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komplexes holomorphes Potential
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Zusammenfassung

In der vorliegenden Arbeit wird ein spezielles hybrides Trefftz-Element zur Simulation
von Rissen in diinnen Platten unter Modus III-Belastung entwickelt. Das Element wird
zur Erweiterung etablierter ModusI/II-Elemente verwendet und kann zur Simulation
beliebiger Belastungen an der Rissspitze im Rahmen der linear-elastischen Bruchmechanik
eingesetzt werden.

Die Elementformulierung basiert auf der bekannten analytischen Lésung der Bipotenti-
algleichung aus der Kirchhoffschen Plattentheorie. Mit Hilfe der Funktionentheorie wird
die allgemeine Losung an das spezielle Problem einer Platte mit Innenriss angepasst, so
dass die Spannungsrandbedingungen entlang des Rissufers exakt erfiillt werden. Die Ver-
schiebungsrandbedingungen am verbleibenden Elementrand werden durch ein erweitertes
elastisches Potential berticksichtigt. Die freien Parameter des Losungsansatzes ergeben sich
schliefllich aus der Minimierung des erweiterten Potentials. Die Validierung der neuentwi-
ckelten Elementformulierung zeigt die Konvergenz der Losung bei Erhéhung der Anzahl
der berticksichtigten Ordnungen des Losungsansatzes gegen die Vergleichslosung aus einem
feinvernetzten Finite-Elemente-Modell.

In der linear-elastischen Theorie sind die Freiheitsgrade fiir Modus I/II- und ModusIII-
Belastung entkoppelt und das Mixed-Mode-Element ergibt sich durch Zusammenfiigen
beider Anteile. Fiir die Simulation von Risswachstum in einem Bauteil wird das Trefftz-
Element innerhalb eines Finite-Elemente-Modells eingesetzt. Die Standardelemente im
Bereich der Rissspitze werden dabei durch das spezielle Element ersetzt. Bei Risswachstum
breitet sich der Riss zunédchst innerhalb des Elementgebiets aus und bei Bedarf wird
das Trefftz-Element automatisch in Richtung des fortschreitenden Risses neu positioniert.
Dabei werden weitere Standardelemente ersetzt und das Element bewegt sich im weiteren
Verlauf des Rissfortschritts mit der Rissspitze durch das Finite-Elemente-Netz.

Zur Simulation von Risswachstum wird der materialspezifische Risswiderstand benotigt.
Fir grofiere Rissverlingerungen unter Modus I1I-Beanspruchung stehen keine standar-
disierten Verfahren zur Ermittlung des Risswiderstands zur Verfigung. Daher wird im
Rahmen der vorliegenden Arbeit eine direkte Auswertung der verformten Rissflanken
durchgefithrt, wozu das 3D-Bildkorrelationsverfahren eingesetzt wird. Mit Hilfe eines
neuentwickelten Auswertungsalgorithmus wird aus den damit gemessenen Geometrie-
daten der Verlauf des Rissfortschritts und der Risséffnungswinkel berechnet. Daraus
kann der kritische Spannungsintensitétsfaktor K. mit Hilfe einer Detailsimulation des
Versuchsaufbaus gewonnen werden. Als Rissfortschrittskriterium wird dann der aktuell
vorliegende Spannungsintensitatsfaktor direkt aus dem Trefftz-Element berechnet und mit
dem experimentell ermittelten Risswiderstand verglichen.

Der Rissfortschrittsalgorithmus fir die gekoppelte Simulation von Bauteilen mit dem
Trefftz-Element im Rahmen der expliziten Finite-Elemente-Methode wird am Beispiel
der durchgefithrten Versuche getestet. Insgesamt zeigt sich dabei, dass das vorgestellte
Verfahren erfolgreich zur Simulation von Rissfortschritt in einem Bauteil eingesetzt werden
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Abstract XI

kann. Abschlieflend werden Konzepte fiir eine Weiterentwicklung der Elementformulierung
vorgestellt. Eine Moglichkeit zur Erweiterung des Einsatzgebiets stellt dabei die Modellie-
rung rissschliefender Krafte am Rissufer durch partikulire Losungsansétze dar, wie sie
zum Beispiel beim Dugdale-Modell auftreten.

Abstract

Within the present work, a special purpose hybrid Trefftz-element for mode III cracks in
thin plates is developed. The element is used as an extension of well-established mode I/11
elements. Therefore, the proposed element enables the simulation of arbitrary mixed mode
crack tip loading within the framework of linear elastic fracture mechanics.

The element formulation is based on the analytical solution of the bipotential equation
of the Kirchhoff plate theory. Using complex analysis the general solution is adapted to
fulfill the natural boundary conditions at the crack edges, too. The essential boundary
conditions along the remaining part of the element boundary are taken into account for
by an extended elastic potential. The remaining degrees of freedom of the solution are
calculated from the minimization of the extended potential. Validation of the element
formulation shows convergence of the solution to the finite element reference solution by
increasing the number of orders included in the calculation.

Within linear elastic theory mode I/II is decoupled from mode III, and the mixed mode
Trefftz element is formed by assembling both parts into one element. For the simulation
of crack growth in a structural component the special purpose element is used within a
standard finite element model, where some of the elements are replaced by the Trefftz
element. The crack starts growing inside the element at first and after some crack growth
the element position is changed in the direction of crack growth, replacing additional
standard elements. Along with the growing crack the Trefftz element can move through
the entire structure.

For a crack growth algorithm the specific resistance of the material against crack growth
is needed as well. Since there are no appropriate standard procedures for the evaluation
of the mode III fracture resistance available, within this work a direct evaluation of
the deformed crack edges is performed. The data aquisition is carried out using three
dimensional digital image correlation. With a newly developed evaluation algorithm, crack
propagation and crack tip opening angle are calculated from the geometry data. Using
these results the critical stress intensity factor K. is found by performing a detailed
simulation of the experiment. For the evaluation of the crack growth criterion the actual
stress intensity factor is calculated from the Trefftz mixed mode element and compared to
the critical value of the material obtained from experiments.

Finally, the proposed algorithm is demonstrated by the simulation of a simple structural
component within an explicit finite element analysis. It is shown, that the concept is
capable of simulating the crack behaviour accurately. Finally, future enhancement of the
crack propagation algorithm with a crack tip plasticity model is outlined.
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1 Einleitung

Die Rahmenbedingungen bei der Entwicklung von technischen Produkten erfordern auch
in Zukunft eine weitere Reduzierung der Entwicklungszeit bei gleichzeitiger Erhéhung
der Variantenvielfalt. Ein wichtiges Werkzeug zum Erreichen beider Ziele ist der Einsatz
von Simulationsmodellen, wodurch verschiedene Varianten eines Produktes effizient auf
die Erfiillung bestimmter physikalischer Eigenschaften untersucht werden konnen. Im
Vergleich zum Aufbau realer Prototypen in frithen Entwicklungsphasen kénnen mit Simula-
tionsmodellen in vielen Féallen sowohl Zeit als auch Kosten eingespart werden. Basis fiir die
Beurteilung unterschiedlicher Produktvarianten mit Hilfe von Simulationsergebnissen ist
die Abbildung der interessierenden physikalischen Eigenschaften in dem jeweils eingesetzten
Modell. Zur Erweiterung des Einsatzbereichs der Simulation werden daher neue Methoden
zur besseren Beschreibung der Produkteigenschaften entwickelt.

Fiir die Berechnung der mechanischen Eigenschaften eines Bauteils hat sich im industri-
ellen Umfeld und in vielen Bereichen der Forschung die Finite-Elemente-Methode (FEM)
als Standard etabliert. Die FEM ermoglicht eine effiziente Beschreibung von Bauteilen
unter mechanischen Belastungen in Form von Kréaften und Momenten sowie der daraus
resultierenden Deformationen. Bei speziellen Fragestellungen koénnen die Standardmetho-
den der FEM dagegen weit weniger effizient eingesetzt werden, wie zum Beispiel bei der
Berechnung von Bereichen mit hoher Lokalisierung der Spannungen. Fiir eine hinreichend
genaue Bestimmung des Spannungsfeldes ist in diesem Fall eine entsprechend kleinrdumige
Diskretisierung der Geometrie erforderlich. Die Erh6hung der Genauigkeit durch Netz-
verfeinerung funktioniert bei der FEM generell und wird als h-Methode bezeichnet. Eine
hohere Netzfeinheit fithrt zu einer grofieren Anzahl von Freiheitsgraden und erhoht den
Berechnungsaufwand. Speziell bei der expliziten FEM, die bevorzugt zur Simulation von
hochdynamischen Kurzzeitprozessen eingesetzt wird, kann eine Netzverfeinerung zu einer
Verringerung der globalen Zeitschrittweite fithren. Ausgepriagte Spannungslokalisierungen
treten zum Beispiel in stark gekerbten Bereichen von Bauteilen aus hochstfestem Stahlblech
auf. Diese Werkstoffgruppe wird unter anderem im Fahrzeugbau in zunehmendem Mafle
fiir sicherheitsrelevante Strukturbauteile eingesetzt.

Die vorliegende Arbeit leistet einen Beitrag zur Verbesserung der Simulation des hoch
lokalisierten Spannungsfeldes in der Umgebung von Rissspitzen. Risse kénnen einen
grofien, meist unerwiinschten Einfluss auf das mechanische Verhalten von Bauteilen haben
und einsetzendes Risswachstum kann zum Bruch einer ganzen Struktur fithren. Die
physikalische Beschreibung von Rissen erfolgt mit den Methoden der Bruchmechanik,
wobei die Existenz eines Anrisses als gegeben vorausgesetzt und das Verhalten des Risses
unter Belastung bestimmt wird. Informationen iiber mogliche Positionen von Anrissen
konnen zum Beispiel aus empirischen Versuchen gewonnen werden. Die Beschreibung von
Rissen in Bauteilen aus hochstfestem Stahlblech erfolgt unter bestimmten Voraussetzungen
mit der linear-elastischen Bruchmechanik (LEBM). Das Spannungsfeld weist bei diesem
Modell eine Singularitdt im Bereich der Rissspitze auf und ist daher hoch lokalisiert.
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2 1 FEinleitung

Die Auswertung der Spannungen an der Rissspitze kann zum Beispiel mit einem Finite-
Elemente-Modell (FE-Modell) erfolgen. Die Singularitit an der Rissspitze erfordert in
diesem Bereich eine erhohte Netzfeinheit, weil sie mit bilinearen Standardelementen nur
unzureichend abgebildet werden kann. Um die Nachteile der Feinvernetzung zu vermeiden
und dennoch eine genaue Auflosung der Singularitit zu erzielen, werden spezielle Methoden
benétigt. Ein erfolgversprechendes und etabliertes Konzept ist die Kombination von
Standardelementen mit speziellen Rissspitzenelementen auf Basis der hybriden Trefftz-
Methode. Diese Elemente konnen den Spannungsverlauf an der Rissspitze unabhéngig von
der Netzfeinheit wiedergeben. Im Gegensatz zu Standardelementen kommen dazu speziell
angepasste Ansatzfunktionen zum Einsatz, die auf analytischen Losungen des zugehorigen
Randwertproblems der Elastizitatstheorie basieren.

Zur Beschreibung von Rissen unter Querscherbelastung steht bisher keine entsprechende
Elementformulierung zur Verfiigung. Die Zielsetzung der vorliegenden Arbeit ist daher
die Entwicklung eines Rissspitzenelements zur Berechnung der Querscherbelastung auf
Basis der hybriden Trefftz-Methode. Das Element ermdglicht eine genaue Berechnung
der mechanischen Grofien in der Rissspitzenumgebung. Insbesondere kann damit der
Spannungsintensitétsfaktor direkt berechnet werden. Unkritische Bereiche eines Bauteils
konnen dabei weiterhin mit Standardelementen modelliert werden. Die Kopplung des
Rissspitzenelements mit dem FE-Modell wird durch die hybride Verschiebungsformulierung
zur Berticksichtigung der Kopplungsbedingungen erméglicht. Das im Rahmen dieser Arbeit
vorgestellte Rissspitzenelement basiert auf der Plattentheorie von Kirchhoff, fiir die unter
der zusétzlichen Annahme linear-elastischen Materialverhaltens eine allgemeine analytische
Losung bekannt ist.

Das neuentwickelte Element wird dann im Rahmen der linear-elastischen Theorie mit
einem Rissspitzenelement fiir ebene Beanspruchungen zu einem Mixed-Mode-Element
zusammengefiigt. Damit konnen beliebige Belastungszustinde an der Rissspitze im Bereich
der LEBM abgebildet werden. Die gekoppelte Simulation aus dem speziellen Element im
Bereich der Rissspitze und Standardelementen fiir die Modellierung unkritischer Bereiche
ermoglicht eine numerisch effiziente und zugleich genaue Beschreibung des Risswachstums
in Strukturbauteilen. Durch zukiinftige Weiterentwicklungen der Elementformulierung
konnen zudem auch Modelle fiir eine streifenformige plastische Zone vor der Rissspitze
berticksichtigt werden.

Motivation fir die Entwicklung der Elementformulierung ist im Folgenden die Simulation
von Rissen in Strukturbauteilen von Fahrzeugen unter Crashbelastung. Aus der Verwen-
dung von hochstfesten Stéhlen ergeben sich dabei aufgrund der Spannungslokalisierung im
Bereich der Rissspitze hohe Anforderungen an die FE-Simulation. Im Bereich der Crashsi-
mulation kommt dabei insbesondere die explizite FEM zum Einsatz. Bei dieser Methode
wird eine gleichméflige Vernetzung des Modells angestrebt, um die globale Zeitschrittweite
nicht durch einzelne kleine Elemente zu verringern. Unter diesen Bedingungen koénnen
Trefftz-Elemente vorteilhaft eingesetzt werden, weil sie unabhéngig von der Netzgrofle
genaue Ergebnisse liefern. Um die Beschreibung beliebiger Belastungen an der Rissspitze
zu ermdglichen, wird im Rahmen der vorliegenden Arbeit ein neues Trefftz-Element zur
Beschreibung der Querscherbelastung entwickelt, das mit ebenen Rissspitzenelementen zu
einer Mixed-Mode-Formulierung kombiniert wird. Die Validierung des Elements erfolgt mit
Hilfe von sehr fein diskretisierten FE-Modellen und zeigt eine gute Ubereinstimmung der
Ergebnisse. Die Losung der Trefftz-Elementformulierung konvergiert bei einer Erhohung
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der Anzahl der berticksichtigten Ordnungen gegen die Referenzlésung.

Fiir die Simulation von Risswachstum wird eine materialspezifische Charakterisierung
des Risswiderstands benotigt. Fir Risse unter Querscherbelastung stehen keine geeigneten
Standardverfahren zur Verfiigung, um bei grofien Rissverlangerungen zu einer Beschreibung
des Risswiderstands zu gelangen. Daher wird im Rahmen der vorliegenden Arbeit ein
Versuchskonzept zur Ermittlung des Risswiderstands entwickelt, das auf der direkten
Auswertung der verformten Rissflanken mit dem 3D-Bildkorrelationsverfahren beruht. Aus
den gemessenen Geometriedaten kann sowohl der Verlauf des Rissfortschritts als auch der
Rissoffnungswinkel ermittelt werden. Diese Daten bilden die Grundlage fiir eine Detailsi-
mulation des Versuchsaufbaus, aus der schlieBlich der kritische Spannungsintensitatsfaktor
K. abgeleitet werden kann. Fir die Versuche wird der im Fahrzeugbau weit verbreitete
hochstfeste Stahlwerkstoff 22MnB5 verwendet.

Die Mixed-Mode-Formulierung des Rissspitzenelements wird im letzten Schritt zusammen
mit dem experimentell ermittelten Risswiderstand zu einem Rissfortschrittsalgorithmus
weiterentwickelt. Dieser ermoglicht die Simulation von Risswachstum mit der expliziten
FEM, wobei fiir die unkritischen Bereiche eines Bauteils eine grobe Vernetzung mit
Standardelementen ausreicht. Die Anwendung der Methodik wird anhand eines einfachen
Beispiels gezeigt. Abschliefend werden zukinftige Schritte zur Weiterentwicklung der
Elementformulierung vorgestellt und diskutiert.
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2 Aktueller Stand von Forschung und
Technik

Bei der Entwicklung moderner Fahrzeugkonzepte muss eine Vielzahl von Anforderungen
beriicksichtigt werden. Ein wichtiger Aspekt ist dabei die passive Sicherheit, welche die kon-
struktiven Merkmale eines Fahrzeugs zum Schutz der Insassen beinhaltet. Die Fahrgastzelle
stellt einen wichtigen Baustein der passiven Sicherheit dar und darf bei einem Crash nur
geringe Deformationen erfahren, um den Uberlebensraum der Passagiere zu gewihrleisten.
Die Sicherheit neuer Fahrzeugmodelle muss in der Automobilindustrie durch standardi-
sierte und vom Gesetzgeber vorgeschriebene Crashtests [1, S. 28f] nachgewiesen werden.
Zusétzlich streben die Hersteller hohe Bewertungen bei wichtigen Verbraucherschutztests
an, wie zum Beispiel dem Euro NCAP (european new car assessment programme) [1, S. 34f].
Diese Tests stellen zum Teil Anforderungen an die passive Sicherheit, welche tiber die
gesetzlichen Vorschriften noch hinausgehen. Gleichzeitig nehmen auch die Anforderungen
beziiglich Energieeffizienz weiter zu, die stark mit dem Fahrzeuggewicht in Zusammenhang
steht [2, S.7].

Eine kostengiinstige Moglichkeit zur Verbesserung der Fahrzeugsicherheit bei gleich-
zeitiger Reduzierung des Gewichts stellt der Einsatz von pressgeharteten, hochstfesten
Stahlen dar, welche in zunehmendem Umfang fiir sicherheitsrelevante Strukturbauteile
der Karosserie verwendet werden. Die Kosten fir den Entwicklungsprozess konnen zum
Beispiel durch den Einsatz von Simulationsmodellen reduziert werden, weil dadurch in
den frithen Phasen der Entwicklung auf Prototypen verzichtet werden und dennoch eine
Vielzahl von Varianten untersucht werden kann. Crashsimulationen sind aus diesem Grund
heute fester Bestandteil jeder Fahrzeugentwicklung. Bei der Simulation von Bauteilen aus
hochstfesten Stahlen ergeben sich aufgrund der begrenzten Duktilitat, welche die Entste-
hung und instabile Ausbreitung von Rissen begiinstigt, spezifische Herausforderungen. Mit
der Standard-FEM konnen potentielle Risse in hochstfesten Stéhlen aufgrund der hohen
Lokalisierung der Spannungen im Bereich der Rissspitze nicht effizient modelliert werden
und daraus entsteht ein Bedarf an speziell angepassten Simulationsmethoden.

Im folgenden Abschnitt werden zunéchst die Eigenschaften der hochstfesten Stéhle
vorgestellt, welche zu einer vermehrten Anfélligkeit fiir die Initiierung und Ausbreitung von
Rissen fithren. Ausgangspunkt fiir die Simulation von Rissen ist im Rahmen der vorliegenden
Arbeit die explizite FEM, die sich als Standardverfahren in der Crashsimulation etabliert
hat. Die Effizienz dieser Methode hingt wesentlich von der stabilen Zeitschrittweite ab,
die bei der Modellierung von Rissen durch Feinvernetzung negativ beeinflusst werden
kann. Der Zusammenhang von Zeitschrittweite und Stabilitdt wird im zweiten Abschnitt
erldutert. Die hohe Netzfeinheit wird durch die begrenzte Duktilitat der hochstfesten Stiahle
und die daraus resultierende Modellierung von Rissen mit der LEBM erforderlich. Bei der
LEBM tritt eine Spannungssingularitit im Bereich der Rissspitze auf. Die Grundlagen
des Modells werden im dritten und vierten Abschnitt in Abgrenzung zu den weiteren
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2.1 Strukturbauteile aus héchstfestem Stahl 5

Methoden der Bruchmechanik vorgestellt. Die geschilderte Ausgangssituation erfordert eine
Weiterentwicklung der Standard-FEM durch verbesserte Methoden zur Beschreibung von
Rissen. Dazu werden im fiinften Abschnitt die wichtigsten bereits verfiigharen Verfahren
und ihre Eignung zur Losung der Aufgabenstellung vorgestellt. Ein erfolgversprechendes
Losungskonzept ist die Simulation von Rissen mit speziell angepassten Rissspitzenelementen
auf Basis der hybriden Trefftz-Methode, die im letzten Abschnitt beschrieben wird. Im
Rahmen dieser Methode steht bisher keine den ebenen Elementformulierungen dquivalente
Beschreibung von Rissen unter Querscherbelastung zur Verfiigung. Daraus ergibt sich die
Zielsetzung der vorliegenden Arbeit, ein neues hybrides Trefftz-Rissspitzenelement auf
Basis der Kirchhoffschen Plattentheorie zu entwickeln.

2.1 Strukturbauteile aus hochstfestem Stahl

Das Spannungsfeld aus Sicherheit, Treibstoffverbrauch, Herstellbarkeit und Kosten fithrt
im Automobilbau zu einem Bedarf an Materialien mit hochster Festigkeit und gleichzeitig
guter Verarbeitbarkeit. Die Festigkeit erhoht die Crashsicherheit und erméglicht Bauteile
mit geringer Wandstérke, was sich positiv auf Treibstoffverbrauch und Materialkosten
auswirkt. Eine gute Verarbeitbarkeit ermoglicht dennoch komplexe Bauteilformen und
fithrt zu einer geringeren Anzahl an Einzelkomponenten und in Folge auch zu weniger
Schweifiverbindungen. Dadurch kénnen die Kosten des Herstellungsprozesses reduziert und
Gewicht eingespart werden [3]. Diese beiden Eigenschaften bieten hochstfeste Stiahle und
werden deshalb in der Automobilindustrie in zunehmendem Umfang fiir sicherheitsrelevante
Strukturbauteile eingesetzt. In den tibrigen Bereichen der Karosserie werden weiterhin
konventionelle Stahlwerkstoffe mit guter Umformbarkeit eingesetzt.

Von héchstfesten Stéhlen spricht man ab einer Streckgrenze von 550 MPa. Um die
hohen Festigkeiten zu erreichen, stehen unterschiedliche Mechanismen wie zum Beispiel
Dualphasenstiahle und martensitische Stiahle zur Verfiigung. Beide gehoren zur Gruppe
der AHSS (advanced high strength steel). Bei den Eigenschaften muss ein Kompromiss
zwischen Festigkeit und Formbarkeit gefunden werden. Gute Verformbarkeit wird zum
Beispiel in den Knautschzonen von Fahrzeugen benotigt, um die Aufprallenergie bei
einem Crash abzubauen. Die Gruppe von Stiahlen mit den hochsten Festigkeiten sind die
AHSS. Es handelt sich dabei um Mehrphasenstidhle mit einer komplexen Mikrostruktur
aus verschiedenen Phasen wie Ferrit, Martensit, Bainit und Austenit bzw. Restaustenit
[2, S.19]. In Abb. 2.1 sind typische Spannungs-Dehnungs-Verlaufe und Einsatzbereiche
konventioneller Tiefziehstéhle, hochfester Stahle und von AHSS in der Fahrzeugkarosserie
dargestellt. Einen umfassenden Uberblick iiber Eigenschaften und Konzepte der AHSS
gibt [2].

Ein weit verbreiteter AHSS im Automobilbereich ist der Mangan-Bor-Stahl 22MnB5
[6], welcher im Rahmen der vorliegenden Arbeit fiir die experimentelle Bestimmung eines
materialspezifischen Rissparameters verwendet wird. Bauteile aus 22MnB5 werden in der
Serienfertigung durch Form- bzw. Pressharten hergestellt. Bei diesem Verarbeitungsverfah-
ren werden zugeschnittene Platinen oder bereits vorgeformte Bauteile im unbehandelten
Ausgangszustand mit ferritisch-perlitischem Gefiige auf die Austenitisierungstemperatur
im Bereich von 880°C bis 930°C erwarmt und im warmen Zustand fertig geformt. Die
kontrollierte Abkiihlung auf Temperaturen zwischen 100 °C und 250 °C zur Einstellung
eines 100% martensitischen Gefiiges erfolgt im geschlossenen Werkzeug mit Wasser- oder

216.73.216.35, am 18.01.2026, 23:5318. © Urheberrechtlich geschtzter Inhalt.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186352187

6 2 Aktueller Stand von Forschung und Technik

1,200

1,000 {/~
= 800
ol
=3
2 600
j=]
=]
=]
<
2400 e,

200

Tiefziehstahl
0 Il Il Il Il Il Il Il Il Il ‘

0 0 20 30 40 50 60 70 8 90 100
Dehnung [%)]

Abbildung 2.1: Charakteristische Spannungs-Dehnungs-Verldufe unterschiedlicher Grup-
pen von Stahlwerkstoffen und typische Einsatzbereiche im Fahrzeug nach
[4, S.19], Fahrzeugmodell nach [5].

Olabkiihlung [7, S.496f], [2, S.131f], [8].

Eine wichtige Eigenschaft fiir das Bruchverhalten eines Werkstoffes ist seine Duktilitét,
also die Fahigkeit zu plastischer Verformung bevor Versagen eintritt. Die Duktilitdt kann
zum Beispiel mit dem einachsigen Zugversuch nach [9] anhand der Brucheinschniirung
und der Bruchdehnung bestimmt werden. Ein Werkstoff mit sehr geringer Duktilitdt wird
als sprode bezeichnet und weist plastische Bruchdehnungen unter 0.1 % auf, wiahrend
duktile Werkstoffe im Bereich von ungefahr 10 % liegen [10, S.203]. Die Duktilitét kann
durch Einflussgrofien wie Temperatur und Belastungsgeschwindigkeit beeinflusst werden
[11, S.159f]. Die Féhigkeit zur Energieaufnahme durch plastische Deformation wird durch
die Flache unter der Spannungs-Dehnungs-Kurve charakterisiert [2]. AHSS weisen im
Vergleich zu anderen Stahlwerkstoffen hochste Festigkeit und geringste Bruchdehnung auf.
In Abb. 2.2 sind typische Bereiche von Zugfestigkeit und Bruchdehnung einiger Gruppen
von Stahlwerkstoffen dargestellt. Fiir AHSS ergibt sich daraus eine kleine Flache unter der
Spannungs-Dehnungs-Kurve, wie aus Abb. 2.3 ersichtlich wird. Die benédtigte plastische
Energie zur Rissausbreitung ist daher gering und somit auch der Risswiderstand. AHSS
weisen daher eine Tendenz zu instabilem Risswachstum auf [2, 12, 13]. Zur Beschreibung
solcher quasi-sproder Risse miissen die Methoden der Bruchmechanik herangezogen werden
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Abbildung 2.2: Bereiche von Zugfestigkeit und Bruchdehnung fiir verschiedene Stahlwerk-
stoffe. AHSS (Dualphasen- und martensitische Stiahle) weisen hochste
Festigkeit und geringe Bruchdehnung auf [2, S. 13f].

[11, S.149].

Mit den bruchmechanischen Methoden kann der Einfluss von Rissen auf die Tragfahigkeit
von Bauteilen ermittelt werden. Die Entstehung von Anrissen, also die Rissinitiierung,
wird im Rahmen der Bruchmechanik dagegen nicht untersucht und verlangt eine mi-
kromechanische Betrachtung der Vorgidnge im Material. Diese erfolgt im Rahmen der
Schiadigungsmechanik [14, Kapitel 9]. Stark gekerbte Bereiche im Bauteil sowie Verbin-
dungselemente wie Schweiffpunkte oder Nietverbindungen stellen potenzielle Bereiche fiir
die Entstehung und Ausbreitung von Rissen dar [15]. Zusammengefasst stellen Risse in
Bauteilen aus hochstfestem Stahl ein wichtiges Problem dar, das mit den Methoden der
Bruchmechanik analysiert werden muss. Die daraus resultierenden Anforderungen an die
Simulation werden in den nachfolgenden Abschnitten beschrieben.

2.2 Crashsimulation mit der expliziten FEM

FE-Simulationen ermoglichen eine effiziente Untersuchung der Eigenschaften mechani-
scher Strukturen. Zeitabhéngige Vorginge werden dabei durch die raumlich diskretisierte
Bewegungsgleichung

Mu+Cu+P(u)+f=0 (2.1)

mit der konsistenten Massenmatrix M, einer optionalen Dampfungsmatrix C, den inneren
Kraften P (u) und den duBeren Kréften f beschrieben. Im Vektor w sind die Knotenver-
schiebungen der raumlichen Diskretisierung, in % die Knotengeschwindigkeiten und in
die Knotenbeschleunigungen zusammengefasst. Tensoren, Vektoren und Matrizen werden
im Verlauf der Arbeit fett hervorgehoben, um eine Unterscheidung von skalaren Grofen zu
ermoglichen. Zur vollstdndigen Formulierung eines Anfangswertproblems miissen zusétzlich
die Anfangsbedingungen u (0) = @ und @ (0) = © vorgegeben werden. Die lineare Form
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Abbildung 2.3: Flachen unter den charakteristischen Spannungs-Dehnungs-Kurven der
verschiedenen Gruppen von Stahlwerkstoffen aus Abb. 2.1.

der Bewegungsgleichung lautet
Mi+Cu+Ku+f=0, (2.2)

mit der verschiebungsunabhangigen Steifigkeitsmatrix K. Herleitungen der Bewegungs-
gleichung werden zum Beispiel bei [16] und [17] beschrieben.

FE-Methoden werden nach dem verwendeten Zeitintegrationsverfahren zur Losung der
Glg. 2.1 in explizite und implizite Verfahren eingeteilt. Beide Verfahren kénnen zur Lésung
von dynamischen Vorgéingen eingesetzt werden, aber der Berechnungsaufwand ist oft
unterschiedlich grofl. Fiir die Crashsimulation wird meist die explizite FEM eingesetzt,
welche bei hochdynamischen Kurzzeitprozessen tendenziell effizienter ist. Der prinzipielle
Unterschied zwischen impliziten und expliziten Zeitintegrationsverfahren wird im Folgenden
am Beispiel des impliziten und des expliziten Euler-Verfahrens dargestellt [18, S.384].
Anhand dieses Beispiels wird die entscheidende Bedeutung der Zeitschrittweite At bei den
expliziten Zeitintegrationsverfahren ersichtlich. Dazu wird die Differentialgleichung (DGL)
erster Ordnung

Z=flt,z(t)] (2.3)

mit der Anfangsbedingung z (0) = z, betrachtet, die durch ein numerisches Verfahren
gelost werden soll. Jede Differentialgleichung n-ter Ordnung kann dabei in ein System
von n Differentialgleichungen erster Ordnung tiberfiihrt werden. Ein Startpunkt fiir die
Herleitung einer Methode zur Losung ist die Taylorreihenentwicklung der Funktion z (¢)
um die Stelle ¢,

Z(t+ A1) =2 (t) + 2 (t) At + O [(A] (2.4)

Durch Glg. (2.3) ist die Ableitung der Funktion z (t) gegeben, aber der Verlauf der Funktion
selbst ist bis auf den Anfangwert z; unbekannt. Mit Glg. (2.4) lésst sich unter Vernach-
lassigung der Terme hoherer Ordnung eine Abschétzung des weiteren Funktionsverlaufs
durch die Ableitung angeben. Das Verfahren wird explizites Eulerverfahren genannt und
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Abbildung 2.4: Das explizite Euler-Verfahren zur Losung der Differentialgleichung 2 =
t - z(t) mit dem Anfangswert zp = 0.1. Die analytische Losung lautet
z(t) = 0.1e%% und die Zeitschrittweite ist At.

seine Rekursionsformel lautet
Zer1 =2+ f (tk-, Zk) At . (25)

Dabei wird aus dem bekannten Anfangwert zy zur Zeit ¢y, im ersten Rekursionsschritt
k=1, kel,2,...,n eine Niherungslosung fiir den Zeitpunkt ¢; = to + At berechnet.
Diese bildet wiederum den Ausgangspunkt fiir den nachsten Schritt, wo mit ¢ = to + kAt
und der alten Néherungslosung 2, die neue Losung 2.1 berechnet wird. In Abb. 2.4 sind
die ersten Schritte des Verfahrens fiir die DGL

Z=t-z(t) mit 2z =0.1 (2.6)

sowie der Verlauf der analytischen Lésung 2 (£) = 0.1e%5” fiir die Zeitschrittweiten At = 0.4
und At = 0.04 dargestellt. Die Abweichung der berechneten Losungen vom exakten Verlauf
héngt dabei von At ab.

Die Abweichung der numerischen Losung vom tatsichlichen Verlauf entsteht zum einen
durch den lokalen Fehler in jedem Berechnungsschritt durch die vernachlassigten Terme
héherer Ordnung in Glg. (2.4). Die vernachlissigten Terme sind proportional zu At2. Zu
einem bestimmten Zeitpunkt ¢ wurden bei konstanter Zeitschrittweite (¢ — t) /At Schritte
mit einem lokalen Fehler proportional zu A#? berechnet. Der globale Fehler ist daher
proportional zu At. Bei der Berechnung einer Losung mit dem expliziten Eulerverfahren
muss daher eine kleinere Zeitschrittweite zur Erhohung der Genauigkeit der Ergebnisse
gewéhlt werden. Dadurch erhoht sich die Anzahl der auszufithrenden Zeitschritte, um zu
einem Zeitpunkt ¢ zu gelangen. Die numerische Auswertung erfordert jedoch nur einen
geringen Rechenaufwand, da lediglich die Funktion f (¢, Z.) ausgewertet werden muss. Aus
der Maschinengenauigkeit ¢ ergibt sich auch ein Rundungsfehler proportional zu e/ VAL,
was bei sehr kleinen Zeitschrittweiten dazu fithrt, dass der Rundungsfehler grofler als der
Abbruchfehler wird [19, S. 51-85]. Es gibt daher einen optimalen Bereich fiir die Zeitschritt-
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Abbildung 2.5: Schematische Darstellung des Gesamtfehlers als Summe aus Rundungs-
und Abbruchfehler nach [19, S.81].

weite, in dem der Gesamtfehler als Summe aus Abbruch- und Rundungsfehler minimal ist.
In Abb. 2.5 sind die beiden Fehleranteile sowie der Gesamtfehler in Abhéngigkeit von At
in doppeltlogarithmischer Darstellung abgebildet.

Die grofite Einschrankung des expliziten Euler-Verfahrens ist seine bedingte Stabilitét,
die ebenfalls mit der Zeitschrittweite At zusammenhéngt. Stabilitdt bedeutet in diesem
Zusammenhang, dass die numerische Losung fiir & — oo beschréankt bleibt, wenn die
analytische Losung fiir ¢ — oo gegen einen endlichen Wert strebt [19, S. 74]. Zum Beispiel
ist fiir lineare Differentialgleichungen der Form

i=k-z(t) (2.7)

die exakte Losung durch z (t) = e* gegeben. Das explizite Eulerverfahren ist stabil, wenn
das Produkt Atk im Gebiet
{zeC||z+1| <1} (2.8)

liegt [19, S.74-79]. In Abb. 2.6 ist die exakte Losung fiir & = —2.3, die fiir t — oo gleich
Null ist, im Vergleich mit den numerischen Losungen fiir At = 0.7 und At = 1.0 dargestellt.
Fiir At = 1.0 liegt At k = —2.3 auflerhalb des Stabilitdtsgebiets und die Losung oszilliert
mit wachsender Amplitude um die exakte Losung. Fir At = 0.7 ist Atk = —1.61 und die
numerische Losung strebt gegen die exakte Losung.

Zum Vergleich wird auch das implizite Eulerverfahren angegeben, welches fiir beliebige
Zeitschrittweiten stabil ist. Die Berechnungsvorschrift fiir den néchsten Zeitschritt lautet
hier

Zepr = 2+ f (tegrs Zrg1) (2.9)

wobei Zg1 1 auf beiden Seiten der Gleichung steht, was einen Schritt zum Auflésen nach
Zrp+1 erforderlich macht. Dieser kann zum Beispiel mit dem Newton-Raphson-Verfahren
durchgefiihrt werden. Beim impliziten Eulerverfahren gibt es keine Einschrankung der
stabilen Zeitschrittweite, aber der Aufwand zur Berechnung des néchsten Schrittes ist
durch den zusitzlichen Losungsschritt hoch. In Abb. 2.6 ist die Lésung mit dem impliziten
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2
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=
-2
—=— At =0.70
—— At = 1.00
4l implizit

0 1 2 3 4
t

ot

Abbildung 2.6: Losung von 2 = —2.3 2 () mit 29 = 1 durch das explizite Euler-Verfahren
mit At = 1 und At = 0.7. Zum Vergleich ist die exakte Losung z (t) = e =23
und die Losung mit dem impliziten Euler-Verfahren fir At = 1 angegeben.

Eulerverfahren fir die DGL (2.7) mit At = 1.0 angegeben.

Die anhand des Eulerverfahrens dargestellte bedingte Stabilitat expliziter Zeitintegrati-
onsverfahren tritt auch bei den tiblichen Verfahren zur Zeitintegration der Bewegungsglei-
chung (2.1) im Rahmen der expliziten FEM auf. Viele kommerzielle Programme arbeiten
zum Beispiel mit dem zentralen Differenzenverfahren zur Zeitintegration [20, S. 22-24],
[21]. Bei der nichtlinearen Differentialgleichung (2.1) werden die Betrachtungen zur Stabi-
litdt mit Hilfe linearer Naherungen nach Glg. (2.2) durchgefiihrt. Der stabile Zeitschritt
fiir das gesamte Anfangswertproblem wird durch die stabilen Zeitschritte der einzelnen
Elemente bestimmt und das Element mit dem kleinsten stabilen Zeitschritt begrenzt den
Zeitschritt insgesamt. At hdngt von den strukturellen Eigenschaften Masse und Steifigkeit
ab. Die stabile Zeitschrittweite ergibt sich aus der grofiten in der Struktur auftretenden
Eigenfrequenz in Form der Courant-Friedrichs-Lewy-Bedingung (CFL-Bedingung) [22, 23],
[16, Kapitel 17]. Anschaulich ausgedriickt besagt diese Bedingung, dass bei einem Zeitinte-
grationsschritt, bei dem der Zustand auf einer Elementkante als konstant vorausgesetzt
wird, innerhalb des Zeitschritts keine Welle einer benachbarten Kante eintreffen darf, weil
dadurch die Annahme des konstanten Zustands verletzt wird. Es wird also die Zeit gesucht,
die die schnellste Welle von einer Kante zur néchsten bendtigt. Die CFL-Bedingung lautet

l
At = apitprie < min . (2.10)

s,

Dabei ist ¢, . die Wellenausbreitungsgeschwindigkeit des jeweiligen Elements und [. seine
charakteristische Elementlange. Nichtlinearitdten werden durch den Faktor aiay < 1 vor dem
kritischen Zeitschritt ¢, berticksichtigt. Der Zeitschritt At wird fir jedes Element ermittelt
und fiir die Berechnung eines Gesamtproblems bestimmt der kleinste Elementzeitschritt die
globale stabile Zeitschrittweite [23, S.23]. Aus der CFL-Bedingung ist ersichtlich, dass bei
konstantem ¢, . eine Verkleinerung der Elementlinge /. zur Reduzierung von At fithrt. Aus
diesem Grund kann eine Feinvernetzung im Bereich der Rissspitze zu einer Reduzierung
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des kleinsten Zeitschritts und damit zu einer Erhohung des Rechenaufwands fithren.

Im Bereich der Crashsimulation hat sich die explizite FEM als Standard etabliert. Dabei
wird eine gleichméfige Vernetzung der Bauteilgeometrien angestrebt, um eine effiziente
Berechnung zu gewéhrleisten. Typische Elementkantenlédngen bei der Crashsimulation von
Gesamtfahrzeugen liegen in der Gréflenordnung von [/, &~ 5mm. Fiir die Simulation von
Rissen sind daher Methoden von Vorteil, die auch bei hoher Spannungslokalisierung mit
groBeren Elementkantenlédngen sinnvoll eingesetzt werden konnen. Ausfiihrliche Verglei-
che zwischen expliziten und impliziten FEM sind zum Beispiel bei [24, S. 156-166] und
[17, Kapitel 6.6] zu finden. Eine ausfiihrliche Ubersicht praktisch angewandter expliziter
Zeitschrittverfahren ist bei [25] dargestellt.

2.3 Risse mit hoher Spannungslokalisierung

Die Bruchmechanik befasst sich mit dem Verhalten von Rissen unter Belastung. Da-
zu wird der risstreibenden Kraft der Widerstand des Materials gegen Rissausbreitung
gegeniibergestellt [26],

Dgen > Rgen . (211)

Dygep ist eine allgemeine risstreibende Kraft, die sich aus den dufleren Kréften und der
gespeicherten elastischen Energie des Bauteils mit Riss zusammensetzt. Der Materialwi-
derstand gegen die Rissausbreitung ist Rge,. Stabiles Risswachstum tritt auf, wenn die
Belastung gleich grof§ wie der Risswiderstand ist. Es ist dadurch gekennzeichnet, dass
eine Verringerung der risstreibenden Kraft zu Dy, < Rgen, und damit zum Stop des
Risswachstums fithrt. Ist dagegen Dge, > Rye, liegt instabiles Risswachstum vor, welches
zu hohen Ausbreitungsgeschwindigkeiten des Risses im Bereich der Schallgeschwindigkeit
fithrt. Die Stabilitat des Risswachstums héngt von der elastischen Energie und den &ufleren
Kréften ab [27].

Als Ausgangspunkt fiir die Entwicklung der Bruchmechanik gilt die Arbeit von [28]
und ausfiihrliche Darstellungen der zugehorigen Methoden kénnen unter anderem bei
[14, 29, 30] und [26] nachgeschlagen werden. Die Bruchmechanik beinhaltet unterschiedliche
Modelle, deren Giltigkeitsbereich vom vorliegenden Zustand an der Rissspitze abhéngt.
Das Kriterium fir die Abgrenzung der Modelle ist die Auspriagung der plastischen Zone
[26]. Im Rahmen der vorliegenden Arbeit werden dynamische Effekte, Kriechen und
Ermiidungsrisswachstum nicht betrachtet. Das Risswachstum wird als statisches bzw.
quasistatisches Problem behandelt.

Das Konzept des im weiteren Verlauf entwickelten Rissspitzenelements beruht auf der
LEBM, die im Folgenden kurz vorgestellt wird. Die Anwendbarkeit der LEBM héngt
entscheidend von den Materialeigenschaften und den Bauteil- und Rissdimensionen ab.
Duktile Materialien konnen damit bei kleinen Bauteil- und Rissdimensionen nicht hin-
reichend beschrieben werden. In diesem Fall ist eine Beschreibung des Risses durch die
elastisch-plastische Bruchmechanik (EPBM) erforderlich. Die LEBM wurde von [28] zur
Beschreibung des ideal sproden Bruches entwickelt, welcher dadurch charakterisiert wird,
dass keinerlei plastische Verformungen an der Rissspitze auftreten. Bis auf wenige Ausnah-
men treten irreversible Vorginge aber in allen Materialien auf, was die Anwendbarkeit der
LEBM zunéchst stark einschrénkt. Beim ideal sproden Riss ergeben sich die Spannungen in
der Néhe der Rissspitze aus der linear-elastischen Elastizitatstheorie, wobei ein elastischer
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Abbildung 2.7: Beim K-Konzept mit Kleinbereichsflieien ist die Prozesszone (grau) von
der plastischen Zone mit Radius r, umschlossen. Im Bereich r, <r < R
wird der Zustand durch den Spannungsintensitéatsfaktor K charakterisiert
[14].

Korper durch einen Riss teilweise aufgetrennt wird. Die beiden Rissufer treffen dabei
in einer ideal scharfen Rissspitze mit Kerbradius Null aufeinander [30, S.26]. Aus der
Bauteilgeometrie und den vorgegebenen dufleren Kréften und Verschiebungen entsteht mit
dieser Idealisierung des Risses ein mathematisches Randwertproblem, das in der Regel
mit Hilfe numerischer Methoden gelost werden muss. Fiir einfache Bauteilgeometrien sind
auch analytische Losungen verfiigbar. Aus der Losung des Randwertproblems erhélt man
den Spannungsintensititsfaktor K, der den aktuellen Spannungszustand in der Nahe der
Rissspitze durch

(2.12)

K
Oij = \/ﬁf i (0)
eindeutig beschreibt. o;; ist dabei eine Komponente des Spannungstensors mit ,j €
{1,2,3} und die Funktion f;; (f) fir die jeweilige Spannungskomponente ergibt sich aus
der Losung des Randwertproblems. Fiir » — 0 wird die Spannung unendlich grofi. Vorge-
hensweisen zur Ermittlung von f;; (f) werden unter anderem bei [14, 30, 31] beschrieben.
0 ist der Winkel in einem lokalen Polarkoordinatensystem an der Rissspitze mit 6 = 0
in Rissrichtung und dem Abstand r von der Rissspitze. Fir einfache Geometrien und
Lastfille gibt es auch ausfithrliche Sammlungen von tabellierten Geometriefaktoren Y,
unter anderem bei [32, 33], mit denen der Spannungsintensitétsfaktor aus der Risslinge a
und der anliegenden Spannung berechnet werden kann. Der Zusammenhang hierfiir lautet

K =o0y/maY (a). (2.13)

Durch das K-Konzept kann die LEBM auch beim Auftreten von kleinen plastischen
Zonen an der Rissspitze eingesetzt werden. Dies wird als LEBM mit Kleinbereichsflieen
bezeichnet. Der eigentliche Bruchprozess findet dabei in einer raumlich begrenzten Prozess-
zone statt und die plastische Zone ist klein im Vergleich zum Einflussbereich des K-Feldes.
Im Bereich zwischen 7, < r < R charakterisiert dann K den Zustand an der Rissspitze
vollstédndig. In Abb. 2.7 ist die Situation an der Rissspitze beim Kleinbereichsfliefen in
Anlehnung an [14, S.75] dargestellt. Dabei ist 7, der Radius der plastischen Zone und der
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Abbildung 2.8: 6, wird durch eine gedachte Rissverlingerung um 7, definiert. Die Auswer-
tung erfolgt an der urspriinglichen Position der Rissspitze.

Bereich der Prozesszone, in der die atomistischen Vorgiange der Materialtrennung stattfin-
den, ist als grauer Kreis dargestellt. In groBerer Entfernung von der Rissspitze r» > R tragen
weitere nichtsinguldre Terme zum Spannungsfeld bei. Tabellierte Losungen fiir nichtsingu-
lare Terme sind bei [34] zu finden. Das K-Konzept erweitert den Anwendungsbereich der
LEBM auf eine Vielzahl von technischen Werkstoffen und Anwendungsfillen. So kénnen
unter anderem die in Abschnitt 2.1 beschriebenen Strukturbauteile aus héchstfestem Stahl
vielfach mit der LEBM beschrieben werden.

In der LEBM gibt es neben dem Spannungsintensitétsfaktor K weitere dquivalente
Beschreibungen des Beanspruchungszustandes an der Rissspitze. Aus einer energetischen
Betrachtung erhélt man die Energiefreisetzungsrate &, die nach [14, S.100] mit dem
Spannungsintensitatsfaktor K durch

_ |Kk*E ESZ
®= {(1 - ) K2/E EVZ 214)

verkniipft ist. Dabei wird zwischen ebenem Spannungszustand (ESZ) und ebenem Ver-
zerrungszustand (EVZ) unterschieden. Im Giiltigkeitsbereich der LEBM entspricht die
Energiefreisetzungsrate & dem J-Integral, das in der EPBM zur Beschreibung des Zustands
an der Rissspitze eingesetzt wird.

Abbildung 2.9: v, wird in einem definierten Abstand r, hinter der Rissspitze ausgewertet.

Eine weiterer Parameter der LEBM ist die Rissspitzenoffnungsverschiebung (CTOD) &,
die auf unterschiedliche Weise definiert werden kann. Eine Méglichkeit zur Definition ist
durch die Abschitzung des Radius der plastischen Zone nach [35] gegeben,

. = (%) sz (2.15)
" (5 EBvz '
6m \op :

Diese Abschitzung beruht auf der Annahme, dass Spannungen oberhalb der Fliespannung
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or durch Plastifizierung abgebaut werden. Durch Einsetzen von o in Glg. (2.12) und
Auflésen nach r erhdlt man den Radius, bei dem die Spannung gleich o ist. Fir die
Berechnung von §; wird der Riss dann gedanklich um 7, verldngert und die Verschiebung
der Rissufer an der urspriinglichen Position der Rissspitze ausgewertet. Damit ist [30,
S.91]

o ESZ

& = (2.16)
K?(1-0v?
72(,% ) mvz.

In Abb. 2.8 ist die Definition von CTOD durch den Radius der plastischen Zone dargestellt.

Eine weitere Grofle zur Charakterisierung des Widerstands gegen Rissausbreitung
ist der Rissoffnungswinkel (CTOA). CTOA kann dabei insbesondere zur Beschreibung
des Risswiderstands in diinnwandigen Blechbauteilen eingesetzt werden [36, 37]. Fir
die Auswertung wird der Rissoffnungswinkel v; in einem definierten Abstand hinter der
Rissspitze aus der Verschiebung der Rissflanken berechnet. In vielen Féllen betrigt der
Auswertungsabstand dabei 1 mm [38]. Eine Definition von 7; mit dem Auswertungsabstand
. ist in Abb. 2.9 dargestellt. Fiir den Rissoffnungswinkel steht kein direkter Zusammenhang
mit den GroBen der LEBM zur Verfiigung. Ein grofier Vorteil von CTOA ist die Moglichkeit
einer direkten Auswertung aus der Geometrie der verformten Rissufer.

2.4 Kiriterien fiir Rissfortschritt

Mit Hilfe der LEBM kann die Belastung an der Rissspitze bei einem ideal sproden Bruch
und bei KleinbereichsflieBen bestimmt werden. Die Bedingung fiir stabilen Rissfortschritt
aus Glg. (2.11) lautet im Fall des ideal sproden Bruchs

K=K,. (2.17)

K, ist der kritische Spannungsintensititsfaktor, welcher den Risswiderstand des Materials
beschreibt und aus Versuchen ermittelt werden muss. Man unterscheidet drei unabhangige
Belastungsmoden eines Risses, Modus I, II und III. Die zugeordneten Belastungsrichtungen
sind in Abb.2.10 dargestellt. ModusI ist eine Belastung senkrecht zur Rissrichtung,
ModusI eine Scherbelastung in der Rissebene und Modus I1I eine Scherbelastung senkrecht
zur Rissebene (Querscherbelastung). Das elastische Spannungsfeld an der Rissspitze setzt
sich dabei aus den einzelnen Teilspannungen zusammen. Im ideal sproden Fall ist K, nicht
vom Belastungsmodus abhéngig. Die drei Spannungsintensititsfaktoren konnen einfach
summiert werden, um das Rissfortschrittskriterium aus Glg. (2.17) auszuwerten,

K=K+ K+ Ky . (2.18)

Dieses einfache Kriterium zur Beschreibung des Rissfortschritts gilt bei Kleinbereichs-
flieBen nicht mehr, weil der Risswiderstand in diesem Fall von der Belastungsrichtung
abhéngt. Fir die Erzeugung der plastischen Deformationen im Bereich der Rissspitze
muss zusétzliche Energie aufgewendet werden. Die spezifische Energie zur Erzeugung einer
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Modus1 ModusII Modus IIT

Abbildung 2.10: Die unterschiedlichen Belastungsmoden eines Risses.

neuen Rissoberfliache v wird dadurch vergroBert,

=t - (2.19)

Dabei ist v, die Oberflichenenergie und v, die Energie fiir die plastische Verformung. -,
kann zudem eine Funktion der Rissverlangerung Aa sein,

Y = (Aa) . (2.20)

Auch die kritische Spannungsintensitit K. aus Glg. (2.17) ist dann eine Funktion von Aa.
Analog zu den Belastungsgrofien aus Abschnitt 2.3 kann auch K, durch eine kritische Ener-
giefreisetzungsrate &, oder die kritische Rissoffnungsverschiebung d;. sowie den kritischen
Rissoffnungswinkel 7. beschrieben werden [14, 26].

Der kritische Spannungsintensitatsfaktor K, ist im Fall des KleinbereichflieBens eine
allgemeine Funktion der Form

Ko (K1, Ki1, K1, Aa) (2.21)

Der Beginn des Risswachstums ist in diesem Fall eine Grenzflache im Raum, der durch die
drei unabhingigen Spannungsintensititsfaktoren und die Rissverlangerung aufgespannt
wird. Aus Versuchen mit unterschiedlichen Belastungsanteilen von ModusI, II und III an
der Rissspitze konnen einzelne Punkte dieser Grenzflache, auf der stabiles Risswachstum
erfolgt, ermittelt werden. Eine geschlossene Beschreibung in Form eines Modells fiir alle
moglichen Belastungszustinde ist dagegen im Allgemeinen nicht verfiighar. Fir den Fall
einer ebenen Modus I/II-Belastung sind verschiedene Modelle zur Beschreibung gemischter
Beanspruchungen und zur Bestimmung der Rissausbreitungsrichtung verfiigbar, vergleiche
zum Beispiel [14, 30].
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2.5 Methoden zur Simulation von Rissen

Die technischen Aufgabenstellungen, die mit Hilfe der Bruchmechanik beantwortet werden
sollen, kénnen in den meisten Féllen nur mit numerischen Methoden gelost werden. Die
wichtigsten Fragestellungen sind dabei, ob ein vorhandener Anriss unter einer gegebenen
Belastung wichst und wie grofl die Belastung werden kann, bevor Risswachstum auftritt. In
manchen Situationen lésst sich die Entstehung und das Wachstum von Rissen nicht vermei-
den und der wachsende Riss fithrt schliefilich zum Bruch des Bauteils. Dadurch kann sich
das globale mechanische Verhalten einer ganzen Bauteilstruktur verdndern. Daraus ergibt
sich die Aufgabenstellung, auch das Wachstumsverhalten eines Risses in einem Bauteil zu
beschreiben, um die daraus resultierende Verringerung der Tragfahigkeit der untersuchten
Struktur abzuschétzen. Ein Anwendungsbeispiel fiir die numerische Untersuchung von
potentiellen Anrissen mit der Bruchmechanik sind sicherheitsrelevante Strukturbauteile
in Fahrzeugen unter Crashbelastung. Die hierfiir verwendeten héchstfesten Stahlbleche
erfordern in Kombination mit der expliziten FEM speziell angepasste Simulationsmethoden.
Im Folgenden werden die wichtigsten Verfahren kurz charakterisiert.

Die FEM kann bereits ohne spezielle Erweiterungen zur Beschreibung von Rissen
eingesetzt werden, aber die Singularitat des Spannungsfeldes an der Rissspitze kann mit
den iiblichen linearen oder quadratischen Polynomansétzen fiir die Verschiebungen nur
unzureichend abgebildet werden [30, S.187]. Die Verfeinerung der Netzdiskretisierung
nach der h-Methode fiithrt auch im Bereich der Rissspitze zu genaueren Ergebnissen, kann
aber bei expliziten FE-Simulationen zu einer unerwiinschten Reduzierung der globalen
Zeitschrittweite fiihren. Im Bereich der Crashsimulation von Gesamtfahrzeugen liegen
die uiblichen Elementkantenldngen in der Groflenordnung von [, =~ 5mm. Die Grofle der
plastischen Zone an der Rissspitze kann unter Annahme eines ESZ nach Glg. (2.15) durch

2
d, =1 (K—’> (2.22)
™ ofp
abgeschatzt werden [18, S.105]. Mit Werten nach [11, S.158] fiir hochstfeste, marten-
sitaushdrtende Stiahle von Kj. = 120 MPay/m und o7 = 2000 MPa erhélt man einen
Durchmesser der plastischen Zone von d, = 1.15 mm. Das Spannungsfeld in der Umgebung
der plastischen Zone kann in diesem Fall mit Elementkantenléngen von [, ~ 5 mm und
konstanten Ansétzen der Standardelemente fiir die Spannungen und Dehnungen nicht
genau aufgelost werden.

Eine Modifikation zur Verbesserung von Standardelementen sind die sogenannten Vier-
telpunktelemente, bei denen die Kantenmittelknoten versetzt werden oder eine Kante zu
einem Punkt kollabiert wird [30, S.191-205]. Die Methode weist im Vergleich zu Stan-
dardelementen einige giinstige Eigenschaften auf, erfordert aber weiterhin eine speziell
angepasste Vernetzung. Die Viertelpunktelemente miissen dabei in radialer Richtung um
den Riss facherformig angeordnet werden, wobei mindestens 6 Elemente fiir den Halbkreis
benotigt werden. Die Elementgrofie ist abhéangig von der Risslange zu wéihlen und der
Richtwert fiir die Elementgrofe liegt bei I, ~ a/20...a/10.

Eine weitere Schwierigkeit beim Einsatz der Standard-FEM stellt die Neudefinition des
Risses nach einem Inkrement der Rissverldngerung dar, weil die Vernetzung des Bauteils
zur Darstellung der neuen Rissgeometrie entsprechend angepasst werden muss. Die Aufga-
benstellung bei der Simulation von Risswachstum besteht daher aus mehreren Teilschritten
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Definition Anriss
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dingung
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1

Abbruchbe-
dingung
erfillt?

Abbildung 2.11: Wesentliche Schritte eines Algorithmus zur Simulation von Risswachstum
nach [39, S.73].

[39, S.71], wobei die Analyse der Rissbelastung nur einen Teil darstellt. Zunéchst muss ein
Anriss definiert werden, dessen Wachstumsverhalten untersucht werden soll. Danach erfolgt
die Analyse durch Bestimmung des aktuell vorliegenden Spannungsintensitatsfaktors K aus
der Losung des Randwertproblems (RWP), welches durch die Bauteil- und Rissgeometrie,
die auleren Kréfte und Momente und die vorgegebenen Verschiebungen und Rotationen
definiert ist. Risswachstum setzt ein, wenn die berechnete Belastung K den aus bruchme-
chanischen Versuchen ermittelten Wert K. tiberschreitet. Die Rissausbreitungsrichtung
unter gemischter Belastung kann zum Beispiel mit den bei [30, S. 127-132] beschriebenen
Ansétzen ermittelt werden. Durch das Risswachstum in die ermittelte Richtung entsteht
ein neues RWP mit verdnderter Rissgeometrie, welches wiederum gelost werden muss, bis
schlieBlich kein weiterer Rissfortschritt mehr stattfindet. Ein Algorithmus zur Simulation
von Risswachstum in einer Bauteilstruktur besteht daher aus den folgenden wesentlichen
Teilaufgaben:

1. Bestimmung des aktuellen Beanspruchungszustandes an der Rissspitze durch Losen
des RWP
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2. Auswertung eines geeigneten Rissfortschrittkriteriums und Bestimmung der Rissaus-
breitungsrichtung

3. Neudefinition des RWP nach erfolgter Rissausbreitung

In Abb.2.11 ist der schematische Ablauf einer Simulation von Risswachstum nochmals
zusammengefasst.

Grundséitzliche Moglichkeiten zur Anpassung der Netzdiskretisierung beim Risswachstum
stellen das Loschen und das Teilen von Elementen und das Auftrennen von Knoten dar [40].
Weiterhin kann der Bereich in der Néhe der Rissspitze neu vernetzt werden (Remeshing)
um ein Netz zu erzeugen, welches die Risskonfiguration nach dem Wachstumsinkrement
abbilden kann. Beim adaptiven Remeshing wird der Prozess der Neuvernetzung iterativ
wiederholt, bis ein bestimmtes Giuitema$ zur Beurteilung der Netzqualitét erfiillt ist [30,
S.311-342]. Je nach erforderlicher Netzfeinheit und Anzahl der Risswachstumsinkremente
kann der Aufwand fiir das Remeshing sehr grof§ werden. Um bei der expliziten FEM
eine Reduzierung der globalen Zeitschrittweite durch Remeshing zu vermeiden, konnen
Submodelling-Techniken eingesetzt werden [23]. Fir die Verbindung der inkongruent
vernetzten Teilgebiete sind in diesem Fall jedoch spezielle Algorithmen erforderlich.

Aufgrund der angesprochenen Schwierigkeiten wurden zahlreiche Methoden entwickelt,
um die Simulation von Rissen zu verbessern. Bei [41] ist eine ausfithrliche Ubersicht
der numerischen Verfahren fir Risse in ideal sproden und quasi-sproden Materialien
dargestellt. In diese Kategorie fallen die bereits vorgestellten hochstfesten Stiahle. Fur
duktiles Materialverhalten werden andere Verfahren eingesetzt, da keine ausgeprégte
Lokalisierung der plastischen Zone und der Spannungen vorliegt. Eine Einfithrung in
spezielle Verfahren fiir elastisch-plastische Strukturen ist bei [30, Kapitel 7] zu finden.
Bei den numerischen Verfahren wird grundsitzlich zwischen diskreten und kontinuierlich
verteilten (smeared crack model) Methoden unterschieden. Die kontinuierlich verteilten
Methoden stammen aus der Schadigungsmechanik und eignen sich fir duktile Werkstoffe
[30]. Bei [41] werden sie auch fiir quasi-sprode Werkstoffe vorgeschlagen. Einen Einblick in
die Methoden der Schidigungsmechanik und eine Literaturiibersicht gibt [14, Kapitel 9]. Die
diskreten Verfahren basieren dagegen auf der konkreten Modellierung der Rissgeometrie mit
den bereits angesprochenen Schwierigkeiten. [30] beschreibt beide Gruppen von numerischen
Verfahren fiir Risse im Rahmen der FEM. In kommerziellen FE-Programmen eingesetzte
Verfahren werden in der jeweiligen Dokumentation des Programms, wie zum Beispiel bei
[42, 43], beschrieben. In der Diplomarbeit von [40] werden einige kommerziell verfiighare
Losungen zur Analyse von Rissen miteinander verglichen.

Eine wichtige Methode zur diskreten Modellierung von Rissen in sproden Materialien ist
die Extended Finite Element Method (XFEM), die zum Beispiel bei [44-46] und [47, 48]
beschrieben wird. Die XFEM beinhaltet im Vergleich zur Standard-FEM erweiterte
Ansatzfunktionen zur Beschreibung von Diskontinuitidten wie Rissen und kann zusatzlich
im Bereich der Rissspitze mit Teilen der analytischen Losung erweitert werden. Mit
der Level-Set-Methode kann bei der XFEM zudem der Risspfad unabhéngig von der
Vernetzung dargestellt werden [48, 49].
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Abbildung 2.12: Simulation von Rissausbreitung durch ein mitbewegtes Rissspitzenelement
nach [30]. Das T-Element wird auf Basis eines geeigneten Kriteriums
schrittweise in Richtung von Aa verschoben. Dadurch bleibt die Rissspitze
stets innerhalb des Elementgebiets.

2.6 Spezielle hybride Trefftz-Elemente

Ein weiterer erfolgversprechender Ansatz fiir die Formulierung spezieller Rissspitzenele-
mente ist die Verwendung hybrider Variationsprinzipien [30, S.156-161], [50], die eine
Erweiterung des Prinzips der virtuellen Arbeit darstellen. Die Idee hybrider Elemente
ist nach [16, S.346] eine Unterteilung des Simulationsgebiets in mehrere Bereiche und
die Anwendung unterschiedlicher Ansétze in diesen Bereichen. Durch die speziell an das
Problem angepassten Ansétze steht in jedem Bereich eine optimale Beschreibung zur
Verfligung. Bei hybriden Elementformulierungen werden die Stetigkeitsanforderungen an
den Elementgrenzen approximativ erfiillt, wodurch im Elementinneren nicht konforme
Spannungs- und Verschiebungsansitze gewihlt werden konnen [51].

Die hybride Trefftz-Methode ist wiederum eine spezielle hybride Elementformulierung
und geht auf die Arbeit von [52] zurtick. Grundkonzept dieser Methode ist im Gegensatz
zur FEM [53] die Verwendung analytischer Losungen des zugrundeliegenden RWP als
Ansatzfunktionen. Dieses Konzept wurde unter anderem von [54-56] zur Formulierung
spezieller hybrider Elemente eingesetzt. Die Ansatzfunktionen stellen dabei nicht nur
analytische Losungen im betrachteten Gebiet dar, sondern erfiillen zusétzlich bestimmte
Randbedingungen auf einem Teilrand dieses Gebiets. Auf dem verbleibenden Rand wer-
den die Randbedingungen approximativ erfiillt. Dabei sind sowohl Spannungs- als auch
Verschiebungsformulierungen maoglich [51].

Im Rahmen der ebenen Elastizitétstheorie und der Kirchhoffschen Plattentheorie [57]
stehen fiir Scheiben und Platten bei linear-elastischem Materialverhalten analytische Losun-
gen fiir die Formulierung von Trefftz-Elementen (T-Element) zur Verfiigung. Eine Vielzahl
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dieser Losungen fiir verschiedene Randwertaufgaben aus der Scheiben- und Plattentheorie
geht dabei auf [58-60] zuriick. Scheiben sind ebene Flichentragwerke, die ausschlielich
durch Kréfte in der Ebene belastet werden, und Platten werden entsprechend nur durch
Kréfte orthogonal zur Ebene belastet. Eine weitere Plattentheorie mit analytischen Lo-
sungen wurde von [61, 62] vorgestellt. Auf Basis der bekannten analytischen Losungen
wurden bereits zahlreiche Trefftz-Elemente formuliert. Im Rahmen der vorliegenden Arbeit
werden die analytischen Losungen der Plattentheorie von Kirchhoff als Ausgangspunkt
fiir ein neues T-Element verwendet. Durch die Kombination dieses Elements mit einer
T-Elementformulierung fiir ein Scheibenelement entsteht ein linear-elastisches Schalenele-
ment fiir im unbelasteten Zustand ebene Geometrien. Dieses Mixed-Mode-Element wird
im weiteren Verlauf kurz als Schalenelement bezeichnet. Als einfache Néherungslosung
werden mit diesem Schalenelement auch leicht gekriimmte Schalenstrukturen approximiert.

Hybride T-Rissspitzenelemente verfiigen durch die analytischen Losungen tiber speziell
an das lokale Rissproblem angepasste Ansatzfunktionen und kénnen aus diesem Grund
das Spannungs-, Dehnungs- und Verschiebungsfeld im Bereich der Rissspitze ohne Netz-
verfeinerung mit hoher Genauigkeit beschreiben. Fiir ebene Belastungen unter ModusI/II
wurden T-Elemente zur Beschreibung von Rissproblemen unter anderem von [49, 63-66]
vorgestellt. Von [67] wurde eine Elementformulierung fiir das Plattenproblem vorgestellt,
welche die Singularitét an der Rissspitze mitberticksichtigt. Ein den ebenen Formulierungen
aquivalentes T-Element fiir ModusIII steht bisher noch nicht zur Verfiigung. Im Rahmen
der vorliegenden Arbeit wird diese Liicke geschlossen und ein neues T-Element fiir Risse
unter Modus I1I-Belastung vorgestellt, das mit vorhandenen ebenen Elementen zu einem
Schalenelement kombiniert werden kann.

Der entscheidende Vorteil hybrider T-Elemente ist nach [30, S.209] und [68], dass
fiir die Berechnung der Elementsteifigkeitsmatrix nur iiber den Elementrand integriert
werden muss. Bei den Rissspitzenelementen, welche die Randbedingungen am Rissufer
exakt erfiillen, muss nur iiber den verbleibenden Elementrand ohne die Rissufer integriert
werden. Dadurch kann das T-Element eine variable Geometrie und Anzahl von Element-
knoten aufweisen. Diese Eigenschaft ist die Voraussetzung dafiir, dass das T-Element bei
der Simulation von Risswachstum eine unterschiedliche Anzahl an Standardelementen
ersetzen kann. In Abb. 2.12 ist ein Beispiel fiir ein T-Element mit den umgebenden Stan-
dardelementen abgebildet. Im dargestellten Fall ersetzt das T-Element zehn regelméflige
Standardelemente.

Aufgrund ihrer variablen Knotenanzahl und der Unabhéngigkeit der Losungsgenauigkeit
von der Elementgrofie eignen sich T-Elemente gut zur Formulierung von benutzerfreundli-
chen Rissfortschrittsalgorithmen. Die beiden Eigenschaften vereinfachen die Neudefinition
des RWP bei Risswachstum und die Anpassung der Elementgeometrie an das vorliegende
FE-Netz. Das in dieser Arbeit entwickelte T-Element fir Modus I1I-Belastung bildet in
Kombination mit der von [49] vorgestellten Scheibenformulierung ein linear-elastisches
Schalenelement, das beliebige gemischte Beanspruchungen an der Rissspitze darstellen kann.
Ein Algorithmus zur Simulation von Risswachstum entsteht aus der gekoppelten Simulation
eines Teilgebiets ohne Riss mit der Standard-FEM und der Rissspitzenumgebung mit einem
T-Element. Nach einer bestimmten Rissverlangerung Aa innerhalb des Elementgebiets wird
das T-Element bei weiterem Risswachstum mit der Rissspitze mitgefiihrt [30, S.316-318].
Die Kopplung zwischen den beiden Teilgebieten erfolgt entweder durch die Assemblierung
einer Gesamtsteifigkeitsmatrix und Losen des daraus entstandenen Gleichungssystems oder
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durch den Austausch von Knotenkréften und -momenten sowie der daraus resultierenden
Knotenverschiebungen und -rotationen. Damit ist eine Kopplung sowohl mit impliziten als
auch mit expliziten FE-Modellen méglich. Das Gesamtmodell kann dabei auch nichtlinear
sein, solange die Umgebung des T-Elements im linear-elastischen Bereich bleibt.

Aufgrund der genannten Vorteile bilden T-Elementformulierungen einen erfolgverspre-
chenden Ansatz zur Simulation von Risswachstum. Der Einsatz der in dieser Arbeit
vorgestellten Methodik ist dabei nicht auf die Crashsimulation im Automobilbereich
beschrankt, sondern ist allgemein auf dinnwandige Strukturen iibertragbar, deren Bruch-
verhalten durch die LEBM charakterisiert wird. Weitere Beispiele fiir Strukturen dieser
Art finden sich im Schiffsbau, in der Luftfahrtindustrie und im Bauingenieurwesen.
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3 T-vollstandige Losung des Modus IlI-
Rissproblems

Im letzten Kapitel wurde das Konzept der Trefftzmethode zur Formulierung spezieller
Rissspitzenelemente vorgestellt. Im Folgenden wird ein entsprechendes T-Element fiir Risse
unter Modus III-Belastung entwickelt. Das Ziel dabei ist, durch Kombination des Elements
mit bestehenden Formulierungen fiir ModusI/II zu einer ebenen Schalenformulierung
zu gelangen. Die Modellierung beruht auf der Plattentheorie von Kirchhoff, die trotz
vieler vereinfachender Annahmen erfolgreich zur Modellierung von Plattenstrukturen
eingesetzt wird [69, Kapitel4]. Aus dem elastischen Potential der Platte ergibt sich dabei
das zugehorige RWP fiir ein Gebiet mit Innenriss. Daraus wird im weiteren Verlauf eine
vollstdndige Trefftz-Funktionenbasis von Losungsfunktionen abgeleitet, welche neben der
Differentialgleichung der Platte auch die Randbedingungen am Rissufer exakt erfiillt. Die
Losungsfunktionen werden mit Hilfe der Funktionentheorie berechnet, die erstmals von
[60, 70] zur Losung von Problemen der linearen Elastizitatstheorie angewandt wurde. Der
vollstandige Satz von Losungsfunktionen bildet die Basis fiir die Formulierung des hybriden
Modus ITI-Elements in Kapitel 4.

3.1 Kinematik und Verzerrungstensor

Die Platte ist ein spezielles ebenes Fléachentragwerk, dessen Dicke klein im Vergleich zu
allen anderen Abmessungen ist. Aufgrund dieser Eigenschaft muss eine Platte nicht im
Rahmen der dreidimensionalen Kontinuumsmechanik betrachtet werden, sondern kann
durch vereinfachte Modelle charakterisiert werden [69]. Die Belastung eines Risses im
ModusIII in einem diitnnwandigen, flachenhaften Bauteil stellt ein Problem dar, welches
durch ein Plattenmodell beschrieben werden kann. Im unbelasteten Zustand ist eine Platte
eben und erfiahrt nur Kréfte senkrecht zur Plattenebene sowie Momente um Drehachsen,
die in dieser Ebene liegen. In Abb. 3.1 ist eine Platte unter Belastung durch eine Einzelkraft
F und eine Flachenlast p (z,y) dargestellt. Zusatzlich sind die resultierende Randquerkraft
@ und die resultierenden Randmomente M, und M, eingezeichnet. Die resultierenden
Randgrofien ergeben sich durch Integration iiber die Plattendicke. Das einfachste Modell
der Platte wurde von [57] erstmals vollstdndig formuliert und wird daher Kirchhoff-Platte
genannt. Darstellungen der Theorie sind in vielen Lehrbiichern der Mechanik und der
Elastizitatstheorie zu finden, zum Beispiel bei [18, 71-75] und [76].

Die folgenden Annahmen ermdglichen bei der Kirchhoff-Platte die Reduzierung des
Problems auf ein ebenes Modell [75, S. 96]:

1. Linien, die im undeformierten Zustand senkrecht zur Mittelebene stehen (Normalen
senkrecht zur Plattenebene), bleiben bei einer Deformation gerade

2. Diese senkrechten Linien erfahren keine Verlingerung
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Abbildung 3.1: Diinne Platte nach [77, S.19] mit resultierender Querkraft @ und den
Momenten M, und M, am Rand. Zusdtzlich kann eine Platte durch
Einzelkréfte F' und Flachenlasten p (z,y) belastet werden.

3. Die Normalen senkrecht zur Plattenebene bleiben bei einer Deformation senkrecht
zur deformierten Mittelebene

Die Kinematik der Kirchhoff-Platte ist in Abb. 3.2 dargestellt. Die Platte aus Abb. 3.1 hat
eine homogene Dicke ¢ und wird durch die kartesischen Koordinaten (z,y, z) beschrieben.
Die Mittelebene liegt in der zy-Ebene und die Durchbiegung w eines Punktes P der Platte
entspricht seiner Verschiebung in z-Richtung. Im deformierten Zustand hat der Punkt die
Koordinaten (z + u,y + v, z + w). Einzelkrafte F' und Flichenlasten p (z,y) werden fir
die hier beschriebene Elementformulierung nicht benotigt. In Kapitel 7 wird als Ausblick
auf kiinftige Weiterentwicklungen eine Moglichkeit zur Beriicksichtigung von Linienlasten
entlang des Rissufers beschrieben. Aus den Annahmen (1) und (2) folgt, dass die Dehnung
in Dickenrichtung

ow
€rr = E =0 (31)

und folglich auch w unabhéngig von z ist, also w = w (z,y). Aus der Annahme (3) folgt
fiir die Scherungen in z-Richtung

_Ou  Ow

Yoz = (92 + (958 =0 3 (32&)
dv  Jdw
Vyz az+ oy 0 (3.2b)

und es liegt ein EVZ vor. Die Kirchhoff-Platte wird aufgrund der getroffenen Annahmen als
schubstarr bezeichnet und neben dem EVZ wird zugleich ein ESZ angenommen [18, S. 200].
Plattentheorien mit Beriicksichtigung von Schubverformungen werden zum Beispiel bei
[74, 75] beschrieben, darunter die Schubdeformationstheorie erster Ordnung der Reissner-
Mindlin-Platte, die auf [61, 62] zuriickgeht.

Die Kirchhoff-Platte lasst sich aufgrund der getroffenen Annahmen als ebenes Problem
der Plattenmittelebene formulieren. Das Gebiet der undeformierten Mittelebene der Platte
wird dazu mit €2 bezeichnet. Das rdumliche Volumen dieser Platte ist durch das Tensorpro-
dukt V = Q x (—t/2,t/2) [75, S.97] gegeben. Der Rand des Volumengebiets besteht aus
der Grund- (z = —t/2) und der Deckfliche (z = ¢/2) sowie der Fliche I' = T' x (—£/2,1/2),
worin I eine beliebige, gekrimmte Randkurve mit dem nach aufien gerichteten Einheits-
normalenvektor n ist. In kartesischen Koordinaten nach Abb. 3.1 ist dieser Normalenvektor
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Abbildung 3.2: Durch die Kinematik der Kirchhoff-Platte [18, Abb. 3.23] hat ein Punkt P
im Abstand A von der undeformierten Mittelebene z = 0 im deformierten
Zustand wieder den Abstand h von der Mittelebene. Die Durchbiegung
der Platte in z-Richtung ist w (z,y).

durch n = n, e, + ny e, + 0e, mit den Komponenten n, in z-Richtung, n, in y-Richtung
und 0 in z-Richtung sowie den Standard-Basisvektoren e,, e,, e, gegeben.
Der Ortsvektor eines Punktes der Mittelebene Q € R? wird durch allgemeine Koordinaten

z == (&) (33)
beschrieben, wobei ein lokales Koordinatensystem mit 4, j = 1,2 durch

0z’

g, =Zi= 26 (3.4)

gegeben ist [78, S. 191ff]. Ohne Beschrankung der Allgemeinheit wird im Weiteren g5 = e,
gesetzt. Mit dem Kronecker-Delta

i1 =g
@f{o oy (3.5)

ist der Zusammenhang zwischen dem Koordinatensystem aus Glg. (3.4) und der dazu
dualen Koordinatenbasis g* durch

g'-9;=9 (3.6)

gegeben. Die oben beschriebenen Annahmen (1) bis (3) fithren in den allgemeinen Koordi-
naten zu folgendem Verschiebungsfeld u fir die Kirchhoff-Platte [57, 72], [75, S.97],

u

u= | v | = =2V, &) +wés e, (3.7)
w
wobei —£ < z < 41, Desweiteren ist Vw = g gé“ der Gradient von w(&;, &) mit dem

Nabla-Operator V := g % [75, S.6]. In Abb. 3.3 ist ein Beispiel fiir eine Platte mit der
Dicke ¢t im Gebiet V' dargestellt. Das zugehorige ebene Problem in € wird durch die
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Abbildung 3.3: Die Platte im Gebiet V' mit der Mittelebene  (gepunktete Linie) hat die
Dicke ¢, wobei ) durch eine Randkurve I' mit vier Ecken begrenzt wird.
Die Randflichen werden mit I' bezeichnet.

Randkurve I" mit vier Ecken begrenzt.

Zur Formulierung des Verzerrungstensors werden die linearisierten Verzerrungen ver-
wendet, die fiir kleine Rotationen der Plattenmittelebene gelten. Die Rotationen ergeben
sich aus der Richtungsableitung von w senkrecht zur Rotationsachse. Zum Beispiel erhalt
man die Rotationen um die - und die y-Achse aus Vw - e, und —Vw - e,. Bei moderaten
Rotationen von 10°bis 15°gilt die Annahme nicht mehr und es miissen zusétzliche Terme
des nichtlinearen Verzerrungstensors mitberticksichtigt werden [75, S. 98]. Der linearisierte
Verzerrungstensor der Kirchhoff-Platte ist

c— % [Vu+ (V)| (3.8)

mit dem Vektorgradienten Vu? = V@ u = g*® L.?T‘f, und « € {1,2,3} [79, S. 44]. Durch
Einsetzen des Verschiebungsfeldes aus Glg. (3.7) erhalt man

€= —%z (gi’ ®@Vw,; +Vuw,; ® gi) . (3.9)

Der Verzerrungstensor € kann durch additive Zerlegung in einen isotropen Anteil €, und
einen deviatorischen Anteil €; aufgespaltet werden [78, S.120],

1
€E=€,+ €= 5 Spur (e) I+ (e — €p) , (3.10)

mit dem Einheitstensor [ = g; ® g' + g, ® g* [79, S. 34]. Der Zusammenhang zwischen
Spannungen und Dehnungen ergibt sich fir linear-elastisches Materialverhalten aus dem
Hookeschen Gesetz. Aufgrund der Annahme eines ebenen Spannungszustands [80, Kapi-
tel 2], [18, Kapitel 3.6.1] gilt das Materialgesetz fir die Platte in der Form

o= % Spur (e) I + % (e - %Spur (¢) ]I) , (3.11)

mit dem Elastizitdtsmodul £ und der Querkontraktionszahl v sowie der Spur des Verzer-
rungstensors Spur (€). Durch Zusammenfassen ergibt sich daraus

oc=2a¢,+f¢€, (3.12)

E
v2*

: __ _Ev _ _E _
mit o = 75, B =75 und a + 3 = =
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3.2 Elastisches Potential der Platte

Bei der Verformung der Platte verrichten die inneren Krifte Arbeit. Die gesamte innere
Arbeit erhalt man aus der Formanderungsenergie, die bei einem elastischen Korper nur
vom aktuellen Verzerrungszustand € abhéngt [18, S. 113]. Die gesamte elastische Energie
einer Platte setzt sich folglich aus dem Integral der Forminderungsenergie W {iber
das Plattenvolumen sowie den Integralen tiber die angreifenden Oberflachen- und Volu-
menlasten zusammen [81, S. 181ff], [82]. Bei der folgenden Herleitung von analytischen
Losungen wird angenommen, dass keine Volumenlasten auftreten. Desweiteren liegen im
betrachteten Fall keine Oberflachenlasten senkrecht zur Plattenebene an der Oberseite
(z = —t/2) und der Unterseite (z = ¢/2) der Platte vor. Bei den angreifenden auBeren
Kréften der Kirchhoff-Platte handelt es sich um die am Rand I'; bzw. I'y vorgegebenen
resultierenden Grofien Randquerkraft Q und Randmomentenvektor NI Diese erhilt man
aus der Integration der zugehorigen verteilten Randgrofien iiber die Plattendicke ¢. Das
elastische Potential der Platte ist mit diesen Annahmen [83, Kapitel 6]

H—;‘/a:edVF/IdeFF{MdeF. (3.13)

Wint

Der gesamte Rand des Gebiets Q ist ' = Iy UT, UT'3UTy, wobei gilt Ty UT,NT3UT, = 0.
Auf I'3 wird dabei die Verschiebung @ und auf I'y der Gradient der Verschiebung Vo
vorgegeben.

Im Folgenden wird die Forméanderungsenergie W umgeformt, um zu einer Formulierung
des RWP zu gelangen. Dieses bildet den Ausgangspunkt fiir die Berechnung der analytischen
Losungen. Durch Einsetzen von Glg. (3.9) in Glg. (3.13) ergibt sich zunéchst

) 1 ) )
wint = ] /0' : [z (gl ®@Vw; +Vw,; ® g’)} dv. (3.14)
v
Der Spannungstensor ist symmetrisch und damit gilt o = o”. Mit Hilfe der folgenden
Beziehung zur Umformung des doppelten Skalarprodukts [79, Kapitel 2],
(gi ® V’wﬂ;) co=g- (UTVw,,-,) , (3.15)
erhélt man aus Glg. (3.14) fiir die Forméanderungsenergiedichte

wint — —% /z [gi (oVw;) +Vw,; - (Ugi)} dv . (3.16)
v

Durch Anwendung der Produktregel (6Vw) ; = oVw; + o ;Vw wird daraus

i
s

wint — —%/z [gi . {(UV’U})J - o'ﬁinH dv. (3.17)

v

Mit dem GauBschen Integralsatz kann ein Zusammenhang zwischen Volumen- und Ober-
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flichenintegralen herstellt werden [76, S. 3f], [79, S.46]. Der Satz lautet hier
/g"' (oVuw),; dV = %(an) ndl. (3.18)
v h

Dabei ist n der nach auflen gerichtete Einheitsnormalenvektor auf den Rand I'. Damit
erhdlt man fiir die Forménderungsenergiedichte

. 1 Pl '

i = 1 / [ (on) Vuldl - / 2o (—oVw)| av. (3.19)
J — —
R —r v —g7-[w (o i9")]

Mit 7 wird dabei der Cauchysche Spannungsvektor bezeichnet [79, S. 142ff]. Durch erneute
Anwendung der Produktregel auf den zweiten Summanden erhilt man

wint _ _ %/Z(T ) VuV)df+ %ngi . [u (arigi)]d dv+

SYRR

und die erneute Anwendung des Gauflschen Integralsatzes auf den dritten Summanden
sowie Umordnen der drei Integrale fiihrt zu

(3.20)

mt_1 1 -1 .
int __ — . — . ) — — . )
w =3 /z V- (Vo)wdV 2/zn (Vo)wdl 5 /Z(T Vw)dl. (3.21)
v r r
Eine explizite Darstellung des Spannungstensors o in Abhéngigkeit von w erhilt man
durch Einsetzen von Glg. (3.9) in Glg. (3.12). Durch Integration tiber die Plattendicke von

—1 bis £ ergibt sich damit fiir das elastische Potential

1 , 1 1 . .
1I=+ §/DV wdQ + i/Qw ds + Q/MVIU ds — /Qw ds — /MVU} ds . (3.22)
Q r r I T2

Dabei ist D = Et?/ [12 (1 — 1?)] die Plattenbiegesteifigkeit und

oV3w

@=-b on

(3.23)

die resultierende Randquerkraft sowie
_ D 2, ) o\ L 2,
M = > 1+v)Vwl+(1-v) (VVUJ + (VVw)' —Vw H) ‘n (3.24)

der resultierende Randmomentenvektor. Als Ergebnis steht damit ein ebenes Problem
mit den resultierenden Gréfien @ und M zur Beschreibung des elastischen Potentials der
Platte zur Verfliigung.

Die Randintegrale aus Glg. (3.22) konnen noch weiter zusammengefasst werden. Dazu
werden die Terme mit dem Randmomentenvektor bzw. dem vorgegebenen Randmomen-
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.f(‘,

/?‘ :\[n
M,

Y
Abbildung 3.4: Definition des Torsionsmoments M, und des Biegemoments M,, sowie der

Eckkraft f,

tenvektor partiell integriert. Unter Berticksichtigung von n - s = 0, mit dem Einheitstan-
gentialvektor s zum Normalenvektor n, erhélt man

ow ow
1“/MVU,‘dsF/(]UnnJr]b[ss)<a n+g) ds =

_ /A[naw ds + /]\I ow ds (3.25)

= [ M,— d — “wds + MM A7) w
= [ as— [Grudse X (e -3

m=1
fe

n. ist dabei die Anzahl der Ecken auf I'. M,, wird als Biegemoment bezeichnet und M, als
Torsionsmoment. Thre Definition ist in Abb. 3.4 dargestellt. In Abb. 3.5 ist ein Gebiet 2
mit 3 Ecken 1,2, 3 sowie den daran angreifenden Momenten M dargstellt. Der Verlauf
des Torsionsmoments kann dabei einen Sprung an den Ecken aufweisen. Die partielle
Integration wird analog auch fir den vorgegebenen Momentenvektor M durchgefithrt. Im
weiteren Verlauf gilt fiir den Spannungsrand I'y = I'y = I's. Daraus ergibt sich fiir das
elastische Potential

/DV4wdQ+ /{Q* aﬂj}wdSwLQ/M ds+ Z( M — [’"‘)w

77L1

A a]\/[s ) 0 Ow ) Orm+ orm—
- { - } wds — / 0, S ds - mzl (3 — 317 w
Ts T's -
(3.26)
Dabei ist ng die Anzahl der Ecken auf dem Teilrand T';.
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Mg

Abbildung 3.5: Das Gebiet €2 hat auf dem Rand I" drei Ecken. Der Verlauf des Torsions-
moments M, kann dabei an den Ecken einen Sprung zwischen M. und
M aufweisen.

3.3 Darstellung in kartesischen Koordinaten

Ausgehend von Glg. (3.22) und dem Spannungstensor aus Glg. (3.12) wird im Folgenden
noch die Darstellung des elastischen Potentials der Platte in kartesischen Koordinaten
angegeben. Fiir die ko- und kontravariante Basis gilt in diesem Fall g* = g, = e; und es
ergibt sich zunéchst

- 1 2 4, 1 2 Wazr Wayy I
H__Z/Z (a+ﬁ)VudV+2/z (a+B)n- Wany Uypy wdl'+
P

v
+ 1 /22 o| W T Wy 0 + 8 Waz Way || h Yoy dD 4 (3.27)
2 { 0 Wge + Wy Wey Wy '

fF/ledI‘fr/zMdeF.
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a und f sind dabei analog zu Glg. (3.12) definiert. Auch hier erhilt man das ebene Problem
durch Integration von z iiber die Plattendicke ¢. Das elastische Potential ist damit

1 1 P P
M=+ / DV'wdQ+ 3 / Dn- [ Warze Wy } wdl+
Q r

n 1 /D 1 W gz + W gy 0 n 1 Wz Wy 0.V dls
2 P 1—-v 0 W gz + Wy 14+v | Way Wy

f/Qw ar — /MVw ar.
1N T2

(3.28)

3.4 Prinzip vom Minimum der potentiellen Energie und
Randwertproblem

Das Prinzip vom Minimum der potentiellen Energie lautet fir das elastische Potential der
Platte aus Glg. (3.13)

1 A - ‘
H:§Ja'.edeF/deFfF/MVu;dI‘:mm. (3.29)

Das gesuchte Minimum erhélt man nach dem Prinzip der virtuellen Arbeit [83, S. 122-124],
[81, S. 181ff] durch die erste Variation 61T von IT beziiglich w. Zur Herleitung stellt man
das elastische Potential mit Hilfe der Glgn. (3.9) und (3.12) explizit in Abhéngigkeit von
w dar [15], [83, S. 112f], wobei die Integration iiber die Plattendicke ¢ bereits ausgefithrt
ist. Daraus ergibt sich fiir die erste Variation

01 (w, dw) = /V2571JTV2'U) dQ — /Q(Sw dl’ — /1\7[5 (Vw) dr. (3.30)
Q r r

In 7T sind dabei alle von w unabhdngigen Ausdriicke zusammengefasst. Durch Umformen
analog zu Abschnitt 3.2 erhalt man unter Berticksichtigung von Véw = § (Vw)

811 (w, bw) = — / VowDV (V?w) dQ + / § (V) nM(V2w) dT+
Q T ™M
- / Odw dr — / N3 (V) dl =
T T
=+ /6u:DV4w o — /6w Dn-V (V?w) dr + /5 (Vw) Mdl+ (331)
2 o

-Q r

—F/Qéw dF—F/MMVw) dr.

Dabei ist M(V?w) die in Glg. (3.24) beschriebene Funktion von V2w. Die virtuelle
Verschiebung dw auf dem Verschiebungsrand I', von € ist gleich Null. Im weiteren Verlauf
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wird dabei I', = I's = I'y gesetzt. Fiir ein Minimum der elastischen Energie muss die erste
Variation gleich Null sein. Daher lautet das Prinzip der virtuellen Arbeit fir die Platte
(83]

ST = /6wDV4w a0+ / (Q—Q) dwdr + / (M—NI) 6Vwdl =0  (3.32a)
Q T, I,

dw =0 auf I',, (3.32b)
OVw =0 auf I',, . (3.32¢)

Die Randintegrale aus dem Prinzip der virtuellen Arbeit werden analog zur Vorgehensweise
beim elastischen Potential IT in Abschnitt 3.2 partiell integriert, woraus sich eine der
Glg. (3.26) entsprechende Form ergibt. Aus dem Fundamentallemma der Variationsrech-
nung [84, S.314] folgt fir einen Ausdruck

/ g(z)h(z)dz =0 (3.33)

auf einer offenen Teilmenge © des RN mit N € N und eine lokal integrierbare Funktion
g:Q — R, dass g (z) die Nullfunktion ist. Es gilt fiir jede unendlich oft differenzierbare
Funktion h : Q@ — R. Damit erhélt man die Eulerschen Differentialgleichungen [81] des
Prinzips der virtuellen Arbeit. Das RWP der Platte lautet

Viw =0 in Q, (3.34a)
M -
{Q - a@ } =V auf I, (3.34D)
S
—————
v
[M;"+ - Ml"’] =fm  fir m=1,...n, (3.34c)
~—— ———
o
M, =M,  auf T, (3.34d)
w=1w auf T, (3.34¢)
ow O
— = auf T, . 34f
on  On au “ (3.34f)

Dabei gilt fiir den Rand des Gebiets ' =T, UT, und ', N Ty = .

In Abb. 3.6 ist das RWP an einem Beispiel dargestellt. Die zusammengefasste Grofie aus
der Querkraft und der Ableitung des Torsionsmoments M, in Richtung des Randtangenti-
alvektors s wird als Ersatzquerkraft bezeichnet und wurde von [57] erstmals eingefiihrt.
Die Ersatzquerkraft und die entsprechende vorgegebene Ersatzquerkraft werden im Wei-
teren mit V und V bezeichnet. Das Torsionsmoment My entlang des Randes kann als
Abfolge von Kréftepaaren interpretiert werden. An den Ecken der Randkurve bleibt dabei
jeweils eine einzelne Kraft tibrig, die nicht zu einem Kréiftepaar zusammengefasst werden
kann [76, S.37]. An Ecken mit einfach abgestiitzten Réndern wird die Wirkung dieser
verbleibenden Eckkraft durch Abheben der Ecke sichtbar, wenn die Bewegung nicht durch
eine Einspannung verhindert wird. Die Randbedingungen sind dabei & = 0 und M, = 0.
Mit f* und f‘;” wird die Eckkraft bzw. die vorgegebene Eckkraft an der Ecke m auf dem
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Abbildung 3.6: Das raumliche Problem der Platte im Gebiet V' wird auf ein ebenes Problem
in € reduziert. n und s sind duferer Einheitsnormalen- bzw. Tangential-
vektor auf den Rand I' = T', UT;. M und M sind die resultierenden
Torsionsmomente auf der positiven und negativen Seite einer Ecke.

Randabschnitt I'y bezeichnet.

3.5 Komplexe Losung der Bipotentialgleichung

Die Losung von Problemen der ebenen Elastizitdtstheorie mit Hilfe der Funktionentheorie
wurde erstmals von [60, 70] gezeigt und basiert auf der Arbeit von [85] zur Existenz
einer holomorphen Funktion als Losung der Differentialgleichung der Scheibentheorie.
Die Grundlagen der Funktionentheorie finden sich zum Beispiel in den Lehrbtichern von
[86, 87]. Ein Standardwerk mit vielen Losungen fiir Probleme der Elastizitatstheorie ist
[58]. Der erste Schritt zur Losung des Randwertproblems aus Glg. (3.34) ist die Darstellung
der benotigten Groflen in der komplexen Zahlenebene z. Diese Ebene fillt mit der xy-
Ebene der undeformierten Plattenmittelebene zusammen und der Ortsvektor eines Punktes
@ = (z,y)" ist durch

z=a+1iy, (3.35a)
Z=z—1y (3.35b)
gegeben. Mit (-) werden im weiteren Verlauf konjugiert komplexe GréBen gekennzeichnet.
Eine komplexe Funktion komplexer Zahlen ist in allgemeiner Form durch f(z) = fi(z,%) +
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ifa(z,%Z) gegeben. Die Wirtinger-Operatoren [86] stellen Beziehungen fiir die Ableitungen
nach z und z zur Verfiigung,

% _ % <d% _ i%) , (3.36a)
% _ % <% n ia%) , (3.36b)
a% _ <£ n %) , (3.36¢)
a% _i (% - %) _ (3.36d)
Der Laplace-Operator V2 lautet damit
VQ:%<%+%> +§y<i%4%> :483;. (3.37)

Die komplexe Darstellung des Skalarprodukts zweier Vektoren x,y € R? durch z,7 € C
ist
1
R[z7] = 3 [27 + Ty . (3.38)

Mit R [-] und S [] wird im weiteren Verlauf der Real- beziehungsweise der Imaginérteil
einer komplexen Grofe bezeichnet. Fir die Ableitung einer Funktion f(x) in Richtung
von n gilt

U _ (n.9) ) (3.:39)
und in komplexer Darstellung
agglz) =R[Vf(2)7] . (3.40)

Dabei ist n = nq + ing mit |n| = 1 die komplexe Darstellung des Einheitsnormalenvektors
n. Der Einheitstangentialvektor wird entsprechend mit s bezeichnet.

Die homogene partielle Differentialgleichung der Platte aus Glg. (3.34a) wird auch
biharmonische Gleichung genannt und lautet fiir die komplexe Funktion w (2)

Viw(z) =0. (3.41)

Der Realteil R [w (2)] entspricht dabei der Durchbiegung w (z, y) der Platte. Eine allgemeine
Losung der Bipotentialgleichung ist durch zwei komplexe und im Gebiet 2 holomorphe
Potentiale ® (z) und A (z) gegeben [58, 70],

w(z) =20 (2) + A(2) . (3.42)

Im weiteren Verlauf wird fiir eine iibersichtliche Darstellung mit (-)" die Ableitung einer
komplexen Funktion nach z gekennzeichnet. Eine spezielle Eigenschaft holomorpher Funk-
tionen fiir eine offene Menge U C C ist die komplexe Differenzierbarkeit in jedem Punkt
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FS
Abbildung 3.7: Zerlegung der Komponenten M, und M, des Randmomentenvektors M in
Torsions- und Biegemoment M, und M,,. Die Drehachse des Torsionsmo-
ments ist n und die Drehachse des Biegemoments ist s.

von U [86].

3.6 Komplexe Darstellung des Verzerrungstensors und
der RandgroBen

Der Verzerrungstensor aus Glg. (3.9) in Abhédngigkeit von w(z) ist

== (] wur) @

Als Summe aus isotropem Anteil €, und deviatorischem Anteil €, lautet die Darstellung

€p 0 R [Ed] ) [Ed]
= . 3.44
¢ (0 eh> * <fs o] R[ed (3.44)
Um Verwechslungen zu vermeiden, wird die Bezeichnung der Koordinatenkomponente
z senkrecht zur Plattenebene im weiteren Verlauf dieses Kapitels durch x3 ersetzt. Die
beiden Komponenten des deviatorischen Anteils des Verzerrungstensors werden nun zu einer

komplexen deviatorischen Verzerrung e, zusammengefasst. Mit den Wirtinger-Operatoren
aus Glg. (3.36) und dem Laplace-Operator aus Glg. (3.37) ergibt sich

1 2 0w .
€p = —EIg R [V U}} = —2$3 R {8282} 3 (34‘)3‘)
1 . Pw  *w
€4 = *i(TS [ [wyz/] —R[we,] — 20N [“"wy” =3 (822 + g) (3.45D)

Durch Glg. (3.12) ist damit auch eine komplexe Darstellung des Spannungstensors gegeben.
Der Cauchysche Spannungsvektor 7 am Plattenrand ist in komplexer Darstellung

T(2) =opn—ogm . (3.46)

Bei der Platte werden die Randspannungen durch Integration iiber die Plattendicke ¢ zu
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resultierenden Groflen zusammengefasst. Der resultierende Randmomentenvektor ergibt
sich durch Multiplikation des Cauchyschen Spannungsvektors mit dem Hebelarm z3, also
dem Abstand von der Mittelebene, und Integration tiber die Plattendicke,
t/2
M= / 3T das . (3.47)
—t/2
Fiithrt man die Integration nach Einsetzen der komplexen Darstellung von 7 aus
Glg. (3.46) aus, erhilt man die komplexe Darstellung des Randmoments

t/2

E 0w E Pw  w
M(z) = 212 — T _
(2) /x;[ 171/%{328?}” 1+V<822+%2>n} dz
12 (3.48)
0*w Pw  *w

In Abb. 3.7 ist die Zerlegung der Komponenten M, und M, des Randmomentenvektors M in
Torsions- und Biegemoment M, bzw. M, dargestellt. Die Drehachse des Torsionsmoments
ist n und die Drehachse des Biegemoments ist s. Die resultierende Randquerkraft in
komplexer Darstellung Q(z) ergibt sich aus Glg. (3.23) als

Q(z) = -DR[mV (V’w)] . (3.49)

3.7 Darstellung mit komplexen Potentialen

Mit Hilfe der allgemeinen Losung der biharmonischen Gleichung aus Glg. (3.42) kénnen
alle benotigten Grofen in Abhangigkeit von den holomorphen Potentialen ® (z) und
U (z) ausgedriickt werden. Dabei wird die Substitution ¥(z) = A’(z) benutzt. Fir die
Komponenten des Verzerrungstensors aus Glg. (3.45) erhéilt man
en(z) = =3 (¥'(2) + ¥(2)) (3.50a)
ea(z) = w5 (2@7(2) + (7)) . (3.50D)

Die komplexe Darstellung des Gradienten Vw ist in Abhéngigkeit von den komplexen
Potentialen

Vw (z) = ®(2) + 2@(2) + ¥(2) . (3.51)
Fir das Randmoment aus Glg. (3.48) ergibt sich die Darstellung

M(2) = =D [(1+v) (¥'(2) + (2)) n + (1 = v) (:2"(2) + U'(2)) 7] (3.52)
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und fiir die Querkraft Q(z) aus Glg. (3.49) erhélt man

2w 2
Q(z)=—-DR {(nl +1iny) <agzu B 13V wﬂ _

dy (3.53)
= —4DR [nd"(2)] .
3.8 Von-Mises-Spannung in komplexer Darstellung
Der rdumliche Spannungstensor der Platte ist
E E E
- R[ma]  -S[ga] o
_ E E E 5
7= =S [ e+ R e 0 (3:54)
0 0 0

wobel die Verzerrungen durch die Glgn. (3.50) gegeben sind. Fiir die Vergleichsspannung
nach von Mises o, ergibt sich daraus mit dem Spannungsdeviator

1
s=o0-g Spur [o] I (3.55)

/3
Oy = 587;]‘87;_7‘ . (356)

Dabei ist I der Einheitstensor I = g, ® g' + g, ® g°> + g;® g°.

die Darstellung

3.9 Randbedingungen am Rissufer

Betrachtet wird nun ein Gebiet {2 mit Innenriss, wobei der Teilrand I'. genau dem Rissufer
entspricht. In Abb. 3.8 ist ein Beispiel fiir ein entsprechendes Gebiet mit den Bezeichnungen
der Teilrdnder dargestellt. Entlang des unbelasteten Rissufers gelten die Randbedingungen

M,=0 auf T,. (3.57a)
oM,

Q- 3 =0 auf I,.. (3.57b)
s

Dies entspricht den Glgn. (3.34b) und (3.34d) des RWP mit der vorgegebenen Ersatzquer-
kraft und dem Biegemoment gleich Null. Die Randbedingungen werden nun durch die
komplexen Potentiale ausgedriickt. Daraus ergibt sich im Folgenden dann eine Bedingung
fiir die Wahl der Potentiale, so dass die Randbedingungen am Rissufer erfiillt werden. Dazu
setzt man in die Randbedingung (3.57b) den Ausdruck fiir das Moment aus Glg. (3.52) ein
und erhélt damit unter Beriicksichtigung von Glg. (3.38) mit der komplexen Darstellung
des Einheitstangentialvektors s = in fiir das Torsionsmoment
i

M, =R [M (in)| = 5 (Mn—Mn)=D(1-v)S KZCD”(Z) + \I!’(z)>n2] . (3.58)
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'=r,ul,ur,

Abbildung 3.8: Zur Formulierung der Randbedingungen wird der Rand des Gebiets € mit
Innenriss in drei Randabschnitte aufgeteilt.

Die Ableitungen von M, nach x und y sind
My, =D(1-1)3 KZ(D'”(z) SU(2) + @"(z))nQ] : (3.500)
M,,=D(l- )R [(Z(I)”’(z) SV — (I>”(z)>n2] ‘ (3.50b)
Daraus ergibt sich der Gradient
VM, = M, +iM,, (3.60)

und die Richtungsableitung des Torsionsmoments in Richtung von s

oM,
Js

=D(1—v)R[EO"(2) + ¥'(2)n* - ®"(2)n] . (3.61)

Fir die Randbedingung (3.57a) erhélt man

M, =R [ n] = 5 (Vn+ 7). (3.62)

Damit konnen die beiden Randbedingungen in Abhéngigkeit von den holomorphen Poten-
tialen @ (z) und ¥ (z) durch

0- 05\91 = —DR[B+ )" (2)n+ (1 - v) [20"(2) + V()] n°]  (3.63)

und
M, = =DR [2(1+2) [ ()] 07 + (1 = v) (20" (2) + ¥(2)) n?] (3.64)

ausgedriickt werden. Der Einheitsnormalenvektor n ist dabei von der Position entlang
des Randes T'. abhingig, also n = n (r) fir eine Parametrisierung von I'. durch r. Die
Rissspitze liegt bei r = 0.
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ds
e
ds
(]

Abbildung 3.9: Zur Verdeutlichung der Umlaufrichtung entlang des Rissufers I'. ist der Riss
vergrofert dargestellt (links). Das Gebiet Q2 mit dem ideal scharfen Riss
(rot) auf dem positiven Abschnitt der reellen Achse ist rechts abgebildet.

3.10 Komplexe Darstellung der Randbedingungen

Die beiden Randbedingungen werden nun zu einer einzigen komplexen Randbedingung
zusammengefasst. Dabei kann entweder eine integrale oder eine differentielle Betrach-
tungsweise entlang des Rissufers angewendet werden. In diesem Abschnitt wird zunéchst
die differentielle Vorgehensweise gezeigt und im néchsten Abschnitt alternativ dazu die
integrale Betrachtung. Dazu wird die Randbedingung aus Glg. (3.57a) in Richtung von
s(r) abgeleitet,

oM,
s

=0 auf T.. (3.65)

Nun wird die zweite Randbedingung aus Glg. (3.57b) mit der abgeleiteten ersten Randbe-
dingung zu einer komplexen Randbedingung zusammengefasst,

Q+ % [Mg+iM,) =0 auf T,. (3.66)

Durch Einsetzen der Darstellungen aus den Glgn. (3.63) und (3.64) und Zusammenfassen
vereinfacht sich die Randbedingung zu

~DR[B+) " (2)n+ (1 —v) (Z8" () + ¥'(2))n*| =0 auf T.. (3.67)

Fir die weitere Umformung wird ein expliziter Ausdruck fiir die Parametrisierung des
Teilrands I'. benotigt. Aus diesem Grund erfolgt nun die Spezifizierung von einem Gebiet
Q mit beliebigem Innenriss auf ein Elementgebiet (7, das einen geraden Riss enthélt. Ohne
Beschrankung der Allgemeinheit soll der Ursprung des Elementkoordinatensystems dabei
mit der Rissspitze zusammenfallen und die Rissflanken liegen auf der positiven z-Achse. Das
obere (positive) Rissufer wird mit @ und das untere (negative) Rissufer mit & bezeichnet.
An der ©- und der @-Rissflanke weist der Einheitstangentialvektor s eine entgegengesetzte
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Richtung auf. In Abb. 3.9 ist die Orientierung von s am unteren und oberen Rissufer
eingezeichnet. Stellt man entlang von T, die komplexe Randbedingung (3.66) am negativen
und positiven Rissufer auf, ergibt sich

S 52
—_——~— —_——~

0, 0
Q—ﬁ(—M):Q+8—IlM:Q+

1

oM oM
—_—t— = f I.. .
9% + 7% 0 au . (3.68)

Setzt man die Ausdriicke fir das Moment aus Glg. (3.52) und die Randquerkraft aus
Glg. (3.53) ein, gilt entlang des gesamten Rissufers I'. die Bedingung

(B+v)®"(2) — (1 —v)[20"(2) + 28" (2) + ¥'(2)] =0 auf T.. (3.69)

Im weiteren Verlauf werden dann holomorphe Funktionen ® (z) und ¥ (z) gesucht, welche
diese Randbedingung erfiillen.

3.11 Integrale Form der komplexen Randbedingung

Die beiden Randbedingungen am Rissufer aus (3.57) konnen auch durch eine integrale
Betrachtung zusammengefasst werden. Dazu wird die erste Randbedingung (3.57a) mit der
iiber das Rissufer T, in Richtung von s integrierten zweiten Bedingung aus Glg. (3.57b) zu
einer einzigen Randbedingung zusammengefasst,

[/b (Q + agf) ds

0

+iM,(s)=0 auf T.. (3.70)

Die Integrationsrichtung entspricht dabei einem Umlaufsinn, wie er in Abb. 3.9 dargestellt
ist. Die Integration des vorausgehenden Ausdrucks ergibt

/st M, (s) +iMy(s) — My (s0) =0 auf T,. (3.71)
S0

Dies entspricht einer Integration der Randbedingung (3.66) mit der Integrationskonstanten
—M; (so). Entlang des Rissufers T, ergibt sich durch Wahl der Integrationskonstanten zu
Null

/st+M:o auf T, . (3.72)

S0

Setzt man hier wiederum das Moment aus Glg. (3.52) und die Randquerkraft aus Glg. (3.53)
ein, erhalt man die integrale Form der Randbedingung

B4+v)®(2) — (1 —v)[@'(2) +2®"(2) + ¥'(2)] =0 auf T.. (3.73)
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3
2
2
IS T 1 P R O O O =
0 1
—4 -2 0 2 -2 -1 0 1 2
’ 3

Abbildung 3.10: Bei der Abbildung eines Gebiets von der z-Ebene (links) in die ¢(-Ebene
(rechts) durch f=1(z) werden die Rissufer (rot) auf die reelle £-Achse
entfaltet. Als Beispiel ist die Abbildung zweier verschiedener Gebiete €2y
(blau) und € (grin) dargestellt.

3.12 Entfaltung der Rissufer durch konforme Abbildung

Die Potentiale ®(z) und ¥(z) miissen nun so gewéihlt werden, dass die komplexe Darstellung
der Randbedingung nach Glg. (3.67) erfiillt wird. Dazu soll ¥ (z) in Abhéngigkeit von ® (z)
ausgedriickt werden, indem zunéchst die komplexe Randbedingung nach ¥ (z) aufgelost
wird.

Zur Losung wird das betrachtete Gebiet (27 mit Innenriss mit Hilfe einer konformen
Abbildung von der komplexen z-Ebene z = = + iy in die komplexe (-Ebene ¢ = £ + in
abgebildet. Der Riss verlauft in der z-Ebene von 0 < z < oo mit y = 0. Das transfor-
mierte Gebiet wird im weiteren Verlauf mit €’ bezeichnet. Fiir eine bestimmte Wahl der
Abbildungsfunktionen zwischen den beiden Ebenen kann die Randbedingung dann in der
¢-Ebene nach ¥(() aufgelost werden. Die hierfiir bendtigte Abbildungsfunktion lautet

z=f(Q)=¢ (3.74)
und die zugehorige Umkehrfunktion ist

C=f12) =iv—=2. (3.75)

Die konforme Abbildung f : U — C mit U C C bildet ein Gebiet winkeltreu in
ein anderes Gebiet ab. Eine Abbildung ist genau dann konform, wenn sie holomorph
oder anti-holomorph ist und ihre Ableitung ungleich Null auf ganz U ist. Durch die
Eigenschaften der konformen Abbildung ist sichergestellt, dass Potentialfunktionen nach
der Abbildung weiterhin Potentialfunktionen bleiben. Eine ausfiihrliche Darstellung der
Theorie der konformen Abbildungen findet sich zum Beispiel bei [86]. Ein Spezialfall der
konformen Abbildungen ist die Schwarz-Christoffel-Transformation, die ausfiihrlich bei
[88] beschrieben wird. Diese kommt hier fiir die konforme Abbildung des Losungsgebiets
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Qr nach Q' zum Einsatz. Das Ziel ist dabei die Entfaltung der Rissufer auf die reelle Achse
der (-Ebene.

Das Lésungsgebiet Q0 wird durch die Funktion f~!(z) in die obere Halbebene der
(-Ebene abgebildet. In Abb. 3.10 ist als Beispiel die Abbildung von zwei unterschiedlichen
Gebieten €27 und €25 von der z- in die (-Ebene dargestellt. Die Rissufer werden dabei
entfaltet und liegen auf der reellen &-Achse der (-Ebene.

Ableitungen von ®(2) nach z werden im Folgenden durch (-)" dargestellt. Unter Beriick-
sichtigung der Kettenregel besteht der folgende Zusammenhang mit den Ableitungen nach
¢, die durch (-) gekennzeichnet werden,

z 0P i
vz = 1O (afg(O) <. % , (3.76a)

) PO

D(2) = (3.76b)

3.13 Losung unter Beriicksichtigung der
Randbedingungen

Fiir eine tibersichtlichere Darstellung werden nun die Substitutionen A (z) = ®”(z) und
B (z) = ¥” (z) eingefiihrt. Die komplexe Randbedingung aus Glg. (3.67) kann damit nach
der Abbildung in die (-Ebene durch

B+v)A(E)-—(1-v) (J}EQA (E)+24(&)+B (g)) =0 auf T, (3.77)

ausgedriickt werden.

Mit der analogen Vorgehensweise ergibt sich durch Einsetzen der Substitutionen A (z) =
®'(z) und B(z) = V¥'(z) in die integrale Form der komplexen Randbedingung aus
Glg. (3.73) der Ausdruck

B+v)A()—(1—-v) (ng(g)+2A(§)+B(§)) =0 auf I.. (3.78)
Nach dem Schwarzschen Spiegelungsprinzip [89] sind
A(Q)=4(C) (3.79)
und -
FO=1() (3.80)

holomorph in €', wenn das Holomorphiegebiet von A (¢) und f (¢) in der ¢-Ebene durch
Spiegelung von € an der reellen ¢-Achse erweitert wird [49]. Damit ist im Gebiet ' eine
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Darstellung von B (¢) in Abhéngigkeit von A (¢) gegeben durch

- G+v)—= [
B<<)f—2A(<)+(1_V)A(c)— 1%

Durch Einsetzen von Glg. (3.81) in Glg. (3.80) erhélt man

A(¢) in Q. (3.81)

~

s [A(<)—A(<)}—’WA(<) =0. (3.82)

¢=¢*

—
~

1—-v

—
=

Mit ¢ = ¢+ wird dabei ausgedriickt, dass ¢ und  sich von der oberen bzw. unteren
Halbebene der reellen Achse § annéhern. Da f(¢) eine eindeutige Funktion ist, verschwindet

der Ausdruck [f(¢) — f(¢)]- Um zu einem T-vollstédndigen Satz von Losungsfunktionen zu
gelangen, wird fir A (¢) der Ansatz

A= 3 AL (3.89)

n=-—1

gewdhlt, der zu einer eindeutigen, holomorphen Funktion in €’ und der Spiegelung von
' an ¢ fihrt. Nach [90] erhélt man mit diesem Ansatz ein T-vollstindiges System
von Losungsfunktionen fiir die biharmonische Gleichung. Mit der Wahl von B (¢) in
Abhéngigkeit von A (¢) werden die beiden Randbedingungen am Rissufer exakt erfiillt. Der
Zusammenhang zwischen den Koeffizienten der beiden Potentiale gilt dabei paarweise fiir
jede betrachtete Ordnung. Bei einer numerischen Auswertung wird eine endliche Anzahl
von Ordnungen n,,,, zur Losung beriicksichtigt. Die komplexen Koeffizienten A, € C
stellen dabei die verbleibenden Freiheitsgrade der vorgestellten Losung dar.
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4 Hybride Formulierung des
Rissspitzenelements

Im vorherigen Kapitel wurde eine T-vollstandige Funktionenbasis entwickelt, welche die
biharmonische Gleichung in Qr und die Spannungsrandbedingungen auf I'. erfillt. Zur
Losung des RWP der Platte aus den Glgn. (3.34) miissen auch noch die Randbedingungen
auf dem tibrigen Rand erfiillt werden. Die Losung erfolgt mit der hybriden Verschiebungs-
methode [54], bei der die Verschiebungsrandbedingungen durch ein erweitertes elastisches
Potential berticksichtigt werden. Dazu wird das Losungsgebiet €2 in die Gebiete (2 und
Qrg aufgeteilt. Die Rissspitze mit einem geraden Segment des Risses liegt dabei in 2 und
das tibrige Gebiet ist Qppg. Beide Gebiete sind durch den Kopplungsrand I';,; miteinander
verbunden. Bei der Losung des gekoppelten Problems fithren vorgegebene Kréafte und Ver-
schiebungen auf dem Rand von Qg zu entsprechenden Verschiebungen auf I';,;. Der Rand
von Qr ist dabei I'r = ', UT';,,;. Die hybride Formulierung entsteht durch die Kombination
der T-vollstandigen Funktionenbasis zur Erfiillung der Spannungsrandbedingungen auf I,
mit dem erweiterten Potential zur Berticksichtigung der Verschiebungsrandbedingungen
auf I';,;. Neben der hybriden Verschiebungsmethode gibt es auch die hybride Spannungs-
methode [30, 51], bei der die Spannungsrandbedingungen durch das erweiterte Potential
berticksichtigt werden. Bei der hybriden Verschiebungsmethode werden die Verschiebungs-
randbedingungen nicht exakt erfiillt, sondern so gewahlt, dass das erweiterte elastische
Potential minimiert wird.

In diesem Kapitel wird die Kopplung der Teilgebiete Q2 und Qpp mit Hilfe eines
erweiterten Funktionals dargestellt, welches keine zusétzlichen Verschiebungsrandbedin-
gungen entlang des Kopplungsrandes I';,; erfordert. Es werden drei verschiedene Ansétze
beschrieben, um zu einer Formulierung des erweiterten Potentials zu gelangen. Die hybride
Elementformulierung ergibt sich durch Einsetzen der Funktionenbasis aus dem voran-
gehenden Kapitel und anschlieBende Minimierung des erweiterten Potentials durch die
Wahl der bis dahin noch unbestimmten Koeffizienten des Reihenansatzes fiir das komplexe
Potential A (¢) aus Glg. (3.83). Zur Formulierung des T-Elements werden alle Groien der
Kirchhoff-Platte in eine Matrix-Vektor-Darstellung tiberfithrt. Damit konnen die Grofien in
Abhéangigkeit des Koeffizientenvektors und des vorgegebenen Knotenverschiebungsvektors
ausgedriickt werden. Daraus ergibt sich schliefllich eine Knotensteifigkeitsmatrix, die mit
den Elementsteifigkeitsmatrizen des gekoppelten Gebiets Qg zu einer Gesamtsteifigkeits-
matrix assembliert werden kann. Eine Ubersicht hybrider Trefftzmethoden findet sich
unter anderem bei [90] und [54]. Zu erweiterten Energieprinzipien, welche die Basis fir
das erweiterte Potential bilden, finden sich Zusammenfassungen bei [50, 82, 83] sowie [81].
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4.1 Erweitertes Potential mit Langrangemultiplikatoren

Durch das hybride Rissspitzenelement soll die Genauigkeit der Lésung im Bereich der
Rissspitze erhoht werden, ohne dass dazu eine Feinvernetzung erforderlich ist. Das Lo-
sungsgebiet ) wird dazu in Q7 und Qpp aufgeteilt. Der unkritische Bereich Qpp wird mit
Standardelementen modelliert und der Bereich Q7 mit der Rissspitze wird durch das T-
Element beschrieben. Der Rand von Qpg setzt sich aus Verschiebungs- und Spannungsrand
sowie dem Rissufer und dem Kopplungsrand zusammen, I' = T, UTy Ul pp. U T, Aus der
Diskretisierung von Qgg mit bilinearen Standardelementen ergibt sich eine Polygonform
von Q7 mit geraden Randsegmenten zwischen den Knoten der Standardelemente auf dem
Kopplungsrand. Die Formulierung des T-Elements erfolgt in Abhéngigkeit von diesen
Kopplungsknoten, die damit zugleich die Knoten des T-Elements sind. In Abb. 4.1 ist ein
gekoppeltes Problem mit der Aufteilung des Gebiets und den Bezeichnungen der Randab-
schnitte schematisch dargestellt. In Abb. 4.2 ist ein Beispiel fiir ein T-Elementgebiet mit
sieben Elementknoten Ny, ..., N; abgebildet.

Ausgangspunkt fir die Formulierung des erweiterten Potentials ist das elastische Po-
tential der Platte aus Glg. (3.13). Mit der T-vollstindigen Funktionenbasis, welche die
Bipotentialgleichung in Q7 und die Spannungsrandbedingungen auf I'. exakt erfiillt, sind
die verbleibenden von Null verschiedenen Terme des elastischen Potentials

1 1 OM, 1 ow
I = 5/DV‘lwdQ +§ / [Qf E} wds+§ / Mna—z ds+ (4.1a)
Q Tint Tint
[ —
=0, vgl. Abschnitt 3.13
1 Mint
Jm+ _ pAgm—
+3 mZ:l (M = M) w
w=10 auf Ty, (4.1b)
ow 0w
on = % auf Fimg . (41C)

nint 18t die Anzahl der Ecken auf I';,;.

Die Verschiebungsrandbedingungen auf I';,; miissen dabei als zusatzliche Bedingungen
erfiillt werden. Bei der hybriden Verschiebungsmethode werden die Verschiebungsrandbe-
dingungen mit Lagrangemultiplikatoren als Nebenbedingungen in das elastische Potential
eingebracht und zusétzliche Randbedingungen sind damit nicht mehr erforderlich. Eine Dar-
stellung der theoretischen Grundlagen der Lagrangemultiplikatormethode ist zum Beispiel
bei [91, S. 110ff] zu finden. Als Nebenbedingungen werden die quadratischen Abweichungen
der Verschiebung w von der vorgegebenen Randverschiebung @ und die Abweichung des
Gradienten Vw vom vorgegebenen Gradient Vi gewihlt. Das resultierende Optimierungs-
problem mit Nebenbedingungen ist die Minimierung des erweiterten elastischen Potentials
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Q Ip=T.UTl

I'= Fu U Fs U 1—‘FEc U Fint

Abbildung 4.1: Das Losungsgebiet €2 wird in den unkritischen Bereich Qg und den
T-Elementbereich Q7 mit der Rissspitze aufgeteilt. Der Kopplungsrand
zwischen den Teilgebieten ist [';;.

IT*. Die Erweiterungsterme zur Beriicksichtigung der Verschiebungsrandbedingungen sind

n;:+/M@wa@+/Aﬂww4mf@:

Tint Tint
—+ [ nwrds— [ n2wids+ [ da®dst (42)
Cint Lint Cint
+ / Ao (Vw)? ds — / A2 (VwVd) ds + / Ao (Vi)? ds .
Cint Tint Tint

A1 und Ay sind die zugehérigen Langrangemultiplikatoren. Aus der ersten Variation von
I = [T + II} beziiglich w erhilt man die Bedingung fiir ein Minimum des erweiterten

Ns
Ng
r, N
N,
! \ Fin,f,
N1 ]\[3
N,

Abbildung 4.2: Das T-Elementgebiet 2y mit I'y = I', U I';;,; hat im dargestellten Beispiel
die Elementknoten Ny, ..., N7.
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elastischen Potentials

aIrt /{

}6 ds+ [ M, M—“d 3 (M) b

Tint Tint m=1 (43)
+ / 2\ (w — ) dwds + / 2\, (Vo — Vi) §Vw ds = min .
Tint Tint

Die verbleibenden Freiheitsgrade zur Minimierung von 6I1* sind die komplexen Koef-
fizienten des Reihenansatzes aus Glg. (3.83). Der Nachteil der Langrange-Multiplikator-
methode ist, dass die Wahl der dimensionsbehafteten Multiplikatoren nicht festgelegt ist.
Die gewihlten Werte fiir A; und A2 legen die Gewichtung der Nebenbedingungen fest.
Aus diesem Grund ist eine eindeutige Wahl der Langrangemultiplikatoren sinnvoll, die im
nachfolgenden Abschnitt beschrieben wird.

4.2 Erweitertes Potential nach dem Prinzip von
Hu-Washizu

Ein etabliertes Energieprinzip, das auf dem Prinzip vom Minimum der potentiellen Energie
basiert [81], ist das Prinzip von Hu-Washizu [50]. Dabei werden die geometrischen Glei-
chungen nicht direkt in das Randwertproblem aus Glg. (3.34) eingesetzt, sondern wieder
mit Hilfe von Lagrangemultiplikatoren in das Funktional eingebracht. Als Erweiterung
des Ansatzes aus dem vorherigen Abschnitt konnen die beiden Lagrangemultiplikatoren
anschliefend mit den Gréfien M und @ identifiziert werden. Das Prinzip von Hu-Washizu
wird bei [81, S. 181ff] ausfithrlich beschrieben. Fiir das elastische Potential der Platte ergibt
sich unter Ausnutzung der Eigenschaften der T-vollstdndigen Funktionenbasis, wodurch
die Terme im Gebiet {27 und auf I'. verschwinden, der Erweiterungsterm fir das erweiterte
Potential nach Hu-Washizu

H;W:_/M (Vo - Vo) ds— [ Q(w—)ds =

Tine Tine

ow oW ow oW
=— {]\[ ( 76—) + M, (85 a—)} ds — /Q w—w) ds .

Tint

(4.4)
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Durch partielle Integration analog zu Glg. (3.25) ergibt sich daraus

ow oW OM, . )
Iy, =— / {Af <3n 871) ~ s (w— w)} ds+

Tine

Mint

-3 (]W;"+ - ]W:,"f) (w—w) — / Q (w—w)ds

m=1
nt
- / a2 s - / < oM, ) wds + / 0, 2% gs s
. on . on
Tint Tint Tint
81\[ R Nint _ Nint B R
+/ ( )wdsz(Mj”*fM;" Jw+ > (M = M)
m=1 m=1

(4.5)
Durch Zusammenfassen mit Glg. (4.1a) ergibt sich insgesamt das erweiterte Potential
et = 11 + Iy, nach dem Prinzip von Hu-Washizu

et = 2/{ aM}vd—ffzu@dju

Tint o
) / Mn d X / [ E)M}wdw (4.6)
1 i ( M [m_) w+ Zm (M:w _ M;”_) w.

m=1 m=1

Die unbekannten Koeffizienten des Reihenansatzes aus Glg. (3.83) werden wiederum
durch Minimierung von I7°** ermittelt. Aus dem Prinzip von Hu-Washizu ergeben sich
eindeutig definierte Lagrangemultiplikatoren, die nach der partiellen Integration der
Ersatzquerkraft V', dem Biegemoment M,, und dem Sprung des Torsionsmoments M} — M
entsprechen.

4.3 Herleitung mit dem Satz von Betti

Im Folgenden wird ein weiterer Weg zur Herleitung des erweiterten Potentials /7! nach
[82] vorgestellt. Ausgangspunkt ist dabei wiederum des elastische Potential nach Glg. (3.13).
Fur das Gebiet 27 seien nun entlang des gesamten Randes I'y = I';,; U I, natiirliche
Randbedingungen vorgegeben. Der Teilrand T'. ist dabei weiterhin spannungsfrei und
die T-vollstédndigen Losungen erfiillen die Randbedingungen am Rissufer; so dass die
entsprechenden Terme des elastischen Potentials verschwinden. Damit ist das elastische
Potential

)= | (%Q (A) — Q) w(A) ds+ [ (%M (A) - M) Vw(A)ds.  (47)

Mit der Schreibweise IT (A4,) wird verdeutlicht, dass die entsprechenden Gréfien von
den komplexen Koeffizienten des Reihenansatzes aus Glg. (3.83) abhéngen. Die zu den
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vorgegebenen Randgréfen Q und M gehérenden konjugierten Arbeitsgrofien seien durch
w und Vi gegeben. Damit kann der Satz von Betti auf die beiden Belastungszustinde
angewendet werden, die den Gréfen @), M, w, Vw und Q, l\A/I7 w, Vi zugeordnet sind. Der
Satz von Betti lautet fiir die Bipotentialgleichung

/ (V4w) wdQ=0. (4.8)

Qr
Uber die Zwischenschritte

0= /v- (VV20) i d0 =

— [ ()] 0] a5 [ [ (%) (7o) a )

'y Gr

gelangt man durch sinngeméfle Anwendung bereits vorgestellter Umformungen zu der
Formulierung
f [Qu +MVw — (Qi + MVa)] ds =0 (4.10)
T'r
Der Satz von Betti wird nun dazu benutzt, die natiirlichen Randbedingungen aus
Glg. (4.7) in essentielle Randbedingungen umzuwandeln,

(A, = / (luv (A,,,)—uﬁ) Q(A,) ds + / (%Vw (A")—Vw) M(A,) ds. (4.11)

Durch partielle Integration von Glg. (4.11) wird das elastische Potential wieder in Abhén-
gigkeit der Ersatzquerkraft V' (4,) und des Biegemoments M, (A,) sowie des Torsionsmo-
ments M; (A,,) ausgedriickt. Da die T-vollstdndigen Losungen auf T'. die Randbedingungen
V =0 und M, = 0 erfillen, verschwinden die Terme auf dem Teilrand I'.. Das erweiterte
elastische Potential ist

cht(An):Jr% / V(A,) [w(A,) — @) dsfé / Afn<An)|:

int Tine

ow(A,) b
o %} ds+
1 Nint
+5 2 (M = M) [w (A,) — ] -
m=1
(4.12)

Das erweiterte Potential I7°** kann wiederum durch die Wahl der Koeffizienten A,, minimiert
werden. IT¢** entspricht dabei —I1°** aus dem vorangehenden Abschnitt.

4.4 Matrixdarstellung des erweiterten Potentials

Fir die Minimierung des erweiterten Potentials aus Glg. (4.6) bzw. analog aus Glg. (4.12)
wird eine explizite Darstellung in Abhéngigkeit der komplexen Koeffizienten des Rei-
henansatzes aus Glg. (3.83) bendtigt. Analog zu ebenen Elementformulierungen [49, 54]
erfolgt die Darstellung der benétigten Grofien in Matrix-Vektor-Schreibweise, wobei die
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Komponenten komplexe Grofien sind. Diese Darstellung erméglicht eine direkte program-
miertechnische Umsetzung der Elementformulierung und bildet die Grundlage fiir die
Validierungsrechnungen in Kapitel 6. Das erweiterte Potential wird dazu aufgeteilt in

Hm:ii / (EVJruVV) ds +%/<EV+1DV) ds +

Tint Tint
=:Ih =l
1 ow Aw 1 0w b —
_ ZF/ (a My + 5= Mn) ds + §F/ <% My + 5> Mn> ds + 3
=:1I3 =1y
1 bt — 1 Tint — \m
-3 (M) w+ (M)" ] +5 2 (M) b+ (M)" B
m=1 m=1
1L =:1I

Die n;y,; Ecken fallen dabei jeweils mit einem der Kopplungsknoten zusammen. <Ws >m und

(M,)™ sind die Spriinge des Torsionsmoments MZH — M) und (M — M™"). Die
Matrix-Vektor-Darstellung der Summanden 7y, . . ., IIs erfolgt mit Hilfe des Spaltenvektors

A=[Ay,.. . An Ay, AT (4.14)

der Dimension A € C?>**!, Darin sind die komplexen Koeffizienten und die konjugiert
komplexen Koeffizienten zusammengefasst. In numerischen Auswertungen wird dabei eine
endliche Anzahl n < n,,,, an Ordnungen des Reihenansatzes berticksichtigt.

Mit Hilfe von A werden die Groflen des erweiterten Potentials als Produkte aus Zeilen-
und Spaltenvektoren ausgedriickt,

w(() =w (A, (4.15a)
algff) =w,(()A, (4.15b)
V() =V(QA, (4.15¢)
M, (¢) = M7 (OA, (4.15d)
(M,(C)) = M(QA . (4.15¢)

Die Vektoren w*, w’,, V*, M, M; € C1*2nmaz heinhalten die Anteile, die von den
Koeffizienten unabhéngig sind, und sind ebenfalls komplexe Groflen. Thr Aufbau ist analog
zu A und besteht zum Beispiel fiir w(¢) aus den Eintriigen w := [wy, . . . , Wy, Wo, - - . , Wn " -
Das Produkt aus dem adjungierten (transponiert-konjugierten) Zeilenvektor w* des Vektors
w, dargestellt durch ()" = 61, und A ergibt die benétigte Darstellung von w(¢). Dieser
Zusammenhang gilt analog auch fir die tibrigen Grofien.

Zur einfachen Umformung der Grofen aus den Glgn. (4.15) wird zusétzlich ein Operator
P nmit PA=A, PA=A, PP = I definiert in der Form

Nmax 0 I
P = Z ¢ ® €jtnmaz + Citnmaz ® ¢ = (I 0) ) (416)

Jj=1
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mit dem j-ten Einheitsvektor ¢; und der Null- beziehungsweise Einheitsmatrix 0 und I
mit den Dimensionen 7,4z X Nz Mit Hilfe von P wird der gesuchte Koeffizientenvektor
A und seine Adjungierte A* in den einzelnen Termen ausgeklammert. Fiir den Term [7;
aus Glg. (4.13) ergibt sich mit dieser Vorgehensweise

1 1 s —
h=—-A"|= / wV*+ PwV°P)ds|A.
! 2 2 ( ) (4.17)
—=H, € C2nvmaz X2nmax
Die Terme I3 und II; werden in analoger Weise konstruiert,
I=—ta 1/(w M, + Pw,M,P) ds | A
=75 Py n n n n §
RN (1.19)
=:Hz € C2nmazx X 2nmazx
und
1 N 1 Nint . J—
O=—-A 7/ [wM; + PwlMP|)A.
2 20 55 (4.19)
=:Hpy € C2nmaz X2nmaz
Daraus ergibt sich die Matrix-Vektordarstellung
1
Iy = —§A* (Hi+Hs+ Hs)A . (4.20)
—_——

H

Die Terme II,, II, und Il hingen zusétzlich auch von den vorgegebenen Knotenverschie-
bungen der Elementknoten ab und werden im néchsten Abschnitt konstruiert.

4.5 Konstruktion der Verschiebungsrahmen

Die Kopplung der Gebiete Qrp und Q7 entlang von I';,; mit der hybriden Verschiebungs-
formulierung nach Glg. (4.13) erfolgt iiber die Knotenverschiebungen an den gemeinsamen
Knoten. Daraus kann fiir das T-Element eine Knotensteifigkeitsmatrix berechnet werden.
Fiir die Terme Iy, Iy und Il wird dazu der Verlauf der vorgegebenen Verschiebung @ und
der Normalenableitung @, auf I';,, benétigt. Dieser Verlauf kann aus einem vorgegebenen
Knotenverschiebungsvektor konstruiert werden, indem ein Verschiebungsrahmen fiir @ und
ein Rotationsrahmen fiir @ ,, angenommen wird. Die beiden Rahmen beschreiben mit Hilfe
des Knotenverschiebungsvektors fiir jeden Punkt auf I';,,; in Abhéngigkeit des Paramters s
die vorgegebene Verschiebung und Normalenableitung. Der Knotenverschiebungsvektor
des T-Elements ist

T
= [wl, R N N LN ,93@ € R3vx1 (4.21)
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mit der Anzahl der Elementknoten ny und den Rotationen 6, und 6, um die - und
y-Achse des Elementkoordinatensystems.

Zunéchst wird der Rahmen fiir die Normalenableitung konstruiert, der als Rotations-
rahmen bezeichnet wird. Jeder Abschnitt des Rotationsrahmens [w,, (s)}%“ zwischen
zwei Elementknoten N und N + 1 auf I';,; wird durch lineare Interpolation zwischen den
Knotenrotationen 6 und #¥*! gebildet. Die Rotation 6, ist dabei die Rotation um die
Kante, die durch die beiden Knoten definiert wird. Aus den Rotationen um die z- und
y-Achse des Elementkoordinatensystems erhilt man die benétigte Rotation 6 durch

0, = [n]b, —Rn|b,, (4.22a)

wobei n wieder die komplexe Darstellung des Einheitsnormalenvektors der betrachteten
Kante ist. Zwischen den Knoten N und N + 1 ist der Rotationsrahmen in Abhéngigkeit
von der Position s entlang der Kante

ow()]" [0 [-1 1 oy
on = g0 : 1 0 : PN+ | o (423)

mit 1 < N < ny — 1 und dem lokalen Knotenverschiebungsvektor k entlang der be-
trachteten Kante. Jede Kante wird auf den Parameterbereich zwischen s = 0 im ersten
Knoten und s = 1 im zweiten Knoten abgebildet. Die lineare Interpolation ist dann in
Matrixschreibweise

0,(s) = as' + bs® = [ z(l) r~ { Z } (4.24)

———
R

und die unbekannten Koeffizienten ¢ und b werden aus den Randbedingungen an den
Knoten N und N + 1 folgendermafien bestimmt,

s=0: b=06N (4.25a)
s=1: a+b=0oN", (4.25b)

Daraus ergibt sich in Matrixschreibweise das Gleichungssystem

M
—_——
01 a
und die gesuchten Koeffizienten a, b sind

[ Z } =M k. (4.27)
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Der Rotationsrahmen entlang einer Elementkante ist damit in Matrixschreibweise

0,(s, N,N+1) ="Mk . (4.28)
Fiir den Verschiebungsrahmen [@ (s)]%+l werden zwei Varianten formuliert. In der ersten
Variante wird fiir den Verschiebungsrahmen analog zum Rotationsrahmen linear zwischen

zwei Knoten interpoliert. Der lokale Knotenverschiebungsvektor einer Elementkante ist
dabei

k= [w% } : (4.29)

Weiterhin kann aus den Knotenverschiebungen w”, w™*! und den Knotenrotationen

um einen Normalenvektor auf die betrachtete Kante 62, ON*1 ein kubischer Rahmen

konstruiert werden [92]. Die Rotationen 6,, ergeben sich dabei aus den Knotenrotationen
im Elementkoordinatensystem durch

0, = 3 [in) 0, — R[in] b, . (4.30a)

Der Verschiebungsrahmen fiir den kubischen Ansatz lautet in Matrixschreibweise

#1712 -2 1 1 wN
2 N+1
. N+l _ | S -3 3 -2 -1 w
s0 10 0 0 oN+1
—— ———
ST M k
Der kubische Polynomansatz lasst sich darstellen als
$1" Ta
- 3 2 1 0 s b
w(s) =as’ +bs*+cs” +ds’ = i . (4.32)
s0 d
——
sT

und die Bestimmung der Koeffizienten erfolgt aus den je zwei Randbedingungen an den
beiden Elementknoten fiir 0 < s <1,

w(s) w ()
s=0: d=w" c= 92] (4.33)
s=1: at+bt+c+d=w"" 3a+2b+c=0oNt".
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In Matrixschreibweise lautet das Gleichungssystem

M
—_——f~

0001 a

1111 b

0010 —k. (4.34)
3210 d

Daraus folgt fir die gesuchten Koeffizienten durch Auflésen

a

Pl oMk (4.35)

d

Insgesamt ergibt sich fiir das gesuchte kubische Polynom in Abhéngigkeit von den lokalen
Knotenverschiebungen

T

W(s,N,N+1) = Mk . (4.36)

[= T R

S
S
S
S

Der Verschiebungs- und Rotationsrahmen einer Elementkante, die durch die Knoten
N und N + 1 definiert ist, wird durch die Funktionen Q (s, N,N +1) € R > und
Q, (s,N,N +1) € R**! zu cinem globalen Rahmen assembliert. Dabei sind alle nicht
zur betrachteten Kante gehorenden Eintrage gleich Null. Der globale Verschiebungsrahmen
ist

w(s, N,N+1)=Q(s,N,N+1)a (4.37)

und der globale Rotationsrahmen ist

Wa(s, NNN+1)=Q, (s, NNN+1)u. (4.38)

Damit kann der Term II, des erweiterten Potentials dargestellt werden als

I, — A* % / (VQ" +PVQ") ds|a. (4.39)

Tint

—:LocC2nmaz X3nN

Die beiden verbleibenden Terme sind analog dazu

1 ) .
=45 / (M.Q," + PM, Q) ds | 4 (4.40)

Cint

=:L4eC2nmaz X3nN
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und

1 Nint

1 = A* (, 3 (MSQT + PM, Q"‘)) @. (4.41)

2 m=1

=:LgeC2nmaz X3nN
Durch Zusammenfassen der Einzelterme ergibt sich die Matrixdarstellung

I, = A" (Ly+ Ly + Lg) . (4.42)
~——— —
L

4.6 Berechnung des Koeffizientenvektors

Mit den Ausdrucken Iy und II; ist das erweiterte elastische Potential der Platte in
Matrixformulierung

T = Iy + I, — = f% A"HA+ AL, . (4.43)

Der Koeffizientenvektor A ist dabei noch unbestimmt. Fiir einen vorgegebenen Knoten-
verschiebungsvektor @ wird der Koeffizientenvektor gesucht, der das erweiterte Potential
minimiert. Um das Minimum von I7%* zu berechnen, wird eine Richtungsableitung fiir
eine beliebige Auslenkung A A des Koeffizientenvektors definiert,

VAHemf, (A AA) — lim et (A + €AA) — Jrext (A) _
’ e—0

€
 —eA"HAA +et"L*AA
= lim .
e—0 £

(4.44)

Dabei ist ¢ € R und es gilt A*"HAA = AA"HA. Fir ein Minimum des erweiterten
Potentials muss diese Ableitung fiir beliebige Auslenkungen A A gleich Null sein. Daraus
erhdlt man die Bedingung

~AH+4"L*=0. (4.45)

Auflésen nach dem Koeffizientenvektor A fithrt zu
A=H"'Lu. (4.46)

Diesen Ausdruck fiir den Koeffizientenvektor A setzt man abschliefend in das erweiterte
Potential aus Glg. (4.43) ein und erhélt

met=-4o' L'H'L a, (4.47)

=:KpcR3"NX3nN

|

1
2

wobei das erweiterte elastische Potential der Platte nur noch vom Knotenverschiebungs-
vektor &1 und der Elementsteifigkeitsmatrix K7 mit reellen Eintrdgen abhingt. Eine
Zusammenfassung der Vorgehensweise beim T-Element bis zur Berechnung des Koeffizien-
tenvektors findet sich bei [93].
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4.7 Berechnung der Starrkorperbewegung

Aus dem Koeffizientenvektor A konnen alle gesuchten Grofen im Elementgebiet Qo
berechnet werden. Fiir die Darstellung des Verschiebungsfeldes w(z) und des Rotations-
feldes Vw(z) miissen zusitzlich die Starrkérperbewegungen beriicksichtigt werden, die
das elastische Potential nicht veréndern. Die Starrkérperbewegungen ergeben sich aus
der zweimaligen Integration des Potentials B(z), um die Substitution B(z) = ¥”(z) aus
Abschnitt 3.13 wieder riickgangig zu machen. Durch die Integration erhilt man

Az) = //B(z) dzdz+ An 12+ Anpgg s - (4.48)

Die komplexen Integrationskonstanten A, 1 und A, 2 sind zundchst noch unbe-
stimmt. Sie entsprechen den Starrkorperbewegungen, also einer gleichférmigen Translation
in z-Richtung aus a; = R[A,, +2] und den Starrkorperrotationen um die x- und y-Achse
des Elementkoordinatensystems aus as = S[4,, . ., und a3 = R[4, . ]. Nach [94] kén-
nen die Starrkoérperverschiebungen durch Minimierung der quadratischen Abweichungen
zwischen den vorgegebenen und den berechneten Knotenverschiebungen ohne Starrkor-

peranteile bestimmt werden. Dazu wird der Koeffizientenvektor A um die zusatzlichen

Abbildung 4.3: Starrkorperanteile aus A =0.45+10 und A =0.334+10.22.

Mmaz+1
Das resultierende Starrkorperverschiebungsfeld ist wrpay = 0.45 + 0.33 2 +

"max+2

0.22y.
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Koeffizienten fir die Starrkérperanteile erweitert. Man erhélt

Ao
Aﬂmaz
A"max+1
ARB]W — é"maz-%—Z . (449)
Ao
anaz’
0
L O B
Durch den unberiticksichtigten Starrkorperanteil verbleibt in jedem Elementknoten eine
Abweichung vV = %" — w" (A) bestehen. Gesucht werden nun die Koeffizienten, welche
die noch verbleibenden quadratischen Abweichungen & = [v!,...,v"] der Elementknoten
minimieren,
ny ny N
Mil(ay a500) D T7 = D (ﬁl - wZRBM) = L(ay,as,a3) . (4.50)
i=1 i=1

Dabei ist w?5M der Vektor mit den Elementknotenverschiebungen in Abhéngigkeit der
Starrkorperanteile,

Whpar
wiBM = : . (4.51)

NN
WrBM

Durch eine lineare Regression fiir die Funktion w(z,y) erhilt man das Starrkorperver-
schiebungsfeld in der Form wgpy = a1 + asx + agy. In Abb. 4.3 ist ein Beispiel abgebildet,
das einen Translations- und einen Rotationsanteil um die z- und y-Achse enthélt. Fiir
das Minimum der quadratischen Abweichungen miissen die partiellen Ableitungen von
L(ay,as, az) nach den Koeffizienten verschwinden [95, S. 6611f],

oL &

Oay i=1

oL ny A

— ==2>"x;(¥; — a — azw; — azy;) =0 (4.52b)
Oay i=1

oL X

——=-2) "y, (0, — a1 — axm; —azy;) = 0. (4.52¢)
8(13 i—1

x und y beinhalten dabei die z- und y-Komponenten der Elementknotenkoordinaten.
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QFE T
Aty
Ny

Abbildung 4.4: Die Randknoten N; und N, des T-Elements sind nicht mit Standardele-
menten gekoppelt.

Durch Auflésen nach den einzelnen Koeffizienten und Einsetzen, fir a; zum Beispiel

ny-ai

—
Zv:zl:al—k—agzlw-i-agZy 1 (4.53)
a) = EZ’U - nNazz.';c— Ea;;Zy ,
erhilt man die Gleichungen zur Bestimmung der gesuchten Koeffizienten,
() (ad) - (Lzy)(Lyd)
(Ca2?)(Zy?) - (Czy)?

() (Cyd) - (Czy)(Z =)
(Z2)(Cy?) - (Zzy)?

ag =

(4.54a)

as =

(4.54D)

4.8 Freie Randknoten

In vielen Fallen beginnt bei einer gekoppelten Simulation mit den Teilgebieten Q7 und
Qpp das Risswachstum am Rand des Gesamtgebiets 2. Fiir die beiden Randknoten /N7 und
N, des T-Elements stehen dann keine Kopplungsbedingungen mit Qpp zur Verfiigung. In
Abb. 4.4 ist die Lage der freien Randknoten auf dem Rand von € schematisch dargestellt.
Entweder gibt man an diesen Knoten den Verlauf der Knotenverschiebungen direkt vor
oder man nimmt an, dass die zu den beiden Knoten gehérenden Randsegmente unbelastet
sind. Dann sind die entsprechenden Knotenkrafte gleich Null und es ergibt sich ein
Gleichungssystem mit der Struktur

6x6 6x3(ny—2) 6x1

%J(\fsg)xa 25‘ -2)x3(ny—2) | ° 3(}:' —2)x1 | = 0 . (4455)
K N K3 N 3(nn uprezw F
Dabei ist w der Vektor mit den gesuchten Knotenverschiebungen der freien Randknoten und
die vorgegebenen Verschiebungen an den Kopplungsknoten sind in . zusammengefasst.
Die Matrizen My, und Z, sowie K und K, enthalten die entsprechenden Eintrége
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05
L3

Abbildung 4.5: Mehrere Standardelemente, die nicht in einer Ebene liegen, werden mit
Hilfe einer Ausgleichsebene durch ein einzelnes T-Element ersetzt.

aus der Elementsteifigkeitsmatrix K 7. Der Knotenkraftvektor F' fiir die Kopplungsknoten
ergibt sich aus der zweiten Zeile des Gleichungssystems. Aus der ersten Zeile konnen die
gesuchten Knotenverschiebungen berechnet werden,

u=—M_ Ztp., . (4.56)
Eine eindeutige Losung existiert, wenn die Systemmatrix M, reguldr ist. Dazu muss
die Anzahl der beriicksichtigten Ordnungen 7,4, hoch genug gewéhlt werden. Eine Ab-
schiatzung der benotigten Anzahl von Ordnungen in Abhéngigkeit von der Anzahl der
Knotenfreiheitsgrade findet sich bei [92, 94, 96].

4.9 Algorithmus zur Simulation von Rissfortschritt

Um von der vorgestellten T-Elementformulierung fiir Modus III-Belastung zu einem Si-
mulationsverfahren zur Beschreibung von Rissen unter gemischter Beanspruchung zu
gelangen, sind zusdtzliche Schritte erforderlich. In diesem Abschnitt wird die Umsetzung
einer gekoppelten Simulation von Risswachstum in Form eines Unterprogramms fir einen
expliziten FE-Solver vorgestellt.

Zuerst erfolgt die Erweiterung des T-Elements auf beliebige ModusI/1I/III-Belastungen
durch Assemblieren der Teilsteifigkeitsmatrizen fir ModusIIT und ModusI/II zu einer
Gesamtsteifigkeitsmatrix. Eine Darstellung der zugrundeliegenden ebenen Elementformu-
lierung findet sich bei [97]. Die Gesamtsteifigkeitsmatrix ergibt sich als Blockmatrix

K 0
Ko = { g }

o K, (4.57)

Dabei ist K7 die Knotensteifigkeitsmatrix aus Glg. (4.47) und K p die Steifigkeitsmatrix
fiir ebene Belastungen des T-Elements. Die Berechnung der Eintriage von K p wird bei
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[49] erlautert. Der zugehorige Knotenverschiebungsvektor ist
.
Usheyl = [uo, o™ 0 0w 60 62, U 0;”] . (4.58)

1" und vV sind die Knotenverschiebungen in z- und y-Richtung des Elementkoordinaten-
systems.

Grundlage fur die gekoppelte Simulation von Risswachstum ist die Diskretisierung des
zu untersuchenden Bauteils mit Standardelementen. Die Modellierung von im unbelasteten
Zustand gekriimmten Strukturen erfolgt dabei als einfache Approximation der realen
Bauteilgeometrie durch eine geeignete Anzahl ebener Elemente. Beschreibungen dieser
Vorgehensweise sind bei [69, Kapitel 6] zu finden. Beschreibungen von anfénglich gekrtimm-
ten Strukturen mit der Schalentheorie werden zum Beispiel bei [33] und [75, Kapitel 11]
vorgestellt. Im Rahmen des Kopplungsalgorithmus werden im Bereich der Rissspitze Stan-
dardelemente durch ein einzelnes T-Element ersetzt. Die Lage des Anfangsrisses wird
dabei durch den Benutzer vorgegeben. Die zu ersetzenden Standardelemente werden durch
einen vorgegebenen Radius um die Rissspitze bestimmt. Elemente, deren Schwerpunkt
innerhalb des Suchradius liegt werden durch das T-Element ersetzt. Wenn Q7 aus mehreren
Standardelementen besteht, liegen die Elementknoten in der Regel nicht in einer Ebene.
Die im Rahmen dieser Arbeit vorgestellte T-Elementformulierung ist fiir im unbelaste-
ten Zustand ebene Strukturen formuliert worden. Als einfache Erweiterung fir leicht
gekriimmte Strukturen wird aus den Elementkoordinaten der ersetzten Standardelemente
eine Ausgleichsebene berechnet. Diese bildet dann die zy-Ebene des Elementkoordinaten-
systems. Die Berechnung der Ausgleichsebene erfolgt analog zu Abschnitt 4.7 durch lineare
Regression. In Abb. 4.5 ist beispielhaft eine Ausgleichsebene fiir vier Standardelemente
dargestellt, die nicht in einer Ebene liegen.

Die gekoppelte Simulation kann mit einem impliziten oder expliziten FE-Solver fiir das
Gebiet Qpg erfolgen. Fiir ein vollstandig linear-elastisches Bauteil kann die Berechnung der
impliziten Losung durch Assemblieren einer Gesamtsteifigkeitsmatrix fiir das Gebiet €2 und
Losen des resultierenden Gleichungssystems erfolgen. Dieses lautet fiir das Gesamtproblem

f=K-u. (4.59)

Ist das Gesamtbauteil elastisch-plastisch und lediglich die Umgebung der Rissspitze
linear-elastisch, erfolgt die Kopplung zwischen den Teilgebieten durch den Austausch
des Knotenverschiebungsvektors und des Knotenkraftvektors der Kopplungsknoten. Die
Knotenverschiebungen werden dabei aus Sicht des T-Elements als vorgegebene Rand-
bedingung aufgefasst und die daraus resultierenden Knotenkréfte berechnet. Bei einer
expliziten Simulation ist nach Glg. (2.1) auch die Masse des Elements zu berticksichtigen.
Als einfache Naherung wird die Masse jedoch vernachlassigt, da sie im Vergleich zur
Masse des Gesamtbauteils meist gering ist. Die kinetische Energie des Gesamtsystems
wird durch diese Annahme praktisch nicht beeinflusst. Soll der Einfluss der Masse dennoch
berticksichtigt werden, kann sie als konzentrierte Massenmatrix auf die Kopplungsknoten
aufgeteilt werden [16, Kapitel 16.2]. Eine Methode zur Konstruktion der Massenmatrix
unter Beriicksichtigung der Auswirkungen auf die kritische Zeitschrittweite ist bei [15]
dargestellt.

Zur Simulation von Risswachstum wird mit Hilfe des T-Elements die Beanspruchung an
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4.9 Algorithmus zur Simulation von Rissfortschritt

Tabelle 4.1: Rissfortschrittsalgorithmus

Aufruf durch den FE-Solver im Zeitschritt t

ift=0

Initialisierung

o Konnektivitat und Knotenkoordinaten des zu untersuchenden
Bauteils speichern

o Definition des Anfangsrisses und der T-Elementknoten auf
Basis der gespeicherten Geometrieinformationen

e Berechnung einer Ausgleichsebene und des zugehorigen Ele-
mentkoordinatensystems

e Loschen der ersetzten Standardelemente

end if
Aktualisieren von
if T-Elementgeometrie=neu

e Berechnung von K g

end if
Vervollstandigen von & durch Berechnung der freien Randknoten
Berechnung des Koeffizientenvektors A

Auswerten des aktuellen Spannungsintensitétsfaktors K
while K > K.

e a=a+Aa

o if neue Standardelemente im Einflussradius um die Rissspitze
Speichern der Elementnummern
end if

o Neuberechnung von K g,y

end while
Berechnung der Knotenkriéfte f
Riickgabe von f und der zu Iéschenden Elemente
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der Rissspitze ermittelt. Dazu wird der Koeffizientenvektor A berechnet, wobei sich direkt
aus der ersten Ordnung der Spannungsintensitatsfaktor K ergibt,

K =V2r R[A)] . (4.60)

K und Kj; ergeben sich analog dazu aus dem ebenen Anteil. Fiir gemischte Beanspru-
chungen unter Modus I/II kann damit auch die Rissausbreitungsrichtung nach den bei [30]
dargestellten Methoden berechnet werden. Aus der berechneten Beanspruchung an der
Rissspitze und einem experimentell ermittelten Rissfortschrittskriterium wird dann der
Rissfortschritt ermittelt. Im nachfolgenden Kapitel 5 werden entsprechende Materialversu-
che und eine Methode zur Bestimmung des Risswiderstands vorgestellt.

Risswachstum kann innerhalb des T-Elements in beliebig kleinen Inkrementen erfolgen.
Dazu wird die Elementgeometrie nach einem Schritt der Rissausbreitung a,., = a + Aa
aktualisiert und die Elementsteifigkeitsmatrix fiir die neue Geometrie berechnet. Nach
entsprechendem Rissfortschritt gelangen weitere Standardelemente in den Suchradius des
Rissfortschrittsalgorithmus und werden durch das T-Element ersetzt. Da das T-Element
nur in der Umgebung der Rissspitze sinnvoll eingesetzt werden kann, wird auch ein
Freigaberadius definiert, der grofier als der Suchradius ist. Elementknoten, die aulerhalb
liegen, werden bei einer Neudefinition des T-Elements nicht mehr berticksichtigt. So
bewegt sich das T-Element mit der Rissspitze durch das Bauteil. Ein Ablaufschema des
Rissfortschrittsalgorithmus als Pseudocode ist in Tabelle4.1 dargestellt.

Die in diesem Kapitel vorgestellte Elementformulierung fiir Modus ITI-Belastung stellt
eine Erweiterung ebener Trefftz-Rissspitzenelemente dar. Durch die Kombination beider
Anteile zu einem Schalenelement koénnen beliebige Modus I/I1/ /III-Belastungen von Rissen
in dinnwandigen Strukturen im Rahmen der LEBM modelliert werden. Das vorgestellte
Schalenelement wird abschliefiend in einen Algorithmus zur gekoppelten Simulation von
Rissfortschritt eingebunden. Die Formulierung des Rissfortschrittsalgorithmus als Unter-
programm eines impliziten oder expliziten FE-Solvers stellt eine Grundlage fiir die kiinftige
Weiterentwicklung von Simulationsverfahren fiir Risse zur Verfigung.
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5 Ermittlung von Materialdaten

Fiir die Simulation von Risswachstum ist eine materialspezifische Beschreibung des Risswi-
derstands erforderlich. Bei der Auswertung des Rissfortschrittkriteriums wird die aktuell
vorliegende Belastung an der Rissspitze berechnet und mit dem experimentell ermittelten
Widerstand gegen Rissausbreitung nach Glg. (2.11) verglichen. Fiir die experimentelle
Untersuchung von Rissen unter Modus I1I-Belastung stehen dabei im Gegensatz zu ebe-
nen Rissproblemen keine etablierten Versuchsmethoden und Auswertungsverfahren zur
Verfiigung. Insbesondere konnen bei diinnwandigen Blechbauteilen aufgrund der Geo-
metrieverhdltnisse keine normgerechten Bruchmechanikkennwerte fiir die in technischen
Aufgabenstellungen auftretenden grofien Rissverldngerungen ermittelt werden.

Aus diesem Grund wird im Rahmen der vorliegenden Arbeit eine Vorgehensweise entwi-
ckelt, die eine direkte Auswertung des kritischen CTOA ermoglicht. Die Versuchsmethodik
basiert auf der Arbeit von [98] zur Untersuchung von Rissen unter gemischter Modus I/I1I-
Belastung. Der Versuchsaufbau wird fiir die Durchfithrung der Versuche modifiziert, um fiir
einen grofen Bereich der Rissverléngerung reine Modus I1I-Belastung zu erzielen. Darauf
aufbauend wird ein neues Verfahren zur direkten Ermittlung des kritischen Rissoffnungs-
winkels im ModusIII aus der Geometrie der deformierten Probe vorgestellt. Zur Erfassung
der Probengeometrie wiahrend des Versuchs wird ein 3D-Bildkorrelationssystem eingesetzt.
Aus den Geometriedaten wird dann der Rissoffnungswinkel 777, bestimmt. Am Beispiel
des im Automobilbau weit verbreiteteten AHSS 22MnB5 wird schliefllich der Verlauf
von 7. in Abhangigkeit von der Rissverlangerung Aa ermittelt. Die Proben bestehen
dabei aus diinnwandigem Blechmaterial, wie es auch in der Serienfertigung von Struk-
turbauteilen im Automobilbau eingesetzt wird. Die gewonnenen experimentellen Daten
werden zur Charakterisierung des Risswiderstands von 22MnB5 unter reiner Modus I11-
Belastung herangezogen und bilden die Grundlage fiir einen Algorithmus zur Simulation
von Risswachstum mit einem T-Element.

Im Folgenden wird zunéchst die Auswahl eines geeigneten Parameters zur Beschreibung
des Risswiderstandes unter Modus I1I-Belastung beschrieben. Die Geometrieverhéltnisse
bei dilmnwandigen Blechproben stellen dabei eine zusitzliche Herausforderung dar, weil kei-
ne Standardmethoden fir die Parameterermittlung eingesetzt werden konnen. Zur Losung
der Aufgabenstellung wird der experimentell ermittelte kritische Rissoffnungswinkel unter
Modus I1I-Belastung 7. als Rissfortschrittskriterium gewéhlt. AnschlieBend wird der Ver-
suchsaufbau zur Untersuchung der vorgekerbten Blechproben unter Modus I1I-Belastung
vorgestellt. Die Auswertung der Versuche erfolgt mit einem System zur 3D-Bildkorrelation,
welches die rdumlichen Koordinaten eines zuvor aufgebrachten Punktmusters an der Pro-
benoberfliche aus dem Vergleich von Bildern zweier Kameras mit bekannter Position im
Raum bestimmt. Die Berechnung des Rissoffnungswinkels 7. erfolgt aus diesen Punkt-
koordinaten mit Hilfe eines neuentwickelten, geometriebasierten Auswertungsalgorithmus.
Der ermittelte Verlauf von 777, (Aa) wird als materialspezifischer Parameter fiir den
Risswiderstand unter Modus I1I-Belastung herangezogen. Zur Simulation von beliebig
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Tabelle 5.1: Ubersicht der beriicksichtigten Bruchmechaniknormen

ASTM E 399 [99] Standard Test Method for Linear-Elastic Plane-
Strain Fracture Toughness K. of Metallic Materi-
als

ASTM E 1820 [100] || Standard Test Method for Measurement of Fracture
Toughness

ASTM E 2472 [101] || Standard Test Method for Determination of Re-
sistance to Stable Crack Extension under Low-
Constraint Conditions

BS 7448 Part 1 [102] || Fracture Mechanics Toughness tests. Method for
determination of K., critical CTOD and critical
J values of metallic materials

ISO 12108 [103] Metallic materials—Fatigue testing—Fatigue crack
growth method
ISO 12135 [104] Metallic materials—Unified method of test for the

determination of quasistatic fracture toughness

gemischten Beanspruchungen an der Rissspitze wird das Modus ITI-Kriterium mit einem
etablierten Modell fiir Modus I/IT zu einem allgemeinen Rissfortschrittskriterium erweitert.

5.1 Beschreibung des Risswiderstands durch CTOA

Der allgemeine Risswiderstand Ry, aus Glg. (2.11) héngt von den Materialeigenschaften,
der Rissverlingerung Aa, dem Belastungsmodus und der Geometrie des Bauteils ab [26]
und ist daher kein reiner Werkstoffkennwert. Schréinkt man den betrachteten Bereich
von Aa, der Bauteilgeometrie und aller weiteren Einflussgrofien hinreichend ein, ist der
Risswiderstand innerhalb dieses eingeschrankten Bereichs nur noch vom Material abhéngig.
Im Fall der LEBM muss insbesondere gewéahrleistet sein, dass die Probe nur im Rahmen von
Kleinbereichsflieen plastisch deformiert wird. In manchen Fallen kann der Risswiderstand
dann direkt aus den gemessenen Versuchsgrofien bestimmt werden. Beispiele dafiir finden
sich in den Normen BS 7448 Part 1 [102] und ISO 12135 [104] sowie den ASTM-Standards
E 399 [99] und E 1820 [100], in denen fiir die Ermittlung von giiltigen materialspezifischen
Bruchmechanikkennwerten strikte Anforderungen an die Versuchsbedingungen vorgegeben
werden.

Die Simulation des Risswachstums basiert im Rahmen der vorliegenden Arbeit auf
der LEBM. Die zugehorigen Parameter zur Beschreibung des Risswiderstands wurden in
Abschnitt 2.3 bereits vorgestellt. Eine ausfithrliche Zusammenfassung bruchmechanischer
Grofen zur Beschreibung des Risswiderstands sowie eine Ubersicht der gebriuchlichsten
Prifverfahren ist dartiber hinaus zum Beispiel bei [38] zu finden. In der LEBM ist in
vielen Fillen eine standardisierte Bestimmung des Risswiderstands moglich. Eine Ubersicht
der Bruchmechaniknormen sowie der ISO- und ASTM-Standards, die fiir eine mogliche
Auswertung berticksichtigt wurden, ist in Tab. 5.1 zusammengestellt. Zur Ermittlung des
Risswiderstands unter Modus I1I-Belastung stehen im betrachteten Fall keine geeigneten
Standardverfahren zur Verfiigung. Die geringe Dicke der Blechproben verhindert eine
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Abbildung 5.1: Die CT-Probe nach ASTM-Standard E 399 [99] mit Bemafung in Ab-
héngigkeit von der Probenlénge W hat die homogene Probendicke B. Die
Rissldnge wird mit a bezeichnet.

normgerechte Bestimmung des Risswiderstands fiir grofere Rissverlangerungen.

Die beschriebene Ausgangssituation soll an einem Beispiel verdeutlicht werden. Um
zumindest fiir Modus [-Belastung, wo eine einfache Abschatzung moglich ist, die An-
wendbarkeit von Standardversuchen zu iiberpriifen, wird zunichst die Groéenordnung der
plastischen Zone fiir den untersuchten Blechwerkstoff 22MnB5 nach Glg. (2.15) abgeschétzt.
Fir die FlieBgrenze o wird dabei die Streckgrenze R, = 1100 MPa nach [8] eingesetzt.
Fir den kritischen Spannungsintensitétsfaktor nimmt man nach [11] fiir hochstfeste, mar-
tensitaushartende Stéhle einen Bereich von 60 MPay/m < K. < 120 MPa,/m an. Damit
liegt der Radius 7, der plastischen Zone im Bereich von 0.16 mm < r, < 1.9mm. Nach
[26] ist die LEBM mit KleinbereichsflieBen unter der Bedingung

a,b>r, (5.1)

anwendbar. Dabei ist a die Gesamtlange des Risses und b die verbleibende ungerissene
Lange der Probe, die als Ligamentliange bezeichnet wird. Diese Bedingung muss bei den
Versuchen zur Ermittlung giltiger Materialkennwerte stets erfiillt sein.

Als konkretes Beispiel soll die Anwendbarkeit der Versuche nach ASTM-Standard E 399
[99] zur Ermittlung des kritischen Spannungsintensititsfaktors K. abgeschiatzt werden.
Aus den zulassigen Probenformen wird dazu die CT-Probe nach Abb. 5.1 ausgewéhlt, weil
sie der geplanten Probengeometrie fiir die Modus III-Versuche am &hnlichsten ist. Die
Blechdicke soll dem in der Norm geforderten Minimum von B = 1.6 mm entsprechen. Der
im weiteren Verlauf zu untersuchende Blechwerkstoff weist eine vergleichbare Dicke von
1.5 mm auf. Die Probenldnge W muss dann nach den Anforderungen der Norm im Bereich
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Abbildung 5.2: Die Probe mit Rissspitze (1) und den eingespannten Réandern (2) und (3)
weist nach dem Versuch grofiflichige plastische Deformationen auf.

von
1<W/B<4 (5.2)

liegen, was 1.6 mm < W < 6.4 mm entspricht. Desweiteren muss die Bedingung

K2
a,(W—a)>25=L (5.3)
OF

mit der Ligamentlange b = (W — a) erfiillt sein. Die kritische Spannungsintensitat wird
wieder im Bereich von 60 MPay/m < K. < 120 MPa,/m angenommen und fir die
FlieBgrenze wird wieder 1100 MPa eingesetzt. Die notwendige Ligamentlédnge liegt mit
diesen Annahmen im Bereich von 7.4mm < b < 29.8 mm. Obwohl der tatsachliche Wert
von K. erst nach einem giiltigen Versuch vorliegt, zeigt die Abschéitzung bereits, dass
giiltige normgerechte Versuche aufgrund der geringen Probendicke zumindest fiir Modus I-
Belastung nicht durchgefithrt werden konnen. Ist die Bedingung (5.3) erfiillt, B aber zu klein,
erhdlt man keinen giiltigen Kj.-Wert. Die Bruchzahigkeit ist dann von der Probendicke
abhingig, kann aber trotzdem fiir die Untersuchung von Bauteilen herangezogen werden,
welche die gleiche Dicke aufweisen.

Das Prinzip der Standardversuche beruht meist darauf, dass sich die Probenkérper bis
auf die Rissspitzenumgebung linear-elastisch verhalten. Dadurch kann die Belastung an
der Rissspitze aus den Messgrofien Kraft, Weg und Risslinge direkt bestimmt werden,
wenn das linear-elastische Verformungsverhalten des Probenkorpers bekannt ist. Bei
allgemeinen Probengeometrien ist dieses Verhalten nicht bekannt und insbesondere kénnen
plastische Deformationen auch in Bereichen auerhalb der Rissspitzenumgebung auftreten.
In Abb. 5.2 ist als Beispiel dafiir eine deformierte Modus III-Probe abgebildet. Die Probe
stammt aus der im weiteren Verlauf durchgefithrten Versuchsreihe. Durch die plastischen
Deformationen verteilt sich die beim Versuch insgesamt eingebrachte Verformungsenergie
in, aus dem Versuch nicht einfach zu ermittelnder Weise, auf die plastische Zone im Bereich
der Rissspitze und die plastischen Zonen im iibrigen Teil der Probe. Ein Riickschluss
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Abbildung 5.3: Definition des Rissoffnungswinkels ;7. mit dem Auswertungsabstand 7.,
und dem linear-elastischen Bereich mit Kleinbereichsflieen 7.

auf die Belastung an der Rissspitze ist dann allein mit den Messgroen Kraft, Weg und
Rissldnge nicht mehr moglich.

Aus diesem Grund wird im Rahmen der vorliegenden Arbeit ein alternativer Ansatz
zur Ermittlung eines materialspezifischen Parameters fiir den Risswiderstand gewahlt.
Es handelt sich dabei um den kritischen Risséffnungswinkel ~;y., der analog zu ~; in
Abschnitt 2.3 fir eine Modus I1I-Belastung definiert wird. Die Auswertung des Winkels
erfolgt direkt an der Rissspitze durch eine geometrische Analyse der verformten Rissspitze-
numgebung. Das globale Verhalten der Probe wird dazu nicht bendtigt. Im Rahmen einer
FE-Simulation kann ein elastisch-plastisches Modell der Probe dazu eingesetzt werden,
um vz, in den kritischen Spannungsintensitéatsfaktor K. umzurechnen. Voraussetzung
dafiir ist die Existenz eines K-dominierten Bereichs in der Umgebung der plastischen Zone
an der Rissspitze.

Fiir die geometrische Analyse wird der Rissoffnungswinkel «;;7. durch die Rissoffnung
senkrecht zur Probenebene im Abstand 7, von der Rissspitze definiert, wie in Abb.5.3
dargestellt ist. Die Auswertung erfolgt im plastisch verformten Bereich der Rissufer. r.
ist der Radius des linear-elastischen Bereichs mit Kleinbereichsflielen. Die Verwendung
von CTOA als Rissfortschrittskriterium fir diinne Blechproben wird unter anderem bei
[36-38, 105, 106] und [107] dargestellt. Auch der ASTM-Standard E 2472 [101] beschreibt
die Bestimmung von CTOA in diinnen Proben. Das CTOA-Konzept geht von einem
Zusammenhang zwischen dem Rissoffnungswinkel an der Rissspitze und der zugehori-
gen Rissbelastung aus. Erreicht CTOA den kritischen Wert v, kommt es zu einer
Rissverlangerung [108]. Der kritische Rissoffnungswinkel ist dabei ein Ma$ fiir die lokale
Verformungsféhigkeit an der Risspitze.

Durch Biegebelastung kommt es in diinnwandigen Blechproben unter Modus ITI-Belas-
tung leicht zu grofiflichigen plastischen Deformationen. Die Grofle des verformten Bereichs
héngt von der Dicke ¢ ab. Sind die Probendicke und alle anderen Probenabmessungen
groB} genug, verhélt sich die Probe linear-elastisch und es tritt nur KleinbereichsflieBen an
der Rissspitze auf. Bei geringerer Dicke verbiegen sich die eingespannten Probenhélften im
bereits gerissenen Bereich aufgrund der Hebelwirkung in einer bestimmten Entfernung
von der Rissspitze plastisch. Je geringer die Probendicke, desto kleiner ist der dazu er-
forderliche Hebelarm. Wird die Biegesteifigkeit bei einer bestimmten Probendicke gleich
Null, betragt der Rissoffnungswinkel 180°. Dieser Fall entspricht dem Zerreifien von Papier
oder Aluminiumfolie unter Modus I1I-Belastung. Fiir die Ermittlung von CTOA wird der
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Abbildung 5.4: Die Probe mit Bemafung in mm hat vier Anschliisse fir die Potentialmes-
sung (schwarze Punkte). Weiterhin ist der eingespannte Teil der Probe (rot
gestrichelt) und der Bilderfassungsbereich (grin gestrichelt) dargestellt.

Abstand r,, so gewéhlt, dass die Auswertung im plastisch verformten Bereich der Rissufer
erfolgt.

Bei der direkten Bestimmung von CTOA an der Rissspitze sind keine zusitzlichen An-
nahmen iiber das globale Probenverhalten erforderlich. Die Methode ist damit speziell zur
Untersuchung von diinnwandigen Blechproben geeignet, bei denen grofiflachige plastische
Deformationen aufgrund von Biegebeanspruchungen auftreten kénnen.

5.2 Versuchsaufbau

Versuche mit Rissen unter Modus III-Belastung sind in der Literatur wenig verbreitet, weil
Risswachstum in vielen Féllen vorwiegend unter ebener Belastung erfolgt. Desweitern ist
eine reine Modus III-Belastung im Versuch schwieriger zu erzielen als ebene Belastungszu-
stande. In den Veroffentlichungen von [98, 109-112] wird ein geeignetes Versuchskonzept
fiir diinne Blechproben unter Modus III-Beanspruchung vorgestellt, welches im Rahmen
der vorliegenden Arbeit angepasst und erweitert wird.

Die Proben werden aus Blechplatinen aus 22MnB5 mit einer Dicke von ¢ = 1.5 mm
entsprechend der Zeichnung in Abb. 5.4 zugeschnitten. Das Material befindet sich dabei im
Anlieferungszustand. Die zugehorigen Materialeigenschaften und Prozessparameter fiir die
Probenfertigung sind in Tab. 5.2 zusammengefasst. Bei bruchmechanischen Versuchen wird
ein definierter Anriss in die Probe eingebracht, um vergleichbare Ausgangsbedingungen
fiir das Risswachstum zu gewéhrleisten. Die Vorgehensweise wird zum Beispiel im ASTM-
Standard E 399 [99] beschrieben. Das Einbringen des Anrisses erfolgt in drei Schritten.
Beim Zuschnitt der Probe wird ein Kerb mit einer Schlitzweite von 0.5 mm und einer
Kerbtiefe von 28.6 mm in die Probe eingesdgt. Danach erfolgt das Hérten der Probe durch
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Tabelle 5.2: Materialeigenschaften von 22MnB5 nach [8] und Prozessparameter fiir die
Probenfertigung

E-Modul 210 GPa
Austenitisierungstemperatur - 900°C
Haltedauer Austenitisieren 1800s

Abkiithlung im Olbad
Anlasstemperatur 250°C

Haltedauer Anlassen 3005

Nachbearbeitung Sandstrahlen und teilweises Polieren
im Anlieferungszustand

R, 320 — 550 MPa

R, 500 — 700 MPa
Bruchdehnung A >10% mit Ly = 80 mm
nach Warmumformung

R. 1100 MPa

R, 1500 MPa
Bruchdehnung A 6%

Erwéirmen tiber die Austenitisierungtemperatur auf 900°C mit einer Haltezeit von 1800s
und unmittelbar anschlieBendes Abkiihlen im Olbad. Durch die Warmebehandlung ensteht
ein 100% martensitisches Gefiige. Das Anlassen der Probe erfolgt bei einer Temperatur
von 250°C mit einer Haltedauer von 300s. Der Erfolg der Warmebehandlung wird durch
Standardzugversuche nach DIN EN ISO 6892-1 [113] mit der Anfangsmesslinge Ly =
50 mm anhand von 5 Proben tiberpriift. Die ermittelten Spannungs-Dehnungs-Kurven der
Zugversuche sind in Abb. 5.5 dargestellt. In Tab. 5.3 sind die Ergebnisse der Auswertung
zusammengefasst. Dabei werden die geforderten Werte fir die Streckgrenze R, bzw. die
Ersatzstreckgrenze Ry 2, die Zugfestigkeit R,, und die Bruchdehnung Asomm mit Ausnahme
einer Probe erreicht. Bei Probe5 erfolgte der Bruch aulerhalb der Messlédnge. Weiterhin
wird in Tab. 5.3 mit ¢, die gemessene Dicke, mit by die Breite, mit Sy die Querschnittsflache
und mit Ly die Ausgangslange der Probe bezeichnet.

Die Modus I1I-Proben werden nach dem Anlassen sandgestrahlt und im Bereich des
Kerbgrunds der eingesdgten Kerbe wird die Probenoberfliche poliert. An der glatten
Oberfléche kann die Lange des Anrisses im weiteren Verlauf besser ausgewertet werden.
Anschliefend wird die eingesigte Kerbe der Probe durch einen Rasierklingenschnitt

Tabelle 5.3: Auswertung der Zugversuche

Nr. tO bO SO LO E RpO,Q Rm A50 mm
mm | mm | mm? | mm | N/mm? | N/mm? | N/mm? %
1.46 | 11.83 | 17.27 | 50.0 | 196870 | 1102.5 | 1555.3 6.24
1.47 | 11.95 | 17.57 | 50.0 | 196053 | 1117.9 | 1533.1 6.49
1.49 | 11.91 | 17.75 | 50.0 | 208941 | 1075.2 | 1518.0 6.79
1.43 | 11.87 | 16.97 | 50.0 | 209037 | 1145.8 | 1584.1 6.57
1.48 1 11.91 | 17.63 | 50.0 | 226281 | 1080.1 | 1521.6 4.38

T W N =
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Abbildung 5.5: Spannungs-Dehnungs-Kurven der Zugversuche zur Uberpriifung der Mate-
rialkennwerte aus Tab. 5.2

verlangert. Mit Hilfe einer speziellen Vorrrichtung wird dabei durch die Schneidbewegung
einer Rasierklinge, die mit einer Diamantsuspension benetzt ist, am Kerbgrund eine zweite
Kerbe mit deutlich verkleinertem Kerbradius erzeugt. Diese weist eine Tiefe von ca. 0.4 mm
auf. Der letzte Schritt der Probenvorbereitung ist die Erzeugung eines Ermiidungsanrisses,
welcher am Grund der durch den Rasierklingenschnitt eingebrachten Kerbe entsteht. Dazu
wird die Probe mit einer zyklisch schwellenden Zugbelastung unter Modus 1 beaufschlagt.
Fir den Ermudungsanriss wird durch regelméfige Sichtpriifung mit dem Auflichtmikroskop
eine Mindestlange von 1.0 mm eingehalten. Das Spannungsverhéltnis zwischen Ober- und
Unterspannung o, und o, beim Anschwingen betragt i = 2+ = 22000%% = 0.1 mit einer
Frequenz von f = 20Hz. In ISO 12108 [103] ist die Vorgehensweise fiir die Wahl der
Belastung beim Anschwingen dargestellt. In Abb. 5.6 ist ein dreistufiger Anriss dargestellt,
der mit der beschriebenen Vorgehensweise erzeugt wurde. Die Gesamtlinge des Anrisses
betragt dabei ap = 28.6 mm + 0.4 mm + 1.0 mm = 30 mm. Die gemessenen Anrisslangen

liegen bei allen fiir die Versuche eingesetzten Proben innerhalb von ap = 30 mm % 0.25 mm.

Fir die Versuche kommt eine spezielle Einspannvorrichtung zum Einsatz, die eine
variable Belastung der Probe in vier verschiedenen Abstufungen zwischen ModusI und III
ermdglicht. Die Stufen entsprechen den Positionen 0°, 30°, 60°und 90°, wobei die Position
fiir reine Modus I1I-Belastung als 0°-Position bezeichnet wird. Zur Erzeugung des Anrisses
im Modus I wird entsprechend die 90°-Position der Einspannvorrichtung verwendet. In
Abb. 5.7 ist der Versuchsaufbau mit der Einspannvorrichtung und den beiden Proben
dargestellt, wie er fir alle durchgefithrten Modus I1I-Versuche eingesetzt wurde. Fiir die
lokale Wegmessung wird zusétzlich ein Clip-Gage eingesetzt. Das Risswachstum erfolgt
in Richtung der z-Achse des Versuchskoordinatensystems. Der Ausgangspunkt fiir die
Konstruktion der Einspannvorrichtung ist der bei [98] beschriebene Versuchsaufbau. Im
Vergleich dazu wird im Rahmen der vorliegenden Arbeit eine andere Probengeometrie
eingesetzt und die Versuche werden mit zwei Proben gleichzeitig durchgefiihrt, um ein
Verkippen der Einspannvorrichtung um die y-Achse des Versuchskoordinatensystems zu
vermeiden. Die Proben haben eine rechteckige Probenform mit einem Seitenverhétnis von
2:1, wodurch der Rissfortschritt iiber einen grofien Bereich von Aa untersucht werden kann
und die Bedingung aus Glg. (5.1) eingehalten wird.
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Abbildung 5.6: Bei dem dreistufigen Anriss der Probe verjingt sich die eingesigte Kerbe (1)
am Kerbgrund durch den Rasierklingenschnitt (2) und beim Anschwingen
entsteht ein feiner Anriss (3) mit einer gemessenen Lénge von 1162.69 pm
(rot).

Eine Kraftmessung ist zur direkten geometrischen Bestimmung von CTOA nicht er-
forderlich, die Kraft wird aber mit Hilfe einer Kraftmessdose im Laststrang zusitzlich
gemessen. Zur Kontrolle der Vorschubgeschwindigkeit, aus der die Auslenkung Az der
Probe zu einem bestimmten Zeitpunkt berechnet wird, erfolgt eine lokale Wegmessung mit
einem Clip-Gage, das iiber eine Messldnge von 50 mm verfiigt. Der Vergleich von lokaler
Wegmessung und berechneter Auslenkung Az ist in Anhang A.1 fiir alle durchgefiihrten
Versuche abgebildet. Mit Hilfe von Az (¢) werden im weiteren Verlauf alle zeitabhéngigen
Messgrofien in Abhéngigkeit von Az angegeben.

Zur Messung der Rissldnge wird neben dem 3D-Bildkorrelationsverfahren zusétzlich
die Potentialmethode nach [114] eingesetzt. Fir die dazu erforderliche Potentialmessung
werden die Kontaktflichen zwischen den Proben und der Einspannvorrichtung mit einer
elektrisch isolierenden Schicht versehen. Die Potentialmethode basiert auf der Messung
der Widerstandsanderung zwischen den Anschlusspunkten der Probe, welche durch das
Risswachstum hervorgerufen wird. Das eingesetzte Verfahren zur Potentialmessung auf
Basis von Gleichstrom ist in ISO 12135 [104] detailliert beschrieben. Fiir eine rechteckige
Probengeometrie wird dabei als Ndherung die analytische Losung fiir das elektrische
Potential in einem unendlich ausgedehnten Streifen herangezogen. Damit gilt fir die
Beziehung zwischen der Potentialdnderung und der aktuellen Risslédnge

2W cos-1 cosh (y/2W)
T cosh [(d)/qﬁo) cosh™! [cosh (7y/2W) / cos (wao/QW)]] .

(5.4)

Dabei ist ag die Anrisslinge und a die gesuchte Risslange. ¢ ist dementsprechend das
Referenzpotential bei der Risslédnge ag und ¢ das zu a gehoérende Potential. 2y ist der
Abstand zwischen den Messpunkten auf der Probe und W die Probenlédnge. Bei der
verwendeten Probengeometrie ist ag = 30 mm, y = 17.8 mm und W = 133.3 mm.

Eine Moglichkeit um die Rissspitze sichtbar zu machen, stellt das Heat-Tinting-Verfahren
dar. Dabei wird der Versuch nach einem bestimmten Rissfortschritt abgebrochen und die
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Abbildung 5.7: Versuchsaufbau fiir die Modus I1I-Versuche mit den Einspannvorrichtungen
(1) und (2), den Proben (blau und griin), dem Clip-Gage (3) und den Pro-
benfixierungen (4) und (5). Das Risswachstum erfolgt bei der rechten Probe
in Richtung der xz-Achse und bei der linken Probe in entgegengesetzter
Richtung.
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Abbildung 5.8: Der Bereich (1) rechts von der Rissspitze (2) ist nach dem Anlassen bei
450°C vollstandig verfarbt. Links im Bild (3) ist das durch Aufbrechen der
Probe entstandene Rissufer sichtbar.

Probe entnommen. Die teilweise gerissene Probe wird dann bei einer Temperatur von
450°C angelassen, wodurch eine deutlich sichtbare Verfirbung der Rissufer hervorgerufen
wird. Anschlieffend wird die Probe wieder eingespannt und bis zum vollstdndingen Bruch
belastet. Aufgrund der Farbunterschiede kann die Position der Rissspitze beim Abbruch
des Versuchs bestimmt werden. Ein Beispiel eines solchen Versuchs fiir die Modus I1I-Probe
ist in Abb. 5.8 dargestellt. Eine quantitative Auswertung der Rissspitzenposition mit dem
Heat-Tinting-Verfahren wurde im Rahmen der vorliegenden Arbeit nicht durchgefiihrt.

5.3 Auswertungsalgorithmus fiir CTOA

Fiir die Auswertung des Rissoffnungswinkels 7777 wird die Oberfliche der Probe wiahrend
des Versuchs mit einem 3D-Bildkorrelationssystem (DIC-System) erfasst. Von den beiden
eingespannten Proben nach Abb. 5.7 wird dabei nur die rechte Probe erfasst. Der Bilder-
fassungsbereich ist in Abb. 5.4 dargestellt. Dieser beginnt ab einem Rissfortschritt von
Aa = 15mm.

Das DIC-System besteht im Wesentlichen aus zwei digitalen Kameras, die auf einer
gemeinsamen Fiihrungsschiene angeordnet sind. Die Kameras, die einen definierten Abstand
voneinander aufweisen, werden auf den zu messenden Bereich der Probe ausgerichtet. Mit
Hilfe von Kalibrierplatten mit einem definierten geometrischen Muster wird dann die
raumliche Lage der Kameras in Bezug auf die Probenposition ermittelt. Mit der bekannten
Geometrie des Messsystems kann aus den beiden Einzelbildern zu einem bestimmten
Zeitpunkt die rdumliche Position von Punkten auf der Probenoberfliche berechnet werden.

Die Berechnung erfolgt mit einem Bildkorrelationsverfahren, welches auf den Bildern der
Probe bestimmte Punktmuster identifizieren kann. Aus dem Vergleich zwischen dem linken
und rechten Bild eines identifizierten Punktes wird seine raumliche Position berechnet. Um
die eindeutige Zuordnung von Bildpunkten zwischen zwei Einzelbildern zu ermoglichen,
werden die Proben vor dem Versuch mit einem schwarz-weilen Specklemuster von gleich-
maéBiger Feinheit bespritht. Dadurch entsteht eine stochastische Helligkeitsverteilung, die
eine eindeutige Zuordnung von Bildpunkten erméglicht. Aus zwei Bildern zu verschiedenen
Zeitpunkten kann mit Hilfe der Bildkorrelation auch das Verschiebungsfeld der Probeno-
berfliche berechnet werden. Einfithrende Darstellungen in Grundlagen und Theorie der
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Abbildung 5.9: Die Aufnahmen der rechten Kamera fiir ¢ = 0s und ¢ = 198s zeigen
die Probenoberfliche mit Specklemuster und die mit ARAMIS ermittelte
grofite Hauptdehnung 7 von Probe 1. Die Zeitpunkte entsprechen einer
Probenauslenkung von Az = 0.0mm und Az = 31.301 mm. Auf dem
Ma#Bstab im linken Bild ist der Abstand zum eingespannten Bereich der
Probe nach Abb. 5.4 in mm dargestellt.

Bildkorrelationsverfahren sind unter Anderem bei [115-118] zu finden. Ein Anwendungs-
beispiel fiir den Einsatz des Verfahrens bei bruchmechanischen Versuchen wird von [119]
beschrieben. Eine Anwendung der Bildkorrelation zur Messung des Verschiebungsfeldes im
Bereich der Rissspitze wird bei [120] gezeigt.

Die 3D-Bildkorrelation zeichnet sich durch einen geringen Aufwand bei der Probenvor-
bereitung aus. Zudem funktioniert das Verfahren beriihrungslos und ermdéglicht dadurch
die Erfassung der Rissspitze bei Risswachstum und gréferen Probenverformungen. Wegen
dieser Vorteile wird die 3D-Bildkorrelation im Rahmen der vorliegenden Arbeit eingesetzt.
Insbesondere wird das Verfahren aufwéandigeren Methoden zur direkten Auswertung der
Rissspitzenumgebung vorgezogen, die anhand der Interferometrie und der Spannungsoptik
zum Beispiel bei [121] beschrieben werden.

Fiir die Auswertung der Versuche wird das kommerzielle Bildkorrelationssystem ARAMIS
5M der Firma GOM mit der Softwareversion 6.1.1 eingesetzt. Damit werden bei allen
durchgefiihrten Versuchen die Geometrie der Probenoberflache, das Verschiebungsfeld und
die technischen Dehnungen ausgewertet. Aus der Auswertung mit ARAMIS erhélt man fiir
jeden aufgezeichneten Zeitpunkt die berechneten z-, y- und z-Koordinaten diskreter Punkte
auf der Probenoberfliche sowie die zugehorigen ebenen Hauptdehnungen &; und &, in %.
Die ermittelten Koordinaten zur Zeit ¢ werden im Vektor p™4*3 (¢) zusammengefasst, wobei
in der ersten Spalte die a-, in der zweiten die y- und in der dritten Spalte die z-Koordinaten
angeordnet werden. ny4 (¢) ist die Anzahl der Messpunkte auf der Probenoberflache zur Zeit
t. In Abb. 5.9 ist ein Beispiel fur die Auswertung mit ARAMIS zu zwei unterschiedlichen
Zeitpunkten dargestellt. Die Auswertungsergebnisse fiir die Geometrie sind dabei tiberlagert
mit dem Originalbild der rechten Kamera dargestellt, auf dem die Probenoberfliche mit
Specklemuster zu erkennen ist. Farbig dargestellt ist die grofite ebene Hauptdehnung e,. Fiir
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Abbildung 5.10: Fir den dargestellten Ausschnitt aus Probe 1 nach Abb. 5.11 ergibt sich die
Probenoberflache durch lineare Interpolation der Koordinaten zwischen
den diskreten Messpunkten, die an den Knotenpunkten des Gitters liegen.
Die Hauptdehnung ¢; wird fiir die Darstellung aus dem Mittelwert der
zugehorigen Knotenwerte berechnet.

die Aufzeichnung der Messdaten mit ARAMIS wird bei allen Versuchen ein einheitliches
Zeitintervall von At = 1s gewéhlt.

Um aus den diskreten Messpunkten eine vollstandige Probenoberfliache zu rekonstruieren,
muss ein Interpolationsverfahren eingesetzt werden. In Abb. 5.10 ist als Beispiel dafiir
eine lineare Interpolation der Oberflache fiir einen Ausschnitt aus Probe 1 nach Abb.5.9
mit Az = 55.489 mm dargestellt. Jedes Segment entsteht durch lineare Interpolation der
Koordinaten zwischen den vier Eckpunkten. Fir die Darstellung von e; wird fiir jedes
Segment der Mittelwert aus den Werten der zugehorigen Eckpunkte gebildet.

Aus den mit ARAMIS ermittelten Punktkoordinaten wird der Risséffnungswinkel ;7.
an der fortschreitenden Rissspitze ausgewertet. Der Auswertungsalgorithmus besteht aus
zwel wesentlichen Schritten. Im ersten Schritt wird die aktuelle Position der Rissspitze
bestimmt und danach wird der Riss6ffnungswinkel an der ermittelten Position ausgewertet.
Fiir die Auswertung missen die ermittelten Punktkoordinaten zunéchst in das Versuchs-
koordinatensystem nach Abb.5.7 transformiert werden, da die z- und z-Richtung fiir
den Auswertungsalgorithmus benétigt werden. Im Allgemeinen stimmt das Versuchsko-
ordinatensystem nicht mit dem Koordinatensystem der ARAMIS-Auswertung iiberein,
weshalb eine Koordinatentransformation zwischen beiden Systemen berechnet werden
muss. Die Lage der zy-Ebene ist im Versuchskoordinatensystem durch die eingespannte,
unbelastete Probe gegeben und die Auslenkung der Probe erfolgt senkrecht zur zy-Ebene
in Richtung der z-Achse des Versuchskoordinatensystems. Die Rissausbreitung unter
Modus IT1I-Belastung erfolgt in Richtung der x-Achse.

Die Transformationsmatrix zur Transformation der Messpunkte in das Versuchskoordi-
natensystem wird mit Hilfe einer Ausgleichsebene fiir die gemessenen Punktkoordinaten
p"4*3 der unbelasteten Probe bei Az = 0 mm berechnet. Die unbelastete Probe weist infol-
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Abbildung 5.11: Die bei einer Auslenkung von Az = 55.489mm deformierte Probel
liegt nach Anwendung der berechneten Transformation auf p in der
Ausgleichsebene, die der zy-Ebene mit z = 0 mm entspricht. Die z-Achse
verlauft parallel zur Rissausbreitungsrichtung. Uberlagert ist die mit
ARAMIS ermittelte grofite Hauptdehnung &, dargestellt.

ge der vorausgehenden Warmebehandlung einen Verzug senkrecht zur Probenebene in der
GroBenordnung von ca. £0.3 mm auf. Die Ausgleichsebene stellt daher eine Naherung der
zy-Ebene des Versuchskoordinatensystems dar. Zur Berechnung muss das iiberbestimmte
Gleichungssystem

N - k==z (5.5)
geldst werden. Dabei sind in z"4*! die z-Komponenten der Messpunkte p™4*® im Koordi-
natensystem von ARAMIS zusammengefasst. In

nax3
zo Yo 1
N=| : = (5.6)
Tny Yna 1
. T
werden die 2- und y-Koordinaten aus p™4*? angeordnet. Der Vektor k**! = [ a b cd]
er

enthilt die drei gesuchten Koeffizienten der Ebenengleichung ax + by + cz = 0
Ausgleichsebene. Die Losung mit der kleinsten euklidischen Norm

IN -k =z, (5.7)

erhilt man nach der Methode der kleinsten Quadrate durch Bilden der Pseudoinversen N
von IN. Die gesuchte Losung fiir den Koeffizientenvektor der Ebenengleichung ist damit

E=N'.z. (5.8)

Die Basisvektoren des Probenkoordinatensystems ergeben sich aus den Koeffizienten der
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Abbildung 5.12: Das Prinzip der Nearest-Neighbor-Interpolation wird hier fiir homogen
verteilte Messpunkte (rot) in einer Dimension dargestellt. Die Interpolati-
onsfunktion (blau) nimmt in jedem Punkt den Wert des néchstgelegenen
Messpunktes (rot) an.

Ebenengleichung durch

1 —a
ng = — —b s (59&)
In| 1
-1 -1
n; = 0 — 0 ‘N3 | -N3, (59b)
0 0
Ny =1n; X N3 . (5.9¢)

Bei den Versuchen ist die obere Einspannvorrichtung in z-Richtung fest eingespannt,
wihrend der untere Teil ausgelenkt wird. Dadurch erfihrt die Probe eine Starrkérpertrans-
lation in z-Richtung, die mit Hilfe der ARAMIS-Software bei allen Auswertungsergebnissen
entfernt wird. Die Lage der Ausgleichsebene ist aus diesem Grund unabhéngig von ¢ und
es miissen keine weiteren Koordinatentransformationen berechnet werden. Bei allen nach-
folgenden Berechnungsschritten des Auswertungsalgorithmus werden die Messpunkte p (¢)
zunéchst in das Versuchskoordinatensystem transformiert. Die transformierten Punkte
werden mit p¥%9 (¢) bezeichnet.

Als Beispiel fiir die Transformation in das Versuchskoordinatensystem ist in Abb.5.11
Probe1 bei einer Auslenkung von Az = 55.489 mm dargestellt. Die a-Achse der Probene-
bene verlauft dabei parallel zur Rissausbreitungsrichtung. Im Versuchskoordinatensystem
ist die Verschiebung der Messpunkte senkrecht zur zy-Ebene durch die z-Koordinaten der
Messpunkte gegeben, die in w"4*! zusammengefasst werden.

Der néchste Schritt des Auswertungsalgorithmus ist die Bestimmung der Rissspitzenpo-
sition. Dazu werden die z-Koordinaten der Messpunkte im Versuchskoordinatensystem
w mit Hilfe der Nearest-Neighbor-Methode auf einem regelméfiigen Punktgitter in der
zy-Ebene interpoliert. Die mit ARAMIS berechneten Messpunkte weisen bei den durchge-
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Abbildung 5.13: Fiir Probe 1 aus Abb. 5.11 mit Az = 55.489 mm wird aus dem Differenzen-
quotienten w’;t die Rissspitzenposition (grin) z = 38.75 mm, y = 7.0 mm
ermittelt. Dargestellt ist ein Ausschnitt des berechneten Differenzenquo-
tienten in der Umgebung der Rissspitze. Entlang des Risses weist wfz’;t
deutlich hohere Werte auf als in der Umgebung. Hinter der Rissspitze
wird der Rissverlauf aufgrund fehlender Messpunkte durch die Nearest-
Neighbor-Interpolation verfalscht. Fiir eine bessere Darstellung ist 'wQ’}t

zusétzlich farbig hervorgehoben.

fithrten Versuchen typische Abstédnde von Az = 0.53 mm und Ay = 0.52 mm auf, wobei
die Anordnung der Punkte nicht regelmafig ist. Die regelméfBiigen Gitterpunkte werden
aus fest vorgegebenen Abstdnden Ax und Ay in z- bzw. y-Richtung erzeugt. Fir die
Auswertung werden im weiteren Verlauf bei allen Proben die Werte Az = 0.5mm und
Ay = 0.25mm gewéhlt. Die interpolierten z-Koordinaten der Messpunkte werden mit
w™ (1) bezeichnet. Die regelméBige Anordnung der interpolierten Messpunkte erméglicht
eine einfache Auswertung des Differenzenquotienten von w™ (¢) in y-Richtung, der mit
w’" (t) bezeichnet wird.

Bei der Nearest-Neighbor-Interpolation wird an jedem Interpolationspunkt der Funk-
tionswert des am néchsten liegenden Messpunktes als Interpolationswert gewédhlt. In
Abb. 5.12 wird das Prinzip an einem einfachen Beispiel verdeutlicht. Durch die Nearest-
Neighbor-Interpolation wird die Unstetigkeit des Verschiebungsfelds senkrecht zum Rissufer
in Richtung der y-Achse abgebildet. In z-Richtung werden die interpolierten z-Koordinaten
w™ (t) vor der weiteren Auswertung durch Bilden des einfachen gleitenden Mittelwerts
iiber n = 3 Messpunkte gegléttet.

Die Position der Rissspitze wird aus dem Vorwartsdifferenzenquotient wf;“ (t) in y-
Richtung bestimmt, der entlang des Rissufers aufgrund des Sprungs im Verschiebungsfeld
deutlich grofere Werte als im tibrigen Teil der Probe annimmt. Das Ergebnis ist in
Abb. 5.13 beispielhaft fir Probe 1 bei einer Auslenkung von Az = 55.489 mm dargestellt.
Aufgrund fehlender Messwerte fithrt die Nearest-Neighbor-Interpolation deutlich hinter der
Rissspitze zu einer falschen Auswertung des Rissverlaufs, was jedoch keinen Einfluss auf
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Abbildung 5.14: Fiir Probe 1 aus Abb. 5.11 ist der Verlauf der ermittelten Rissspitzenposi-
tionen getrennt fiir die einzelnen Koordinaten x, y und z in Abhéngigkeit
von Az dargestellt. Aus dem Verlauf der z-Position wird Aa berechnet.
Der Verlauf der y-Position zeigt nur eine geringe Abweichung des Rissver-
laufs von der Richtung parallel zur x-Achse und die z-Positionen liegen
ungefiahr bei Null.

die Auswertung der Rissspitzenposition hat. Der Grund fir die fehlenden Messwerte ist die
begrenzte Tiefenschéirfe des Kamerasystems. Fir die Ermittlung der Rissspitzenposition
wird ein Schwellenwert fiir w’* (t) vorgegeben, der empirisch ermittelt wird. Dieser Wert

liegt moglichst knapp tiber den Werten von wﬁj‘t (t) auBerhalb des Risses. Wird der Wert
zu gering gewahlt, kann die Rissspitzenposition nicht zuverlassig bestimmt werden. Bei
einem zu groflen Wert liegt die ermittelte Rissspitzenposition hinter der tatsédchlichen
Position. Die Rissspitze wird an dem Messpunkt festgelegt, bei dem der vorgegebene
Schwellenwert iiberschritten wird und der zugleich die kleinste z-Koordinatenkomponente
aufweist. Fiir die Auswertung aller Versuche wird der Schwellenwert einheitlich mit 0.15 ==
vorgegeben. In Abb. 5.14 ist der mit dem vorgestellten Algorithmus ermittelte Verlauf der
Rissspitzenkoordinaten z, y und z fiir Probe 1 in Abhéngigkeit von Az dargestellt.

Nach der Bestimmung der Rissspitzenposition erfolgt die Auswertung des Rissoffnungs-
winkels v777.. Dazu werden die unbearbeiteten Messpunkte p¥%* (t) herangezogen, die
in das Versuchskoordinatensystem transformiert wurden. Zunéichst wird die ermittelte
z-Position der Rissspitze 2z, dazu eingesetzt, um die beiden Rissufer zu separieren, indem
die Punkte mit z < 2, dem negativen und mit z > 2, dem positiven Rissufer zugeordnet
werden. Danach wird mit Hilfe der Nearest-Neighbor-Methode in der zz-Schnittebene
mit y = yp der Verlauf der beiden Rissufer separat bestimmt. Die Interpolation erfolgt
wieder fiir eine regelméafiige Anordnung der Interpolationspunkte entlang der z-Achse mit
Az = 0.5 mm.

Fiir beide Rissufer wird eine Ausgleichsgerade durch die zugehérigen Messpunkte berech-
net, die im Bereich von der Rissspitze bis zur vorgegebenen Auswertungsposition hinter
der Rissspitze mit 0 < x < x,, liegen. Der Schnittwinkel beider Geraden entspricht dem
gesuchten Rissoffnungswinkel 777, (£) zum Zeitpunkt ¢. In Abb.5.15 ist ein Beispiel fir die
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Abbildung 5.15: Die Auswertung von CTOA bei Probe 2 fiir eine Auslenkung von Az =
21.8160 mm mit z, = 10mm ergibt ;7. = 29.3273°.

Ermittlung von CTOA dargestellt, wobei der interpolierte Verlauf beider Rissufer in der
xz-Schnittebene und die zugehorigen Ausgleichsgeraden dargestellt sind. Der Auswertungs-
abstand betrigt dabei z, = 10 mm. Fiir Probe 2 betrégt der ermittelte Risséffnungswinkel
bei einer Auslenkung von Az = 21.8160 mm ;7. = 29.3273°. Der gesamte Aufbau des
Auswertungsalgorithmus zur Ermittlung von CTOA ist in Abb. 5.16 nochmals als Ubersicht
dargestellt.

5.4 Ergebnisse der Versuche

Mit der in den vorangehenden Abschnitten vorgestellten Versuchsmethodik werden die
Proben quasistatisch mit einer konstanten Vorschubgeschwindigkeit von 9.4852 mm/min
getestet. Fir die folgende Auswertung wurden insgesamt 13 Probenpaare eingesetzt, von
denen 11 erfolgreich mit dem Auswertungsalgorithmus untersucht werden konnten. Bei den
Proben 8 und 10 war die Qualitat der mit ARAMIS erfassten Messdaten nicht ausreichend,
um eine Auswertung des Rissoffnungswinkels durchzufiihren. Die Kraft-Weg-Verlaufe
der Versuche werden zur Kontrolle des korrekten Versuchsablaufs herangezogen, da bei
Vorversuchen Probleme mit der Einspannvorrichtung auftraten. Diese fiihrten zu hohen
Kraftspitzen. Die Kraft-Weg-Kurven aller durchgefithrten Versuche sind im Anhang A.1 in
Abb. A.2 zusammengefasst. Dabei zeigt sich eine gute Ubereinstimmung des Kraftverlaufs
bei allen Proben.

Um die Funktion des Auswertungsalgorithmus zur Ermittlung der Rissspitzenposition zu
iberpriifen, werden zwei Kriterien herangezogen. Als erstes Kriterium wird die Abweichung
des ermittelten Rissverlaufs vom erwarteten Verlauf parallel zur x-Achse betrachtet. Dazu
wird fir die ermittelten Rissspitzenpositionen in der zy-Ebene eine Ausgleichsgerade
berechnet und deren Winkel mit der xz-Achse bestimmt. Die Winkelabweichungen bei den
ausgewerteten Versuchen sind in Tab. 5.4 zusammengefasst. Der ermittelte Verlauf des
Risswachstums erfolgt bei allen ausgewerteten Proben nahezu parallel zur z-Achse.

Der zweite Schritt zur Uberpriifung des Auswertungsalgorithmus ist der Vergleich des
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Abbildung 5.16: Auswertungsalgorithmus zur Ermittlung von 7777, (Aa)
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Tabelle 5.4: Winkelabweichung des Rissverlaufs von der z-Achse

Probennr. Abweichung [°]

1 -1.2376°
2 -2.5548°
3 -1.7699°
4 -1.0376°
5 -2.7605°
6 -0.7196°
7 -2.5118°
8
9 -0.8119°
10 —
11 -0.3026°
12 -0.4021°
13 -3.9041°
——  Probe 1
Probe 2
55 _||— Probe 3
1 Probe 4
. ——  Probe b
E 35 Probe 6
= ——  Probe 7
<§] Probe 9
Probe 11
15 Probe 12
Probe 13
- Ag = 15mm

0 20 40 60 80 100
Az [mm]

Abbildung 5.17: Vergleich der mit dem Auswertungsalgorithmus (durchgezogene Linien)
und mit der Potentialmethode (gestrichelte Linien) ermittelten Rissver-
langerung Aa als Funktion der Probenauslenkung Az. Der Anriss mit
ap = 30mm wird von ARAMIS erst ab ag+ 15 mm erfasst, wie in Abb.5.4
dargestellt. Daher stehen hier erst ab Aa = 15 mm Auswertungsergebnisse
zur Verfigung.

ermittelten Risswachstums in Abhéngigkeit von Az mit den nach der Potentialmethode
berechneten Werten nach Glg. (5.4). Fir die Berechnung werden die bei den Versuchen zu-
satzlich aufgezeichneten Potential-Weg-Verldufe aus Abb. A.3 in Anhang A.1 herangezogen.
Der Vergleich beider Methoden zur Bestimmung des Risswachstums ist in Abb. 5.17 zusam-
mengefasst. Bei ARAMIS ist der Auswertungsbereich auf der Probenoberflidche beschrénkt.
Wie in Abb. 5.4 dargestellt, erfolgt die Auswertung erst ab einem Rissfortschritt von
Aa = 15mm. Der Beginn des Risswachstums im Bereich von 0 mm < Aa < 15 mm wird
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Abbildung 5.18: Auswertungsergebnisse fiir den Rissoffnungswinkel ~y;;7. als Funktion
der Rissverldngerung fiir alle ausgewerteten Proben. Der Riss wird von
ARAMIS ab Aa = 15mm erfasst. Der Auswertungsabstand betragt
ry = 10mm.

nicht erfasst. Die Ergebnisse des Auswertungsalgorithmus weisen bei allen untersuchten
Proben iiber den gesamten Verlauf des Rissfortschritts eine gute Ubereinstimmung auf.
Das mit der Potentialmethode berechnete Risswachstum zeigt eine breitere Streuung. Der
Vergleich beider Methoden zur Auswertung des Rissfortschritts zeigt, dass das ermittelte
Risswachstum im Bereich von 15 mm < Aa < 35 mm ungefiahr tibereinstimmt.

Mit dem Auswertungsalgorithmus wird der Verlauf des Risséffnungswinkels bei 11 von
insgesamt 13 Versuchen erfolgreich ausgewertet. In Abb. 5.18 sind die Auswertungsergeb-
nisse fiir den Verlauf von v;/7. (Aa) zusammengefasst.

Die Auswertung des Rissoffnungswinkels erfolgt bei den vorausgehenden Ergebnissen
im Abstand r, = 10mm hinter der Rissspitze. Im Folgenden wird der Einfluss des
Auswertungsabstands 7, am Beispiel von Probe 1 néher untersucht. Die Ergebnisse fiir
ry = 2,5,10,15mm sind in Abb. 5.19 zusammengefasst. Bei einem geringen Abstand stehen
fiir die Berechnung von CTOA nur wenige Messpunkte zur Verfiigung. Als Ergebnis ist
die Streuung der Auswertungsergebnisse sehr grofl. Mit zunechmendem Abstand wird die
Streuung geringer und bei r, = 10 mm bleibt der kritische Riss6ffnungswinkel tiber einen
weiten Bereich der Rissverldngerung ungefahr konstant.

5.5 Rissfortschrittskriterium fiir die Simulation

In diesem Kapitel wurde der Risswiderstand unter ModusIII-Belastung in Form des
kritischen Rissoffnungswinkels 7. experimentell ermittelt. Aufgrund der plastischen
Verbiegungen der Blechproben kann dabei kein direkter Zusammenhang zwischen 7y,
und den Groflen der LEBM hergestellt werden. Fiir die Simulation einer Modus I1I-
Belastung mit Hilfe des ermittelten kritischen Rissoffnungswinkels stehen zwei verschiedene
Wege zur Verfiigung. Bei der ersten Vorgehensweise kann im Rahmen einer elastisch-
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Abbildung 5.19: Abhéangigkeit von ;. (Aa) vom Auswertungsabstand r, am Beispiel
von Probe 1. Der Riss wird von ARAMIS ab Aa = 15 mm erfasst.

plastischen FE-Simulation des zu untersuchenden Rissproblems eine direkte Auswertung
des Rissfortschrittkriteriums
Y1 (1) 2> Yirte (5.10)

im Abstand ., hinter der Rissspitze durchgefithrt werden. Dieser Ansatz wird im weiteren
Verlauf nicht verfolgt, da eine praktische Umsetzung unter den gegebenen Rahmenbedin-
gungen nicht méglich war.

Der zweite Weg beruht auf der getroffenen Annahme, dass der Rissfortschritt trotz der
plastischen Verbiegungen der Proben lokal im Rahmen der LEBM mit Kleinbereichsflielen
erfolgt. Damit kann aus einer Detailsimulation des Versuchsablaufs der kritische Span-
nungsintensitatsfaktor Ky, bestimmt werden. Zur Berechnung wird die in Abschnitt 4.9
vorgestellte gekoppelte Simulation aus einem elastisch-plastischen FE-Modell und einem
T-Schalenelement eingesetzt. Fiir die Simulation wird die Probe mit Anriss zunéchst
mit Standardelementen diskretisiert und die Einspannvorrichtung durch entsprechende
Verschiebungsrandbedingungen modelliert. Die Berechnung von K. kénnte mit diesem
Modell, wie bereits zuvor dargestellt, durch eine direkte Auswertung des Rissfortschrittkri-
teriums nach Glg. (5.10) erfolgen. Im Laufe der Simulation wird dabei im Gegensatz zur
ersten Vorgehensweise mit Hilfe des T-Elements der Verlauf des Spannungsintensitatsfak-
tors ausgewertet. Damit ist mit den getroffenen Annahmen eine Umrechnung von ;. in
Krr1. moglich. Eine Umsetzung dieser Vorgehensweise weist ahnliche Schwierigkeiten wie
der vorausgehende Ansatz auf.

Daher wird im Rahmen der vorliegenden Arbeit eine alternative Vorgehensweise zur
Bestimmung von K. eingesetzt. Ausgangspunkt ist wieder die gekoppelte Simulation des
Versuchsaufbaus mit einem elastisch-plastischen FE-Modell und einem T-Schalenelement
im Bereich der Rissspitze. Damit wird der kritische Spannungsintensitétsfaktor iterativ
ermittelt, indem ausgehend von einem Startwert aus den Ergebnissen der Simulation ein
verbesserter Wert fir K. bestimmt wird. Weitere Simulationen werden solange durchge-
fithrt, bis der Verlauf des Rissfortschritts in der Simulation gut mit dem experimentell
ermittelten Rissfortschritt tibereinstimmt. Der iterativ ermittelte Wert aus dem letzten
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Abbildung 5.20: Algorithmus zur Auswertung des Rissfortschrittkriteriums

Simulationsdurchlauf entspricht dann dem gesuchten Risswiderstand Kjrr.. Mit dieser Vor-
gehensweise ist eine Charakterisierung des Risswiderstands in Blechen aus 22MnB5 unter
reiner Modus I1I-Belastung ohne zusétzlichen Aufwand fir die Auswertung von CTOA
wihrend der Simulation mdéglich. Es werden dafiir mehrere Durchlaufe der Simulation
benotigt, um zu einem Ergebnis zu gelangen.

Um das Modell fiir die gekoppelte Simulation von Rissen mit dem T-Element zu ver-
vollstandigen, wird der Algorithmus mit einem Modell fir die gemischte Beanspruchung
der Rissspitze ergénzt. Dazu stehen verschiedene Kriterien zur Verfiigung. Die etablierten
Modelle fiir Modus I/II-Belastung kénnen zum Beispiel bei [30, S. 127ff] und [14, S. 124ff]
nachgeschlagen werden. Dort werden neben den Rissfortschrittskriterien auch Modelle fiir
die Bestimmung der Rissausbreitungsrichtung bei gemischter Beanspruchung angegeben.
Desweiteren gibt es Kriterien auf Basis von CTOD, die unter Anderem bei [122] und
[123] zu finden sind. Fiir Modus I/III-Beanspruchung stehen ebenfalls Rissfortschrittskrite-
rien zur Verfigung. Bei [124, 125] wird zum Beispiel ein Kriterium vorgestellt, das auf
einem speziellen Ausbreitungsmechanismus unter Modus III basiert. Dabei findet kein
kontinuierliches Risswachstum statt, sondern eine schlagartige, segmentierte Ausbreitung
der Risses. Die Anderung der Rissausbreitungsrichtung unter Modus I/IIT wird von [126]
untersucht. Energiebasierte Kriterien fiir beliebige Belastungen werden bei [127] und [128]
vorgeschlagen. Der Einfluss nichtsinguldrer Terme auf gemischte Beanspruchungen wird
bei [129] untersucht.

Hier wird ein einfaches Rissfortschrittskriterium auf Basis der Spannungsintensitéatsfakto-
ren ausgewahlt, weil die vorliegende Belastung an der Rissspitze in Form von Ky, K; und
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Kirr direkt mit dem T-Element bestimmt werden kann. Damit konnen die verbreiteten
Kriterien nach [14, 30, 42] wéhrend der gekoppelten Simulation sehr einfach ausgewertet
werden. Rissfortschritt erfolgt unter der Bedingung

Ky > KV Kiir 2 Kipre - (5.11)

Desweiteren wird auch ein Kriterium fiir die Ermittlung der Rissausbreitungsrichtung
benotigt. Dazu wird entweder die Summe aus K; und Ky

Keg = Kr+ Kpr (5.12)

K=K+ (1+v) K} (5.13)

herangezogen [26]. Fiir die im weiteren Verlauf durchgefiihrten Simulationen erfolgt die
Berechnung nach Glg. (5.12). Die Rissausbreitung hat nach dem Modell der maximalen
Umfangspannung [14, 30, 42] im T-Elementkoordinatensystem die Komponenten

35 + 1+ 85k

KZ
L+ 97t

K K K3
A K—’i *3ﬁﬁ/1+87§:
a, = . (5.15)

K2
14974
+9% )

nach [42] oder

und

Der Ablauf zur Auswertung des Rissfortschrittkriteriums bei der gekoppelten Simulation
ist in Abb. 5.20 nochmals zusammengefasst.

5.6 Zusammenfassung und Diskussion

Aufgrund der geringen Blechdicken und gleichzeitig groBen Rissverldngerungen kann eine
Bestimmung des Risswiderstands in vielen technischen Anwendungsfillen nicht mit Hilfe
standardisierter Versuche erfolgen. Die Belastung des Risses im ModusIII stellt dabei
eine zusatzliche Herausforderung dar, weil der Einsatz gangiger Messverfahren aus ebenen
Bruchmechanikexperimenten nur eingeschrankt moglich ist. Aus diesen Griinden wird in
der vorliegenden Arbeit eine Versuchsmethodik zur direkten geometrischen Bestimmung
des kritischen Rissoffnungswinkels 7. eingesetzt. Grundlage fir die Auswertung sind mit
Hilfe des 3D-Bildkorrelationsverfahrens gemessene Koordinaten und Verschiebungsfelder
auf der Probenoberfliche. Die Auswertung erfolgt lokal beschréankt in der Rissspitzenum-
gebung und erfordert keine zusétzlichen Annahmen tiber das globale Verhalten der Probe.
Der ermittelte Verlauf von 777. (Aa) wird zur Beschreibung des Risswiderstands herange-
zogen. Im Giiltigkeitsbereich der LEBM kann daraus mit Hilfe einer elastisch-plastischen
Detailsimulation des Versuchs der kritische Spannungsintensitétsfaktor K. berechnet
werden.

Bei der Anwendung der ermittelten Werte fiir K7, auf neue Problemstellungen muss
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die Blechdicke beriicksichtigt werden. Da in der Praxis nur eine iiberschaubare Anzahl
unterschiedlicher Blechdicken eingesetzt wird, kann eine experimentelle Untersuchung der
zu modellierenden Dicken mit vertretbarem Aufwand durchgefithrt werden.

Die vorgestellte Versuchsmethodik zur Bestimmung von ~y. erfordert einen geringen
Aufwand bei der Probenvorbereitung. Die zur Verfiigung stehenden Bildkorrelationssysteme
ermoglichen die Erfassung und Datenauswertung der Rissspitzenumgebung mit ausrei-
chender Genauigkeit. Ein Vorteil der Methode ist die Anwendbarkeit auf unterschiedliche
Probengeometrien. Damit kann auch bei Versuchen mit komplexeren Bauteilen eine direkte
Auswertung an der Rissspitze durchgefiihrt werden. Daneben kénnen mit der bei den
Versuchen verwendeten Einspannvorrichtung auch Versuche unter gemischten Modus I/111-
Beanspruchungen durchgefithrt werden, um deren Einfluss auf das Bruchverhalten zu unter-
suchen. Dazu stehen insgesamt vier Stufen zwischen reiner ModusI und reiner Modus IT1-
Belastung zur Verfiigung.

Fiir die kiinftige Weiterentwicklung der Methode stehen zum Beispiel speziell angepasste
Bildkorrelationsverfahren mit diskontinuierlichen Ansatzfunktionen fiir die Verschiebungen
zur Verfiigung. Ein Beispiel fir diesen Ansatz wird bei [130] vorgestellt. Die diskontinuier-
lichen Ansatzfunktionen kénnen dabei fir eine genauere Beschreibung des Rissverlaufs
eingesetzt werden.
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6 Modellvalidierung

Abschlieflend erfolgt in diesem Kapitel die Validierung des Modus I1I-Rissspitzenelements
sowie des darauf aufbauenden Schalenelements fiir Mixed-Mode-Belastung und des Algo-
rithmus fiir die gekoppelte Simulation von Risswachstum. Die Uberpriifung der in den
Kapiteln 3 und 4 vorgestellten Elementformulierung wird in zwei Schritte aufgeteilt. Diese
entsprechen nach dem Modell von [131] einer Verifikation und einer Validierung. Das
zugrundeliegende allgemeine Schema fiir die Uberpriifung von Simulationsmodellen ist in
Abb. 6.1 dargestellt. Dabei entspricht die Realitét, die durch das T-Element modelliert
wird, der Kirchhoffschen Plattentheorie und fiir den ModusI/II-Anteil des Schalenelements
der linear-elastischen Scheibentheorie. Die Vergleichslosungen fiir die Uberpriifung werden
mit fein vernetzten Standard-FE-Modellen berechnet. Eine ausreichende Netzfeinheit der
Vergleichslosungen wird bei allen Beispielen durch eine vorausgehende Konvergenzun-
tersuchung gewéahrleistet, die nicht gesondert dargestellt wird. Ohne Beschrankung der
Allgemeinheit werden bei den vorgestellten Beispielen in den Abschnitten 6.1, 6.2, 6.3
und 6.4 einfache Zahlenbeispiele gewéhlt. Ein Vergleich der Simulationsergebnisse mit den
ermittelten Materialkennwerten erfolgt in Abschnitt 6.5.

Bei der Verifikation wird iiberpriift, ob die Implementierung des T-Elements der vor-
gestellten mathematischen Beschreibung entspricht. Bei der Validierung wird anhand
verschiedener Lastfille und Geometrien des Losungsgebiets untersucht, ob die mit dem
T-Element berechneten Ergebnisse in Ubereinstimmung mit den Vergleichslésungen sind.
Zuletzt wird mit Hilfe der Versuchsergebnisse aus dem vorangehenden Kapitel 5 eine
praktische Umsetzung des vorgestellten Rissfortschrittsalgorithmus gezeigt.

6.1 Verifikation der Implementierung des T-Elements

In diesem Abschnitt werden bestimmte Eigenschaften des mathematischen Modells genutzt,
um einige Zwischenschritte der Implementierung des T-Elements zu iiberpriifen. Der

“ Qualifizierung
. -__Analyse
+ Progragnmieren
Si
— Verifikation

Abbildung 6.1: Verifikation und Validierung eines mathematischen Modells nach [131,
S. 23]

Validierung

Computersimulation
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Abbildung 6.2: T-Element mit Elementknoten n =1,...,9 in der xy-Ebene

Verifikationsprozess stellt sicher, dass die fiir die weiteren Berechnungen verwendete
Implementierung der mathematischen Beschreibung aus den Kapiteln 3 und 4 entspricht.
Die T-vollstédndigen Losungen aus Abschnitt 3.13 erfiillen die Randbedingungen am
Rissufer fiir eine beliebige Wahl von A exakt, was fiir die Verifikation des ersten Teilab-
schnitts genutzt wird. Dazu wird der Ansatz fiir das komplexe Potential A aus Glg. (3.83)
herangezogen und mit Glg. (3.81) das komplexe Potential B berechnet. Das Ergebnis
wird in die Darstellung der Randgréfen nach Glg. (3.63) eingesetzt. Durch numerische
Auswertung kann die Erfiillung der Randbedingungen nun direkt tiberpriift werden. Fiir
die Auswertung wird ein T-Elementgebiet betrachtet, das durch 9 Knotenkoordinaten in
der zy-Ebene definiert ist, wobei die Rissspitze im Koordinatenursprung und der Riss im
positiven Abschnitt der z-Achse liegt. Das betrachtete Beispiel ist in Abb. 6.2 dargestellt.
Bei der numerischen Auswertung wird eine endliche Anzahl von Ordnungen K,
des Reihenansatzes aus Glg. (3.83) berticksichtigt, wobei die Randbedingungen fiir jede
Ordnung einzeln erfillt sind. Fiir die Berechnung wird ein Koeffizientenvektor A, aus
Pseudozufallszahlen erzeugt. Nach Glg. 4.14 setzt sich der Koeffizientenvektor aus den
Koeffizienten der einzelnen Ordnungen und deren konjugiert komplexen Grofien zusammen.
Im weiteren Verlauf wird auf die Darstellung der konjugiert komplexen Eintrige verzichtet
und die fehlenden Eintrige durch Auslassungspunkte angedeutet. Als Beispiel wird der
Verlauf der Randgrofien @ (z) + %‘S(Z) und M, (z) fur
0.8121869254634043  + 10.6842498179899202 ]!
0.4562971246744079  + 10.6759465086758688
A,g = | 0.22800448152724356 + 10.012906851417319221 (6.1)
0.7252306342793038 + 10.863406016689869

mit K,,., = 4 entlang des oberen Rissufers berechnet. Die berechneten Verlaufe sind in
Abb. 6.3 zusammengefasst. Als Materialparameter fiir alle vorgestellten Validierungsbei-
spiele bis einschlieBlich Abschnitt 6.4 werden dabei ein E-Modul von E = 210 GPa sowie
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Abbildung 6.3: Entlang des oberen Rissufers im Bereich von 0 < z < 2.5,y = 0 sind
die Randgrofen im Rahmen der numerischen Genauigkeit gleich Null.
Die gemeinsame Ordinatenachse hat fiir M, die Einheit kN mm] und fiir
Q + 2% die Einheit [kN].

eine Querkontraktionszahl von v = 0.3 vorgegeben und die Plattendicke ist ¢ = 1.5 mm. Die
Auswertung der Spannungen erfolgt bei allen Beispielen an der Position h = ¢/2 = 0.75 mm
mit —/2 < h < t/2.

Die Randgrofien Q (z) + %ﬁf’z) und M, (z) sind im Bereich des Risses von 0mm < z <
2.5 mm im Rahmen der numerischen Genauigkeit gleich Null. Weiterfithrende Informationen
zur numerischen Genauigkeit von Berechnungen auf Basis von Gleitkommazahlen finden
sich zum Beispiel in der Norm IEEE 754 [132] und bei [133].

Als néchster Schritt der Verifikation erfolgt die Uberpriifung des Verschiebungs- und
Rotationsrahmens nach Abschnitt 4.5 indem untersucht wird, ob die berechnete Losung
fiir das Verschiebungsfeld w und die Rotation w,, auf I';,; bei einer Erhéhung von K4,
gegen den aus den vorgegebenen Knotenverschiebungen konstruierten Verschiebungs- und
Rotationsrahmen konvergiert. Die Elementgeometrie entspricht dabei weiterhin Abb. 6.2
und der vorgegebene Knotenverschiebungsvektor ist

0.675 0.744 —0.394 17
2.445 0.676 —0.378
1.743 0.656 —0.18
1.442 0.572 —0.084
= 0 0.577 0 (6.2)
1442 0572 0.084
—1.743 0.656  0.18
—2.445 0.676  0.378
| —0.675 0.744  0.394 |

Die erste Spalte enthélt die vorgegebenen Knotenverschiebungen w™ in mm und die zweite

und dritte Spalte enthalten die vorgegebenen Knotenrotationen ¢ bzw. 0 in
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Abbildung 6.4: Abweichung (@ — w) der berechneten Lésung vom vorgegebenen Verschie-
bungsrahmen fiir den linearen (links) und den kubischen Rahmen (rechts).
s beschreibt einen Umlauf entlang des Verschiebungsrandes von Knoten
1 bis Knoten 9 nach Abb.6.2. Bei Erhohung der Anzahl der zur Losung
berticksichtigten Ordnungen K., konvergiert die Abweichung gegen Null.

1072

71{maw =96
T Kmaz =2

s [mm]

s [mm]

20

Abbildung 6.5: Abweichung (9; — 9.1) der Losung vom vorgegebenen Rotationsrahmen
(links) und (@, — ,) (rechts). Die Einheit der Rotation ist (2] und s
beschreibt wieder den Umlauf entlang des Verschiebungsrands. — kenn-
zeichnet den Bereich von s, in dem 6,=w, bzw. 6,=w,. Nur in diesem
Bereich wird die jeweilige Rotation als Randbedingung vorgegeben und

die Abweichung konvergiert bei Erhohung von K., gegen Null.

Zeilennummer entspricht der Knotennummer aus Abb. 6.2. Dieser Aufbau von @ wird

analog fiir alle nachfolgenden Validierungsbeispiele eingesetzt.

Daraus wird der Koeffizientenvektor A nach Abschnitt4.6 durch Minimierung des

erweiterten Potentials berechnet. Die Losung fir K,,,, = 2 ist
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Abbildung 6.6: Das Minimum von /7¢** in der Umgebung A +¢eAA,..4 der Losung befindet
sich bei € = 0 mit I7*** = —7.05473J.

0.0223764 + 0.0 s
0.0 — 10.00351696

A=100 + i0.0 (6.3)
0.0 — 10.789333

und beinhaltet zusatzlich die nach Abschnitt 4.7 berechneten Starrkérperanteile. Im Beispiel
entsprechen diese einer Rotation um die z-Achse des Elementkoordinatensystems. Die
Anzahl der beriicksichtigten Ordnungen wird dann auf K., = 96 erhoht und die Differenz
zwischen dem aus @ berechneten Verlauf von @ bzw. @, und w bzw. w, dargestellt.
Die Auswertung des Beispiels ist in Abb.6.4 und Abb. 6.5 zusammengefasst. Fir die
Darstellung wird dabei ein positiver Umlaufsinn entlang von I';,; beginnend bei Knoten 1
gewahlt, der durch den Parameter s dargestellt wird. Fiir den Verschiebungsrahmen wird
ein linearer und ein kubischer Ansatz fiir @ konstruiert, wie in Abschnitt 4.5 dargestellt.

Die resultierende Abweichung (w — w) der berechneten Losung vom vorgegebenen Ver-
schiebungsrahmen @ ist bei K., = 96 sowohl beim linearen als auch beim kubischen
Ansatz klein im Vergleich zu den Verschiebungen. Das T-Element verfiigt tiber die zwei
Knotenfreiheitsgrade w und w,. Die Rotation w, wird bei der Konstruktion des Rota-
tionsrahmens aus ¢, und ¢, berechnet. Die Rotation w stellt keinen Freiheitsgrad des
T-Elements dar, sondern ergibt sich aus der Berechnung. Beim kubischen Verschiebungs-
rahmen wird w 4 jedoch fir die Konstruktion von @ genutzt, wodurch (@ —w) bei gleichem
K nae im Vergleich zum linearen Verschiebungsrahmen kleiner ist.

In Abb.6.5 sind (6, — 6,) und (éy — 0,) dargestellt. Aufgrund der Elementgeometrie
entspricht w, auf jeder Elementkante von I';,; entweder ¢, oder 6,. Die Abschnitte von s,
welche w ,, entsprechen, sind farbig gekennzeichnet und die iibrigen Abschnitte entsprechen
w . Die Abweichung (&, — w,,) konvergiert bei Erhohung von K,,,, wie erwartet gegen
Null.

Abschliefiend wird tiberpriift, ob der berechnete Koeffizientenvektor A aus Glg. (6.3) zu
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Abbildung 6.7: Vorgegebener Verschiebungsrahmen @ und Rotationsrahmen @, fir das
FE-Vergleichsmodell und das T-Element in Abhéngigkeit von s. Der Ro-
tationsrahmen beinhaltet eine Starrkorperrotation, die bei wj,’;m entfernt

wurde.

einem Minimum des erweiterten Potentials fithrt. Dazu werden bliebige kleine Auslenkungen
eAA aus der ermittelten Losung A fir K., = 2 betrachtet. Diese werden im dargestellten
Beispiel proportional zum zufillig Vektor

0.260765 + i0.73496 1%
0.156368 + 10.376277

AA,,=| 00 + i0.0 (6.4)
0.0 +i0.0

gewahlt. Die Koeffzienten fiir die Starrkérperanteile in den Zeilen K4, + 1 und Kppop + 2
von A und AA,,q lassen I1°® unverindert, was leicht numerisch tiberpriift werden kann.
In Abb. 6.6 ist der resultierende Verlauf von I7¢*! in Abhéngigkeit vom Skalierungsfaktor
fiir die Auslenkung ¢ dargestellt. Das berechnete Minimum liegt bei € = 0 und damit fithrt
der Koeffizientenvektor A in der betrachteten lokalen Umgebung zu einem Minimum des
erweiterten elastischen Potentials.

6.2 Validierung der T-Elementformulierung

Im néchsten Schritt erfolgt die Validierung der T-Elementformulierung. Als erstes Beispiel
wird dazu noch einmal die Elementgeometrie aus Abb. 6.2 herangezogen und der Knoten-
verschiebungsvektor 4 aus Glg. (6.2) als Randbedingung vorgegeben. Mit diesen Gréfien
erfolgt die Berechnung des zugehorigen Koeffizientenvektors A nach Abschnitt 4.6. Aus A
konnen anschlieend alle gesuchten Gréfien des T-Elements berechnet werden.

Als Vergleichsgrofien fir die Validierung werden der Spannungsintensititsfaktor Ky
und der Verlauf der Spannungskomponenten unter besonderer Berticksichtigung der Riss-
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Abbildung 6.8: Vergleich der Spannungen aus dem FE-Modell und dem T-Element entlang
der z-Achse. Im Bereich des Risses von 0 mm < z < 2.5 mm mit y = 0 sind
die Spannungen am oberen Rissufer angegeben. Mit K., = 2 und K4, =
96 werden dabei in Kurzschreibweise die Ergebnisse des T-Elements fiir
den entsprechenden Wert von K., bezeichnet.

spitzenumgebung herangezogen. Die Vergleichslosung wird mit einem linear-elastischen
FE-Modell berechnet, bei dem der Verschiebungs- und der Rotationsrahmen des T-Elements
als Randbedingungen vorgegeben werden. Bei der Validierung wird die Anzahl der be-
riicksichtigten Ordnungen K., variiert, um das Konvergenzverhalten der berechneten
Losungen zu untersuchen. Die nach Glg. (6.2) aus @ berechneten Rahmen fiir die Ver-
schiebung @ und die Rotation @, sind in Abb.6.7 zusammengefasst. Die Darstellung
erfolgt wieder beginnend bei Knoten 1 entlang von I';,; bis Knoten 9 mit dem Parameter
s. Dabei ist sowohl der lineare Ansatz fiir den Verschiebungsrahmen y;, als auch der
kubische Ansatz 1y, dargestellt. Alle Validierungsbeispiele werden, sofern nicht anders
angegeben, mit wy,,;, ausgewertet. Die vorgegebenen Knotenverschiebungen 4 beinhalten
im betrachteten Beispiel einen Starrkorperanteil, der einer Rotation um die z-Achse des
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Abbildung 6.9: Vergleich der Spannungen aus dem FE-Modell und dem T-Element entlang
der y-Achse (z = 0). Die Rissspitze befindet sich an der Position y = 0.

Elementkoordinatensystems entspricht. Dieser Anteil kann nach Abschnitt 4.7 berechnet
werden. In Abb. 6.7 ist daher auch der Rotationsrahmen ohne Starrkorperanteil dargestellt,
der mit 1Z7,T,ll’m bezeichnet wird.

Das Konvergenzverhalten der mit dem T-Element berechneten Losungen wird anhand der
von-Mises-Spannung o, und der einzelnen Spannungskomponenten untersucht. Im Folgen-
den wird dazu die Losung fur K., = 2 und K., = 96 angegeben. Die Auswertungspfade
fiir die Spannungen verlaufen entlang der z- und der y-Achse des Elementkoordinatensys-
tems. Im Bereich des Risses 0 mm < 2 < 2.5 mm mit y = 0 werden dabei die Spannungen
am oberen Rissufer angegeben. In Abb. 6.8 und Abb. 6.9 sind die berechneten Verldufe
der von-Mises-Spannung und der einzelnen Spannungskomponenten entlang der z- bzw.
der y-Achse dargestellt. In den Abbildungen werden sehr grofie Werte fiir eine bessere
Darstellung abgeschnitten. Bereits bei K., = 2 weisen die Spannungen im Bereich der
Rissspitze eine gute Ubereinstimmung mit der Vergleichslésung auf. Bei K,y,qp = 96 stimmt
der Verlauf aller Spannungskomponenten sehr gut mit der Vergleichslosung tiberein. Die
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Tabelle 6.1: Zusammenfassung der ermittelten Rissspitzenbelastungen fiir alle im Rahmen
dieser Arbeit durchgefithrten Validierungsbeispiele. Die Vergleichslosung fiir
Ky in GPay/mm bzw. &7 in GPa - mm aus dem jeweiligen FE-Modell wird
dabei mit der Losung des T-Elements mit K,,,, = 96 verglichen.

Beispiel- Vergleichslosung | Verschiebungs- | Verschiebungs-
nr. (VCCT) rahmen linear | rahmen kubisch
1 Kipr 14.33215 14.69198 14.40825
6.2 G 1.27159 1.33624 1.28512
2 Kipr 34.15029 33.75750 34.88574
A2 By 7.21959 7.05447 7.53390
3 Kir 26.355 27.04267 26.811
A3 By 4.29981 4.52713 4.44989
4 Kir 32.3559 32.5687 32.0069
A4 Birr 6.48083 6.56636 6.34178

mit dem T-Element berechneten Losungen werden mit K., = 2 und K4, = 96 be-
zeichnet. Diese Kurzbezeichnung fiir eine mit dem T-Element berechnete Losung mit dem
angegebenen Wert von K,,,, wird im weiteren Verlauf durchgéingig verwendet.

Der Spannungsintensitétsfaktor Ky entspricht dem ersten Koeffizienten des Reihenan-
satzes nach Glg. (2.12) und Glg. (4.60). Er ergibt sich damit direkt aus A. Der Zusammen-
hang mit der Energiefreisetzungsrate ist nach [30, S.52] durch

Kin
E

051][: (1+V) (65)
gegeben. Beim Vergleichsmodell wird der Spannungsintensititsfaktor K/¥ und die Energie-
freisetzungsrate &E mit Hilfe der virtual crack closure technique (VCCT) [42] ermittelt.

AbschlieBend wird die Berechnung von freien Innenknoten, die nicht mit Qg gekoppelt
sind, nach Abschnitt 4.8 tiberpriift. Dazu werden aus dem vorgegebenen Knotenverschie-
bungsvektor nach Glg. 6.2 die Eintriage fiir Knoten 1 und Knoten9 entfernt. Mit Hilfe
der Elementsteifigkeitsmatrix Kr werden dann die gesuchten Knotenverschiebungen der
unbelasteten Elementkanten zwischen den Knoten 1 und Knoten 2 sowie zwischen den
Knoten 9 und Knoten 8 berechnet. Beim Vergleichsmodell werden die entsprechenden
Verschiebungsrandbedingungen ebenfalls entfernt. Die Ergebnisse sind in Form einer
Konvergenzuntersuchung in Abhéngigkeit von K4, in Abb. 6.10 fiir die drei Knotenfrei-
heitsgrade w, 6, und 6, zusammengefasst. Aufgrund der Symmetrie der Elementgeometrie
und des Knotenverschiebungsvektors im betrachteten Fall sind nur die Ergebnisse fiir
Knoten 1 angegeben und die Werte fiir Knoten 9 ergeben sich analog. Beim kubischen
Verschiebungsrahmen konvergiert die berechnete Losung fir alle Knotenfreiheitsgrade
gegen die Vergleichslosung. Im Falle des linearen Verschiebungsrahmens ist Konvergenz bei
w und 6, nicht gegeben, weil die Rotation w, = 6, auf der Kante zwischen Knoten 1 und
2 keine Komponente um die z-Richtung des Elementkoordinatensystems aufweist. Daher
stehen an jedem Innenknoten nur zwei Gleichungen zur Berechnung der drei gesuchten
Knotenfreiheitsgrade zur Verfiigung.
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Abbildung 6.10: Konvergenzuntersuchung fiir die Berechnung des freien Innenknotens 1 mit
linearem (links) und kubischem Verschiebungsrahmen (rechts) in Abhan-
gigkeit von K,.,. Die gepunkteten Linien stellen die Vergleichslgsungen
aus dem FE-Modell dar.

In Anhang A sind drei weitere Validierungsbeispiele dargestellt, die nach der gleichen
Vorgehensweise wie im vorgestellten Beispiel ausgewertet werden. Im ersten Zusatzbeispiel
in Abschnitt A.2 wird der Knotenverschiebungsvektor @ fiir die bereits im ersten Beispiel
eingesetzte Elementgeometrie durch eine unsymmetrische Belastung ersetzt. Im dritten
Beispiel in Abschnitt A.3 wird die Validierung fiir eine unsymmetrische Elementgeometrie
mit 12 Knoten durchgefiihrt, wie in Abb. 6.11 dargestellt. Zuletzt wird in Abschnitt A.4
die Validierung einer Elementgeometrie mit 11 Knoten und schrigen Kantenverlaufen
vorgestellt. Alle durchgefiihrten Validierungsrechnungen zeigen dabei die Konvergenz der
berechneten Losungen gegen die jeweiligen Vergleichslosungen. Die Ergebnisse fiir die
Berechnung des Spannungsintensitatsfaktors K bzw. von &;;; in Abhéngigkeit von
Kpnae sind fiir alle vier Validierungsbeispiele in Tab. 6.1 zusammengefasst.

6.3 Beispiel fiir die gekoppelte Simulation

Fiir die Validierung der Kopplung werden die Ergebnisse einer gekoppelten Simulation aus
einem groben FE-Netz mit einem T-Element im Bereich der Rissspitze mit den Ergebnissen
einer hochaugelosten FE-Simulation verglichen. Das betrachtete Testbeispiel ist in Abb. 6.12
dargestellt. Es handelt sich um ein quadratisches Gebiet 2 mit Innenriss und einer
Kantenldnge von 50 mm. Die Rissspitze liegt an der Position x = 0 mm, y = 0 mm und der
gerade Riss verlauft entlang des positiven Abschnitts der z-Achse. An den beiden Kanten
des Gebiets parallel zur y-Achse mit = 25 mm wird eine Auslenkung von w = 15mm
in der oberen Halbebene und von w = —15mm in der unteren Halbebene der zy-Ebene
vorgegeben. Die Rotation w,, wird an den beiden Kanten mit w, = 0 vorgegeben. Die
verbleibenden Auflenkanten von (2 sind spannungsfrei. Als Materialparameter werden wie im
vorausgehenden Abschnitt ein E-Modul von F = 210 GPa sowie eine Querkontraktionszahl
von v = 0.3 vorgegeben und die Plattendicke ist ¢ = 1.5 mm.

Fir die gekoppelte Simulation des Testbeispiels wird das Gebiet Q in 20 x 20 =
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Abbildung 6.11: Unsymmetrische Elementgeometrie mit 12 Elementknoten in der xy-Ebene
als zusétzliches Validierungsbeispiel. Die Auswertung ist in Abschnitt A.3
zusammengefasst.

400 gleichméfBige Standardelemente mit einer Kantenldnge von 2.5 mm unterteilt. Das
resultierende Netz ist in Abb.6.12 dargestellt. Die vier Standardelemente im Bereich der
Rissspitze werden durch ein T-Element mit einer Kantenlédnge von 20 = 5.0 mm und n =9
Kopplungsknoten ersetzt. Die gekoppelte Simulation mit regelméfliger Vernetzung wird im
Folgenden mit T'1 bezeichnet. Dariiber hinaus wird das beschriebene Beispiel auch als
gekoppelte Simulation mit einem unregelméafigen Netz berechnet. Das verwendete Netz
und die daraus resultierende Geometrie des T-Elements sind in Abschnitt A.5 dargestellt.
Bei der nachfolgenden Auswertung werden die Ergebnisse der gekoppelten Simulation mit
unregelméfigem Netz mit T 2 bezeichnet.

Die Elementgeometrie des T-Elements fir T'1 mit den Kopplungsknoten ist in Abb. 6.13
dargestellt. Die Losung fiir das gekoppelte Problem wird berechnet, indem die Gesamtsteifig-
keitsmatrix aus den Elementsteifigkeitsmatrizen der Standardelemente und des T-Elements
assembliert wird. Das resultierende Gleichungssystem wird dann unter Berticksichtigung
der vorgegebenen Randverschiebungen direkt gelost. Aus dem Knotenverschiebungsvektor
der gekoppelten Losung wird der Koeffizientenvektor A berechnet, wodurch alle Gréfien
im Gebiet Q7 gegeben sind.

Fir die Vergleichslosung wird das Gebiet 2 mit einer Kantenldnge von 0.125mm
gleichméfig mit Standardelementen vernetzt. Die Kantenldnge entspricht dabei einem
zwanzigstel der Lange des gekoppelten Modells. Daraus ergibt sich eine Gesamtzahl von
400 x 400 = 160000 Elementen. Desweiteren wird fir die Auswertung auch ein grob
vernetztes FE-Modell mit einer Kantenlénge von [ = 2.5mm herangezogen, das dem
Beispiel T'1 mit vier Standardelementen anstelle des T-Elements entspricht. In Abb. 6.14
ist die Losung fir das Verschiebungsfeld w und die von-Mises-Spannung o, fiir das FE-
Grobmodell dargestellt um zu verdeutlichen, dass das Spannungsfeld an der Rissspitze mit
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Abbildung 6.12: Problemstellung fiir die Validierung der gekoppelten Simulation

Standardelementen bei grober Vernetzung nur unzureichend wiedergegeben wird. Ziel der
gekoppelten Simulation ist es, ohne feinere Vernetzung als beim Grobmodell eine genauere
Wiedergabe des Verlaufs der Spannungen im Bereich der Rissspitze zu erzielen. Fir die
Auswertung der Ergebnisse werden die Spannungen aus der gekoppelten Simulation und den
FE-Modellen entlang von zwei Schnitten an der Position ¢/2 = 0.75 mm in Dickenrichtung
ausgewertet. Der erste Schnitt verlauft dabei entlang der 2- und der zweite Schnitt entlang
der y-Achse des Elementkoordinatensystems.

In den Abb.6.15(a), 6.15(b), 6.15(c) und 6.15(d) sind die von-Mises-Spannung sowie die
Spannungskomponenten o, oy, und o, entlang der z-Achse fiir T 1 und T 2 dargestellt. Im
Bereich des Risses von 0 mm < z < 25 mm werden dabei die Spannungen entlang des oberen
Rissufers angegeben. Das T-Element wird dabei fir T 1 und T 2 mit K,,,, = 14 berechnet.
Desweiteren sind in den Abb.6.16(a), 6.16(b), 6.16(c) und 6.16(d) die entsprechenden
Spannungskomponenten entlang der y-Achse dargestellt. Die Position der Rissspitze ist
dabei y = 0.

In Tab. 6.2 sind die berechneten Rissspitzenbelastungen fir K., = 14 und K., =
96 fir das Beispiel T'1 zusammengefasst. Die Berechnung der Vergleichslosungen fiir
Ky bzw. &ppp erfolgt mit dem feinen FE-Modell mit VCCT. Desweiteren wird in der
Tabelle die Losung mit linearem und kubischem Ansatz fiir den Verschiebungsrahmen
gegeniibergestellt. In Tab. A.1 werden die Ergebnisse fiir die gekoppelte Simulation mit

Abbildung 6.13: T-Element mit den Kopplungsknoten n = (1),...,(9) und Rissspitze
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Abbildung 6.14: Verschiebungsfeld w des Kopplungsbeispiels aus dem FE-Grobmodell mit
iiberlagerter von-Mises-Spannung o,

Tabelle 6.2: Rissspitzenbelastung aus dem gekoppelten Modell T'1 und dem Vergleichs-
modell. Ky ist in GPay/mm und &;;; in GPa - mm angegeben.

Vergleichslosung Verschiebungs- ~ Verschiebungs-

(VCCT) rahmen linear rahmen kubisch
Koaw — 14 K11 20.3968 21.63271 20.96133
(CF374 2.575431 2.89698 2.71995
Kppaw =96 Kipr 20.3968 20.80686 20.98946
(C3374 2.575431 2.68001 2.72726
P Z1873.210.36, am 18.01.2026, 23:53:18, © Urheherrecttich geachiztor Inhalt.
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regelméfigem Netz T 1 und mit unregelméBigem Netz T 2 anhand einer p-Konvergenzstudie
in Abhéngigkeit von K., miteinander verglichen. Als Vergleichsgrofien werden Ky und
die elastische Verzerrungsenergie U herangezogen. Die FE-Vergleichslosungen werden mit
dem feinvernetzten FE-Modell berechnet.

In Abb.6.17(a) und Abb.6.17(b) ist die von-Mises-Spannung o, im Bereich der Rissspit-
ze mit —3mm < z,y < 3mm aus dem feinen FE-Modell und der gekoppelten Simulation
T1 mit Ke = 14 dargestellt. Die Auswertung der Spannungen erfolgt an der Posi-
tion ¢/2 = 0.75mm in Dickenrichtung. Die Ansatzfunktionen des T-Elements fiir die
Spannungen ermoglichen im Gebiet 27 im Gegensatz zum umgebenden groben FE-Netz
eine detaillierte Auflosung des Spannungsfeldes. Auf dem Kopplungsrand I';,,; weist der
Verlauf der Verschiebungen w und der Rotationen und infolgedessen auch der Verlauf der
Spannungen einen Sprung auf, der sich aus der hybriden Verschiebungsformulierung des
T-Elements ergibt.
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(a) Ausschnitt —3mm < z,y < 3mm des FE-Feinmodells
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(b) Ausschnitt —3mm < z,y < 3mm der gekoppelten Simulati-
onT1

Abbildung 6.17: ¢, an der Position ¢/2 = 0.75mm aus dem FE-Feinmodell (a) und aus
der gekoppelten Simulation T'1 (b) mit K., = 14

216.73.216.35, am 18.01.2026, 23:53:18. ©
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186352187

6.4 Erweiterung zum Mixed-Mode-Element 105

Tabelle 6.3: Vergleich der berechneten Rissspitzenbelastungen im Mixed-Mode-Lastfall

Vergleichslosung  gekoppelte

(VCCT) Simulation
Kiaw = 14
K 19.852419 19.829345
(GF2 1.876755 1.872394
Ki; 0.0 -2.313390E-13
By 0.0 2.548464E-28
Kirr 20.3968 20.96133
Brrr 2.575431 2.71995

6.4 Erweiterung zum Mixed-Mode-Element

Ein ebenes Schalenelement fiir Mixed-Mode-Belastung wird im Rahmen der linear-elas-
tischen Elastizititstheorie durch Uberlagerung von Scheiben- und Plattenelement gebildet.
Dazu wird das Modus ITI-Element mit einer ebenen T-Elementformulierung erweitert. Die
hierzu benotigte Theorie des ebenen T-Elements ist zum Beispiel bei [49] zu finden. Als
Validierungsbeispiel fiir das daraus entstandene Schalenelement wird das Beispiel T'1 aus
dem vorangehenden Abschnitt um einen zusatzlichen Belastungsanteil im Modus I erweitert.
Dazu wird zusétzlich zur Modus I1I-Belastung am Verschiebungsrand nach Abb. 6.12 eine
Auslenkung in Richtung der y-Achse vorgegeben. An der Kante in der positiven Halbebene
betrigt diese y = +1.0mm und in der negativen Halbebene y = —1.0 mm. In Anhang A.6
sind als Ergdnzung die Spannungskomponenten, die sich nur aus dem ebenen Anteil dieser
Belastung ergeben, gesondert dargestellt.

In Tab. 6.3 sind die Ergebnisse fiir die Berechnung der Rissspitzenbelastungen beim
Schalenelement zusammengefasst. Die Vergleichslosungen stellen wieder die entsprechenden
Ergebnisse aus dem FE-Feinmodell dar, die mit VCCT ermittelt werden. Aufgrund der
symmetrischen Belastung im betrachteten Lastfall ist dabei K5 = 0.

Die Verlaufe der Spannungskomponenten o, 04, 0y, und oy, fir den Mixed-Mode-
Lastfall sind in Abb.6.18 entlang der z-Achse und in Abb.6.19 entlang der y-Achse
dargestellt. Fir den ModusITI-Anteil wird wieder K,,,, = 14 gewihlt. Neben der Ver-
gleichslosung aus dem FE-Feinmodell ist auch die Losung aus dem FE-Grobmodell darge-
stellt.
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6.5 Gekoppelte Simulation mit Rissfortschritt

Abschlieflend wird die Umsetzung des Rissfortschrittsalgorithmus fir die gekoppelte Si-
mulation nach Abschnitt 4.9 vorgestellt. Das Modell wird dazu eingesetzt, um mit der in
Abschnitt 5.5 beschriebenen Vorgehensweise aus dem iterativen Vergleich der Simulationser-
gebnisse mit den Ergebnissen der Versuchsauswertung fiir den Rissfortschritt Aa (Az) den
kritischen Spannungsintensitétsfaktor K. fir die Blechproben abzuschétzen. Dazu wird
die gekoppelte Simulation ausgehend vom Startwert K. = 85 MPay/m nach Anpassung
des Werts von K. solange wiederholt, bis der Verlauf des Risswachstums eine moglichst
gute Ubereinstimmung mit dem experimentell ermittelten Risswachstum aufweist. Die
elastischen Materialparameter sind dabei £ = 210000 MPa, v = 0.3 und ¢ = 1.5 mm. Im
Bereich der Standardelemente kommt ein elastisch-plastisches Materialmodell auf Basis
der quasistatisch ermittelten Fliesskurve von 22MnB5 zum Einsatz. Fiir die explizite
Simulation wird die Materialdichte mit p = 0.00000781 kg/mm? angegeben.

Die Kopplung des T-Elements mit dem kommerziellen, expliziten FE-Solver LS-DYNA
erfolgt tiber eine spezielle Schnittstelle. Diese stellt dem Benutzer wiahrend der Simula-
tion bestimmte Zwischenergebnisse und Modellinformationen zur Verfiigung. Mit den
Eingangsgrofien konnen benutzerdefinierte Berechnungen in Form von User-Subroutines
durchgefiihrt und die Ergebnisse an den Solver zuriickgegeben werden. Die Riickgabewerte
werden von LS-DYNA dann bei den nachfolgenden Berechnungsschritten beriicksichtigt.
Die Schnittstelle stellt damit alle Funktionen zur Verfiigung, die fir die Umsetzung des
Rissfortschrittsalgorithmus benotigt werden. Der Ablauf der Simulation wird dabei von
LS-DYNA gesteuert und die Auswertung des Rissfortschrittsalgorithmus wird iiber die
Schnittstelle in jedem Berechnungszeitschritt mit den aktuellen Eingangsgrofen aufgerufen.
Die Kopplung erfolgt im Wesentlichen tiber den vorgegebenen Knotenverschiebungsvektor
@ als Eingangsgrofie und den daraus berechneten Knotenkraftvektor

f=Kr-a (6.6)

als Riickgabegrofie.

Die Eingangsdaten fiir eine Simulation mit LS-DYNA werden durch eine oder meh-
rere Textdateien zur Verfiigung gestellt. Fiir die gekoppelte Simulation missen in der
Eingabedatei zwei zusétzliche Modellparameter definiert werden, die den Zugriff auf die
Schnittstelle und das Loschen von Standardelementen ermoglichen. Die Probengeometrie
aus Abb. 5.4 wird fir die gekoppelte Simulation in 30 x 15 = 450 regelmafBige Standard-
elemente unterteilt. Die Elementkantenlange ist 146 mm/30 = 4.86 mm. In Abb. 6.20 ist
das so entstandene FE-Netz fiir die gekoppelte Simulation dargestellt. Der Anriss mit
ap = 30.0mm wird durch Entfernen von sieben Standardelementen modelliert, wobei das
Element im Bereich der Rissspitze durch ein T-Element ersetzt wird. In der Abbildung sind
die entfernten Elemente rot, das T-Element griin und der Anriss innerhalb des T-Elements
blau dargestellt. In den grau dargestellten Bereichen werden Verschiebungsrandbedin-
gungen vorgegeben. Die obere Hélfte der Probe ist dabei fest eingespannt wahrend fiir
die untere Halfte ein linearer Verlauf der Auslenkung Az senkrecht zur Probenebene
vorgegeben wird. Die tibrigen Verschiebungsfreiheitsgrade werden festgehalten.

Beim Start der gekoppelten Simulation werden tiber die Schnittstelle einmalig die Geo-
metrieinformationen tibertragen, die fiir die Positionierung des T-Elements im Netz der
Standardelemente benétigt werden. Diese umfassen die Knotenkoordinaten fir das Bauteil
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Abbildung 6.20: FE-Modell der Modus ITI-Probe fiir die gekoppelte Simulation mit ge-
16schten Standardelementen (rot) zur Modellierung des Anrisses mit
ap = 30mm und Ausgangskonfiguration des T-Elements (griin) mit
Anriss (blau) bei Simulationsbeginn. Die Elementkantenldnge betragt
146 mm/30 = 4.86 mm. In den grau dargestellten Bereichen werden Ver-
schiebungsrandbedingungen vorgegeben.

mit Riss, die zugehorigen Knotennummern und die Zuordnung der Knotennummern zu
den Elementnummern. Die Netzinformationen stehen dem Rissfortschrittsalgorithmus
dann wahrend der gesamten Simulation zur Verfiigung. Der Benutzer kann nun die An-
fangsposition des T-Elements und die Ausgangskonfiguration des Risses innerhalb des
Elements definieren. Das T-Element ersetzt dabei zundchst ein Standardelement, wie
in Abb. 6.20 dargestellt. Desweiteren werden vom Benutzer die Inkrementlange fiir den
Rissfortschritt sowie der Erweiterungs- und Freigaberadius des T-Elements definiert. Der
Erweiterungsradius definiert den Abstand von der Rissspitze, bei dem weitere Standard-
elemente zum Gebiet Q7 hinzugefiigt werden. Analog dazu legt der Freigaberadius fest,
wann Standardelemente wieder aus {0y entfernt werden. Die Abstédnde beziehen sich dabei
auf die berechneten Schwerpunkte der Standardelemente zur aktuellen Rissspitzenposition.

Tabelle 6.4: Simulationen ¢ = 1,...,4 fiir die Abschitzung von Kj.. Als zusitzliche
Annahme fir die Innenknoten, fiir die keine Kopplungsbedingungen zur Ver-
figung stehen, wird die Auslenkung w und die Rotation w,, der Innenknoten
gleich den Werten der zugehorigen Aulenknoten gesetzt. Bei i = 4 wéchst
der Riss ab Aa = 25 mm bereits zu langsam (vgl. Abb.6.21), so dass die
Abschatzung K. = 225 zu hoch ist.

Kirge
K[[[c =85 MPa\/ﬁ
K[][c =95 MPa\/a
KIIIc =125 MPa\/ﬁ
KIIIC =225 MPa\/ﬁ

= | DN | =,
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Abbildung 6.21: Verlauf des Risswachstums in Abhéngigkeit von der Probenauslenkung
fir die Schritte ¢ = 1,...,4 nach Tab.6.4. Als Vergleichskurve ist der
Verlauf von Aa (Az) fir Probe 1 aus Abb.5.17 angegeben.

Die Elementnummern der zu loschenden Standardelemente werden iiber die Schnittstelle
zuriickgegeben und von LS-DYNA geléscht. Bei der vorliegenden Implementierung kénnen
die betreffenden Standardelemente nach Verlassen des Freigaberadius nicht mehr wieder-
hergestellt werden. Dies stellt einen Nachteil der vorgestellten Implementierung dar, weil
dadurch freie Innenknoten entstehen, wie in Abschnitt 4.8 dargestellt. Fiir die Simulation
muss daher eine Annahme iiber die Knotenverschiebungen oder die Knotenkréfte an den
beiden Innenknoten getroffen werden, weil dort keine Kopplungsbedingungen zur Verfii-
gung stehen. In Abschnitt 4.8 erfolgt die Berechnung der Knotenverschiebungen in diesem
Fall iiber die Annahme unbelasteter Innenknoten. Im betrachteten Beispiel der Modus ITI-
Versuche fiihrt diese Vorgehensweise zu Werten von Ky, die weit unterhalb des zu erwar-
tenden Bereichs bei K7, < 2.5 MPay/m liegen. Im weiteren Verlauf werden aus diesem
Grund fir die Innenknoten Knotenverschiebungen und Knotenrotationen vorgegeben, die
denen der benachbarten Knoten auf den gemeinsamen Elementkanten entsprechen. Diese
Annahme stellt eine obere Grenze fiir die Auslenkung der Innenknoten und damit auch die
Belastung an der Rissspitze dar. Die tatsédchlichen Werte fiir K;;; liegen zwischen den aus
den beiden Annahmen resultierenden Werten. Bei dem linear-elastischen Kopplungsbeispiel
aus Abschnitt 6.3 fithrt die Annahme zu einer Uberschitzung von K;;; um den Faktor
finf. Im weiteren Verlauf wird mit der getroffenen Annahme eine Obergrenze fiir Ky c
ermittelt.

Nach der Definition des Anrisses wird der erste Zeitschritt berechnet. Uber die Schnitt-
stelle wird dann der Rissfortschrittsalgorithmus aufgerufen und die aktuellen Knotenver-
schiebungen des T-Elements als Eingangsgrofie iibergeben. Daraus wird die vorliegende
Rissspitzenbelastung berechnet und das Rissfortschrittskriterium aus Glg. (5.11) ausgewer-
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tet. Bei Uberschreiten des Kriteriums erfolgt der Rissfortschritt zunichst innerhalb des
T-Elements. AnschlieBend wird das Rissfortschrittskriterium erneut ausgewertet und gege-
benenfalls erfolgt wieder ein Wachstumsschritt. Dabei gelangen weitere Standardelemente
in den Erweiterungsradius und Q7 wird entsprechend erweitert. Der Rissfortschritt erfolgt
solange, bis das Kriterium nicht mehr erfullt ist.

Die quasistatischen Versuche werden in der Simulation langssam genug modelliert, um
dynamische Effekte zu vermeiden und gleichzeitig eine geringe Rechenzeit zu erzielen. Die
Vorschubgeschwindigkeit betrigt dabei va, = 1mms™'. Bei Abschluss der Simulation
betragt die Auslenkung der unteren Probenhilfte Az = 250 mm und die Probe ist voll-
standig gerissen. Fir den Erweiterungs- und Freigaberadius werden die Werte 7, = 4.7 mm
und 7, = 8 mm gewéhlt. Fir K. wird als Ausgangswert fiir den ersten Iterationsschritt
Kir1. = 85 MPay/m vorgegeben. Die Schrittweite fiir den Rissfortschritt betragt bei allen
durchgefiithrten Simulationen Aa = 0.05 mm.

Die Simulationsergebnisse fir Aa (Az) sind in Abb. 6.21 fiir die Iterationsschritte i =
1,...,4 zusammengefasst. Als Vergleichslosung ist die Versuchsauswertung von Probe 1
angegeben. Eine Ubersicht der Iterationsschritte mit den Werten fiir Kz, ist in Tab. 6.4
dargestellt. In Anhang A.7 sind fiir einige ausgewéhlte Schritte aus der gekoppelten
Simulation mit ¢ = 2 die verformten Proben mit dem T-Element im Bereich der Rissspitze
dargestellt.

6.6 Diskussion der Validierungsergebnisse

In diesem Kapitel wird zundchst die T-Elementformulierung fiir Modus III-Belastung
schrittweise verifiziert und validiert. In Abschnitt 6.1 wird dazu anhand bestimmter Eigen-
schaften des Modells gezeigt, dass die T-Elementformulierung korrekt implementiert wurde.
In Abschnitt 6.2 wird dann durch Vergleich mit einem fein vernetzten Vergleichsmodell
aus Standardelementen gezeigt, dass die mit dem T-Element berechneten Losungen die
vorliegende Rissspitzenbelastung sehr genau wiedergeben. Bei einer Erhohung der An-
zahl der beriicksichtigten Ordnungen K., konvergieren die einzelnen Komponenten der
Spannungen gegen die Vergleichslosungen. Desweiteren wird die Berechnung von freien
Innenknoten untersucht, die im betrachteten Beispiel fiir den kubischen Verschiebungsrah-
men ebenfalls gegen die Losung aus dem FE-Modell konvergiert. Das in diesem Kapitel
vorgestellte Validierungsbeispiel wird in Anhang A.2, Anhang A.3 und Anhang A.4 um
weitere Validierungsbeispiele ergénzt.

In Abschnitt 6.3 wird die Kopplung des T-Elements mit einem grob vernetzten FE-Modell
untersucht. Dabei zeigt sich, dass die berechnete Rissspitzenbelastung des gekoppelten
Modells wiederum gegen die Vergleichslosung konvergiert. Der Sprung im Verlauf der
Spannungen aus der gekoppelten Simulation an den Positionen x = 22.5mm, y = 0 mm
und z = 27.5mm, y = 0mm und bei x = 0mm, y = 22.5mm und z = 0 mm, y = 27.5 mm
ist durch die Berticksichtigung der Verschiebungsrandbedingung mit Hilfe einer hybriden
Verschiebungsformulierung bedingt. Dadurch werden die Verschiebungsrandbedingungen
auf I';,; nur ndherungsweise erfiillt Der Spannungsintensitétsfaktor Ky wird bereits bei
einem kleinen Wert von K,,,, sehr genau ermittelt.

Damit stehen auf Basis der T-Elementformulierung alle Funktionen zur Verfiigung, um
einen Rissfortschrittsalgorithmus nach Abschnitt 4.9 zu implementieren. Eine Umsetzung
mit dem expliziten FE-Solver LS-DYNA in Abschnitt 6.5 bildet dabei den Abschluss
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der durchgefithrten Auswertungen. Mit Hilfe der gekoppelten Simulation werden die
Ergebnisse der Modus III-Versuche aus Kapitel 5 zu einer iterativen Bestimmung von K.
herangezogen. Aufgrund von technischen Rahmenbedingungen muss fiir die Simulation
dabei eine Annahme iiber die Knotenverschiebungen an den freien Innenknoten getroffen
werden, weil dort keine Kopplungsbedingungen zur Verfiigung stehen. Damit kann gezeigt
werden, dass der Rissfortschrittsalgorithmus im Rahmen der Annahmen zur Simulation
von Risswachstum unter Modus I1I-Belastung eingesetzt werden kann.

Auf dem Weg zu einer anwendungsorientierten Methode zur Beschreibung von Risswachs-
tum in Schalenstrukturen miissen noch weitere Aufgabenstellungen gelost werden. Dies
beinhaltet an erster Stelle das Problem mit gelschten Standardelementen, die im Laufe des
Risswachstums durch das T-Element ersetzt werden. Nach Erreichen des Freigaberadius 7.
bleibt bei der vorgestellten Umsetzung eine Liicke im Netz zuriick, die zu freien Innenknoten
ohne Kopplungsbedingungen fiihrt. Auch eine direkte Auswertung des Rissoffnungswinkels
111 sowie gekrimmte Schalenstrukturen stellen weitere Herausforderungen dar, die bei
kiinftigen Weiterentwicklungen berticksichtigt werden konnen.
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In der vorliegenden Arbeit wird mit Hilfe der hybriden Trefftzmethode ein spezielles Riss-
spitzenelement formuliert, das die Berechnung von Modus ITI-Belastungen in diinnwan-
digen, ebenen Schalenstrukturen ermoglicht. Die Elementformulierung basiert auf der
Kirchhoff-Platte, deren Verschiebungsfeld durch die biharmonische Gleichung gegeben ist.
Eine allgemeine Losung der homogenen biharmonischen Gleichung ist durch zwei komplexe
Potentiale gegeben. Durch Einfithrung einer einzigen komplexen Randbedingung werden
diese Potentiale so gewéhlt, dass die natiirlichen Randbedingungen am Rissufer erfiillt wer-
den. Mit dieser Basis von Losungsfunktionen wird eine hybride Verschiebungsformulierung
des T-Elements entwickelt. Dabei werden die Verschiebungsrandbedingungen durch ein
erweitertes elastisches Potential berticksichtigt. Die Koeffizienten des Reihenansatzes fiir
die komplexen Potentiale ergeben sich aus der Minimierung des erweiterten elastischen Po-
tentials. Durch die Koeffizienten sind dann alle Grofien im Elementgebiet festgelegt. Fiir die
Auswertung der Belastungen an der Rissspitze ergibt sich der Spannungsintensitatsfaktor
direkt aus den berechneten Koeffizienten.

Zusammen mit ebenen Elementformulierungen fiir Modus I/II-Belastung entsteht aus
dem vorgestellten T-Element eine ebene Schalenformulierung, mit der beliebige Mo-
dusI/II/I1I-Belastungen im Rahmen der LEBM berechnet werden konnen. Das T-Schalen-
element bildet im weiteren Verlauf die Basis fiir einen Rissfortschrittsalgorithmus zur
gekoppelten Simulation von Rissausbreitung. Dazu wird das T-Element, welches die
Rissspitze enthélt, mit Standardelementen fiir den unkritischen Bereich eines Bauteils
verbunden. Der Vorteil dieser Methode ist eine effiziente und zugleich genaue Modellierung
der Belastungen an der Rissspitze. Die Kopplung kann dabei sowohl mit impliziten als
auch mit expliziten, nichtlinearen FE-Modellen erfolgen, solange im Kopplungsbereich
nur Kleinbereichsflielen auftritt. Die Vorteile der Methode treten in Kombination mit
expliziten FE-Simulationen besonders deutlich hervor, weil dabei eine Verringerung der
stabilen Zeitschrittweite durch Feinvernetzung im Bereich der Rissspitze vermieden wird.

Ein wesentlicher Bestandteil des Rissfortschrittsalgorithmus ist dariiber hinaus die
Beschreibung des materialspezifischen Risswiderstands aus Versuchen. Im Rahmen der
vorliegenden Arbeit wird dazu eine direkte geometrische Auswertung des Rissoffnungswin-
kels mit Hilfe des 3D-Bildkorrelationsverfahrens durchgefiihrt. Eine Moglichkeit, um von
dem dabei gemessenen Rissoffnungswinkel zu einem kritischen Spannungsintensitétsfaktor
zu gelangen, ist die iterative Simulation des Versuchsaufbaus. Bei der Simulation wird
dazu der Wert fiir den kritischen Spannungsintensitatsfaktor so lange angepasst, bis die
Ergebnisse der Simulation mit den Versuchen iibereinstimmen.

Die Validierung des T-Elements erfolgt schrittweise, um die korrekte Implementierung
der Elementformulierung und die Konvergenz der berechneten Losungen gegen die Ver-
gleichslosungen sicherzustellen. Diese werden aus impliziten FE-Simulationen mit hoher
Netzfeinheit berechnet. Als Ergebnis der Validierung zeigt sich eine gute Ubereinstimmung
der Vergleichslosungen mit dem T-Element. Danach wird die Validierung auch fiir die
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gekoppelte Simulation durchgefithrt, wobei die berechnete Losung wieder gut mit der
Vergleichslosung tibereinstimmt.

AbschlieBend wird eine Implementierung des Rissfortschrittsalgorithmus vorgestellt, die
fiir die iterative Ermittlung des Spannungsintensitétsfaktors aus den Versuchen eingesetzt
wird. Durch das Loschen von Standardelementen, die im Laufe der Simulation durch das
T-Element ersetzt werden, ergeben sich bei der gekoppelten Simulation freie Innenknoten
ohne Kopplungsbedingung. Aus diesem Grund miissen die Knotenverschiebungen an den
Innenknoten bei der gezeigten Umsetzung des Rissfortschrittsalgorithmus abgeschatzt wer-
den. Eine Weiterentwicklung in diesem Bereich kann die Prognoseféhigkeit der gekoppelten
Simulation weiter verbessern.

Desweiteren gibt es auch Ansétze fiir die Weiterentwicklung der T-Elementformulierung.
Ein Ansatz ist die Erweiterung der Funktionenbasis von Ansatzfunktionen durch partikulére
Losungen [49]. Mit diesen Anteilen konnen die einfachen streifenférmigen Modelle zur Be-
schreibung von Rissspitzenplastizitat nach [13] und [134] sowie einige Kohésivzonenmodelle
nach [135, 136] modelliert werden. Eine Erweiterung mit partikuldren Losungen ist in [93]
dargestellt. Ebenso kann das Konzept der T-Elemente auch in eine XFEM-Formulierung
tibertragen werden, was zusétzliche Vorteile bringen kann [97].

Zusammengefasst leistet die vorgestellte Elementformulierung als Teil des Rissfortschritt-
salgorithmus einen Beitrag zur Verbesserung der Simulation von Modus ITI-Anteilen in
diinnwandigen Blechbauteilen mit einem Riss. Das T-Element ermoglicht dabei eine genaue
Auswertung der Spannungen und des Spannungsintensititsfaktors an der Rissspitze. Bei
der vollstdndigen Kopplung aller Elementknoten weist auch die gekoppelte Simulation
diese hohe Genauigkeit auf.
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A Weitere Auswertungsergebnisse

A.1 Weg-, Kraft- und Potentialverlaufe der Versuche

Alle Versuche wurden auf einer Universalzugpriifmaschine mit der gleichen Vorschub-
geschwindigkeit durchgefiihrt. Zur Uberpriifung der im Datenblatt angegebenen Vor-
schubgeschwindigkeit von 0.15809 mm/s = 9.4852 mm/min wurde zusétzlich eine lokale
Wegmessung mit einem Clip-Gage nach Abb. 5.7 durchgefiihrt. Bei den Versuchen wird
bei t ~ 300s die maximale Messldnge des eingesetzten Clip-Gages von 50 mm erreicht. Die
Ergebnisse fir alle durchgefiihrten Versuche sind in Abb. A.1 dargestellt. Die Differenz
zwischen der aus der Vorschubgeschwindigkeit berechneten Auslenkung Az in z-Richtung
des Versuchskoordinatensystems und der lokalen Wegmessung ist exemplarisch fiir Pro-
be 13 eingezeichnet. Vor Versuchsbeginn wird bei allen Versuchen eine Vorspannkraft
von ungefahr 1000 N aufgebracht. Bei den Kraftverldufen in Abb. A.2 handelt es sich um
die im Laststrang gemessene Gesamtkraft fiir die Auslenkung beider Proben. Bei den
Potentialverlaufen in Abb. A.3 ist jeweils die Differenz zum Referenzpotential A¢y bei
Versuchsbeginn angegeben.

100 —— Probe 1

Probe 2
—— Probe 3
Probe 4
—— Probe 5
Probe 6
— Probe 7
Probe 8
Probe 9
Probe 10
—— Probe 11

Probe 12
0 100 200 300 400 500 600 Probe 13

Zeit [s] — As
Differenz

80

60

40

Weg [mm]

20

Abbildung A.1: Ergebnisse der lokalen Wegmessung der 13 durchgefithrten Versuche und
aus der Vorschubgeschwindigkeit berechnete Auslenkung Az. Fir Pro-
be 13 ist zusdtzlich die Differenz zwischen lokaler Wegmessung und Az
angegeben.
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Abbildung A.2: Kraft-Az-Verlaufe aller durchgefithrten Versuche
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Abbildung A.3: Potential-Az-Verlaufe aller Versuche
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A.2 Validierungsbeispiel mit unsymmetrischer Belastung

o, [GPa]

200

- | 150

- | 100

y [mm]

Abbildung A.4: Verschiebungsfeld w (x,y) und aus den vorgegebenen Knotenverschiebun-
gen berechneter kubischer Verschiebungsrahmen @ fir K., = 96

Beim Validierungsbeispiel aus Abschnitt 6.2 wird ein symmetrischer Knotenverschie-
bungsvektor vorgegeben. Hier wird das Beispiel auf einen unsymmetrischen Knotenver-
schiebungsvektor verallgemeinert. Dieser lautet

0.675 0.744 —0.394
2.445 0.676 —0.378
1.743 0.656 —0.180
1.442 0.572 —0.084

0.000 0.577  0.000 . (A1)
—1.800 0.590  0.070
—1.900 0.690  0.220
—2.900 0.700  0.390

L —1.600 0.800  0.370 |

[~
Il

Dabei sind die Verschiebungen in der ersten Spalte in mm und die Rotationen um die

2- bzw. y-Achse in der zweiten und dritten Spalte in ™ angegeben. Die ersten beiden
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Abbildung A.5: Spannungsverldufe entlang der z-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0mm < 2 < 2.5 mm sind die Spannungen am oberen

Rissufer angegeben.

Ordnungen des Koeffizientenvektors und die Starrkorperanteile fiir K,,,, = 96 sind

0.054178439817838 + 10.005880621012223; 120+2)*!

—0.008374981537275 — 10.032200901654703¢

A= —0.167766292678175 + i0.000000000000000¢

—0.146160263710225 — 10.940182393644532¢

Die FE-Losung fiir den Spannungsintensititsfaktor ist £};$¢7 = 34.15029 GPay/mm und
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fur das T-Element erhalt man mit K,,,, = 96

KL, =21 - R[A[1]] = 34.88574 GPay/mm . (A.3)

Die Spannungskomponenten an der Position ¢/2 = 0.75 mm entlang der 2-Achse sind in
Abb. A.5 und entlang der y-Achse in Abb. A.6 dargestellt. In Abb. A.4 ist das berechnete
Verschiebungsfeld w (x,y) fiir K., = 96 und der aus dem Knotenverschiebungsvektor @
konstruierte kubische Verschiebungsrahmen @ abgebildet. Zusatzlich ist auch die mit dem

T-Element berechnete von-Mises-Spannung o, angegeben.

400
— FE
< Ko = 96 400
300 Kpaw =8
E £ 200
S 200 e
s B -
N [ 0
100
e 200
-2.5 -1.5 -0.5 0 0.5 1.5 2.5 -2.5 -1.5 -0.5 0 0.5 1.5 2.5
y [mm)] y [mm]
(a) ou (b) 0z
oF
= —= =50
o [am
1S3 o
S RS
—100
—150
-25  -15  -0.5 0 05 1.5 2.5 -25  -15 -050 05 1.5 2.5

y [mm)] y [mm]

(c) oyy (d) oay

Abbildung A.6: Spannungsverliufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.3 Weiteres Validierungsbeispiel
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Abbildung A.7: Elementgeometrie in der zy-Ebene. Die Nummerierung der Knoten erfolgt
gegen den Uhrzeigersinn von n = 1,...,12.

Der vorgegebene Knotenverschiebungsvektor ist

[ 1130 0.0857 —0.02813 |'*°
1.340  0.0857 —0.05777
1.210 —0.1000 —0.1008
1.080 —0.0650 —0.0338
0.970  0.0980 —0.0338
- 0.730  0.1310 —0.2499
Y1 0140 00200 —0.2950 (A4)
0.050  0.0200 0.1380
—0.640  0.0978 0.0935
—0.670  0.0300 0.0560
—0.810 —0.0057 0.0560
| —0.830 —0.0057 0.4309 |
Dabei sind die Verschiebungen in mm und die Rotationen in 2 angegeben. Die ersten

mm

beiden Ordnungen des berechneten Koeffizientenvektors und die Starrkérperanteile fir
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K e = 86 sind

0.041638229161590  + 10.000292462656891 ] 2!
—0.001891205952636 — i0.037045619060117
A= : (A5)
0.276119499676796  + 10.000000000000000
0.006934640095963  — 10.570480235134562
300 200
—_— FE
250 || === Kpaz = 86 150
Kpaw = 8
__ 200 —
d’i = 100
O O
< &80
0 ':' B R
—50 :
3
= =
o 0
o D,
80
1 100 J
3 -4.5 -2.5 0 1.5 3
2 [mm] 2 [mm]|
(c) oyy (d) oy

Abbildung A.8: Spannungsverldufe entlang der z-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0mm < z < 3mm sind die Spannungen am oberen

Rissufer angegeben.

Aus dem FE-Modell wird K},$¢7 = 26.355 GPay/mm ermittelt. Der Spannungsintensi-
tatsfaktor fir das T-Element mit K,,,, = 86 ist

Kby =V2r-R[A[1]] = 26.811 GPay/mm . (A.6)
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Die Elementgeometrie ist in Abb. A.7 dargestellt, die aus den vorgegebenen Knotenver-
schiebungen resultierenden Spannungsverliaufe an der Position ¢/2 = 0.75mm sind in

Abb. A.8 und Abb. A.9 zusammengefasst.

300 200
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100
200
<
a
O 150 0
&
100
—100
50
—2
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—100
—-80 —150
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Abbildung A.9: Spannungsverliaufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.4 Polygonformiges Element

—4 -2 0 2 4

2 [mm]

Abbildung A.10: Elementgeometrie in der zy-Ebene. Die Nummerierung der Knoten erfolgt
gegen den Uhrzeigersinn von n =1,...,11.

Der vorgegebene Knotenverschiebungsvektor ist

- 11x3

143 0.67 —0.40
235 0.71 —0.25
321 0.75 —0.14
2.67 0.76 —0.03
211 0.77  0.07
—0.17 0.80 0.16 . (A7)
~1.80 0.82 0.19
220 0.84 025
—243 088 043
—243 078 048
| —1.44 074 059 |

[
I

Dabei sind die Verschiebungen in mm und die Rotationen in 2™ angegeben. Die Element-
geometrie ist in Abb. A.10 dargestellt. Fiir den vorgegebenen Knotenverschiebungsvektor
(A.7) wird analog zu Abschnitt 6.1 nochmals die Konvergenz der Losung gegen den aus
den Knotenverschiebungen konstruierten Verschiebungs- und Rotationsrahmen untersucht.
Die Ergebnisse sind in den Abb. A.11 und A.12 dargestellt.

Die ersten beiden Ordnungen des berechneten Koeffizientenvektors und die Starrkorpe-

ranteile fur K,,,, = 96 sind

(96+2)x1

0.050579938828382 10.002049407692810
—0.000817840595043 10.030267543512122

A= : . (A.8)
0.259574594932309 + 10.000000000000000
—0.070354006588675 — 11.151894934168572
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1073
3 — ,
9 == Kinge =96
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Abbildung A.11: Links ist die mit dem T-Element berechnete Losung fiir w in Abhén-
gigkeit von K., sowie der aus den Knotenverschiebungen konstruierte
Verschiebungsrahmen @ dargestellt, rechts die verbleibende Abweichung
bei Kiuq: = 96. s beschreibt einen Umlauf entlang des Verschiebungsran-
des von Knoten 1 bis Knoten 11.

1073
0.5
— 5
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i = 0
e <
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K’Vnal‘ - 2 o
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Abbildung A.12: Links ist die mit dem T-Element berechnete Losung fiir w,, in Abhan-
gigkeit von K., sowie der aus den Knotenverschiebungen konstruierte
Rotationsrahmen @, dargestellt, rechts die verbleibende Abweichung bei
Kinar = 96. s beschreibt einen Umlauf entlang des Verschiebungsrandes
von Knoten 1 bis Knoten 11.
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Abbildung A.13: Spannungsverliufe entlang der a-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0 mm < z < 3mm sind die Spannungen am oberen
Rissufer angegeben.

Aus dem FE-Modell wird K},$¢T = 32.3559 GPa,/mm ermittelt. Der fiir das T-Element
mit K., = 96 berechnete Spannungsintensitétsfaktor ist

KT, = Vor - R[A[1]] = 32.5687 GPay/mm . (A.9)

Die Elementgeometrie ist in Abb. A.10 dargestellt, die Spannungsverlaufe an der Position
t/2 = 0.75mm sind in Abb. A.13 und Abb. A.14 zusammengefasst.
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Abbildung A.14:

Spannungsverldaufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.5 Gekoppelte Simulation mit unregelmaBigem Netz

In Abb. A.15 und Abb. A.16 sind fir die gekoppelte Simulation aus Abschnitt 6.3 das
unregelméifige Netz fir das Beispiel T2 und die Geometrie des T-Elements mit den
Elementknoten n = 1, ..., 17 dargestellt. In Tab. A.1 sind die p-Konvergenz in Abhangigkeit
von K. fiir Ky sowie die elastische Energie U fiir T'1 und T2 im Vergleich dargestellt.

20
10
El
R
=
~10
—20

—-30 —20 -10 0 10 20 30
x [mm]
Abbildung A.15: UnregelméBiges Netz fiir die gekoppelte Simulation T 2 aus Abschnitt 6.3.

Das T-Elementgebiet Q ist rot dargestellt und der Rissverlauf entlang
der xz-Achse griin.

5 3
6 4 2
9 L7
8 1
= 0
i 9 17
=N
_9 10 16
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13 14 1
4 2
—4 —2 0 2
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Abbildung A.16: T-Element mit den Kopplungsknoten n =1,...,17 und Riss (rot)
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A.6 Ebene Spannungsanteile des Schalenelements

Die aus dem ebenen Anteil der Belastung des Schalenelements nach Abschnitt 6.4 resultie-
renden Spannungen an der Position ¢/2 = 0.75 mm sind in Abb. A.17 fiir einen Schnitt
entlang der z-Achse und in Abb. A.18 fiir einen Schnitt entlang der y-Achse zusammen-
gefasst. Als Vergleichslosungen sind die Ergebnisse aus dem FE-Grobmodell und dem
FE-Feinmodell nach Abschnitt 6.4 angegeben.

0, |GPa]

oyy [GPa]

40
— FE fein
--- FE grob
30 Gekoppelt
=
o
20 <
\ S
10 f
L J o ~10
25 5 5 0 5 15 25 15 5 0 15 2
x [mm] 2 [mm)]
(@) o, () o
40
30 6
E
20 O 4
10 i
//“ 2 i :
0 oo - o . E“‘ /
. 0 S J
-25 -15 5 0 5 15 25 -25 -15 5 0 5 15 25
2 [mm)] x [mm]
(c) oyy (d) oy

Abbildung A.17: Spannungskomponenten aus der ebenen Belastung nach Abschnitt 6.4

entlang der z-Achse. Im Bereich des Rissufers mit 0mm < z < 25 mm
sind dabei die Spannungen am oberen Rissufer angegeben. Das T-Element
befindet sich im Bereich —2.5mm < x < 2.5mm. Als Vergleichslosungen
sind die Ergebnisse aus dem FE-Grobmodell und dem FE-Feinmodell
angegeben.
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Abbildung A.18: Spannungskomponenten aus der ebenen Belastung nach Abschnitt 6.4
entlang der y-Achse mit Rissspitze bei y = 0 mm. Das T-Element befindet
sich im Bereich —2.5mm <y < 2.5mm. Als Vergleichslosungen sind die
Ergebnisse aus dem FE-Grobmodell und dem FE-Feinmodell angegeben.

A.7 Einzelschritte der Gesamtsimulation

In Abb. A.19 sind einige Schritte aus der Gesamtsimulation nach Abschnitt 6.5 fiir den Fall
i = 2 mit Ky77. = 95 MPay/m dargestellt. Die zugehorigen Werte fiir die Probenauslenkung
Az und die Rissverlingerung Aa sowie die von-Mises-Spannung o, sind ebenfalls mit
angegeben. Das T-Element befindet sich jeweils im Bereich der Rissspitze.
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0 0.5 1 1.5 2

Abbildung A.19: Verformte Probe aus dem Iterationsschritt i = 2 der Gesamtsimulation
nach Abschnitt 6.5 mit K;;7. = 95 MPay/m.

Az 000 087 028 10.14 1650 26.50
[mm] 4350 56.17 57.79 57.79 58.36 58.37
Aa 00 70 170 350 360 40.0
mm] 400 560 750 90.0 113.0 1145
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A.8 Elastische Verzerrungsenergie

In Tab.A.2 sind fir alle vier in Abschnitt 6.2 beschriebenen Validierungsbeispiele die
elastischen Verzerrungsenergien U der entsprechenden Vergleichslosungen und die mit dem
T-Element berechneten Losungen zusammengefasst. Die Losungen fiir das T-Element wer-
den mit K4, = 2 und K, = 96 sowie mit linearem und kubischem Verschiebungsrahmen
ausgewertet.

Tabelle A.2: Vergleich der elastischen Verzerrungsenergien U der Vergleichsmodelle und
des T-Elements fiir die vier durchgefiihrten Validierungsbeispiele. Beim T-
Element erfolgt die Auswertung von U zum Einen durch Integration von
J o : € iber Qr und mit Hilfe von Glg. (4.47).

Beispiel-  Vergleichslosung T-Element T-Element K, Verschiebungs-

nr. UJ] fo:€l]] %ﬁTKTﬂ J] rahmen
1 7.094065 7.05473 7.05473 2 kub.
1 7.094065 7.08804 7.08804 96 kub.
1 24.63790 7.30420 7.30420 2 lin.
1 24.63790 19.3157 19.3157 96 lin.
2 38.03459 10.9888 10.9888 2 kub.
2 38.03459 37.8505 37.8505 96 kub.
2 64.02139 11.2908 11.2908 2 lin.
2 64.02139 50.8257 50.8257 96 lin.
3 254.5857 6.77832 6.77832 2 kub.
3 254.5857 45.2790 45.2790 96 kub.
3 257.5246 6.75607 6.75607 2 lin.
3 257.5246 42.9024 42.9024 96 lin.
4 20.32251 13.4107 13.4107 2 kub.
4 20.32251 20.1849 20.1849 96 kub.
4 26.55620 13.6204 13.6204 2 lin.
4 26.55620 24.6291 24.6291 96 lin.

A.9 Plattentheorien im Vergleich

In Abb. A.21 ist fiir das Validierungsbeispiel aus Abschnitt 6.2 der Verlauf von w entlang
der z-Achse (y = 0) fir das obere und untere Rissufer dargestellt. Die Losung aus dem
feinvernetzten FE-Modell wird dabei mit dem Ergebnis des T-Elements mit K,,,, = 2 und
kubischem Verschiebungsrahmen verglichen.

In Abb. A.22 ist fiir das Validierungsbeispiel aus Abschnitt 6.3 der Verlauf von w entlang
der z-Achse (y = 0) fiir das obere Rissufer dargestellt. Dabei werden fiir das feinvernetzte
FE-Modell zwei verschiedene Elementformulierungen miteinander verglichen. Dies ist zum
einen die Elementformulierung auf Basis der Plattentheorie von Kirchhoff, die fiir alle
Validierungsrechnungen im Rahmen dieser Arbeit eingesetzt wird, und zum anderen eine
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Abbildung A.20: Verlauf der Verzerrungsenergiedichte entlang der z-Achse (y = 0) des
Validierungsbeispiels aus Abschnitt 6.2. Die Rissspitze befindet sich bei
r = 0mm.

Elementformulierung nach der Theorie von Reissner-Mindlin. Als dritte Modellvarian-
te wird die Vernetzung der Platte mit regelméfiigen Volumenelementen herangezogen.
Dazu wird das feinvernetzte FE-Modell in Dickenrichtung finfmal expandiert, was zu
160000 x 5 = 800 000 Volumenelementen fithrt. In Tab. A.3 sind die mit VCCT ermittelten
Spannungsintensitatsfaktoren fiir die verschiedenen Formulierungen zusammengefasst.
Beim 3D-Modell sind die Spannungsintensitatsfaktoren an der Position ¢ = Omm in
Dickenrichtung angegeben. In Abb. A.23 ist der Verlauf aller Spannungskomponenten
entlang der z-Achse (y = 0) am oberen Rissufer fiir die drei verschiedenen Formulierungen

von Standardelementen dargestellt. Bei den Volumenelementen erfolgt die Auswertung der
Spanunngen an der Plattenoberseite im Abstand ¢ = 0.75 mm von der Mittelebene.

Tabelle A.3: Ermittelte Spannungsintensititsfaktoren fir das Validierungsbeispiel aus
Abschnitt 6.2 mit verschiedenen Elementformulierungen

Modell K
Kirchhoff 0.0
Reissner-Mindlin 0.0
Volumenele.

K K
0.0 2.575431

0.0 2.229678
0.0 2.477257 2.109632
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Abbildung A.21: Verlauf von w entlang der z-Achse (y = 0) fiir das Validierungsbeispiel
aus Abschnitt 6.2. w ist dabei fiir das obere und untere Rissufer dargestellt
und die Rissspitze befindet sich bei = 0 mm.
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Abbildung A.22: Verlauf von w entlang der z-Achse (y = 0) fiir das Validierungsbeispiel
aus Abschnitt 6.2. Es werden drei verschiedene Elementformulierungen
von Standardelementen miteinander verglichen. Die Rissspitze befindet
sich bei z = 0 mm.
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