component that directly operates the
device. For each device, there exists a SCU that contains the control logic which operates
it. The SCU has an interface through which the states can be read and the commands can
be submitted.

2.5.2 Group Control Unit (GCU)

A GCU plays the orchestrator role among the SCU components or parent group that
coordinate other SCU components in the control hierarchy. The GCU can possibly be
representing a physical entity in a plant so that it orchestrates the function of the devices
with whom it gets in contact. The GCU mainly ensures a certain sequence of operations
and preserves possible operation conflict through occupation handles which consequently
could enhance the safety aspects.

2.5.3 Procedures

A procedure is defined as “a self-contained control unit that permits the automatic per-
formance of an entire functionally coherent block of tasks” [70]. Procedures can be seen

11

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

as a list of instructions that are given to the GCUs or SCUs to perform a certain task or
to execute a production process. Examples of a procedure can be:

e “Transport product to storage”,
e “Pump reactants into tank” or

e “Navigate right, left, right, turn”.

2.5.4 Inner Structure of a Process Control Component

Whether a component is a SCU or GCU, the inner structure of the component follow the
scheme shown in Fig. 2.4 according to [43]. From top to bottom, the order passes through
the following stages:

@

| Order Input

| Operation Mode \

Basic
State

SIS
O
C I 110

+— e

Orderissue

Figure 2.4: Component Inner Construction. The Operation Modes and Skills are illustrated

12

e Order input: Each component service interface has an order-input function. The
task of the order receipt is the organization of the access authorization, the receipt
and the acceptance and examination of orders. Accepted orders are transferred to
the order execution for processing.

e Operation mode: The structure of the functionality of operational components is
realized by means of operating modes. According to the designated component con-
sidered, the component is always exactly in one operation mode. In every operation
mode, a component can be in different operating states. For example, in the case of
a SCU, it parametrizes the skill of a motor, i.e., the skill “Move” which indicates the
rotation of the motor armature. It can be parametrized to move right or left using
the operation modes indicating the rotation in clockwise or counter clockwise respec-
tively. The operation modes themselves are components or component type-specific

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.6 Methodological Fundamentals - Graph Theory

and therefore cannot be defined in general terms. The change between operation
modes basically occurs only by passing through the basic state. If this is not the
case, the change is then considered a special case and has to be explicitly defined for
each desired change. The component state machine therefore contains the ground
state “Basic State”.

e Skill (not to be confused with “capability”): The definition of a skill in the context
of the component structure is taken as the the ability of the software component to
execute a certain capability in an asset. Hence, an asset can have more capabilities
than skills, i.e., each skills has a corresponding capability, however, each capability
does not necessarily have a corresponding skill. A skill can be seen as the software
representation that controls a capability in the information world.

2.5.5 Adaptation in Industrial Automation Systems

Adaptation in Industrial automation systems can occur on the different levels of the au-
tomation pyramid. For example, adaptation can refer to field devices adaptation (field
level) or to control software adaptation (control level) or at the optimizations strategies
(manufacturing execution system level).

On the field level, an assistance system is proposed in [9] and [10] that uses a resource-
based view of automation systems and achieves a bottom up planning of logistic plants
using a multi-agent system approach. The objective of the assistance system is to generate
all possible solutions that can be used to realize an industrial automation system in the
intra logistic layout engineering phase. A detailed planning of material handling system is
presented in [11]. Furthermore, other approaches as in [35] and [75] propose a scheme to
increase the reconfigurability of material flow systems. Moreover, an automated analysis
scheme is shown in [5] that interlinks both layers the field and control layers. The objective
of this automated analysis comes handy during the exchange of field devices. A common
problem that arises is the incompatibility of the former devices control software and the
newly introduced devices in the field. The aim of the automated analysis scheme is to
identify the incompatibilities in the available software and hence adapts it.

The aforementioned contributions can be linked to the presented adaptation concept
extending it to cover the hardware level and consider the interlinking parameters (e.g.,
material flow systems). However, in the scope of this dissertation, the adaptation focuses
solely on the control level, i.e., control software adaptation through software redeployment,
and does not consider further adaptation on other levels.

Furthermore, a model-based approach that utilizes design patterns is shown in [34] and
[26]. The approach utilizes the software methodology of design patterns which considers
the functional and non functional requirements for application deployment. The discussed
method can be used in the presented work to form a list of constraints and optimizations
criteria to be considered during the redeployment process.

2.6 Methodological Fundamentals - Graph Theory

In mathematics, a graph can be described using two elements: nodes and edges. A graph
maybe undirected which indicates that there is no direction distinction when using an edge

13

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

between two nodes and vice versa for directed graphs (also called digraphs), or unweighted
which indicates that the cost or the overhead of traversing between the nodes is not taken
into consideration and vice versa for weighted graphs [96] [12]. Relevant glossary of graph
theory [14] is included in this section:

2.6.1 Bipartite Graph
A bipartite graph (or bigraph) does not comprise an odd-length cycles. In bipartite graphs,
the nodes can be divided into two disjoint sets that are independent from one another.

2.6.2 Adjacency Matrix

A square matrix that describes the connections between the nodes inside a graph. In
undirected graphs, the adjacency matrix is symmetric.

2.6.3 Star Topology

A star topology indicates a tree graph with one internal node and n — 1 leaves.

2.6.4 Hub and Spoke Topology

A widely used topology in networks that is driven from the spoke-hub distribution paradigm
that traffic planners used to optimize traffic transportation systems. The topology was
later adopted in telecommunication and information technology sectors. The topology is
also sometimes called star topology, however, it describes different star graphs where the
internal nodes of the trees are connected in a certain form.

2.6.5 Mesh Topology

A full mesh topology indicates that an edge exists between any two nodes inside the graph.
On the other hand, mesh topology indicates a fully connected graph, however in a random
manner and a direct connection between any two nodes does not necessarily exist.

2.6.6 K, — K, Topology

A topology with two copies of a full mesh network connected via a bridge.

2.6.7 Neighbor

An adjacent node to a given node, i.e., directly connected to it.

2.6.8 Valency

denotes the degree of an entity, i.e., the number of incident edges. Valency of a node
indicates the incident edges of the node.

14

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.7 Methodology - Load Distribution

2.7 Methodology - Load Distribution

As mentioned previously, the adaptation system perform a 2-stage optimization. In the
second optimization, one of the main objectives is to distribute the load among the available
computation resources. The topic of load distribution has been discussed from different
perspectives. In the following subsections, the different perspectives are clarified:

2.7.1 Load Distribution Algorithms

Various domains have presented a conceptual formulation for the load balancing problem
as the problem exists in different field disciplines. The fluid particle approach presented
in [47] describes how mapping tasks to processor nodes using the physical analogy. The
analogy shows how the fluid particles arrange themselves over a flat container considering
their different viscosity and the acting forces. This analogy is used to model the affecting
factors in the load balancing problem.

In informatics domain, various swarm algorithms use ants as autonomous agents to
discover the network and balance the load among the available nodes in the network [64]
[16]. An advantage presented by these methods is the decentral behavior presented by
the Peer-to-Peer (P2P) systems. The ant agents wander around in the network through
P2P communication collecting information about resources and available loads in the
nodes. Further modifications to the algorithm to include stigmergy (i.e., pheromone
communication) and particle optimizations are presented in [62].

2.7.2 Multi-Core Processing Analysis

Dynamic load balancing in multiprocessor is studied using a diffusion scheme in [22].
The objective of the load balancing in this domain is to distribute the load such that
each processor receives and performs the same amount of work. The analysis presented
here includes no a-priori estimate of load distribution. It is assumed that all tasks are
independent, thus not influencing the execution order nor the executing processor. The
loads are composed of continuous load units and each single task can only be performed
by a single processor. Moreover, it is assumed that the temporary induced time and
communication costs for the load transfer is significantly smaller than the task execution
cost which imposes some limitations in the general applicability sense.

The general description of the load can be described by the diffusion model in Eq. 2.1.

N (4) =

Where z! quantifying the work distribution at time ¢ at node i. The middle term in
the right hand side describes the load exchange between the nodes, where o;; are the non
negative constants that describe the fraction of loads that are exchanged with other nodes.
The convention dictates that a;; = 0 in case the nodes are not connected. anl describes
the newly added task at each processor at time k for processor ¢ and c is a constant value
that describes the amount of processed task at each node. Considering the homogeneous
problem, it can be assumed that:

U = r/(Hl) c=0 (2.2)

i

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

Tuning a;; can enhance the performance and more importantly affect the load transfer
stability. Rewriting Eq. (5.2) as

(H'l Za” r() +ZO¢U T; (2.3)

yields a transition matrix A with a; = 1— Z" 1 @i, 1 <4 < n,and a;; = a;; otherwise.
Under a natural boundary condition Zj a;; < 1 A induces a Markov chain

2D = Az® (2.4)
with
172]-()41]' 12 A
[e251 1= g ... Qan
A=) Z’ T : (2.5)
Qi Qop R Zj Qnj
Im
r' 3
1

Figure 2.5: Poles demonstrated on the Unit Circle

According to Perron-Frobenius theory [49], since A is a double stochastic and an irre-
ducible matrix, computing the eigenvalues of matrix A will result in

—l< < o<h<A=1 (26)

Using Eq. 2.6, it can be clearly seen in Fig. 2.5 that the second Largest Eigenvalue
Magnitude (SLEM) determines the rate of convergence of A [22]:

ﬁ/(A) = Inax{|/\2|, |A‘IL‘}7

where \; are the eigenvalues of A

16

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.7 Methodology - Load Distribution

Defining I'; as
j=1

In case A, is equal to -1, the system does not converge which can be avoided if one of
the following conditions holds (provided that the network is a connected graph):

o 1— Fi > 0
e the network is not a bipartite graph
e both

To compute the fastest convergence transition matrix:

Ayv = (Aa+gl) /(1 +g) (2.8)
where Ay = (a;5)
g = min <7()\2;7/\") ,— min ajJ) (2.9)
j

With Aj; and A4 being the linearly modified optimum feedback system matrix and an arbi-
trary initial system matrix respectively. The scalar multiple ¢ manipulates the eigenvalues
and adjusts the feedback system matrix accordingly using Eq. (2.8). The cited method
ensures an upper bound to the convergence time using the spectral gap by minimizing
the second largest pole Ay (since the largest pole is always equal to 1) to the minimum
possible value, the total settling time is reduced. This method provides an intuitive way
for finding the least value for the second dominant pole. Further matrix manipulations are
extensively shown in [89].

2.7.3 Consensus Networks

Fast consensus in Markov processes and load balancing in networks are shown in a frame-
work of theoretical analysis in [67]. The equations shown in this contribution provide
the fundamentals for modeling load balancing in the dissertation. Furthermore, stability,
convergence and system dynamics analyses are also presented.

2.7.4 Semi-Definite Programming
The minimization of the SLEM can be formulated as a semidefinite program (SDP) as
shown in [13] and [56]:
minimize B (2.10)
subject to —plI < A— l]l]lT =< pI,

n
A;; >0, A=AT A1 =1.

With:

A1l = 1 indicates the stochasticity of the Matrix.
A describes a Markov chain X; over finite state space S and cardinality S (which in this

17

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

case is the number of columns of A).
1 is vector of ones of dimension S.

Semidefinite program is a standard type of convex optimization problems, for which
various approximation algorithms have been developed. Most of them are based on the
interior-point method. The objective defined in the optimization problem is to find an
optimal solution for edges weights that perform the fastest mixing time in a provided hub
spoke network. In [14], it is shown that for a given symmetrical network, there exists
an optimal solution that contains same symmetry, i.e., a fixed-point of the automorphism
group of the underlying graph defines a set of edge weights that carry same weights. Thus,
restricting the optimization problem to consider only the distribution matrices with equal
parameters for symmetric edges which significantly reduces the number of free parameters
in the optimization. Similar examples are shown to solve the problem in Eq. (2.10) for
some types of topologies that contains high level of symmetry, e.g., ring (cycle), wheel
(star) and K, — K, [14]. The SDPT3 solver is used with YALMIP MATLAB toolbox to
compute the regression model. The former implements a primal-dual infeasible-interior-
point algorithm and shows robustness for medium-size semidefinite optimization problems
[88].

2.7.5 MATLAB-YALMIP

YALMIP is a MATLAB toolbox [60] that facilitates solving semidefinite programming
(SDP) and linear matrix inequalities (LMI) problems through providing an interface to
external solvers. The tool can be used to model the problems hence the name YALMIP-
“Yet Another LMI Parser”. YALMIP uses MATLAB commands. The toolbox is utilized
in the scope of this work to solve SDP problem of rapid mixing of hub and spoke networks.

2.7.6 Simulated Annealing

While performing redeployment of load packets, finding the optimum distribution accord-
ing to the defined optimization/constraints criteria is the objective, e.g., maximize the
reserve at each computation point. Enhancements to the algorithm that performs the re-
deployment can be inspired by the Simulated Annealing (SA) probabilistic optimization
technique [55]. SA can be utilized to solve combinatorial optimizations which is useful
in the scenario of distributing discrete load packets with heterogeneous sizes. The SA
methodology shows a superior performance to the gradient descent method, as it helps
escape from local optimums to find a global optimum.

2.7.7 Optimal Distribution Solvers - Z3 SMT Solver

Satisfiability Modulo Theories (SMT) problem is a type of decision problems that can
utilize a constraint satisfaction problem concept to conduct an optimization. Z3 is a SMT
solver introduced by Microsoft Research [23]. The solver targets solving software analysis
problems. In [81], Z3 solver is used to compute valid configurations that utilizes SMT-based
constraint resolutions. The approach configures IEC 61499 [91] systems for deployment
by calculating a plan that considers the available resources and feeds it as an input to the
solver. An on-going work is presented in [85] which aims to solve architectural optimization

18

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.8 Agents Systems

in the design phase (offline). The solutions presented by the aforementioned contributions
present basis for the usage of SMT solvers to compute an optimal deployment profile that
considers the available resources and the application’s overhead.

2.7.8 Deployment in Automotive Open System Architecture
(AUTOSAR)

In the Automotive Open System Architecture (AUTOSAR), during the system configura-
tion phase, a similar problem is faced, where mapping of software components on control
units poses an important requirement. In [69], an approach is presented which inspires
the adaption concept in this dissertation. Firstly, a decomposition is performed such that
all compound components are broken down to atomic components. These components are
further classified according to their hardware dependencies. On the one hand, the hard-
ware dependent components are deployed directly to the required devices. On the other
hand, an optimization using evolutionary algorithms is used to distribute the rest of the
components optimally. The optimization criteria and constraints utilized are:

e resource requirements,
e real time scheduling,

e and minimization of the intercommunication overhead between the control units.

2.8 Agents Systems

A further approach that is utilized as the drive for load distribution is the agents systems
approach. According to [39], agents systems can be classified as shown in Fig. 2.6.

Agent
Software Agent Hard- and Software
Agent

I—I—l

Software Agent
without explicit
Migration
Technology

l—‘—l

Mobile Hard- and
Software Agent

Software Agent with
Explicit Migration
Technology

l—‘—!

Fixed Location Hard-
and Software Agent

Software Agent with
Explicit Migration
Technology with

Memory

Software Agent with
Explicit Migration
Technology without
Memory

Figure 2.6: Agents Classification [39]

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

mit, flir oder in Ki-Syster

19

https://doi.org/10.51202/9783186267085

2 State of the Art

2.9 Market-based Multi-Agent-System Approach

Load Distribution has been investigated from an agent based approach in the domain of
smart grids [58] and decentralized power and grid control [59]. Undesired system responses
that can arise in runtime have been pointed out in similar situations as shown in [58]. Thus
a stability and convergence analysis to investigate system response (e.g., load oscillations)
must be conducted. In [59], a framework is presented that simulates an event-driven mar-
ketplace which is regulated by agents for decentral power and grid control. The proposed
approach aims to monitor demand and supply and achieve balance through communicat-
ing with external marketplaces via an agent broker. The concept of agents that collect
data and can foresee dynamic changes inspire the presented work. Furthermore, the mar-
ketplace auction mechanisms presented in [38] provide an insight to a realization of the
multi-dimensional resource optimization (albeit between rival network participants) that
is presented in this dissertation.

2.10 Agents Systems Hierarchy in Automation

Agents systems can be used to realize the different control components, i.e., procedures,
GCUs and SCUs. As mentioned in Sec. 2.5, the control components form the fundamental
unit in redeployment. Taking the perspective of agents system can provide an insight to
develop an approach or a methodology into how the load balancing can be performed. As
shown in Fig. 2.7, there exists a life-cycle for each procedure from initialization passing
through execution and accomplishment till the deletion stage. During these stages, the
production execution takes place, thus dynamically changing the system conditions [39]
[31].

Waiting for Start Executing Accomplished Delete
5 A .1
L Procedures‘&' Procedures Procedures“"?’
i Executing Executing
—_— Agent Agent Agent
V
\ / Procedures
Ll Resources
%
GCU1 GCU 2
SCcu 1 SCu 2 SCu 3

Dk S O .

Figure 2.7: Life-Cycle of a Procedure Agent [33]

20

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2.11 Agent-Based Planning of Production Sequences

2.11 Agent-Based Planning of Production Sequences

Agent-based planning is utilized in the second scenario of the prototype implementation.
An approach to compute solutions to realize product recipes is shown in [76] which can offer
a profound insight into how to extend the resource based agent approach demonstrated.

2.12 Recipes Definitions

IEC 61512-1 [20] and ISA 88 [52] aim to standardize the used terms and concepts that
describe recipe based operations in industry. The definitions of the relevant terms that
will be used in this dissertation are defined in [52] which includes: “Modes of operation”,
“Recipe”, “Master recipe”, “Control Recipe” and “Process”. Figure 2.8 show the flow of
the different procedure recipes according to the standard.

Recipe
Procedure

Specifies the execution
order of one or more

1
Recipe Unit
|| Procedure

Specifies the execution
order of one or more

1
Recipe
{| Operation

Specifies the execution
order of one or more

Recipe
Phase

Figure 2.8: Procedures Recipes according to ANSI/ISA-88 [52]

2.13 Tools - Discovery

Multicast Domain Name Servers (mDNS) Discovery is a decentral mechanism that is used
to explore the network topology in the implementation. In the absence of a conventional
unicast DNS (uDNS) Server, Multicast DNS protocol enables performing DNS-like oper-
ations. A zero-configuration service that provides IP networking by resolving host names
to IP addresses. Apple Bonjour and open source Avahi software packages are well known
for their implementation using mDNS. The protocol is published as RFC 6762 [18]

21

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

2 State of the Art

2.13.1 Bonjour Protocol

Bonjour protocol (formerly known as Rendezvous) is introduced by Apple for the objective
of automatic discovery. The protocol uses mDNS service records to discover devices, i.e.,
computers, printers or offered services in the local area network. The protocol can oper-
ate under the following operating systems: Mac OS 9, macOS, Linux, Berkeley Software
Distribution, Solaris, VxWorks, and Windows [51].

2.13.2 Mechanism of Operation

An mDNS client resolves host-names through sending an IP multicast query message. This
message requests the corresponding target host to identify itself through a multicast re-
sponse message which encloses its IP address. Machines found in this subnet can also
update their mDNS caches with the response information. Alternatively, the relinquish-
ment of a claimed domain name can be performed in the same manner, however with a
multicast response with a time to live (TTL) equal to zero.

The same programming interface and packet formats as the uDNS are utilized. The
multicasted message is basically a User Data Protocol (UDP) packet with a similar payload
that comprises a header and the data. The packet is addressed to the following destinations:

e In Ethernet: the standard multicast MAC address 01:00:5E:00:00:FB (for IPv4) or
33:33:00:00:00:FB (for IPv6).

o IPv4 address 224.0.0.251 or IPv6 address ff02::b.
e UDP port 5353

mDNS does not provide information about the type of the device found or its status.
Utilizing the DNS Service Discovery (specified in RFC 6763 [17]) can provide an insight
into the device nature and its status. However, this is not included in the scope of this
work, as it is assumed that all devices inside the network are automation exclusive devices
that can operate and execute process control functionalities.

2.13.3 Reconfiguration of Real-Time Fieldbus

Device outage as well as newly introduced devices in the network require the dynamic recon-
figuration of the Fieldbus. The work presented in [74] provides a foundational groundwork
to the presented adaptation concept which can extend its autonomy in terms of adapting
to disruptions in the shop floor.

22

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

In this chapter, the concept of runtime adaptation is explained. As previously discussed (cf.
Sec 1), with a highly dynamic environment in 140, an adaptation concept that distributes
the loads and optimizes the resources usage is required. The described runtime adaption
system comprises three subsystems as illustrated in the UML diagram in Fig. 3.1:

e Function generation and Engineering systems
e Deployer system (Executor)
e Redeployment management/optimization system

The function generation engineering systems are used to create control logic and perform
system engineering in the initial deployment phase. Once the control logic components
are ready, they can be deployed via the deployer system. The deployer system acts as an
interface to the computation nodes where software components can be deployed, redeployed
or copied for redundancy generation. The redeployment system uses the deployer system
as a tool to perform load balancing on and resource optimization to the computation nodes.
In the scope of the presented concept, only the redeployment and the deployer systems are
considered.

Runtime Adaption
System
Function Generation and Deployer System Redeployment
Engineering Systems uses uses imizati

System

Figure 3.1: Proposed System Components

In order to explain the system objectives and how the system operates, the used termi-
nology must be first defined.

3.1 Terminology and Definitions

In the framework of the adaption concept, various entities in the plant are involved. This
section aims to define them and discuss the assigned conventions.

Firstly, the time frame, to which the term “runtime adaptation system” refers, is defined
as the runtime of the whole production starting at the function generation and engineering

23

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

stage and finishing at the online stage during the production where the redeployment takes
place.

Throughout the dissertation, the graph notation is used to represent the computation
networks. The term “node” is used to describe a computation node, unless explicitly stated
otherwise. The term “edge” describes a network connection between two nodes. The word
“device” is used to describe field devices in the shop floor.

The term “component” indicates a software component which is considered as the atomic
unit for the deployment and the redeployment processes.

The deployment process is the act of initial allocation of software components on the
control nodes (whether PLC or other available computation nodes/resources), while re-
deployment refers to the rearrangement through copying or reallocation by moving the
already deployed software components to other destinations in the network.

The adaption system operation can be classified into two main phases: initial deploy-
ment and online redeployment. The objective of the former is to automate the initial
deployment phase. This is done through the deployment of the required procedures, SCUs
and GUCs in the planning phase. The objective of the latter is to optimally prepare the
operation of control systems for the production and possible faulty situations. This is usu-
ally done through cyclic execution/monitoring to maintain certain qualities in the network
and achieve a better utilization of resources, e.g., availability, redundancy, communication
Quality of Service (QoS), etc.

3.2 Concept Overview

Procedures | SCUs | | GCUs |

| Deployment Jl

Field Devices .
| Computation
o Resources
PLC-Controllers
——— —————x
| Optimization via L_T
L Redeployment ! Plant
Topology Cost |] Optlmlz?tlon of L1 Recipe
Model Model Production flow

Figure 3.2: Concept Information Flow mapped on the Architecture

The Concept is illustrated in Fig. 3.2. The two gray colored boxes indicate the main
contribution areas of this dissertation. Table 3.1 clarifies their objectives.

The concept introduces a deployment platform that can be used to deploy the different
components to the computation nodes in the plant. Initially procedures, SCUs and GCUs
are deployed to the computation nodes using the deployment interface. The computation

24

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3.2 Concept Overview

nodes considered in the concept are PLC-controllers or further computation resources like
electronic boards or Industrial PCs (IPCs). On the PLC controllers, the SCUs are marked
with a dotted line box to indicate their fixed nature in terms of component placement. By
definition, SCUs require real time communication with the field devices since they read and
write signals directly from and onto the devices [74]. This constrains the network wiring
plan, i.e., PLC IOs coupling with the field devices, to be fixed and pre-known. Under those
circumstances, the initial deployment is performed where the required SCUs are deployed to
their respective PLCs to ensure that the realtime requirements are met. The deployment
is done according to a delta model. The objective of the delta model is to compare
and indicate the current missing or unnecessary available components and consequently
deploy or delete the components respectively. On the other hand, the deployment of
the procedures and the GCUs can be flexibly deployed and redeployed according to an
optimized distribution profile in the network. Initially an offline deployment plan of the
procedures and GCUs can be optimized using a solver [23]. Important to realize, such
optimizations require a considerable time to execute since they often perform brute force
optimizations. Such time consuming optimizations do not provide a suitable solution
to perform on the fly redeployment of the software components during runtime. Thus
requiring heuristic optimization via redeployment algorithms. The redeployment stage
ensures an optimal distribution of the GCUs considering the available resources as well
as it ensures a robustness in the execution by continuously monitoring the nodes and
redistributing the GCUs to secure nodes, e.g., by ensuring redundancy or placing GCUs at
nodes that are not planned for maintenance or an expected outage. However, depending
on the use-case, optimizations can be performed according to different objectives and
considering different constraints.

For example, the redistribution can be performed to ensure a balanced load distribution
amongst the nodes in the network. Alternatively, the redistribution can be done to ensure
an optimal placement of the software components in the network. Both perspectives pro-
vide different (sometimes opposing) objectives. For example, a load balancing objective
can be to evenly distribute the load amongst the nodes, whereas a component placement
objective can be to ensure the highest resources reserve at the placing location.

In specific use-cases, other optimization criteria can be derived externally, e.g., from
the recipe. The optimization of the production flow can provide essential information
to the redeployment strategy, hence, as shown on Fig. 3.2, an arrow is drawn from the
production flow optimization to the redeployment optimization to indicate possible flow of
information.

Table 3.1: Overview of the Main Focus of the Work presented in this Dissertation

Description Optimization Type

Deployment Initial deployment of the required Proce- -
dures, SCUs and GCUs

Redeployment Rearrangement -by copying or moving- of Heuristic
components on computation resources

The concept is analogous to a control loop as demonstrated in Fig. 3.3. The adaptation
system comprises components that provide functionalities like sensing (measure), control

25

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

and actuate the applications in terms of resources consumption. The redeployment sys-
tem is an add-on tool for automation that can enhance the performance of systems that
consider adaptability. Important to realize, a static computation system (that has a static
network plan and fixed resources or that is operated on a single computation point that
has enough/redundant resources) does not require a redeployment system. The following
sections are structured according to the components of a control loop and uses its analogy
to explain the concept and clarify the system architecture and the functionalities provided
by the different components.

Distrubance

|

Desired Load 4 lRe- . Cgmpionent Plant
Profile eployment — Deployer .
Algorithms System Computing
Controller Actuator Process

Resources &
Component
Manager

Sensor

Figure 3.3: System Control Loop

3.3 Process

In the analogy, the process represents the computation operations performed in the plant.
In order to perform these operations, the redeployed unit which influences the processes
must be identified. A redeployment process describes the displacement or the copying of
a software component which is represented in a function block or a control chart from one
computation point to another. The redeployment unit varies according to the use-case and
the system design. In this section, a classification of the different software component types
are presented. The classification coarsely comprises two main classes, direct component
deployment and container deployment.

Component Component with Container Virtual machine
libraries
dependencies

i ;.-.3. Container

5| 3

Figure 3.4: Examples of the different deployment platforms

26

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3.4 Controller

3.3.1 Component redeployment

A component redeployment indicates a non-packed transfer or copying process of a com-
ponent, i.e., without the use of an intermediate technology, e.g., containers from one com-
putation point to another. In other words, the deployment is done within the Runtime
Environment (RTE) using its legacy tools

Direct component redeployment

The simplest deployment platform is the direct deployment of components. This can be
seen as transferring/copying a file from one node to another. On the one hand, in this
scenario, it is assumed that both nodes have the required dependencies to read, execute
and use the file.

Component with libraries redeployment

On the other hand, if this is not the case, the dependencies must be also transferred to the
target. Usually the dependencies are found in library files or in a script form depending on
the RTE. In this scenario, if the library files are operating system dependent (e.g., .dll or
.50), the corresponding library files must be transferred to the right directory and in some
cases must be included in the configuration files of the RTE.

3.3.2 Container Redeployment

An encapsulating container can be used to pack all the required dependencies. The objec-
tive of this container is to provide portability to systems through a framework that allows
the transfer of components by encapsulating all their required dependencies in a container.
This container can then be uploaded to a cloud where the container administrator of other
nodes can download it. In the virtual machine example, library dependencies as well as
the operating system are packed to ensure compatibility. This method can be costly in
terms of resources consumption. On the other hand, in the docker container example,
libraries are packed with the component to ensure compatibility without packing an image
of the underlying operating system. However, it must then be ensured that the container
is deployed on a similar or a compatible operating system.

3.4 Controller

The controllers describe the algorithms or the solvers that consider the optimization criteria
and constraints in the load adaption system. The optimization criteria and constraints are
discussed in Sec. 3.4.1 and shown in the UML diagram in Fig. 3.6.

Redeployment requires a logic to drive the process. Due to realtime constraints that
can be imposed by hardware or software, the logic is based on heuristic optimizations and
algorithms that can operate in runtime. Examples of such algorithms include:

e Load balancing algorithm: The load balancing algorithm ensures an optimal use of

the resources provided in the network by moving the software components to different
nodes according to the assigned constraints and optimization criteria (cf. 3.4.1).

27

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

e Component redundancy algorithm: The redundancy algorithm ensures a given degree

of redundancy of components to provide a backup solution to node outage situations.

Variants manager and load adapter algorithm: For the sake of completeness, the
variants manager and load adapter are included as further algorithms that can af-
fect the network load, however, they are not included in the scope of this research.
A component can exist in different forms or “variants”. Each variant offers a dif-
ferent quality of service and has a different resource consumption profile. Toggling
between variants can be used to manipulate the consumed resources as well as the
offered quality by the component [92]. On the other hand, a component can offer
additive functionalities that can be considered as “luxurious” additions. Using the
load adapter, switching on and off of these luxurious functionalities enhances the
performance and reduces the overhead of a component respectively [44].

The decentral redeployment system concept introduced in this dissertation is demon-

strated using the UML diagram shown in Fig. 3.5.

3.4.1 Optimization Criteria and Constraints

The following list shows the different optimization criteria and constraints that can be
considered by the controllers. A UML illustration of the criteria and constraints is shown
in Fig. 3.6.

28

e Controller to plant topology: an existing (or a possible) communication channel

between the target node and the device controlled. This communication channel
should support the minimum needed quality of service as well as the network protocol
required by the application. However, it is assumed that the controller plant topology
is hardwired and does not change. The network plan, quality of service and the
corresponding protocol of this topology are provided as an information model.

Controller (Computation Nodes): the utilization of resources, i.e., the computation,
communication or storage overhead, on the controllers can be optimized through load
balancing. Additionally, it should be ensured that the target is not scheduled to go
offline in the upcoming specified interval of time.

Controller to controller topology: In this point, there exist an optimization criterion
as well as a constraint:

— Constraint: An existing (or a possible) communication channel between the
source node and the target node to ensure a smooth synchronization of the
available states in the deployed component (this point is discussed further in the
following section). For components with real time criticality, a corresponding
QoS of service should be met in the communication channel between the source
and target nodes. In case of peer to peer deployment, the same channel can be
used to deploy the components otherwise, an alternative cloud solution can be
used to deploy an image from the cloud.

— Optimization criterion: The communication channel between the source and
target node should be ideally a direct channel (i.e., without network hops) to
reduce the temporary network communication overhead due to deployment.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3.4 Controller

Supuejeg peoq

Aduepunpay

uondepy peoq

juawaseuey
jueuep

anea

wyosy

Iﬂmm:uew

o

I

BE J 5/013U0d

$9ZIUOIYIUAS

218017 |o;3u0)

Aianodsig NZN

boinias A1anoasig

m_o::o_:i

ejeq uoydwnsuo)
$921n0say

y

L

211nbal

2}
uonedddy A_

*

T

Jaueuo)y

10} UOIA $224n0S3Y

waisAs awnuny

¢EE_:OEI_

Bt

apoN

9A051p

UML Diagram of the Redeployment System

Figure 3.5

29

tar

mit, fir oder In KI-

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

Cohesior
Optimization Criteria < e

Balanced Communication

Utilization Load
Controller to Plant Controller Controller to Software to Software Software

Topology [Computation Nodes| Controller Topology Controller Topology C C
Topology
T
QoS of Communication
Channel Annotation
Exists
Constraints

30

Figure 3.6: lllustration of the Optimization Criteria and Constraints

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186267085

3.5 Actuator

e Software to controller topology: The target node should have the necessary hard-
ware to operate the deployed application and fulfill the software annotations, e.g.,
processor architecture, processing capacity, etc.

e Software Components: Ensuring a specific degree of redundancy of the software
components.

e Software components topology: In order to avoid causing a communication overhead,
the application cohesion should be considered, i.e., the application dependencies be-
tween the different software components should be taken into consideration. Ideally,
a component should have no dependencies on other components found in other nodes.

3.4.2 Boundary Conditions

In the decision phase of picking the source and destination nodes that will perform the
deployment, the following boundary conditions must be considered [29]:

e In the source and destination nodes, sufficient resources must be available for the
transmission process itself.

e The destination node must have the resources and quality of services required to run
the deployed software unit (communication, computation, memory, hardware, etc.)

e It must be ensured that the switching process between the new and the old component
does not violate the real-time requirements.

In order to discover the neighbors and their resources profiles, the discovery profiles are

defined in Sec. 3.6.1.

3.4.3 Stability, Performance Analysis and Performance Enhancement

Redeploying components in a network is a dynamic process which requires to be analyzed
to ensure stability and convergence. Moreover, different indicators should be available to
measure the performance of the algorithms. Thus a dynamic model is constructed using
the state space representation. The model utilizes a discrete time domain. Chapter 5 is

dedicated to discuss this topic due to its protracted nature.

3.5 Actuator

The actuator in the adaption system can be defined as a tool that can influence the load
in the network, i.e., the nodes or the communication channels. The load can be influenced
through moving or copying the components in the network.

3.5.1 Load Distribution Executor

The load distribution mechanism varies according to the considered deployment platform
(cf. Sec. 3.3). The deployment of a container or a component with library dependencies
are included in the scope of the concept.

31

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

Component and Library Deployment

Fig. 3.7 illustrates the logic flow of the load distributor in the case of a component with
library deployment. After a decision is taken to deploy a component, the component
is serialized and the library dependencies are listed. On the one hand, if the required
libraries are available at the target node, the executor makes sure that they are loaded and
the serialized data is then transferred and then instantiated (by de-serializing then creating
the component at the target node). On the other hand, if the libraries are not available
at the target node, if the target and source nodes have the same Operating System type
and compatible architectures (e.g., if they both use Windows or Linux as an OS, then a
.dll or .so file will be sent respectively), otherwise a gateway server must exist from which
the libraries can be requested and consequently downloaded. A synchronization must be
performed in case the deployed component has states.

Deployment Request
Source->Target Libs/Scripts from No
Gateway Server

Yes

| Load Libraries

Initiate Terminate
Deployment

Procedure

List library l, Mechanism

dependencies

Transfer Serialized
Data

l

Instantiate
Components at

Yes
Send missing
Libs/Scripts
Target

L |
[Target
=3 source

States
Synched

Figure 3.7: Logic Flow of the Load Distribution Executor

Container Deployment

Deploying a container requires the pre-installation of a container daemon. This daemon
provides an interface to download container images from the cloud. After the deployment
of a container, the states must be synchronized. Containers provide a ready solution to
the deployment. Hence, the container solution is described in this section as an alternative
solution. Nevertheless, the container solution is not considered in the scope of the imple-
mentation as ensuring a certain realtime capabilities using a container based approach can
impose a problem. For example, in Docker containers, the internal mechanism of container
operation and memory management might not be suitable (nonetheless showing promising
results) in certain automation application [40].

Synchronization

In order to fully accomplish a deployment process, the deployed component must be initi-
ated and in case of a redeployment, its states (if there exists any) must be synchronized.

32

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3.6 Sensor

The different synchronization strategies are shown in Sec. 2.4. The performed commu-
nication whether sending or receiving message from or to the client should be regulated
through a traffic controller as shown in Fig. 3.8. Thus the deployed components are it-
erated and the communication interfaces are detected and consequently forwarded. Using
the shown architecture, the message forwarding mechanism can be utilized to implement
a proxy like communication. When a message is sent from the Source (SRC) client, the
traffic controller packs the outgoing message in a further message enclosing the original
address and forwards it to the Destination (DST) client. The DST client then writes the
message in the packet buffer and forwards the message further using the enclosed address.
When a read request is initiated, the traffic controller on the SRC client side requests the
DST client to read the desired data and similarly it writes a copy in the packet buffer. A
direct read request can be performed directly, however, with the mentioned mechanism, a
deterministic synchronization can be guaranteed. Moreover, the traffic controller on the
DST client side records the timestamps of the history in the packet buffer. Including the
timestamps is essential in the replay phase to simulate the same timing of execution which
can be crucial in some logics, e.g., a delay timer.

SRC Client DST Client

its service
C igration C
related data
SRC_Component DST_Component
5

Read i I Write Read
Write

Forwards application
related data

Traffic C: Traffic Controller

o
X
NETP
e\'o‘eé

A\

Server

Figure 3.8: Redundancy Migration

3.6 Sensor

3.6.1 Resources & Component Manifestation

In order to compare if a process can be carried out on a certain node, information about
both the demanded resources as well as supplied resources must be available.

Resources reserve level

At each computation node, a manifestation of the resources available should exist. The
manifestation should demonstrate the utilization and availability of the following:

e CPU

33

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

e Dynamic memory

e Storage

e Communication capacity (bandwidth and data-transfer rate)
e Network adapter

Additionally, a discovery profile to show the nodes and devices in the vicinity of each node.
There are two types of topologies that should be defined in the context of deployment:

e Node to Node (N2N): In N2N topology, a decentral technique is used where a com-
putation node can discover other computation nodes that are directly connected to it
or indirectly through its neighbors. An end point of a node can be reached through
one or more network infrastructures. For example, in Fig. 3.9 all the nodes can reach
each other through Ethernet communication. Additionally, Node 5, Node 1 and the
smart device are connected via a Fieldbus, however, the computation nodes have a
master role and the smart device has a slave role in the latter network which can be
used as a criteria to differentiate between the node types.

e Node to Device (N2D): It is assumed that the N2D topology is fixed and is provided
to the deployment as a given information model. The topology is hardwired and
does not change throughout the execution time.

™

~0) @~

N\
\ , Comp. Node
N

Fieldbus

| | & & (] oevie |
_ D D w B Smart Device

Figure 3.9: An Example of a Typical Industrial Network

Application Consumption Level

It is assumed that all applications utilized in the context of deployment are evaluated in the
sense of resource consumption. Each application must enclose a profile that demonstrates
the resources consumption of the best and worst case execution.

34

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3.7 Disturbance

3.7 Disturbance

This section describes the disturbance analogy that occurs in the plant. A possible distur-
bance in the plant computing process can be caused by the introduction or the termination
of resources or load, i.e., computation node or an application respectively. Furthermore,
the change of the boundary conditions of the hardware in the computation node or the
consumption of a software component can also cause a disturbance in the process, e.g., ad-
dition or elimination of a provided network interface in a node, modification of the desired
redundancy, etc.

3.8 Architecture Overview

The described concept can be mapped using a central or a decentral architecture as shown
in 3.10. The architecture shows both architectures for centralized and distributed archi-
tectures in the upper and lower frames respectively. The figure shows deployment using
container technology that downloads an image from a repository located in the cloud
where all containers are precompiled. The figure demonstrates the different information
models with their contents, the information flow indicated by the arrows, the monitoring
components, the executer components and the communication interfaces available in the
architecture. This concept has been developed in the framework of a collaboration with
ABB [45]. The central reconfiguration is triggered using a manual input from a human
while the distributed (decentral) reconfiguration is automatically triggered by thresholds
that activate different algorithms. Important to realize that each architecture has its own
advantages and drawbacks. A central architecture outperforms the distributed one in
terms of distribution profile computation, i.e., a central architecture computes an optimal
solution for the load distribution while a decentral architecture uses heuristic approaches.
On the other hand, a decentral architecture surpasses the central one in terms of readiness
for dynamic disturbances and adaptability, since the decentral approach solely relies on
partial information models and does not require global information to be known. In the
middle of the figure, two devices are illustrated, along with their internal containers, their
states, and the information flow from both devices to the different architecture types.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

3 Runtime Adaptation Concept

Container Repository

Runtime Container

Discovery Service Device Topology

Container Index
(Capabilities)

GlobalInformation Model Central Reconfiguration Manager

Trigger Detection Reconfiguration
(Analyzer) Generator

State Information

<

Node State Monitor | g Deployment Manager (Executer)

Container APIClient | [Information server AP Client

i

Container Service APl ? Information Server API

Legend

| Optional container

Runtime

/eomponent RTE + Control Code
Information Server

Container

Mandatc \tai N N
s Runtime Contahner
/component
Architecture-specificie. || | - — — — — — — —
i Dec. Reconf. —_————
entralized e fecon ;
Nodestate |

| n
Bootstrapping Container | Container J|

[Reconfiguration-related

—> Information flow |.Contdiner Service Container Service

Bootstrapping

Container

Device

—O— communication interface | | Device |

Container APIClient FAtiEliniOrREORVIOAE: Information Server API Client
Partial Topology
Discovery Senice I‘

Container Index
(Capabilities) Boundary
Condition /

F
Variant Optimizer _. Reconfiguration I Deployment
G Manager

Manager (Algorithm) enerator
(Algorithm) (Executer)

Resources
(Capabilities)
Pre r

; Decentral Reconfiguration Manager

Figure 3.10: Central vs. Distributed Architectures

36

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

4 Modeling Fundamentals

In the framework of this dissertation, two models are constructed to tackle and analyze
the load balancing problem from two prespectives, a linear approach and a non-linear
approach. The two models share mostly the same fundamentals, however, some charac-
teristics are modeled differently which are highlighted in this chapter. Furthermore, the
considered assumptions in both models are discussed. Table 4.1 demonstrates the different
perspectives and compares the models regarding the load, transfer and the decision taking
aspects.

4.1 The Load Balancing Model

The considered model in the scope of the dissertation is classified into the following aspects:

4.1.1 Network Model

Firstly, the common characteristics are discussed. The networks are modeled using the
graph notation, i.e., nodes and edges to represent computation points and communication
paths respectively. An edge can only connect two different nodes, i.e., a self connected
node edge is not applicable as it has no semantic meaning in the presented model. Edges
are considered to be bidirectional and unweighted edges, i.e., the communication edges are
undirected and allows flow in both directions and the communication load is considered
negligible. Only connected graphs are considered, i.e., all nodes can be reached and
belong to a network. All decisions and communications are performed decentrally. A node
can only communicate with other nodes and retrieve information only within the node’s
neighborhood. Load transfers are executed in a synchronous manner. In both approaches,
discrete time domain is considered.

Depending on the model, whether it is linear or non-linear, in the respective order, the
following aspects vary:

e The network sizes can be static or dynamic

e Load balancing optimization process occurs in a central or a decentral manner

4.1.2 Load Model

Only nodes can carry loads which correspond to their resources overhead. Load units
are assumed static and does not change in size throughout time. It is assumed that load
transfers do not induce any temporary loads whether computation or communication.
Depending on the approach, load can be either continuous or discrete.

37

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

4 Modeling Fundamentals

4.1.3 Mathematical Model

Inspired by the model equation described in Eq. 2.1, the general equation that governs
both of the presented models can be described as:

(k+1 <k>+zf ((k) x_k>+ (k+1) C(k) (4.1)

With n indicating the number of nodes present in the core network, I,Ek) representing

the load at node ¢ at time step k. The summation function f;; is an abstract function that
evaluates a signed quantity and is evaluated according to the direction of the load transfer

such that
k k k k
fij <I§)— Ti >) =—fji (TZ(= x§)) (4.2)
¢; accounts for the calculations/executions that can be performed at each time step at

node 4 thus discharging load. In contrast, the term 7; accounts for the newly appended
tasks at node 1.

38

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

4.1 The Load Balancing Model

sorj1oeded opou JUIINI(] @

9ZIS MIomjau oﬁﬂgﬁg%g °

soryoeded opou PayIu() e

971S YIOMIOU PIXI] e

uoryeZI|
1911 90INOSOI PAYTUN dARY 0
ST 0A1109[qO Iofsuer) prOY

uoroUnj 19§
-SuRI) TeOUl] UOU OSIMa0Id
' Aq peinduroo A[[eIrjued
-op SO[PAD JD0[d SOOI
-uds Ul pelgjsueI) S PrOT

uorny
-NLIISIP PRO[POYIUN dARY
09 ST 9A1399[(0 I0JsURI) RO

‘worjouny resur| ® Aq pajnd
-W0d S9[0AD YDO[D SNOUOIYD
-UAS Ul POIdJsuRI} ST PROTT

‘uoryezieryut
Je 90uo pozrurido A[reryusd
‘OTjel I9JSURI} PRO[POXI]

930I10SIp A[ROLIOWNU ST PROT ®

IROUI[-UON

snon
-UIpuod A[[eoLIDWNU ST PROT| ©

Ieaul|

SIojomreIed yI0M)aN

[°PPOIN JIoJsued],

[PPOIN PeeIeA() PPOIN

uosuedwo?) sjPpo T dqel

39

tar

mit, fir oder In KI-

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

https://doi.org/10.51202/9783186267085

5 Methodology Investigation -
Analytical Approach - Linear Model

5.1 Modeling of the Adaption Algorithms

In the multi core processing domain, load distribution constitutes a crucial factor to the
performance and thus was investigated thoroughly. A model was introduced to describe
mathematically the load transfer between the different cores in the discrete time domain
in Sec. 2.7.2 where Eq. 2.1 is taken as the fundamental basis upon which the algorithm
model is constructed.

5.2 Model Characteristics

In the linear model, the load units are considered to be numerically continuous. The load
exchange between the nodes is governed by a linear transfer function that is executed in
synchronous clock cycles. The linear function is constant (however can be optimized).
The linear function parameters are considered to be time invariant. Furthermore, the
network size and adjacency are considered to be static and does not change throughout
time. The Optimization for the load exchange can be performed centrally which results in
computing optimum load transfer parameters. The optimization can be performed with
different criteria, e.g., minimizing the settling time, eliminating certain dynamics in the
system response, etc.

5.3 Model

Using the load z as a state of the system and in discrete time domain (k), the system can
be described as:

n
k1 k k k k+1 k
x§+):$§>+Zfij(x§)fx§)>+ni(+)fg() (5.1)
j=1

under the assumption of an undirected graph with a linear transfer function, the following
equation holds:

n

k+1 k k k k+1 k

a =2 £y ey (17§)—ff£))+Tlf+)—Cf) (5:2)
i=1

With n indicating the number of nodes present in the core network, xgk) representing
the load at node i at time step k, transfer coefficient a;; is a non negative constant that

40

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.3 Model

evaluates to zero when both indices are identical. Instead of assuming that the transfer
between non-connected nodes is zero, the model is adjusted to include the adjacency matrix
such that e;; is a switch constant the describes the adjacency between node i and j providing
a switch control over the communication edges. The summation term is a vector quantity
and can evaluate to a signed value according to the direction of the load transfer. (;
accounts for the calculations/executions that can be performed at each time step at node
¢ thus discharging load. On the contrary, the term 7; accounts for the newly appended
tasks at node 1.

Yi=ni—G (5.3)

Intuitively, a node cannot have an execution value that is higher than the corresponding
available load making the node transaction i strictly state dependent. The bounding
inequality can be represented as:

G<mi+ax; (5.4)

1) represents the inputs and outputs of the system.

In order to investigate the stability and the analysis of the different algorithms, an
objective has to be defined. Since the objective of each algorithm depends on the executed
scenario, the objective is set to the generic load balancing, i.e., the loads between the nodes
are balanced so that each node has an equal load value Z.

n
z®
70 — =L

n

The homogeneous problem can be considered by assuming that:
Y =0 (5.6)

Furthermore, since the states stay unchanged at each time step and the system does not
change the load profile, i.e., preserves the total load in the network, unless a distribution
algorithm is executed. The system matrix A can then be described as

A=TIn (5.7)

excluding the algorithm overhead, it can be seen that the system is marginally stable,
as the load amount in the system is only redistributed and the total amount is not affected.

The algorithm can be described using a feedback matrix K, and the resultant system
can be thus described as:
Tk + 1] = AgZ[k] (5.8)
A mathematical description of Az enables the computation of the system matrix Ag.
The feedback matrix K can thus be interpreted from Az,

AF=-K- T (5.9)
M —€12 Q12 ... —€1p-Qly
K= —621.' Qg1 “{2 cee _62”.' Qiap (5.10)
—€nl - Qp1 —Ep2 - Qp2 ... Tn
41
IP 218.73.216.36, am 20.01.2026, 15:13:46. © Urheberrechtlich geschQtzter Inhalt .

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

with .
Yi = Z Ci]‘ai]‘ (511)
j=1

The feedback controller system matrix Ay can be computed as

Ak =A-K=1-K (5.12)
1=y e ... e -,
€21 - 1-— R e
Ay = 21 . 21 .72 2n . 2n (5.13)
€nl - Qpl €p2* Qpz ... 1- In

Since the network topology deduces the values of the e;; elements, therefore analyzing the
a;; parameters can determine the stability boundary conditions and control the conver-
gence and the system response dynamics.

5.3.1 Stability and Convergence Analysis

Due to the nature of the network symmetry and the nature of the load balancing problem,
the Ax matrix is double stochastic and irreducible. According to Perron-Frobenius theorem
[90] [49], all eigenvalues of A are bounded by the unit circle, i.e., stable system. However,
stability does not indicate convergence. Computing the eigenvalues of matrix A will result
in

—l< A< <=1 (5.14)
With an eigenvalue at 1 (which can be intuitively interpreted as well due to the integrator
behavior nature of the system).

n
Vi = Zaij (5.15)
j=1
As previously mentioned in Sec. 2.7.2, in case A, is equal to -1, the system does not
converge. Furthermore, convergence can be ensured if one (or both) of the following holds:
e 1l—v>0

e the network is not a bipartite graph

5.3.2 System Dynamic and Performance Analysis

In order to find the fastest settling time, Eq. 5.16 which determines the approximate
settling time of the system within two percent can be used to derive the objective function
shown in Eq. 5.17 [2] [8] [41] .

1

t In (max([Aa], [Aa]))

sy, I(2%) - T - (5.16)

with 7" to be the discretization time.

42

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.3 Model

1

fo(A) = “TnJmax(Pal Do) (5.17)

Through pole placement, manipulation of the system settling time and limiting certain
response dynamics like oscillations can be achieved. This can be extremely useful in the
automation domain, since load oscillation is not desired in the network for the communi-
cation overhead it can result in. Minimizing the objective function fy reduces the settling

time.

min fo(A) (5.18)

The minimization should be performed with care in order to not violate the following
boundary conditions and assumptions in order to ensure system stability and convergence
Vi € N, Where N = {1,2,..,n}, the following holds:

At any given time, the node utilization cannot exceed the maximum resources ca-
pacity x.
2 <z, (5.19)

All eigenvalues lie within the unit circle and are greater than —1

—l<)n<1 (5.20)

By definition « is a non negative constant (cf. Sec 5.1), to ensure that all elements of
the Ax matrix are non negative and do not exceed 1, i.e., the transferred load ratio
is non negative and does not exceed 1.

At each time step the net total node transactions must not exceed the existing load
of the node.

> <1 (5.22)
j=1

A further constraint can be applied to Eq. (5.20) to constrict oscillations in the

response.
0< N <1 (5.23)

Important to realize, according to Abel-Ruffini theorem [4], the aforementioned min-
imization procedure is only analytically possible to perform in networks with maxi-
mum of five unknowns. Solving the characteristic equation is analytically impossible
for equations with order higher than fourth degree, i.e., 5 poles result in 4 unknowns
since the first pole is always 1 (since it is a discrete time domain and the system
exhibits an integrator behavior), otherwise a numerical solution using brute force
optimization is inevitable. Special graphs that contain symmetries, e.g., ring, star,
Petersen, etc., can have a formula to calculate the optimal transfer factors o as shown
in [15] or can be approximated using regression models as presented in Sec. 5.5.

43

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

5.4 Modeling of Multidimensional Loads

The aforementioned model describes the load transfer in one dimension. However, this is
insufficient for modeling complex problems that have more than one load type involved.
Performing optimization for different objectives simultaneously can cause conflicts between
the optimization criteria. In this section, the unidimensional equations are extended to
model a Multi-Dimensional (MD) load distribution system.

5.4.1 MD Problem Classification

The MD load distribution problem can be classified into the following;:

Independent MD Problem

In the trivial case, where more than one dimension exists, however, independent of one
another, the problem is simplified to many parallel uni-dimensional problems. In this case,
each dimension is considered individually and the optimization is performed as already
discussed.

Semi-Coupled MD Problem

In case of a semi-coupled system, the dimensions are dependent on one another. However,
a restriction exists at the input, i.e., the manipulation of the load distribution can only be
performed through certain dimensions and not all. Hence, an indirect manipulation will
be needed if a manipulation of a load without an input is necessary.

Fully-Coupled MD Problem

In a fully coupled system, the dimensions are dependent on each other. Moreover, each
dimension can be manipulated through its own input. A manipulation in one dimension
will influence all other dimensions, however, not necessarily equally. The linearity or
non-linearity of the influence should be defined according to the problem and designated
optimization objective.

5.4.2 MD Problem Modeling

Utilizing the same equation system that was shown in the uni-directional load problem can
act as a basis for the new MD system. Appending the following aspects to the problem
description enables modeling MD problems:

e Cost function: In MD problems, not all loads have the same costs or weights. Thus,
a cost/objective function is essential to describe the real weights of each dimension.
This is realized in the evaluation model that will be introduced in the following
section (cf. Sec. 5.4.2- Evaluation Model).

e Relativistic Transformation: As previously mentioned, manipulating a single load
dimension can cause a non linear transformation in other dimensions. Accounting
for these changes is essential and is realized in the relativistic transformation model
5.4.2- Relativistic Transformation Model).

44

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.4 Modeling of Multidimensional Loads

Evaluation Model

The real overhead costs are demonstrated by the evaluation model.

Zi = Z Ga(zai) (5.24)

d=1

where Gy is the weight of load dimension d. In order to compare the different dimensions
with their real weight, the loads have to be projected onto the dimension Z; that represents
the total weighted overhead of all dimensions of node i. For simplicity, a linear cost function
is used:

D
Zi=> Gy a; (5.25)
d=1

Relativistic Transformation Model

This model traces the disruptions or load manipulations caused by one dimension to other
existing load dimensions. It should not be confused with the evaluation model, as this
model does not represent the cost of a single unit rather it is solely responsible for rela-
tivistic load changes due to load transactions. For example, transferring a computation
load between two nodes can cause a communication overhead between them. The rela-
tivistic transformation evaluates to:

D n
k k
DD Tona ey iy - |2 —) (5.26)
m=1 j=1
m#d

For simplicity, T},q is assumed non-negative and constant. Contrary to semi-coupled sys-
tems, in a fully coupled system, an inverse transformation 7Ty, exists ideally in the form:

Tdm = Tv;cll
Where T4, accounts for the reversed transformation (ideally is the reciprocal of Tq).

Fig. 5.1 shows an example of the relativistic transformation of transfer occurring between
two nodes.

{C e
Z; 1
]
(0) P 5] s e g (5 g P Py
X317 "1” =t X
(1] [

(0) IR P 5 g R 55 i i g 55 i g
Xai

(0),.(0)_(0) (0)_.(0),_ (0 (1), (D_(1 (1) (D)1

27Xy X 27X, X5 Zi Xy X Zj i) X

Figure 5.1: lllustration of the Relativistic Transformation Between Two Nodes

45

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

Load Transfer Model

The load transfer model acts as the coupler of all dimensions. The different dimensions are
scaled with their real weights and projected onto one dimension Z where load transfers take
place. This transforms the MD problem again into a uni-dimensional problem allowing the
use of the conventional equations. Contrary to the uni-dimensional paradigm, where the
average load stays constant throughout the load balancing process as shown in Eq. (5.5),
the average load in the projection dimension varies with each load transfer and can be
described as follows:

zr”: k)

Zz® == 5.27
. (521)

Rewriting Eq. 2.1 for the MD problem formulates to:
Z0H0 = 70 4 Z T, - (7® - Z}"')) (5.28)

Where the weighed transfer evaluates:

D
(7 2) = 3 s (5~)+ 325 v oo
d=1 m=1 j=1
m#d
(5.29)
Substituting Eq. 5.29 in Eq. 5.28:
D n
Z (b+1) _ Z(k) + Z Z Gd eij . Oédi]‘ (‘T((if) - Igj > + Z Z de . Gij . adij . l‘g:; — Is;)
Jj=1 d=1 m=1 j=1
m#d
(5.30)
Thus, the state space representation can be described by:
Zlk+1] = Agx - Z[k] (5.31)
Where Az is the feedback controlled system matrix and can be computed as
AZK:Aszz-KilfBz-KZ (532)

Similar to the uni-dimensional problem, in the MD-problem, the system matrix Ay is also
interpreted as an identity matrix as the system preserves its previous state and does not
cause any internal changes. The K matrix describes the load balancing algorithm feedback.
The node state changes AZ can be computed in the same manner as in uni-dimensional:

AZ=-K-7 (5.33)

The K matrix can be interpreted as in Eq. (5.9), and hence matrix Az can be described

! ez -T2 oo e Tin
€1+ 'y V2 oo egy oy
Az = (5.34)
€nl * Fnl €n2 * Fn? e In
46
IP 216.73.216.36, am 20.01.2026, 15:13:46. © Urheberrechtlich geschQtzter Inhat .

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.4 Modeling of Multidimensional Loads

with
j=1

The elementary-dimensions can be represented as

D
Falk + 1] = Aure,[Z) - 5alk] + > Ba,, - Aaim[k] (5.36)
mzd
Where Ak, is the controlled feedback system matrix. The relativistic input matrix B,,,
which is responsible for the inputs of other states in case of a fully-coupled system (cf.
Sec. 5.4.2- Relativistic Transformation Model). As previously mentioned, the load transfer
computations are evaluated in the Z dimension which is not a realistic dimension. Thus
mapping the multidimensional transfer factor I';; to the unidimensional ay;; factors is
essential to carry out the load transfer process. It can be clearly seen, that no unique
solution for the controlled feedback system matrices A,x, can be derived.

Reformulating Eq. (5.29) so that g is the subject of the formula requires a further
relation which distributes the I';; among the unidimensional ag;;. Otherwise, by default,
the ay;; is tuned to receive equal proportions from the I';; leading to convergence accord-
ing to the adjusted cost function shown in Eq. (5.25). On the other hand, adjusting
unequal proportions leads to a faster convergence in dimensions with higher proportions
share. Another method to dynamically adjust the proportion is using game theory [65],
thus establishing a Nash equilibrium according to the offered resources and loads. Alter-
natively the agent based combinatorial auction solution proposed in [21] or [38] can also
be considered.

Realistic Model

The realistic model shows the real values of the load in their separate dimensions. This
model reflects the real value of the load at each dimension at each time step. The model
can be described with the following equation:

n
k k k
ot =2l + Z €ij - Wdij (IZJ) — aly) + Z Z Tind - €ij - i -
j=1

mljl

(k) (

(k+1) (k)
‘rmj di

(5.37)
with the assumption that no external load addition or execution occur at the nodes, the
equation can be simplified to the following:

(k+1) (k) (k)
Ty —xm +§ Cij * Qdij \Tg; — Ty E § Tnd - €35 - Qaij -

ml]1

2% (k)
mj — T

(5.38)

Simulation

As a proof of concept, the equations have been simulated in MATLAB, and a scenario
with the following conditions was executed:

47

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

e A semi-coupled system

e 10 nodes that are connected in a ring topology

e Two dimensions were considered in which only one is reachable
o Parameters used: T,,q = 0.5 and G4 =4

e Balanced load in the reachable dimensions terminates the simulation

ane
-
=

The start and final output of the simulation are shown in Fig. 5.2.

-
" =
"
™ -
200 -
| I :
. F s . . . : . P s 2 : . PR B . s W

Figure 5.2: Semi-Coupled System - Start and Final Simulation Step of Combined Load Z,
Load Dimensions 1, and x5 in black, gray (reachable dimension), and white resp.

5.5 Performance Enhancement via Regression Models

As previously shown, adjusting the performance of a distribution algorithm is not a simple
task. Thus performing an online performance optimization can be time consuming and
might even not be reasonable in case of topologies that are highly dynamic. In this section,
an investigation is conducted to examine whether a regression model can compute the
optimal values given the topology of a network to minimize the Markov chain mixing time.
In this investigation, a hub spoke network topology is chosen for its ability to describe
any topology in an abstract manner. However, as a starting point, a special topology of
hub and spoke networks is considered. This investigation is yet to be extended to describe
more variables which could possibly enable a description of a regression model that can
compute the optimal values of the edge weights in linear time. Important to realize, the
regression model does not compute the exact optimal edge weights rather approximate
values that lie within an allowed error range from the industrial automation perspective
and in return the model provides a significant improvement in the computation complexity
thus reducing processing time (cf. Sec. 5.5.3).

5.5.1 Optimizing the Transfer Coefficient

In the presented optimization problem, the objective is to compute the fastest mixing time
of the Markov chain induced by the matrix presented in Eq. 2.4. Due to the complexity of
such an optimization, reducing the number of free parameters can simplify the problem.
Given a symmetry in a network, [14] shows that with a fixed-point of the automorphism
group of the underlying graph, an optimum solution comprising the same symmetry exists.
In other words, symmetrical edges can be considered equal.

48

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.5 Performance Enhancement via Regression Models

5.5.2 Ring Hub and Spoke Networks

In the shown regression, the Hub and Spoke (HS) topology is classified into two major
classes, a homogeneous and heterogeneous HS topologies. The former describes a perfect
HS network indicating identical hubs (also denoted as ’h’) , i.e., each hub is connected
to the same number of independent spokes (also denoted as ’s’), among the hubs a ring
topology is formed as each hubs is connected to two neighboring hubs. This topology
is chosen for its high symmetry. The edge weights between a hub and another hub and
between a hub and a spoke will be henceforth denoted as a and 3, respectively, as shown
in Fig. 5.3 where 3 hubs and 4 spokes are illustrated. On the other hand, heterogeneous
HS networks has less symmetry and allows irregular architectures to be included, e.g.,
different number of spokes per hub, different number of neighbors for each hub, etc. HS
topology has been chosen as a basis for the regression model. It can be used as an abstract
topology to derive any other existing topology and build complexer models in the future.
The ring topology for instance is one special form of HS where the network consists only
of hubs. As a result, the HS topology is chosen to be a start point for a regression model
which can be later adjusted to fit other topologies.

Figure 5.3: A Perfect Hub-Spoke Network h =3 and s = 4

Using the induced Markov chain shown in Eq. 2.4 and with the following definition of
an equilibrium distribution

n

1
. (t) _ A . A L (t)
thjgox =z-1, # . -2_1 x;. (5.39)

As shown in [13] and [56], the minimization of the SLEM can be formulated as a SemiDef-
inite Program (SDP):
minimize ~ J3 (5.40)
subject to —pI < A— %]l]lT =< pI,
A;; >0, A=AT Al =1.

Initially, a SDP for the input parameters h, 8 has to be constructed.
Let, without loss of generality, the first h nodes represent the hubs inside the network.

49

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

Assuming the symmetry of coefficients and considering the aforementioned notation, the
transition matrix A(h, s) has the following form:

Aiip1 = A =a, 1 <i<h—1;

Avp = Apg = a;

Aij=A;=0, (i—1)s+h+1<j<is+h, 1<i<h
Ai=1-2a—3s0, 1 <i<h

Auy=1-0, h+1<i<n;

A;j = 0, otherwise.

In this scheme, within a defined network, i.e., s and h are known, «, [are variables.
Important to realize, the A matrix diagonal elements, i.e., A;, are bounded by the A
matrix stochasticity, i.e., AL = 1. Thus the objectives and constraints for the SDP can be
formulated and inputted to the solver. Denoting £ = %IlllT and introducing the parameter
v:

minimize
st {Vi,j A;; >0, Al=1, A+~ —-E =0,
—A+AI+E>0, v>0}

Computing parameters for small networks

Using the SDPT3-solver for the constructed SDP, computing solutions (P, y(P)) for net-
works with 3 < h < 9 and 2 < s < 19 with high precision (the dual gap set to 10’10) is
possible. The optimal solutions for the coefficients « and /3 can be determined from the
distribution matrices A:

a=Aig B=Apu

Predicting the coefficients

Using the obtained data for small networks, a regression analysis is conducted to investigate
the relationship between the transition coefficient o and 8 as function of the network
parameters h, s. To establish a model, the following approach is utilized: the sum of the
edge coeflicients incident to a hub must be equal to 1, such that the corresponding diagonal
elements of A evaluate to 0. This assumption is inspired by [22]: such transition matrices
A are optimal in the set of linear modifications {(A+k1,)/(1+k) | k > min; a;;)}. Setting
a;; =0 for i = 1...h yields the dependence a = % (for h > 2). Using the data analysis,
a guess for modeling # can be made. Overall, the model constructed for regression is

l:a-5—0—b~h~s+c~h—0—d, « 1-sf

B " deg(h) — s’ (5.41)

where deg(h) denotes a hub’s subset in its valency. a, b, ¢ and d denote the coefficients to
be evaluated.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.5 Performance Enhancement via Regression Models

5.5.3 Regression Model
Special Cases

The special case h = 2 (and hence deg(h) = s+ 1) is considered separately, since as afore-
mentioned, in the analysis, only undirected graphs are considered, which in the common
sense, a ring topology cannot be constructed by two hubs. The regression model shown in
Eq. (5.41) is applied to a dataset with s = 1...20. Fig. 5.4 demonstrated the work flow
of the used approach.

(hys)
iterations

o Formula

Boundary

Conditions B Formula

Topology

Figure 5.4: Approach Work Flow

The case h = 1, s > 2 depicts a star network topology with a single unknown parameter
B (since all edges are symmetric) in the transition matrix. The optimization problem
can thus be solved analytically. Eigenvalues of A(8) are 1, 1 — 3, 1 — (s + 1) (with
multiplicities 1, s — 1, 1 respectively). Minimizing v(P) under the constraint s -3 < 1
yields g = %

Ring HS topology

The described regression model yields the following expression for computing the transition
coefficients:

Bt = (1.1673 +0.2097 - h)s + (0.1705 - h — 0.1769)
a= %(1—5-5) (5.42)

Further instances of HS (including networks of larger scale, e.g., h > 100) were evaluated
using the obtained model. The outputs of the regression model and the solver are compared
using the settling time (cf. Eq. (5.16)) as a performance criterion as shown in the validation
work flow in Fig. 5.5.

Parameters (h,s)
iterations|

Time Ratios

Topology Boundary

¢ Isettling Times
Conditions

Figure 5.5: Validation Work Flow

51

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

A sample of the validation results is demonstrated in Table 5.1. The table is divided
into four sections. The first sections shows two columns denoted with 'h’” and ’s’ indicate
the number of hubs and spokes of the analyzed network respectively. The second and third
sections of the table show the results of the solver and the regression model respectively.
The two sections comprise four columns showing the «, 3 (cf. Fig. 5.3), v(P) (cf. Sec.
5.5.2) and the settling time of the network using Eq. (5.16) respectively. The final column
shows the time ratio which evaluates the settling time of the solver to the regression ratio.
The settling times in small networks evaluated by the regression model show high precision
with an error within the 0.05% tolerance interval. On the other hand, in bigger networks,
e.g. h = 100,200, the regression model outperforms the solution provided by the solver
(results shown in bold font in the table). This is due to the operation time out or numerical
problems which leads to producing a non-guaranteed optimum solution. The results are
plotted using a surf for better illustration in Fig. 5.6 with the settling time, the number of
hubs and the number of spokes on the axes. The surf demonstrates the regression modeled
data while the diamond data set demonstrates the solver results. At the data point with
100 hubs and 20 spokes, it can be seen that the regression model outperforms the solver
computation.

A note on complexity

In general, SDP falls under the class of conic programs in the classification of convex
problem optimization, which is recognized as efficiently approximable in polynomial time
in most cases. In particular, polynomial methods are applicable for the minimization
problems as formulated in Eq. (2.10) [66]. In the computation stage, the solver failed to
optimize several middle-sized instances due to program terminations. The terminations
are caused by lack of progress in infeasibility (termination code = -9) or numerical prob-
lems such as deterioration of dual infeasibility (SDPT3 termination code = -7). Moreover,
in larger network instances, runtime becomes also an issue. Generally, the best proven
bound for the number of iterations for infeasible interior-point algorithms (which is used
by the utilized solver) is O(y/nL), where L is the bit-length of input [71]. Each compu-
tation iteration executes a matrix Cholesky decomposition, which requires up to O(n?)
steps. Furthermore, the high symmetry of the semidefinite matrix does not reduce signifi-
cantly the CPU-time [53], as well as, after reducing the problem to two parameters using
the symmetry, the problem remains difficult to compute. The complexity of the problem
is not simple to estimate, however, minimizing the polynomial roots can be considered
as the lower bound for the complexity since it is an essential step for the eigenvalue op-
timization problem. Moreover, according to Abel-Ruffini theorem [4] [6], for n > 5, the
problem becomes analytically intractable. Therefore, utilizing iterative numerical methods
is inevitable. The aim of the regression model is to construct a near-optimal transition
matrices for large networks which can compute the problem in O(1) runtime which is appli-
cable for highly dynamic networks. With such a trade-off, sacrificing a negligible accuracy
(which in reality has limited consequences, since loads are discrete and not continuous) for
a guaranteed low execution time can provide an alternative to supersede the semidefinite
optimization method.

52

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

5.5 Performance Enhancement via Regression Models

x10*

4.5

w

Settling time
[x]

o -
a© W = Ww M o’ oW

| _IRegression-modeled network
+ Solver-optimal network

b 60 80 100

Figure 5.6: Solver and Regression Model Results Surf

120

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©

tersagt, m mit, flir oder in Ki-Syster

20

10

Spokes

53

https://doi.org/10.51202/9783186267085

5 Methodology Investigation - Analytical Approach - Linear Model

CL6686°0 | 9€0VTE GSE6Y T1C6666°0 0¥00°0 00670 | SO8S8ET'GS86F TT6666°0 S900°0 0€8¥'0 | & 00T
LZ8866°0 | TVPLCE 0LOTY S06666°0 8¥00°0 €06¥°0 | cPS09S'8ITIV S06666'0 6¥00°0 668%°'0 | ¥ 00C
9CIVP86°0 | 6V9STVL 680GE 688666°0 8T00°0 LBLY'0 | 9CGEGL'GG95E 068666°0 €¥V00°0 €L9%°0 | ST 10T
1720001 0¥7648¢ 07801 6£9666'0 ¥600°0 CIST'0 | 989€L9°LESOT 6£9666'0 98000 6¢8¥'0 | ¥ 10T
9TGR/CT6°0 | OSTTILE OVCSY VI6666'0 <TTO0'0 T8LV'0 | TRIEVTETLRY 0C6666°0 S900°0 <T¥eEV'0 | 0OC 00T
6EEV66°0 | 096T88°GTTTE 988666°0 6C00°0 S8LYV'0 | 9TTT68°ITIVE L8V666°0 LT00°0 L6LYO | ST 00T
€.2000°T 1663C6'96L2T 7696660 8L00°0 VO8V'0 | LTCEEEV E6LTT ¥69666'0 ¢L000 0¢8¥'0 | ¢ 001
10€000°T 749620 7€901 2€9666°'0 G600°0 OISF'0 | ST91E80€90T ¢€9666'0 L8000 Lg8¥'0 | ¥ 001
LTV666°0 | 806S8L'CI9FV CST1666°0 TTITO'0 TI9P'0 | €096V GT19¥ €S1666'0 ¥OT0'0 9€9%°'0 | L 0¢
¢g€000'T ST1CLE6™LV]C L29866°0 C8TO'0 9€97°0 L65896°9¥8¢C L29866°0 89100 €99%'0 | ¥ 0¢
657000°T 9€0GTV TLIT 299.66'0 9100 #8910 GEas8Y9°0L91 199,660 L8200 €IL¥0 | ¢ 0¢
8.2000°T TCV1GG 8¢ER 97€566'0 99200 GOT¥V'0 CGCR8IE 8ES ¥res66'0 Lvc0'0 LETVO | L 61
97¢000°T €0V81E 609 6¥€266'0 2Zv0'0 S91I¥0 P912r1°609 9¥¢c66'0 S0¥0'0 68I¥V0 | ¥ 61
LL7000°T 9,.E8¢8'68¢ €69986'0 8VL0°0 ¢STr0 9¢2069'68¢ 1899860 0TL0°0 06C¢v0 | ¢ 61
¥£0000°T Ge08C9VIE €79.86'0 0I¥0°0 ¥99€°0 8LVLI9VIE €79.86°0 90¥0'0 8L6€0 | L 0T
Lv0000°T ¥LGGCL LRT L2€6,6°0 98900 6¢9€°0 9¢L9TL°L8T 9L€6.6°0 8.90°0 ¥¥9€0 | ¥ OT
690000°T ¢62021°€0T ¥LL296°0 TPCT'0 69LE0 002eTT1°€0T ¢LLTI6'0 ¥eel' 0 9LL¢0 | ¢ 0T
£00000°T 918008°L6T LT7086°0 ¥1S0°0 20Z€0 122008 L61 LI7086°0 G1S0°0 86IE0 | L L
€00000°T 8679¢9°9TT 910L96'0 9980°0 0L2€0 7609¢9°9T1 910,960 2980°0 992€0 | ¥ L
¥00000°T 6.¥025°29 9¥€6e6'0 16ST°0 607¢°0 02208sc9 Gre6E6'0 G6ST'0 SO0¥E0 | € L
9€0000°T €¢vc09'9¢T 89LTL6°0 8T190°0 8€8C0 €LVL6G°9€T L29L1.6°0 ¢¢90'0 €¢8¢0 | L g
€70000°T 7679€9°6.L 7902860 8¥0T°0 €06¢°0 ¥80€€9°6L ¢90cs6'0 9%0T°0 888C0 | ¥ g
280000°T 180679 1% Y0160 8S6T°0 ¢F0¢0 00L9%9°T¥ €Ve016'0 GL6T'0 G20E0 | ¢ g
0T0000°T 666C8T'TTT 8165960 L890°0 76520 68CI8T'IT1T L16696°'0 0690°0 98GC'0 | L ¥
¢10000°T 99¢625°79 LLTTP6°0 CLIT'O 999270 91982579 9LTIV6'0 9LTT'0 L¥9C0 | ¥ i
¥10000°T L9¢V1C°€E 0688880 ¥IZC'0 98LC0 L08ETT €E 6888880 ¢CCc'0 8LLTO | € ¥
612000°T 8V€910°16 6¢6,66°'0 GLLOO 68¢C0 S0¥966°06 026,560 ¥9L0°0 92E€C’0 | L €
€L2000°T €VeSLe TS 968L¢6'0 0€ET0 0VE€CO £€8609¢°¢S 8.8L¢6°0 OIET'0 08€C0 | ¥ €
0T¥7000°T 69¢1€V'9¢ gcre98’0 9vSc0 ¥S¥e0 1770Ci"' 92 CLECI8'0 0080 00§50 | € €
orjel OWILT, | § ‘Owry SuI[}g ()k d 0 s ‘outry SuI[}398 ()L g 0 S q
UOISS0180Y] eLdAs yma uoryezrunyd(

uosiiedwod swil 3uij11es :1°G ajqel

tar

mit, fir oder In KI-

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical
Approach - Non-Linear Model

In the previous chapter, a mathematical analysis of load distribution is presented that can
ensure the stability as well as enhance the performance. However, this analysis lacks many
realistic aspects of the available algorithms for different reasons, e.g., the load is considered
continuous and not discrete.

6.1 Model Characteristics

In the non-linear model, the load units are considered to be numerically discrete. The
load exchange between the nodes is governed by a non linear piecewise transfer function
that is executed in synchronous clock cycles. The piecewise function varies according
to the algorithm’s logic. Thus the transfer function and the load transfer coefficients
are time variant. The optimization is performed decentrally since each node is able to
retrieve information via its neighbors. Furthermore, the network size and adjacency are
considered to be dynamic and can change at any point of time. In a decentral behavior,
the optimization is hardly affected by changes in the global model (e.g., network size) as
each node considers only a local model.

6.2 Performance Assessment

In order to assess the performance of algorithms, a list of indicators is needed to compare
the performances in different conditions. Various Key Performance Indicators (KPIs) have
been defined in [28], [78], [27], [77], [54], [54], [72], [37], [63], [80] and [46]. However, these
KPIs were either not adequate or not precise enough for the presented work. A benchmark
is presented where a list of KPIs are defined to measure the performance of distribution
algorithms in [30]. In this chapter, the benchmark and the KPIs list are discussed. The
distribution algorithms view the load distribution from an empirical perspective (cf. Table
4.1). Although the previously set objective in Eq. 5.5 is further utilized in this section,
since discrete load packets are considered, it is important to realize that the objective value
might not be reached in case the computed mean is not a whole number.

6.3 KPIs Preliminaries

In order to define a clear list of KPIs, a list of preliminaries that set the framework in
which the KPIs are computed has to be defined to ensure fairness and consider the different
perspective of the performance:

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical Approach - Non-Linear Model

6.3.1 Network Topology

Different topologies can influence the performance of a certain algorithm. Thus it is es-
sential to evaluate an algorithm in the different topologies, i.e., an algorithm can perform
well in a “Star” topology but not necessarily in a “Mesh” topology.

6.3.2 Load Description

As previously mentioned, the load is considered in discrete load packets. A packet sym-
bolizes the least measurable and transferable unit load.

6.3.3 Initial Conditions

Initial conditions, e.g., the starting load distribution profile, play a crucial role in the
evaluation process. Two factors can influence the initial load distribution which are:

e The percentage of nodes occupied by the initial load, e.g., spike test can be performed
by spawning a spontaneous load at a node and evaluate how the algorithm reacts

e The connectedness of the nodes carrying the initial load, i.e., how well connected
a node that is carrying the initial load can affect the performance, e.g., in a star
topology adding a spike load at the hub does not impose the same conditions as
adding it at a spoke.

Other initial factors might exist and have to be defined according to the use case.

6.3.4 Node Capacity

It is assumed that all nodes have the same resource capacities. Alternatively, if this is not
the case, the utilization percentage should be used as a measure which would normalize
the different capacities. Point often overlooked is the objective in Eq. 5.5 which must be
changed to an equal utilization of all nodes to fit the problem description.

6.3.5 Probabilistic Algorithms

A crucial point that must be taken into consideration is whether the algorithm is determin-
istic or probabilistic. In case of probabilistic algorithms, the KPT list must be evaluated
an adequate number of times to account for variances and establish a valid (defined) con-
fidence interval.

6.3.6 Foreknowledge of Terminating Conditions

The evaluation of an algorithm requires the foreknowledge of the termination condition in
order to detect when the optimal (or in some cases final) distribution is reached. Since the
considered load is discrete, the optimal distribution is not necessarily a whole number thus
in case of an optimal distribution and the optimal distribution is said to be achieved when
the loads of the nodes lie between the upper or lower bounds of the defined terminating
value (cf. Eq. 5.5).

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6.4 KPIs

6.4 KPlIs

The list has two types qualitative and quantitative KPIs.

6.4.1 Qualitative KPlIs

The qualitative list comprises four KPIs:

Determinism

A boolean KPI that indicates whether the algorithm is deterministic or probabilistic

Initiation

This KPI indicates one of three possibilities: “sender”, “receiver” or “both”. This KPI
gives an insight into how the load transfer process is triggered.

Stability

The stability KPI indicates whether the algorithm is “unstable”, “marginally stable” or
“asymptotically stable”. The value given is based on the analysis shown in the quantitative
stability KPT (cf. Sec 5.3.2).

Repeatability

On the one hand, in deterministic algorithms, the KPI describes the utilized strategy /logic
to obtain repeatable results. On the other hand, in probabilistic algorithms, the KPI
describes the utilized randomness logic which can be used to construct the probabilistic
model of the algorithm.

6.4.2 Quantitative KPlIs
Execution Time (7)

This KPI measures the average elapsed time till an algorithm converges to the final (op-
timal) load profile. The measured time here provides a stable and a reliable value as the
measured quantity should specifically measure the CPU time consumed.

T, = crPUY) — cpUt (6.1)

time time

Where t and ¢; are the start and final times of the simulation respectively.

Time Steps (7})

The benchmark executes the algorithm in a discrete time domain. The Ty, KPI provides an
overview of the average elapsed iteration time steps until the final load profile is reached.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical Approach - Non-Linear Model

Total Square Error (T'SFE)

The T'SE KPI measures the sum of the squared error of the loads at each node measured at
the final distribution and the load distribution of each iteration time step of the algorithm
execution. The KPI serves as a measurement of how close the distribution is at each step
from the final profile.

n

TSE® = {Z (w§” — | J)Z] —c (6.2)

i=1

o =n (b — [b]) (6.3)

Where:
|z] indicates a floor function that approximates the enclosed argument z (if not integer)
to the prior greatest integer.

Stability

The stability of an algorithm can be measured using the 7S E KPI. Proving that the state
progression of the nodes does not reach a worse T'SFE state indicates asymptotic stability.
This can be shown in the proof below by considering a single load transfer ¢ between two
nodes X and Y that have loads w; and w; respectively :

TSEMY) < TSEW (6.4)
c=X({t+1)—X({t)=Y(t)-Y(t+1) (6.5)
X(t)=w —w and Y(t) =w{) — b (6.6)

TSEU) —TSEW = X (¢t + 1) + Y (t + 1) — X (¢)* - Y (1) (6.7)
XE+1)+Y(+1)2 < X@®)?+Y()? (6.8)
X+’ + Y () -’ <X +Y (1) (6.9)

27 +2-¢(X(H) - Y() <0 (6.10)

since ¢ > 0, dividing both sides by 2¢

0<c<Y(t)—X(t) (6.11)

0<c® <wl —w® (6.12)

Eq. 6.12 establishes that for each transfer of ¢ units, the stability KPI is evaluated as
either a marginal or asymptotic stable depending on the right inequality, if an equal sign
is included or not respectively.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6.4 KPIs

Scalability and Convergence Progression (SCP)

Another pivot point, that was lacking in the literature, is a KPI that determines the
scalability of an algorithm as well as the performance of the convergence progression. The
SCP KPI is a matrix that consists of arrays. Each array represents different network sizes
n (in exponents of 10) demonstrating the T'SE progression over different time progression
points ¢;. t; is computed using the T, and the progression constant K; the reciprocal of
the length of the desired progression, e.g., if the desired progression points should show
the quarters of the full progression, then K should be assumed as 4.

t = % , where i=1...K (6.13)

SCP =TSE (6.14)
TSEY TSEyy TSE{yy ... TSEL

wop ngiff) TSES?O) TSE%%% TS_ESQ) (6.15)
TSEW TSEY TSE, .. TSEW

In order to have a more compact KPI as having a matrix is not optimal for evaluation
purposes, a derived KPI Differential SCP (DSCP) is computed. The DSCP uses the
gradients of the T'SE and applies decreasing weights for the gradients to give an edge to
algorithms that converges faster in the initial time steps. The KPI is then normalized
using the square of n and the k factor.

k

1
DSCP, = 1 STTSEY (k—i+1) (6.16)

N

i=1
p (tiv1) _ (i)
TSE'!" = dTEiE" ~ TSE”t‘ 7fSE" (6.17)
g i+1 i

Overhead Expenditures (OF)

A pivot point often overlooked is the resources consumption of the algorithm itself. The
Overhead Expenditures (OF) aims to measure the computation, communication and mem-
ory overhead introduced by the algorithm using three sub KPIs.

e Memory Overhead Expenditures (MOE): Memory can be measured using two indi-
cators, MOFE)., and M OF representing the maximum used memory and the overall
average memory overhead per node throughout the execution respectively.

Myraw Max(My, 1) — M,

MOEp, = = (6.18)
n n

n- Ty
With Maree, My,, My, indicating the maximum memory consumption reached, con-
sumed memory at time step ¢, and initial memory consumption used by computation
node before the algorithm is executed respectively.

MOE = (6.19)

59

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical Approach - Non-Linear Model

e Communication Overhead Expenditures (CmOE): The communication overhead
requires to consider the overhead induced by the load transferred between nodes
CmOUEqq as well as the requests needed to initiate such a load transfer CmOEgq.
The communication delay can be computed as follows:

eB = ﬁpu + Bq + Bt + ﬂpg (620)

where S,., 8, B, and 3, are the routers processing, routing queues, transmission,
and propagation delays respectively. Moreover, the load oscillation must be ac-
counted for by inducing a punishment cost function C'(wj;;) each time a load transfer
is initiated. The punishment cost is a function of the load transferred. One possible
cost function can be equal to the product of load value and the number of hops of
each transfer.

Ts n m
CTILOELO,MI = ZZZC(LUZJIC) . Bk (621)

i=1 j=1 k=1
where m is the number of load transfers executed per node and Sy, is the corresponding
communication latency for its route at iteration step i. The three summation terms
consider the route communication latency for each message transmission route, by
each sender node, at each time step taken during the algorithm execution respectively.

Ts n m

CmOEyng = » Yy Length(MRQij) - B (6.22)
i=1 j=1 k=1
CmO By — CmOEMRQ +TC7nOELuad (623)
n-Ty

e Computation Overhead Expenditures (CpOFE): The computation overhead can be
easily computed by the following formula

T,
CpOE =7 (6.24)

6.4.3 Modular Benchmark

The benchmark offers a modular architecture such that different algorithms can be tested
and the conditions can be tailored as desired. The benchmark generates a node map using
the user input, e.g., network topology, initial load percentage, etc. Moreover it allows the
user to provide an initialization function to reset and adjust the different parameters of the
algorithm inputted at each iteration. The benchmark evaluates the aforementioned KPI
list and iterates the execution to obtain a defined confidence interval as well as to measure
the scalability of the algorithm by increasing the number of nodes. The flowchart of the
benchmark is shown in Fig. 6.1.

6.4.4 Benchmark Testing
Testing Parameters

Different algorithms from the literature (cf. Sec. 2.7.1), were tested in star and full
mesh network topologies. The benchmark was applied to two algorithms. The Algorithms

60

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6.4 KPIs

k
map
Trigger user init.
function
Execute load distribution

algorithm(s) No

Adjacency matrix
Load percentage
Node capacity matrix
User init. function
Load distrib. algorithm(s)
K-Progression factor

Evaluate KPI
scores

Confidence
interval
reached?

Evaluate average
KPI scores

Yes

Randomness?

KPI scores
reached?

n
d
Yes

Output KPI list(s)

Figure 6.1: Benchmark Control Flowchart

implements the concepts presented in [16] and [47].The experiments are repeated for sizes
of 100 nodes and 1000 nodes networks. In order to ensure fairness within the random
parameters (e.g., initial load locations), the experiment used 15 different network map
generations for each node count and each network map is repeated 10 iterations, i.e., a
total of 300 iterations for each node counts. The initial load is randomly assigned to 20%
of the nodes at each iteration. It is assumed that all nodes are homogeneous, i.e., they have
the same capacity of 100 load points. The results are demonstrated with a 95% confidence
interval. The k factor is assigned a value of 4, i.e., 25% progression intervals are measured.

Results

Table 6.3 shows the qualitative KPIs of both algorithms. The results of the star and full
mesh topologies are shown in Tables 6.1 and 6.2 respectively. The prevailing performance
is highlighted in bold font. Fig. 6.2 and 6.3 show the 100 and 1000 nodes TSE respectively.
The final points of the T'SE values are intentionally placed at 1 instead of 0 for illustration
on logarithmic scales.

61

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical Approach - Non-Linear Model

Table 6.1: KPI List for Star Topology

KPI 100 Nodes 1000 Nodes
Mean + 95% CI Mean + 95% CI

Fluid 7, 1.51 [1.26, 1.75] 136.67 [107.66, 165.67]
Ants T, 9.68 [9.08, 10.27] 566.51 [549.62, 583.42]
Fluid T, 308.09 [250.42, 365.75] 4282.4 [3363.1, 5201.8)]
Ants T 381.80 [358.44, 405.16] 1338.2 [1303.8, 1372.7]
Fluid CpOE 0.0050 [0.0048, 0.0051] 0.0320 [0.0314, 0.0326]
Ants CpOFE 0.0254 [0.0250, 0.0258] 0.4234 [0.4168, 0.4299]

Fluid SOE,,qx
Ants SOE 42

0.0000 [0.0000, 0.0000]
0.0029 [0.0028, 0.0030]

0.0000 [0.0000, 0.0000]
0.0032 [0.0032, 0.0032]

Fluid SOF 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000]
Ants SOE 0.0020 [0.0020, 0.0021] 0.0023 [0.0023, 0.0023]
Fluid CmOF 0.2143 [0.1826, 0.2460] 0.0184 [0.0153, 0.0216]
Ants CmOFE 0.7986 [0.7923, 0.8049] 0.7144 [0.7112, 0.7176]
Fluid DSCP -23.40 [-25.69,-21.76] -0.025 [-0.031, -0.021]
Ants DSCP -3.60 [-3.52, -3.68] -0.006 [-0.006, -0.006]
Table 6.2: KPI List for Mesh Topology

KPI 100 Nodes 1000 Nodes

Mean + 95% CI Mean + 95% CI
Fluid T, 1.25 [0.73, 1.77] 235.48 [84.74, 386.23]
Ants T, 2.88 [2.73, 3.03] 36.51 [33.94, 33.09)
Fluid T, 14.51 [8.52, 20.51] 30.94 [11.32, 50.56]
Ants Ty 128.15 [121.58, 134.72] 149.9 [137.6, 162.2]
Fluid CpOFE 0.0860 [0.0841, 0.0879] 7.5294 [7.4036, 7.6552]
Ants CpOFE 0.0225 [0.0220, 0.0230] 0.2443 [0.2384, 0.2502]

Fluid SOFE, 4.
Ants SOFE 4z

0.0000 [0.0000, 0.0000]
0.0020 [0.0019, 0.0020]

0.0000 [0.0000, 0.0000]
0.0021 [0.0020, 0.0022]

Fluid SOE 0.0000 [0.0000, 0.0000] 0.0000 [0.0000, 0.0000]
Ants SOE 0.0015 [0.0015, 0.0016] 0.0016 [0.0016, 0.0017]
Fluid CmOE ~ 4.5221 [3.7284, 5.3158] 3.1433 [2.4948, 3.7919)]
Ants CmOE 1.0719 [1.0463, 1.0974] 0.9991 [0.9738, 1.0244]
Fluid DSCP -27.36 [-44.65,-20.22] -0.014 [-0.039, -0.009]
Ants DSCP -11.57 [-11.61, -11.52) -0.090 [-0.096, -0.085]

62

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
m

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6.4 KPIs

Table 6.3: Qualitative KPls

KPI Fluid Ants
Determinism No No
Initiation Sender Sender
Model Stability ~ Marginal Asymptotic

Repeatability

Round-Robin

Round-Robin

10

TSE [Units’]
;u S&

[y
(=3
™

[
=]
—

10°

= =X = * Fluid-Mesh

—e— Ants-Mesh

==g--- Fluid-Star
----- -@ Ants-Star

T[Steps]

Figure 6.2: TSE Progression of 100 Nodes Network

~<>

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
m

0

63

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

6 Methodology Investigation - Empirical Approach - Non-Linear Model

10
- =X - Fluid-Mesh
. —O— Ants-Mesh]
10 =-=£3--- Fluid-Star
----- @- Ants-Star
Z 10 Q- i
z O-.....
- e T ®
7 * E
2 10
10° E
10! E
10°
300 400 500 Y 600

T[Steps]

Figure 6.3: TSE Progression of 1000 Nodes Network

64

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7 Use-Case - Implementation Approach

In the previous two chapters, an analytical and an empirical approach are presented. These
approaches provide an insight into the system dynamics and the different algorithm imple-
mentations in the different domains. However, these approaches cannot be implemented
in the automation domain due to a considerable reality gap. The reality gap can be
seen mainly in the load model. In order to discuss a realistic approach, a use case from
the automation domain, specifically from the cold rolling mill industry, is considered and
discussed in this chapter.

7.1 Demonstrator - SMS-SEMAG Cold Rolling Mill

In the implementation, the following use-case from SMS-SEMAG cold rolling mill is con-
sidered. The SMS-SEMAG provides a demonstrator on which a simulation of the full plant
runs. The demonstrator comprises the following servers:

e Industrial PC (IPC) for Profibus connection
e IPC for physics simulation

e Embedded PC

o G9 server for MATLAB model

Figures 7.1 and 7.2 show the demonstrator construction and the network plan respec-
tively.

The SMS Group GmbH carries out a virtual commissioning in an integration test before
commissioning a real system. All relevant control, regulation and technology functions of
the plant are simulated by means of a hybrid simulator and the signals are transmitted
to the connected Level 1 systems via Fieldbus. By setting up the real equipment (control
station with HMI clients, on-site consoles), the virtual system can be operated completely
with all automation-relevant functions and devices. The hybrid simulator consists mainly
of the three components:

e I1/O: The process image of the plant generated by the simulation is provided to the
automation via emulated Fieldbus systems (Profibus, Profinet, EtherCAT).

e Dynamics and technology: Control and technological functions through mathemati-
cal relationships or differential equation systems can be described are mapped here
with corresponding tools in real time. They are parallelized and distributed for
performance reasons on several processes or computers.

65

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7 Use-Case - Implementation Approach

Frontansicht

Energybox (24V)

Steckdosenleiste

Embedded PC

Hutschine mit EtherCAT Slave
und SIMBA Boxen

WLAN Access Point

KVM Konsole

KVM Switch

NAS Switch

Keba Handpanel
IPC fur Profibus-Anbindung

IPC fiir Simulation (Unity)

G9 Server fir Matlab-Modell

Riickansicht

Figure 7.1: SMS-Demonstrator Racks

66

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©

tar

tersagt, m mit, fir oder In KI-

https://doi.org/10.51202/9783186267085

7.1 Demonstrator - SMS-SEMAG Cold Rolling Mill

19" Rack

1 ‘ @

WLAN
Access Point

Ethernet Switch

NAS

Anschlussbox

X-Pact Embedded
EtherCAT Slave

Handpanel

SIMBA Profibus

IPC [3D-Simulation]

=]

HP G9 Server [Matlab]

Laptop

Legende

Ethernet
Reflective-Memory (RFM)

Profibus.

EtherCAT

WLAN

PN N

Figure 7.2: SMS-Demonstrator Network Plan

IP 216.73.216.36, am 20.01.2026, 15:13:46. Inhal.
m

°
mit, flir oder in Ki-Syster

67

https://doi.org/10.51202/9783186267085

7 Use-Case - Implementation Approach

Figure 7.3: SMS Cold Rolling Mill as simulated by the Demonstrator

R

| | |

Figure 7.4: Full Blueprint of the SMS Cold Rolling Mill simulated by the Demonstrator

68

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7.1 Demonstrator - SMS-SEMAG Cold Rolling Mill

e Production and process simulation: The interactive 3D plant model uses an inte-
grated physics engine that is based on real design data and maps the material flow
throughout the plant. The plant is visualized in a manner similar to the view of an
operator on the control platform on his plant.

The hybrid simulator is designed as a scalable system. Calculation steps of as small as
1004s are enabled in dynamic simulation. Basically, the simulation provides all system
signals. Regulatory and control aspects are fully mapped, technological interrelations
as far as necessary for the plausible operation of the automation are considered. The
demonstrator provides a virtualization environment of the automation-related behavior of
the plant and covers all production-relevant scenarios of an aluminum cold rolling mill
which makes the creation of an adaptable scenario from a hardware perspective not only
possible but also convenient, i.e., a new device can be created at any time or the topology
can be changed dynamically. Operational dependencies and hazards as they occur during
a real commissioning do not arise with this procedure. New automation functions or
procedures can be efficiently tested without risk to man and machine or commercial risks.
A simulation snapshot and blueprint of the full plant are shown in Fig. 7.3 and 7.4
respectively.

7.1.1 Devices

In this section, the X, Y, and Z axis are used to describe the motion convention in the
horizontal axis (right and left), vertical axis (upwards and downwards) and the orthogonal
perspective (in and out of the page) respectively. The directions correspond to the 2D plane
figures and are used throughout the section. The demonstrator simulates the aluminum
cold rolling mill plant of SMS. The plant is operated using many devices and divided into
many sections. In the framework of testing the implemented work, a simplified example of
the plant is taken into consideration as shown in Fig. 7.5. The simplified plant is a snippet
of the full production line. However, the example includes a slight adjustment to include
a third lane for better functionality illustration. The following devices are included in the
example:

e Roller table: A roller table acts as a conveyor belt. This device is an active device,
i.e., it has a motor that can move the palette in the X direction. The table has five
sensors (light barriers for proximity detection) in which four are used to identify the
palette position and one for coil presence detection.

e Shift table: Similar to a roller table with an additional actuation mode in the Y axis.
The device has an additional motor that can move the shift table along with the

carried palette (and also a coil) in the Y axis.

e Turntable: Similar to a roller table with an additional actuation mode that enables
the device to rotate itself with the carried palette (and also coil) around the Z axis.

e Oven: Similar to a roller table with an addition production capability to heat the
coil.

69

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7 Use-Case - Implementation Approach

Figure 7.5: SMS-Demonstrator Extended Example

7.1.2 Single and Group Function Units (SFU and GFU)

The palette and the coil are physically passive, i.e., they do not possess an actuator and
thus cannot physically move themselves. Each palette can carry an aluminum coil and
can be transported by the plant logistical devices. Each device (e.g., roller tables and
palettes) is controlled by a software component (a SCU and GCU respectively) in the
runtime system. Although palettes are considered as passive devices, their corresponding
software components of the palette take the lead in terms of orchestration between the
active devices within the software architecture of the demonstrator. The palette GCU
has information about the states of the real devices, e.g., the current position (i.e., the
current roller table on which the palette is located), the names of the successor device
(requires the assistance of a topology model), etc. For the purpose of control, a palette
component can occupy a device and invoke a mode of operation. States of the devices are
provided via a reflective memory from the simulation in real time for other applications
(distributed control). The inner structure of the component follows the aforementioned
structure in Sec. 2.5.4. The Single and Group Function Units (SFU and GFU) represent
the aggregation of the entity and its corresponding control logic on device and orchestrator
level respectively

Coil

The coil element represents the product entity in the plant. A procedure component is
created to represent that are performed upon it. Each procedure component carries a

70

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7.2 Load Balancing

site recipe for the procedures to be executed on it. In the implementation, the recipe is
modeled with Business Process Model and Notation (BPMN) using Camunda. The recipe
specifies the required procedures on an abstract level.

Palette

A GCU is instantiated for each booked palette in the system. The GCU task is to or-
chestrate the orders to the devices SCU. Additionally, the GCU utilizes an occupation
automaton to ensure safety and avoid collisions as well as commands overwriting from
other devices.

Logistical Devices

Each devices has a SCU. The SCU is responsible for controlling the devices via the im-
plemented logic. The component for each device can switch the motors on and off via a
driver. The hierarchy and relationship between the different levels are shown in Fig. 7.6.

GCU GCU| |GCU
001 002 | [003

Procedures

/\ Resources
SCU| |SCU| [SCU| |SCU||SCU| |SCU| |SCU| |SCU| |SCU
004]1034 | |005]|008||009]|]|010] | 011 033] 1018

-
mh

R

Figure 7.6: Procedures and Resources

7.2 Load Balancing
In order to distribute the load, two methodologies are utilized. The first approach uses

decentralized algorithms to balance the loads and optimize the resources utilization in the
network. Alternatively, an agent based method can be utilized instead. The objective of

71

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

7 Use-Case - Implementation Approach

the agent based method is to distribute the software components according to the flow of
the product.

72

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

As shown in the previous chapter, in a practical example, the load is found in hetero-
geneously sized discrete packets. Fig. 8.1 shows a network example of the components
assignment in a network. The figure illustrates the different layers:

e Device level: Where the process components, i.e., field devices, are found. In the
presented use-case, the devices from the demonstrator (e.g., roller table).

e Control Level - Process Near Components (PNC): On this layer, the automation
systems are found which performs the control logic of the process components.

e Server Edge Cloud: This layer provides the edge computing paradigm. Additional
resources and services can be found on this layer.

e External Cloud: This layer comprises the components that provide an interface for
the services and components in the layers underneath.

e Client: Where all client applications that interact with the system are found.

The objective of optimal distribution of components in the network can be approached
from a resource (load distribution) or a component (agents systems based) perspective. In
this chapter, a state of the art decentral algorithm is proposed that distributes the load
using the resources approach. Furthermore, a system agents algorithm that solves the
problem from an agent system perspective is shown.

8.1 Decentral Algorithm (Resources Perspective)

The decentral algorithm is inspired by the gained knowledge from the analytical and em-
pirical models. The proposed algorithm uses a decentral method to balance the load.
Decentral decision making behavior provides the following advantages:

e No single point of failures since the logic is executed in a distributed manner.

e No a prior knowledge of the network topology which provides better adaptivity readi-
ness.

e No additional computation resources to execute the distribution optimizing is re-

quired. The load balancing computations are carried out on all the nodes which
distributes and reduces the total overhead.

73

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

s N
) L L |
Client IEI]
\ y,
s N
External Cloud | L L)
_ y,
s N
Server = | | | |
Edge Cloud |
S J
s = N
L
Control Level (PNC) = ... | u L = " = N
\ y,
Device Level

W Component

I:I Resource

Figure 8.1: Components Assignment to the different Resources

8.1.1 Preliminaries

In this section, the fundamentals of the decentralized algorithm concept in the framework
of the dissertation are explained. The algorithm concept employs a distributed intelligent
behavior. Each node acts as a decentral independent entity in a self organized system.
The main criteria of this behavior are:

e Only local information models can be considered. Information is retrieved through
direct neighbors communication only.

e Decentralized decision taking, i.e., each node is responsible for its own decision taking
and no central point influences the decision taking process.

e FEach node relies solely on its own logic. The results of the individual nodes on a
local scale propagate to form a successful collective behavior which can be seen in
the results on the global scale.

8.1.2 Objective

The objective set for the algorithm is to balance the load amongst the available nodes
in the network. However, defining an absolute value of the balanced load is not possible
in case the nodes have different capacities. As a result, a generic objective of balancing
the utilization percentage of the node resources is considered instead. In Sec. 3.4.1, the
different optimization and constraints criteria are presented and demonstrated in Fig. 3.6.
The presented constraints must be satisfied regardless of the utilized approach. Whereas,
according to the approach, different optimization criteria can be considered. In the decen-
tralized algorithm approach, the following optimization criteria are possible:

74

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8.1 Decentral Algorithm (Resources Perspective)

e Balanced utilization of resources on the controllers

e Redundancy of application

8.1.3 The BRAD Algorithm - Mechanism of Operation

As previously mentioned, the algorithm functions in a decentral manner. Each node is
equipped with a discovery component that enables it to identify neighboring nodes. The
algorithm operates in four synchronous cycles: “Broadcast”, “Request”, “Accept” and
“Deploy”, hence the name “BRAD”.

Broadcast

The optimization criteria used by the nodes is the Total Square Error (T'SE). In the first
(Broadcast) phase, each node will inform its neighbors with its current load, capacity and
system information. This information is used at each node to construct a local information
model of the neighboring nodes. Furthermore, the information is used to compute the mean
utilization value and the TSE consecutively. Thus establishing which nodes in the local
neighborhood are above and below the mean value.

Request

In the second (Request) phase, load transfer requests between the nodes are exchanged.
The load transfer request comply to the following six conditions:

1. Each node can only send and receive one packet at a time.

2. Requests are only sent from nodes above the mean value requesting a load transfer
to nodes below the mean value and not vice versa (sender initiation).

3. The biggest load packet is chosen that decreases the TSE. If such a load packet does
not exist, no request is sent out.

4. The request is sent to the best candidate node, i.e., the node with the highest negative
deviation to the mean, as well as satisfies the requirements and boundary conditions,
e.g., communication QoS and required Node to Device (N2D) topologies.

5. The maximum capacities of the node resources are considered. The request for a
load transmission should not overload the receiving node.

6. In case more than one node satisfies the aforementioned conditions, a minimalistic
choice is done, i.e., the candidate node with the least features (e.g., communication
interfaces) that fulfills the requirements so that other candidate nodes with more
features are spared for other requests.

The aforementioned conditions ensure the maximum gain per each execution step to
optimize the TSE. Furthermore, they ensure the stability and convergence in the network
regardless of the network topology. This can be seen from the derivation presented in Sec.
6.4.2- Stability. Ensuring stability on a micro scale (local neighborhood) ensures a stability
on a macro scale (full network) recursively.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

Accept

Similar to the previous phase, in the third (Acceptance) phase, a TSE optimization is
performed. However, on the receiver’s side, each node evaluates the requests sent by other
nodes. The request with the highest gain is picked and an acceptance notice is thus sent
to the corresponding node.

In the accept phase, the received requests are evaluated and a similar optimization as
in the request phase is performed, however, to pick a load to receive and not to send. The
best request that can minimize the TSE in the neighborhood is picked.

Deploy

Upon notification from the receiver node, the sender node prepares the corresponding
component to be sent (serializes the data). In the fourth (Deploy) phase, the files are sent
to the receiver node and the control is handed over.

8.1.4 Simulation Assessment
Setup

In order to assess the performance of the proposed algorithm in different situations, dif-
ferent networks topologies are considered. In the framework of the performance testing,
the algorithm is tested in full mesh topologies with sizes of {10, 16, 25, 50, 100} nodes.
Furthermore, assessments are conducted on Line, Ring, and K,, — K,, topologies with 16
nodes to ensure functionality in other topologies. Fig. 8.2 shows some of the topologies
that are used in the assessment.

Simulation and KPlIs

The proposed algorithm is simulated to ensure functionality and stability. Furthermore,
the KPIs proposed in Chapter 6 are evaluated. Two scenarios were used to simulate
different initial conditions. In the first scenario, all the nodes were given initial loads and
the performance was measured until convergence, i.e., no longer load transfer operations
were performed. Fig. 8.3 and 8.4 show the simulations of the load convergence and the
total squared error progressions with time respectively. In the second scenario, in order to
simulate the situations where spontaneous loads are placed at a node, 20% of the nodes in
the network were given initial loads and the performance of the algorithm was measured.
Fig. 8.5 and 8.6 show the simulations of the load convergence and the total squared
error progressions with time respectively with initial load placement at 20% of the nodes.
Tables 8.1 and 8.2 show the quantitative and qualitative KPIs respectively.

76

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8.1 Decentral Algorithm (Resources Perspective)

B \Q\\®/ /®/

(b) Ring - 16 Nodes

(a) Full Mesh - 100 Nodes
@

s
7T

(c) Kn - Kn - 16 Nodes
Figure 8.2: Example Topologies of the Simulated Networks

(d) Line - 16 Nodes

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m mit, flir oder in Ki-Syster

7

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

1

o4 11]

Load [Units]

Time [s] Time [s]

(a) Full Mesh - Initial Load:All - 100 Nodes (b) Full Mesh - Initial Load:All - 50 Nodes

an —
ar
ar |
s =" = -
= 2. = -
£ oos c T
2 >
— _—
o ™ o
g s M ax
]
- -
a2 ar
a1 a1
] S e
o o EE] kg ™ 120 2% 130 s o s =0 T 100 s 50 ws 0
Time [s] Time [s]

(c) Full Mesh - Initial Load:All - 25 Nodes (d) Full Mesh - Initial Load:All - 16 Nodes

g
.
g s

o

Load [Units]
Load [Units]
2

B

-

L - &0 L] 100 e o 0 o 150 0
Time [s] Time [s]

(e) Full Mesh - Initial Load:All - 10 Nodes (f) Kn - Kn - Initial Load:All - 16 Nodes

s ar

s =™/ 1 a8 T
T = T, =
.E] —— p— 'E a%q = o =
2 = R
e — =
© S— g ax
S 3

or
a1 el
“ -
L] b « L L o el - L L e
Time [s] Time [s]

(g) Ring - Initial Load:All - 16 Nodes (h) Line - Initial Load:All - 16 Nodes

Figure 8.3: Simulation Results: Load Distribution Time Line with Initial Load placed at all
Nodes

78

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8.1 Decentral Algorithm (Resources Perspective)

TSE [Units?]

TSE [Units?]

200

Time [s]

(a) Full Mesh - Initial Load:All - 100 Nodes

. -] v 3

TSE [Units?]

=

~

2

an

.,
]
8

00

Time [s]

(b) Full Mesh - Initial Load:All - 50 Nodes

TSE [Units?]

-

Ft) 0 ™ 100

Time [s]

(c) Full Mesh - Initial Load:All - 25 Nodes

H

(ﬁ
F

&

g

TSE [Units?]

a

? oW o™

Time [s]

(d) Full Mesh - Initial Load:All - 16 Nodes

w10 1 w0

0 o " 0o e

Time [s]

(e) Full Mesh - Initial Load:All - 10 Nodes

ale
amo
a1e
a17s I
& o) 0l
20!10 =
= =
= o1
oazs =2
= =
2100 w
w 5]
D aors = oo
-
B0 o4
ass oz
a0 00

a

P 150

Time [s]

(F) Kn - Kn - Initial Load:All - 16 Nodes

200

Y 80

Ti:ﬁe [s]

(g) Ring - Initial Load:All - 16 Nodes

a

0 mo e

- u ®
Time [s]

(h) Line - Initial Load:All - 16 Nodes

Figure 8.4: Simulation Results: TSE Time Line with Initial Load placed at all Nodes

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

79

tar

mit, fir oder In KI-

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

o
= o

Load [Units]

Load [Units]

(b) Kn - Kn - Initial Load:20% - 16 Nodes

o 1]

a7 o7 =\:\:E|_
W o W oe ':\1_\1\-
= c
5 o 2. = =
5 T o -|__‘_|-
Q o3 Q o3 L
5 3

oz oz LI

A
a1 a1
o o o =0 100 150 200 30 300
Time [s] Time [s]
(c) Ring - Initial Load:20% - 16 Nodes (d) Line - Initial Load:20% - 16 Nodes

Figure 8.5: Simulation Results: Load Distribution Time Line with Initial Load placed at 20%
of the Nodes

80

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8.1 Decentral Algorithm (Resources Perspective)

TSE [Units?]

o 200 400 800 800 1000

Time [s]

(a) Full Mesh -Initial Load:20%- 16 Nodes

TSE [Units?]
g

o 0 w0 150 200 30 00

Time [s]

c) Ring - Initial Load:20% - 16 Nodes
(e

TSE [Units?]

o

o
o

o 0o 200 300 400 500

Time [s]

(b) Kn - Kn - Initial Load:20% - 16 Nodes

178

8

-]

=

TSE [Units?]
g8

o 50 100 150 200 30 00

Time [s]

d) Line - Initial Load:20% - 16 Nodes
(

Figure 8.6: Simulation Results: TSE Time Line with Initial Load placed at 20% of the Nodes

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
m

mit, flir oder in Ki-Syster

81

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

SOX Anqqeeadoy
[ewiSrepy | A)[Iqesg PpoN
Topuoeg uorjenuy
SOX WSTUTULIO(]
UOTYeTI[BAY Id¥

JUSWISSASSY/ SDUBWIOMR dAIlM[ENY) 1Z°g d|qe]

g0600°0- LSTO0'0 €TFC0°0 L8GS8Z0 €€GS6'0 0BISL'T 9% e0'1ee %08 91 sury
917000 &T2000 08L00'0 048000 8TZE00 T1L60T°0 L 20°¢6 nv 91 sury
76800°0- GTg00'0 €9SV0°0 TLPSTO 9S0V6'0 G6/EL'T 5 20°60€ %08 91 oury
790000~ 86EFO'0 STPFO'0 L6SF0°0 997200 €S6ST°0 01 20631 nv 91 oury
L€800°0- 00T00°0 6LEL00 TE6EE’0 89988°0 &VSTI'T 54 20°6es %08 9T N — "M
08T00°0- €ETTO0 S9ETO'0 L88TO'0 9L6€0°0 TIFEE0 61 20°LET v 9T N — UM
19800°0- 990000 GL0SO'0 ST0SE’0 LLGL8'0 €LL8Y'T 88 2075901 %08 9T USON 110
180000~ @6ITO0 TILTO0 GILFO'0 €S28¢°0 SOVIF'T 8l 20°T6 |18% 00T USOIN I
¥€000°0- 6I€T0°0 TLETO0 TS6T0°0 ¥IPITO 0TS09°0 6¢ c0°LLY nv 0¢ USOIN 110
€L000°0- 982000 €TL00°0 FE6T0°0 ©G980°0 9¥FEE0 V1 20" LLT 184 GC USON I
€LT00°0- 882000 TTS00°0 TOLTO0 82TL00 89TIE0 91 20102 nv 9T USPIN I
250000~ T6¥00°0 G6¥00°0 219000 80.20°0 90LF0°0 01 20621 v 0T USON [10
dOSA (oS L (u:pHSL (oIS L (sedSL (opdS.L | $901G duury, owry, Fuiyieg | peoy enup u - ASojodoy,
20U 3IDATIO)) QUILT, SNI0MIDN

JUBWISSISSY/ 9DUBWLIOMDY dAIlBHIUENY) (T°Q d|qel

82

tar

mit, fir oder In KI-

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

https://doi.org/10.51202/9783186267085

8.2 Agents Systems Approach (Components Perspective)

8.2 Agents Systems Approach (Components Perspective)

Client

External Cloud

N
AN

VAN

Server
Edge Cloud

J\

Control Level (PNC)

@Eﬁ

|| EE=) = =)

Device Level

a Component
E’ Resource

Figure 8.7: Agent System Approach Concept Mapped on the Use-Case

In order to tackle the load distribution problem, in the previous section, a resource
perspective is considered. The main objective is to distribute the load evenly amongst the
available resources. However, this perspective has a limited access to certain information
that can provide an insight to other loads, e.g., communication loads and component
cohesion, or other properties like security and safety in a network. On a process control
level, a component can be considered as an agent, due to the sufficient autonomy it has.
Considering the component as an agent provides a new perspective to the problem solution.
Furthermore, the relationship between the entities in the information world (e.g., process
control components and procedures) and entities in the physical world (e.g., devices and
product) as well as the available boundary conditions can be investigated. An example of
a boundary condition is illustrated in Fig. 8.7 with the gray scaled boxes labeled “N1”,
“N2” and “N3”. The networks that connect the nodes and components together might
contain different properties, e.g., communication QoS, security/safety grade, availability,
etc. Examples for the optimization criteria that can be considered during load balancing:

e Reducing the communication load between computation nodes considering the infor-
mation flow between the components.

e Optimizing the component placement according to the software component cohesion
(component cohesion refers to the dependencies between the software components)

e Considering the network properties, e.g., safety and security aspects of the networks.

e Considering the product flow in the plant and using the shortest path which can
give an insight into the communication between the entities in the field and their
corresponding process control units.

83

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

8 Implementation - Reality Approach

Fig. 8.7 demonstrates the concept using the use-case presented in Chapter 7. On the
devices level, as an example, the roller tables of the SMS demonstrator are shown. Each
component in this approach is considered as an agent, e.g., the GCUs, procedures, cloud
services, etc. Important to realize, the SCUs are considered to be static, i.e., cannot be
redeployed due to the time criticality constraints. On the other hand, the GCUs, procedure
and other agents can be redeployed to optimize the communication overhead between the
software components. For this reason, in this specific use-case, the logistics perspective
plays a crucial role, since the GCUs represent the pallets. In other words, the palette
dynamic physical location or specifically the palette flow through the plant reflects the
communication overhead between the components. Considering the palette carrying the
coil as a mobile agent and using the recipe for each palette, the procedures can be computed
and an insight into the palette flow through the production time can be predicted. This
information can be used to redeploy the GCUs and their procedures agents throughout
the production. The product flow is considered as a scenario for the optimum component
placement from the perspective of the agent system approach.

84

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

SCADA Monitor Computer
___________ [I T 1
Orchestrator Raspberry Pi Raspberry Pi
Control (Palette - GCU) - e (Palette - GCU)
I I I T

i Embedded
(Device — SCU)

- ETQL"]-,:,'J:J:J =]
Field L,__r];:r'JL,J_r]E‘§

b
=20 ne3n ge2n mesa e |
' L ' .

B Simulated Plant

Figure 9.1: Use-Case Architecture

As previously explained, due to the critical realtime requirements, the SCUs are deployed
to the embedded system. All other components, e.g., GCUs, can be freely distributed
across the network assuming the QoS of the communication provided in the non-realtime
communication channels is adequately sufficient for the system realtime requirements. In
the presented scenario, the GCUs are used as the software components to demonstrate the
redeployment concept.

9.1 Realization

The function blocks of the implementation and the connections between them are shown
in Fig. 9.2. In the figure, the inputs are labeled with the corresponding signal number of
the output connected to it. The ports marked with a black square at the edge indicate a
communication over network, i.e., the signal is communicated from other nodes. In this
section, the algorithm function blocks implementation is explained to demonstrate the
logic flow.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

Sync. {16, B-Trigger

) 2 —
Application ~5—Apps 15— 17 g-— TSE
App 1 Monitor [4 —~APP Req. State —<—=R-Trigger 11%-— Optimizer 26 Request
Paths Loads Machine g~A-Trigger 13— 5 Request Index
BRAD [——D-Trigger 24— a
L 25——_ Evaluator
17—En
. 5—-Neighbors’ IPs
Discovery 16 .server Names % 20 App 18
4d—— TSE |2 '
— S ——Out. Load Acceptance |27 g
1% pu— Optimizey e 2 No‘t)iﬁer Accept
12— 1 22 - 26—
A — [““—Destinat
Resources Load Sum 13 Sender estination
Monitor F— Resources 16—En
[~ System Info
17— 20 o]
4 20— Request (23 _Re Send 28 Accepted
— : quest o
g Neighbor Broadcast 21. Sender (mylP, Load) 27 B Initiator
7— Informer —l(Load Capacity, ,, 17 ——Reset
8— mylP,9)
9.—
6
11 .
F——Load List
10 i 12 Lo 24 Request IP 19
B— Neighbor s Cap.acny List 23— Request Lt » — -
Data Bank F=2—IP List ’ - Redeployer = Transfer
H2.sys. Info List Receiver |25 Request Load 22—
18 Reset 19 = Reset List 28——En

Sync. Trigger

Figure 9.2: Algorithm Function Blocks

9.1.1 Sync. State Machine BRAD

The algorithm is executed in four synchronized phases. The BRAD state machine is the
moderator of the four phases. An internal parameter is hard-coded that sets the time
interval for the four phase (equal time for each phase). The hard-coded parameter is
evaluated by estimating the maximum time needed to transmit the biggest load packet
available in the network. This parameter ensures a robust synchronization between the
nodes in the different phases. The state machine is reset as soon as any broadcast message
is sent from a neighbor. The resetting strategy corrects any asynchronicity that might
occur. A dwell time upon algorithm initiation is awaited to ensure synchronization.

9.1.2 Application Monitor

The application monitor component measures the load by monitoring the application under
the given paths provided at the input. Only the applications listed under the given paths
are considered by the load balancing algorithm, i.e., the ones the algorithm is allowed
to redeploy. The objective of the monitor component is to list the application, their
corresponding requirements and loads.

9.1.3 Node to Node (N2N) Discovery

N2N discovery is essential to list the possible redeployment destination candidates. A
library is implemented that uses mDNS protocol to discover the available ACPLT/RTE
in the network. Upon starting the ACPLT/RTE, the mDNSRegisterer component is ini-
tialized which registers the OV server instance using Bonjour protocol so that it can be
discovered by other nodes. Three components deliver the discovery functionality in the

86

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9.1 Realization

implementation:

ACPLT/RTE Server Discovery

This component lists all the discovered servers on local network. Each entry is a tab-
delimited string and structured as follows: DNS fullname; DNS interface; OV host; OV
Port; OV servername as shown in Fig. 9.3. Another point to be noted in the figure is
the ip list discovered. In the list, there are two ip addresses shown, where one is repeated
four times. This occurs due to self discovering at different interfaces namely in Ethernet,
wireless network, virtual adapter of the internal communication in the RTE and virtual
adapter of the system. The redundant node entries are filtered when considering a neighbor
for load distribution.

Most Database Library Task |mitance Connection Settings Help

= 38 i

B B LacnosT: 7509
MANAGER

J-g ::::' Instance nase: I o+« fnatworkdiscofdisco
Qs tostance typas | ooowiscomrer
)—E:::Is Task parent I.rhnn.ﬂlrh:k

[(e Task child I

Techunits
natworkdisco 1 actisode I L] ErrState o
i u“":.__ 20180921 15:5746... proctise I FALSE calctime | 0.010074
.‘-: 0,000000 cyctime mathcount
L} c_rom_localMetworks f—- i)
L} c_rom_swServers ! S| s
2:_." Snn 0000000 | saxcalctise I
0 =1 134,158, 135, 81: 7549 p— T =,
MANAGER

Eunh TRUE discover I muwnnri.nl TRUE

wendar

)—Eu—nunnu ovservers I = “MANAGER\arthur. o...
servers

1 data
L) duinte B MechUnits/natworkdiscaldisco.ovServers
H{T7) Tasks
){EJ Techunits
netwarkdisco Resource Locator
Valoe:
_Lecaletworks
_ovServers
0 Cens
£ Libraries
Data Type:

Timestarmg: 2018-00-21716:03:50. 706399

Cualty Stae ol supporied v

LXEMOST : 7549 /RANAGER

Q Detads m = Close

Figure 9.3: Discovered ACPLT/RTE Servers

87

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

Remote and Local Network Discovery

Figures 9.4 and 9.5 show the output of the local and remote discovery components re-
spectively. The figures shown present the discovery using the network that is used by
the infrastructure of the University. The components show the results outputted when
testing with two computers where both are connected via local network and one of them
is connected to the “eduroam” remote network.

B 2 LXCHOST 7509
RAMAGER
5 acplt
e T ataar e I . ..inatworkdisco/lns
ommumicati
I Instsnce tpai I .. /NocalNatmenitor
Task parent 3 I.rv..l.wn...
{Gvasks Tk it o |
{{}] Tachinits
B networkdisce 1 actimode wezreg Errstate I o
::Exc 20180921 155746, proctise I FALSE calctine I 0.000334
1) [umi 0.000000 eyetine I sathcount
e
€_rnm_localNatwarks r
i“-l _rme TRUE i 31
L} «_rna_ovservers ! =t
it [amE 0000000 | maxcalctime I
4 Libraries
W 2134,130.125,01: 7509 Tnputs Hidden Sutputs
RANAGER
1t acplt tocalmatwerk | | > ipdari®4130125..
11 vendor
1 comsumication B MechUni rkdiscalnm.l
1} servers
£ data
71 dbinfa Resouarcn Localor: | MachUniisnstworkdiscoinm JocalNshworks
{5 Tasks.
{L] Tochinits ks
Bty natworkdises o
-1 reg
L} disce
Lns
roa
L) e_rns_localNetuorks
JH ie wEarwers Duaa Type:
7 Cons
1 Libraries
Terestamp; | 2018-09-21T15:11 46
Cuuality State
=]
Q Detads ﬂ o [=- 0

Figure 9.4: Discovered Local Networks

9.1.4 Device Resources Monitoring

At each node, a resources monitor component is run to measure the utilized and the
available resources. The following information attributes are provided:

e fieldDevices: a static list of the connected field devices to the node (N2D) topology
that is manually inputted.

e sysOS: operating system of the node (linux, nt, etc.).
e sysOSVersion: Operating system (kernel) version

e cpuType: Model name of the system’s CPU.

88

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9.1 Realization

Host Database Lbrary Jask [nstance Conew B /T

Lol

LECHOST: 7549
FANAGER

Techtnits
networkdisco

1} c_rna_LocalNetwerks
-} ¢_rna_ovSarvers
S Cons

- Libraries

IData Type:

Timestamg:

Qualty State:

Mechl it retworkdisco/men networks

13461640 1 (oS0 g0d3.da b Gdca iy
62000 8050:0000:1- 1 faf0-g0d3.da1b Gact
410030 © 1

134611280 0

413412012500

String Viecor v

2018-08-21T16:04:59.042002

0, Detais E3 = o
Tnputs Hidden
SpAMI0S., mmu-w| ovServarsnt
e 0. > | -manaces.
30.000000 spdatatatery | nextiveryter
3
querySent
FALSE
queryTise
2018.092...

Figure 9.5: Discovered Remote Networks

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
m

“ipE2a0Ea600. .

Z018-09-21 16:04:19...

89

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

e cpuUsage: Average CPU usage (computation time/total time) during last update
interval

e memSize: System memory in Kibibyte

e memUsed: Used memory in Kibibyte (does not include buffers and caches on Linux
operation system)

e ovArch: OV CPU architecture (1386, AMDG64, ARM, ARM64)

e ovDBSize: Maximum allowed size of the OV database in Kibibyte that can be used
e ovDBUsed: Current utilized size of the OV database in Kibibyte

e ovLibs: List of currently loaded OV libraries

e ovEbUrCycTime: Cycle time of the FB-UrTask in seconds

e ovFBUrCalcTime: Calculation time of the FB-UrTask in seconds

e cpulLastTicks: Saved number of total CPU time ticks at last measurement

cpuLastIdleTime: Saved number of CPU idle time ticks at last measurement

The resources monitor component is used during the destination node search process.
A snapshot of the implementation is shown in Fig. 9.6.

9.1.5 Neighbor Informer

The neighbor informer component broadcasts information about the node to the neighbors.
The broadcast message comprises information about: the total load, resource capacity
of the node, its ip and system information, e.g., operating system, available libraries,
available hardware, etc. The system information is used during the load transfer requests
ensuring availability for application requirements. The informer block starts operating
upon receiving a “Broadcast-State-Trigger”.

9.1.6 Neighbor Data Bank

This component archives all the broadcast messages of other nodes. As soon as the first
entry is pushed in the list, a flag is set. Consequently, the BRAD state machine is reseted
to the broadcast phase firing the “Broadcast-State-Trigger”. The block is reseted and lists
are cleared as soon as the “Acceptance-State-Trigger” is fired.

9.1.7 TSE Optimizer - Sender End

The TSE optimizer receives internal information about the current (potential candidate)
application for deployment as well as its requirements. Furthermore, it receives neighbors’
information from the data bank component. It performs a local optimization to determine
the best node candidate and the optimum load packet to be transmitted to minimize
the TSE in the neighborhood as mentioned in Sec. 8.1.3. This component provides the
essential information to send a load transfer request.

90

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9.1 Realization

F Fenster snschroden

Figure 9.6: Snapshot of the Resources Monitor in ACPLT/RTE

91

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrecitlich geschltzter Inhat .
m mit, fir oder in KI-Systemen, Ki-Modellen oder Generativen Sprachmodallen.

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

9.1.8 Request Sender

The request sender component packs the information provided by the sender TSE opti-
mizer, constructs a request and sends it to the request receiver of the corresponding node
upon receiving the “Request-State-Trigger”.

9.1.9 Request Receiver

This component is the inbox of the upcoming load transfer requests from other nodes. It
uses the requests to construct two lists, IP list and load list and forwards them to the
Receiver TSE optimizer for evaluation. The lists are reseted by the “Deployment-State-
Trigger”.

9.1.10 TSE Optimizer - Receiver End

As mentioned in Sec. 8.1.3, the requests are evaluated and the best candidate is accepted
for a load transfer. The information about the picked request is forwarded to the acceptance
notifier component.

9.1.11 Acceptance Notifier

Once the “Accept-State-Trigger” is fired, an acceptance notification is sent to the corre-
sponding chosen node.

9.1.12 Send Initiator

The send initiator prepares the node for redeployment. The component provides the
application path of the picked load allowing enough time prepare for the serialization.

9.1.13 Redeployer

Once the “Deployment-State-Trigger” is fired, the redeployment execution is initiated.
Components that have states must be synchronized upon deployment. However, in the
framework of the implementation, deployment is performed without synchronization. The
logic flow of the redeployment execution is shown in Fig. 9.7. The components under the
provided directory are serialized into a JSON String. A snapshot of the states is taken.
During the snapshot capturing, the database is locked to avoid compromising the states
of the components. Important to realize, this mechanism succeeds, i.e., recreating an
identical component when loaded, only if the component is developed in a way such that
all internal variables are made visible to the database layer (which must be considered in
the component development stage), i.e., no internal variables are stored in C types and
not communicated to the OV model variables. The database is then unlocked after the
snapshot is captured. Before transmitting the JSON String to the destination node, an
availability check for the libraries required is performed. Should one or more libraries
be missing, a system check is performed to ensure compatibility before the libraries are
transmitted. In case of incompatibility, the system aborts. Otherwise the libraries are
serialized and consequently transmitted before the component. The essential libraries are

92

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9.2 Performance Assessment

then loaded and the serialized JSON String of C1 is then transfered to the destination
node. Upon successful transmission of the serialized JSON String, the loading component
initially deserializes the JSON String. An identical copy of the structure is created at the
destination node then C commands are used to perform override write operations on all
variables ensuring an identical recreation of the captured component and preparing it for
synchronization.

1 1

Initiate
Abort Synchronization
Mechanism

Deployment
Source->Target

|

Serialize in
JSON

Reroute
~{ Communication to
Destination

!

States

List library Synched
dependencies Load Libraries ?
Yes T
Libs Send missing Transfer and De-
@ No Libs/Scripts Serialize Data
Target Terminate
? 1] Deployment
les Instantiate Procedure
C at
[source Target
3 pestination

Figure 9.7: Logic Flow of the Component Migration

9.2 Performance Assessment

For the performance assessment, the following scenario has been performed to assess and
validate the algorithm implementation

9.2.1 Setup

The setup is shown in Fig. 9.8.

Computation Nodes

For the purpose of providing resources for orchestration, three Raspberry-Pis (Raspis) and
two PCs are used as computation nodes to test the presented adaptation concept. The
Raspis are all connected via Ethernet communication whereas the PCs via WiFi.

Runtime Environment

The ACPLT/RTE is used as the runtime environment to program the logical control charts
using IEC 61131 function blocks.

93

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

Communication

Ethernet and Wifi are used to connect the computation nodes. Furthermore, ACPLT/RTE
legacy KS communication protocol is used for the communication between the nodes in
the presented use-case.

Monitoring

The load history of the nodes and the algorithm performance are monitored using a com-
puter terminal. The terminal executes a python script that polls the load statuses of the
nodes.

Figure 9.8: Setup of the Demonstrator

94

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9.2 Performance Assessment

9.2.2 Scenario
The following bullet points refer describe the plot shown in Fig. 9.9

e Initially the network starts with four nodes (two PCs and two Raspis) for the load
balancing network and a terminal to monitor the load status at each node.

o After all systems are started, an initial load is deployed to two of the Raspis namely
Raspis 1 and 2 with load of 100 and 200 points respectively.

e The initial deployed load has a total of 300 load units and comprises the following
GCUs arrangement: GCU1 (5X), GCU2 (8X) and GCU3 (3X)

e Table 9.1 is used to manually define the arbitrary loads assigned to the GCU com-
ponents. Important to realize, the table shows the load value assigned to the GCU
types and not instances, i.e., GCUL1 is a type definition where instances are named
after followed by a suffix. For example GCU1_56 is an instance of type GCU1 and
costs 10 load points (cf. Table 9.1).

Table 9.1: Weights Assignment for Components

Component Name Weight (units)
Palette 1 (GCU 1) 10
Palette 2 (GCU 2) 20
Palette 3 (GCU 3) 30

e The capacities of all nodes are considered equal (assigned as 200 units), i.e., Utiliza-
tion percentage can be computed by normalizing the values with a factor of 2.

e The first broken line in Fig. 9.9 marks the event of the first convergence. At this
instant, a new Raspi board with zero utilization is introduced into the network archi-
tecture providing resources for load distribution. Using the implemented discovery
service, the Raspi boards are able to discover their neighbor IP addresses automati-
cally and use the newly provided resources.

e Time step 300 marks the second load distribution convergence.

e The second broken line shown in the figure marks the event of deploying a new instant
load of three GCUs of type 30 (i.e., weight 30 units each) to Raspi 2 node.

The algorithm showed successful operation in terms of discovering newly introduced
nodes in the network as well as newly added load. At each disturbance event, the algorithm
rebalanced the load amongst the nodes and converged to the optimum balanced load value.
The results are shown in Fig. 9.9.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

9 Scenario 1 - Decentralized Algorithm

Load [Units]

96

250

200

150

100

50

—PC1
—PC2
Raspi 1
—Raspi 2
——Raspi 3

SE=

50 100 150 200 250 300
Time [Steps]

350

400

Figure 9.9: Load Distribution Timeline at the different Nodes

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©

tar

tersagt, m mit, fir oder In KI-

450

https://doi.org/10.51202/9783186267085

10 Scenario 2 - Agents System

Raspberry Pi Raspberry Pi [Raspberry Pi \
MES **(Cloud Services) **(Cloud Services) ’% ‘Cloud Services)

Top Lane Middle Lane Bottom Lane
——————————— I I I
Orchestrator - Raspberry Pi 1 ’,j(Raspberry Pi 2 - Raspberry Pi 3
Control Palette GCU - Palette GCU - Palette GCU
K QoS: Top Lane QoS: Middle Lane QoS: Bottom Lane
L

: e
(O O O 1

SMS-Embedded i
- J

Field

;“'_'I!i‘”' - .] j’. !

o
s [o==s | (R I
™ | imulated Plant)

Figure 10.1: Use-Case Architecture

As shown in Fig. 10.1, similar to the previous scenario, the components of the devices
are deployed to the embedded system. All other components (including cloud services)
can be freely distributed across the network. For this purpose, Raspberry-Pis are used in
the implementation to provide resources for the orchestration and MES layers. “Open-
knowledge-driven manufacturing execution system” [50] can be seen as further potential
examples of cloud services. As shown in the figure, each Raspi is directly connected to a
cloud service providing it with a certain QoS for each lane. Having such an arrangement
induces an important role for the physical position of the GCU in the plant (cf. Sec. 8.2).
The current position of the pallet gives an insight into the communication load between
the cloud services (MES layer) and the GCUs (orchestrator control layer).

10.1 Realization

In the realization, as a proof of concept, a recipe is written to be inputted to the algorithm
and to compute the information required by the redeployment algorithm using the agents
approach. The structure of the roller tables in the simulation is modified in order to better
illustrate the functionalities of the presented algorithm. The modified plant is shown in Fig.
10.2. In the modified plant, the oven is placed at the mid-bottom layer. Two turntables

97

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10 Scenario 2 - Agents System

Figure 10.2: Modified Use-Case Architecture

are inserted in the mid-top and mid-middle layers. The recipe uses predefined keywords
and symbols as defined in Table 10.1. An example recipe written in Camunda is shown
in Fig. 10.3. The keyword “Storage” here is internally defined as an alias for the address
of roller table “PE018” (roller table located in the top right corner). The recipe indicates
that the pallet should travel from the top left roller table (current position), to the middle
of the bottom lane, coil should be heated and then transported to the top right roller table.

Transport to Transport to
“PEDOY AHEAT ‘Storage’
Start End

Figure 10.3: Example Snapshot of a Recipe written in Camunda

The algorithm performs the handover as shown in Fig. 10.4. The figure shows the
procedures executing agents at a current position of “PE034_1", i.e., shift table. The shift
table connects all three lanes. However, the algorithm can anticipate the next location
from the Production Flow Map (PFM). Hence, it synchronizes the agent with Node 3
(which has a better QoS to the bottom lane) instead of Node 2 preparing for the handover
as shown in Fig. 10.4.

98

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10.1 Realization

Table 10.1: Abstract Recipe Keywords

Keyword Task Arguments

Transport Move coil/palette from the actual position to Exact address or as-
a given position or to an assigned name for signed station name
a certain address

&Capability An ’&’ operator is used to indicate a capabil- Production capability
ity, e.g., heat in this use-case (the keyword is
abstract and is searched for in the production
capabilities list). The nearest position (de-
vice) in the vicinity that pertains such a ca-
pability is retrieved and the palette is routed
to it

Position An explicit identification of the device that Production capability
&Capability pertains a production capability. Here the

nearest device will not be looked up rather

the palette will be driven to the explicitly

specified device where the process will be ex-

ecuted

AEEES

¥

& &
Procedures Executing Procedures Executing

Agent e A S Agent
Procedures: Down Procedures: Right
Down Right Right Right

JSEENEEEREEEEEN,
Samsmmnmnnnn?

v

/UUU

Palette GCU
Current Position:
PE034_3 (Shift Table)

Node 1 Node 2 Node 3 U
\ QoS: Top Lane / \ QoS: Middle Lane / \ QoS: Bottom Lane /

Figure 10.4: Agents Systems Architecture

S
.
.

%
Palette GCU
Current Position:
PE034_1 (Shift Table)

o o e - - -

evEEEEEEEEEN,
Camnmmmmnnn®

.

99

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10 Scenario 2 - Agents System

Path Finder

The product flow planning is used as input data for the agents system approach. The
product flow planning uses a given weighted graph that demonstrates the plant devices
topology. Using Dijkstra algorithm [24], a route is planned and taken as initial indicative
information for the GCU procedures’ path. Using this information, a cost function can
be formulated. The cost function demonstrates the communication load and QoS varia-
tion between the different computation nodes versus the planned route. Consequently, a
plan for the redeployment of the GCU procedures can be constructed. The algorithm is
implemented in such a way that a list of destinations can be inputted as a vector. As a
result, the algorithm computes the optimal routes starting from the current position where
the palette is located to the final destination via all the provided stopovers. In the input
vector, a production capability must be preceded with an ’&’ operator to indicate that it is
not an address name rather a capability. Furthermore, the production capabilities can be
used as a destination, i.e., if “&HEAT” is written as an input, the algorithm searches for
the closest destination that can perform this capability and computes the optimal route
to it. Alternatively, an explicit destination address can be given for a capability with the
&’ operator as a delimiter which indicates that the production capability must be per-
formed at this exact destination, e.g., “PE019&HEAT”. Important to realize, the path
finder computes topology in vector form. Thus upon termination, the path finder maps
the direction vectors on to a topology that is understood by the services.

10.1.1 Agent Load Balancing Algorithm

The agent load balancing algorithm uses two information models to perform the redeploy-
ment. Firstly, the algorithm uses the PFM computed by the Dijkstra algorithm as the
drive for the redeployment. Secondly, a Quality Information Model (QIM) is fed to the
algorithm. The QIM provides the load profile according to the agent location. The load
is computed according to the application cohesion and QoS of the communication. The
application cohesion indicates the distance between the procedures executing agent and
the applications of the devices whom with it communicates. The algorithm monitors the
current location state of the agent to be redeployed and compares it to the PFM. Using
the PFM and QIM, the algorithm can anticipate a load optimization that can be executed
in upcoming location states. Thus, the algorithm produces a copy of the procedures agent
and the GCU and synchronizes it with the original one. Once the anticipated state is
reached, the handover is performed.

10.2 Performance Assessment

In the following subsections, the setup, scenario and outputs are demonstrated as an
assessment for the algorithm.

10.2.1 Setup

Same setup is used as in the load distribution scenario, i.e., Raspberry Pis are used as
computation resources, ACPLT/RTE as the RTE, etc.

100

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10.2 Performance Assessment

10.2.2 Scenario

e Initially the network starts with three Raspberry-Pi boards for the orchestration
layer.

e Each board is connected to a simulated cloud service of a certain lane of the simulated
plant.

e Being directly connected to the cloud services of a certain lane provides a better QoS
to the corresponding lane.

e The GCUs are deployed randomly to an arbitrary board.

e There exist three function units (three palettes in the plant and their three corre-
sponding operating GCUs).

e The three palettes are carrying out the same recipe.

e A coil should be transferred from the starting position (where the palette is located)
to “PE009” (mid-top lane), then to the closest oven for heating, then transported to
"Storage’ position, i.e., “PE018” (top lane - right).

e Bypassing edges is not allowed, i.e., shift tables must perform a stopover at each
lane.

e The route planning is performed according to a given cost model that depends solely
on time and does not consider other factors.

Fig. 10.5 shows the nodes and edges of the graph. The topology mapping is evaluated
as shown in Fig. 10.6. The figure divides the plane into 4 four quadrants which are used
to map and discretized the vector directions to the defined topology convention used by
the implemented services.

Fig. 10.7 shows a snapshot of the path finder implemented in ACPLT/RTE. The in-
terpreted recipe is shown as ““PE009”, “¢HEAT”, “PE018””, with a starting position
at “PE004”. The palette should travel from that starting position at “PE004” to the
turntable in the first row from the top, then to the closest position where the “HEAT”
capability is available, perform the heat capability and then transport the palette to the
last destination at the top right roller table “PE018”. The outputs of the pathfinder are
shown in Fig. 10.8 and 10.9 with their respective clarifications in the caption.

101

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10 Scenario 2 - Agents System

E—EGraph -
£ .Nodes BH§ § PEO1S HEAT
BH§ § PEO25 1 to PED25 0 D
B4 § SCHIEBER1 O
= BH-§ § PEO25 0 to PED25 1 O
1-{ § SCHIEBER2 0 BH-§ § PEOO9 1 to PEDOS 0 D
-{ § PE018_0 B § PEO09 0 to PEO09 1 O
7§ § PE019 O B-§ § PEO25 1 _to PEO0S 1 O
7§ § PEODS O B-§ § PE025 2 to PE025 0 D
1-{ § PEO0B_O B-§ § PE025 0 to PE025 2 D
- B § PE025 2 to PE025 1 D
7§ § PEO1D O
— B-§ § PE025 1 to PE025 2 O
4§ § PEO11 O BH§ § PEO25 2 to PEDOS 1 O
-4 § PE004 O E-§ § PEO25 0 to PE028 0 O
#-{ § PEO31 D {3 PEO25 3 to PE025 0 0
7§ § PE030 0 BH§ § PEO25 0_to PE025 3 0
1§ § PED28 O B-§ § PE025 3 to PE025 1 D
1§} PE027 0 B-§ § PE025 1 to PE025 3 0
— B § PE025 3 to PE025 2 D
+-1§ PEO26 0 B-§ § PE025 2 to PE025 3 O
0-§ § PE021_0 E-§ § PE025 3 to PE028 0O
#-{ § PED16 D E-§ § PEO25 0 to PE030 0 O
E
1-§ § PE00S O B § FE009_2_to PED09_0_0
- BH§ § PEO0OS 0_to PEOD9 2 D
B§ § PEO0S 2 to PEOD9 1 D
B-§ § PEO0OS 1 to PEOD9 2 D
B-§ § PE025 4 to PE025 0 D
BH§ § PE025 0 to PED25 4 D
BH§ § PEO25 4 to PED25 1 D
BH-§ § PEO25 1 to PED25 4 D
B-§ § PE025 4 to PE025 2 O
BH§ § PE025 2 to PE025 4 O
B-§ § PE025 4 to PE025 3 0
B-§ § PE025 3 to PE025 4 D
B-§ § PEO0S 2 to PE025 4 D
BH-§ § PEO0S 3 to PEODS 0 O
BH§ § PEOOS 0 to PEDOS 3 D
GH-§ § PEOOS 3 to PEDOS 1 D

M 8B ormnan 4 4 mmans o non

#-{ § PE0D25 O
#-{ § PE025 1
7-§ § PEO0S_1
7§ § PE025_2
7§ § PE025_3
7-§ § PEO0S_2
7§ § PE025 4
7-{ § PE0DS 3
7-{ § PE0DS 4
7-{ § SCHIEBERL 1
7-{ § SCHIEBER2 1
7-{ § SCHIEBER2 2
#-{ § SCHIEBERL 2

E
E
E
E
E
E
E
£
£
£
£
[
[
[
[
B-{ § PEO13 O 1§ § PEO25 3 to PE030 0 O
£
£
£
E
E
E
E
E
E
E
E
E
£
E

(a) Node List (b) Edge List (not entirely shown)

Figure 10.5: Nodes and Edges of the Cost Model Graph

102

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10.2 Performance Assessment

4
,/

N
N

N\

Figure 10.6: Discretization Scheme of the Vectors for Topology and Service Mapping

'

32

= g LOCALBOST: 7208
) masiacen
B-() acplt
B vandar
B acemunicaticn

= data
£ kshttp
CTras

L} bevnload
1§ tpload

1§ Transpore
1 abinto

| juriceriles

(7] Tasks
)—? Techtnts
Tepalowy
L} scurznery
L} scurzners
L} rEoL0
L} rEo29
L§ rEo0S
L§ rEo0R
L§ rE010
L rro11
L§ rE0D4
L§ rro3n
L§ rE030
L§ rro20
L§ rr027
L§ rro2G
| jrEo21
1 jreols
| jreo13
|} rECOD
| rE02s
L} orapn
sl f 1
L}z
S Cona
S-{"] Libraries
5| § servers
| § dbinte

Figure 10.7: Snapshot of the Path Finder in ACPLT/RTE

1

180123 163215,
0000000
FALSE

0000000

“PEOMS”

* Techlinizs Topolog -
TR ; “RHEAT" ;..
0

]

Instance name: | /Taching ta /2

Instanse type: Ia’-w"-u'a‘w.’ﬂuturn

Task parent ! | JTasks/UrTask

Task child

Actimods aaxrag

I

ErrState

|

proctims | FALSE calotime |
ayotine mathoonnt
imxrag I it
maxealotise |
Inpats Hidden Qutputs

mLart

Eopologie

ddddid

pathbir

pathDirStr

Ll

TasElE

IP 216.73.216.36, am 20.01.2026, 15:13:46. ©
m

0000003
"PEDM_07 ; “SCHIES.
F[100.530300, £.000..

"RIGHT" ; "RIGHT"

103

mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

10 Scenario 2 - Agents System

B /TechUnits/Dijsktra.pathNode

Hesource Lecator TechUnasOiyskina pathiNode

Walue -
Data Type: v
Timistanmg
Quality State .
Q Datais & Cise

Figure 10.8: Name of the Nodes in Planned Path

B /TechUnits/Dijskira.pathDirStr

T18:14.54 647308

Q, Detais

Figure 10.9: Mapped Topology for the Service Mapping Stage

104

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

11 Conclusion and Outlook

In this dissertation, a concept of adaptation in industrial automation is presented. The
concept of adaptation is considered from different perspectives to provide a thorough anal-
ysis. Firstly, a control theory approach is utilized, where stability, system dynamics and
response are analyzed. Additionally, a multi dimensional problem definition as well as
system dynamic analysis are presented. Furthermore, a regression model is constructed to
investigate hub spoke networks and optimize their Markov chain mixing time. Secondly,
the system is analyzed with an empirical approach. In this approach, a benchmark and a
list of KPIs are introduced to assess the performance of algorithms.

Although the previous approaches provide good results and an informative insight to
the load balancing problem, a considerable reality gap still exists which hinders utilizing
the achieved results directly. In order to overcome the reality gap, a realistic approach
that uses an aluminum cold rolling mill use-case is investigated. As a result, two scenarios
are demonstrated as a solution for the adaptation problem using redeployment. The first
proposed solution utilizes a decentralized distribution algorithm. The algorithm balances
the loads according to the overhead and the resources reserves in the computation nodes.
The second proposed solution uses an agents systems approach which considers the pro-
duction flow. Furthermore, two prototype implementations are realized and demonstrated
to serve as a proof of concept.

11.1 Outlook

As an outlook for this work, the following points can be implemented:

11.1.1 Algorithm Enhancement

Currently, the implemented algorithm performs a TSE optimization to choose the load
packet to send and also to receive. A fusion between the TSE approach and the approach
presented in the analytic approach (continuous load) shown in Chapter 5 can be intro-
duced. This can be done if a beforehand optimization of the load transfer coefficients
« is performed. The values of the transfer coefficients can be considered by transferring
more discrete load packets. In other words, the results of the analytical approach can be
discretized and adapted such that they do not exceed the resulting value computed by the
analytic approach. Performing transfer in such a manner allows transfers of more than
one packet at a time and considers the convergence as well as the set optimization criteria
simultaneously. However, in order to conduct such an analysis, the network topology has
to either be known or a discovery mechanism to explore the full network topology must
be initially performed. This enhancement can be rendered useless if the topology of the
network is rapidly changing. Moreover, it can also be argued that such an enhancement
can hinder its adaptability property.

105

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

11 Conclusion and Outlook

11.1.2 Synchronization

As mentioned in Sec. 9.1.13, components that have states must be synchronized upon
deployment. As an outlook for the implementation, a mechanism for the states synchro-
nization can be implemented. The planned redeployment mechanism comprises four stages:
communication rerouting, component migration, states synchronization and handover. Fig.
11.1, shows the required components to perform the four stages.

Source Client) Destination Client

Component 1

setVar
getVar

Server

Figure 11.1: Redeployment lllustration with the involved Components

Communication Rerouting

The initial step performed in the communication rerouting stage is creating “Traffic Con-
troller 17 (TC1) and a “Packet Buffer” (PB) at the destination client. The function of
TC1 is to act as a proxy and to intercept the communications of “Component 1”7 (C1) pro-
viding an archive of the communication history during the states synchronization stage.
Important to realize that C1 is, in the considered use case, a composite component, i.e.,
can be a control chart that contains function blocks. The component is thus iterated to
locate all the communication components, which are either a “setVar” that is used to write
variables, or a “getVar” that reads variables, at the server side. Once the components are
located, all the writing operations are rerouted to the traffic controller path instead of the
server. An identical copy of the write operation and its time stamp are made and pushed
into the PB. On the other hand, all the located read operations are transformed into read
requests that are forwarded to TF1. In a similar manner, the read operations are executed
by TF1 and the returned values are forwarded to the C1 and a copy with the time stamps
are saved in the PB.

Component Migration

The component is migrated using JSON format as described in the implementation (cf.
Sec. 9.1.13). Upon successful component migration, Traffic Controller 2 (TC2) is created.
Synchronization

Initially, once a write operation from “Component 17" (C1”) is executed, TF2 searches in
the PB for a similar entry. Once found, the replay phase initiates. The replay phase takes

106

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

11.1 Outlook

place between C1” and TC2 dequeuing the entries in the PB. An empty PB indicates a
synchronized state between C1 and C1”. In case the migration here performs a redundancy
component creation operation, the process terminates here.

Handover

This stage exists only if it is a load balancing operation. A final check between TC1 and
TC2 is done to ensure similar writing operation from C1 and C1”. Upon a successful
return, the handover phase is executed terminating the communication between the server
and C1 and setting a direct communication between C1” and the server without traffic
controllers. The traffic controllers and C1 are then deleted. Fig. 11.2 shows the sequence
diagram of a successful component redeployment.

Normal Operation
Read() |

src. Executor | | Src. Component| [src Algorithm Server Dst.Client | | Dst. Component] | Dst. Buffer || Dst. Algorithm
T T T T T T T T
| | | | | | | |
| | Write() | I | | |
| Q%ﬁ ””””” Ao | I B B B
| | | | | |
! ! Read Response() ! ! ! !
} ‘ } } } } Normal Operation
| | | | | | | |
| | i i | Broadecast) L o
| | | | |] =)
			Request)	1	
					.
! !		Accept()		Deployment Bargain	
	T T T T				
					T
			Deploy)		
	T T T B B D				
		Reroute Communication()			
	+ + + +				
					U
H H Write() H H					
	I Forward Write()				
} } ‘ {of Save Forward()	} Communication Rerouting				
		U	[t'		
Request Read()					
		ﬁ			
			Read()		
! ! ! Forward Read() ! ! !					
I	@ 1		I		
a]					
		save Read	()	1	
		- él ”””””” T	TTTTTTT T		
		T T			
Redeploy()					
)
Copy and Freeze()					Redeployment Execution
Transfer()	-				
T T					
! unfreeze()					
”””””	it e				
! ! Replay() ! Replay					
I Synch()	Synchronize				
} } Handover					
I Handover()					
ettt					
I

Figure 11.2: Sequence Diagram of a Successful Component Redeployment between two Nodes

107

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

11 Conclusion and Outlook

11.1.3 Improvements for Load Model
The presented load model can be improved by considering the following points:

e The temporary load (processing and communication load) induced by a load transfer
is considered negligible in the presented model which can be taken into consideration
for a more realistic modeling.

e The considered load is assumed to be static and does not vary throughout time. A
dynamic load can be considered instead of a static load. The load should depend on
the component overhead variations, e.g., best and worst case processing overhead.

11.1.4 Improvements in the Decentralized Algorithm

The BRAD algorithm presented in Sec. 8.1.3 can be enhanced via the following:

Bottlenecks

Network topologies that enclose bottlenecks can impair the algorithm performance. A
bottleneck exists for example in K, — K, topologies as shown in Fig. 11.3. The bottlenecks
can cause load congestions as the load cannot traverse smoothly between the network ends.
Identifying bottlenecks, by recognizing the deviations of the node valencies, can be useful
to improve the performance. Once a bottleneck is detected, special conditions should be
applied for the bottleneck nodes in terms of load carrying. A bottleneck node should act
as a bypassing bridge, i.e., does not keep loads rather only allows the load flow. Once the
saturation phase is reached, this condition can be rectified so that the bottleneck nodes
contribute to the load balancing.

N
)

Figure 11.3: lllustration of a Bottleneck in a 16 Nodes Kn-Kn Networks

Simulated Annealing Mechanism

The presented algorithm offers a heuristic solution and does not guarantee providing a
global optimum solution. In some cases, the algorithm can stumble upon a solution and
gets stuck at a local optimum. Similar to the simulated annealing probabilistic technique,
after reaching saturation and the load balancing converges, the algorithm can intentionally

108

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

11.2 Improvements in the Infrastructure

perform load transfers that does not better (decrease) the global TSE of the network.
A load transfer can either worsen (increase) or not affect (maintains the same) global
TSE. This technique can help the algorithm escape a local optimum in order to find a
global optimum. The simulated annealing inspired excitation can be also performed in a
simulation mode, i.e., no real load transfers are performed rather only a simulated version to
ensure that the eventual convergence reaches a better state before starting. The excitation
can be performed on two stages starting by performing non affecting (to the TSE) load
transfers and followed by the second stage where the load transfers can worsen the TSE.

Optimizing the Optimization

Similarly, the whole optimization can be executed in a simulation mode. This enables an
optimization of the optimization. In other words, the final load profile can be retrieved and
hence a further optimization can be executed to compute the best way, i.e., least number
of load transfers, to reach the final profile. Furthermore, the time step of the BRAD state
machine can be optimized. In the current implementation, the time step between the
different states is fixed to the maximum time duration of moving the largest application in
the network. Foreseeing the load transfers can be used to minimize and dynamically tune
the time step parameter to enhance the performance.

Further Optimization Criteria

Other optimization criteria (cf. Sec 3.4.1) can be considered as objectives for the algorithm,
e.g., redundancy. Initially, the degree of redundancy can be considered by replicating the
software components in the network. Each redundancy component shall be given a unique
identification which is derived from the original component’s identification. During the
load balancing stage, a constraints is enforced such that redundant components are never
moved to a node where one of the copies or the original component exists. Distributing
the redundant copies on different nodes ensures the intended objective of securing the
application from node outages.

11.2 Improvements in the Infrastructure

During redeployment, specifically in the synchronization phase, the writing and reading
requests are performed via an intermediate component as described in Sec. 11.1.2. The
QoS of the communication is not taken into consideration, which can cause jitter in the
performance of the original source component control execution. Implementing a network
component that establishes communication contracts with QoS with other computation
nodes in the network can provide improvements to the performance problem.

11.3 Further Utilizations of Agents Systems Approach

In the agents systems approach, a brief overview over the concept and how load balancing
can be performed was given. Further points regarding relevant data distribution in the
cloud (e.g., asset administration shell) and how load balancing can improve the QoS of the
data retrieving should be considered.

109

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

(1]
2]
B3]

[4

5

6

7

8

9

(10]

(1]

12]

110

140 Glossar, URL: /www.plattform-i40.de/i40/navigation/de/service/glossar/glossar.
MIT online lecture notes, URL: http://web.mit.edu/2.14/www /psets/nov17.pdf.

Platform Industrie 4.0. Aspekte der Forschungsroadmap in den Anwendungsszenarien,
2013.

Niels Henrik Abel. Mémoire Sur Les Equations Algeébriques Ot on Démontre
L’impssibilité de la Résolution de L’equation Générale Du Cinquiéme Dégré... Chris-
tiania, Groendahl, 1824. University of Olso, 1824.

Thomas Aicher, Markus Spindler, Johannes Fottner, and Birgit Vogel-Heuser. Ana-
lyzing the industrial scalability of backwards compatible intralogistics systems. Pro-
duction Engineering, 12(3-4):297-307, 2018.

Raymond G Ayoub. Paolo ruffini’s contributions to the quintic. Archive for history
of exact sciences, 23(3):253-277, 1980.

Mahyar Azarmipour, Julian Alexander Grothoff, Haitham Ahmed Elfahaam, and Ul-
rich Epple. Hypervisor-basierte Virtualisierung in der industriellen Automation. In
[19. Leitkongress der Mess- und Automatisierungstechnik, 2018-07-03 - 2018-07-04,
Baden-Baden, Germany/, pages 467-480. 19. Leitkongress der Mess- und Automa-
tisierungstechnik, Baden-Baden (Germany), 3 Jul 2018 - 4 Jul 2018, Jul 2018.

C Bert. An improved approximation for settling time of second-order linear systems.
IEEE transactions on automatic control, 31(7):642-643, 1986.

Theresa Beyer, Peter Géhner, Ramin Yousefifar, and Karl-Heinz Wehking. Agent-
based dimensioning to support the planning of intra-logistics systems. In 2016 IEEE
21st International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1-4. IEEE, 2016.

Theresa Beyer, Nasser Jazdi, Peter Gohner, and Ramin Yousefifar. Knowledge-based
planning and adaptation of industrial automation systems. In 2015 IEEE 20th Con-
ference on Emerging Technologies & Factory Automation (ETFA), pages 1-4. IEEE,
2015.

Theresa Beyer, Ramin Yousefifar, Sebastian Abele, Manuel Bordasch, Peter Géhner,
and Karl-Heinz Wehking. Flexible agent-based planning and adaptation of material
handling systems. In 2015 IEEE International Conference on Automation Science
and Engineering (CASE), pages 1060-1065. IEEE, 2015.

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with ap-
plications, volume 290. Citeseer, 1976.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

[13] Stephen Boyd. Convex optimization of graph laplacian eigenvalues. In Proceedings of
the International Congress of Mathematicians, volume 3, pages 1311-1319, 2006.

[14

Stephen Boyd, Persi Diaconis, Pablo Parrilo, and Lin Xiao. Fastest mixing markov
chain on graphs with symmetries. SIAM Journal on Optimization, 20(2):792-819,
2009.

15

Stephen Boyd, Persi Diaconis, Pablo Parrilo, and Lin Xiao. Fastest mixing markov
chain on graphs with symmetries. SIAM Journal on Optimization, 20(2):792-819,
2009.

[16] Junwei Cao. Self-organizing agents for grid load balancing. In Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing, pages 388-395. IEEE
Computer Society, 2004.

[17] S. Cheshire and M. Krochmal. Dns-based service discovery.

18

Stuart Cheshire and Marc Krochmal. Rfc 6762: Multicast dns. Internet Engineering
Task Force (IETF) standard, 2013.

19

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 273-286. USENIX Association, 2005.

s}
=

International Electrotechnical Commission et al. Iec 61512 batch control. parts 1-4,
2000.

Giuseppe Confessore, Stefano Giordani, and Silvia Rismondo. A market-based multi-
agent system model for decentralized multi-project scheduling. Annals of Operations
Research, 150(1):115-135, 2007.

21

[22

George Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Journal of parallel and distributed computing, 7(2):279-301, 1989.

o
=S

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337-340. Springer, 2008.

[24

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269-271, 1959.

25

Docker. Documentation of docker, Nov. 2018.

[26

Karin Eckert, Alexander Fay, Thomas Hadlich, Christian Diedrich, Timo Frank, and
Birgit Vogel-Heuser. Design patterns for distributed automation systems with con-
sideration of non-functional requirements. In Proceedings of 2012 IEEE 17th Inter-
national Conference on Emerging Technologies & Factory Automation (ETFA 2012),
pages 1-9. IEEE, 2012.

111

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

112

Sherihan Abu Elenin and Masato Kitakami. Comparing static load balancing algo-
rithms in grid. In International Conference on Cooperative Design, Visualization and
Engineering, pages 170-177. Springer, 2011.

Sherihan Abu Elenin and Masato Kitakami. Performance analysis of static load
balancing in grid. International Journal of Electrical & Computer Sciences IJECS-
IJENS, 11(3), 2011.

Haitham Ahmed Elfahaam, Florian Palm, Constantin August Wagner, Mahyar
Azarmipour, and Ulrich Epple. Redeployment in Industrie 4.0. In [19. Leitkongress
der Mess- und Automatisierungstechnik, 2018-07-03 - 2018-07-04, Baden-Baden, Ger-
many]/. 19. Leitkongress der Mess- und Automatisierungstechnik, Baden-Baden (Ger-
many), 3 Jul 2018 - 4 Jul 2018, Jul 2018.

Haitham Elfaham, Constantin Wagner, Sten Griiner, Lars Nothdurft, and Ulrich Ep-
ple. A modular benchmark for evaluating load distribution algorithms. In Industrial
Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pages 48363~
4870. IEEE, 2016.

Ulrich Epple. Konzepte-agentensysteme in der leittechnik-zur erfullung zukunftiger
anforderungen muss das leittechnische softwarekonzept innoviert werden. agentensys-
teme konnten eine losung sein. Automatisierungstechnische Praxis, 42(8):45-51, 2000.

Ulrich Epple. Prozessfiihrung als systemfunktion. Integration von Advanced Control
in der Prozessindustrie: Rapid Control Prototyping, pages 173-200, 2008.

Ulrich Epple. Agentenmodelle in der anlagenautomation. In Agentensysteme in der
Automatisierungstechnik, pages 95-110. Springer, 2013.

Alexander Fay, Birgit Vogel-Heuser, Timo Frank, Karin Eckert, Thomas Hadlich, and
Christian Diedrich. Enhancing a model-based engineering approach for distributed
manufacturing automation systems with characteristics and design patterns. Journal
of Systems and Software, 101:221-235, 2015.

Juliane Fischer, Marga Marcos, and Birgit Vogel-Heuser. =~ Model-based devel-
opment of a multi-agent system for controlling material flow systems. at-
Automatisierungstechnik, 66(5):438-448, 2018.

Forschungsunion and acatech. Recommendations for implementing the strategic ini-

tiative INDUSTRIE 4.0, 2013.
Kunjal Garala, Namrata Goswami, and Prashant D Maheta. A performance analysis
of load balancing algorithms in cloud environment. In 2015 International Conference

on Computer Communication and Informatics (ICCCI), pages 1-6, 2015.

Felix Gehlhoff, Tobias Linnenberg, and Alexander Fay. Optimierung von auktions-
mechanismen. atp magazin, 59(09):54-66, 2017.

Peter Gohner. Agentensysteme in der Automatisierungstechnik. Springer-Verlag, 2013.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

[40] Thomas Goldschmidt and Stefan Hauck-Stattelmann. Software containers for indus-
trial control. In Software Engineering and Advanced Applications (SEAA), 2016 42th
Euromicro Conference on, pages 258-265. IEEE, 2016.

[41

Farid Golnaraghi and BC Kuo. Automatic control systems. Complex Variables, 2:1-1,
2010.

[42

Keerthana Govindaraj and Alexander Artemenko. Container live migration for latency
critical industrial applications on edge computing. In 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 83-90. IEEE, 2018.

43

Julian Alexander Grothoff, Constantin August Wagner, and Ulrich Epple. BaSys
4.0: Metamodell der Komponenten und Ihres Aufbaus; 1st ed. Technical Report D-
PC2.4, Aachen, 2018. Verdffentlicht auf dem Publikationsserver der RWTH Aachen
University.

[44

Sten Griiner. Ressourcenadaptive Anwendungen fiir die operative Prozessleittechnik.
VDI Verlag GmbH, 2017.

[45] Sten Griiner, Somayeh Malakuti, Johannes Schmitt, Tarik Terzimehic, Monika
Wenger, and Haitham Elfaham. Alternatives for flexible deployment architectures
in industrial automation systems. In 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), volume 1, pages 35-42.
IEEE, 2018.

[46

Hans-Ulrich Heiss and Achim Payer. Paste: A tool for evaluation of processor alloca-
tion strategies. In Proc. 6th Int. Conf. on Modelling Tools and Techn. for Comp Perf.
FEval, pages 367-371, 1992.

[47

Hans-Ulrich Heiss and Michael Schmitz. Decentralized dynamic load balancing: The
particles approach. Information Sciences, 84(1):115-128, 1995.

48

Michael R Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migration
of virtual machines. ACM SIGOPS operating systems review, 43(3):14-26, 2009.

[49

Roger A Horn. Cr johnson matrix analysis, 1985.

50

Sergii Tarovyi, Wael M Mohammed, Andrei Lobov, Borja Ramis Ferrer, and Jose
L Martinez Lastra. Cyber—physical systems for open-knowledge-driven manufacturing
execution systems. Proceedings of the IEEE, 104(5):1142-1154, 2016.

o
=

Apple Inc. White paper: Bonjour technology overview. Technical report, EECS at
UC Berklery, 2002.

2] American National Standards Institute. ANSI-ISA-88.00. 01-2010: Batch Control
Part 1: Models and Terminology. ISA, 2010.

[53] YOSHIHIRO Kanno, Kazuo Murota, and Naoki. Katoh. Group symmetry in interior-
point methods for semidefinite program. Optimization and Engineering, (2):293-320,
2001.

113

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

[64] Mayanka Katyal and Atul Mishra. A comparative study of load balancing algorithms
in cloud computing environment. arXiv preprint arXiv:1403.6918, 2014.

[55] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671-680, 1983.

[56] Michal Kocvara and Michael Stingl. Pennon: A code for convex nonlinear and semidef-
inite programming. Optimization methods and software, 18(3):317-333, 2003.

[57] Zhou Lei, Exiong Sun, Shengbo Chen, Jiang Wu, and Wenfeng Shen. A novel hybrid-
copy algorithm for live migration of virtual machine. Future Internet, 9(3):37, 2017.

[58] Tobias Linnenberg, Ireneus Wior, and Alexander Fay. Analysis of potential instabili-
ties in agent-based smart grid control systems. In IECON 2013-39th Annual Confer-
ence of the IEEE Industrial Electronics Society, pages 7422-7427. IEEE, 2013.

[59] Tobias Linnenberg, Ireneus Wior, Sebastian Schreiber, and Alexander Fay. A market-
based multi-agent-system for decentralized power and grid control. In Emerging Tech-
nologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on, pages 1-8.
1IEEE, 2011.

[60] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In
Computer Aided Control Systems Design, 2004 IEEE International Symposium on,
pages 284-289. IEEE, 2004.

[61] Michele Lombardi and Michela Milano. Optimal methods for resource allocation and
scheduling: a cross-disciplinary survey. Constraints, 17(1):51-85, 2012.

[62] Simone A Ludwig and Azin Moallem. Swarm intelligence approaches for grid load
balancing. Journal of Grid Computing, 9(3):279-301, 2011.

[63] Hamid Mcheick, Ziad Rajih Mohammed, and Abbass Lakiss. Evaluation of load
balance algorithms. In Software Engineering Research, Management and Applications

(SERA), 2011 9th International Conference on, pages 104-109. IEEE, 2011.

[64] Alberto Montresor, Hein Meling, and Ozalp Babaoglu. Messor: Load-balancing
through a swarm of autonomous agents. In Agents and Peer-to-Peer Computing,
pages 125-137. Springer, 2002.

[65] John Nash. Non-cooperative games. Annals of mathematics, pages 286-295, 1951.

[66] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in
Convex Programming. STAM, 1994.

[67] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEFE, 95(1):215-233, 2007.

[68] Diego Ongaro and John K Ousterhout. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference, pages 305-319, 2014.

114

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

(69]

76

[77

78

[79

80

Wei Peng, Hong Li, Min Yao, and Zheng Sun. Deployment optimization for autosar
system configuration. In Computer Engineering and Technology (ICCET), 2010 2nd
International Conference on, volume 4, pages V4-189. IEEE, 2010.

Martin Polke. Process control engineering. John Wiley & Sons, 2008.

Florian A. Potra and Stephen J. Wright. Interior-point methods. J. Comput. Appl.
Math., 124(12):281-302, 2000.

Abhijit A Rajguru and SS Apte. A comparative performance analysis of load balancing
algorithms in distributed system using qualitative parameters. International Journal
of Recent Technology and Engineering, 1(3):175-179, 2012.

ITUTX Recommendation. 902 (1995)— iso/iec 10746-2: 1996. Information
technology—Open Distributed Processing—Reference Model: Foundations.

Daniel Regulin, Amelia Glaese, Stefan Feldmann, Daniel Schiitz, and Birgit Vogel-
Heuser. Enabling flexible automation system hardware: Dynamic reconfiguration of a
real-time capable field-bus. In 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), pages 1198-1205. IEEE, 2015.

Daniel Regulin, Daniel Schiitz, Thomas Aicher, and Birgit Vogel-Heuser. Model based
design of knowledge bases in multi agent systems for enabling automatic reconfigura-
tion capabilities of material flow modules. In 2016 IEEE International Conference on
Automation Science and Engineering (CASE), pages 133-140. IEEE, 2016.

Sebastian Rehberger, Lucas Spreiter, and Birgit Vogel-Heuser. An agent-based ap-
proach for dependable planning of production sequences in automated production
systems. at-Automatisierungstechnik, 65(11):766-778, 2017.

Rohit Saxena, Ankur Kumar, Anuj Kumar, and Shailesh Saxena. Distributed and
grid computing: An analytical comparison.

Shailesh Saxena, Mohd Zubair Khan, and Ravendra Singh. Performance analysis in
distributed system of dynamic load balancing using fuzzy logic. In Engineering and
Technology (S-CET), 2012 Spring Congress on, pages 1-5. IEEE, 2012.

Glnther Schuh, Reiner Anderl, Jiirgen Gausemeier, Michael ten Hompel, and Wolf-
gang Wahlster. Industrie 4.0 maturity index. Managing the Digital Transformation
of Companies. Munich: Herbert Utz, 2017.

Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma. Performance analysis of
load balancing algorithms. World Academy of Science, Engineering and Technology,
38(3):269-272, 2008.

Roopak Sinha, Kenneth Johnson, and Radu Calinescu. A scalable approach for re-
configuring evolving industrial control systems. In Emerging Technology and Factory
Automation (ETFA), 201/ IEEE, pages 1-8. IEEE, 2014.

Dieter Steegmiiller and Michael Ziirn. Wandlungsfahige produktionssysteme fiir den
automobilbau der zukunft. In Industrie 4.0 in Produktion, Automatisierung und Lo-
gistik, pages 103-119. Springer, 2014.

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Bibliography

[83] Michael Steiger. Fault-tolerant turbine controller. Master’s thesis, 2008.
[84] Docker Swarm. Accessed on jan. 2017.

[85] Tarik Terzimehic, Sebastian Voss, and Monika Wenger. Using design space exploration
to calculate deployment configurations of iec 61499-based systems.

[86] Marvin M Theimer, Keith A Lantz, and David R Cheriton. Preemptable remote
execution facilities for the V-system, volume 19. ACM, 1985.

[87] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Programming industrial
automation systems. Springer, 1995.

[88] Reha H Titiincii, Kim-Chuan Toh, and Michael J Todd. Solving semidefinite-
quadratic-linear programs using sdpt3. Mathematical programming, 95(2):189-217,
2003.

[89] Richard S Varga. Matriz iterative analysis, volume 27. Springer Science & Business
Media, 2009.

[90] Richard S Varga. Matriz iterative analysis, volume 27. Springer Science & Business
Media, 2009.

[91] Valeriy Vyatkin and Instrument Society of America. IEC 61499 function blocks for
embedded and distributed control systems design. ISA-Instrumentation, Systems, and
Automation Society Oneida, 2007.

[92] Constantin Wagner. Ein Konzept zur Unterstitzung der Wiederverwendung in kom-
ponentenbasierten verteilten Systemen der operativen leittechnik. VDI Verlag GmbH,
2018.

[93] Constantin Wagner, Julian Grothoff, Ulrich Epple, Rainer Drath, Somayeh Malakuti,
Sten Griiner, Michael Hoffmeister, and Patrick Zimermann. The role of the industry
4.0 asset administration shell and the digital twin during the life cycle of a plant. In
Emerging Technologies and Factory Automation (ETFA), 2017 22nd IEEE Interna-
tional Conference on, pages 1-8. IEEE, 2017.

[94] Constantin Wagner, David Kampert, Andreas Schiiller, Florian Palm, Sten Griiner,
and Ulrich Epple. Model based synthesis of automation functionality. — at-
Automatisierungstechnik, 64(3):168-185, 2016.

[95] Michael Wahler and Manuel Oriol. Disruption-free software updates in automation
systems. In Emerging Technology and Factory Automation (ETFA), 2014 IEEE, pages
1-8. IEEE, 2014.

[96] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, 2001.

[97] Liyong Yu, Sten Griiner, and Ulrich Epple. An engineerable procedure description
method for industrial automation. In Emerging Technologies €& Factory Automation
(ETFA), 2013 IEEFE 18th Conference on, pages 1-8. IEEE, 2013.

116

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Werden Sie Autor
im VDI Verlag!

Publizieren Sie
in , Fortschritt-
Berichte VDI“

Veroffentlichen Sie die Ergebnisse |hrer interdisziplindren technikorientierten
Spitzenforschung in der renommierten Schriftenreihe Fortschritt-Berichte VDI.
Ihre Dissertationen, Habilitationen und Forschungsberichte sind hier bestens platziert:

Kompetente Beratung und editorische Betreuung

Vergabe einer ISBN-Nr.

Verbreitung der Publikation im Buchhandel
Wissenschaftliches Ansehen der Reihe Fortschritt-Berichte VDI
Veroffentlichung mit Nahe zum VDI

Zitierfahigkeit durch Aufnahme in einschlagige Bibliographien
Prasenz in Fach-, Uni- und Landesbibliotheken

Schnelle, einfache und kostengiinstige Abwicklung

PROFITIEREN SIE VON UNSEREM RENOMMEE!
www.vdi-nachrichten.com/autorwerden

IP 216.73.216.36, am 20.01.2026, 15:13:46. @ Urheberrectitlich geschltzter Inhat 2
tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

Die Reihen der Fortschritt-Berichte VDI:

1 Konstruktionstechnik/Maschinenelemente
2 Fertigungstechnik
3 Verfahrenstechnik
4 Bauingenieurwesen
5 Grund- und Werkstoffe/Kunststoffe
6 Energietechnik
T Strémungstechnik
8 Mess-, Steuerungs- und Regelungstechnik
9 Elektronik/Mikro- und Nanotechnik
10 Informatik/Kommunikation
11 Schwingungstechnik
12 Verkehrstechnik/Fahrzeugtechnik
13 Fordertechnik/Logistik
14 Landtechnik/Lebensmitteltechnik
15 Umwelttechnik
16 Technik und Wirtschaft
17 Biotechnik/Medizintechnik
18 Mechanik/Bruchmechanik
19 Warmetechnik/Kaltetechnik
20 Rechnerunterstitzte Verfahren (CAD, CAM, CAE CAQ, CIM ..)
21 Elektrotechnik
22 Mensch-Maschine-Systeme
23 Technische Geb&udeausristung

ISBN 978-3-18-526708-6

IP 216.73.216.36, am 20.01.2026, 15:13:46. © Inhal.

tersagt, m mit, flir oder in Ki-Syster

https://doi.org/10.51202/9783186267085

	Cover
	1 Introduction
	1.1 Motivation
	1.1.1 Applications and Scenarios
	1.1.2 Problem Definition

	1.2 Objective of this Work
	1.3 Structure of the Dissertation

	2 State of the Art
	2.1 Dynamic RunTime Environments (RTE)
	2.2 Virtual Machines
	2.3 Container Technology
	2.3.1 Docker-Daemon
	2.3.2 Load Distribution
	2.3.3 Compatibility

	2.4 Migration and States Synchronization
	2.4.1 Service Migration in Automation
	2.4.2 Redundancy Migration

	2.5 Components in Automation
	2.5.1 Single Control Unit (SCU)
	2.5.2 Group Control Unit (GCU)
	2.5.3 Procedures
	2.5.4 Inner Structure of a Process Control Component
	2.5.5 Adaptation in Industrial Automation Systems

	2.6 Methodological Fundamentals - Graph Theory
	2.6.1 Bipartite Graph
	2.6.2 Adjacency Matrix
	2.6.3 Star Topology
	2.6.4 Hub and Spoke Topology
	2.6.5 Mesh Topology
	2.6.6 Kn 􀀀 Kn Topology
	2.6.7 Neighbor
	2.6.8 Valency

	2.7 Methodology - Load Distribution
	2.7.1 Load Distribution Algorithms
	2.7.2 Multi-Core Processing Analysis
	2.7.3 Consensus Networks
	2.7.4 Semi-Definite Programming
	2.7.5 MATLAB-YALMIP
	2.7.6 Simulated Annealing
	2.7.7 Optimal Distribution Solvers - Z3 SMT Solver
	2.7.8 Deployment in Automotive Open System Architecture (AUTOSAR)

	2.8 Agents Systems
	2.9 Market-based Multi-Agent-System Approach
	2.10 Agents Systems Hierarchy in Automation
	2.11 Agent-Based Planning of Production Sequences
	2.12 Recipes Definitions
	2.13 Tools - Discovery
	2.13.1 Bonjour Protocol
	2.13.2 Mechanism of Operation
	2.13.3 Reconfiguration of Real-Time Fieldbus

	3 Runtime Adaptation Concept
	3.1 Terminology and Definitions
	3.2 Concept Overview
	3.3 Process
	3.3.1 Component redeployment
	3.3.2 Container Redeployment

	3.4 Controller
	3.4.1 Optimization Criteria and Constraints
	3.4.2 Boundary Conditions
	3.4.3 Stability, Performance Analysis and Performance Enhancement

	3.5 Actuator
	3.5.1 Load Distribution Executor

	3.6 Sensor
	3.6.1 Resources & Component Manifestation

	3.7 Disturbance
	3.8 Architecture Overview

	4 Modeling Fundamentals
	4.1 The Load Balancing Model
	4.1.1 Network Model
	4.1.2 Load Model
	4.1.3 Mathematical Model

	5 Methodology Investigation - Analytical Approach - Linear Model
	5.1 Modeling of the Adaption Algorithms
	5.2 Model Characteristics
	5.3 Model
	5.3.1 Stability and Convergence Analysis
	5.3.2 System Dynamic and Performance Analysis

	5.4 Modeling of Multidimensional Loads
	5.4.1 MD Problem Classification
	5.4.2 MD Problem Modeling

	5.5 Performance Enhancement via Regression Models
	5.5.1 Optimizing the Transfer Coe�cient
	5.5.2 Ring Hub and Spoke Networks
	5.5.3 Regression Model

	6 Methodology Investigation - Empirical Approach - Non-Linear Model
	6.1 Model Characteristics
	6.2 Performance Assessment
	6.3 KPIs Preliminaries
	6.3.1 Network Topology
	6.3.2 Load Description
	6.3.3 Initial Conditions
	6.3.4 Node Capacity
	6.3.5 Probabilistic Algorithms
	6.3.6 Foreknowledge of Terminating Conditions

	6.4 KPIs
	6.4.1 Qualitative KPIs
	6.4.2 Quantitative KPIs
	6.4.3 Modular Benchmark
	6.4.4 Benchmark Testing

	7 Use-Case - Implementation Approach
	7.1 Demonstrator - SMS-SEMAG Cold Rolling Mill
	7.1.1 Devices
	7.1.2 Single and Group Function Units (SFU and GFU)

	7.2 Load Balancing

	8 Implementation - Reality Approach
	8.1 Decentral Algorithm (Resources Perspective)
	8.1.1 Preliminaries
	8.1.2 Objective
	8.1.3 The BRAD Algorithm - Mechanism of Operation
	8.1.4 Simulation Assessment

	8.2 Agents Systems Approach (Components Perspective)

	9 Scenario 1 - Decentralized Algorithm
	9.1 Realization
	9.1.1 Sync. State Machine BRAD
	9.1.2 Application Monitor
	9.1.3 Node to Node (N2N) Discovery
	9.1.4 Device Resources Monitoring
	9.1.5 Neighbor Informer
	9.1.6 Neighbor Data Bank
	9.1.7 TSE Optimizer - Sender End
	9.1.8 Request Sender
	9.1.9 Request Receiver
	9.1.10 TSE Optimizer - Receiver End
	9.1.11 Acceptance Notifier
	9.1.12 Send Initiator
	9.1.13 Redeployer

	9.2 Performance Assessment
	9.2.1 Setup
	9.2.2 Scenario

	10 Scenario 2 - Agents System
	10.1 Realization
	10.1.1 Agent Load Balancing Algorithm

	10.2 Performance Assessment
	10.2.1 Setup
	10.2.2 Scenario

	11 Conclusion and Outlook
	11.1 Outlook
	11.1.1 Algorithm Enhancement
	11.1.2 Synchronization
	11.1.3 Improvements for Load Model
	11.1.4 Improvements in the Decentralized Algorithm

	11.2 Improvements in the Infrastructure
	11.3 Further Utilizations of Agents Systems Approach

	Bibliography

