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X

Zusammenfassung
In der vorliegenden Arbeit wird ein spezielles hybrides Trefftz-Element zur Simulation
von Rissen in dünnen Platten unter Modus III-Belastung entwickelt. Das Element wird
zur Erweiterung etablierter Modus I/II-Elemente verwendet und kann zur Simulation
beliebiger Belastungen an der Rissspitze im Rahmen der linear-elastischen Bruchmechanik
eingesetzt werden.

Die Elementformulierung basiert auf der bekannten analytischen Lösung der Bipotenti-
algleichung aus der Kirchhoffschen Plattentheorie. Mit Hilfe der Funktionentheorie wird
die allgemeine Lösung an das spezielle Problem einer Platte mit Innenriss angepasst, so
dass die Spannungsrandbedingungen entlang des Rissufers exakt erfüllt werden. Die Ver-
schiebungsrandbedingungen am verbleibenden Elementrand werden durch ein erweitertes
elastisches Potential berücksichtigt. Die freien Parameter des Lösungsansatzes ergeben sich
schließlich aus der Minimierung des erweiterten Potentials. Die Validierung der neuentwi-
ckelten Elementformulierung zeigt die Konvergenz der Lösung bei Erhöhung der Anzahl
der berücksichtigten Ordnungen des Lösungsansatzes gegen die Vergleichslösung aus einem
feinvernetzten Finite-Elemente-Modell.

In der linear-elastischen Theorie sind die Freiheitsgrade für Modus I/II- und Modus III-
Belastung entkoppelt und das Mixed-Mode-Element ergibt sich durch Zusammenfügen
beider Anteile. Für die Simulation von Risswachstum in einem Bauteil wird das Trefftz-
Element innerhalb eines Finite-Elemente-Modells eingesetzt. Die Standardelemente im
Bereich der Rissspitze werden dabei durch das spezielle Element ersetzt. Bei Risswachstum
breitet sich der Riss zunächst innerhalb des Elementgebiets aus und bei Bedarf wird
das Trefftz-Element automatisch in Richtung des fortschreitenden Risses neu positioniert.
Dabei werden weitere Standardelemente ersetzt und das Element bewegt sich im weiteren
Verlauf des Rissfortschritts mit der Rissspitze durch das Finite-Elemente-Netz.

Zur Simulation von Risswachstum wird der materialspezifische Risswiderstand benötigt.
Für größere Rissverlängerungen unter Modus III-Beanspruchung stehen keine standar-
disierten Verfahren zur Ermittlung des Risswiderstands zur Verfügung. Daher wird im
Rahmen der vorliegenden Arbeit eine direkte Auswertung der verformten Rissflanken
durchgeführt, wozu das 3D-Bildkorrelationsverfahren eingesetzt wird. Mit Hilfe eines
neuentwickelten Auswertungsalgorithmus wird aus den damit gemessenen Geometrie-
daten der Verlauf des Rissfortschritts und der Rissöffnungswinkel berechnet. Daraus
kann der kritische Spannungsintensitätsfaktor KIIIc mit Hilfe einer Detailsimulation des
Versuchsaufbaus gewonnen werden. Als Rissfortschrittskriterium wird dann der aktuell
vorliegende Spannungsintensitätsfaktor direkt aus dem Trefftz-Element berechnet und mit
dem experimentell ermittelten Risswiderstand verglichen.

Der Rissfortschrittsalgorithmus für die gekoppelte Simulation von Bauteilen mit dem
Trefftz-Element im Rahmen der expliziten Finite-Elemente-Methode wird am Beispiel
der durchgeführten Versuche getestet. Insgesamt zeigt sich dabei, dass das vorgestellte
Verfahren erfolgreich zur Simulation von Rissfortschritt in einem Bauteil eingesetzt werden
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Abstract XI

kann. Abschließend werden Konzepte für eine Weiterentwicklung der Elementformulierung
vorgestellt. Eine Möglichkeit zur Erweiterung des Einsatzgebiets stellt dabei die Modellie-
rung rissschließender Kräfte am Rissufer durch partikuläre Lösungsansätze dar, wie sie
zum Beispiel beim Dugdale-Modell auftreten.

Abstract
Within the present work, a special purpose hybrid Trefftz-element for mode III cracks in
thin plates is developed. The element is used as an extension of well-established mode I/II
elements. Therefore, the proposed element enables the simulation of arbitrary mixed mode
crack tip loading within the framework of linear elastic fracture mechanics.

The element formulation is based on the analytical solution of the bipotential equation
of the Kirchhoff plate theory. Using complex analysis the general solution is adapted to
fulfill the natural boundary conditions at the crack edges, too. The essential boundary
conditions along the remaining part of the element boundary are taken into account for
by an extended elastic potential. The remaining degrees of freedom of the solution are
calculated from the minimization of the extended potential. Validation of the element
formulation shows convergence of the solution to the finite element reference solution by
increasing the number of orders included in the calculation.

Within linear elastic theory mode I/II is decoupled from mode III, and the mixed mode
Trefftz element is formed by assembling both parts into one element. For the simulation
of crack growth in a structural component the special purpose element is used within a
standard finite element model, where some of the elements are replaced by the Trefftz
element. The crack starts growing inside the element at first and after some crack growth
the element position is changed in the direction of crack growth, replacing additional
standard elements. Along with the growing crack the Trefftz element can move through
the entire structure.

For a crack growth algorithm the specific resistance of the material against crack growth
is needed as well. Since there are no appropriate standard procedures for the evaluation
of the mode III fracture resistance available, within this work a direct evaluation of
the deformed crack edges is performed. The data aquisition is carried out using three
dimensional digital image correlation. With a newly developed evaluation algorithm, crack
propagation and crack tip opening angle are calculated from the geometry data. Using
these results the critical stress intensity factor KIIIc is found by performing a detailed
simulation of the experiment. For the evaluation of the crack growth criterion the actual
stress intensity factor is calculated from the Trefftz mixed mode element and compared to
the critical value of the material obtained from experiments.

Finally, the proposed algorithm is demonstrated by the simulation of a simple structural
component within an explicit finite element analysis. It is shown, that the concept is
capable of simulating the crack behaviour accurately. Finally, future enhancement of the
crack propagation algorithm with a crack tip plasticity model is outlined.
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1 Einleitung
Die Rahmenbedingungen bei der Entwicklung von technischen Produkten erfordern auch
in Zukunft eine weitere Reduzierung der Entwicklungszeit bei gleichzeitiger Erhöhung
der Variantenvielfalt. Ein wichtiges Werkzeug zum Erreichen beider Ziele ist der Einsatz
von Simulationsmodellen, wodurch verschiedene Varianten eines Produktes effizient auf
die Erfüllung bestimmter physikalischer Eigenschaften untersucht werden können. Im
Vergleich zum Aufbau realer Prototypen in frühen Entwicklungsphasen können mit Simula-
tionsmodellen in vielen Fällen sowohl Zeit als auch Kosten eingespart werden. Basis für die
Beurteilung unterschiedlicher Produktvarianten mit Hilfe von Simulationsergebnissen ist
die Abbildung der interessierenden physikalischen Eigenschaften in dem jeweils eingesetzten
Modell. Zur Erweiterung des Einsatzbereichs der Simulation werden daher neue Methoden
zur besseren Beschreibung der Produkteigenschaften entwickelt.

Für die Berechnung der mechanischen Eigenschaften eines Bauteils hat sich im industri-
ellen Umfeld und in vielen Bereichen der Forschung die Finite-Elemente-Methode (FEM)
als Standard etabliert. Die FEM ermöglicht eine effiziente Beschreibung von Bauteilen
unter mechanischen Belastungen in Form von Kräften und Momenten sowie der daraus
resultierenden Deformationen. Bei speziellen Fragestellungen können die Standardmetho-
den der FEM dagegen weit weniger effizient eingesetzt werden, wie zum Beispiel bei der
Berechnung von Bereichen mit hoher Lokalisierung der Spannungen. Für eine hinreichend
genaue Bestimmung des Spannungsfeldes ist in diesem Fall eine entsprechend kleinräumige
Diskretisierung der Geometrie erforderlich. Die Erhöhung der Genauigkeit durch Netz-
verfeinerung funktioniert bei der FEM generell und wird als h-Methode bezeichnet. Eine
höhere Netzfeinheit führt zu einer größeren Anzahl von Freiheitsgraden und erhöht den
Berechnungsaufwand. Speziell bei der expliziten FEM, die bevorzugt zur Simulation von
hochdynamischen Kurzzeitprozessen eingesetzt wird, kann eine Netzverfeinerung zu einer
Verringerung der globalen Zeitschrittweite führen. Ausgeprägte Spannungslokalisierungen
treten zum Beispiel in stark gekerbten Bereichen von Bauteilen aus höchstfestem Stahlblech
auf. Diese Werkstoffgruppe wird unter anderem im Fahrzeugbau in zunehmendem Maße
für sicherheitsrelevante Strukturbauteile eingesetzt.

Die vorliegende Arbeit leistet einen Beitrag zur Verbesserung der Simulation des hoch
lokalisierten Spannungsfeldes in der Umgebung von Rissspitzen. Risse können einen
großen, meist unerwünschten Einfluss auf das mechanische Verhalten von Bauteilen haben
und einsetzendes Risswachstum kann zum Bruch einer ganzen Struktur führen. Die
physikalische Beschreibung von Rissen erfolgt mit den Methoden der Bruchmechanik,
wobei die Existenz eines Anrisses als gegeben vorausgesetzt und das Verhalten des Risses
unter Belastung bestimmt wird. Informationen über mögliche Positionen von Anrissen
können zum Beispiel aus empirischen Versuchen gewonnen werden. Die Beschreibung von
Rissen in Bauteilen aus höchstfestem Stahlblech erfolgt unter bestimmten Voraussetzungen
mit der linear-elastischen Bruchmechanik (LEBM). Das Spannungsfeld weist bei diesem
Modell eine Singularität im Bereich der Rissspitze auf und ist daher hoch lokalisiert.
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2 1 Einleitung

Die Auswertung der Spannungen an der Rissspitze kann zum Beispiel mit einem Finite-
Elemente-Modell (FE-Modell) erfolgen. Die Singularität an der Rissspitze erfordert in
diesem Bereich eine erhöhte Netzfeinheit, weil sie mit bilinearen Standardelementen nur
unzureichend abgebildet werden kann. Um die Nachteile der Feinvernetzung zu vermeiden
und dennoch eine genaue Auflösung der Singularität zu erzielen, werden spezielle Methoden
benötigt. Ein erfolgversprechendes und etabliertes Konzept ist die Kombination von
Standardelementen mit speziellen Rissspitzenelementen auf Basis der hybriden Trefftz-
Methode. Diese Elemente können den Spannungsverlauf an der Rissspitze unabhängig von
der Netzfeinheit wiedergeben. Im Gegensatz zu Standardelementen kommen dazu speziell
angepasste Ansatzfunktionen zum Einsatz, die auf analytischen Lösungen des zugehörigen
Randwertproblems der Elastizitätstheorie basieren.

Zur Beschreibung von Rissen unter Querscherbelastung steht bisher keine entsprechende
Elementformulierung zur Verfügung. Die Zielsetzung der vorliegenden Arbeit ist daher
die Entwicklung eines Rissspitzenelements zur Berechnung der Querscherbelastung auf
Basis der hybriden Trefftz-Methode. Das Element ermöglicht eine genaue Berechnung
der mechanischen Größen in der Rissspitzenumgebung. Insbesondere kann damit der
Spannungsintensitätsfaktor direkt berechnet werden. Unkritische Bereiche eines Bauteils
können dabei weiterhin mit Standardelementen modelliert werden. Die Kopplung des
Rissspitzenelements mit dem FE-Modell wird durch die hybride Verschiebungsformulierung
zur Berücksichtigung der Kopplungsbedingungen ermöglicht. Das im Rahmen dieser Arbeit
vorgestellte Rissspitzenelement basiert auf der Plattentheorie von Kirchhoff, für die unter
der zusätzlichen Annahme linear-elastischen Materialverhaltens eine allgemeine analytische
Lösung bekannt ist.

Das neuentwickelte Element wird dann im Rahmen der linear-elastischen Theorie mit
einem Rissspitzenelement für ebene Beanspruchungen zu einem Mixed-Mode-Element
zusammengefügt. Damit können beliebige Belastungszustände an der Rissspitze im Bereich
der LEBM abgebildet werden. Die gekoppelte Simulation aus dem speziellen Element im
Bereich der Rissspitze und Standardelementen für die Modellierung unkritischer Bereiche
ermöglicht eine numerisch effiziente und zugleich genaue Beschreibung des Risswachstums
in Strukturbauteilen. Durch zukünftige Weiterentwicklungen der Elementformulierung
können zudem auch Modelle für eine streifenförmige plastische Zone vor der Rissspitze
berücksichtigt werden.

Motivation für die Entwicklung der Elementformulierung ist im Folgenden die Simulation
von Rissen in Strukturbauteilen von Fahrzeugen unter Crashbelastung. Aus der Verwen-
dung von höchstfesten Stählen ergeben sich dabei aufgrund der Spannungslokalisierung im
Bereich der Rissspitze hohe Anforderungen an die FE-Simulation. Im Bereich der Crashsi-
mulation kommt dabei insbesondere die explizite FEM zum Einsatz. Bei dieser Methode
wird eine gleichmäßige Vernetzung des Modells angestrebt, um die globale Zeitschrittweite
nicht durch einzelne kleine Elemente zu verringern. Unter diesen Bedingungen können
Trefftz-Elemente vorteilhaft eingesetzt werden, weil sie unabhängig von der Netzgröße
genaue Ergebnisse liefern. Um die Beschreibung beliebiger Belastungen an der Rissspitze
zu ermöglichen, wird im Rahmen der vorliegenden Arbeit ein neues Trefftz-Element zur
Beschreibung der Querscherbelastung entwickelt, das mit ebenen Rissspitzenelementen zu
einer Mixed-Mode-Formulierung kombiniert wird. Die Validierung des Elements erfolgt mit
Hilfe von sehr fein diskretisierten FE-Modellen und zeigt eine gute Übereinstimmung der
Ergebnisse. Die Lösung der Trefftz-Elementformulierung konvergiert bei einer Erhöhung
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1 Einleitung 3

der Anzahl der berücksichtigten Ordnungen gegen die Referenzlösung.
Für die Simulation von Risswachstum wird eine materialspezifische Charakterisierung

des Risswiderstands benötigt. Für Risse unter Querscherbelastung stehen keine geeigneten
Standardverfahren zur Verfügung, um bei großen Rissverlängerungen zu einer Beschreibung
des Risswiderstands zu gelangen. Daher wird im Rahmen der vorliegenden Arbeit ein
Versuchskonzept zur Ermittlung des Risswiderstands entwickelt, das auf der direkten
Auswertung der verformten Rissflanken mit dem 3D-Bildkorrelationsverfahren beruht. Aus
den gemessenen Geometriedaten kann sowohl der Verlauf des Rissfortschritts als auch der
Rissöffnungswinkel ermittelt werden. Diese Daten bilden die Grundlage für eine Detailsi-
mulation des Versuchsaufbaus, aus der schließlich der kritische Spannungsintensitätsfaktor
KIIIc abgeleitet werden kann. Für die Versuche wird der im Fahrzeugbau weit verbreitete
höchstfeste Stahlwerkstoff 22MnB5 verwendet.

Die Mixed-Mode-Formulierung des Rissspitzenelements wird im letzten Schritt zusammen
mit dem experimentell ermittelten Risswiderstand zu einem Rissfortschrittsalgorithmus
weiterentwickelt. Dieser ermöglicht die Simulation von Risswachstum mit der expliziten
FEM, wobei für die unkritischen Bereiche eines Bauteils eine grobe Vernetzung mit
Standardelementen ausreicht. Die Anwendung der Methodik wird anhand eines einfachen
Beispiels gezeigt. Abschließend werden zukünftige Schritte zur Weiterentwicklung der
Elementformulierung vorgestellt und diskutiert.
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2 Aktueller Stand von Forschung und
Technik

Bei der Entwicklung moderner Fahrzeugkonzepte muss eine Vielzahl von Anforderungen
berücksichtigt werden. Ein wichtiger Aspekt ist dabei die passive Sicherheit, welche die kon-
struktiven Merkmale eines Fahrzeugs zum Schutz der Insassen beinhaltet. Die Fahrgastzelle
stellt einen wichtigen Baustein der passiven Sicherheit dar und darf bei einem Crash nur
geringe Deformationen erfahren, um den Überlebensraum der Passagiere zu gewährleisten.
Die Sicherheit neuer Fahrzeugmodelle muss in der Automobilindustrie durch standardi-
sierte und vom Gesetzgeber vorgeschriebene Crashtests [1, S. 28f] nachgewiesen werden.
Zusätzlich streben die Hersteller hohe Bewertungen bei wichtigen Verbraucherschutztests
an, wie zum Beispiel dem Euro NCAP (european new car assessment programme) [1, S. 34f].
Diese Tests stellen zum Teil Anforderungen an die passive Sicherheit, welche über die
gesetzlichen Vorschriften noch hinausgehen. Gleichzeitig nehmen auch die Anforderungen
bezüglich Energieeffizienz weiter zu, die stark mit dem Fahrzeuggewicht in Zusammenhang
steht [2, S. 7].

Eine kostengünstige Möglichkeit zur Verbesserung der Fahrzeugsicherheit bei gleich-
zeitiger Reduzierung des Gewichts stellt der Einsatz von pressgehärteten, höchstfesten
Stählen dar, welche in zunehmendem Umfang für sicherheitsrelevante Strukturbauteile
der Karosserie verwendet werden. Die Kosten für den Entwicklungsprozess können zum
Beispiel durch den Einsatz von Simulationsmodellen reduziert werden, weil dadurch in
den frühen Phasen der Entwicklung auf Prototypen verzichtet werden und dennoch eine
Vielzahl von Varianten untersucht werden kann. Crashsimulationen sind aus diesem Grund
heute fester Bestandteil jeder Fahrzeugentwicklung. Bei der Simulation von Bauteilen aus
höchstfesten Stählen ergeben sich aufgrund der begrenzten Duktilität, welche die Entste-
hung und instabile Ausbreitung von Rissen begünstigt, spezifische Herausforderungen. Mit
der Standard-FEM können potentielle Risse in höchstfesten Stählen aufgrund der hohen
Lokalisierung der Spannungen im Bereich der Rissspitze nicht effizient modelliert werden
und daraus entsteht ein Bedarf an speziell angepassten Simulationsmethoden.

Im folgenden Abschnitt werden zunächst die Eigenschaften der höchstfesten Stähle
vorgestellt, welche zu einer vermehrten Anfälligkeit für die Initiierung und Ausbreitung von
Rissen führen. Ausgangspunkt für die Simulation von Rissen ist im Rahmen der vorliegenden
Arbeit die explizite FEM, die sich als Standardverfahren in der Crashsimulation etabliert
hat. Die Effizienz dieser Methode hängt wesentlich von der stabilen Zeitschrittweite ab,
die bei der Modellierung von Rissen durch Feinvernetzung negativ beeinflusst werden
kann. Der Zusammenhang von Zeitschrittweite und Stabilität wird im zweiten Abschnitt
erläutert. Die hohe Netzfeinheit wird durch die begrenzte Duktilität der höchstfesten Stähle
und die daraus resultierende Modellierung von Rissen mit der LEBM erforderlich. Bei der
LEBM tritt eine Spannungssingularität im Bereich der Rissspitze auf. Die Grundlagen
des Modells werden im dritten und vierten Abschnitt in Abgrenzung zu den weiteren
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2.1 Strukturbauteile aus höchstfestem Stahl 5

Methoden der Bruchmechanik vorgestellt. Die geschilderte Ausgangssituation erfordert eine
Weiterentwicklung der Standard-FEM durch verbesserte Methoden zur Beschreibung von
Rissen. Dazu werden im fünften Abschnitt die wichtigsten bereits verfügbaren Verfahren
und ihre Eignung zur Lösung der Aufgabenstellung vorgestellt. Ein erfolgversprechendes
Lösungskonzept ist die Simulation von Rissen mit speziell angepassten Rissspitzenelementen
auf Basis der hybriden Trefftz-Methode, die im letzten Abschnitt beschrieben wird. Im
Rahmen dieser Methode steht bisher keine den ebenen Elementformulierungen äquivalente
Beschreibung von Rissen unter Querscherbelastung zur Verfügung. Daraus ergibt sich die
Zielsetzung der vorliegenden Arbeit, ein neues hybrides Trefftz-Rissspitzenelement auf
Basis der Kirchhoffschen Plattentheorie zu entwickeln.

2.1 Strukturbauteile aus höchstfestem Stahl
Das Spannungsfeld aus Sicherheit, Treibstoffverbrauch, Herstellbarkeit und Kosten führt
im Automobilbau zu einem Bedarf an Materialien mit höchster Festigkeit und gleichzeitig
guter Verarbeitbarkeit. Die Festigkeit erhöht die Crashsicherheit und ermöglicht Bauteile
mit geringer Wandstärke, was sich positiv auf Treibstoffverbrauch und Materialkosten
auswirkt. Eine gute Verarbeitbarkeit ermöglicht dennoch komplexe Bauteilformen und
führt zu einer geringeren Anzahl an Einzelkomponenten und in Folge auch zu weniger
Schweißverbindungen. Dadurch können die Kosten des Herstellungsprozesses reduziert und
Gewicht eingespart werden [3]. Diese beiden Eigenschaften bieten höchstfeste Stähle und
werden deshalb in der Automobilindustrie in zunehmendem Umfang für sicherheitsrelevante
Strukturbauteile eingesetzt. In den übrigen Bereichen der Karosserie werden weiterhin
konventionelle Stahlwerkstoffe mit guter Umformbarkeit eingesetzt.

Von höchstfesten Stählen spricht man ab einer Streckgrenze von 550 MPa. Um die
hohen Festigkeiten zu erreichen, stehen unterschiedliche Mechanismen wie zum Beispiel
Dualphasenstähle und martensitische Stähle zur Verfügung. Beide gehören zur Gruppe
der AHSS (advanced high strength steel). Bei den Eigenschaften muss ein Kompromiss
zwischen Festigkeit und Formbarkeit gefunden werden. Gute Verformbarkeit wird zum
Beispiel in den Knautschzonen von Fahrzeugen benötigt, um die Aufprallenergie bei
einem Crash abzubauen. Die Gruppe von Stählen mit den höchsten Festigkeiten sind die
AHSS. Es handelt sich dabei um Mehrphasenstähle mit einer komplexen Mikrostruktur
aus verschiedenen Phasen wie Ferrit, Martensit, Bainit und Austenit bzw. Restaustenit
[2, S. 19]. In Abb. 2.1 sind typische Spannungs-Dehnungs-Verläufe und Einsatzbereiche
konventioneller Tiefziehstähle, hochfester Stähle und von AHSS in der Fahrzeugkarosserie
dargestellt. Einen umfassenden Überblick über Eigenschaften und Konzepte der AHSS
gibt [2].

Ein weit verbreiteter AHSS im Automobilbereich ist der Mangan-Bor-Stahl 22MnB5
[6], welcher im Rahmen der vorliegenden Arbeit für die experimentelle Bestimmung eines
materialspezifischen Rissparameters verwendet wird. Bauteile aus 22MnB5 werden in der
Serienfertigung durch Form- bzw. Presshärten hergestellt. Bei diesem Verarbeitungsverfah-
ren werden zugeschnittene Platinen oder bereits vorgeformte Bauteile im unbehandelten
Ausgangszustand mit ferritisch-perlitischem Gefüge auf die Austenitisierungstemperatur
im Bereich von 880 ◦C bis 930 ◦C erwärmt und im warmen Zustand fertig geformt. Die
kontrollierte Abkühlung auf Temperaturen zwischen 100 ◦C und 250 ◦C zur Einstellung
eines 100% martensitischen Gefüges erfolgt im geschlossenen Werkzeug mit Wasser- oder
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Abbildung 2.1: Charakteristische Spannungs-Dehnungs-Verläufe unterschiedlicher Grup-
pen von Stahlwerkstoffen und typische Einsatzbereiche im Fahrzeug nach
[4, S. 19], Fahrzeugmodell nach [5].

Ölabkühlung [7, S. 496f], [2, S. 131f], [8].
Eine wichtige Eigenschaft für das Bruchverhalten eines Werkstoffes ist seine Duktilität,

also die Fähigkeit zu plastischer Verformung bevor Versagen eintritt. Die Duktilität kann
zum Beispiel mit dem einachsigen Zugversuch nach [9] anhand der Brucheinschnürung
und der Bruchdehnung bestimmt werden. Ein Werkstoff mit sehr geringer Duktilität wird
als spröde bezeichnet und weist plastische Bruchdehnungen unter 0.1 % auf, während
duktile Werkstoffe im Bereich von ungefähr 10 % liegen [10, S. 203]. Die Duktilität kann
durch Einflussgrößen wie Temperatur und Belastungsgeschwindigkeit beeinflusst werden
[11, S. 159f]. Die Fähigkeit zur Energieaufnahme durch plastische Deformation wird durch
die Fläche unter der Spannungs-Dehnungs-Kurve charakterisiert [2]. AHSS weisen im
Vergleich zu anderen Stahlwerkstoffen höchste Festigkeit und geringste Bruchdehnung auf.
In Abb. 2.2 sind typische Bereiche von Zugfestigkeit und Bruchdehnung einiger Gruppen
von Stahlwerkstoffen dargestellt. Für AHSS ergibt sich daraus eine kleine Fläche unter der
Spannungs-Dehnungs-Kurve, wie aus Abb. 2.3 ersichtlich wird. Die benötigte plastische
Energie zur Rissausbreitung ist daher gering und somit auch der Risswiderstand. AHSS
weisen daher eine Tendenz zu instabilem Risswachstum auf [2, 12, 13]. Zur Beschreibung
solcher quasi-spröder Risse müssen die Methoden der Bruchmechanik herangezogen werden
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Abbildung 2.2: Bereiche von Zugfestigkeit und Bruchdehnung für verschiedene Stahlwerk-
stoffe. AHSS (Dualphasen- und martensitische Stähle) weisen höchste
Festigkeit und geringe Bruchdehnung auf [2, S. 13f].

[11, S. 149].
Mit den bruchmechanischen Methoden kann der Einfluss von Rissen auf die Tragfähigkeit

von Bauteilen ermittelt werden. Die Entstehung von Anrissen, also die Rissinitiierung,
wird im Rahmen der Bruchmechanik dagegen nicht untersucht und verlangt eine mi-
kromechanische Betrachtung der Vorgänge im Material. Diese erfolgt im Rahmen der
Schädigungsmechanik [14, Kapitel 9]. Stark gekerbte Bereiche im Bauteil sowie Verbin-
dungselemente wie Schweißpunkte oder Nietverbindungen stellen potenzielle Bereiche für
die Entstehung und Ausbreitung von Rissen dar [15]. Zusammengefasst stellen Risse in
Bauteilen aus höchstfestem Stahl ein wichtiges Problem dar, das mit den Methoden der
Bruchmechanik analysiert werden muss. Die daraus resultierenden Anforderungen an die
Simulation werden in den nachfolgenden Abschnitten beschrieben.

2.2 Crashsimulation mit der expliziten FEM
FE-Simulationen ermöglichen eine effiziente Untersuchung der Eigenschaften mechani-
scher Strukturen. Zeitabhängige Vorgänge werden dabei durch die räumlich diskretisierte
Bewegungsgleichung

Mü + Cu̇ + P (u) + f = 0 (2.1)
mit der konsistenten Massenmatrix M , einer optionalen Dämpfungsmatrix C, den inneren
Kräften P (u) und den äußeren Kräften f beschrieben. Im Vektor u sind die Knotenver-
schiebungen der räumlichen Diskretisierung, in u̇ die Knotengeschwindigkeiten und in ü
die Knotenbeschleunigungen zusammengefasst. Tensoren, Vektoren und Matrizen werden
im Verlauf der Arbeit fett hervorgehoben, um eine Unterscheidung von skalaren Größen zu
ermöglichen. Zur vollständigen Formulierung eines Anfangswertproblems müssen zusätzlich
die Anfangsbedingungen u (0) = û und u̇ (0) = v̂ vorgegeben werden. Die lineare Form
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Abbildung 2.3: Flächen unter den charakteristischen Spannungs-Dehnungs-Kurven der
verschiedenen Gruppen von Stahlwerkstoffen aus Abb. 2.1.

der Bewegungsgleichung lautet

Mü + Cu̇ + Ku + f = 0 , (2.2)

mit der verschiebungsunabhängigen Steifigkeitsmatrix K. Herleitungen der Bewegungs-
gleichung werden zum Beispiel bei [16] und [17] beschrieben.

FE-Methoden werden nach dem verwendeten Zeitintegrationsverfahren zur Lösung der
Glg. 2.1 in explizite und implizite Verfahren eingeteilt. Beide Verfahren können zur Lösung
von dynamischen Vorgängen eingesetzt werden, aber der Berechnungsaufwand ist oft
unterschiedlich groß. Für die Crashsimulation wird meist die explizite FEM eingesetzt,
welche bei hochdynamischen Kurzzeitprozessen tendenziell effizienter ist. Der prinzipielle
Unterschied zwischen impliziten und expliziten Zeitintegrationsverfahren wird im Folgenden
am Beispiel des impliziten und des expliziten Euler-Verfahrens dargestellt [18, S. 384].
Anhand dieses Beispiels wird die entscheidende Bedeutung der Zeitschrittweite ∆t bei den
expliziten Zeitintegrationsverfahren ersichtlich. Dazu wird die Differentialgleichung (DGL)
erster Ordnung

ż = f [t, z (t)] (2.3)
mit der Anfangsbedingung z (0) = z0 betrachtet, die durch ein numerisches Verfahren
gelöst werden soll. Jede Differentialgleichung n-ter Ordnung kann dabei in ein System
von n Differentialgleichungen erster Ordnung überführt werden. Ein Startpunkt für die
Herleitung einer Methode zur Lösung ist die Taylorreihenentwicklung der Funktion z (t)
um die Stelle t,

z (t + ∆t) = z (t) + ż (t) ∆t + O
[
(∆t)2

]
. (2.4)

Durch Glg. (2.3) ist die Ableitung der Funktion z (t) gegeben, aber der Verlauf der Funktion
selbst ist bis auf den Anfangwert z0 unbekannt. Mit Glg. (2.4) lässt sich unter Vernach-
lässigung der Terme höherer Ordnung eine Abschätzung des weiteren Funktionsverlaufs
durch die Ableitung angeben. Das Verfahren wird explizites Eulerverfahren genannt und
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Abbildung 2.4: Das explizite Euler-Verfahren zur Lösung der Differentialgleichung ż =
t · z (t) mit dem Anfangswert z0 = 0.1. Die analytische Lösung lautet
z (t) = 0.1 e0.5t2 und die Zeitschrittweite ist ∆t.

seine Rekursionsformel lautet

z̃k+1 = z̃k + f (tk, z̃k) ∆t . (2.5)

Dabei wird aus dem bekannten Anfangwert z0 zur Zeit t0 im ersten Rekursionsschritt
k = 1, k ∈ 1, 2, . . . , n eine Näherungslösung für den Zeitpunkt t1 = t0 + ∆t berechnet.
Diese bildet wiederum den Ausgangspunkt für den nächsten Schritt, wo mit tk = t0 + k∆t
und der alten Näherungslösung z̃k die neue Lösung z̃k+1 berechnet wird. In Abb. 2.4 sind
die ersten Schritte des Verfahrens für die DGL

ż = t · z (t) mit z0 = 0.1 (2.6)

sowie der Verlauf der analytischen Lösung z (t) = 0.1e0.5t2 für die Zeitschrittweiten ∆t = 0.4
und ∆t = 0.04 dargestellt. Die Abweichung der berechneten Lösungen vom exakten Verlauf
hängt dabei von ∆t ab.

Die Abweichung der numerischen Lösung vom tatsächlichen Verlauf entsteht zum einen
durch den lokalen Fehler in jedem Berechnungsschritt durch die vernachlässigten Terme
höherer Ordnung in Glg. (2.4). Die vernachlässigten Terme sind proportional zu ∆t2. Zu
einem bestimmten Zeitpunkt t wurden bei konstanter Zeitschrittweite (t − t0) /∆t Schritte
mit einem lokalen Fehler proportional zu ∆t2 berechnet. Der globale Fehler ist daher
proportional zu ∆t. Bei der Berechnung einer Lösung mit dem expliziten Eulerverfahren
muss daher eine kleinere Zeitschrittweite zur Erhöhung der Genauigkeit der Ergebnisse
gewählt werden. Dadurch erhöht sich die Anzahl der auszuführenden Zeitschritte, um zu
einem Zeitpunkt t zu gelangen. Die numerische Auswertung erfordert jedoch nur einen
geringen Rechenaufwand, da lediglich die Funktion f (tk, z̃k) ausgewertet werden muss. Aus
der Maschinengenauigkeit ε ergibt sich auch ein Rundungsfehler proportional zu ε/

√
∆t,

was bei sehr kleinen Zeitschrittweiten dazu führt, dass der Rundungsfehler größer als der
Abbruchfehler wird [19, S. 51–85]. Es gibt daher einen optimalen Bereich für die Zeitschritt-
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Abbildung 2.5: Schematische Darstellung des Gesamtfehlers als Summe aus Rundungs-
und Abbruchfehler nach [19, S. 81].

weite, in dem der Gesamtfehler als Summe aus Abbruch- und Rundungsfehler minimal ist.
In Abb. 2.5 sind die beiden Fehleranteile sowie der Gesamtfehler in Abhängigkeit von ∆t
in doppeltlogarithmischer Darstellung abgebildet.

Die größte Einschränkung des expliziten Euler-Verfahrens ist seine bedingte Stabilität,
die ebenfalls mit der Zeitschrittweite ∆t zusammenhängt. Stabilität bedeutet in diesem
Zusammenhang, dass die numerische Lösung für k → ∞ beschränkt bleibt, wenn die
analytische Lösung für t → ∞ gegen einen endlichen Wert strebt [19, S. 74]. Zum Beispiel
ist für lineare Differentialgleichungen der Form

ż = k · z (t) (2.7)

die exakte Lösung durch z (t) = ekt gegeben. Das explizite Eulerverfahren ist stabil, wenn
das Produkt ∆t k im Gebiet

{z ∈ C | |z + 1| ≤ 1} (2.8)
liegt [19, S. 74–79]. In Abb. 2.6 ist die exakte Lösung für k = −2.3, die für t → ∞ gleich
Null ist, im Vergleich mit den numerischen Lösungen für ∆t = 0.7 und ∆t = 1.0 dargestellt.
Für ∆t = 1.0 liegt ∆t k = −2.3 außerhalb des Stabilitätsgebiets und die Lösung oszilliert
mit wachsender Amplitude um die exakte Lösung. Für ∆t = 0.7 ist ∆t k = −1.61 und die
numerische Lösung strebt gegen die exakte Lösung.

Zum Vergleich wird auch das implizite Eulerverfahren angegeben, welches für beliebige
Zeitschrittweiten stabil ist. Die Berechnungsvorschrift für den nächsten Zeitschritt lautet
hier

z̃k+1 = z̃k + f (tk+1, z̃k+1) , (2.9)
wobei z̃k+1 auf beiden Seiten der Gleichung steht, was einen Schritt zum Auflösen nach
z̃k+1 erforderlich macht. Dieser kann zum Beispiel mit dem Newton-Raphson-Verfahren
durchgeführt werden. Beim impliziten Eulerverfahren gibt es keine Einschränkung der
stabilen Zeitschrittweite, aber der Aufwand zur Berechnung des nächsten Schrittes ist
durch den zusätzlichen Lösungsschritt hoch. In Abb. 2.6 ist die Lösung mit dem impliziten
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Abbildung 2.6: Lösung von ż = −2.3 z (t) mit z0 = 1 durch das explizite Euler-Verfahren
mit ∆t = 1 und ∆t = 0.7. Zum Vergleich ist die exakte Lösung z (t) = e−2.3t

und die Lösung mit dem impliziten Euler-Verfahren für ∆t = 1 angegeben.

Eulerverfahren für die DGL (2.7) mit ∆t = 1.0 angegeben.
Die anhand des Eulerverfahrens dargestellte bedingte Stabilität expliziter Zeitintegrati-

onsverfahren tritt auch bei den üblichen Verfahren zur Zeitintegration der Bewegungsglei-
chung (2.1) im Rahmen der expliziten FEM auf. Viele kommerzielle Programme arbeiten
zum Beispiel mit dem zentralen Differenzenverfahren zur Zeitintegration [20, S. 22–24],
[21]. Bei der nichtlinearen Differentialgleichung (2.1) werden die Betrachtungen zur Stabi-
lität mit Hilfe linearer Näherungen nach Glg. (2.2) durchgeführt. Der stabile Zeitschritt
für das gesamte Anfangswertproblem wird durch die stabilen Zeitschritte der einzelnen
Elemente bestimmt und das Element mit dem kleinsten stabilen Zeitschritt begrenzt den
Zeitschritt insgesamt. ∆t hängt von den strukturellen Eigenschaften Masse und Steifigkeit
ab. Die stabile Zeitschrittweite ergibt sich aus der größten in der Struktur auftretenden
Eigenfrequenz in Form der Courant-Friedrichs-Lewy-Bedingung (CFL-Bedingung) [22, 23],
[16, Kapitel 17]. Anschaulich ausgedrückt besagt diese Bedingung, dass bei einem Zeitinte-
grationsschritt, bei dem der Zustand auf einer Elementkante als konstant vorausgesetzt
wird, innerhalb des Zeitschritts keine Welle einer benachbarten Kante eintreffen darf, weil
dadurch die Annahme des konstanten Zustands verletzt wird. Es wird also die Zeit gesucht,
die die schnellste Welle von einer Kante zur nächsten benötigt. Die CFL-Bedingung lautet

∆t = α∆ttkrit ≤ min le
cs,e

. (2.10)

Dabei ist cs,e die Wellenausbreitungsgeschwindigkeit des jeweiligen Elements und le seine
charakteristische Elementlänge. Nichtlinearitäten werden durch den Faktor α∆t < 1 vor dem
kritischen Zeitschritt tkrit berücksichtigt. Der Zeitschritt ∆t wird für jedes Element ermittelt
und für die Berechnung eines Gesamtproblems bestimmt der kleinste Elementzeitschritt die
globale stabile Zeitschrittweite [23, S. 23]. Aus der CFL-Bedingung ist ersichtlich, dass bei
konstantem cs,e eine Verkleinerung der Elementlänge le zur Reduzierung von ∆t führt. Aus
diesem Grund kann eine Feinvernetzung im Bereich der Rissspitze zu einer Reduzierung
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des kleinsten Zeitschritts und damit zu einer Erhöhung des Rechenaufwands führen.
Im Bereich der Crashsimulation hat sich die explizite FEM als Standard etabliert. Dabei

wird eine gleichmäßige Vernetzung der Bauteilgeometrien angestrebt, um eine effiziente
Berechnung zu gewährleisten. Typische Elementkantenlängen bei der Crashsimulation von
Gesamtfahrzeugen liegen in der Größenordnung von le ≈ 5 mm. Für die Simulation von
Rissen sind daher Methoden von Vorteil, die auch bei hoher Spannungslokalisierung mit
größeren Elementkantenlängen sinnvoll eingesetzt werden können. Ausführliche Verglei-
che zwischen expliziten und impliziten FEM sind zum Beispiel bei [24, S. 156–166] und
[17, Kapitel 6.6] zu finden. Eine ausführliche Übersicht praktisch angewandter expliziter
Zeitschrittverfahren ist bei [25] dargestellt.

2.3 Risse mit hoher Spannungslokalisierung
Die Bruchmechanik befasst sich mit dem Verhalten von Rissen unter Belastung. Da-
zu wird der risstreibenden Kraft der Widerstand des Materials gegen Rissausbreitung
gegenübergestellt [26],

Dgen ≥ Rgen . (2.11)
Dgen ist eine allgemeine risstreibende Kraft, die sich aus den äußeren Kräften und der
gespeicherten elastischen Energie des Bauteils mit Riss zusammensetzt. Der Materialwi-
derstand gegen die Rissausbreitung ist Rgen. Stabiles Risswachstum tritt auf, wenn die
Belastung gleich groß wie der Risswiderstand ist. Es ist dadurch gekennzeichnet, dass
eine Verringerung der risstreibenden Kraft zu Dgen < Rgen und damit zum Stop des
Risswachstums führt. Ist dagegen Dgen > Rgen liegt instabiles Risswachstum vor, welches
zu hohen Ausbreitungsgeschwindigkeiten des Risses im Bereich der Schallgeschwindigkeit
führt. Die Stabilität des Risswachstums hängt von der elastischen Energie und den äußeren
Kräften ab [27].

Als Ausgangspunkt für die Entwicklung der Bruchmechanik gilt die Arbeit von [28]
und ausführliche Darstellungen der zugehörigen Methoden können unter anderem bei
[14, 29, 30] und [26] nachgeschlagen werden. Die Bruchmechanik beinhaltet unterschiedliche
Modelle, deren Gültigkeitsbereich vom vorliegenden Zustand an der Rissspitze abhängt.
Das Kriterium für die Abgrenzung der Modelle ist die Ausprägung der plastischen Zone
[26]. Im Rahmen der vorliegenden Arbeit werden dynamische Effekte, Kriechen und
Ermüdungsrisswachstum nicht betrachtet. Das Risswachstum wird als statisches bzw.
quasistatisches Problem behandelt.

Das Konzept des im weiteren Verlauf entwickelten Rissspitzenelements beruht auf der
LEBM, die im Folgenden kurz vorgestellt wird. Die Anwendbarkeit der LEBM hängt
entscheidend von den Materialeigenschaften und den Bauteil- und Rissdimensionen ab.
Duktile Materialien können damit bei kleinen Bauteil- und Rissdimensionen nicht hin-
reichend beschrieben werden. In diesem Fall ist eine Beschreibung des Risses durch die
elastisch-plastische Bruchmechanik (EPBM) erforderlich. Die LEBM wurde von [28] zur
Beschreibung des ideal spröden Bruches entwickelt, welcher dadurch charakterisiert wird,
dass keinerlei plastische Verformungen an der Rissspitze auftreten. Bis auf wenige Ausnah-
men treten irreversible Vorgänge aber in allen Materialien auf, was die Anwendbarkeit der
LEBM zunächst stark einschränkt. Beim ideal spröden Riss ergeben sich die Spannungen in
der Nähe der Rissspitze aus der linear-elastischen Elastizitätstheorie, wobei ein elastischer
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Abbildung 2.7: Beim K-Konzept mit Kleinbereichsfließen ist die Prozesszone (grau) von
der plastischen Zone mit Radius rp umschlossen. Im Bereich rp < r < R
wird der Zustand durch den Spannungsintensitätsfaktor K charakterisiert
[14].

Körper durch einen Riss teilweise aufgetrennt wird. Die beiden Rissufer treffen dabei
in einer ideal scharfen Rissspitze mit Kerbradius Null aufeinander [30, S. 26]. Aus der
Bauteilgeometrie und den vorgegebenen äußeren Kräften und Verschiebungen entsteht mit
dieser Idealisierung des Risses ein mathematisches Randwertproblem, das in der Regel
mit Hilfe numerischer Methoden gelöst werden muss. Für einfache Bauteilgeometrien sind
auch analytische Lösungen verfügbar. Aus der Lösung des Randwertproblems erhält man
den Spannungsintensitätsfaktor K, der den aktuellen Spannungszustand in der Nähe der
Rissspitze durch

σij = K√
2πr

fij (θ) (2.12)

eindeutig beschreibt. σij ist dabei eine Komponente des Spannungstensors mit i, j ∈
{1, 2, 3} und die Funktion fij (θ) für die jeweilige Spannungskomponente ergibt sich aus
der Lösung des Randwertproblems. Für r → 0 wird die Spannung unendlich groß. Vorge-
hensweisen zur Ermittlung von fij (θ) werden unter anderem bei [14, 30, 31] beschrieben.
θ ist der Winkel in einem lokalen Polarkoordinatensystem an der Rissspitze mit θ = 0
in Rissrichtung und dem Abstand r von der Rissspitze. Für einfache Geometrien und
Lastfälle gibt es auch ausführliche Sammlungen von tabellierten Geometriefaktoren Y ,
unter anderem bei [32, 33], mit denen der Spannungsintensitätsfaktor aus der Risslänge a
und der anliegenden Spannung berechnet werden kann. Der Zusammenhang hierfür lautet

K = σij

√
πa Y (a) . (2.13)

Durch das K-Konzept kann die LEBM auch beim Auftreten von kleinen plastischen
Zonen an der Rissspitze eingesetzt werden. Dies wird als LEBM mit Kleinbereichsfließen
bezeichnet. Der eigentliche Bruchprozess findet dabei in einer räumlich begrenzten Prozess-
zone statt und die plastische Zone ist klein im Vergleich zum Einflussbereich des K-Feldes.
Im Bereich zwischen rp < r < R charakterisiert dann K den Zustand an der Rissspitze
vollständig. In Abb. 2.7 ist die Situation an der Rissspitze beim Kleinbereichsfließen in
Anlehnung an [14, S. 75] dargestellt. Dabei ist rp der Radius der plastischen Zone und der

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


14 2 Aktueller Stand von Forschung und Technik

rp
δt

Abbildung 2.8: δt wird durch eine gedachte Rissverlängerung um rp definiert. Die Auswer-
tung erfolgt an der ursprünglichen Position der Rissspitze.

Bereich der Prozesszone, in der die atomistischen Vorgänge der Materialtrennung stattfin-
den, ist als grauer Kreis dargestellt. In größerer Entfernung von der Rissspitze r > R tragen
weitere nichtsinguläre Terme zum Spannungsfeld bei. Tabellierte Lösungen für nichtsingu-
läre Terme sind bei [34] zu finden. Das K-Konzept erweitert den Anwendungsbereich der
LEBM auf eine Vielzahl von technischen Werkstoffen und Anwendungsfällen. So können
unter anderem die in Abschnitt 2.1 beschriebenen Strukturbauteile aus höchstfestem Stahl
vielfach mit der LEBM beschrieben werden.

In der LEBM gibt es neben dem Spannungsintensitätsfaktor K weitere äquivalente
Beschreibungen des Beanspruchungszustandes an der Rissspitze. Aus einer energetischen
Betrachtung erhält man die Energiefreisetzungsrate G, die nach [14, S. 100] mit dem
Spannungsintensitätsfaktor K durch

G =
K2/E ESZ

(1 − ν2) K2/E EVZ
(2.14)

verknüpft ist. Dabei wird zwischen ebenem Spannungszustand (ESZ) und ebenem Ver-
zerrungszustand (EVZ) unterschieden. Im Gültigkeitsbereich der LEBM entspricht die
Energiefreisetzungsrate G dem J-Integral, das in der EPBM zur Beschreibung des Zustands
an der Rissspitze eingesetzt wird.

γt

rγ

Abbildung 2.9: γt wird in einem definierten Abstand rγ hinter der Rissspitze ausgewertet.

Eine weiterer Parameter der LEBM ist die Rissspitzenöffnungsverschiebung (CTOD) δt,
die auf unterschiedliche Weise definiert werden kann. Eine Möglichkeit zur Definition ist
durch die Abschätzung des Radius der plastischen Zone nach [35] gegeben,

rp =


1

2π

(
K
σF

)2
ESZ

1
6π

(
K
σF

)2
EVZ .

(2.15)

Diese Abschätzung beruht auf der Annahme, dass Spannungen oberhalb der Fließspannung
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σF durch Plastifizierung abgebaut werden. Durch Einsetzen von σF in Glg. (2.12) und
Auflösen nach r erhält man den Radius, bei dem die Spannung gleich σF ist. Für die
Berechnung von δt wird der Riss dann gedanklich um rp verlängert und die Verschiebung
der Rissufer an der ursprünglichen Position der Rissspitze ausgewertet. Damit ist [30,
S. 91]

δt =


K2

EσF
ESZ

K2(1−ν2)
2EσF

EVZ .
(2.16)

In Abb. 2.8 ist die Definition von CTOD durch den Radius der plastischen Zone dargestellt.
Eine weitere Größe zur Charakterisierung des Widerstands gegen Rissausbreitung

ist der Rissöffnungswinkel (CTOA). CTOA kann dabei insbesondere zur Beschreibung
des Risswiderstands in dünnwandigen Blechbauteilen eingesetzt werden [36, 37]. Für
die Auswertung wird der Rissöffnungswinkel γt in einem definierten Abstand hinter der
Rissspitze aus der Verschiebung der Rissflanken berechnet. In vielen Fällen beträgt der
Auswertungsabstand dabei 1 mm [38]. Eine Definition von γt mit dem Auswertungsabstand
rγ ist in Abb. 2.9 dargestellt. Für den Rissöffnungswinkel steht kein direkter Zusammenhang
mit den Größen der LEBM zur Verfügung. Ein großer Vorteil von CTOA ist die Möglichkeit
einer direkten Auswertung aus der Geometrie der verformten Rissufer.

2.4 Kriterien für Rissfortschritt
Mit Hilfe der LEBM kann die Belastung an der Rissspitze bei einem ideal spröden Bruch
und bei Kleinbereichsfließen bestimmt werden. Die Bedingung für stabilen Rissfortschritt
aus Glg. (2.11) lautet im Fall des ideal spröden Bruchs

K = Kc . (2.17)

Kc ist der kritische Spannungsintensitätsfaktor, welcher den Risswiderstand des Materials
beschreibt und aus Versuchen ermittelt werden muss. Man unterscheidet drei unabhängige
Belastungsmoden eines Risses, Modus I, II und III. Die zugeordneten Belastungsrichtungen
sind in Abb. 2.10 dargestellt. Modus I ist eine Belastung senkrecht zur Rissrichtung,
Modus II eine Scherbelastung in der Rissebene und Modus III eine Scherbelastung senkrecht
zur Rissebene (Querscherbelastung). Das elastische Spannungsfeld an der Rissspitze setzt
sich dabei aus den einzelnen Teilspannungen zusammen. Im ideal spröden Fall ist Kc nicht
vom Belastungsmodus abhängig. Die drei Spannungsintensitätsfaktoren können einfach
summiert werden, um das Rissfortschrittskriterium aus Glg. (2.17) auszuwerten,

K = KI + KII + KIII . (2.18)

Dieses einfache Kriterium zur Beschreibung des Rissfortschritts gilt bei Kleinbereichs-
fließen nicht mehr, weil der Risswiderstand in diesem Fall von der Belastungsrichtung
abhängt. Für die Erzeugung der plastischen Deformationen im Bereich der Rissspitze
muss zusätzliche Energie aufgewendet werden. Die spezifische Energie zur Erzeugung einer
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Modus I Modus II Modus III

Abbildung 2.10: Die unterschiedlichen Belastungsmoden eines Risses.

neuen Rissoberfläche γ wird dadurch vergrößert,

γ = γs + γp . (2.19)

Dabei ist γs die Oberflächenenergie und γp die Energie für die plastische Verformung. γp

kann zudem eine Funktion der Rissverlängerung ∆a sein,

γp = γp (∆a) . (2.20)

Auch die kritische Spannungsintensität Kc aus Glg. (2.17) ist dann eine Funktion von ∆a.
Analog zu den Belastungsgrößen aus Abschnitt 2.3 kann auch Kc durch eine kritische Ener-
giefreisetzungsrate Gc oder die kritische Rissöffnungsverschiebung δtc sowie den kritischen
Rissöffnungswinkel γtc beschrieben werden [14, 26].

Der kritische Spannungsintensitätsfaktor Kc ist im Fall des Kleinbereichfließens eine
allgemeine Funktion der Form

Kc (KI , KII , KIII , ∆a) . (2.21)

Der Beginn des Risswachstums ist in diesem Fall eine Grenzfläche im Raum, der durch die
drei unabhängigen Spannungsintensitätsfaktoren und die Rissverlängerung aufgespannt
wird. Aus Versuchen mit unterschiedlichen Belastungsanteilen von Modus I, II und III an
der Rissspitze können einzelne Punkte dieser Grenzfläche, auf der stabiles Risswachstum
erfolgt, ermittelt werden. Eine geschlossene Beschreibung in Form eines Modells für alle
möglichen Belastungszustände ist dagegen im Allgemeinen nicht verfügbar. Für den Fall
einer ebenen Modus I/II-Belastung sind verschiedene Modelle zur Beschreibung gemischter
Beanspruchungen und zur Bestimmung der Rissausbreitungsrichtung verfügbar, vergleiche
zum Beispiel [14, 30].
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2.5 Methoden zur Simulation von Rissen
Die technischen Aufgabenstellungen, die mit Hilfe der Bruchmechanik beantwortet werden
sollen, können in den meisten Fällen nur mit numerischen Methoden gelöst werden. Die
wichtigsten Fragestellungen sind dabei, ob ein vorhandener Anriss unter einer gegebenen
Belastung wächst und wie groß die Belastung werden kann, bevor Risswachstum auftritt. In
manchen Situationen lässt sich die Entstehung und das Wachstum von Rissen nicht vermei-
den und der wachsende Riss führt schließlich zum Bruch des Bauteils. Dadurch kann sich
das globale mechanische Verhalten einer ganzen Bauteilstruktur verändern. Daraus ergibt
sich die Aufgabenstellung, auch das Wachstumsverhalten eines Risses in einem Bauteil zu
beschreiben, um die daraus resultierende Verringerung der Tragfähigkeit der untersuchten
Struktur abzuschätzen. Ein Anwendungsbeispiel für die numerische Untersuchung von
potentiellen Anrissen mit der Bruchmechanik sind sicherheitsrelevante Strukturbauteile
in Fahrzeugen unter Crashbelastung. Die hierfür verwendeten höchstfesten Stahlbleche
erfordern in Kombination mit der expliziten FEM speziell angepasste Simulationsmethoden.
Im Folgenden werden die wichtigsten Verfahren kurz charakterisiert.

Die FEM kann bereits ohne spezielle Erweiterungen zur Beschreibung von Rissen
eingesetzt werden, aber die Singularität des Spannungsfeldes an der Rissspitze kann mit
den üblichen linearen oder quadratischen Polynomansätzen für die Verschiebungen nur
unzureichend abgebildet werden [30, S. 187]. Die Verfeinerung der Netzdiskretisierung
nach der h-Methode führt auch im Bereich der Rissspitze zu genaueren Ergebnissen, kann
aber bei expliziten FE-Simulationen zu einer unerwünschten Reduzierung der globalen
Zeitschrittweite führen. Im Bereich der Crashsimulation von Gesamtfahrzeugen liegen
die üblichen Elementkantenlängen in der Größenordnung von le ≈ 5 mm. Die Größe der
plastischen Zone an der Rissspitze kann unter Annahme eines ESZ nach Glg. (2.15) durch

dp = 1
π

(
KIc

σF

)2
(2.22)

abgeschätzt werden [18, S. 105]. Mit Werten nach [11, S. 158] für höchstfeste, marten-
sitaushärtende Stähle von KIc = 120 MPa

√
m und σF = 2000 MPa erhält man einen

Durchmesser der plastischen Zone von dp = 1.15 mm. Das Spannungsfeld in der Umgebung
der plastischen Zone kann in diesem Fall mit Elementkantenlängen von le ≈ 5 mm und
konstanten Ansätzen der Standardelemente für die Spannungen und Dehnungen nicht
genau aufgelöst werden.

Eine Modifikation zur Verbesserung von Standardelementen sind die sogenannten Vier-
telpunktelemente, bei denen die Kantenmittelknoten versetzt werden oder eine Kante zu
einem Punkt kollabiert wird [30, S. 191–205]. Die Methode weist im Vergleich zu Stan-
dardelementen einige günstige Eigenschaften auf, erfordert aber weiterhin eine speziell
angepasste Vernetzung. Die Viertelpunktelemente müssen dabei in radialer Richtung um
den Riss fächerförmig angeordnet werden, wobei mindestens 6 Elemente für den Halbkreis
benötigt werden. Die Elementgröße ist abhängig von der Risslänge zu wählen und der
Richtwert für die Elementgröße liegt bei le ≈ a/20 . . . a/10.

Eine weitere Schwierigkeit beim Einsatz der Standard-FEM stellt die Neudefinition des
Risses nach einem Inkrement der Rissverlängerung dar, weil die Vernetzung des Bauteils
zur Darstellung der neuen Rissgeometrie entsprechend angepasst werden muss. Die Aufga-
benstellung bei der Simulation von Risswachstum besteht daher aus mehreren Teilschritten
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Abbildung 2.11: Wesentliche Schritte eines Algorithmus zur Simulation von Risswachstum
nach [39, S. 73].

[39, S. 71], wobei die Analyse der Rissbelastung nur einen Teil darstellt. Zunächst muss ein
Anriss definiert werden, dessen Wachstumsverhalten untersucht werden soll. Danach erfolgt
die Analyse durch Bestimmung des aktuell vorliegenden Spannungsintensitätsfaktors K aus
der Lösung des Randwertproblems (RWP), welches durch die Bauteil- und Rissgeometrie,
die äußeren Kräfte und Momente und die vorgegebenen Verschiebungen und Rotationen
definiert ist. Risswachstum setzt ein, wenn die berechnete Belastung K den aus bruchme-
chanischen Versuchen ermittelten Wert Kc überschreitet. Die Rissausbreitungsrichtung
unter gemischter Belastung kann zum Beispiel mit den bei [30, S. 127–132] beschriebenen
Ansätzen ermittelt werden. Durch das Risswachstum in die ermittelte Richtung entsteht
ein neues RWP mit veränderter Rissgeometrie, welches wiederum gelöst werden muss, bis
schließlich kein weiterer Rissfortschritt mehr stattfindet. Ein Algorithmus zur Simulation
von Risswachstum in einer Bauteilstruktur besteht daher aus den folgenden wesentlichen
Teilaufgaben:

1. Bestimmung des aktuellen Beanspruchungszustandes an der Rissspitze durch Lösen
des RWP
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2. Auswertung eines geeigneten Rissfortschrittkriteriums und Bestimmung der Rissaus-
breitungsrichtung

3. Neudefinition des RWP nach erfolgter Rissausbreitung

In Abb. 2.11 ist der schematische Ablauf einer Simulation von Risswachstum nochmals
zusammengefasst.

Grundsätzliche Möglichkeiten zur Anpassung der Netzdiskretisierung beim Risswachstum
stellen das Löschen und das Teilen von Elementen und das Auftrennen von Knoten dar [40].
Weiterhin kann der Bereich in der Nähe der Rissspitze neu vernetzt werden (Remeshing)
um ein Netz zu erzeugen, welches die Risskonfiguration nach dem Wachstumsinkrement
abbilden kann. Beim adaptiven Remeshing wird der Prozess der Neuvernetzung iterativ
wiederholt, bis ein bestimmtes Gütemaß zur Beurteilung der Netzqualität erfüllt ist [30,
S. 311–342]. Je nach erforderlicher Netzfeinheit und Anzahl der Risswachstumsinkremente
kann der Aufwand für das Remeshing sehr groß werden. Um bei der expliziten FEM
eine Reduzierung der globalen Zeitschrittweite durch Remeshing zu vermeiden, können
Submodelling-Techniken eingesetzt werden [23]. Für die Verbindung der inkongruent
vernetzten Teilgebiete sind in diesem Fall jedoch spezielle Algorithmen erforderlich.

Aufgrund der angesprochenen Schwierigkeiten wurden zahlreiche Methoden entwickelt,
um die Simulation von Rissen zu verbessern. Bei [41] ist eine ausführliche Übersicht
der numerischen Verfahren für Risse in ideal spröden und quasi-spröden Materialien
dargestellt. In diese Kategorie fallen die bereits vorgestellten höchstfesten Stähle. Für
duktiles Materialverhalten werden andere Verfahren eingesetzt, da keine ausgeprägte
Lokalisierung der plastischen Zone und der Spannungen vorliegt. Eine Einführung in
spezielle Verfahren für elastisch-plastische Strukturen ist bei [30, Kapitel 7] zu finden.
Bei den numerischen Verfahren wird grundsätzlich zwischen diskreten und kontinuierlich
verteilten (smeared crack model) Methoden unterschieden. Die kontinuierlich verteilten
Methoden stammen aus der Schädigungsmechanik und eignen sich für duktile Werkstoffe
[30]. Bei [41] werden sie auch für quasi-spröde Werkstoffe vorgeschlagen. Einen Einblick in
die Methoden der Schädigungsmechanik und eine Literaturübersicht gibt [14, Kapitel 9]. Die
diskreten Verfahren basieren dagegen auf der konkreten Modellierung der Rissgeometrie mit
den bereits angesprochenen Schwierigkeiten. [30] beschreibt beide Gruppen von numerischen
Verfahren für Risse im Rahmen der FEM. In kommerziellen FE-Programmen eingesetzte
Verfahren werden in der jeweiligen Dokumentation des Programms, wie zum Beispiel bei
[42, 43], beschrieben. In der Diplomarbeit von [40] werden einige kommerziell verfügbare
Lösungen zur Analyse von Rissen miteinander verglichen.

Eine wichtige Methode zur diskreten Modellierung von Rissen in spröden Materialien ist
die Extended Finite Element Method (XFEM), die zum Beispiel bei [44–46] und [47, 48]
beschrieben wird. Die XFEM beinhaltet im Vergleich zur Standard-FEM erweiterte
Ansatzfunktionen zur Beschreibung von Diskontinuitäten wie Rissen und kann zusätzlich
im Bereich der Rissspitze mit Teilen der analytischen Lösung erweitert werden. Mit
der Level-Set-Methode kann bei der XFEM zudem der Risspfad unabhängig von der
Vernetzung dargestellt werden [48, 49].
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Riss∆a

Standardelement

T-Element

Abbildung 2.12: Simulation von Rissausbreitung durch ein mitbewegtes Rissspitzenelement
nach [30]. Das T-Element wird auf Basis eines geeigneten Kriteriums
schrittweise in Richtung von ∆a verschoben. Dadurch bleibt die Rissspitze
stets innerhalb des Elementgebiets.

2.6 Spezielle hybride Trefftz-Elemente
Ein weiterer erfolgversprechender Ansatz für die Formulierung spezieller Rissspitzenele-
mente ist die Verwendung hybrider Variationsprinzipien [30, S. 156–161], [50], die eine
Erweiterung des Prinzips der virtuellen Arbeit darstellen. Die Idee hybrider Elemente
ist nach [16, S. 346] eine Unterteilung des Simulationsgebiets in mehrere Bereiche und
die Anwendung unterschiedlicher Ansätze in diesen Bereichen. Durch die speziell an das
Problem angepassten Ansätze steht in jedem Bereich eine optimale Beschreibung zur
Verfügung. Bei hybriden Elementformulierungen werden die Stetigkeitsanforderungen an
den Elementgrenzen approximativ erfüllt, wodurch im Elementinneren nicht konforme
Spannungs- und Verschiebungsansätze gewählt werden können [51].

Die hybride Trefftz-Methode ist wiederum eine spezielle hybride Elementformulierung
und geht auf die Arbeit von [52] zurück. Grundkonzept dieser Methode ist im Gegensatz
zur FEM [53] die Verwendung analytischer Lösungen des zugrundeliegenden RWP als
Ansatzfunktionen. Dieses Konzept wurde unter anderem von [54–56] zur Formulierung
spezieller hybrider Elemente eingesetzt. Die Ansatzfunktionen stellen dabei nicht nur
analytische Lösungen im betrachteten Gebiet dar, sondern erfüllen zusätzlich bestimmte
Randbedingungen auf einem Teilrand dieses Gebiets. Auf dem verbleibenden Rand wer-
den die Randbedingungen approximativ erfüllt. Dabei sind sowohl Spannungs- als auch
Verschiebungsformulierungen möglich [51].

Im Rahmen der ebenen Elastizitätstheorie und der Kirchhoffschen Plattentheorie [57]
stehen für Scheiben und Platten bei linear-elastischem Materialverhalten analytische Lösun-
gen für die Formulierung von Trefftz-Elementen (T-Element) zur Verfügung. Eine Vielzahl
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dieser Lösungen für verschiedene Randwertaufgaben aus der Scheiben- und Plattentheorie
geht dabei auf [58–60] zurück. Scheiben sind ebene Flächentragwerke, die ausschließlich
durch Kräfte in der Ebene belastet werden, und Platten werden entsprechend nur durch
Kräfte orthogonal zur Ebene belastet. Eine weitere Plattentheorie mit analytischen Lö-
sungen wurde von [61, 62] vorgestellt. Auf Basis der bekannten analytischen Lösungen
wurden bereits zahlreiche Trefftz-Elemente formuliert. Im Rahmen der vorliegenden Arbeit
werden die analytischen Lösungen der Plattentheorie von Kirchhoff als Ausgangspunkt
für ein neues T-Element verwendet. Durch die Kombination dieses Elements mit einer
T-Elementformulierung für ein Scheibenelement entsteht ein linear-elastisches Schalenele-
ment für im unbelasteten Zustand ebene Geometrien. Dieses Mixed-Mode-Element wird
im weiteren Verlauf kurz als Schalenelement bezeichnet. Als einfache Näherungslösung
werden mit diesem Schalenelement auch leicht gekrümmte Schalenstrukturen approximiert.

Hybride T-Rissspitzenelemente verfügen durch die analytischen Lösungen über speziell
an das lokale Rissproblem angepasste Ansatzfunktionen und können aus diesem Grund
das Spannungs-, Dehnungs- und Verschiebungsfeld im Bereich der Rissspitze ohne Netz-
verfeinerung mit hoher Genauigkeit beschreiben. Für ebene Belastungen unter Modus I/II
wurden T-Elemente zur Beschreibung von Rissproblemen unter anderem von [49, 63–66]
vorgestellt. Von [67] wurde eine Elementformulierung für das Plattenproblem vorgestellt,
welche die Singularität an der Rissspitze mitberücksichtigt. Ein den ebenen Formulierungen
äquivalentes T-Element für Modus III steht bisher noch nicht zur Verfügung. Im Rahmen
der vorliegenden Arbeit wird diese Lücke geschlossen und ein neues T-Element für Risse
unter Modus III-Belastung vorgestellt, das mit vorhandenen ebenen Elementen zu einem
Schalenelement kombiniert werden kann.

Der entscheidende Vorteil hybrider T-Elemente ist nach [30, S. 209] und [68], dass
für die Berechnung der Elementsteifigkeitsmatrix nur über den Elementrand integriert
werden muss. Bei den Rissspitzenelementen, welche die Randbedingungen am Rissufer
exakt erfüllen, muss nur über den verbleibenden Elementrand ohne die Rissufer integriert
werden. Dadurch kann das T-Element eine variable Geometrie und Anzahl von Element-
knoten aufweisen. Diese Eigenschaft ist die Voraussetzung dafür, dass das T-Element bei
der Simulation von Risswachstum eine unterschiedliche Anzahl an Standardelementen
ersetzen kann. In Abb. 2.12 ist ein Beispiel für ein T-Element mit den umgebenden Stan-
dardelementen abgebildet. Im dargestellten Fall ersetzt das T-Element zehn regelmäßige
Standardelemente.

Aufgrund ihrer variablen Knotenanzahl und der Unabhängigkeit der Lösungsgenauigkeit
von der Elementgröße eignen sich T-Elemente gut zur Formulierung von benutzerfreundli-
chen Rissfortschrittsalgorithmen. Die beiden Eigenschaften vereinfachen die Neudefinition
des RWP bei Risswachstum und die Anpassung der Elementgeometrie an das vorliegende
FE-Netz. Das in dieser Arbeit entwickelte T-Element für Modus III-Belastung bildet in
Kombination mit der von [49] vorgestellten Scheibenformulierung ein linear-elastisches
Schalenelement, das beliebige gemischte Beanspruchungen an der Rissspitze darstellen kann.
Ein Algorithmus zur Simulation von Risswachstum entsteht aus der gekoppelten Simulation
eines Teilgebiets ohne Riss mit der Standard-FEM und der Rissspitzenumgebung mit einem
T-Element. Nach einer bestimmten Rissverlängerung ∆a innerhalb des Elementgebiets wird
das T-Element bei weiterem Risswachstum mit der Rissspitze mitgeführt [30, S. 316–318].
Die Kopplung zwischen den beiden Teilgebieten erfolgt entweder durch die Assemblierung
einer Gesamtsteifigkeitsmatrix und Lösen des daraus entstandenen Gleichungssystems oder
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durch den Austausch von Knotenkräften und -momenten sowie der daraus resultierenden
Knotenverschiebungen und -rotationen. Damit ist eine Kopplung sowohl mit impliziten als
auch mit expliziten FE-Modellen möglich. Das Gesamtmodell kann dabei auch nichtlinear
sein, solange die Umgebung des T-Elements im linear-elastischen Bereich bleibt.

Aufgrund der genannten Vorteile bilden T-Elementformulierungen einen erfolgverspre-
chenden Ansatz zur Simulation von Risswachstum. Der Einsatz der in dieser Arbeit
vorgestellten Methodik ist dabei nicht auf die Crashsimulation im Automobilbereich
beschränkt, sondern ist allgemein auf dünnwandige Strukturen übertragbar, deren Bruch-
verhalten durch die LEBM charakterisiert wird. Weitere Beispiele für Strukturen dieser
Art finden sich im Schiffsbau, in der Luftfahrtindustrie und im Bauingenieurwesen.
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3 T-vollständige Lösung des Modus III-
Rissproblems

Im letzten Kapitel wurde das Konzept der Trefftzmethode zur Formulierung spezieller
Rissspitzenelemente vorgestellt. Im Folgenden wird ein entsprechendes T-Element für Risse
unter Modus III-Belastung entwickelt. Das Ziel dabei ist, durch Kombination des Elements
mit bestehenden Formulierungen für Modus I/II zu einer ebenen Schalenformulierung
zu gelangen. Die Modellierung beruht auf der Plattentheorie von Kirchhoff, die trotz
vieler vereinfachender Annahmen erfolgreich zur Modellierung von Plattenstrukturen
eingesetzt wird [69, Kapitel 4]. Aus dem elastischen Potential der Platte ergibt sich dabei
das zugehörige RWP für ein Gebiet mit Innenriss. Daraus wird im weiteren Verlauf eine
vollständige Trefftz-Funktionenbasis von Lösungsfunktionen abgeleitet, welche neben der
Differentialgleichung der Platte auch die Randbedingungen am Rissufer exakt erfüllt. Die
Lösungsfunktionen werden mit Hilfe der Funktionentheorie berechnet, die erstmals von
[60, 70] zur Lösung von Problemen der linearen Elastizitätstheorie angewandt wurde. Der
vollständige Satz von Lösungsfunktionen bildet die Basis für die Formulierung des hybriden
Modus III-Elements in Kapitel 4.

3.1 Kinematik und Verzerrungstensor
Die Platte ist ein spezielles ebenes Flächentragwerk, dessen Dicke klein im Vergleich zu
allen anderen Abmessungen ist. Aufgrund dieser Eigenschaft muss eine Platte nicht im
Rahmen der dreidimensionalen Kontinuumsmechanik betrachtet werden, sondern kann
durch vereinfachte Modelle charakterisiert werden [69]. Die Belastung eines Risses im
Modus III in einem dünnwandigen, flächenhaften Bauteil stellt ein Problem dar, welches
durch ein Plattenmodell beschrieben werden kann. Im unbelasteten Zustand ist eine Platte
eben und erfährt nur Kräfte senkrecht zur Plattenebene sowie Momente um Drehachsen,
die in dieser Ebene liegen. In Abb. 3.1 ist eine Platte unter Belastung durch eine Einzelkraft
F und eine Flächenlast p (x, y) dargestellt. Zusätzlich sind die resultierende Randquerkraft
Q und die resultierenden Randmomente Mx und My eingezeichnet. Die resultierenden
Randgrößen ergeben sich durch Integration über die Plattendicke. Das einfachste Modell
der Platte wurde von [57] erstmals vollständig formuliert und wird daher Kirchhoff-Platte
genannt. Darstellungen der Theorie sind in vielen Lehrbüchern der Mechanik und der
Elastizitätstheorie zu finden, zum Beispiel bei [18, 71–75] und [76].

Die folgenden Annahmen ermöglichen bei der Kirchhoff-Platte die Reduzierung des
Problems auf ein ebenes Modell [75, S. 96]:

1. Linien, die im undeformierten Zustand senkrecht zur Mittelebene stehen (Normalen
senkrecht zur Plattenebene), bleiben bei einer Deformation gerade

2. Diese senkrechten Linien erfahren keine Verlängerung

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


24 3 T-vollständige Lösung des Modus III-Rissproblems

y

xz

My

MxQ

F

p (x, y)

Abbildung 3.1: Dünne Platte nach [77, S. 19] mit resultierender Querkraft Q und den
Momenten Mx und My am Rand. Zusätzlich kann eine Platte durch
Einzelkräfte F und Flächenlasten p (x, y) belastet werden.

3. Die Normalen senkrecht zur Plattenebene bleiben bei einer Deformation senkrecht
zur deformierten Mittelebene

Die Kinematik der Kirchhoff-Platte ist in Abb. 3.2 dargestellt. Die Platte aus Abb. 3.1 hat
eine homogene Dicke t und wird durch die kartesischen Koordinaten (x, y, z) beschrieben.
Die Mittelebene liegt in der xy-Ebene und die Durchbiegung w eines Punktes P der Platte
entspricht seiner Verschiebung in z-Richtung. Im deformierten Zustand hat der Punkt die
Koordinaten (x + u, y + v, z + w). Einzelkräfte F und Flächenlasten p (x, y) werden für
die hier beschriebene Elementformulierung nicht benötigt. In Kapitel 7 wird als Ausblick
auf künftige Weiterentwicklungen eine Möglichkeit zur Berücksichtigung von Linienlasten
entlang des Rissufers beschrieben. Aus den Annahmen (1) und (2) folgt, dass die Dehnung
in Dickenrichtung

εzz = ∂w

∂z
= 0 (3.1)

und folglich auch w unabhängig von z ist, also w = w (x, y). Aus der Annahme (3) folgt
für die Scherungen in z-Richtung

γxz = ∂u

∂z
+ ∂w

∂x
= 0 , (3.2a)

γyz = ∂v

∂z
+ ∂w

∂y
= 0 (3.2b)

und es liegt ein EVZ vor. Die Kirchhoff-Platte wird aufgrund der getroffenen Annahmen als
schubstarr bezeichnet und neben dem EVZ wird zugleich ein ESZ angenommen [18, S. 200].
Plattentheorien mit Berücksichtigung von Schubverformungen werden zum Beispiel bei
[74, 75] beschrieben, darunter die Schubdeformationstheorie erster Ordnung der Reissner-
Mindlin-Platte, die auf [61, 62] zurückgeht.

Die Kirchhoff-Platte lässt sich aufgrund der getroffenen Annahmen als ebenes Problem
der Plattenmittelebene formulieren. Das Gebiet der undeformierten Mittelebene der Platte
wird dazu mit Ω bezeichnet. Das räumliche Volumen dieser Platte ist durch das Tensorpro-
dukt V = Ω × (−t/2 , t/2) [75, S. 97] gegeben. Der Rand des Volumengebiets besteht aus
der Grund- (z = −t/2) und der Deckfläche (z = t/2) sowie der Fläche Γ̃ ≡ Γ × (−t/2, t/2),
worin Γ eine beliebige, gekrümmte Randkurve mit dem nach außen gerichteten Einheits-
normalenvektor n ist. In kartesischen Koordinaten nach Abb. 3.1 ist dieser Normalenvektor
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z

x
P

w

h

Ph

Abbildung 3.2: Durch die Kinematik der Kirchhoff-Platte [18, Abb. 3.23] hat ein Punkt P
im Abstand h von der undeformierten Mittelebene z = 0 im deformierten
Zustand wieder den Abstand h von der Mittelebene. Die Durchbiegung
der Platte in z-Richtung ist w (x, y).

durch n = nx ex + ny ey + 0 ez mit den Komponenten nx in x-Richtung, ny in y-Richtung
und 0 in z-Richtung sowie den Standard-Basisvektoren ex, ey, ez gegeben.

Der Ortsvektor eines Punktes der Mittelebene Ω ∈ R2 wird durch allgemeine Koordinaten

x = x
(
ξ1, ξ2

)
(3.3)

beschrieben, wobei ein lokales Koordinatensystem mit i, j = 1, 2 durch

gi = x,i = ∂xj

∂ξi
(3.4)

gegeben ist [78, S. 191ff]. Ohne Beschränkung der Allgemeinheit wird im Weiteren g3 = ez

gesetzt. Mit dem Kronecker-Delta

δi
j :=

{
1 i = j
0 i 6= j

(3.5)

ist der Zusammenhang zwischen dem Koordinatensystem aus Glg. (3.4) und der dazu
dualen Koordinatenbasis gi durch

gi · gj = δi
j (3.6)

gegeben. Die oben beschriebenen Annahmen (1) bis (3) führen in den allgemeinen Koordi-
naten zu folgendem Verschiebungsfeld u für die Kirchhoff-Platte [57, 72], [75, S. 97],

u =

 u
v
w

 = −z∇w(ξ1, ξ2) + w(ξ1, ξ2) ez , (3.7)

wobei − t
2 ≤ z ≤ + t

2 . Desweiteren ist ∇w = gi ∂w
∂ξi der Gradient von w(ξ1, ξ2) mit dem

Nabla-Operator ∇ := gi ∂
∂ξi [75, S. 6]. In Abb. 3.3 ist ein Beispiel für eine Platte mit der

Dicke t im Gebiet V dargestellt. Das zugehörige ebene Problem in Ω wird durch die
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t
V

Ω
Γ

Γ̃

x
y

z

Abbildung 3.3: Die Platte im Gebiet V mit der Mittelebene Ω (gepunktete Linie) hat die
Dicke t, wobei Ω durch eine Randkurve Γ mit vier Ecken begrenzt wird.
Die Randflächen werden mit Γ̃ bezeichnet.

Randkurve Γ mit vier Ecken begrenzt.
Zur Formulierung des Verzerrungstensors werden die linearisierten Verzerrungen ver-

wendet, die für kleine Rotationen der Plattenmittelebene gelten. Die Rotationen ergeben
sich aus der Richtungsableitung von w senkrecht zur Rotationsachse. Zum Beispiel erhält
man die Rotationen um die x- und die y-Achse aus ∇w · ey und −∇w · ex. Bei moderaten
Rotationen von 10◦bis 15◦gilt die Annahme nicht mehr und es müssen zusätzliche Terme
des nichtlinearen Verzerrungstensors mitberücksichtigt werden [75, S. 98]. Der linearisierte
Verzerrungstensor der Kirchhoff-Platte ist

ε = 1
2
[
∇u + (∇u)T

]
(3.8)

mit dem Vektorgradienten ∇uT = ∇ ⊗ u = gα ⊗ ∂u
∂ξα und α ∈ {1, 2, 3} [79, S. 44]. Durch

Einsetzen des Verschiebungsfeldes aus Glg. (3.7) erhält man

ε = −1
2z
(
gi ⊗ ∇w,i + ∇w,i ⊗ gi

)
. (3.9)

Der Verzerrungstensor ε kann durch additive Zerlegung in einen isotropen Anteil εh und
einen deviatorischen Anteil εd aufgespaltet werden [78, S. 120],

ε = εh + εd = 1
2 Spur (ε) I + (ε − εh) , (3.10)

mit dem Einheitstensor I = g1 ⊗ g1 + g2 ⊗ g2 [79, S. 34]. Der Zusammenhang zwischen
Spannungen und Dehnungen ergibt sich für linear-elastisches Materialverhalten aus dem
Hookeschen Gesetz. Aufgrund der Annahme eines ebenen Spannungszustands [80, Kapi-
tel 2], [18, Kapitel 3.6.1] gilt das Materialgesetz für die Platte in der Form

σ = E

2 (1 − ν) Spur (ε) I + E

1 + ν

(
ε − 1

2 Spur (ε) I
)

, (3.11)

mit dem Elastizitätsmodul E und der Querkontraktionszahl ν sowie der Spur des Verzer-
rungstensors Spur (ε). Durch Zusammenfassen ergibt sich daraus

σ = 2α εh + β ε , (3.12)

mit α = Eν
1−ν2 , β = E

1+ν
und α + β = E

1−ν2 .
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3.2 Elastisches Potential der Platte
Bei der Verformung der Platte verrichten die inneren Kräfte Arbeit. Die gesamte innere
Arbeit erhält man aus der Formänderungsenergie, die bei einem elastischen Körper nur
vom aktuellen Verzerrungszustand ε abhängt [18, S. 113]. Die gesamte elastische Energie
einer Platte setzt sich folglich aus dem Integral der Formänderungsenergie W int über
das Plattenvolumen sowie den Integralen über die angreifenden Oberflächen- und Volu-
menlasten zusammen [81, S. 181ff], [82]. Bei der folgenden Herleitung von analytischen
Lösungen wird angenommen, dass keine Volumenlasten auftreten. Desweiteren liegen im
betrachteten Fall keine Oberflächenlasten senkrecht zur Plattenebene an der Oberseite
(z = −t/2) und der Unterseite (z = t/2) der Platte vor. Bei den angreifenden äußeren
Kräften der Kirchhoff-Platte handelt es sich um die am Rand Γ1 bzw. Γ2 vorgegebenen
resultierenden Größen Randquerkraft Q̂ und Randmomentenvektor M̂. Diese erhält man
aus der Integration der zugehörigen verteilten Randgrößen über die Plattendicke t. Das
elastische Potential der Platte ist mit diesen Annahmen [83, Kapitel 6]

Π = 1
2

∫
V

σ : ε dV

︸ ︷︷ ︸
W int

−
∫
Γ1

Q̂w dΓ −
∫
Γ2

M̂∇w dΓ . (3.13)

Der gesamte Rand des Gebiets Ω ist Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, wobei gilt Γ1 ∪ Γ2 ∩ Γ3 ∪ Γ4 = ∅.
Auf Γ3 wird dabei die Verschiebung ŵ und auf Γ4 der Gradient der Verschiebung ∇ŵ
vorgegeben.

Im Folgenden wird die Formänderungsenergie W int umgeformt, um zu einer Formulierung
des RWP zu gelangen. Dieses bildet den Ausgangspunkt für die Berechnung der analytischen
Lösungen. Durch Einsetzen von Glg. (3.9) in Glg. (3.13) ergibt sich zunächst

W int = −1
4

∫
V

σ :
[
z
(
gi ⊗ ∇w,i + ∇w,i ⊗ gi

)]
dV . (3.14)

Der Spannungstensor ist symmetrisch und damit gilt σ = σT . Mit Hilfe der folgenden
Beziehung zur Umformung des doppelten Skalarprodukts [79, Kapitel 2],(

gi ⊗ ∇w,i

)
: σ = gi ·

(
σT ∇w,i

)
, (3.15)

erhält man aus Glg. (3.14) für die Formänderungsenergiedichte

W int = −1
4

∫
V

z
[
gi · (σ∇w,i) + ∇w,i ·

(
σgi

)]
dV . (3.16)

Durch Anwendung der Produktregel (σ∇w),i = σ∇w,i + σ,i∇w wird daraus

W int = −1
2

∫
V

z
[

gi ·
[
(σ∇w),i − σ,i∇w

]]
dV . (3.17)

Mit dem Gaußschen Integralsatz kann ein Zusammenhang zwischen Volumen- und Ober-
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flächenintegralen herstellt werden [76, S. 3f], [79, S. 46]. Der Satz lautet hier∫
V

gi · (σ∇w),i dV =
∮
Γ̃

(σ∇w) · n dΓ̃ . (3.18)

Dabei ist n der nach außen gerichtete Einheitsnormalenvektor auf den Rand Γ. Damit
erhält man für die Formänderungsenergiedichte

W int = −1
2

∫
Γ̃

z
[

(σn)︸ ︷︷ ︸
=τ

·∇w
]
dΓ̃ − 1

2

∫
V

z
[
gi · (−σ,i∇w)

]
︸ ︷︷ ︸

−gj ·[w,j(σ,igi)]

dV . (3.19)

Mit τ wird dabei der Cauchysche Spannungsvektor bezeichnet [79, S. 142ff]. Durch erneute
Anwendung der Produktregel auf den zweiten Summanden erhält man

W int = − 1
2

∫
Γ̃

z
(
τ · ∇w

)
dΓ̃ + 1

2

∫
V

z gj ·
[
w
(
σ,ig

i
)]

,j
dV +

− 1
2

∫
V

z
[
gj ·

[
w
(
σ,ig

i
)

,j

]]
dV

(3.20)

und die erneute Anwendung des Gaußschen Integralsatzes auf den dritten Summanden
sowie Umordnen der drei Integrale führt zu

W int =1
2

∫
V

z ∇ · (∇σ) w dV − 1
2

∫
Γ̃

z n · (∇σ) w dΓ̃ − 1
2

∫
Γ̃

z (τ · ∇w) dΓ̃ . (3.21)

Eine explizite Darstellung des Spannungstensors σ in Abhängigkeit von w erhält man
durch Einsetzen von Glg. (3.9) in Glg. (3.12). Durch Integration über die Plattendicke von
− t

2 bis t
2 ergibt sich damit für das elastische Potential

Π = + 1
2

∫
Ω

D∇4w dΩ + 1
2

∫
Γ

Qw ds + 1
2

∫
Γ

M∇w ds −
∫
Γ1

Q̂w ds −
∫
Γ2

M̂∇w ds . (3.22)

Dabei ist D = Et3/ [12 (1 − ν2)] die Plattenbiegesteifigkeit und

Q = −D
∂∇2w

∂n
(3.23)

die resultierende Randquerkraft sowie

M = D

2

[
(1 + ν) ∇2w I + (1 − ν)

(
∇∇w + (∇∇w)T − ∇2w I

) ]
· n (3.24)

der resultierende Randmomentenvektor. Als Ergebnis steht damit ein ebenes Problem
mit den resultierenden Größen Q und M zur Beschreibung des elastischen Potentials der
Platte zur Verfügung.

Die Randintegrale aus Glg. (3.22) können noch weiter zusammengefasst werden. Dazu
werden die Terme mit dem Randmomentenvektor bzw. dem vorgegebenen Randmomen-
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Abbildung 3.4: Definition des Torsionsmoments Ms und des Biegemoments Mn sowie der
Eckkraft fc

tenvektor partiell integriert. Unter Berücksichtigung von n · s = 0, mit dem Einheitstan-
gentialvektor s zum Normalenvektor n, erhält man

∫
Γ

M∇w ds =
∫
Γ

(Mn n + Ms s)
(

∂w

∂n
n + ∂w

∂s
s
)

ds =

=
∫
Γ

Mn
∂w

∂n
ds +

∫
Γ

Ms
∂w

∂s
ds =

=
∫
Γ

Mn
∂w

∂n
ds −

∫
Γ

∂Ms

∂s
w ds +

nc∑
m=1

(
Mm+

s − Mm−
s

)
︸ ︷︷ ︸

fc

w .

(3.25)

nc ist dabei die Anzahl der Ecken auf Γ. Mn wird als Biegemoment bezeichnet und Ms als
Torsionsmoment. Ihre Definition ist in Abb. 3.4 dargestellt. In Abb. 3.5 ist ein Gebiet Ω
mit 3 Ecken 1, 2, 3 sowie den daran angreifenden Momenten Ms dargstellt. Der Verlauf
des Torsionsmoments kann dabei einen Sprung an den Ecken aufweisen. Die partielle
Integration wird analog auch für den vorgegebenen Momentenvektor M̂ durchgeführt. Im
weiteren Verlauf gilt für den Spannungsrand Γs = Γ1 = Γ2. Daraus ergibt sich für das
elastische Potential

Π =1
2

∫
Ω

D∇4w dΩ + 1
2

∫
Γ

[
Q − ∂Ms

∂s

]
w ds + 1

2

∫
Γ

Mn
∂w

∂n
ds + 1

2

nc∑
m=1

(
Mm+

s − Mm−
s

)
w

−
∫
Γs

[
Q̂ − ∂M̂s

∂s

]
w ds −

∫
Γs

M̂n
∂w

∂n
ds −

ns∑
m=1

(
M̂m+

s − M̂m−
s

)
w .

(3.26)
Dabei ist ns die Anzahl der Ecken auf dem Teilrand Γs.
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Abbildung 3.5: Das Gebiet Ω hat auf dem Rand Γ drei Ecken. Der Verlauf des Torsions-
moments Ms kann dabei an den Ecken einen Sprung zwischen M+

s und
M−

s aufweisen.

3.3 Darstellung in kartesischen Koordinaten
Ausgehend von Glg. (3.22) und dem Spannungstensor aus Glg. (3.12) wird im Folgenden
noch die Darstellung des elastischen Potentials der Platte in kartesischen Koordinaten
angegeben. Für die ko- und kontravariante Basis gilt in diesem Fall gi = gi = ei und es
ergibt sich zunächst

Π = − 1
2

∫
V

z2 (α + β) ∇4w dV + 1
2

∫
Γ̃

z2 (α + β) n ·
[

w,xxx w,xyy

w,xxy w,yyy

]
w dΓ̃+

+ 1
2

∫
Γ̃

z2
[
α

[
w,xx + w,yy 0

0 w,xx + w,yy

]
+ β

[
w,xx w,xy

w,xy w,yy

]]
n · ∇w dΓ̃+

−
∫
Γ1

Q̂w dΓ −
∫
Γ2

M̂∇w dΓ .

(3.27)
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α und β sind dabei analog zu Glg. (3.12) definiert. Auch hier erhält man das ebene Problem
durch Integration von z über die Plattendicke t. Das elastische Potential ist damit

Π = + 1
2

∫
Ω

D∇4w dΩ + 1
2

∫
Γ

Dn ·
[

w,xxx w,xyy

w,xxy w,yyy

]
w dΓ+

+ 1
2

∫
Γ

D

[
1

1 − ν

[
w,xx + w,yy 0

0 w,xx + w,yy

]
+ 1

1 + ν

[
w,xx w,xy

w,xy w,yy

]]
n · ∇w dΓ+

−
∫
Γ1

Q̂w dΓ −
∫
Γ2

M̂∇w dΓ .

(3.28)

3.4 Prinzip vom Minimum der potentiellen Energie und
Randwertproblem

Das Prinzip vom Minimum der potentiellen Energie lautet für das elastische Potential der
Platte aus Glg. (3.13)

Π = 1
2

∫
V

σ : ε dV −
∫
Γ

Q̂w dΓ −
∫
Γ

M̂∇w dΓ = min . (3.29)

Das gesuchte Minimum erhält man nach dem Prinzip der virtuellen Arbeit [83, S. 122–124],
[81, S. 181ff] durch die erste Variation δΠ von Π bezüglich w. Zur Herleitung stellt man
das elastische Potential mit Hilfe der Glgn. (3.9) und (3.12) explizit in Abhängigkeit von
w dar [15], [83, S. 112f], wobei die Integration über die Plattendicke t bereits ausgeführt
ist. Daraus ergibt sich für die erste Variation

δΠ (w, δw) =
∫
Ω

∇2δwT∇2w dΩ −
∫
Γ

Q̂δw dΓ −
∫
Γ

M̂δ (∇w) dΓ . (3.30)

In T sind dabei alle von w unabhängigen Ausdrücke zusammengefasst. Durch Umformen
analog zu Abschnitt 3.2 erhält man unter Berücksichtigung von ∇δw = δ (∇w)

δΠ (w, δw) = −
∫
Ω

∇δwD∇
(
∇2w

)
dΩ +

∫
Γ

δ (∇w) nM(∇2w)︸ ︷︷ ︸
M

dΓ+

−
∫
Γ

Q̂δw dΓ −
∫
Γ

M̂δ (∇w) dΓ =

= +
∫
Ω

δwD∇4w dΩ −
∫
Γ

δw Dn · ∇
(
∇2w

)
︸ ︷︷ ︸

−Q

dΓ +
∫
Γ

δ (∇w) M dΓ+

−
∫
Γ

Q̂δw dΓ −
∫
Γ

M̂δ (∇w) dΓ .

(3.31)

Dabei ist M(∇2w) die in Glg. (3.24) beschriebene Funktion von ∇2w. Die virtuelle
Verschiebung δw auf dem Verschiebungsrand Γu von Ω ist gleich Null. Im weiteren Verlauf
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wird dabei Γu = Γ3 = Γ4 gesetzt. Für ein Minimum der elastischen Energie muss die erste
Variation gleich Null sein. Daher lautet das Prinzip der virtuellen Arbeit für die Platte
[83]

δΠ =
∫
Ω

δwD∇4w dΩ +
∫
Γs

(
Q − Q̂

)
δw dΓ +

∫
Γs

(
M − M̂

)
· δ∇w dΓ = 0 (3.32a)

δw = 0 auf Γu (3.32b)
δ∇w = 0 auf Γu . (3.32c)

Die Randintegrale aus dem Prinzip der virtuellen Arbeit werden analog zur Vorgehensweise
beim elastischen Potential Π in Abschnitt 3.2 partiell integriert, woraus sich eine der
Glg. (3.26) entsprechende Form ergibt. Aus dem Fundamentallemma der Variationsrech-
nung [84, S. 314] folgt für einen Ausdruck∫

Ω

g(x)h(x)dx = 0 (3.33)

auf einer offenen Teilmenge Ω des RN mit N ∈ N und eine lokal integrierbare Funktion
g : Ω → R, dass g (x) die Nullfunktion ist. Es gilt für jede unendlich oft differenzierbare
Funktion h : Ω → R. Damit erhält man die Eulerschen Differentialgleichungen [81] des
Prinzips der virtuellen Arbeit. Das RWP der Platte lautet

∇4w = 0 in Ω, (3.34a)[
Q − ∂Ms

∂s

]
︸ ︷︷ ︸

V

= V̂ auf Γs, (3.34b)

[
Mm+

s − Mm−
s

]
︸ ︷︷ ︸

fm
c

= f̂m
c für m = 1, . . . , ns, (3.34c)

Mn = M̂n auf Γs, (3.34d)
w = ŵ auf Γu, (3.34e)

∂w

∂n
= ∂ŵ

∂n
auf Γu . (3.34f)

Dabei gilt für den Rand des Gebiets Γ = Γu ∪ Γs und Γu ∩ Γs = ∅.
In Abb. 3.6 ist das RWP an einem Beispiel dargestellt. Die zusammengefasste Größe aus

der Querkraft und der Ableitung des Torsionsmoments Ms in Richtung des Randtangenti-
alvektors s wird als Ersatzquerkraft bezeichnet und wurde von [57] erstmals eingeführt.
Die Ersatzquerkraft und die entsprechende vorgegebene Ersatzquerkraft werden im Wei-
teren mit V und V̂ bezeichnet. Das Torsionsmoment Ms entlang des Randes kann als
Abfolge von Kräftepaaren interpretiert werden. An den Ecken der Randkurve bleibt dabei
jeweils eine einzelne Kraft übrig, die nicht zu einem Kräftepaar zusammengefasst werden
kann [76, S. 37]. An Ecken mit einfach abgestützten Rändern wird die Wirkung dieser
verbleibenden Eckkraft durch Abheben der Ecke sichtbar, wenn die Bewegung nicht durch
eine Einspannung verhindert wird. Die Randbedingungen sind dabei ŵ = 0 und M̂n = 0.
Mit fm

c und f̂m
c wird die Eckkraft bzw. die vorgegebene Eckkraft an der Ecke m auf dem
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Γs

Γu

M+
s

M−
s

n

s

x

y

x

z

Ω

V

Ω

+ t
2

− t
2

Abbildung 3.6: Das räumliche Problem der Platte im Gebiet V wird auf ein ebenes Problem
in Ω reduziert. n und s sind äußerer Einheitsnormalen- bzw. Tangential-
vektor auf den Rand Γ = Γu ∪ Γs. M+

s und M−
s sind die resultierenden

Torsionsmomente auf der positiven und negativen Seite einer Ecke.

Randabschnitt Γs bezeichnet.

3.5 Komplexe Lösung der Bipotentialgleichung
Die Lösung von Problemen der ebenen Elastizitätstheorie mit Hilfe der Funktionentheorie
wurde erstmals von [60, 70] gezeigt und basiert auf der Arbeit von [85] zur Existenz
einer holomorphen Funktion als Lösung der Differentialgleichung der Scheibentheorie.
Die Grundlagen der Funktionentheorie finden sich zum Beispiel in den Lehrbüchern von
[86, 87]. Ein Standardwerk mit vielen Lösungen für Probleme der Elastizitätstheorie ist
[58]. Der erste Schritt zur Lösung des Randwertproblems aus Glg. (3.34) ist die Darstellung
der benötigten Größen in der komplexen Zahlenebene z. Diese Ebene fällt mit der xy-
Ebene der undeformierten Plattenmittelebene zusammen und der Ortsvektor eines Punktes
x = (x, y)T ist durch

z = x + iy , (3.35a)
z = x − iy (3.35b)

gegeben. Mit (·) werden im weiteren Verlauf konjugiert komplexe Größen gekennzeichnet.
Eine komplexe Funktion komplexer Zahlen ist in allgemeiner Form durch f(z) = f1(z, z) +
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if2(z, z) gegeben. Die Wirtinger-Operatoren [86] stellen Beziehungen für die Ableitungen
nach z und z zur Verfügung,

∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
, (3.36a)

∂

∂z
= 1

2

(
∂

∂x
+ i ∂

∂y

)
, (3.36b)

∂

∂x
=
(

∂

∂z
+ ∂

∂z

)
, (3.36c)

∂

∂y
= i

(
∂

∂z
− ∂

∂z

)
. (3.36d)

Der Laplace-Operator ∇2 lautet damit

∇2 = ∂

∂x

(
∂

∂z
+ ∂

∂z

)
+ ∂

∂y

(
i ∂

∂z
− i ∂

∂z

)
= 4 ∂2

∂z∂z
. (3.37)

Die komplexe Darstellung des Skalarprodukts zweier Vektoren x, y ∈ R2 durch x, y ∈ C
ist

< [xy] = 1
2 [xy + xy] . (3.38)

Mit < [·] und = [·] wird im weiteren Verlauf der Real- beziehungsweise der Imaginärteil
einer komplexen Größe bezeichnet. Für die Ableitung einer Funktion f(x) in Richtung
von n gilt

∂f(x)
∂n

= (n · ∇) f(x) (3.39)

und in komplexer Darstellung

∂f(z)
∂n

= < [∇f(z) n] . (3.40)

Dabei ist n = n1 + i n2 mit |n| = 1 die komplexe Darstellung des Einheitsnormalenvektors
n. Der Einheitstangentialvektor wird entsprechend mit s bezeichnet.

Die homogene partielle Differentialgleichung der Platte aus Glg. (3.34a) wird auch
biharmonische Gleichung genannt und lautet für die komplexe Funktion w (z)

∇4w (z) = 0 . (3.41)

Der Realteil < [w (z)] entspricht dabei der Durchbiegung w (x, y) der Platte. Eine allgemeine
Lösung der Bipotentialgleichung ist durch zwei komplexe und im Gebiet Ω holomorphe
Potentiale Φ (z) und Λ (z) gegeben [58, 70],

w (z) = zΦ (z) + Λ (z) . (3.42)

Im weiteren Verlauf wird für eine übersichtliche Darstellung mit (·)′ die Ableitung einer
komplexen Funktion nach z gekennzeichnet. Eine spezielle Eigenschaft holomorpher Funk-
tionen für eine offene Menge U ⊂ C ist die komplexe Differenzierbarkeit in jedem Punkt
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Abbildung 3.7: Zerlegung der Komponenten Mx und My des Randmomentenvektors M in
Torsions- und Biegemoment Ms und Mn. Die Drehachse des Torsionsmo-
ments ist n und die Drehachse des Biegemoments ist s.

von U [86].

3.6 Komplexe Darstellung des Verzerrungstensors und
der Randgrößen

Der Verzerrungstensor aus Glg. (3.9) in Abhängigkeit von w(z) ist

ε = −x3

(
< [w,xx] < [w,xy]
< [w,xy] < [w,yy]

)
. (3.43)

Als Summe aus isotropem Anteil εh und deviatorischem Anteil εd lautet die Darstellung

ε =
(

εh 0
0 εh

)
+
(

−< [εd] −= [εd]
−= [εd] < [εd]

)
. (3.44)

Um Verwechslungen zu vermeiden, wird die Bezeichnung der Koordinatenkomponente
z senkrecht zur Plattenebene im weiteren Verlauf dieses Kapitels durch x3 ersetzt. Die
beiden Komponenten des deviatorischen Anteils des Verzerrungstensors werden nun zu einer
komplexen deviatorischen Verzerrung εd zusammengefasst. Mit den Wirtinger-Operatoren
aus Glg. (3.36) und dem Laplace-Operator aus Glg. (3.37) ergibt sich

εh = −1
2x3 <

[
∇2w

]
= −2x3 <

[
∂2w

∂z∂z

]
, (3.45a)

εd = −1
2x3 [< [w,yy] − < [w,xx] − 2i < [w,xy]] = x3

(
∂2w

∂z2 + ∂2w

∂z2

)
. (3.45b)

Durch Glg. (3.12) ist damit auch eine komplexe Darstellung des Spannungstensors gegeben.
Der Cauchysche Spannungsvektor τ am Plattenrand ist in komplexer Darstellung

τ(z) = σh n − σd n . (3.46)

Bei der Platte werden die Randspannungen durch Integration über die Plattendicke t zu

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


36 3 T-vollständige Lösung des Modus III-Rissproblems

resultierenden Größen zusammengefasst. Der resultierende Randmomentenvektor ergibt
sich durch Multiplikation des Cauchyschen Spannungsvektors mit dem Hebelarm x3, also
dem Abstand von der Mittelebene, und Integration über die Plattendicke,

M =
t/2∫

−t/2

x3 τ dx3 . (3.47)

Führt man die Integration nach Einsetzen der komplexen Darstellung von τ aus
Glg. (3.46) aus, erhält man die komplexe Darstellung des Randmoments

M(z) =
t/2∫

−t/2

x2
3

[
−2 E

1 − ν
<
[

∂2w

∂z∂z

]
n − E

1 + ν

(
∂2w

∂z2 + ∂2w

∂z2

)
n

]
dx3 =

= −D

[
2(1 + ν) <

[
∂2w

∂z∂z

]
n + (1 − ν)

(
∂2w

∂z2 + ∂2w

∂z2

)
n

]
.

(3.48)

In Abb. 3.7 ist die Zerlegung der Komponenten Mx und My des Randmomentenvektors M in
Torsions- und Biegemoment Ms bzw. Mn dargestellt. Die Drehachse des Torsionsmoments
ist n und die Drehachse des Biegemoments ist s. Die resultierende Randquerkraft in
komplexer Darstellung Q(z) ergibt sich aus Glg. (3.23) als

Q(z) = −D <
[
n ∇

(
∇2w

)]
. (3.49)

3.7 Darstellung mit komplexen Potentialen
Mit Hilfe der allgemeinen Lösung der biharmonischen Gleichung aus Glg. (3.42) können
alle benötigten Größen in Abhängigkeit von den holomorphen Potentialen Φ (z) und
Ψ (z) ausgedrückt werden. Dabei wird die Substitution Ψ(z) = Λ′(z) benutzt. Für die
Komponenten des Verzerrungstensors aus Glg. (3.45) erhält man

εh(z) = −x3
(
Φ′(z) + Φ′(z)

)
, (3.50a)

εd(z) = x3
(
zΦ′′(z) + Ψ′(z)

)
. (3.50b)

Die komplexe Darstellung des Gradienten ∇w ist in Abhängigkeit von den komplexen
Potentialen

∇w (z) = Φ(z) + zΦ(z)′ + Ψ(z) . (3.51)

Für das Randmoment aus Glg. (3.48) ergibt sich die Darstellung

M(z) = −D
[
(1 + ν)

(
Φ′(z) + Φ′(z)

)
n + (1 − ν)

(
zΦ′′(z) + Ψ′(z)

)
n
]

(3.52)
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und für die Querkraft Q(z) aus Glg. (3.49) erhält man

Q(z) = −D <
[
(n1 + in2)

(
∂∇2w

∂x
− i∂∇2w

∂y

)]
=

= −4D < [nΦ′′(z)] .

(3.53)

3.8 Von-Mises-Spannung in komplexer Darstellung
Der räumliche Spannungstensor der Platte ist

σ =


E

(1−ν)εh − <
[

E
(1+ν)εd

]
−=

[
E

(1+ν)εd

]
0

−=
[

E
(1+ν)εd

]
E

(1−ν)εh + <
[

E
(1+ν)εd

]
0

0 0 0

 , (3.54)

wobei die Verzerrungen durch die Glgn. (3.50) gegeben sind. Für die Vergleichsspannung
nach von Mises σv ergibt sich daraus mit dem Spannungsdeviator

s = σ − 1
3 Spur [σ] I (3.55)

die Darstellung

σv =
√

3
2sijsij . (3.56)

Dabei ist I der Einheitstensor I = g1 ⊗ g1 + g2 ⊗ g2 + g3 ⊗ g3.

3.9 Randbedingungen am Rissufer
Betrachtet wird nun ein Gebiet Ω mit Innenriss, wobei der Teilrand Γc genau dem Rissufer
entspricht. In Abb. 3.8 ist ein Beispiel für ein entsprechendes Gebiet mit den Bezeichnungen
der Teilränder dargestellt. Entlang des unbelasteten Rissufers gelten die Randbedingungen

Mn = 0 auf Γc , (3.57a)

Q − ∂Ms

∂s
= 0 auf Γc . (3.57b)

Dies entspricht den Glgn. (3.34b) und (3.34d) des RWP mit der vorgegebenen Ersatzquer-
kraft und dem Biegemoment gleich Null. Die Randbedingungen werden nun durch die
komplexen Potentiale ausgedrückt. Daraus ergibt sich im Folgenden dann eine Bedingung
für die Wahl der Potentiale, so dass die Randbedingungen am Rissufer erfüllt werden. Dazu
setzt man in die Randbedingung (3.57b) den Ausdruck für das Moment aus Glg. (3.52) ein
und erhält damit unter Berücksichtigung von Glg. (3.38) mit der komplexen Darstellung
des Einheitstangentialvektors s = i n für das Torsionsmoment

Ms = <
[
M (in)

]
= i

2
(
Mn − Mn

)
= D (1 − ν) =

[(
zΦ′′(z) + Ψ′(z)

)
n2
]

. (3.58)
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Rissspitze

Ω

Γc

Γ = Γs ∪ Γu ∪ Γc

Γs

Γu

Abbildung 3.8: Zur Formulierung der Randbedingungen wird der Rand des Gebiets Ω mit
Innenriss in drei Randabschnitte aufgeteilt.

Die Ableitungen von Ms nach x und y sind

Ms,x = D (1 − ν) =
[(

zΦ′′′(z) + Ψ′′(z) + Φ′′(z)
)

n2
]

, (3.59a)

Ms,y = D (1 − ν) <
[(

zΦ′′′(z) + Ψ′′(z) − Φ′′(z)
)

n2
]

. (3.59b)

Daraus ergibt sich der Gradient

∇Ms = Ms,x + iMs,y (3.60)

und die Richtungsableitung des Torsionsmoments in Richtung von s

∂Ms

∂s
= D (1 − ν) <

[
(zΦ′′′(z) + Ψ′′(z))n3 − Φ′′(z)n

]
. (3.61)

Für die Randbedingung (3.57a) erhält man

Mn = <
[
M n

]
= 1

2
(
Mn + Mn

)
. (3.62)

Damit können die beiden Randbedingungen in Abhängigkeit von den holomorphen Poten-
tialen Φ (z) und Ψ (z) durch

Q − ∂Ms

∂s
= −D <

[
(3 + ν)Φ′′(z)n + (1 − ν) [zΦ′′′(z) + Ψ′′(z)] n3

]
(3.63)

und
Mn = −D <

[
2 (1 + ν) [Φ′(z)] nn + (1 − ν)

[
(zΦ′′(z) + Ψ′(z)) n2

]]
(3.64)

ausgedrückt werden. Der Einheitsnormalenvektor n ist dabei von der Position entlang
des Randes Γc abhängig, also n = n (r) für eine Parametrisierung von Γc durch r. Die
Rissspitze liegt bei r = 0.

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


3.10 Komplexe Darstellung der Randbedingungen 39
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Abbildung 3.9: Zur Verdeutlichung der Umlaufrichtung entlang des Rissufers Γc ist der Riss
vergrößert dargestellt (links). Das Gebiet Ω mit dem ideal scharfen Riss
(rot) auf dem positiven Abschnitt der reellen Achse ist rechts abgebildet.

3.10 Komplexe Darstellung der Randbedingungen
Die beiden Randbedingungen werden nun zu einer einzigen komplexen Randbedingung
zusammengefasst. Dabei kann entweder eine integrale oder eine differentielle Betrach-
tungsweise entlang des Rissufers angewendet werden. In diesem Abschnitt wird zunächst
die differentielle Vorgehensweise gezeigt und im nächsten Abschnitt alternativ dazu die
integrale Betrachtung. Dazu wird die Randbedingung aus Glg. (3.57a) in Richtung von
s(r) abgeleitet,

∂Mn

∂s
= 0 auf Γc . (3.65)

Nun wird die zweite Randbedingung aus Glg. (3.57b) mit der abgeleiteten ersten Randbe-
dingung zu einer komplexen Randbedingung zusammengefasst,

Q + ∂

∂s
[Ms + i Mn] = 0 auf Γc . (3.66)

Durch Einsetzen der Darstellungen aus den Glgn. (3.63) und (3.64) und Zusammenfassen
vereinfacht sich die Randbedingung zu

−D <
[
(3 + ν) Φ′′(z)n + (1 − ν) (zΦ′′′(z) + Ψ′′(z)) n3

]
= 0 auf Γc . (3.67)

Für die weitere Umformung wird ein expliziter Ausdruck für die Parametrisierung des
Teilrands Γc benötigt. Aus diesem Grund erfolgt nun die Spezifizierung von einem Gebiet
Ω mit beliebigem Innenriss auf ein Elementgebiet ΩT , das einen geraden Riss enthält. Ohne
Beschränkung der Allgemeinheit soll der Ursprung des Elementkoordinatensystems dabei
mit der Rissspitze zusammenfallen und die Rissflanken liegen auf der positiven x-Achse. Das
obere (positive) Rissufer wird mit ⊕ und das untere (negative) Rissufer mit 	 bezeichnet.
An der 	- und der ⊕-Rissflanke weist der Einheitstangentialvektor s eine entgegengesetzte
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Richtung auf. In Abb. 3.9 ist die Orientierung von s am unteren und oberen Rissufer
eingezeichnet. Stellt man entlang von Γc die komplexe Randbedingung (3.66) am negativen
und positiven Rissufer auf, ergibt sich

	︷ ︸︸ ︷
Q − ∂

∂x1

(
−M

)
=

⊕︷ ︸︸ ︷
Q + ∂

∂x1
M = Q + ∂M

∂z
+ ∂M

∂z
= 0 auf Γc . (3.68)

Setzt man die Ausdrücke für das Moment aus Glg. (3.52) und die Randquerkraft aus
Glg. (3.53) ein, gilt entlang des gesamten Rissufers Γc die Bedingung

(3 + ν) Φ′′(z) − (1 − ν) [2Φ′′(z) + zΦ′′′(z) + Ψ′′(z)] = 0 auf Γc . (3.69)

Im weiteren Verlauf werden dann holomorphe Funktionen Φ (z) und Ψ (z) gesucht, welche
diese Randbedingung erfüllen.

3.11 Integrale Form der komplexen Randbedingung
Die beiden Randbedingungen am Rissufer aus (3.57) können auch durch eine integrale
Betrachtung zusammengefasst werden. Dazu wird die erste Randbedingung (3.57a) mit der
über das Rissufer Γc in Richtung von s integrierten zweiten Bedingung aus Glg. (3.57b) zu
einer einzigen Randbedingung zusammengefasst, s∫

s0

(
Q + ∂Ms

∂s

)
ds

+ i Mn(s) = 0 auf Γc . (3.70)

Die Integrationsrichtung entspricht dabei einem Umlaufsinn, wie er in Abb. 3.9 dargestellt
ist. Die Integration des vorausgehenden Ausdrucks ergibt

s∫
s0

Q ds + Ms (s) + i Mn(s) − Ms (s0) = 0 auf Γc . (3.71)

Dies entspricht einer Integration der Randbedingung (3.66) mit der Integrationskonstanten
−Ms (s0). Entlang des Rissufers Γc ergibt sich durch Wahl der Integrationskonstanten zu
Null

s∫
s0

Q ds + M = 0 auf Γc . (3.72)

Setzt man hier wiederum das Moment aus Glg. (3.52) und die Randquerkraft aus Glg. (3.53)
ein, erhält man die integrale Form der Randbedingung

(3 + ν) Φ′(z) − (1 − ν) [Φ′(z) + zΦ′′(z) + Ψ′(z)] = 0 auf Γc . (3.73)
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Abbildung 3.10: Bei der Abbildung eines Gebiets von der z-Ebene (links) in die ζ-Ebene
(rechts) durch f−1 (z) werden die Rissufer (rot) auf die reelle ξ-Achse
entfaltet. Als Beispiel ist die Abbildung zweier verschiedener Gebiete Ω1
(blau) und Ω2 (grün) dargestellt.

3.12 Entfaltung der Rissufer durch konforme Abbildung
Die Potentiale Φ(z) und Ψ(z) müssen nun so gewählt werden, dass die komplexe Darstellung
der Randbedingung nach Glg. (3.67) erfüllt wird. Dazu soll Ψ (z) in Abhängigkeit von Φ (z)
ausgedrückt werden, indem zunächst die komplexe Randbedingung nach Ψ (z) aufgelöst
wird.

Zur Lösung wird das betrachtete Gebiet ΩT mit Innenriss mit Hilfe einer konformen
Abbildung von der komplexen z-Ebene z = x + iy in die komplexe ζ-Ebene ζ = ξ + iη
abgebildet. Der Riss verläuft in der z-Ebene von 0 ≤ x ≤ ∞ mit y = 0. Das transfor-
mierte Gebiet wird im weiteren Verlauf mit Ω′ bezeichnet. Für eine bestimmte Wahl der
Abbildungsfunktionen zwischen den beiden Ebenen kann die Randbedingung dann in der
ζ-Ebene nach Ψ(ζ) aufgelöst werden. Die hierfür benötigte Abbildungsfunktion lautet

z = f (ζ) = ζ2 (3.74)

und die zugehörige Umkehrfunktion ist

ζ = f−1(z) = i
√

−z . (3.75)

Die konforme Abbildung f : U 7→ C mit U ⊆ C bildet ein Gebiet winkeltreu in
ein anderes Gebiet ab. Eine Abbildung ist genau dann konform, wenn sie holomorph
oder anti-holomorph ist und ihre Ableitung ungleich Null auf ganz U ist. Durch die
Eigenschaften der konformen Abbildung ist sichergestellt, dass Potentialfunktionen nach
der Abbildung weiterhin Potentialfunktionen bleiben. Eine ausführliche Darstellung der
Theorie der konformen Abbildungen findet sich zum Beispiel bei [86]. Ein Spezialfall der
konformen Abbildungen ist die Schwarz-Christoffel-Transformation, die ausführlich bei
[88] beschrieben wird. Diese kommt hier für die konforme Abbildung des Lösungsgebiets
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ΩT nach Ω′ zum Einsatz. Das Ziel ist dabei die Entfaltung der Rissufer auf die reelle Achse
der ζ-Ebene.

Das Lösungsgebiet ΩT wird durch die Funktion f−1(z) in die obere Halbebene der
ζ-Ebene abgebildet. In Abb. 3.10 ist als Beispiel die Abbildung von zwei unterschiedlichen
Gebieten Ω1 und Ω2 von der z- in die ζ-Ebene dargestellt. Die Rissufer werden dabei
entfaltet und liegen auf der reellen ξ-Achse der ζ-Ebene.

Ableitungen von Φ(z) nach z werden im Folgenden durch (·)′ dargestellt. Unter Berück-
sichtigung der Kettenregel besteht der folgende Zusammenhang mit den Ableitungen nach
ζ, die durch ˙(·) gekennzeichnet werden,

Φ′(z) = d (Φ(z))
dz

=
∂Φ
(
f(ζ)

)
∂ζ

dζ

dz
= Φ̇(ζ)

ḟ(ζ)
, (3.76a)

Φ′′(z) = Φ̈(z)
ḟ 2(ζ)

− Φ̇(z) f̈(ζ)
ḟ 3(ζ)

. (3.76b)

3.13 Lösung unter Berücksichtigung der
Randbedingungen

Für eine übersichtlichere Darstellung werden nun die Substitutionen A (z) = Φ′′ (z) und
B (z) = Ψ′′ (z) eingeführt. Die komplexe Randbedingung aus Glg. (3.67) kann damit nach
der Abbildung in die ζ-Ebene durch

(3 + ν) A (ξ) − (1 − ν)

f
(
ξ
)

ḟ (ξ)
Ȧ (ξ) + 2A (ξ) + B (ξ)

 = 0 auf Γc (3.77)

ausgedrückt werden.
Mit der analogen Vorgehensweise ergibt sich durch Einsetzen der Substitutionen A (z) =

Φ′ (z) und B (z) = Ψ′ (z) in die integrale Form der komplexen Randbedingung aus
Glg. (3.73) der Ausdruck

(3 + ν) A (ξ) − (1 − ν)

f
(
ξ
)

ḟ (ξ)
Ȧ (ξ) + 2A (ξ) + B (ξ)

 = 0 auf Γc . (3.78)

Nach dem Schwarzschen Spiegelungsprinzip [89] sind

A (ζ) = A
(
ζ
)

(3.79)

und
f (ζ) = f

(
ζ
)

(3.80)

holomorph in Ω′, wenn das Holomorphiegebiet von A (ζ) und f (ζ) in der ζ-Ebene durch
Spiegelung von Ω′ an der reellen ξ-Achse erweitert wird [49]. Damit ist im Gebiet Ω′ eine
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Darstellung von B (ζ) in Abhängigkeit von A (ζ) gegeben durch

B (ζ) = −2A (ζ) + (3 + ν)
(1 − ν)A

(
ζ
)

−
f
(
ζ
)

ḟ (ζ)
Ȧ (ζ) in Ω′ . (3.81)

Durch Einsetzen von Glg. (3.81) in Glg. (3.80) erhält man(3 + ν)
(1 − ν)

[
A (ζ) − A

(
ζ
)]

−
f (ζ) − f

(
ζ
)

ḟ (ξ)
Ȧ (ζ)


ζ=ξ+

= 0 . (3.82)

Mit ζ = ξ+ wird dabei ausgedrückt, dass ζ und ζ sich von der oberen bzw. unteren
Halbebene der reellen Achse ξ annähern. Da f(ζ) eine eindeutige Funktion ist, verschwindet
der Ausdruck [f(ζ) − f(ζ)]. Um zu einem T-vollständigen Satz von Lösungsfunktionen zu
gelangen, wird für A (ζ) der Ansatz

A (ζ) =
∞∑

n=−1
Anζn (3.83)

gewählt, der zu einer eindeutigen, holomorphen Funktion in Ω′ und der Spiegelung von
Ω′ an ξ führt. Nach [90] erhält man mit diesem Ansatz ein T-vollständiges System
von Lösungsfunktionen für die biharmonische Gleichung. Mit der Wahl von B (ζ) in
Abhängigkeit von A (ζ) werden die beiden Randbedingungen am Rissufer exakt erfüllt. Der
Zusammenhang zwischen den Koeffizienten der beiden Potentiale gilt dabei paarweise für
jede betrachtete Ordnung. Bei einer numerischen Auswertung wird eine endliche Anzahl
von Ordnungen nmax zur Lösung berücksichtigt. Die komplexen Koeffizienten An ∈ C
stellen dabei die verbleibenden Freiheitsgrade der vorgestellten Lösung dar.
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4 Hybride Formulierung des
Rissspitzenelements

Im vorherigen Kapitel wurde eine T-vollständige Funktionenbasis entwickelt, welche die
biharmonische Gleichung in ΩT und die Spannungsrandbedingungen auf Γc erfüllt. Zur
Lösung des RWP der Platte aus den Glgn. (3.34) müssen auch noch die Randbedingungen
auf dem übrigen Rand erfüllt werden. Die Lösung erfolgt mit der hybriden Verschiebungs-
methode [54], bei der die Verschiebungsrandbedingungen durch ein erweitertes elastisches
Potential berücksichtigt werden. Dazu wird das Lösungsgebiet Ω in die Gebiete ΩT und
ΩF E aufgeteilt. Die Rissspitze mit einem geraden Segment des Risses liegt dabei in ΩT und
das übrige Gebiet ist ΩF E. Beide Gebiete sind durch den Kopplungsrand Γint miteinander
verbunden. Bei der Lösung des gekoppelten Problems führen vorgegebene Kräfte und Ver-
schiebungen auf dem Rand von ΩF E zu entsprechenden Verschiebungen auf Γint. Der Rand
von ΩT ist dabei ΓT = Γc ∪ Γint. Die hybride Formulierung entsteht durch die Kombination
der T-vollständigen Funktionenbasis zur Erfüllung der Spannungsrandbedingungen auf Γc

mit dem erweiterten Potential zur Berücksichtigung der Verschiebungsrandbedingungen
auf Γint. Neben der hybriden Verschiebungsmethode gibt es auch die hybride Spannungs-
methode [30, 51], bei der die Spannungsrandbedingungen durch das erweiterte Potential
berücksichtigt werden. Bei der hybriden Verschiebungsmethode werden die Verschiebungs-
randbedingungen nicht exakt erfüllt, sondern so gewählt, dass das erweiterte elastische
Potential minimiert wird.

In diesem Kapitel wird die Kopplung der Teilgebiete ΩT und ΩF E mit Hilfe eines
erweiterten Funktionals dargestellt, welches keine zusätzlichen Verschiebungsrandbedin-
gungen entlang des Kopplungsrandes Γint erfordert. Es werden drei verschiedene Ansätze
beschrieben, um zu einer Formulierung des erweiterten Potentials zu gelangen. Die hybride
Elementformulierung ergibt sich durch Einsetzen der Funktionenbasis aus dem voran-
gehenden Kapitel und anschließende Minimierung des erweiterten Potentials durch die
Wahl der bis dahin noch unbestimmten Koeffizienten des Reihenansatzes für das komplexe
Potential A (ζ) aus Glg. (3.83). Zur Formulierung des T-Elements werden alle Größen der
Kirchhoff-Platte in eine Matrix-Vektor-Darstellung überführt. Damit können die Größen in
Abhängigkeit des Koeffizientenvektors und des vorgegebenen Knotenverschiebungsvektors
ausgedrückt werden. Daraus ergibt sich schließlich eine Knotensteifigkeitsmatrix, die mit
den Elementsteifigkeitsmatrizen des gekoppelten Gebiets ΩF E zu einer Gesamtsteifigkeits-
matrix assembliert werden kann. Eine Übersicht hybrider Trefftzmethoden findet sich
unter anderem bei [90] und [54]. Zu erweiterten Energieprinzipien, welche die Basis für
das erweiterte Potential bilden, finden sich Zusammenfassungen bei [50, 82, 83] sowie [81].
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4.1 Erweitertes Potential mit Langrangemultiplikatoren
Durch das hybride Rissspitzenelement soll die Genauigkeit der Lösung im Bereich der
Rissspitze erhöht werden, ohne dass dazu eine Feinvernetzung erforderlich ist. Das Lö-
sungsgebiet Ω wird dazu in ΩT und ΩF E aufgeteilt. Der unkritische Bereich ΩF E wird mit
Standardelementen modelliert und der Bereich ΩT mit der Rissspitze wird durch das T-
Element beschrieben. Der Rand von ΩF E setzt sich aus Verschiebungs- und Spannungsrand
sowie dem Rissufer und dem Kopplungsrand zusammen, Γ = Γu ∪ Γs ∪ ΓF Ec ∪ Γint. Aus der
Diskretisierung von ΩF E mit bilinearen Standardelementen ergibt sich eine Polygonform
von ΩT mit geraden Randsegmenten zwischen den Knoten der Standardelemente auf dem
Kopplungsrand. Die Formulierung des T-Elements erfolgt in Abhängigkeit von diesen
Kopplungsknoten, die damit zugleich die Knoten des T-Elements sind. In Abb. 4.1 ist ein
gekoppeltes Problem mit der Aufteilung des Gebiets und den Bezeichnungen der Randab-
schnitte schematisch dargestellt. In Abb. 4.2 ist ein Beispiel für ein T-Elementgebiet mit
sieben Elementknoten N1, . . . , N7 abgebildet.

Ausgangspunkt für die Formulierung des erweiterten Potentials ist das elastische Po-
tential der Platte aus Glg. (3.13). Mit der T-vollständigen Funktionenbasis, welche die
Bipotentialgleichung in ΩT und die Spannungsrandbedingungen auf Γc exakt erfüllt, sind
die verbleibenden von Null verschiedenen Terme des elastischen Potentials

Π = 1
2

∫
Ω

D∇4w dΩ
︸ ︷︷ ︸

=0, vgl. Abschnitt 3.13

+1
2

∫
Γint

[
Q − ∂Ms

∂s

]
w ds + 1

2

∫
Γint

Mn
∂w

∂n
ds+ (4.1a)

+ 1
2

nint∑
m=1

(
Mm+

s − Mm−
s

)
w

w = ŵ auf Γint (4.1b)
∂w

∂n
= ∂ŵ

∂n
auf Γint . (4.1c)

nint ist die Anzahl der Ecken auf Γint.
Die Verschiebungsrandbedingungen auf Γint müssen dabei als zusätzliche Bedingungen

erfüllt werden. Bei der hybriden Verschiebungsmethode werden die Verschiebungsrandbe-
dingungen mit Lagrangemultiplikatoren als Nebenbedingungen in das elastische Potential
eingebracht und zusätzliche Randbedingungen sind damit nicht mehr erforderlich. Eine Dar-
stellung der theoretischen Grundlagen der Lagrangemultiplikatormethode ist zum Beispiel
bei [91, S. 110ff] zu finden. Als Nebenbedingungen werden die quadratischen Abweichungen
der Verschiebung w von der vorgegebenen Randverschiebung ŵ und die Abweichung des
Gradienten ∇w vom vorgegebenen Gradient ∇ŵ gewählt. Das resultierende Optimierungs-
problem mit Nebenbedingungen ist die Minimierung des erweiterten elastischen Potentials
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ΩF E

ΩT

ΓF Ec
Γint

Ω
Γ = Γu ∪ Γs ∪ ΓF Ec ∪ Γint

Γu

Γs

Γc

ΓT = Γc ∪ Γint

Abbildung 4.1: Das Lösungsgebiet Ω wird in den unkritischen Bereich ΩF E und den
T-Elementbereich ΩT mit der Rissspitze aufgeteilt. Der Kopplungsrand
zwischen den Teilgebieten ist Γint.

Π L. Die Erweiterungsterme zur Berücksichtigung der Verschiebungsrandbedingungen sind

Π +
L = +

∫
Γint

λ1 (w − ŵ)2 ds +
∫

Γint

λ2 (∇w − ∇ŵ)2 ds =

= +
∫

Γint

λ1w
2 ds −

∫
Γint

λ12wŵ ds +
∫

Γint

λ1ŵ
2 ds+

+
∫

Γint

λ2 (∇w)2 ds −
∫

Γint

λ22 (∇w∇ŵ) ds +
∫

Γint

λ2 (∇ŵ)2 ds .

(4.2)

λ1 und λ2 sind die zugehörigen Langrangemultiplikatoren. Aus der ersten Variation von
Π L = Π + Π +

L bezüglich w erhält man die Bedingung für ein Minimum des erweiterten

N3

N4

N5

N6

N7

N1

N2

Γint

Γc
ΩT

Abbildung 4.2: Das T-Elementgebiet ΩT mit ΓT = Γc ∪ Γint hat im dargestellten Beispiel
die Elementknoten N1, . . . , N7.

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


4.2 Erweitertes Potential nach dem Prinzip von Hu-Washizu 47

elastischen Potentials

δΠ L =
∫

Γint

[
Q − ∂Ms

∂s

]
δw ds +

∫
Γint

Mn
δ∂w

∂n
ds +

nint∑
m=1

(
Mm+

s − Mm−
s

)
δw+

+
∫

Γint

2λ1 (w − ŵ) δw ds +
∫

Γint

2λ2 (∇w − ∇ŵ) δ∇w ds = min .

(4.3)

Die verbleibenden Freiheitsgrade zur Minimierung von δΠ L sind die komplexen Koef-
fizienten des Reihenansatzes aus Glg. (3.83). Der Nachteil der Langrange-Multiplikator-
methode ist, dass die Wahl der dimensionsbehafteten Multiplikatoren nicht festgelegt ist.
Die gewählten Werte für λ1 und λ2 legen die Gewichtung der Nebenbedingungen fest.
Aus diesem Grund ist eine eindeutige Wahl der Langrangemultiplikatoren sinnvoll, die im
nachfolgenden Abschnitt beschrieben wird.

4.2 Erweitertes Potential nach dem Prinzip von
Hu-Washizu

Ein etabliertes Energieprinzip, das auf dem Prinzip vom Minimum der potentiellen Energie
basiert [81], ist das Prinzip von Hu-Washizu [50]. Dabei werden die geometrischen Glei-
chungen nicht direkt in das Randwertproblem aus Glg. (3.34) eingesetzt, sondern wieder
mit Hilfe von Lagrangemultiplikatoren in das Funktional eingebracht. Als Erweiterung
des Ansatzes aus dem vorherigen Abschnitt können die beiden Lagrangemultiplikatoren
anschließend mit den Größen M und Q identifiziert werden. Das Prinzip von Hu-Washizu
wird bei [81, S. 181ff] ausführlich beschrieben. Für das elastische Potential der Platte ergibt
sich unter Ausnutzung der Eigenschaften der T-vollständigen Funktionenbasis, wodurch
die Terme im Gebiet ΩT und auf Γc verschwinden, der Erweiterungsterm für das erweiterte
Potential nach Hu-Washizu

Π +
HW = −

∫
Γint

M (∇w − ∇ŵ) ds −
∫

Γint

Q (w − ŵ) ds =

= −
∫

Γint

[
Mn

(
∂w

∂n
− ∂ŵ

∂n

)
+ Ms

(
∂w

∂s
− ∂ŵ

∂s

)]
ds −

∫
Γint

Q (w − ŵ) ds .

(4.4)
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Durch partielle Integration analog zu Glg. (3.25) ergibt sich daraus

Π +
HW = −

∫
Γint

[
Mn

(
∂w

∂n
− ∂ŵ

∂n

)
− ∂Ms

∂s
(w − ŵ)

]
ds+

−
nint∑
m=1

(
Mm+

s − Mm−
s

)
(w − ŵ) −

∫
Γint

Q (w − ŵ) ds

= −
∫

Γint

Mn
∂w

∂n
ds −

∫
Γint

(
Q − ∂Ms

∂s

)
w ds +

∫
Γint

Mn
∂ŵ

∂n
ds+

+
∫

Γint

(
Q − ∂Ms

∂s

)
ŵ ds −

nint∑
m=1

(
Mm+

s − Mm−
s

)
w +

nint∑
m=1

(
Mm+

s − Mm−
s

)
ŵ .

(4.5)
Durch Zusammenfassen mit Glg. (4.1a) ergibt sich insgesamt das erweiterte Potential
Π ext = Π + Π +

HW nach dem Prinzip von Hu-Washizu

Π ext = − 1
2

∫
Γint

[
Q − ∂Ms

∂s

]
w ds − 1

2

∫
Γint

Mn
∂w

∂n
ds+

+
∫

Γint

Mn
∂ŵ

∂n
ds +

∫
Γint

[
Q − ∂Ms

∂s

]
ŵ ds+

− 1
2

nint∑
m=1

(
Mm+

s − Mm−
s

)
w +

nint∑
m=1

(
Mm+

s − Mm−
s

)
ŵ .

(4.6)

Die unbekannten Koeffizienten des Reihenansatzes aus Glg. (3.83) werden wiederum
durch Minimierung von Π ext ermittelt. Aus dem Prinzip von Hu-Washizu ergeben sich
eindeutig definierte Lagrangemultiplikatoren, die nach der partiellen Integration der
Ersatzquerkraft V , dem Biegemoment Mn und dem Sprung des Torsionsmoments M+

s −M−
s

entsprechen.

4.3 Herleitung mit dem Satz von Betti
Im Folgenden wird ein weiterer Weg zur Herleitung des erweiterten Potentials Π ext nach
[82] vorgestellt. Ausgangspunkt ist dabei wiederum des elastische Potential nach Glg. (3.13).
Für das Gebiet ΩT seien nun entlang des gesamten Randes ΓT = Γint ∪ Γc natürliche
Randbedingungen vorgegeben. Der Teilrand Γc ist dabei weiterhin spannungsfrei und
die T-vollständigen Lösungen erfüllen die Randbedingungen am Rissufer, so dass die
entsprechenden Terme des elastischen Potentials verschwinden. Damit ist das elastische
Potential

Π (An) =
∫

ΓT

(1
2Q (An) − Q̂

)
w (An) ds +

∫
ΓT

(1
2M (An) − M̂

)
· ∇w (An) ds . (4.7)

Mit der Schreibweise Π (An) wird verdeutlicht, dass die entsprechenden Größen von
den komplexen Koeffizienten des Reihenansatzes aus Glg. (3.83) abhängen. Die zu den
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vorgegebenen Randgrößen Q̂ und M̂ gehörenden konjugierten Arbeitsgrößen seien durch
ŵ und ∇ŵ gegeben. Damit kann der Satz von Betti auf die beiden Belastungszustände
angewendet werden, die den Größen Q, M, w, ∇w und Q̂, M̂, ŵ, ∇ŵ zugeordnet sind. Der
Satz von Betti lautet für die Bipotentialgleichung∫

ΩT

(
∇4w

)
ŵ dΩ = 0 . (4.8)

Über die Zwischenschritte

0 =
∫

ΩT

∇ ·
(
∇∇2w

)
ŵ dΩ =

=
∮

ΓT

n ·
[[

∇
(
∇2w

)]
ŵ
]

ds −
∫

ΩT

[
∇
(
∇2w

)]
(∇ŵ) dΩ

(4.9)

gelangt man durch sinngemäße Anwendung bereits vorgestellter Umformungen zu der
Formulierung ∮

ΓT

[
Q̂w + M̂∇w − (Qŵ + M∇ŵ)

]
ds = 0 . (4.10)

Der Satz von Betti wird nun dazu benutzt, die natürlichen Randbedingungen aus
Glg. (4.7) in essentielle Randbedingungen umzuwandeln,

Π (An) =
∫

ΓT

(1
2w (An) − ŵ

)
Q (An) ds +

∫
ΓT

(1
2∇w (An) − ∇ŵ

)
· M (An) ds . (4.11)

Durch partielle Integration von Glg. (4.11) wird das elastische Potential wieder in Abhän-
gigkeit der Ersatzquerkraft V (An) und des Biegemoments Mn (An) sowie des Torsionsmo-
ments Ms (An) ausgedrückt. Da die T-vollständigen Lösungen auf Γc die Randbedingungen
V = 0 und Mn = 0 erfüllen, verschwinden die Terme auf dem Teilrand Γc. Das erweiterte
elastische Potential ist

Π ext (An) = + 1
2

∫
Γint

V (An) [w (An) − ŵ] ds − 1
2

∫
Γint

Mn (An)
[

∂w (An)
∂n

− ∂ŵ

∂n

]
ds+

+ 1
2

nint∑
m=1

(
Mm+

s − Mm−
s

)
[w (An) − ŵ] .

(4.12)
Das erweiterte Potential Π ext kann wiederum durch die Wahl der Koeffizienten An minimiert
werden. Π ext entspricht dabei −Π ext aus dem vorangehenden Abschnitt.

4.4 Matrixdarstellung des erweiterten Potentials
Für die Minimierung des erweiterten Potentials aus Glg. (4.6) bzw. analog aus Glg. (4.12)
wird eine explizite Darstellung in Abhängigkeit der komplexen Koeffizienten des Rei-
henansatzes aus Glg. (3.83) benötigt. Analog zu ebenen Elementformulierungen [49, 54]
erfolgt die Darstellung der benötigten Größen in Matrix-Vektor-Schreibweise, wobei die
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Komponenten komplexe Größen sind. Diese Darstellung ermöglicht eine direkte program-
miertechnische Umsetzung der Elementformulierung und bildet die Grundlage für die
Validierungsrechnungen in Kapitel 6. Das erweiterte Potential wird dazu aufgeteilt in

Π ext = −1
4

∫
Γint

(
w V + w V

)
ds

︸ ︷︷ ︸
=:Π1

+ 1
2

∫
Γint

(
ŵ V + ŵ V

)
ds

︸ ︷︷ ︸
=:Π2

+

− 1
4

∫
Γint

(
∂ w

∂n
Mn + ∂w

∂n
Mn

)
ds

︸ ︷︷ ︸
=:Π3

+ 1
2

∫
Γint

(
∂ ŵ

∂n
Mn + ∂ ŵ

∂n
Mn

)
ds

︸ ︷︷ ︸
=:Π4

+

− 1
4

nint∑
m=1

[〈
M s

〉m
w + 〈Ms〉m w

]
︸ ︷︷ ︸

=:Π5

+ 1
2

nint∑
m=1

[〈
M s

〉m
ŵ + 〈Ms〉m ŵ

]
︸ ︷︷ ︸

=:Π6

.

(4.13)

Die nint Ecken fallen dabei jeweils mit einem der Kopplungsknoten zusammen.
〈

M s

〉m
und

〈Ms〉m sind die Sprünge des Torsionsmoments
(
M

m+
s − M

m−
s

)
und (Mm+

s − Mm−
s ). Die

Matrix-Vektor-Darstellung der Summanden Π1, . . . , Π6 erfolgt mit Hilfe des Spaltenvektors

A := [A0, . . . , An, A0, . . . , An]T (4.14)

der Dimension A ∈ C2n×1. Darin sind die komplexen Koeffizienten und die konjugiert
komplexen Koeffizienten zusammengefasst. In numerischen Auswertungen wird dabei eine
endliche Anzahl n ≤ nmax an Ordnungen des Reihenansatzes berücksichtigt.

Mit Hilfe von A werden die Größen des erweiterten Potentials als Produkte aus Zeilen-
und Spaltenvektoren ausgedrückt,

w(ζ) = w∗(ζ)A , (4.15a)
∂w(ζ)

∂n
= w∗

,n(ζ)A , (4.15b)

V (ζ) = V ∗(ζ)A , (4.15c)
Mn(ζ) = M ∗

n(ζ)A , (4.15d)
〈Ms(ζ)〉 = M ∗

s(ζ)A . (4.15e)

Die Vektoren w∗, w∗
,n, V ∗, M ∗

n, M ∗
s ∈ C1×2nmax beinhalten die Anteile, die von den

Koeffizienten unabhängig sind, und sind ebenfalls komplexe Größen. Ihr Aufbau ist analog
zu A und besteht zum Beispiel für w(ζ) aus den Einträgen w := [w0, . . . , wn, w0, . . . , wn]T .
Das Produkt aus dem adjungierten (transponiert-konjugierten) Zeilenvektor w∗ des Vektors
w, dargestellt durch (·)∗ = (·)T , und A ergibt die benötigte Darstellung von w(ζ). Dieser
Zusammenhang gilt analog auch für die übrigen Größen.

Zur einfachen Umformung der Größen aus den Glgn. (4.15) wird zusätzlich ein Operator
P mit P A = A, P A = A, P P = I definiert in der Form

P :=
nmax∑
j=1

ej ⊗ ej+nmax + ej+nmax ⊗ ej =
(

0 I
I 0

)
, (4.16)
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mit dem j-ten Einheitsvektor ej und der Null- beziehungsweise Einheitsmatrix 0 und I
mit den Dimensionen nmax × nmax. Mit Hilfe von P wird der gesuchte Koeffizientenvektor
A und seine Adjungierte A∗ in den einzelnen Termen ausgeklammert. Für den Term Π1
aus Glg. (4.13) ergibt sich mit dieser Vorgehensweise

Π1 = − 1
2 A∗

1
2

∫
Γint

(
w V ∗ + P w V ∗P

)
ds


︸ ︷︷ ︸

=:H1 ∈C2nmax×2nmax

A .
(4.17)

Die Terme Π3 und Π5 werden in analoger Weise konstruiert,

Π3 = − 1
2 A∗

1
2

∫
Γint

(
wn M ∗

n + P wn M ∗
nP

)
ds


︸ ︷︷ ︸

=:H3 ∈C2nmax×2nmax

A
(4.18)

und

Π5 = − 1
2 A∗

(
1
2

∫ nint∑
m=1

[
w M ∗

s + P w M ∗
sP
])

︸ ︷︷ ︸
=:H5 ∈C2nmax×2nmax

A .
(4.19)

Daraus ergibt sich die Matrix-Vektordarstellung

ΠH = −1
2A∗ (H1 + H3 + H5)︸ ︷︷ ︸

H

A . (4.20)

Die Terme Π2, Π4 und Π6 hängen zusätzlich auch von den vorgegebenen Knotenverschie-
bungen der Elementknoten ab und werden im nächsten Abschnitt konstruiert.

4.5 Konstruktion der Verschiebungsrahmen
Die Kopplung der Gebiete ΩF E und ΩT entlang von Γint mit der hybriden Verschiebungs-
formulierung nach Glg. (4.13) erfolgt über die Knotenverschiebungen an den gemeinsamen
Knoten. Daraus kann für das T-Element eine Knotensteifigkeitsmatrix berechnet werden.
Für die Terme Π2, Π4 und Π6 wird dazu der Verlauf der vorgegebenen Verschiebung ŵ und
der Normalenableitung ŵ,n auf Γint benötigt. Dieser Verlauf kann aus einem vorgegebenen
Knotenverschiebungsvektor konstruiert werden, indem ein Verschiebungsrahmen für ŵ und
ein Rotationsrahmen für ŵ,n angenommen wird. Die beiden Rahmen beschreiben mit Hilfe
des Knotenverschiebungsvektors für jeden Punkt auf Γint in Abhängigkeit des Paramters s
die vorgegebene Verschiebung und Normalenableitung. Der Knotenverschiebungsvektor
des T-Elements ist

û =
[
w1, . . . , wnN , θ1

x, . . . , θnN
x , θ1

y, . . . , θnN
y

]T ∈ R3nN ×1 (4.21)
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mit der Anzahl der Elementknoten nN und den Rotationen θx und θy um die x- und
y-Achse des Elementkoordinatensystems.

Zunächst wird der Rahmen für die Normalenableitung konstruiert, der als Rotations-
rahmen bezeichnet wird. Jeder Abschnitt des Rotationsrahmens [w̃,n (s)]N+1

N zwischen
zwei Elementknoten N und N + 1 auf Γint wird durch lineare Interpolation zwischen den
Knotenrotationen θN

s und θN+1
s gebildet. Die Rotation θs ist dabei die Rotation um die

Kante, die durch die beiden Knoten definiert wird. Aus den Rotationen um die x- und
y-Achse des Elementkoordinatensystems erhält man die benötigte Rotation θs durch

θs = = [n] θx − < [n] θy , (4.22a)

wobei n wieder die komplexe Darstellung des Einheitsnormalenvektors der betrachteten
Kante ist. Zwischen den Knoten N und N + 1 ist der Rotationsrahmen in Abhängigkeit
von der Position s entlang der Kante[

∂w̃ (s)
∂n

]N+1

N

=
[

s1

s0

]T

︸ ︷︷ ︸
sT

·
[

−1 1
1 0

]
︸ ︷︷ ︸

M

·
[

θN
s

θN+1
s

]
︸ ︷︷ ︸

k

, (4.23)

mit 1 ≤ N < nN − 1 und dem lokalen Knotenverschiebungsvektor k entlang der be-
trachteten Kante. Jede Kante wird auf den Parameterbereich zwischen s = 0 im ersten
Knoten und s = 1 im zweiten Knoten abgebildet. Die lineare Interpolation ist dann in
Matrixschreibweise

θs(s) = as1 + bs0 =
[

s1

s0

]T

︸ ︷︷ ︸
sT

·
[

a
b

]
(4.24)

und die unbekannten Koeffizienten a und b werden aus den Randbedingungen an den
Knoten N und N + 1 folgendermaßen bestimmt,

s = 0 : b = θN
s (4.25a)

s = 1 : a + b = θN+1
s . (4.25b)

Daraus ergibt sich in Matrixschreibweise das Gleichungssystem

M︷ ︸︸ ︷[
0 1
1 1

]
·
[

a
b

]
= k (4.26)

und die gesuchten Koeffizienten a, b sind[
a
b

]
= M−1k . (4.27)
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Der Rotationsrahmen entlang einer Elementkante ist damit in Matrixschreibweise

θ̃s(s, N, N + 1) = sT M−1k . (4.28)

Für den Verschiebungsrahmen [w̃ (s)]N+1
N werden zwei Varianten formuliert. In der ersten

Variante wird für den Verschiebungsrahmen analog zum Rotationsrahmen linear zwischen
zwei Knoten interpoliert. Der lokale Knotenverschiebungsvektor einer Elementkante ist
dabei

k =
[

wN

wN+1

]
. (4.29)

Weiterhin kann aus den Knotenverschiebungen wN , wN+1 und den Knotenrotationen
um einen Normalenvektor auf die betrachtete Kante θN

n , θN+1
n ein kubischer Rahmen

konstruiert werden [92]. Die Rotationen θn ergeben sich dabei aus den Knotenrotationen
im Elementkoordinatensystem durch

θn = = [in] θx − < [in] θy . (4.30a)

Der Verschiebungsrahmen für den kubischen Ansatz lautet in Matrixschreibweise

[w̃ (s)]N+1
N =


s3

s2

s1

s0


T

︸ ︷︷ ︸
sT

·


2 −2 1 1

−3 3 −2 −1
0 0 1 0
1 0 0 0


︸ ︷︷ ︸

M

·


wN

wN+1

θN
n

θN+1
n


︸ ︷︷ ︸

k

. (4.31)

Der kubische Polynomansatz lässt sich darstellen als

w̃(s) = as3 + bs2 + cs1 + ds0 =


s3

s2

s1

s0


T

︸ ︷︷ ︸
sT

·


a
b
c
d

 (4.32)

und die Bestimmung der Koeffizienten erfolgt aus den je zwei Randbedingungen an den
beiden Elementknoten für 0 ≤ s ≤ 1,

w(s) w,s(s)
s = 0 : d = wN c = θN

n

s = 1 : a + b + c + d = wN+1 3a + 2b + c = θN+1
n .

(4.33)
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In Matrixschreibweise lautet das Gleichungssystem

M︷ ︸︸ ︷
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

 ·


a
b
c
d

 = k . (4.34)

Daraus folgt für die gesuchten Koeffizienten durch Auflösen
a
b
c
d

 = M−1k . (4.35)

Insgesamt ergibt sich für das gesuchte kubische Polynom in Abhängigkeit von den lokalen
Knotenverschiebungen

w̃(s, N, N + 1) =


s3

s2

s1

s0


T

M−1k . (4.36)

Der Verschiebungs- und Rotationsrahmen einer Elementkante, die durch die Knoten
N und N + 1 definiert ist, wird durch die Funktionen Q̃ (s, N, N + 1) ∈ R3nN ×1 und
Q̃n (s, N, N + 1) ∈ R3nN ×1 zu einem globalen Rahmen assembliert. Dabei sind alle nicht
zur betrachteten Kante gehörenden Einträge gleich Null. Der globale Verschiebungsrahmen
ist

w̃(s, N, N + 1) = Q̃(s, N, N + 1) û (4.37)
und der globale Rotationsrahmen ist

w̃,n(s, N, N + 1) = Q̃n(s, N, N + 1) û . (4.38)

Damit kann der Term Π2 des erweiterten Potentials dargestellt werden als

Π2 = A∗

1
2

∫
Γint

(
V Q̃

T + P V Q̃
T
)

ds


︸ ︷︷ ︸

=:L2∈C2nmax×3nN

û . (4.39)

Die beiden verbleibenden Terme sind analog dazu

Π4 = A∗

1
2

∫
Γint

(
MnQ̃n

T + P Mn Q̃
T

n

)
ds


︸ ︷︷ ︸

=:L4∈C2nmax×3nN

û (4.40)
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und
Π6 = A∗

(
1
2

nint∑
m=1

(
M sQ̃

T + P M s Q̃
T
))

︸ ︷︷ ︸
=:L6∈C2nmax×3nN

û . (4.41)

Durch Zusammenfassen der Einzelterme ergibt sich die Matrixdarstellung

ΠL = A∗ (L2 + L4 + L6)︸ ︷︷ ︸
L

û . (4.42)

4.6 Berechnung des Koeffizientenvektors
Mit den Ausdrücken ΠH und ΠL ist das erweiterte elastische Potential der Platte in
Matrixformulierung

Π ext = ΠH + ΠL− = −1
2 A∗HA + A∗Lû . (4.43)

Der Koeffizientenvektor A ist dabei noch unbestimmt. Für einen vorgegebenen Knoten-
verschiebungsvektor û wird der Koeffizientenvektor gesucht, der das erweiterte Potential
minimiert. Um das Minimum von Π ext zu berechnen, wird eine Richtungsableitung für
eine beliebige Auslenkung ∆A des Koeffizientenvektors definiert,

∇AΠ ext (A, ∆A) = lim
ε→0

Π ext (A + ε∆A) − Π ext (A)
ε

=

= lim
ε→0

−εA∗H∆A + εûT L∗∆A

ε
.

(4.44)

Dabei ist ε ∈ R und es gilt A∗H∆A = ∆A∗HA. Für ein Minimum des erweiterten
Potentials muss diese Ableitung für beliebige Auslenkungen ∆A gleich Null sein. Daraus
erhält man die Bedingung

− A∗H + ûT L∗ = 0 . (4.45)
Auflösen nach dem Koeffizientenvektor A führt zu

A = H−1Lû . (4.46)

Diesen Ausdruck für den Koeffizientenvektor A setzt man abschließend in das erweiterte
Potential aus Glg. (4.43) ein und erhält

Π ext = 1
2 ûT L∗H−1L︸ ︷︷ ︸

=:KT ∈R3nN ×3nN

û , (4.47)

wobei das erweiterte elastische Potential der Platte nur noch vom Knotenverschiebungs-
vektor û und der Elementsteifigkeitsmatrix KT mit reellen Einträgen abhängt. Eine
Zusammenfassung der Vorgehensweise beim T-Element bis zur Berechnung des Koeffizien-
tenvektors findet sich bei [93].
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4.7 Berechnung der Starrkörperbewegung
Aus dem Koeffizientenvektor A können alle gesuchten Größen im Elementgebiet ΩT

berechnet werden. Für die Darstellung des Verschiebungsfeldes w(z) und des Rotations-
feldes ∇w(z) müssen zusätzlich die Starrkörperbewegungen berücksichtigt werden, die
das elastische Potential nicht verändern. Die Starrkörperbewegungen ergeben sich aus
der zweimaligen Integration des Potentials B(z), um die Substitution B(z) = Ψ′′(z) aus
Abschnitt 3.13 wieder rückgängig zu machen. Durch die Integration erhält man

Λ(z) =
∫ ∫

B(z) dz dz + Anmax+1z + Anmax+2 . (4.48)

Die komplexen Integrationskonstanten Anmax+1 und Anmax+2 sind zunächst noch unbe-
stimmt. Sie entsprechen den Starrkörperbewegungen, also einer gleichförmigen Translation
in z-Richtung aus a1 = <[Anmax+2 ] und den Starrkörperrotationen um die x- und y-Achse
des Elementkoordinatensystems aus a2 = =[Anmax+1 ] und a3 = <[Anmax+1 ]. Nach [94] kön-
nen die Starrkörperverschiebungen durch Minimierung der quadratischen Abweichungen
zwischen den vorgegebenen und den berechneten Knotenverschiebungen ohne Starrkör-
peranteile bestimmt werden. Dazu wird der Koeffizientenvektor A um die zusätzlichen

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0.4

0.6

0.8

1

Abbildung 4.3: Starrkörperanteile aus Anmax+1 = 0.45 + i 0 und Anmax+2 = 0.33 + i 0.22.
Das resultierende Starrkörperverschiebungsfeld ist wRBM = 0.45 + 0.33 x +
0.22 y.
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Koeffizienten für die Starrkörperanteile erweitert. Man erhält

ARBM =



A0
...
Anmax

Anmax+1
Anmax+2
A0
...
Anmax

0
0



. (4.49)

Durch den unberücksichtigten Starrkörperanteil verbleibt in jedem Elementknoten eine
Abweichung vN = ŵN − wN (A) bestehen. Gesucht werden nun die Koeffizienten, welche
die noch verbleibenden quadratischen Abweichungen v̂ = [v1, . . . , vN ] der Elementknoten
minimieren,

min(a1,a2,a3)

nN∑
i=1

r2
i =

nN∑
i=1

(
v̂i − wRBM

i

)2
= L(a1, a2, a3) . (4.50)

Dabei ist wRBM der Vektor mit den Elementknotenverschiebungen in Abhängigkeit der
Starrkörperanteile,

wRBM =


w1

RBM
...

wnN
RBM

 . (4.51)

Durch eine lineare Regression für die Funktion w(x, y) erhält man das Starrkörperver-
schiebungsfeld in der Form wRBM = a1 + a2x + a3y. In Abb. 4.3 ist ein Beispiel abgebildet,
das einen Translations- und einen Rotationsanteil um die x- und y-Achse enthält. Für
das Minimum der quadratischen Abweichungen müssen die partiellen Ableitungen von
L(a1, a2, a3) nach den Koeffizienten verschwinden [95, S. 661ff],

∂L

∂a1
= −2

nN∑
i=1

(v̂i − a1 − a2xi − a3yi) = 0 (4.52a)

∂L

∂a2
= −2

nN∑
i=1

xi (v̂i − a1 − a2xi − a3yi) = 0 (4.52b)

∂L

∂a3
= −2

nN∑
i=1

yi (v̂i − a1 − a2xi − a3yi) = 0 . (4.52c)

x und y beinhalten dabei die x- und y-Komponenten der Elementknotenkoordinaten.
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N1
NnN

ΩT

ΩF E Γ

Abbildung 4.4: Die Randknoten N1 und NnN
des T-Elements sind nicht mit Standardele-

menten gekoppelt.

Durch Auflösen nach den einzelnen Koeffizienten und Einsetzen, für a1 zum Beispiel

∑
v̂ =

nN ·a1︷ ︸︸ ︷∑
a1 +a2

∑
x + a3

∑
y

a1 = 1
nN

∑
v̂ − 1

nN

a2
∑

x − 1
nN

a3
∑

y ,

(4.53)

erhält man die Gleichungen zur Bestimmung der gesuchten Koeffizienten,

a2 = (∑y2)(∑xv̂) − (∑xy)(∑yv̂)
(∑x2)(∑y2) − (∑xy)2 , (4.54a)

a3 = (∑x2)(∑yv̂) − (∑xy)(∑xv̂)
(∑x2)(∑y2) − (∑xy)2 . (4.54b)

4.8 Freie Randknoten
In vielen Fällen beginnt bei einer gekoppelten Simulation mit den Teilgebieten ΩT und
ΩF E das Risswachstum am Rand des Gesamtgebiets Ω. Für die beiden Randknoten N1 und
NnN

des T-Elements stehen dann keine Kopplungsbedingungen mit ΩF E zur Verfügung. In
Abb. 4.4 ist die Lage der freien Randknoten auf dem Rand von Ω schematisch dargestellt.
Entweder gibt man an diesen Knoten den Verlauf der Knotenverschiebungen direkt vor
oder man nimmt an, dass die zu den beiden Knoten gehörenden Randsegmente unbelastet
sind. Dann sind die entsprechenden Knotenkräfte gleich Null und es ergibt sich ein
Gleichungssystem mit der Struktur[

M 6×6
sys Z6×3(nN −2)

K
3(nN −2)×6
21 K

3(nN −2)×3(nN −2)
22

]
·
[

u6×1

u3(nN −2)×1
pre

]
=
[

0
F

]
. (4.55)

Dabei ist u der Vektor mit den gesuchten Knotenverschiebungen der freien Randknoten und
die vorgegebenen Verschiebungen an den Kopplungsknoten sind in upre zusammengefasst.
Die Matrizen M sys und Z, sowie K21 und K12 enthalten die entsprechenden Einträge
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Abbildung 4.5: Mehrere Standardelemente, die nicht in einer Ebene liegen, werden mit
Hilfe einer Ausgleichsebene durch ein einzelnes T-Element ersetzt.

aus der Elementsteifigkeitsmatrix KT . Der Knotenkraftvektor F für die Kopplungsknoten
ergibt sich aus der zweiten Zeile des Gleichungssystems. Aus der ersten Zeile können die
gesuchten Knotenverschiebungen berechnet werden,

u = −M−1
sys Zupre . (4.56)

Eine eindeutige Lösung existiert, wenn die Systemmatrix M sys regulär ist. Dazu muss
die Anzahl der berücksichtigten Ordnungen nmax hoch genug gewählt werden. Eine Ab-
schätzung der benötigten Anzahl von Ordnungen in Abhängigkeit von der Anzahl der
Knotenfreiheitsgrade findet sich bei [92, 94, 96].

4.9 Algorithmus zur Simulation von Rissfortschritt
Um von der vorgestellten T-Elementformulierung für Modus III-Belastung zu einem Si-
mulationsverfahren zur Beschreibung von Rissen unter gemischter Beanspruchung zu
gelangen, sind zusätzliche Schritte erforderlich. In diesem Abschnitt wird die Umsetzung
einer gekoppelten Simulation von Risswachstum in Form eines Unterprogramms für einen
expliziten FE-Solver vorgestellt.

Zuerst erfolgt die Erweiterung des T-Elements auf beliebige Modus I/II/III-Belastungen
durch Assemblieren der Teilsteifigkeitsmatrizen für Modus III und Modus I/II zu einer
Gesamtsteifigkeitsmatrix. Eine Darstellung der zugrundeliegenden ebenen Elementformu-
lierung findet sich bei [97]. Die Gesamtsteifigkeitsmatrix ergibt sich als Blockmatrix

Kshell =
[

KP 0
0 KT

]
. (4.57)

Dabei ist KT die Knotensteifigkeitsmatrix aus Glg. (4.47) und KP die Steifigkeitsmatrix
für ebene Belastungen des T-Elements. Die Berechnung der Einträge von KP wird bei
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[49] erläutert. Der zugehörige Knotenverschiebungsvektor ist

ûShell =
[
u0, . . . , unN , v0, . . . , vnN , w0, . . . , wnN , θ0

x, . . . , θnN
x , θ0

y, . . . , θnN
y

]T
. (4.58)

uN und vN sind die Knotenverschiebungen in x- und y-Richtung des Elementkoordinaten-
systems.

Grundlage für die gekoppelte Simulation von Risswachstum ist die Diskretisierung des
zu untersuchenden Bauteils mit Standardelementen. Die Modellierung von im unbelasteten
Zustand gekrümmten Strukturen erfolgt dabei als einfache Approximation der realen
Bauteilgeometrie durch eine geeignete Anzahl ebener Elemente. Beschreibungen dieser
Vorgehensweise sind bei [69, Kapitel 6] zu finden. Beschreibungen von anfänglich gekrümm-
ten Strukturen mit der Schalentheorie werden zum Beispiel bei [33] und [75, Kapitel 11]
vorgestellt. Im Rahmen des Kopplungsalgorithmus werden im Bereich der Rissspitze Stan-
dardelemente durch ein einzelnes T-Element ersetzt. Die Lage des Anfangsrisses wird
dabei durch den Benutzer vorgegeben. Die zu ersetzenden Standardelemente werden durch
einen vorgegebenen Radius um die Rissspitze bestimmt. Elemente, deren Schwerpunkt
innerhalb des Suchradius liegt werden durch das T-Element ersetzt. Wenn ΩT aus mehreren
Standardelementen besteht, liegen die Elementknoten in der Regel nicht in einer Ebene.
Die im Rahmen dieser Arbeit vorgestellte T-Elementformulierung ist für im unbelaste-
ten Zustand ebene Strukturen formuliert worden. Als einfache Erweiterung für leicht
gekrümmte Strukturen wird aus den Elementkoordinaten der ersetzten Standardelemente
eine Ausgleichsebene berechnet. Diese bildet dann die xy-Ebene des Elementkoordinaten-
systems. Die Berechnung der Ausgleichsebene erfolgt analog zu Abschnitt 4.7 durch lineare
Regression. In Abb. 4.5 ist beispielhaft eine Ausgleichsebene für vier Standardelemente
dargestellt, die nicht in einer Ebene liegen.

Die gekoppelte Simulation kann mit einem impliziten oder expliziten FE-Solver für das
Gebiet ΩF E erfolgen. Für ein vollständig linear-elastisches Bauteil kann die Berechnung der
impliziten Lösung durch Assemblieren einer Gesamtsteifigkeitsmatrix für das Gebiet Ω und
Lösen des resultierenden Gleichungssystems erfolgen. Dieses lautet für das Gesamtproblem

f = K · u . (4.59)

Ist das Gesamtbauteil elastisch-plastisch und lediglich die Umgebung der Rissspitze
linear-elastisch, erfolgt die Kopplung zwischen den Teilgebieten durch den Austausch
des Knotenverschiebungsvektors und des Knotenkraftvektors der Kopplungsknoten. Die
Knotenverschiebungen werden dabei aus Sicht des T-Elements als vorgegebene Rand-
bedingung aufgefasst und die daraus resultierenden Knotenkräfte berechnet. Bei einer
expliziten Simulation ist nach Glg. (2.1) auch die Masse des Elements zu berücksichtigen.
Als einfache Näherung wird die Masse jedoch vernachlässigt, da sie im Vergleich zur
Masse des Gesamtbauteils meist gering ist. Die kinetische Energie des Gesamtsystems
wird durch diese Annahme praktisch nicht beeinflusst. Soll der Einfluss der Masse dennoch
berücksichtigt werden, kann sie als konzentrierte Massenmatrix auf die Kopplungsknoten
aufgeteilt werden [16, Kapitel 16.2]. Eine Methode zur Konstruktion der Massenmatrix
unter Berücksichtigung der Auswirkungen auf die kritische Zeitschrittweite ist bei [15]
dargestellt.

Zur Simulation von Risswachstum wird mit Hilfe des T-Elements die Beanspruchung an
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Tabelle 4.1: Rissfortschrittsalgorithmus

Aufruf durch den FE-Solver im Zeitschritt t
if t = 0

Initialisierung

• Konnektivität und Knotenkoordinaten des zu untersuchenden
Bauteils speichern

• Definition des Anfangsrisses und der T-Elementknoten auf
Basis der gespeicherten Geometrieinformationen

• Berechnung einer Ausgleichsebene und des zugehörigen Ele-
mentkoordinatensystems

• Löschen der ersetzten Standardelemente

end if
Aktualisieren von û
if T-Elementgeometrie=neu

• Berechnung von Kshell

end if
Vervollständigen von û durch Berechnung der freien Randknoten
Berechnung des Koeffizientenvektors A
Auswerten des aktuellen Spannungsintensitätsfaktors K
while K ≥ Kc

• a = a + ∆a

• if neue Standardelemente im Einflussradius um die Rissspitze
Speichern der Elementnummern

end if

• Neuberechnung von Kshell

end while
Berechnung der Knotenkräfte f
Rückgabe von f und der zu löschenden Elemente
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der Rissspitze ermittelt. Dazu wird der Koeffizientenvektor A berechnet, wobei sich direkt
aus der ersten Ordnung der Spannungsintensitätsfaktor KIII ergibt,

KIII =
√

2π < [A1] . (4.60)

KI und KII ergeben sich analog dazu aus dem ebenen Anteil. Für gemischte Beanspru-
chungen unter Modus I/II kann damit auch die Rissausbreitungsrichtung nach den bei [30]
dargestellten Methoden berechnet werden. Aus der berechneten Beanspruchung an der
Rissspitze und einem experimentell ermittelten Rissfortschrittskriterium wird dann der
Rissfortschritt ermittelt. Im nachfolgenden Kapitel 5 werden entsprechende Materialversu-
che und eine Methode zur Bestimmung des Risswiderstands vorgestellt.

Risswachstum kann innerhalb des T-Elements in beliebig kleinen Inkrementen erfolgen.
Dazu wird die Elementgeometrie nach einem Schritt der Rissausbreitung aneu = a + ∆a
aktualisiert und die Elementsteifigkeitsmatrix für die neue Geometrie berechnet. Nach
entsprechendem Rissfortschritt gelangen weitere Standardelemente in den Suchradius des
Rissfortschrittsalgorithmus und werden durch das T-Element ersetzt. Da das T-Element
nur in der Umgebung der Rissspitze sinnvoll eingesetzt werden kann, wird auch ein
Freigaberadius definiert, der größer als der Suchradius ist. Elementknoten, die außerhalb
liegen, werden bei einer Neudefinition des T-Elements nicht mehr berücksichtigt. So
bewegt sich das T-Element mit der Rissspitze durch das Bauteil. Ein Ablaufschema des
Rissfortschrittsalgorithmus als Pseudocode ist in Tabelle 4.1 dargestellt.

Die in diesem Kapitel vorgestellte Elementformulierung für Modus III-Belastung stellt
eine Erweiterung ebener Trefftz-Rissspitzenelemente dar. Durch die Kombination beider
Anteile zu einem Schalenelement können beliebige Modus I/II//III-Belastungen von Rissen
in dünnwandigen Strukturen im Rahmen der LEBM modelliert werden. Das vorgestellte
Schalenelement wird abschließend in einen Algorithmus zur gekoppelten Simulation von
Rissfortschritt eingebunden. Die Formulierung des Rissfortschrittsalgorithmus als Unter-
programm eines impliziten oder expliziten FE-Solvers stellt eine Grundlage für die künftige
Weiterentwicklung von Simulationsverfahren für Risse zur Verfügung.
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5 Ermittlung von Materialdaten
Für die Simulation von Risswachstum ist eine materialspezifische Beschreibung des Risswi-
derstands erforderlich. Bei der Auswertung des Rissfortschrittkriteriums wird die aktuell
vorliegende Belastung an der Rissspitze berechnet und mit dem experimentell ermittelten
Widerstand gegen Rissausbreitung nach Glg. (2.11) verglichen. Für die experimentelle
Untersuchung von Rissen unter Modus III-Belastung stehen dabei im Gegensatz zu ebe-
nen Rissproblemen keine etablierten Versuchsmethoden und Auswertungsverfahren zur
Verfügung. Insbesondere können bei dünnwandigen Blechbauteilen aufgrund der Geo-
metrieverhältnisse keine normgerechten Bruchmechanikkennwerte für die in technischen
Aufgabenstellungen auftretenden großen Rissverlängerungen ermittelt werden.

Aus diesem Grund wird im Rahmen der vorliegenden Arbeit eine Vorgehensweise entwi-
ckelt, die eine direkte Auswertung des kritischen CTOA ermöglicht. Die Versuchsmethodik
basiert auf der Arbeit von [98] zur Untersuchung von Rissen unter gemischter Modus I/III-
Belastung. Der Versuchsaufbau wird für die Durchführung der Versuche modifiziert, um für
einen großen Bereich der Rissverlängerung reine Modus III-Belastung zu erzielen. Darauf
aufbauend wird ein neues Verfahren zur direkten Ermittlung des kritischen Rissöffnungs-
winkels im Modus III aus der Geometrie der deformierten Probe vorgestellt. Zur Erfassung
der Probengeometrie während des Versuchs wird ein 3D-Bildkorrelationssystem eingesetzt.
Aus den Geometriedaten wird dann der Rissöffnungswinkel γIIIc bestimmt. Am Beispiel
des im Automobilbau weit verbreiteteten AHSS 22MnB5 wird schließlich der Verlauf
von γIIIc in Abhängigkeit von der Rissverlängerung ∆a ermittelt. Die Proben bestehen
dabei aus dünnwandigem Blechmaterial, wie es auch in der Serienfertigung von Struk-
turbauteilen im Automobilbau eingesetzt wird. Die gewonnenen experimentellen Daten
werden zur Charakterisierung des Risswiderstands von 22MnB5 unter reiner Modus III-
Belastung herangezogen und bilden die Grundlage für einen Algorithmus zur Simulation
von Risswachstum mit einem T-Element.

Im Folgenden wird zunächst die Auswahl eines geeigneten Parameters zur Beschreibung
des Risswiderstandes unter Modus III-Belastung beschrieben. Die Geometrieverhältnisse
bei dünnwandigen Blechproben stellen dabei eine zusätzliche Herausforderung dar, weil kei-
ne Standardmethoden für die Parameterermittlung eingesetzt werden können. Zur Lösung
der Aufgabenstellung wird der experimentell ermittelte kritische Rissöffnungswinkel unter
Modus III-Belastung γIIIc als Rissfortschrittskriterium gewählt. Anschließend wird der Ver-
suchsaufbau zur Untersuchung der vorgekerbten Blechproben unter Modus III-Belastung
vorgestellt. Die Auswertung der Versuche erfolgt mit einem System zur 3D-Bildkorrelation,
welches die räumlichen Koordinaten eines zuvor aufgebrachten Punktmusters an der Pro-
benoberfläche aus dem Vergleich von Bildern zweier Kameras mit bekannter Position im
Raum bestimmt. Die Berechnung des Rissöffnungswinkels γIIIc erfolgt aus diesen Punkt-
koordinaten mit Hilfe eines neuentwickelten, geometriebasierten Auswertungsalgorithmus.
Der ermittelte Verlauf von γIIIc (∆a) wird als materialspezifischer Parameter für den
Risswiderstand unter Modus III-Belastung herangezogen. Zur Simulation von beliebig
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Tabelle 5.1: Übersicht der berücksichtigten Bruchmechaniknormen

ASTM E 399 [99] Standard Test Method for Linear-Elastic Plane-
Strain Fracture Toughness KIc of Metallic Materi-
als

ASTM E 1820 [100] Standard Test Method for Measurement of Fracture
Toughness

ASTM E 2472 [101] Standard Test Method for Determination of Re-
sistance to Stable Crack Extension under Low-
Constraint Conditions

BS 7448 Part 1 [102] Fracture Mechanics Toughness tests. Method for
determination of KIc, critical CTOD and critical
J values of metallic materials

ISO 12108 [103] Metallic materials—Fatigue testing—Fatigue crack
growth method

ISO 12135 [104] Metallic materials—Unified method of test for the
determination of quasistatic fracture toughness

gemischten Beanspruchungen an der Rissspitze wird das Modus III-Kriterium mit einem
etablierten Modell für Modus I/II zu einem allgemeinen Rissfortschrittskriterium erweitert.

5.1 Beschreibung des Risswiderstands durch CTOA
Der allgemeine Risswiderstand Rgen aus Glg. (2.11) hängt von den Materialeigenschaften,
der Rissverlängerung ∆a, dem Belastungsmodus und der Geometrie des Bauteils ab [26]
und ist daher kein reiner Werkstoffkennwert. Schränkt man den betrachteten Bereich
von ∆a, der Bauteilgeometrie und aller weiteren Einflussgrößen hinreichend ein, ist der
Risswiderstand innerhalb dieses eingeschränkten Bereichs nur noch vom Material abhängig.
Im Fall der LEBM muss insbesondere gewährleistet sein, dass die Probe nur im Rahmen von
Kleinbereichsfließen plastisch deformiert wird. In manchen Fällen kann der Risswiderstand
dann direkt aus den gemessenen Versuchsgrößen bestimmt werden. Beispiele dafür finden
sich in den Normen BS 7448 Part 1 [102] und ISO 12135 [104] sowie den ASTM-Standards
E 399 [99] und E 1820 [100], in denen für die Ermittlung von gültigen materialspezifischen
Bruchmechanikkennwerten strikte Anforderungen an die Versuchsbedingungen vorgegeben
werden.

Die Simulation des Risswachstums basiert im Rahmen der vorliegenden Arbeit auf
der LEBM. Die zugehörigen Parameter zur Beschreibung des Risswiderstands wurden in
Abschnitt 2.3 bereits vorgestellt. Eine ausführliche Zusammenfassung bruchmechanischer
Größen zur Beschreibung des Risswiderstands sowie eine Übersicht der gebräuchlichsten
Prüfverfahren ist darüber hinaus zum Beispiel bei [38] zu finden. In der LEBM ist in
vielen Fällen eine standardisierte Bestimmung des Risswiderstands möglich. Eine Übersicht
der Bruchmechaniknormen sowie der ISO- und ASTM-Standards, die für eine mögliche
Auswertung berücksichtigt wurden, ist in Tab. 5.1 zusammengestellt. Zur Ermittlung des
Risswiderstands unter Modus III-Belastung stehen im betrachteten Fall keine geeigneten
Standardverfahren zur Verfügung. Die geringe Dicke der Blechproben verhindert eine
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a
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1.25 W

0.275 W 0.
6W

∅ 0.25 W

Abbildung 5.1: Die CT-Probe nach ASTM-Standard E 399 [99] mit Bemaßung in Ab-
hängigkeit von der Probenlänge W hat die homogene Probendicke B. Die
Risslänge wird mit a bezeichnet.

normgerechte Bestimmung des Risswiderstands für größere Rissverlängerungen.
Die beschriebene Ausgangssituation soll an einem Beispiel verdeutlicht werden. Um

zumindest für Modus I-Belastung, wo eine einfache Abschätzung möglich ist, die An-
wendbarkeit von Standardversuchen zu überprüfen, wird zunächst die Größenordnung der
plastischen Zone für den untersuchten Blechwerkstoff 22MnB5 nach Glg. (2.15) abgeschätzt.
Für die Fließgrenze σF wird dabei die Streckgrenze Re = 1100 MPa nach [8] eingesetzt.
Für den kritischen Spannungsintensitätsfaktor nimmt man nach [11] für höchstfeste, mar-
tensitaushärtende Stähle einen Bereich von 60 MPa

√
m ≤ KIc ≤ 120 MPa

√
m an. Damit

liegt der Radius rp der plastischen Zone im Bereich von 0.16 mm ≤ rp ≤ 1.9 mm. Nach
[26] ist die LEBM mit Kleinbereichsfließen unter der Bedingung

a , b � rp (5.1)

anwendbar. Dabei ist a die Gesamtlänge des Risses und b die verbleibende ungerissene
Länge der Probe, die als Ligamentlänge bezeichnet wird. Diese Bedingung muss bei den
Versuchen zur Ermittlung gültiger Materialkennwerte stets erfüllt sein.

Als konkretes Beispiel soll die Anwendbarkeit der Versuche nach ASTM-Standard E 399
[99] zur Ermittlung des kritischen Spannungsintensitätsfaktors KIc abgeschätzt werden.
Aus den zulässigen Probenformen wird dazu die CT-Probe nach Abb. 5.1 ausgewählt, weil
sie der geplanten Probengeometrie für die Modus III-Versuche am ähnlichsten ist. Die
Blechdicke soll dem in der Norm geforderten Minimum von B = 1.6 mm entsprechen. Der
im weiteren Verlauf zu untersuchende Blechwerkstoff weist eine vergleichbare Dicke von
1.5 mm auf. Die Probenlänge W muss dann nach den Anforderungen der Norm im Bereich
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(1)

(2)

(3)

x

z

Abbildung 5.2: Die Probe mit Rissspitze (1) und den eingespannten Rändern (2) und (3)
weist nach dem Versuch großflächige plastische Deformationen auf.

von
1 ≤ W/B ≤ 4 (5.2)

liegen, was 1.6 mm ≤ W ≤ 6.4 mm entspricht. Desweiteren muss die Bedingung

a, (W − a) ≥ 2.5K2
Ic

σ2
F

(5.3)

mit der Ligamentlänge b = (W − a) erfüllt sein. Die kritische Spannungsintensität wird
wieder im Bereich von 60 MPa

√
m ≤ KIc ≤ 120 MPa

√
m angenommen und für die

Fließgrenze wird wieder 1100 MPa eingesetzt. Die notwendige Ligamentlänge liegt mit
diesen Annahmen im Bereich von 7.4 mm ≤ b ≤ 29.8 mm. Obwohl der tatsächliche Wert
von KIc erst nach einem gültigen Versuch vorliegt, zeigt die Abschätzung bereits, dass
gültige normgerechte Versuche aufgrund der geringen Probendicke zumindest für Modus I-
Belastung nicht durchgeführt werden können. Ist die Bedingung (5.3) erfüllt, B aber zu klein,
erhält man keinen gültigen KIc-Wert. Die Bruchzähigkeit ist dann von der Probendicke
abhängig, kann aber trotzdem für die Untersuchung von Bauteilen herangezogen werden,
welche die gleiche Dicke aufweisen.

Das Prinzip der Standardversuche beruht meist darauf, dass sich die Probenkörper bis
auf die Rissspitzenumgebung linear-elastisch verhalten. Dadurch kann die Belastung an
der Rissspitze aus den Messgrößen Kraft, Weg und Risslänge direkt bestimmt werden,
wenn das linear-elastische Verformungsverhalten des Probenkörpers bekannt ist. Bei
allgemeinen Probengeometrien ist dieses Verhalten nicht bekannt und insbesondere können
plastische Deformationen auch in Bereichen außerhalb der Rissspitzenumgebung auftreten.
In Abb. 5.2 ist als Beispiel dafür eine deformierte Modus III-Probe abgebildet. Die Probe
stammt aus der im weiteren Verlauf durchgeführten Versuchsreihe. Durch die plastischen
Deformationen verteilt sich die beim Versuch insgesamt eingebrachte Verformungsenergie
in, aus dem Versuch nicht einfach zu ermittelnder Weise, auf die plastische Zone im Bereich
der Rissspitze und die plastischen Zonen im übrigen Teil der Probe. Ein Rückschluss
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γIIIc

Rissspitze

rγ
rle

x
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Abbildung 5.3: Definition des Rissöffnungswinkels γIIIc mit dem Auswertungsabstand rγ

und dem linear-elastischen Bereich mit Kleinbereichsfließen rle

auf die Belastung an der Rissspitze ist dann allein mit den Messgrößen Kraft, Weg und
Risslänge nicht mehr möglich.

Aus diesem Grund wird im Rahmen der vorliegenden Arbeit ein alternativer Ansatz
zur Ermittlung eines materialspezifischen Parameters für den Risswiderstand gewählt.
Es handelt sich dabei um den kritischen Rissöffnungswinkel γIIIc, der analog zu γt in
Abschnitt 2.3 für eine Modus III-Belastung definiert wird. Die Auswertung des Winkels
erfolgt direkt an der Rissspitze durch eine geometrische Analyse der verformten Rissspitze-
numgebung. Das globale Verhalten der Probe wird dazu nicht benötigt. Im Rahmen einer
FE-Simulation kann ein elastisch-plastisches Modell der Probe dazu eingesetzt werden,
um γIIIc in den kritischen Spannungsintensitätsfaktor KIIIc umzurechnen. Voraussetzung
dafür ist die Existenz eines K-dominierten Bereichs in der Umgebung der plastischen Zone
an der Rissspitze.

Für die geometrische Analyse wird der Rissöffnungswinkel γIIIc durch die Rissöffnung
senkrecht zur Probenebene im Abstand rγ von der Rissspitze definiert, wie in Abb. 5.3
dargestellt ist. Die Auswertung erfolgt im plastisch verformten Bereich der Rissufer. rle

ist der Radius des linear-elastischen Bereichs mit Kleinbereichsfließen. Die Verwendung
von CTOA als Rissfortschrittskriterium für dünne Blechproben wird unter anderem bei
[36–38, 105, 106] und [107] dargestellt. Auch der ASTM-Standard E 2472 [101] beschreibt
die Bestimmung von CTOA in dünnen Proben. Das CTOA-Konzept geht von einem
Zusammenhang zwischen dem Rissöffnungswinkel an der Rissspitze und der zugehöri-
gen Rissbelastung aus. Erreicht CTOA den kritischen Wert γIIIc, kommt es zu einer
Rissverlängerung [108]. Der kritische Rissöffnungswinkel ist dabei ein Maß für die lokale
Verformungsfähigkeit an der Risspitze.

Durch Biegebelastung kommt es in dünnwandigen Blechproben unter Modus III-Belas-
tung leicht zu großflächigen plastischen Deformationen. Die Größe des verformten Bereichs
hängt von der Dicke t ab. Sind die Probendicke und alle anderen Probenabmessungen
groß genug, verhält sich die Probe linear-elastisch und es tritt nur Kleinbereichsfließen an
der Rissspitze auf. Bei geringerer Dicke verbiegen sich die eingespannten Probenhälften im
bereits gerissenen Bereich aufgrund der Hebelwirkung in einer bestimmten Entfernung
von der Rissspitze plastisch. Je geringer die Probendicke, desto kleiner ist der dazu er-
forderliche Hebelarm. Wird die Biegesteifigkeit bei einer bestimmten Probendicke gleich
Null, beträgt der Rissöffnungswinkel 180◦. Dieser Fall entspricht dem Zerreißen von Papier
oder Aluminiumfolie unter Modus III-Belastung. Für die Ermittlung von CTOA wird der
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Abbildung 5.4: Die Probe mit Bemaßung in mm hat vier Anschlüsse für die Potentialmes-
sung (schwarze Punkte). Weiterhin ist der eingespannte Teil der Probe (rot
gestrichelt) und der Bilderfassungsbereich (grün gestrichelt) dargestellt.

Abstand rγ so gewählt, dass die Auswertung im plastisch verformten Bereich der Rissufer
erfolgt.

Bei der direkten Bestimmung von CTOA an der Rissspitze sind keine zusätzlichen An-
nahmen über das globale Probenverhalten erforderlich. Die Methode ist damit speziell zur
Untersuchung von dünnwandigen Blechproben geeignet, bei denen großflächige plastische
Deformationen aufgrund von Biegebeanspruchungen auftreten können.

5.2 Versuchsaufbau
Versuche mit Rissen unter Modus III-Belastung sind in der Literatur wenig verbreitet, weil
Risswachstum in vielen Fällen vorwiegend unter ebener Belastung erfolgt. Desweitern ist
eine reine Modus III-Belastung im Versuch schwieriger zu erzielen als ebene Belastungszu-
stände. In den Veröffentlichungen von [98, 109–112] wird ein geeignetes Versuchskonzept
für dünne Blechproben unter Modus III-Beanspruchung vorgestellt, welches im Rahmen
der vorliegenden Arbeit angepasst und erweitert wird.

Die Proben werden aus Blechplatinen aus 22MnB5 mit einer Dicke von t = 1.5 mm
entsprechend der Zeichnung in Abb. 5.4 zugeschnitten. Das Material befindet sich dabei im
Anlieferungszustand. Die zugehörigen Materialeigenschaften und Prozessparameter für die
Probenfertigung sind in Tab. 5.2 zusammengefasst. Bei bruchmechanischen Versuchen wird
ein definierter Anriss in die Probe eingebracht, um vergleichbare Ausgangsbedingungen
für das Risswachstum zu gewährleisten. Die Vorgehensweise wird zum Beispiel im ASTM-
Standard E 399 [99] beschrieben. Das Einbringen des Anrisses erfolgt in drei Schritten.
Beim Zuschnitt der Probe wird ein Kerb mit einer Schlitzweite von 0.5 mm und einer
Kerbtiefe von 28.6 mm in die Probe eingesägt. Danach erfolgt das Härten der Probe durch
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Tabelle 5.2: Materialeigenschaften von 22MnB5 nach [8] und Prozessparameter für die
Probenfertigung

E-Modul 210 GPa
Austenitisierungstemperatur 900◦C
Haltedauer Austenitisieren 1800 s
Abkühlung im Ölbad
Anlasstemperatur 250◦C
Haltedauer Anlassen 300 s
Nachbearbeitung Sandstrahlen und teilweises Polieren
im Anlieferungszustand
Re 320 − 550 MPa
Rm 500 − 700 MPa
Bruchdehnung A ≥10% mit L0 = 80 mm
nach Warmumformung
Re 1100 MPa
Rm 1500 MPa
Bruchdehnung A 6%

Erwärmen über die Austenitisierungtemperatur auf 900◦C mit einer Haltezeit von 1800 s
und unmittelbar anschließendes Abkühlen im Ölbad. Durch die Wärmebehandlung ensteht
ein 100% martensitisches Gefüge. Das Anlassen der Probe erfolgt bei einer Temperatur
von 250◦C mit einer Haltedauer von 300 s. Der Erfolg der Wärmebehandlung wird durch
Standardzugversuche nach DIN EN ISO 6892-1 [113] mit der Anfangsmesslänge L0 =
50 mm anhand von 5 Proben überprüft. Die ermittelten Spannungs-Dehnungs-Kurven der
Zugversuche sind in Abb. 5.5 dargestellt. In Tab. 5.3 sind die Ergebnisse der Auswertung
zusammengefasst. Dabei werden die geforderten Werte für die Streckgrenze Re bzw. die
Ersatzstreckgrenze Rp0,2, die Zugfestigkeit Rm und die Bruchdehnung A50 mm mit Ausnahme
einer Probe erreicht. Bei Probe 5 erfolgte der Bruch außerhalb der Messlänge. Weiterhin
wird in Tab. 5.3 mit t0 die gemessene Dicke, mit b0 die Breite, mit S0 die Querschnittsfläche
und mit L0 die Ausgangslänge der Probe bezeichnet.

Die Modus III-Proben werden nach dem Anlassen sandgestrahlt und im Bereich des
Kerbgrunds der eingesägten Kerbe wird die Probenoberfläche poliert. An der glatten
Oberfläche kann die Länge des Anrisses im weiteren Verlauf besser ausgewertet werden.
Anschließend wird die eingesägte Kerbe der Probe durch einen Rasierklingenschnitt

Tabelle 5.3: Auswertung der Zugversuche

Nr. t0 b0 S0 L0 E Rp0,2 Rm A50 mm
mm mm mm2 mm N/mm2 N/mm2 N/mm2 %

1 1.46 11.83 17.27 50.0 196870 1102.5 1555.3 6.24
2 1.47 11.95 17.57 50.0 196053 1117.9 1533.1 6.49
3 1.49 11.91 17.75 50.0 208941 1075.2 1518.0 6.79
4 1.43 11.87 16.97 50.0 209037 1145.8 1584.1 6.57
5 1.48 11.91 17.63 50.0 226281 1080.1 1521.6 4.38
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Probe 1
Probe 2
Probe 3
Probe 4
Probe 5

Abbildung 5.5: Spannungs-Dehnungs-Kurven der Zugversuche zur Überprüfung der Mate-
rialkennwerte aus Tab. 5.2

verlängert. Mit Hilfe einer speziellen Vorrrichtung wird dabei durch die Schneidbewegung
einer Rasierklinge, die mit einer Diamantsuspension benetzt ist, am Kerbgrund eine zweite
Kerbe mit deutlich verkleinertem Kerbradius erzeugt. Diese weist eine Tiefe von ca. 0.4 mm
auf. Der letzte Schritt der Probenvorbereitung ist die Erzeugung eines Ermüdungsanrisses,
welcher am Grund der durch den Rasierklingenschnitt eingebrachten Kerbe entsteht. Dazu
wird die Probe mit einer zyklisch schwellenden Zugbelastung unter Modus I beaufschlagt.
Für den Ermüdungsanriss wird durch regelmäßige Sichtprüfung mit dem Auflichtmikroskop
eine Mindestlänge von 1.0 mm eingehalten. Das Spannungsverhältnis zwischen Ober- und
Unterspannung σo und σu beim Anschwingen beträgt R = σu

σo
= 200 N

2000 N = 0.1 mit einer
Frequenz von f = 20 Hz. In ISO 12108 [103] ist die Vorgehensweise für die Wahl der
Belastung beim Anschwingen dargestellt. In Abb. 5.6 ist ein dreistufiger Anriss dargestellt,
der mit der beschriebenen Vorgehensweise erzeugt wurde. Die Gesamtlänge des Anrisses
beträgt dabei a0 = 28.6 mm + 0.4 mm + 1.0 mm = 30 mm. Die gemessenen Anrisslängen
liegen bei allen für die Versuche eingesetzten Proben innerhalb von a0 = 30 mm ± 0.25 mm.

Für die Versuche kommt eine spezielle Einspannvorrichtung zum Einsatz, die eine
variable Belastung der Probe in vier verschiedenen Abstufungen zwischen Modus I und III
ermöglicht. Die Stufen entsprechen den Positionen 0◦, 30◦, 60◦und 90◦, wobei die Position
für reine Modus III-Belastung als 0◦-Position bezeichnet wird. Zur Erzeugung des Anrisses
im Modus I wird entsprechend die 90◦-Position der Einspannvorrichtung verwendet. In
Abb. 5.7 ist der Versuchsaufbau mit der Einspannvorrichtung und den beiden Proben
dargestellt, wie er für alle durchgeführten Modus III-Versuche eingesetzt wurde. Für die
lokale Wegmessung wird zusätzlich ein Clip-Gage eingesetzt. Das Risswachstum erfolgt
in Richtung der x-Achse des Versuchskoordinatensystems. Der Ausgangspunkt für die
Konstruktion der Einspannvorrichtung ist der bei [98] beschriebene Versuchsaufbau. Im
Vergleich dazu wird im Rahmen der vorliegenden Arbeit eine andere Probengeometrie
eingesetzt und die Versuche werden mit zwei Proben gleichzeitig durchgeführt, um ein
Verkippen der Einspannvorrichtung um die y-Achse des Versuchskoordinatensystems zu
vermeiden. Die Proben haben eine rechteckige Probenform mit einem Seitenverhätnis von
2:1, wodurch der Rissfortschritt über einen großen Bereich von ∆a untersucht werden kann
und die Bedingung aus Glg. (5.1) eingehalten wird.
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Abbildung 5.6: Bei dem dreistufigen Anriss der Probe verjüngt sich die eingesägte Kerbe (1)
am Kerbgrund durch den Rasierklingenschnitt (2) und beim Anschwingen
entsteht ein feiner Anriss (3) mit einer gemessenen Länge von 1162.69 µm
(rot).

Eine Kraftmessung ist zur direkten geometrischen Bestimmung von CTOA nicht er-
forderlich, die Kraft wird aber mit Hilfe einer Kraftmessdose im Laststrang zusätzlich
gemessen. Zur Kontrolle der Vorschubgeschwindigkeit, aus der die Auslenkung ∆z der
Probe zu einem bestimmten Zeitpunkt berechnet wird, erfolgt eine lokale Wegmessung mit
einem Clip-Gage, das über eine Messlänge von 50 mm verfügt. Der Vergleich von lokaler
Wegmessung und berechneter Auslenkung ∆z ist in Anhang A.1 für alle durchgeführten
Versuche abgebildet. Mit Hilfe von ∆z (t) werden im weiteren Verlauf alle zeitabhängigen
Messgrößen in Abhängigkeit von ∆z angegeben.

Zur Messung der Risslänge wird neben dem 3D-Bildkorrelationsverfahren zusätzlich
die Potentialmethode nach [114] eingesetzt. Für die dazu erforderliche Potentialmessung
werden die Kontaktflächen zwischen den Proben und der Einspannvorrichtung mit einer
elektrisch isolierenden Schicht versehen. Die Potentialmethode basiert auf der Messung
der Widerstandsänderung zwischen den Anschlusspunkten der Probe, welche durch das
Risswachstum hervorgerufen wird. Das eingesetzte Verfahren zur Potentialmessung auf
Basis von Gleichstrom ist in ISO 12135 [104] detailliert beschrieben. Für eine rechteckige
Probengeometrie wird dabei als Näherung die analytische Lösung für das elektrische
Potential in einem unendlich ausgedehnten Streifen herangezogen. Damit gilt für die
Beziehung zwischen der Potentialänderung und der aktuellen Risslänge

a = 2W
π

cos−1 cosh (πy/2W)
cosh

[
(φ/φ0) cosh−1 [cosh (πy/2W) / cos (πa0/2W)]

] . (5.4)

Dabei ist a0 die Anrisslänge und a die gesuchte Risslänge. φ0 ist dementsprechend das
Referenzpotential bei der Risslänge a0 und φ das zu a gehörende Potential. 2y ist der
Abstand zwischen den Messpunkten auf der Probe und W die Probenlänge. Bei der
verwendeten Probengeometrie ist a0 = 30 mm, y = 17.8 mm und W = 133.3 mm.

Eine Möglichkeit um die Rissspitze sichtbar zu machen, stellt das Heat-Tinting-Verfahren
dar. Dabei wird der Versuch nach einem bestimmten Rissfortschritt abgebrochen und die
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Abbildung 5.7: Versuchsaufbau für die Modus III-Versuche mit den Einspannvorrichtungen
(1) und (2), den Proben (blau und grün), dem Clip-Gage (3) und den Pro-
benfixierungen (4) und (5). Das Risswachstum erfolgt bei der rechten Probe
in Richtung der x-Achse und bei der linken Probe in entgegengesetzter
Richtung.
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Abbildung 5.8: Der Bereich (1) rechts von der Rissspitze (2) ist nach dem Anlassen bei
450◦C vollständig verfärbt. Links im Bild (3) ist das durch Aufbrechen der
Probe entstandene Rissufer sichtbar.

Probe entnommen. Die teilweise gerissene Probe wird dann bei einer Temperatur von
450◦C angelassen, wodurch eine deutlich sichtbare Verfärbung der Rissufer hervorgerufen
wird. Anschließend wird die Probe wieder eingespannt und bis zum vollständingen Bruch
belastet. Aufgrund der Farbunterschiede kann die Position der Rissspitze beim Abbruch
des Versuchs bestimmt werden. Ein Beispiel eines solchen Versuchs für die Modus III-Probe
ist in Abb. 5.8 dargestellt. Eine quantitative Auswertung der Rissspitzenposition mit dem
Heat-Tinting-Verfahren wurde im Rahmen der vorliegenden Arbeit nicht durchgeführt.

5.3 Auswertungsalgorithmus für CTOA
Für die Auswertung des Rissöffnungswinkels γIIIc wird die Oberfläche der Probe während
des Versuchs mit einem 3D-Bildkorrelationssystem (DIC-System) erfasst. Von den beiden
eingespannten Proben nach Abb. 5.7 wird dabei nur die rechte Probe erfasst. Der Bilder-
fassungsbereich ist in Abb. 5.4 dargestellt. Dieser beginnt ab einem Rissfortschritt von
∆a = 15 mm.

Das DIC-System besteht im Wesentlichen aus zwei digitalen Kameras, die auf einer
gemeinsamen Führungsschiene angeordnet sind. Die Kameras, die einen definierten Abstand
voneinander aufweisen, werden auf den zu messenden Bereich der Probe ausgerichtet. Mit
Hilfe von Kalibrierplatten mit einem definierten geometrischen Muster wird dann die
räumliche Lage der Kameras in Bezug auf die Probenposition ermittelt. Mit der bekannten
Geometrie des Messsystems kann aus den beiden Einzelbildern zu einem bestimmten
Zeitpunkt die räumliche Position von Punkten auf der Probenoberfläche berechnet werden.

Die Berechnung erfolgt mit einem Bildkorrelationsverfahren, welches auf den Bildern der
Probe bestimmte Punktmuster identifizieren kann. Aus dem Vergleich zwischen dem linken
und rechten Bild eines identifizierten Punktes wird seine räumliche Position berechnet. Um
die eindeutige Zuordnung von Bildpunkten zwischen zwei Einzelbildern zu ermöglichen,
werden die Proben vor dem Versuch mit einem schwarz-weißen Specklemuster von gleich-
mäßiger Feinheit besprüht. Dadurch entsteht eine stochastische Helligkeitsverteilung, die
eine eindeutige Zuordnung von Bildpunkten ermöglicht. Aus zwei Bildern zu verschiedenen
Zeitpunkten kann mit Hilfe der Bildkorrelation auch das Verschiebungsfeld der Probeno-
berfläche berechnet werden. Einführende Darstellungen in Grundlagen und Theorie der
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Abbildung 5.9: Die Aufnahmen der rechten Kamera für t = 0 s und t = 198 s zeigen
die Probenoberfläche mit Specklemuster und die mit ARAMIS ermittelte
größte Hauptdehnung ε1 von Probe 1. Die Zeitpunkte entsprechen einer
Probenauslenkung von ∆z = 0.0 mm und ∆z = 31.301 mm. Auf dem
Maßstab im linken Bild ist der Abstand zum eingespannten Bereich der
Probe nach Abb. 5.4 in mm dargestellt.

Bildkorrelationsverfahren sind unter Anderem bei [115–118] zu finden. Ein Anwendungs-
beispiel für den Einsatz des Verfahrens bei bruchmechanischen Versuchen wird von [119]
beschrieben. Eine Anwendung der Bildkorrelation zur Messung des Verschiebungsfeldes im
Bereich der Rissspitze wird bei [120] gezeigt.

Die 3D-Bildkorrelation zeichnet sich durch einen geringen Aufwand bei der Probenvor-
bereitung aus. Zudem funktioniert das Verfahren berührungslos und ermöglicht dadurch
die Erfassung der Rissspitze bei Risswachstum und größeren Probenverformungen. Wegen
dieser Vorteile wird die 3D-Bildkorrelation im Rahmen der vorliegenden Arbeit eingesetzt.
Insbesondere wird das Verfahren aufwändigeren Methoden zur direkten Auswertung der
Rissspitzenumgebung vorgezogen, die anhand der Interferometrie und der Spannungsoptik
zum Beispiel bei [121] beschrieben werden.

Für die Auswertung der Versuche wird das kommerzielle Bildkorrelationssystem ARAMIS
5M der Firma GOM mit der Softwareversion 6.1.1 eingesetzt. Damit werden bei allen
durchgeführten Versuchen die Geometrie der Probenoberfläche, das Verschiebungsfeld und
die technischen Dehnungen ausgewertet. Aus der Auswertung mit ARAMIS erhält man für
jeden aufgezeichneten Zeitpunkt die berechneten x-, y- und z-Koordinaten diskreter Punkte
auf der Probenoberfläche sowie die zugehörigen ebenen Hauptdehnungen ε1 und ε2 in %.
Die ermittelten Koordinaten zur Zeit t werden im Vektor pnA×3 (t) zusammengefasst, wobei
in der ersten Spalte die x-, in der zweiten die y- und in der dritten Spalte die z-Koordinaten
angeordnet werden. nA (t) ist die Anzahl der Messpunkte auf der Probenoberfläche zur Zeit
t. In Abb. 5.9 ist ein Beispiel für die Auswertung mit ARAMIS zu zwei unterschiedlichen
Zeitpunkten dargestellt. Die Auswertungsergebnisse für die Geometrie sind dabei überlagert
mit dem Originalbild der rechten Kamera dargestellt, auf dem die Probenoberfläche mit
Specklemuster zu erkennen ist. Farbig dargestellt ist die größte ebene Hauptdehnung ε1. Für

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


5.3 Auswertungsalgorithmus für CTOA 75

−14
−12

−10
20

22
24

35

x [mm] y [mm]

z
[m

m
]

0.8

1

1.2

1.4

1.6

1.8

ε1 [%]

Abbildung 5.10: Für den dargestellten Ausschnitt aus Probe 1 nach Abb. 5.11 ergibt sich die
Probenoberfläche durch lineare Interpolation der Koordinaten zwischen
den diskreten Messpunkten, die an den Knotenpunkten des Gitters liegen.
Die Hauptdehnung ε1 wird für die Darstellung aus dem Mittelwert der
zugehörigen Knotenwerte berechnet.

die Aufzeichnung der Messdaten mit ARAMIS wird bei allen Versuchen ein einheitliches
Zeitintervall von ∆t = 1 s gewählt.

Um aus den diskreten Messpunkten eine vollständige Probenoberfläche zu rekonstruieren,
muss ein Interpolationsverfahren eingesetzt werden. In Abb. 5.10 ist als Beispiel dafür
eine lineare Interpolation der Oberfläche für einen Ausschnitt aus Probe 1 nach Abb.5.9
mit ∆z = 55.489 mm dargestellt. Jedes Segment entsteht durch lineare Interpolation der
Koordinaten zwischen den vier Eckpunkten. Für die Darstellung von ε1 wird für jedes
Segment der Mittelwert aus den Werten der zugehörigen Eckpunkte gebildet.

Aus den mit ARAMIS ermittelten Punktkoordinaten wird der Rissöffnungswinkel γIIIc

an der fortschreitenden Rissspitze ausgewertet. Der Auswertungsalgorithmus besteht aus
zwei wesentlichen Schritten. Im ersten Schritt wird die aktuelle Position der Rissspitze
bestimmt und danach wird der Rissöffnungswinkel an der ermittelten Position ausgewertet.
Für die Auswertung müssen die ermittelten Punktkoordinaten zunächst in das Versuchs-
koordinatensystem nach Abb. 5.7 transformiert werden, da die z- und x-Richtung für
den Auswertungsalgorithmus benötigt werden. Im Allgemeinen stimmt das Versuchsko-
ordinatensystem nicht mit dem Koordinatensystem der ARAMIS-Auswertung überein,
weshalb eine Koordinatentransformation zwischen beiden Systemen berechnet werden
muss. Die Lage der xy-Ebene ist im Versuchskoordinatensystem durch die eingespannte,
unbelastete Probe gegeben und die Auslenkung der Probe erfolgt senkrecht zur xy-Ebene
in Richtung der z-Achse des Versuchskoordinatensystems. Die Rissausbreitung unter
Modus III-Belastung erfolgt in Richtung der x-Achse.

Die Transformationsmatrix zur Transformation der Messpunkte in das Versuchskoordi-
natensystem wird mit Hilfe einer Ausgleichsebene für die gemessenen Punktkoordinaten
pnA×3 der unbelasteten Probe bei ∆z = 0 mm berechnet. Die unbelastete Probe weist infol-
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Abbildung 5.11: Die bei einer Auslenkung von ∆z = 55.489 mm deformierte Probe 1
liegt nach Anwendung der berechneten Transformation auf p in der
Ausgleichsebene, die der xy-Ebene mit z = 0 mm entspricht. Die x-Achse
verläuft parallel zur Rissausbreitungsrichtung. Überlagert ist die mit
ARAMIS ermittelte größte Hauptdehnung ε1 dargestellt.

ge der vorausgehenden Wärmebehandlung einen Verzug senkrecht zur Probenebene in der
Größenordnung von ca. ±0.3 mm auf. Die Ausgleichsebene stellt daher eine Näherung der
xy-Ebene des Versuchskoordinatensystems dar. Zur Berechnung muss das überbestimmte
Gleichungssystem

N · k = z (5.5)
gelöst werden. Dabei sind in znA×1 die z-Komponenten der Messpunkte pnA×3 im Koordi-
natensystem von ARAMIS zusammengefasst. In

N =


x0 y0 1
... ... ...

xnA
ynA

1


nA×3

(5.6)

werden die x- und y-Koordinaten aus pnA×3 angeordnet. Der Vektor k3×1 =
[

a b c
]T

enthält die drei gesuchten Koeffizienten der Ebenengleichung ax + by + cz = 0 der
Ausgleichsebene. Die Lösung mit der kleinsten euklidischen Norm

‖N · k − z‖2 (5.7)

erhält man nach der Methode der kleinsten Quadrate durch Bilden der Pseudoinversen N †

von N . Die gesuchte Lösung für den Koeffizientenvektor der Ebenengleichung ist damit

k = N † · z . (5.8)

Die Basisvektoren des Probenkoordinatensystems ergeben sich aus den Koeffizienten der
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Abbildung 5.12: Das Prinzip der Nearest-Neighbor-Interpolation wird hier für homogen
verteilte Messpunkte (rot) in einer Dimension dargestellt. Die Interpolati-
onsfunktion (blau) nimmt in jedem Punkt den Wert des nächstgelegenen
Messpunktes (rot) an.

Ebenengleichung durch

n3 = 1
|n|

 −a
−b
1

 , (5.9a)

n1 =

 −1
0
0

−


 −1

0
0

 · n3

 · n3 , (5.9b)

n2 = n1 × n3 . (5.9c)

Bei den Versuchen ist die obere Einspannvorrichtung in z-Richtung fest eingespannt,
während der untere Teil ausgelenkt wird. Dadurch erfährt die Probe eine Starrkörpertrans-
lation in z-Richtung, die mit Hilfe der ARAMIS-Software bei allen Auswertungsergebnissen
entfernt wird. Die Lage der Ausgleichsebene ist aus diesem Grund unabhängig von t und
es müssen keine weiteren Koordinatentransformationen berechnet werden. Bei allen nach-
folgenden Berechnungsschritten des Auswertungsalgorithmus werden die Messpunkte p (t)
zunächst in das Versuchskoordinatensystem transformiert. Die transformierten Punkte
werden mit pV KS (t) bezeichnet.

Als Beispiel für die Transformation in das Versuchskoordinatensystem ist in Abb. 5.11
Probe 1 bei einer Auslenkung von ∆z = 55.489 mm dargestellt. Die x-Achse der Probene-
bene verläuft dabei parallel zur Rissausbreitungsrichtung. Im Versuchskoordinatensystem
ist die Verschiebung der Messpunkte senkrecht zur xy-Ebene durch die z-Koordinaten der
Messpunkte gegeben, die in wnA×1 zusammengefasst werden.

Der nächste Schritt des Auswertungsalgorithmus ist die Bestimmung der Rissspitzenpo-
sition. Dazu werden die z-Koordinaten der Messpunkte im Versuchskoordinatensystem
w mit Hilfe der Nearest-Neighbor-Methode auf einem regelmäßigen Punktgitter in der
xy-Ebene interpoliert. Die mit ARAMIS berechneten Messpunkte weisen bei den durchge-
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Abbildung 5.13: Für Probe 1 aus Abb. 5.11 mit ∆z = 55.489 mm wird aus dem Differenzen-
quotienten wint

,y die Rissspitzenposition (grün) x = 38.75 mm, y = 7.0 mm
ermittelt. Dargestellt ist ein Ausschnitt des berechneten Differenzenquo-
tienten in der Umgebung der Rissspitze. Entlang des Risses weist wint

,y

deutlich höhere Werte auf als in der Umgebung. Hinter der Rissspitze
wird der Rissverlauf aufgrund fehlender Messpunkte durch die Nearest-
Neighbor-Interpolation verfälscht. Für eine bessere Darstellung ist wint

,y

zusätzlich farbig hervorgehoben.

führten Versuchen typische Abstände von ∆x = 0.53 mm und ∆y = 0.52 mm auf, wobei
die Anordnung der Punkte nicht regelmäßig ist. Die regelmäßigen Gitterpunkte werden
aus fest vorgegebenen Abständen ∆x und ∆y in x- bzw. y-Richtung erzeugt. Für die
Auswertung werden im weiteren Verlauf bei allen Proben die Werte ∆x = 0.5 mm und
∆y = 0.25 mm gewählt. Die interpolierten z-Koordinaten der Messpunkte werden mit
wint (t) bezeichnet. Die regelmäßige Anordnung der interpolierten Messpunkte ermöglicht
eine einfache Auswertung des Differenzenquotienten von wint (t) in y-Richtung, der mit
wint

,y (t) bezeichnet wird.
Bei der Nearest-Neighbor-Interpolation wird an jedem Interpolationspunkt der Funk-

tionswert des am nächsten liegenden Messpunktes als Interpolationswert gewählt. In
Abb. 5.12 wird das Prinzip an einem einfachen Beispiel verdeutlicht. Durch die Nearest-
Neighbor-Interpolation wird die Unstetigkeit des Verschiebungsfelds senkrecht zum Rissufer
in Richtung der y-Achse abgebildet. In x-Richtung werden die interpolierten z-Koordinaten
wint (t) vor der weiteren Auswertung durch Bilden des einfachen gleitenden Mittelwerts
über n = 3 Messpunkte geglättet.

Die Position der Rissspitze wird aus dem Vorwärtsdifferenzenquotient wint
,y (t) in y-

Richtung bestimmt, der entlang des Rissufers aufgrund des Sprungs im Verschiebungsfeld
deutlich größere Werte als im übrigen Teil der Probe annimmt. Das Ergebnis ist in
Abb. 5.13 beispielhaft für Probe 1 bei einer Auslenkung von ∆z = 55.489 mm dargestellt.
Aufgrund fehlender Messwerte führt die Nearest-Neighbor-Interpolation deutlich hinter der
Rissspitze zu einer falschen Auswertung des Rissverlaufs, was jedoch keinen Einfluss auf
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Abbildung 5.14: Für Probe 1 aus Abb. 5.11 ist der Verlauf der ermittelten Rissspitzenposi-
tionen getrennt für die einzelnen Koordinaten x, y und z in Abhängigkeit
von ∆z dargestellt. Aus dem Verlauf der x-Position wird ∆a berechnet.
Der Verlauf der y-Position zeigt nur eine geringe Abweichung des Rissver-
laufs von der Richtung parallel zur x-Achse und die z-Positionen liegen
ungefähr bei Null.

die Auswertung der Rissspitzenposition hat. Der Grund für die fehlenden Messwerte ist die
begrenzte Tiefenschärfe des Kamerasystems. Für die Ermittlung der Rissspitzenposition
wird ein Schwellenwert für wint

,y (t) vorgegeben, der empirisch ermittelt wird. Dieser Wert
liegt möglichst knapp über den Werten von wint

,y (t) außerhalb des Risses. Wird der Wert
zu gering gewählt, kann die Rissspitzenposition nicht zuverlässig bestimmt werden. Bei
einem zu großen Wert liegt die ermittelte Rissspitzenposition hinter der tatsächlichen
Position. Die Rissspitze wird an dem Messpunkt festgelegt, bei dem der vorgegebene
Schwellenwert überschritten wird und der zugleich die kleinste x-Koordinatenkomponente
aufweist. Für die Auswertung aller Versuche wird der Schwellenwert einheitlich mit 0.15 mm

mm
vorgegeben. In Abb. 5.14 ist der mit dem vorgestellten Algorithmus ermittelte Verlauf der
Rissspitzenkoordinaten x, y und z für Probe 1 in Abhängigkeit von ∆z dargestellt.

Nach der Bestimmung der Rissspitzenposition erfolgt die Auswertung des Rissöffnungs-
winkels γIIIc. Dazu werden die unbearbeiteten Messpunkte pV KS (t) herangezogen, die
in das Versuchskoordinatensystem transformiert wurden. Zunächst wird die ermittelte
z-Position der Rissspitze ztip dazu eingesetzt, um die beiden Rissufer zu separieren, indem
die Punkte mit z ≤ ztip dem negativen und mit z > ztip dem positiven Rissufer zugeordnet
werden. Danach wird mit Hilfe der Nearest-Neighbor-Methode in der xz-Schnittebene
mit y = ytip der Verlauf der beiden Rissufer separat bestimmt. Die Interpolation erfolgt
wieder für eine regelmäßige Anordnung der Interpolationspunkte entlang der x-Achse mit
∆x = 0.5 mm.

Für beide Rissufer wird eine Ausgleichsgerade durch die zugehörigen Messpunkte berech-
net, die im Bereich von der Rissspitze bis zur vorgegebenen Auswertungsposition hinter
der Rissspitze mit 0 ≤ x ≤ xγ liegen. Der Schnittwinkel beider Geraden entspricht dem
gesuchten Rissöffnungswinkel γIIIc (t) zum Zeitpunkt t. In Abb. 5.15 ist ein Beispiel für die
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Abbildung 5.15: Die Auswertung von CTOA bei Probe 2 für eine Auslenkung von ∆z =
21.8160 mm mit xγ = 10 mm ergibt γIIIc = 29.3273◦.

Ermittlung von CTOA dargestellt, wobei der interpolierte Verlauf beider Rissufer in der
xz-Schnittebene und die zugehörigen Ausgleichsgeraden dargestellt sind. Der Auswertungs-
abstand beträgt dabei xγ = 10 mm. Für Probe 2 beträgt der ermittelte Rissöffnungswinkel
bei einer Auslenkung von ∆z = 21.8160 mm γIIIc = 29.3273◦. Der gesamte Aufbau des
Auswertungsalgorithmus zur Ermittlung von CTOA ist in Abb. 5.16 nochmals als Übersicht
dargestellt.

5.4 Ergebnisse der Versuche
Mit der in den vorangehenden Abschnitten vorgestellten Versuchsmethodik werden die
Proben quasistatisch mit einer konstanten Vorschubgeschwindigkeit von 9.4852 mm/min
getestet. Für die folgende Auswertung wurden insgesamt 13 Probenpaare eingesetzt, von
denen 11 erfolgreich mit dem Auswertungsalgorithmus untersucht werden konnten. Bei den
Proben 8 und 10 war die Qualität der mit ARAMIS erfassten Messdaten nicht ausreichend,
um eine Auswertung des Rissöffnungswinkels durchzuführen. Die Kraft-Weg-Verläufe
der Versuche werden zur Kontrolle des korrekten Versuchsablaufs herangezogen, da bei
Vorversuchen Probleme mit der Einspannvorrichtung auftraten. Diese führten zu hohen
Kraftspitzen. Die Kraft-Weg-Kurven aller durchgeführten Versuche sind im Anhang A.1 in
Abb. A.2 zusammengefasst. Dabei zeigt sich eine gute Übereinstimmung des Kraftverlaufs
bei allen Proben.

Um die Funktion des Auswertungsalgorithmus zur Ermittlung der Rissspitzenposition zu
überprüfen, werden zwei Kriterien herangezogen. Als erstes Kriterium wird die Abweichung
des ermittelten Rissverlaufs vom erwarteten Verlauf parallel zur x-Achse betrachtet. Dazu
wird für die ermittelten Rissspitzenpositionen in der xy-Ebene eine Ausgleichsgerade
berechnet und deren Winkel mit der x-Achse bestimmt. Die Winkelabweichungen bei den
ausgewerteten Versuchen sind in Tab. 5.4 zusammengefasst. Der ermittelte Verlauf des
Risswachstums erfolgt bei allen ausgewerteten Proben nahezu parallel zur x-Achse.

Der zweite Schritt zur Überprüfung des Auswertungsalgorithmus ist der Vergleich des
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Abbildung 5.16: Auswertungsalgorithmus zur Ermittlung von γIIIc (∆a)
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Tabelle 5.4: Winkelabweichung des Rissverlaufs von der x-Achse

Probennr. Abweichung [◦]
1 -1.2376◦

2 -2.5548◦

3 -1.7699◦

4 -1.0376◦

5 -2.7605◦

6 -0.7196◦

7 -2.5118◦

8 —
9 -0.8119◦

10 —
11 -0.3026◦

12 -0.4021◦

13 -3.9041◦
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Abbildung 5.17: Vergleich der mit dem Auswertungsalgorithmus (durchgezogene Linien)
und mit der Potentialmethode (gestrichelte Linien) ermittelten Rissver-
längerung ∆a als Funktion der Probenauslenkung ∆z. Der Anriss mit
a0 = 30 mm wird von ARAMIS erst ab a0 + 15 mm erfasst, wie in Abb.5.4
dargestellt. Daher stehen hier erst ab ∆a = 15 mm Auswertungsergebnisse
zur Verfügung.

ermittelten Risswachstums in Abhängigkeit von ∆z mit den nach der Potentialmethode
berechneten Werten nach Glg. (5.4). Für die Berechnung werden die bei den Versuchen zu-
sätzlich aufgezeichneten Potential-Weg-Verläufe aus Abb. A.3 in Anhang A.1 herangezogen.
Der Vergleich beider Methoden zur Bestimmung des Risswachstums ist in Abb. 5.17 zusam-
mengefasst. Bei ARAMIS ist der Auswertungsbereich auf der Probenoberfläche beschränkt.
Wie in Abb. 5.4 dargestellt, erfolgt die Auswertung erst ab einem Rissfortschritt von
∆a = 15 mm. Der Beginn des Risswachstums im Bereich von 0 mm ≤ ∆a ≤ 15 mm wird
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Abbildung 5.18: Auswertungsergebnisse für den Rissöffnungswinkel γIIIc als Funktion
der Rissverlängerung für alle ausgewerteten Proben. Der Riss wird von
ARAMIS ab ∆a = 15 mm erfasst. Der Auswertungsabstand beträgt
rγ = 10 mm.

nicht erfasst. Die Ergebnisse des Auswertungsalgorithmus weisen bei allen untersuchten
Proben über den gesamten Verlauf des Rissfortschritts eine gute Übereinstimmung auf.
Das mit der Potentialmethode berechnete Risswachstum zeigt eine breitere Streuung. Der
Vergleich beider Methoden zur Auswertung des Rissfortschritts zeigt, dass das ermittelte
Risswachstum im Bereich von 15 mm ≤ ∆a ≤ 35 mm ungefähr übereinstimmt.

Mit dem Auswertungsalgorithmus wird der Verlauf des Rissöffnungswinkels bei 11 von
insgesamt 13 Versuchen erfolgreich ausgewertet. In Abb. 5.18 sind die Auswertungsergeb-
nisse für den Verlauf von γIIIc (∆a) zusammengefasst.

Die Auswertung des Rissöffnungswinkels erfolgt bei den vorausgehenden Ergebnissen
im Abstand rγ = 10 mm hinter der Rissspitze. Im Folgenden wird der Einfluss des
Auswertungsabstands rγ am Beispiel von Probe 1 näher untersucht. Die Ergebnisse für
rγ = 2, 5, 10, 15 mm sind in Abb. 5.19 zusammengefasst. Bei einem geringen Abstand stehen
für die Berechnung von CTOA nur wenige Messpunkte zur Verfügung. Als Ergebnis ist
die Streuung der Auswertungsergebnisse sehr groß. Mit zunehmendem Abstand wird die
Streuung geringer und bei rγ = 10 mm bleibt der kritische Rissöffnungswinkel über einen
weiten Bereich der Rissverlängerung ungefähr konstant.

5.5 Rissfortschrittskriterium für die Simulation
In diesem Kapitel wurde der Risswiderstand unter Modus III-Belastung in Form des
kritischen Rissöffnungswinkels γIIIc experimentell ermittelt. Aufgrund der plastischen
Verbiegungen der Blechproben kann dabei kein direkter Zusammenhang zwischen γIIIc

und den Größen der LEBM hergestellt werden. Für die Simulation einer Modus III-
Belastung mit Hilfe des ermittelten kritischen Rissöffnungswinkels stehen zwei verschiedene
Wege zur Verfügung. Bei der ersten Vorgehensweise kann im Rahmen einer elastisch-
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Abbildung 5.19: Abhängigkeit von γIIIc (∆a) vom Auswertungsabstand rγ am Beispiel
von Probe 1. Der Riss wird von ARAMIS ab ∆a = 15 mm erfasst.

plastischen FE-Simulation des zu untersuchenden Rissproblems eine direkte Auswertung
des Rissfortschrittkriteriums

γIII (rγ) ≥ γIIIc (5.10)
im Abstand rγ hinter der Rissspitze durchgeführt werden. Dieser Ansatz wird im weiteren
Verlauf nicht verfolgt, da eine praktische Umsetzung unter den gegebenen Rahmenbedin-
gungen nicht möglich war.

Der zweite Weg beruht auf der getroffenen Annahme, dass der Rissfortschritt trotz der
plastischen Verbiegungen der Proben lokal im Rahmen der LEBM mit Kleinbereichsfließen
erfolgt. Damit kann aus einer Detailsimulation des Versuchsablaufs der kritische Span-
nungsintensitätsfaktor KIIIc bestimmt werden. Zur Berechnung wird die in Abschnitt 4.9
vorgestellte gekoppelte Simulation aus einem elastisch-plastischen FE-Modell und einem
T-Schalenelement eingesetzt. Für die Simulation wird die Probe mit Anriss zunächst
mit Standardelementen diskretisiert und die Einspannvorrichtung durch entsprechende
Verschiebungsrandbedingungen modelliert. Die Berechnung von KIIIc könnte mit diesem
Modell, wie bereits zuvor dargestellt, durch eine direkte Auswertung des Rissfortschrittkri-
teriums nach Glg. (5.10) erfolgen. Im Laufe der Simulation wird dabei im Gegensatz zur
ersten Vorgehensweise mit Hilfe des T-Elements der Verlauf des Spannungsintensitätsfak-
tors ausgewertet. Damit ist mit den getroffenen Annahmen eine Umrechnung von γIIIc in
KIIIc möglich. Eine Umsetzung dieser Vorgehensweise weist ähnliche Schwierigkeiten wie
der vorausgehende Ansatz auf.

Daher wird im Rahmen der vorliegenden Arbeit eine alternative Vorgehensweise zur
Bestimmung von KIIIc eingesetzt. Ausgangspunkt ist wieder die gekoppelte Simulation des
Versuchsaufbaus mit einem elastisch-plastischen FE-Modell und einem T-Schalenelement
im Bereich der Rissspitze. Damit wird der kritische Spannungsintensitätsfaktor iterativ
ermittelt, indem ausgehend von einem Startwert aus den Ergebnissen der Simulation ein
verbesserter Wert für KIIIc bestimmt wird. Weitere Simulationen werden solange durchge-
führt, bis der Verlauf des Rissfortschritts in der Simulation gut mit dem experimentell
ermittelten Rissfortschritt übereinstimmt. Der iterativ ermittelte Wert aus dem letzten

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


5.5 Rissfortschrittskriterium für die Simulation 85

Start

a > amax

aneu = a + ∆a
Auswertung

Modus I/II-Belastung
Auswertung Modus III-

Belastung

Keq

∆ax und ∆ay

Rissfort-
schritt?

Ende

nein

ja

ja

nein

Abbildung 5.20: Algorithmus zur Auswertung des Rissfortschrittkriteriums

Simulationsdurchlauf entspricht dann dem gesuchten Risswiderstand KIIIc. Mit dieser Vor-
gehensweise ist eine Charakterisierung des Risswiderstands in Blechen aus 22MnB5 unter
reiner Modus III-Belastung ohne zusätzlichen Aufwand für die Auswertung von CTOA
während der Simulation möglich. Es werden dafür mehrere Durchläufe der Simulation
benötigt, um zu einem Ergebnis zu gelangen.

Um das Modell für die gekoppelte Simulation von Rissen mit dem T-Element zu ver-
vollständigen, wird der Algorithmus mit einem Modell für die gemischte Beanspruchung
der Rissspitze ergänzt. Dazu stehen verschiedene Kriterien zur Verfügung. Die etablierten
Modelle für Modus I/II-Belastung können zum Beispiel bei [30, S. 127ff] und [14, S. 124ff]
nachgeschlagen werden. Dort werden neben den Rissfortschrittskriterien auch Modelle für
die Bestimmung der Rissausbreitungsrichtung bei gemischter Beanspruchung angegeben.
Desweiteren gibt es Kriterien auf Basis von CTOD, die unter Anderem bei [122] und
[123] zu finden sind. Für Modus I/III-Beanspruchung stehen ebenfalls Rissfortschrittskrite-
rien zur Verfügung. Bei [124, 125] wird zum Beispiel ein Kriterium vorgestellt, das auf
einem speziellen Ausbreitungsmechanismus unter Modus III basiert. Dabei findet kein
kontinuierliches Risswachstum statt, sondern eine schlagartige, segmentierte Ausbreitung
der Risses. Die Änderung der Rissausbreitungsrichtung unter Modus I/III wird von [126]
untersucht. Energiebasierte Kriterien für beliebige Belastungen werden bei [127] und [128]
vorgeschlagen. Der Einfluss nichtsingulärer Terme auf gemischte Beanspruchungen wird
bei [129] untersucht.

Hier wird ein einfaches Rissfortschrittskriterium auf Basis der Spannungsintensitätsfakto-
ren ausgewählt, weil die vorliegende Belastung an der Rissspitze in Form von KI , KII und
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KIII direkt mit dem T-Element bestimmt werden kann. Damit können die verbreiteten
Kriterien nach [14, 30, 42] während der gekoppelten Simulation sehr einfach ausgewertet
werden. Rissfortschritt erfolgt unter der Bedingung

KI ≥ KIc ∨ KIII ≥ KIIIc . (5.11)

Desweiteren wird auch ein Kriterium für die Ermittlung der Rissausbreitungsrichtung
benötigt. Dazu wird entweder die Summe aus KI und KIII

Keq = KI + KIII (5.12)

nach [42] oder
Keq =

√
K2

I + (1 + ν) K2
III (5.13)

herangezogen [26]. Für die im weiteren Verlauf durchgeführten Simulationen erfolgt die
Berechnung nach Glg. (5.12). Die Rissausbreitung hat nach dem Modell der maximalen
Umfangspannung [14, 30, 42] im T-Elementkoordinatensystem die Komponenten

∆ax =
3K2

II

K2
eq

+
√

1 + 8K2
II

K2
eq

1 + 9K2
II

K2
eq

(5.14)

und

∆ay =
KII

Keq
− 3KII

Keq

√
1 + 8K2

II

K2
qe

1 + 9K2
II

K2
eq

. (5.15)

Der Ablauf zur Auswertung des Rissfortschrittkriteriums bei der gekoppelten Simulation
ist in Abb. 5.20 nochmals zusammengefasst.

5.6 Zusammenfassung und Diskussion
Aufgrund der geringen Blechdicken und gleichzeitig großen Rissverlängerungen kann eine
Bestimmung des Risswiderstands in vielen technischen Anwendungsfällen nicht mit Hilfe
standardisierter Versuche erfolgen. Die Belastung des Risses im Modus III stellt dabei
eine zusätzliche Herausforderung dar, weil der Einsatz gängiger Messverfahren aus ebenen
Bruchmechanikexperimenten nur eingeschränkt möglich ist. Aus diesen Gründen wird in
der vorliegenden Arbeit eine Versuchsmethodik zur direkten geometrischen Bestimmung
des kritischen Rissöffnungswinkels γIIIc eingesetzt. Grundlage für die Auswertung sind mit
Hilfe des 3D-Bildkorrelationsverfahrens gemessene Koordinaten und Verschiebungsfelder
auf der Probenoberfläche. Die Auswertung erfolgt lokal beschränkt in der Rissspitzenum-
gebung und erfordert keine zusätzlichen Annahmen über das globale Verhalten der Probe.
Der ermittelte Verlauf von γIIIc (∆a) wird zur Beschreibung des Risswiderstands herange-
zogen. Im Gültigkeitsbereich der LEBM kann daraus mit Hilfe einer elastisch-plastischen
Detailsimulation des Versuchs der kritische Spannungsintensitätsfaktor KIIIc berechnet
werden.

Bei der Anwendung der ermittelten Werte für KIIIc auf neue Problemstellungen muss
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die Blechdicke berücksichtigt werden. Da in der Praxis nur eine überschaubare Anzahl
unterschiedlicher Blechdicken eingesetzt wird, kann eine experimentelle Untersuchung der
zu modellierenden Dicken mit vertretbarem Aufwand durchgeführt werden.

Die vorgestellte Versuchsmethodik zur Bestimmung von γIIIc erfordert einen geringen
Aufwand bei der Probenvorbereitung. Die zur Verfügung stehenden Bildkorrelationssysteme
ermöglichen die Erfassung und Datenauswertung der Rissspitzenumgebung mit ausrei-
chender Genauigkeit. Ein Vorteil der Methode ist die Anwendbarkeit auf unterschiedliche
Probengeometrien. Damit kann auch bei Versuchen mit komplexeren Bauteilen eine direkte
Auswertung an der Rissspitze durchgeführt werden. Daneben können mit der bei den
Versuchen verwendeten Einspannvorrichtung auch Versuche unter gemischten Modus I/III-
Beanspruchungen durchgeführt werden, um deren Einfluss auf das Bruchverhalten zu unter-
suchen. Dazu stehen insgesamt vier Stufen zwischen reiner Modus I und reiner Modus III-
Belastung zur Verfügung.

Für die künftige Weiterentwicklung der Methode stehen zum Beispiel speziell angepasste
Bildkorrelationsverfahren mit diskontinuierlichen Ansatzfunktionen für die Verschiebungen
zur Verfügung. Ein Beispiel für diesen Ansatz wird bei [130] vorgestellt. Die diskontinuier-
lichen Ansatzfunktionen können dabei für eine genauere Beschreibung des Rissverlaufs
eingesetzt werden.
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6 Modellvalidierung
Abschließend erfolgt in diesem Kapitel die Validierung des Modus III-Rissspitzenelements
sowie des darauf aufbauenden Schalenelements für Mixed-Mode-Belastung und des Algo-
rithmus für die gekoppelte Simulation von Risswachstum. Die Überprüfung der in den
Kapiteln 3 und 4 vorgestellten Elementformulierung wird in zwei Schritte aufgeteilt. Diese
entsprechen nach dem Modell von [131] einer Verifikation und einer Validierung. Das
zugrundeliegende allgemeine Schema für die Überprüfung von Simulationsmodellen ist in
Abb. 6.1 dargestellt. Dabei entspricht die Realität, die durch das T-Element modelliert
wird, der Kirchhoffschen Plattentheorie und für den Modus I/II-Anteil des Schalenelements
der linear-elastischen Scheibentheorie. Die Vergleichslösungen für die Überprüfung werden
mit fein vernetzten Standard-FE-Modellen berechnet. Eine ausreichende Netzfeinheit der
Vergleichslösungen wird bei allen Beispielen durch eine vorausgehende Konvergenzun-
tersuchung gewährleistet, die nicht gesondert dargestellt wird. Ohne Beschränkung der
Allgemeinheit werden bei den vorgestellten Beispielen in den Abschnitten 6.1, 6.2, 6.3
und 6.4 einfache Zahlenbeispiele gewählt. Ein Vergleich der Simulationsergebnisse mit den
ermittelten Materialkennwerten erfolgt in Abschnitt 6.5.

Bei der Verifikation wird überprüft, ob die Implementierung des T-Elements der vor-
gestellten mathematischen Beschreibung entspricht. Bei der Validierung wird anhand
verschiedener Lastfälle und Geometrien des Lösungsgebiets untersucht, ob die mit dem
T-Element berechneten Ergebnisse in Übereinstimmung mit den Vergleichslösungen sind.
Zuletzt wird mit Hilfe der Versuchsergebnisse aus dem vorangehenden Kapitel 5 eine
praktische Umsetzung des vorgestellten Rissfortschrittsalgorithmus gezeigt.

6.1 Verifikation der Implementierung des T-Elements
In diesem Abschnitt werden bestimmte Eigenschaften des mathematischen Modells genutzt,
um einige Zwischenschritte der Implementierung des T-Elements zu überprüfen. Der

Realität

Konzeptuelles Modell

Simulationsmodell

Qualifizierung
Analyse

Verifikation
Programmieren

Computersimulation
Validierung

Abbildung 6.1: Verifikation und Validierung eines mathematischen Modells nach [131,
S. 23]
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Abbildung 6.2: T-Element mit Elementknoten n = 1, . . . , 9 in der xy-Ebene

Verifikationsprozess stellt sicher, dass die für die weiteren Berechnungen verwendete
Implementierung der mathematischen Beschreibung aus den Kapiteln 3 und 4 entspricht.

Die T-vollständigen Lösungen aus Abschnitt 3.13 erfüllen die Randbedingungen am
Rissufer für eine beliebige Wahl von A exakt, was für die Verifikation des ersten Teilab-
schnitts genutzt wird. Dazu wird der Ansatz für das komplexe Potential A aus Glg. (3.83)
herangezogen und mit Glg. (3.81) das komplexe Potential B berechnet. Das Ergebnis
wird in die Darstellung der Randgrößen nach Glg. (3.63) eingesetzt. Durch numerische
Auswertung kann die Erfüllung der Randbedingungen nun direkt überprüft werden. Für
die Auswertung wird ein T-Elementgebiet betrachtet, das durch 9 Knotenkoordinaten in
der xy-Ebene definiert ist, wobei die Rissspitze im Koordinatenursprung und der Riss im
positiven Abschnitt der x-Achse liegt. Das betrachtete Beispiel ist in Abb. 6.2 dargestellt.

Bei der numerischen Auswertung wird eine endliche Anzahl von Ordnungen Kmax

des Reihenansatzes aus Glg. (3.83) berücksichtigt, wobei die Randbedingungen für jede
Ordnung einzeln erfüllt sind. Für die Berechnung wird ein Koeffizientenvektor Arnd aus
Pseudozufallszahlen erzeugt. Nach Glg. 4.14 setzt sich der Koeffizientenvektor aus den
Koeffizienten der einzelnen Ordnungen und deren konjugiert komplexen Größen zusammen.
Im weiteren Verlauf wird auf die Darstellung der konjugiert komplexen Einträge verzichtet
und die fehlenden Einträge durch Auslassungspunkte angedeutet. Als Beispiel wird der
Verlauf der Randgrößen Q (z) + ∂Ms(z)

∂s
und Mn (z) für

Arnd =



0.8121869254634043 + i 0.6842498179899202
0.4562971246744079 + i 0.6759465086758688
0.22800448152724356 + i 0.012906851417319221
0.7252306342793038 + i 0.863406016689869

...



2Kmax×1

(6.1)

mit Kmax = 4 entlang des oberen Rissufers berechnet. Die berechneten Verläufe sind in
Abb. 6.3 zusammengefasst. Als Materialparameter für alle vorgestellten Validierungsbei-
spiele bis einschließlich Abschnitt 6.4 werden dabei ein E-Modul von E = 210 GPa sowie

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


90 6 Modellvalidierung

0 0.5 1 1.5 2 2.50

1

2

3

4

·10−2

x [mm]

[k
N

m
m

]b
zw

.[
kN

]

Mn

Q + ∂Ms

∂s

Abbildung 6.3: Entlang des oberen Rissufers im Bereich von 0 ≤ x ≤ 2.5, y = 0 sind
die Randgrößen im Rahmen der numerischen Genauigkeit gleich Null.
Die gemeinsame Ordinatenachse hat für Mn die Einheit [kN mm] und für
Q + ∂Ms

∂s
die Einheit [kN].

eine Querkontraktionszahl von ν = 0.3 vorgegeben und die Plattendicke ist t = 1.5 mm. Die
Auswertung der Spannungen erfolgt bei allen Beispielen an der Position h = t/2 = 0.75 mm
mit −t/2 ≤ h ≤ t/2.

Die Randgrößen Q (z) + ∂Ms(z)
∂s

und Mn (z) sind im Bereich des Risses von 0 mm ≤ x ≤
2.5 mm im Rahmen der numerischen Genauigkeit gleich Null. Weiterführende Informationen
zur numerischen Genauigkeit von Berechnungen auf Basis von Gleitkommazahlen finden
sich zum Beispiel in der Norm IEEE 754 [132] und bei [133].

Als nächster Schritt der Verifikation erfolgt die Überprüfung des Verschiebungs- und
Rotationsrahmens nach Abschnitt 4.5 indem untersucht wird, ob die berechnete Lösung
für das Verschiebungsfeld w und die Rotation w,n auf Γint bei einer Erhöhung von Kmax

gegen den aus den vorgegebenen Knotenverschiebungen konstruierten Verschiebungs- und
Rotationsrahmen konvergiert. Die Elementgeometrie entspricht dabei weiterhin Abb. 6.2
und der vorgegebene Knotenverschiebungsvektor ist

û =



0.675 0.744 −0.394
2.445 0.676 −0.378
1.743 0.656 −0.18
1.442 0.572 −0.084

0 0.577 0
−1.442 0.572 0.084
−1.743 0.656 0.18
−2.445 0.676 0.378
−0.675 0.744 0.394



9×3

. (6.2)

Die erste Spalte enthält die vorgegebenen Knotenverschiebungen wn in mm und die zweite
und dritte Spalte enthalten die vorgegebenen Knotenrotationen θn

x bzw. θn
y in mm

mm . Die
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Abbildung 6.4: Abweichung (w̃ − w) der berechneten Lösung vom vorgegebenen Verschie-
bungsrahmen für den linearen (links) und den kubischen Rahmen (rechts).
s beschreibt einen Umlauf entlang des Verschiebungsrandes von Knoten
1 bis Knoten 9 nach Abb.6.2. Bei Erhöhung der Anzahl der zur Lösung
berücksichtigten Ordnungen Kmax konvergiert die Abweichung gegen Null.
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Abbildung 6.5: Abweichung
(
θ̃x − θx

)
der Lösung vom vorgegebenen Rotationsrahmen

(links) und (θ̃y − θy) (rechts). Die Einheit der Rotation ist [mm
mm ] und s

beschreibt wieder den Umlauf entlang des Verschiebungsrands. — kenn-
zeichnet den Bereich von s, in dem θx=̂w,n bzw. θy=̂w,n. Nur in diesem
Bereich wird die jeweilige Rotation als Randbedingung vorgegeben und
die Abweichung konvergiert bei Erhöhung von Kmax gegen Null.

Zeilennummer entspricht der Knotennummer aus Abb. 6.2. Dieser Aufbau von û wird
analog für alle nachfolgenden Validierungsbeispiele eingesetzt.

Daraus wird der Koeffizientenvektor A nach Abschnitt 4.6 durch Minimierung des
erweiterten Potentials berechnet. Die Lösung für Kmax = 2 ist
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Abbildung 6.6: Das Minimum von Π ext in der Umgebung A+ε∆Arnd der Lösung befindet
sich bei ε = 0 mit Π ext = −7.05473 J.

A =



0.0223764 + i 0.0
0.0 − i 0.00351696
0.0 + i 0.0
0.0 − i 0.789333

...



8×1

(6.3)

und beinhaltet zusätzlich die nach Abschnitt 4.7 berechneten Starrkörperanteile. Im Beispiel
entsprechen diese einer Rotation um die x-Achse des Elementkoordinatensystems. Die
Anzahl der berücksichtigten Ordnungen wird dann auf Kmax = 96 erhöht und die Differenz
zwischen dem aus û berechneten Verlauf von w̃ bzw. w̃,n und w bzw. w,n dargestellt.
Die Auswertung des Beispiels ist in Abb. 6.4 und Abb. 6.5 zusammengefasst. Für die
Darstellung wird dabei ein positiver Umlaufsinn entlang von Γint beginnend bei Knoten 1
gewählt, der durch den Parameter s dargestellt wird. Für den Verschiebungsrahmen wird
ein linearer und ein kubischer Ansatz für w̃ konstruiert, wie in Abschnitt 4.5 dargestellt.

Die resultierende Abweichung (w̃ − w) der berechneten Lösung vom vorgegebenen Ver-
schiebungsrahmen w̃ ist bei Kmax = 96 sowohl beim linearen als auch beim kubischen
Ansatz klein im Vergleich zu den Verschiebungen. Das T-Element verfügt über die zwei
Knotenfreiheitsgrade w und w,n. Die Rotation w,n wird bei der Konstruktion des Rota-
tionsrahmens aus θx und θy berechnet. Die Rotation w,s stellt keinen Freiheitsgrad des
T-Elements dar, sondern ergibt sich aus der Berechnung. Beim kubischen Verschiebungs-
rahmen wird w,s jedoch für die Konstruktion von w̃ genutzt, wodurch (w̃ − w) bei gleichem
Kmax im Vergleich zum linearen Verschiebungsrahmen kleiner ist.

In Abb. 6.5 sind (θ̃x − θx) und (θ̃y − θy) dargestellt. Aufgrund der Elementgeometrie
entspricht w,n auf jeder Elementkante von Γint entweder θx oder θy. Die Abschnitte von s,
welche w,n entsprechen, sind farbig gekennzeichnet und die übrigen Abschnitte entsprechen
w,s. Die Abweichung (w̃,n − w,n) konvergiert bei Erhöhung von Kmax wie erwartet gegen
Null.

Abschließend wird überprüft, ob der berechnete Koeffizientenvektor A aus Glg. (6.3) zu
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Abbildung 6.7: Vorgegebener Verschiebungsrahmen w̃ und Rotationsrahmen w̃,n für das
FE-Vergleichsmodell und das T-Element in Abhängigkeit von s. Der Ro-
tationsrahmen beinhaltet eine Starrkörperrotation, die bei w̃rbm

,n entfernt
wurde.

einem Minimum des erweiterten Potentials führt. Dazu werden bliebige kleine Auslenkungen
ε∆A aus der ermittelten Lösung A für Kmax = 2 betrachtet. Diese werden im dargestellten
Beispiel proportional zum zufällig Vektor

∆Arnd =



0.260765 + i 0.73496
0.156368 + i 0.376277
0.0 + i 0.0
0.0 + i 0.0

...



8×1

(6.4)

gewählt. Die Koeffzienten für die Starrkörperanteile in den Zeilen Kmax + 1 und Kmax + 2
von A und ∆Arnd lassen Π ext unverändert, was leicht numerisch überprüft werden kann.
In Abb. 6.6 ist der resultierende Verlauf von Π ext in Abhängigkeit vom Skalierungsfaktor
für die Auslenkung ε dargestellt. Das berechnete Minimum liegt bei ε = 0 und damit führt
der Koeffizientenvektor A in der betrachteten lokalen Umgebung zu einem Minimum des
erweiterten elastischen Potentials.

6.2 Validierung der T-Elementformulierung
Im nächsten Schritt erfolgt die Validierung der T-Elementformulierung. Als erstes Beispiel
wird dazu noch einmal die Elementgeometrie aus Abb. 6.2 herangezogen und der Knoten-
verschiebungsvektor û aus Glg. (6.2) als Randbedingung vorgegeben. Mit diesen Größen
erfolgt die Berechnung des zugehörigen Koeffizientenvektors A nach Abschnitt 4.6. Aus A
können anschließend alle gesuchten Größen des T-Elements berechnet werden.

Als Vergleichsgrößen für die Validierung werden der Spannungsintensitätsfaktor KIII

und der Verlauf der Spannungskomponenten unter besonderer Berücksichtigung der Riss-
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Abbildung 6.8: Vergleich der Spannungen aus dem FE-Modell und dem T-Element entlang
der x-Achse. Im Bereich des Risses von 0 mm ≤ x ≤ 2.5 mm mit y = 0 sind
die Spannungen am oberen Rissufer angegeben. Mit Kmax = 2 und Kmax =
96 werden dabei in Kurzschreibweise die Ergebnisse des T-Elements für
den entsprechenden Wert von Kmax bezeichnet.

spitzenumgebung herangezogen. Die Vergleichslösung wird mit einem linear-elastischen
FE-Modell berechnet, bei dem der Verschiebungs- und der Rotationsrahmen des T-Elements
als Randbedingungen vorgegeben werden. Bei der Validierung wird die Anzahl der be-
rücksichtigten Ordnungen Kmax variiert, um das Konvergenzverhalten der berechneten
Lösungen zu untersuchen. Die nach Glg. (6.2) aus û berechneten Rahmen für die Ver-
schiebung w̃ und die Rotation w̃,n sind in Abb. 6.7 zusammengefasst. Die Darstellung
erfolgt wieder beginnend bei Knoten 1 entlang von Γint bis Knoten 9 mit dem Parameter
s. Dabei ist sowohl der lineare Ansatz für den Verschiebungsrahmen w̃lin als auch der
kubische Ansatz w̃kub dargestellt. Alle Validierungsbeispiele werden, sofern nicht anders
angegeben, mit w̃kub ausgewertet. Die vorgegebenen Knotenverschiebungen û beinhalten
im betrachteten Beispiel einen Starrkörperanteil, der einer Rotation um die x-Achse des
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Abbildung 6.9: Vergleich der Spannungen aus dem FE-Modell und dem T-Element entlang
der y-Achse (x = 0). Die Rissspitze befindet sich an der Position y = 0.

Elementkoordinatensystems entspricht. Dieser Anteil kann nach Abschnitt 4.7 berechnet
werden. In Abb. 6.7 ist daher auch der Rotationsrahmen ohne Starrkörperanteil dargestellt,
der mit w̃rbm

,n bezeichnet wird.
Das Konvergenzverhalten der mit dem T-Element berechneten Lösungen wird anhand der

von-Mises-Spannung σv und der einzelnen Spannungskomponenten untersucht. Im Folgen-
den wird dazu die Lösung für Kmax = 2 und Kmax = 96 angegeben. Die Auswertungspfade
für die Spannungen verlaufen entlang der x- und der y-Achse des Elementkoordinatensys-
tems. Im Bereich des Risses 0 mm ≤ x ≤ 2.5 mm mit y = 0 werden dabei die Spannungen
am oberen Rissufer angegeben. In Abb. 6.8 und Abb. 6.9 sind die berechneten Verläufe
der von-Mises-Spannung und der einzelnen Spannungskomponenten entlang der x- bzw.
der y-Achse dargestellt. In den Abbildungen werden sehr große Werte für eine bessere
Darstellung abgeschnitten. Bereits bei Kmax = 2 weisen die Spannungen im Bereich der
Rissspitze eine gute Übereinstimmung mit der Vergleichslösung auf. Bei Kmax = 96 stimmt
der Verlauf aller Spannungskomponenten sehr gut mit der Vergleichslösung überein. Die
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Tabelle 6.1: Zusammenfassung der ermittelten Rissspitzenbelastungen für alle im Rahmen
dieser Arbeit durchgeführten Validierungsbeispiele. Die Vergleichslösung für
KIII in GPa

√
mm bzw. GIII in GPa · mm aus dem jeweiligen FE-Modell wird

dabei mit der Lösung des T-Elements mit Kmax = 96 verglichen.

Beispiel- Vergleichslösung Verschiebungs- Verschiebungs-
nr. (VCCT) rahmen linear rahmen kubisch

1 KIII 14.33215 14.69198 14.40825
6.2 GIII 1.27159 1.33624 1.28512
2 KIII 34.15029 33.75750 34.88574

A.2 GIII 7.21959 7.05447 7.53390
3 KIII 26.355 27.04267 26.811

A.3 GIII 4.29981 4.52713 4.44989
4 KIII 32.3559 32.5687 32.0069

A.4 GIII 6.48083 6.56636 6.34178

mit dem T-Element berechneten Lösungen werden mit Kmax = 2 und Kmax = 96 be-
zeichnet. Diese Kurzbezeichnung für eine mit dem T-Element berechnete Lösung mit dem
angegebenen Wert von Kmax wird im weiteren Verlauf durchgängig verwendet.

Der Spannungsintensitätsfaktor KIII entspricht dem ersten Koeffizienten des Reihenan-
satzes nach Glg. (2.12) und Glg. (4.60). Er ergibt sich damit direkt aus A. Der Zusammen-
hang mit der Energiefreisetzungsrate ist nach [30, S. 52] durch

GIII = (1 + ν) K2
III

E
(6.5)

gegeben. Beim Vergleichsmodell wird der Spannungsintensitätsfaktor KF E
III und die Energie-

freisetzungsrate GF E
III mit Hilfe der virtual crack closure technique (VCCT) [42] ermittelt.

Abschließend wird die Berechnung von freien Innenknoten, die nicht mit ΩF E gekoppelt
sind, nach Abschnitt 4.8 überprüft. Dazu werden aus dem vorgegebenen Knotenverschie-
bungsvektor nach Glg. 6.2 die Einträge für Knoten 1 und Knoten 9 entfernt. Mit Hilfe
der Elementsteifigkeitsmatrix KT werden dann die gesuchten Knotenverschiebungen der
unbelasteten Elementkanten zwischen den Knoten 1 und Knoten 2 sowie zwischen den
Knoten 9 und Knoten 8 berechnet. Beim Vergleichsmodell werden die entsprechenden
Verschiebungsrandbedingungen ebenfalls entfernt. Die Ergebnisse sind in Form einer
Konvergenzuntersuchung in Abhängigkeit von Kmax in Abb. 6.10 für die drei Knotenfrei-
heitsgrade w, θx und θy zusammengefasst. Aufgrund der Symmetrie der Elementgeometrie
und des Knotenverschiebungsvektors im betrachteten Fall sind nur die Ergebnisse für
Knoten 1 angegeben und die Werte für Knoten 9 ergeben sich analog. Beim kubischen
Verschiebungsrahmen konvergiert die berechnete Lösung für alle Knotenfreiheitsgrade
gegen die Vergleichslösung. Im Falle des linearen Verschiebungsrahmens ist Konvergenz bei
w und θx nicht gegeben, weil die Rotation w,n = θy auf der Kante zwischen Knoten 1 und
2 keine Komponente um die x-Richtung des Elementkoordinatensystems aufweist. Daher
stehen an jedem Innenknoten nur zwei Gleichungen zur Berechnung der drei gesuchten
Knotenfreiheitsgrade zur Verfügung.
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Abbildung 6.10: Konvergenzuntersuchung für die Berechnung des freien Innenknotens 1 mit
linearem (links) und kubischem Verschiebungsrahmen (rechts) in Abhän-
gigkeit von Kmax. Die gepunkteten Linien stellen die Vergleichslösungen
aus dem FE-Modell dar.

In Anhang A sind drei weitere Validierungsbeispiele dargestellt, die nach der gleichen
Vorgehensweise wie im vorgestellten Beispiel ausgewertet werden. Im ersten Zusatzbeispiel
in Abschnitt A.2 wird der Knotenverschiebungsvektor û für die bereits im ersten Beispiel
eingesetzte Elementgeometrie durch eine unsymmetrische Belastung ersetzt. Im dritten
Beispiel in Abschnitt A.3 wird die Validierung für eine unsymmetrische Elementgeometrie
mit 12 Knoten durchgeführt, wie in Abb. 6.11 dargestellt. Zuletzt wird in Abschnitt A.4
die Validierung einer Elementgeometrie mit 11 Knoten und schrägen Kantenverläufen
vorgestellt. Alle durchgeführten Validierungsrechnungen zeigen dabei die Konvergenz der
berechneten Lösungen gegen die jeweiligen Vergleichslösungen. Die Ergebnisse für die
Berechnung des Spannungsintensitätsfaktors KIII bzw. von GIII in Abhängigkeit von
Kmax sind für alle vier Validierungsbeispiele in Tab. 6.1 zusammengefasst.

6.3 Beispiel für die gekoppelte Simulation
Für die Validierung der Kopplung werden die Ergebnisse einer gekoppelten Simulation aus
einem groben FE-Netz mit einem T-Element im Bereich der Rissspitze mit den Ergebnissen
einer hochaugelösten FE-Simulation verglichen. Das betrachtete Testbeispiel ist in Abb. 6.12
dargestellt. Es handelt sich um ein quadratisches Gebiet Ω mit Innenriss und einer
Kantenlänge von 50 mm. Die Rissspitze liegt an der Position x = 0 mm, y = 0 mm und der
gerade Riss verläuft entlang des positiven Abschnitts der x-Achse. An den beiden Kanten
des Gebiets parallel zur y-Achse mit x = 25 mm wird eine Auslenkung von w = 15 mm
in der oberen Halbebene und von w = −15 mm in der unteren Halbebene der xy-Ebene
vorgegeben. Die Rotation w,n wird an den beiden Kanten mit w,n = 0 vorgegeben. Die
verbleibenden Außenkanten von Ω sind spannungsfrei. Als Materialparameter werden wie im
vorausgehenden Abschnitt ein E-Modul von E = 210 GPa sowie eine Querkontraktionszahl
von ν = 0.3 vorgegeben und die Plattendicke ist t = 1.5 mm.

Für die gekoppelte Simulation des Testbeispiels wird das Gebiet Ω in 20 × 20 =
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Abbildung 6.11: Unsymmetrische Elementgeometrie mit 12 Elementknoten in der xy-Ebene
als zusätzliches Validierungsbeispiel. Die Auswertung ist in Abschnitt A.3
zusammengefasst.

400 gleichmäßige Standardelemente mit einer Kantenlänge von 2.5 mm unterteilt. Das
resultierende Netz ist in Abb. 6.12 dargestellt. Die vier Standardelemente im Bereich der
Rissspitze werden durch ein T-Element mit einer Kantenlänge von 2l = 5.0 mm und n = 9
Kopplungsknoten ersetzt. Die gekoppelte Simulation mit regelmäßiger Vernetzung wird im
Folgenden mit T 1 bezeichnet. Darüber hinaus wird das beschriebene Beispiel auch als
gekoppelte Simulation mit einem unregelmäßigen Netz berechnet. Das verwendete Netz
und die daraus resultierende Geometrie des T-Elements sind in Abschnitt A.5 dargestellt.
Bei der nachfolgenden Auswertung werden die Ergebnisse der gekoppelten Simulation mit
unregelmäßigem Netz mit T 2 bezeichnet.

Die Elementgeometrie des T-Elements für T 1 mit den Kopplungsknoten ist in Abb. 6.13
dargestellt. Die Lösung für das gekoppelte Problem wird berechnet, indem die Gesamtsteifig-
keitsmatrix aus den Elementsteifigkeitsmatrizen der Standardelemente und des T-Elements
assembliert wird. Das resultierende Gleichungssystem wird dann unter Berücksichtigung
der vorgegebenen Randverschiebungen direkt gelöst. Aus dem Knotenverschiebungsvektor
der gekoppelten Lösung wird der Koeffizientenvektor A berechnet, wodurch alle Größen
im Gebiet ΩT gegeben sind.

Für die Vergleichslösung wird das Gebiet Ω mit einer Kantenlänge von 0.125 mm
gleichmäßig mit Standardelementen vernetzt. Die Kantenlänge entspricht dabei einem
zwanzigstel der Länge des gekoppelten Modells. Daraus ergibt sich eine Gesamtzahl von
400 × 400 = 160 000 Elementen. Desweiteren wird für die Auswertung auch ein grob
vernetztes FE-Modell mit einer Kantenlänge von l = 2.5 mm herangezogen, das dem
Beispiel T 1 mit vier Standardelementen anstelle des T-Elements entspricht. In Abb. 6.14
ist die Lösung für das Verschiebungsfeld w und die von-Mises-Spannung σv für das FE-
Grobmodell dargestellt um zu verdeutlichen, dass das Spannungsfeld an der Rissspitze mit
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Abbildung 6.12: Problemstellung für die Validierung der gekoppelten Simulation

Standardelementen bei grober Vernetzung nur unzureichend wiedergegeben wird. Ziel der
gekoppelten Simulation ist es, ohne feinere Vernetzung als beim Grobmodell eine genauere
Wiedergabe des Verlaufs der Spannungen im Bereich der Rissspitze zu erzielen. Für die
Auswertung der Ergebnisse werden die Spannungen aus der gekoppelten Simulation und den
FE-Modellen entlang von zwei Schnitten an der Position t/2 = 0.75 mm in Dickenrichtung
ausgewertet. Der erste Schnitt verläuft dabei entlang der x- und der zweite Schnitt entlang
der y-Achse des Elementkoordinatensystems.

In den Abb. 6.15(a), 6.15(b), 6.15(c) und 6.15(d) sind die von-Mises-Spannung sowie die
Spannungskomponenten σxx, σyy und σxy entlang der x-Achse für T 1 und T 2 dargestellt. Im
Bereich des Risses von 0 mm ≤ x ≤ 25 mm werden dabei die Spannungen entlang des oberen
Rissufers angegeben. Das T-Element wird dabei für T 1 und T 2 mit Kmax = 14 berechnet.
Desweiteren sind in den Abb. 6.16(a), 6.16(b), 6.16(c) und 6.16(d) die entsprechenden
Spannungskomponenten entlang der y-Achse dargestellt. Die Position der Rissspitze ist
dabei y = 0.

In Tab. 6.2 sind die berechneten Rissspitzenbelastungen für Kmax = 14 und Kmax =
96 für das Beispiel T 1 zusammengefasst. Die Berechnung der Vergleichslösungen für
KIII bzw. GIII erfolgt mit dem feinen FE-Modell mit VCCT. Desweiteren wird in der
Tabelle die Lösung mit linearem und kubischem Ansatz für den Verschiebungsrahmen
gegenübergestellt. In Tab. A.1 werden die Ergebnisse für die gekoppelte Simulation mit

(6)

(5)

(4)
(3)

(2)

(8)
(7)

Rissspitze
(1,9)

Abbildung 6.13: T-Element mit den Kopplungsknoten n = (1), . . . , (9) und Rissspitze
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Abbildung 6.14: Verschiebungsfeld w des Kopplungsbeispiels aus dem FE-Grobmodell mit
überlagerter von-Mises-Spannung σv

Tabelle 6.2: Rissspitzenbelastung aus dem gekoppelten Modell T 1 und dem Vergleichs-
modell. KIII ist in GPa

√
mm und GIII in GPa · mm angegeben.

Vergleichslösung Verschiebungs- Verschiebungs-
(VCCT) rahmen linear rahmen kubisch

Kmax = 14 KIII 20.3968 21.63271 20.96133
GIII 2.575431 2.89698 2.71995

Kmax = 96 KIII 20.3968 20.80686 20.98946
GIII 2.575431 2.68001 2.72726
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regelmäßigem Netz T 1 und mit unregelmäßigem Netz T 2 anhand einer p-Konvergenzstudie
in Abhängigkeit von Kmax miteinander verglichen. Als Vergleichsgrößen werden KIII und
die elastische Verzerrungsenergie U herangezogen. Die FE-Vergleichslösungen werden mit
dem feinvernetzten FE-Modell berechnet.

In Abb. 6.17(a) und Abb. 6.17(b) ist die von-Mises-Spannung σv im Bereich der Rissspit-
ze mit −3 mm ≤ x, y ≤ 3 mm aus dem feinen FE-Modell und der gekoppelten Simulation
T 1 mit Kmax = 14 dargestellt. Die Auswertung der Spannungen erfolgt an der Posi-
tion t/2 = 0.75 mm in Dickenrichtung. Die Ansatzfunktionen des T-Elements für die
Spannungen ermöglichen im Gebiet ΩT im Gegensatz zum umgebenden groben FE-Netz
eine detaillierte Auflösung des Spannungsfeldes. Auf dem Kopplungsrand Γint weist der
Verlauf der Verschiebungen w und der Rotationen und infolgedessen auch der Verlauf der
Spannungen einen Sprung auf, der sich aus der hybriden Verschiebungsformulierung des
T-Elements ergibt.
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(a) Ausschnitt −3 mm ≤ x, y ≤ 3 mm des FE-Feinmodells
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(b) Ausschnitt −3 mm ≤ x, y ≤ 3 mm der gekoppelten Simulati-
on T 1

Abbildung 6.17: σv an der Position t/2 = 0.75 mm aus dem FE-Feinmodell (a) und aus
der gekoppelten Simulation T 1 (b) mit Kmax = 14
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Tabelle 6.3: Vergleich der berechneten Rissspitzenbelastungen im Mixed-Mode-Lastfall

Vergleichslösung gekoppelte
(VCCT) Simulation

Kmax = 14
KI 19.852419 19.829345
GI 1.876755 1.872394
KII 0.0 -2.313390E-13
GII 0.0 2.548464E-28
KIII 20.3968 20.96133
GIII 2.575431 2.71995

6.4 Erweiterung zum Mixed-Mode-Element
Ein ebenes Schalenelement für Mixed-Mode-Belastung wird im Rahmen der linear-elas-
tischen Elastizitätstheorie durch Überlagerung von Scheiben- und Plattenelement gebildet.
Dazu wird das Modus III-Element mit einer ebenen T-Elementformulierung erweitert. Die
hierzu benötigte Theorie des ebenen T-Elements ist zum Beispiel bei [49] zu finden. Als
Validierungsbeispiel für das daraus entstandene Schalenelement wird das Beispiel T 1 aus
dem vorangehenden Abschnitt um einen zusätzlichen Belastungsanteil im Modus I erweitert.
Dazu wird zusätzlich zur Modus III-Belastung am Verschiebungsrand nach Abb. 6.12 eine
Auslenkung in Richtung der y-Achse vorgegeben. An der Kante in der positiven Halbebene
beträgt diese y = +1.0 mm und in der negativen Halbebene y = −1.0 mm. In Anhang A.6
sind als Ergänzung die Spannungskomponenten, die sich nur aus dem ebenen Anteil dieser
Belastung ergeben, gesondert dargestellt.

In Tab. 6.3 sind die Ergebnisse für die Berechnung der Rissspitzenbelastungen beim
Schalenelement zusammengefasst. Die Vergleichslösungen stellen wieder die entsprechenden
Ergebnisse aus dem FE-Feinmodell dar, die mit VCCT ermittelt werden. Aufgrund der
symmetrischen Belastung im betrachteten Lastfall ist dabei KII = 0.

Die Verläufe der Spannungskomponenten σv, σxx, σyy und σxy für den Mixed-Mode-
Lastfall sind in Abb. 6.18 entlang der x-Achse und in Abb. 6.19 entlang der y-Achse
dargestellt. Für den Modus III-Anteil wird wieder Kmax = 14 gewählt. Neben der Ver-
gleichslösung aus dem FE-Feinmodell ist auch die Lösung aus dem FE-Grobmodell darge-
stellt.
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6.5 Gekoppelte Simulation mit Rissfortschritt
Abschließend wird die Umsetzung des Rissfortschrittsalgorithmus für die gekoppelte Si-
mulation nach Abschnitt 4.9 vorgestellt. Das Modell wird dazu eingesetzt, um mit der in
Abschnitt 5.5 beschriebenen Vorgehensweise aus dem iterativen Vergleich der Simulationser-
gebnisse mit den Ergebnissen der Versuchsauswertung für den Rissfortschritt ∆a (∆z) den
kritischen Spannungsintensitätsfaktor KIIIc für die Blechproben abzuschätzen. Dazu wird
die gekoppelte Simulation ausgehend vom Startwert KIIIc = 85 MPa

√
m nach Anpassung

des Werts von KIIIc solange wiederholt, bis der Verlauf des Risswachstums eine möglichst
gute Übereinstimmung mit dem experimentell ermittelten Risswachstum aufweist. Die
elastischen Materialparameter sind dabei E = 210 000 MPa, ν = 0.3 und t = 1.5 mm. Im
Bereich der Standardelemente kommt ein elastisch-plastisches Materialmodell auf Basis
der quasistatisch ermittelten Fliesskurve von 22MnB5 zum Einsatz. Für die explizite
Simulation wird die Materialdichte mit ρ = 0.00000781 kg/mm3 angegeben.

Die Kopplung des T-Elements mit dem kommerziellen, expliziten FE-Solver LS-DYNA
erfolgt über eine spezielle Schnittstelle. Diese stellt dem Benutzer während der Simula-
tion bestimmte Zwischenergebnisse und Modellinformationen zur Verfügung. Mit den
Eingangsgrößen können benutzerdefinierte Berechnungen in Form von User-Subroutines
durchgeführt und die Ergebnisse an den Solver zurückgegeben werden. Die Rückgabewerte
werden von LS-DYNA dann bei den nachfolgenden Berechnungsschritten berücksichtigt.
Die Schnittstelle stellt damit alle Funktionen zur Verfügung, die für die Umsetzung des
Rissfortschrittsalgorithmus benötigt werden. Der Ablauf der Simulation wird dabei von
LS-DYNA gesteuert und die Auswertung des Rissfortschrittsalgorithmus wird über die
Schnittstelle in jedem Berechnungszeitschritt mit den aktuellen Eingangsgrößen aufgerufen.
Die Kopplung erfolgt im Wesentlichen über den vorgegebenen Knotenverschiebungsvektor
û als Eingangsgröße und den daraus berechneten Knotenkraftvektor

f = KT · û (6.6)

als Rückgabegröße.
Die Eingangsdaten für eine Simulation mit LS-DYNA werden durch eine oder meh-

rere Textdateien zur Verfügung gestellt. Für die gekoppelte Simulation müssen in der
Eingabedatei zwei zusätzliche Modellparameter definiert werden, die den Zugriff auf die
Schnittstelle und das Löschen von Standardelementen ermöglichen. Die Probengeometrie
aus Abb. 5.4 wird für die gekoppelte Simulation in 30 × 15 = 450 regelmäßige Standard-
elemente unterteilt. Die Elementkantenlänge ist 146 mm/30 = 4.86 mm. In Abb. 6.20 ist
das so entstandene FE-Netz für die gekoppelte Simulation dargestellt. Der Anriss mit
a0 = 30.0 mm wird durch Entfernen von sieben Standardelementen modelliert, wobei das
Element im Bereich der Rissspitze durch ein T-Element ersetzt wird. In der Abbildung sind
die entfernten Elemente rot, das T-Element grün und der Anriss innerhalb des T-Elements
blau dargestellt. In den grau dargestellten Bereichen werden Verschiebungsrandbedin-
gungen vorgegeben. Die obere Hälfte der Probe ist dabei fest eingespannt während für
die untere Hälfte ein linearer Verlauf der Auslenkung ∆z senkrecht zur Probenebene
vorgegeben wird. Die übrigen Verschiebungsfreiheitsgrade werden festgehalten.

Beim Start der gekoppelten Simulation werden über die Schnittstelle einmalig die Geo-
metrieinformationen übertragen, die für die Positionierung des T-Elements im Netz der
Standardelemente benötigt werden. Diese umfassen die Knotenkoordinaten für das Bauteil

https://doi.org/10.51202/9783186352187 - Generiert durch IP 216.73.216.36, am 18.01.2026, 23:53:18. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186352187


6.5 Gekoppelte Simulation mit Rissfortschritt 109

x

y

a0 = 30 mmaa00 = 30= 30= 30= 30

Abbildung 6.20: FE-Modell der Modus III-Probe für die gekoppelte Simulation mit ge-
löschten Standardelementen (rot) zur Modellierung des Anrisses mit
a0 = 30 mm und Ausgangskonfiguration des T-Elements (grün) mit
Anriss (blau) bei Simulationsbeginn. Die Elementkantenlänge beträgt
146 mm/30 = 4.86 mm. In den grau dargestellten Bereichen werden Ver-
schiebungsrandbedingungen vorgegeben.

mit Riss, die zugehörigen Knotennummern und die Zuordnung der Knotennummern zu
den Elementnummern. Die Netzinformationen stehen dem Rissfortschrittsalgorithmus
dann während der gesamten Simulation zur Verfügung. Der Benutzer kann nun die An-
fangsposition des T-Elements und die Ausgangskonfiguration des Risses innerhalb des
Elements definieren. Das T-Element ersetzt dabei zunächst ein Standardelement, wie
in Abb. 6.20 dargestellt. Desweiteren werden vom Benutzer die Inkrementlänge für den
Rissfortschritt sowie der Erweiterungs- und Freigaberadius des T-Elements definiert. Der
Erweiterungsradius definiert den Abstand von der Rissspitze, bei dem weitere Standard-
elemente zum Gebiet ΩT hinzugefügt werden. Analog dazu legt der Freigaberadius fest,
wann Standardelemente wieder aus ΩT entfernt werden. Die Abstände beziehen sich dabei
auf die berechneten Schwerpunkte der Standardelemente zur aktuellen Rissspitzenposition.

Tabelle 6.4: Simulationen i = 1, . . . , 4 für die Abschätzung von KIIIc. Als zusätzliche
Annahme für die Innenknoten, für die keine Kopplungsbedingungen zur Ver-
fügung stehen, wird die Auslenkung w und die Rotation w,n der Innenknoten
gleich den Werten der zugehörigen Außenknoten gesetzt. Bei i = 4 wächst
der Riss ab ∆a = 25 mm bereits zu langsam (vgl. Abb. 6.21), so dass die
Abschätzung KIIIc = 225 zu hoch ist.

i KIIIc

1 KIIIc = 85 MPa
√

m
2 KIIIc = 95 MPa

√
m

3 KIIIc = 125 MPa
√

m
4 KIIIc = 225 MPa

√
m
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Abbildung 6.21: Verlauf des Risswachstums in Abhängigkeit von der Probenauslenkung
für die Schritte i = 1, . . . , 4 nach Tab. 6.4. Als Vergleichskurve ist der
Verlauf von ∆a (∆z) für Probe 1 aus Abb. 5.17 angegeben.

Die Elementnummern der zu löschenden Standardelemente werden über die Schnittstelle
zurückgegeben und von LS-DYNA gelöscht. Bei der vorliegenden Implementierung können
die betreffenden Standardelemente nach Verlassen des Freigaberadius nicht mehr wieder-
hergestellt werden. Dies stellt einen Nachteil der vorgestellten Implementierung dar, weil
dadurch freie Innenknoten entstehen, wie in Abschnitt 4.8 dargestellt. Für die Simulation
muss daher eine Annahme über die Knotenverschiebungen oder die Knotenkräfte an den
beiden Innenknoten getroffen werden, weil dort keine Kopplungsbedingungen zur Verfü-
gung stehen. In Abschnitt 4.8 erfolgt die Berechnung der Knotenverschiebungen in diesem
Fall über die Annahme unbelasteter Innenknoten. Im betrachteten Beispiel der Modus III-
Versuche führt diese Vorgehensweise zu Werten von KIIIc, die weit unterhalb des zu erwar-
tenden Bereichs bei KIIIc < 2.5 MPa

√
m liegen. Im weiteren Verlauf werden aus diesem

Grund für die Innenknoten Knotenverschiebungen und Knotenrotationen vorgegeben, die
denen der benachbarten Knoten auf den gemeinsamen Elementkanten entsprechen. Diese
Annahme stellt eine obere Grenze für die Auslenkung der Innenknoten und damit auch die
Belastung an der Rissspitze dar. Die tatsächlichen Werte für KIII liegen zwischen den aus
den beiden Annahmen resultierenden Werten. Bei dem linear-elastischen Kopplungsbeispiel
aus Abschnitt 6.3 führt die Annahme zu einer Überschätzung von KIII um den Faktor
fünf. Im weiteren Verlauf wird mit der getroffenen Annahme eine Obergrenze für KIIIc
ermittelt.

Nach der Definition des Anrisses wird der erste Zeitschritt berechnet. Über die Schnitt-
stelle wird dann der Rissfortschrittsalgorithmus aufgerufen und die aktuellen Knotenver-
schiebungen des T-Elements als Eingangsgröße übergeben. Daraus wird die vorliegende
Rissspitzenbelastung berechnet und das Rissfortschrittskriterium aus Glg. (5.11) ausgewer-
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tet. Bei Überschreiten des Kriteriums erfolgt der Rissfortschritt zunächst innerhalb des
T-Elements. Anschließend wird das Rissfortschrittskriterium erneut ausgewertet und gege-
benenfalls erfolgt wieder ein Wachstumsschritt. Dabei gelangen weitere Standardelemente
in den Erweiterungsradius und ΩT wird entsprechend erweitert. Der Rissfortschritt erfolgt
solange, bis das Kriterium nicht mehr erfüllt ist.

Die quasistatischen Versuche werden in der Simulation langssam genug modelliert, um
dynamische Effekte zu vermeiden und gleichzeitig eine geringe Rechenzeit zu erzielen. Die
Vorschubgeschwindigkeit beträgt dabei v∆z = 1 mm s−1. Bei Abschluss der Simulation
beträgt die Auslenkung der unteren Probenhälfte ∆z = 250 mm und die Probe ist voll-
ständig gerissen. Für den Erweiterungs- und Freigaberadius werden die Werte rl = 4.7 mm
und rr = 8 mm gewählt. Für KIIIc wird als Ausgangswert für den ersten Iterationsschritt
KIIIc = 85 MPa

√
m vorgegeben. Die Schrittweite für den Rissfortschritt beträgt bei allen

durchgeführten Simulationen ∆a = 0.05 mm.
Die Simulationsergebnisse für ∆a (∆z) sind in Abb. 6.21 für die Iterationsschritte i =

1, . . . , 4 zusammengefasst. Als Vergleichslösung ist die Versuchsauswertung von Probe 1
angegeben. Eine Übersicht der Iterationsschritte mit den Werten für KIIIc ist in Tab. 6.4
dargestellt. In Anhang A.7 sind für einige ausgewählte Schritte aus der gekoppelten
Simulation mit i = 2 die verformten Proben mit dem T-Element im Bereich der Rissspitze
dargestellt.

6.6 Diskussion der Validierungsergebnisse
In diesem Kapitel wird zunächst die T-Elementformulierung für Modus III-Belastung
schrittweise verifiziert und validiert. In Abschnitt 6.1 wird dazu anhand bestimmter Eigen-
schaften des Modells gezeigt, dass die T-Elementformulierung korrekt implementiert wurde.
In Abschnitt 6.2 wird dann durch Vergleich mit einem fein vernetzten Vergleichsmodell
aus Standardelementen gezeigt, dass die mit dem T-Element berechneten Lösungen die
vorliegende Rissspitzenbelastung sehr genau wiedergeben. Bei einer Erhöhung der An-
zahl der berücksichtigten Ordnungen Kmax konvergieren die einzelnen Komponenten der
Spannungen gegen die Vergleichslösungen. Desweiteren wird die Berechnung von freien
Innenknoten untersucht, die im betrachteten Beispiel für den kubischen Verschiebungsrah-
men ebenfalls gegen die Lösung aus dem FE-Modell konvergiert. Das in diesem Kapitel
vorgestellte Validierungsbeispiel wird in Anhang A.2, Anhang A.3 und Anhang A.4 um
weitere Validierungsbeispiele ergänzt.

In Abschnitt 6.3 wird die Kopplung des T-Elements mit einem grob vernetzten FE-Modell
untersucht. Dabei zeigt sich, dass die berechnete Rissspitzenbelastung des gekoppelten
Modells wiederum gegen die Vergleichslösung konvergiert. Der Sprung im Verlauf der
Spannungen aus der gekoppelten Simulation an den Positionen x = 22.5 mm, y = 0 mm
und x = 27.5 mm, y = 0 mm und bei x = 0 mm, y = 22.5 mm und x = 0 mm, y = 27.5 mm
ist durch die Berücksichtigung der Verschiebungsrandbedingung mit Hilfe einer hybriden
Verschiebungsformulierung bedingt. Dadurch werden die Verschiebungsrandbedingungen
auf Γint nur näherungsweise erfüllt Der Spannungsintensitätsfaktor KIII wird bereits bei
einem kleinen Wert von Kmax sehr genau ermittelt.

Damit stehen auf Basis der T-Elementformulierung alle Funktionen zur Verfügung, um
einen Rissfortschrittsalgorithmus nach Abschnitt 4.9 zu implementieren. Eine Umsetzung
mit dem expliziten FE-Solver LS-DYNA in Abschnitt 6.5 bildet dabei den Abschluss
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der durchgeführten Auswertungen. Mit Hilfe der gekoppelten Simulation werden die
Ergebnisse der Modus III-Versuche aus Kapitel 5 zu einer iterativen Bestimmung von KIIIc

herangezogen. Aufgrund von technischen Rahmenbedingungen muss für die Simulation
dabei eine Annahme über die Knotenverschiebungen an den freien Innenknoten getroffen
werden, weil dort keine Kopplungsbedingungen zur Verfügung stehen. Damit kann gezeigt
werden, dass der Rissfortschrittsalgorithmus im Rahmen der Annahmen zur Simulation
von Risswachstum unter Modus III-Belastung eingesetzt werden kann.

Auf dem Weg zu einer anwendungsorientierten Methode zur Beschreibung von Risswachs-
tum in Schalenstrukturen müssen noch weitere Aufgabenstellungen gelöst werden. Dies
beinhaltet an erster Stelle das Problem mit gelöschten Standardelementen, die im Laufe des
Risswachstums durch das T-Element ersetzt werden. Nach Erreichen des Freigaberadius rr

bleibt bei der vorgestellten Umsetzung eine Lücke im Netz zurück, die zu freien Innenknoten
ohne Kopplungsbedingungen führt. Auch eine direkte Auswertung des Rissöffnungswinkels
γIII sowie gekrümmte Schalenstrukturen stellen weitere Herausforderungen dar, die bei
künftigen Weiterentwicklungen berücksichtigt werden können.
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7 Zusammenfassung
In der vorliegenden Arbeit wird mit Hilfe der hybriden Trefftzmethode ein spezielles Riss-
spitzenelement formuliert, das die Berechnung von Modus III-Belastungen in dünnwan-
digen, ebenen Schalenstrukturen ermöglicht. Die Elementformulierung basiert auf der
Kirchhoff-Platte, deren Verschiebungsfeld durch die biharmonische Gleichung gegeben ist.
Eine allgemeine Lösung der homogenen biharmonischen Gleichung ist durch zwei komplexe
Potentiale gegeben. Durch Einführung einer einzigen komplexen Randbedingung werden
diese Potentiale so gewählt, dass die natürlichen Randbedingungen am Rissufer erfüllt wer-
den. Mit dieser Basis von Lösungsfunktionen wird eine hybride Verschiebungsformulierung
des T-Elements entwickelt. Dabei werden die Verschiebungsrandbedingungen durch ein
erweitertes elastisches Potential berücksichtigt. Die Koeffizienten des Reihenansatzes für
die komplexen Potentiale ergeben sich aus der Minimierung des erweiterten elastischen Po-
tentials. Durch die Koeffizienten sind dann alle Größen im Elementgebiet festgelegt. Für die
Auswertung der Belastungen an der Rissspitze ergibt sich der Spannungsintensitätsfaktor
direkt aus den berechneten Koeffizienten.

Zusammen mit ebenen Elementformulierungen für Modus I/II-Belastung entsteht aus
dem vorgestellten T-Element eine ebene Schalenformulierung, mit der beliebige Mo-
dus I/II/III-Belastungen im Rahmen der LEBM berechnet werden können. Das T-Schalen-
element bildet im weiteren Verlauf die Basis für einen Rissfortschrittsalgorithmus zur
gekoppelten Simulation von Rissausbreitung. Dazu wird das T-Element, welches die
Rissspitze enthält, mit Standardelementen für den unkritischen Bereich eines Bauteils
verbunden. Der Vorteil dieser Methode ist eine effiziente und zugleich genaue Modellierung
der Belastungen an der Rissspitze. Die Kopplung kann dabei sowohl mit impliziten als
auch mit expliziten, nichtlinearen FE-Modellen erfolgen, solange im Kopplungsbereich
nur Kleinbereichsfließen auftritt. Die Vorteile der Methode treten in Kombination mit
expliziten FE-Simulationen besonders deutlich hervor, weil dabei eine Verringerung der
stabilen Zeitschrittweite durch Feinvernetzung im Bereich der Rissspitze vermieden wird.

Ein wesentlicher Bestandteil des Rissfortschrittsalgorithmus ist darüber hinaus die
Beschreibung des materialspezifischen Risswiderstands aus Versuchen. Im Rahmen der
vorliegenden Arbeit wird dazu eine direkte geometrische Auswertung des Rissöffnungswin-
kels mit Hilfe des 3D-Bildkorrelationsverfahrens durchgeführt. Eine Möglichkeit, um von
dem dabei gemessenen Rissöffnungswinkel zu einem kritischen Spannungsintensitätsfaktor
zu gelangen, ist die iterative Simulation des Versuchsaufbaus. Bei der Simulation wird
dazu der Wert für den kritischen Spannungsintensitätsfaktor so lange angepasst, bis die
Ergebnisse der Simulation mit den Versuchen übereinstimmen.

Die Validierung des T-Elements erfolgt schrittweise, um die korrekte Implementierung
der Elementformulierung und die Konvergenz der berechneten Lösungen gegen die Ver-
gleichslösungen sicherzustellen. Diese werden aus impliziten FE-Simulationen mit hoher
Netzfeinheit berechnet. Als Ergebnis der Validierung zeigt sich eine gute Übereinstimmung
der Vergleichslösungen mit dem T-Element. Danach wird die Validierung auch für die
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gekoppelte Simulation durchgeführt, wobei die berechnete Lösung wieder gut mit der
Vergleichslösung übereinstimmt.

Abschließend wird eine Implementierung des Rissfortschrittsalgorithmus vorgestellt, die
für die iterative Ermittlung des Spannungsintensitätsfaktors aus den Versuchen eingesetzt
wird. Durch das Löschen von Standardelementen, die im Laufe der Simulation durch das
T-Element ersetzt werden, ergeben sich bei der gekoppelten Simulation freie Innenknoten
ohne Kopplungsbedingung. Aus diesem Grund müssen die Knotenverschiebungen an den
Innenknoten bei der gezeigten Umsetzung des Rissfortschrittsalgorithmus abgeschätzt wer-
den. Eine Weiterentwicklung in diesem Bereich kann die Prognosefähigkeit der gekoppelten
Simulation weiter verbessern.

Desweiteren gibt es auch Ansätze für die Weiterentwicklung der T-Elementformulierung.
Ein Ansatz ist die Erweiterung der Funktionenbasis von Ansatzfunktionen durch partikuläre
Lösungen [49]. Mit diesen Anteilen können die einfachen streifenförmigen Modelle zur Be-
schreibung von Rissspitzenplastizität nach [13] und [134] sowie einige Kohäsivzonenmodelle
nach [135, 136] modelliert werden. Eine Erweiterung mit partikulären Lösungen ist in [93]
dargestellt. Ebenso kann das Konzept der T-Elemente auch in eine XFEM-Formulierung
übertragen werden, was zusätzliche Vorteile bringen kann [97].

Zusammengefasst leistet die vorgestellte Elementformulierung als Teil des Rissfortschritt-
salgorithmus einen Beitrag zur Verbesserung der Simulation von Modus III-Anteilen in
dünnwandigen Blechbauteilen mit einem Riss. Das T-Element ermöglicht dabei eine genaue
Auswertung der Spannungen und des Spannungsintensitätsfaktors an der Rissspitze. Bei
der vollständigen Kopplung aller Elementknoten weist auch die gekoppelte Simulation
diese hohe Genauigkeit auf.
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A Weitere Auswertungsergebnisse

A.1 Weg-, Kraft- und Potentialverläufe der Versuche
Alle Versuche wurden auf einer Universalzugprüfmaschine mit der gleichen Vorschub-
geschwindigkeit durchgeführt. Zur Überprüfung der im Datenblatt angegebenen Vor-
schubgeschwindigkeit von 0.15809 mm/s = 9.4852 mm/min wurde zusätzlich eine lokale
Wegmessung mit einem Clip-Gage nach Abb. 5.7 durchgeführt. Bei den Versuchen wird
bei t ≈ 300 s die maximale Messlänge des eingesetzten Clip-Gages von 50 mm erreicht. Die
Ergebnisse für alle durchgeführten Versuche sind in Abb. A.1 dargestellt. Die Differenz
zwischen der aus der Vorschubgeschwindigkeit berechneten Auslenkung ∆z in z-Richtung
des Versuchskoordinatensystems und der lokalen Wegmessung ist exemplarisch für Pro-
be 13 eingezeichnet. Vor Versuchsbeginn wird bei allen Versuchen eine Vorspannkraft
von ungefähr 1000 N aufgebracht. Bei den Kraftverläufen in Abb. A.2 handelt es sich um
die im Laststrang gemessene Gesamtkraft für die Auslenkung beider Proben. Bei den
Potentialverläufen in Abb. A.3 ist jeweils die Differenz zum Referenzpotential ∆φ0 bei
Versuchsbeginn angegeben.
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Abbildung A.1: Ergebnisse der lokalen Wegmessung der 13 durchgeführten Versuche und
aus der Vorschubgeschwindigkeit berechnete Auslenkung ∆z. Für Pro-
be 13 ist zusätzlich die Differenz zwischen lokaler Wegmessung und ∆z
angegeben.
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Abbildung A.2: Kraft-∆z-Verläufe aller durchgeführten Versuche

0 20 40 60 80 1000

5 · 10−2

0.1

0.15

0.2

0.25

∆z [mm]

∆
φ

[m
V

]

Probe 1
Probe 2
Probe 3
Probe 4
Probe 5
Probe 6
Probe 7
Probe 8
Probe 9
Probe 10
Probe 11
Probe 12
Probe 13

Abbildung A.3: Potential-∆z-Verläufe aller Versuche
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Abbildung A.4: Verschiebungsfeld w (x, y) und aus den vorgegebenen Knotenverschiebun-
gen berechneter kubischer Verschiebungsrahmen w̃ für Kmax = 96

Beim Validierungsbeispiel aus Abschnitt 6.2 wird ein symmetrischer Knotenverschie-
bungsvektor vorgegeben. Hier wird das Beispiel auf einen unsymmetrischen Knotenver-
schiebungsvektor verallgemeinert. Dieser lautet

ũ =



0.675 0.744 −0.394
2.445 0.676 −0.378
1.743 0.656 −0.180
1.442 0.572 −0.084
0.000 0.577 0.000

−1.800 0.590 0.070
−1.900 0.690 0.220
−2.900 0.700 0.390
−1.600 0.800 0.370



9×3

. (A.1)

Dabei sind die Verschiebungen in der ersten Spalte in mm und die Rotationen um die
x- bzw. y-Achse in der zweiten und dritten Spalte in mm

mm angegeben. Die ersten beiden
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Abbildung A.5: Spannungsverläufe entlang der x-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0 mm ≤ x ≤ 2.5 mm sind die Spannungen am oberen
Rissufer angegeben.

Ordnungen des Koeffizientenvektors und die Starrkörperanteile für Kmax = 96 sind

A =



0.054178439817838 + i 0.005880621012223i
−0.008374981537275 − i 0.032200901654703i

...
−0.167766292678175 + i 0.000000000000000i
−0.146160263710225 − i 0.940182393644532i

...



2(96+2)×1

. (A.2)

Die FE-Lösung für den Spannungsintensitätsfaktor ist KV CCT
III = 34.15029 GPa

√
mm und
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für das T-Element erhält man mit Kmax = 96

KT
III =

√
2π · < [A [1]] = 34.88574 GPa

√
mm . (A.3)

Die Spannungskomponenten an der Position t/2 = 0.75 mm entlang der x-Achse sind in
Abb. A.5 und entlang der y-Achse in Abb. A.6 dargestellt. In Abb. A.4 ist das berechnete
Verschiebungsfeld w (x, y) für Kmax = 96 und der aus dem Knotenverschiebungsvektor û
konstruierte kubische Verschiebungsrahmen w̃ abgebildet. Zusätzlich ist auch die mit dem
T-Element berechnete von-Mises-Spannung σv angegeben.
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Abbildung A.6: Spannungsverläufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.3 Weiteres Validierungsbeispiel
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Abbildung A.7: Elementgeometrie in der xy-Ebene. Die Nummerierung der Knoten erfolgt
gegen den Uhrzeigersinn von n = 1, . . . , 12.

Der vorgegebene Knotenverschiebungsvektor ist

ũ =



1.130 0.0857 −0.02813
1.340 0.0857 −0.05777
1.210 −0.1000 −0.1008
1.080 −0.0650 −0.0338
0.970 0.0980 −0.0338
0.730 0.1310 −0.2499
0.140 0.0200 −0.2950
0.050 0.0200 0.1380

−0.640 0.0978 0.0935
−0.670 0.0300 0.0560
−0.810 −0.0057 0.0560
−0.830 −0.0057 0.4309



12×3

. (A.4)

Dabei sind die Verschiebungen in mm und die Rotationen in mm
mm angegeben. Die ersten

beiden Ordnungen des berechneten Koeffizientenvektors und die Starrkörperanteile für
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Kmax = 86 sind

A =



0.041638229161590 + i 0.000292462656891
−0.001891205952636 − i 0.037045619060117

...
0.276119499676796 + i 0.000000000000000
0.006934640095963 − i 0.570480235134562



(86+2)×1

. (A.5)
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Abbildung A.8: Spannungsverläufe entlang der x-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0 mm ≤ x ≤ 3 mm sind die Spannungen am oberen
Rissufer angegeben.

Aus dem FE-Modell wird KV CCT
III = 26.355 GPa

√
mm ermittelt. Der Spannungsintensi-

tätsfaktor für das T-Element mit Kmax = 86 ist

KT
III =

√
2π · < [A [1]] = 26.811 GPa

√
mm . (A.6)
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Die Elementgeometrie ist in Abb. A.7 dargestellt, die aus den vorgegebenen Knotenver-
schiebungen resultierenden Spannungsverläufe an der Position t/2 = 0.75 mm sind in
Abb. A.8 und Abb. A.9 zusammengefasst.
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Abbildung A.9: Spannungsverläufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.4 Polygonförmiges Element
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Abbildung A.10: Elementgeometrie in der xy-Ebene. Die Nummerierung der Knoten erfolgt
gegen den Uhrzeigersinn von n = 1, . . . , 11.

Der vorgegebene Knotenverschiebungsvektor ist

ũ =



1.43 0.67 −0.40
2.35 0.71 −0.25
3.21 0.75 −0.14
2.67 0.76 −0.03
2.11 0.77 0.07

−0.17 0.80 0.16
−1.80 0.82 0.19
−2.20 0.84 0.25
−2.43 0.88 0.43
−2.43 0.78 0.48
−1.44 0.74 0.59



11×3

. (A.7)

Dabei sind die Verschiebungen in mm und die Rotationen in mm
mm angegeben. Die Element-

geometrie ist in Abb. A.10 dargestellt. Für den vorgegebenen Knotenverschiebungsvektor
(A.7) wird analog zu Abschnitt 6.1 nochmals die Konvergenz der Lösung gegen den aus
den Knotenverschiebungen konstruierten Verschiebungs- und Rotationsrahmen untersucht.
Die Ergebnisse sind in den Abb. A.11 und A.12 dargestellt.

Die ersten beiden Ordnungen des berechneten Koeffizientenvektors und die Starrkörpe-
ranteile für Kmax = 96 sind

A =



0.050579938828382 − i 0.002049407692810
−0.000817840595043 − i 0.030267543512122

...
0.259574594932309 + i 0.000000000000000

−0.070354006588675 − i 1.151894934168572



(96+2)×1

. (A.8)
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Abbildung A.11: Links ist die mit dem T-Element berechnete Lösung für w in Abhän-
gigkeit von Kmax sowie der aus den Knotenverschiebungen konstruierte
Verschiebungsrahmen w̃ dargestellt, rechts die verbleibende Abweichung
bei Kmax = 96. s beschreibt einen Umlauf entlang des Verschiebungsran-
des von Knoten 1 bis Knoten 11.
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Abbildung A.12: Links ist die mit dem T-Element berechnete Lösung für w,n in Abhän-
gigkeit von Kmax sowie der aus den Knotenverschiebungen konstruierte
Rotationsrahmen w̃,n dargestellt, rechts die verbleibende Abweichung bei
Kmax = 96. s beschreibt einen Umlauf entlang des Verschiebungsrandes
von Knoten 1 bis Knoten 11.
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Abbildung A.13: Spannungsverläufe entlang der x-Achse des Elementkoordinatensystems.
Im Bereich des Risses 0 mm ≤ x ≤ 3 mm sind die Spannungen am oberen
Rissufer angegeben.

Aus dem FE-Modell wird KV CCT
III = 32.3559 GPa

√
mm ermittelt. Der für das T-Element

mit Kmax = 96 berechnete Spannungsintensitätsfaktor ist

KT
III =

√
2π · < [A [1]] = 32.5687 GPa

√
mm . (A.9)

Die Elementgeometrie ist in Abb. A.10 dargestellt, die Spannungsverläufe an der Position
t/2 = 0.75 mm sind in Abb. A.13 und Abb. A.14 zusammengefasst.
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Abbildung A.14: Spannungsverläufe entlang der y-Achse mit Rissspitze bei y = 0 mm
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A.5 Gekoppelte Simulation mit unregelmäßigem Netz
In Abb. A.15 und Abb. A.16 sind für die gekoppelte Simulation aus Abschnitt 6.3 das
unregelmäßige Netz für das Beispiel T 2 und die Geometrie des T-Elements mit den
Elementknoten n = 1, . . . , 17 dargestellt. In Tab. A.1 sind die p-Konvergenz in Abhängigkeit
von Kmax für KIII sowie die elastische Energie U für T 1 und T 2 im Vergleich dargestellt.
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Abbildung A.15: Unregelmäßiges Netz für die gekoppelte Simulation T 2 aus Abschnitt 6.3.
Das T-Elementgebiet ΩT ist rot dargestellt und der Rissverlauf entlang
der x-Achse grün.
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Abbildung A.16: T-Element mit den Kopplungsknoten n = 1, . . . , 17 und Riss (rot)
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A.6 Ebene Spannungsanteile des Schalenelements
Die aus dem ebenen Anteil der Belastung des Schalenelements nach Abschnitt 6.4 resultie-
renden Spannungen an der Position t/2 = 0.75 mm sind in Abb. A.17 für einen Schnitt
entlang der x-Achse und in Abb. A.18 für einen Schnitt entlang der y-Achse zusammen-
gefasst. Als Vergleichslösungen sind die Ergebnisse aus dem FE-Grobmodell und dem
FE-Feinmodell nach Abschnitt 6.4 angegeben.
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Abbildung A.17: Spannungskomponenten aus der ebenen Belastung nach Abschnitt 6.4
entlang der x-Achse. Im Bereich des Rissufers mit 0 mm ≤ x ≤ 25 mm
sind dabei die Spannungen am oberen Rissufer angegeben. Das T-Element
befindet sich im Bereich −2.5 mm ≤ x ≤ 2.5 mm. Als Vergleichslösungen
sind die Ergebnisse aus dem FE-Grobmodell und dem FE-Feinmodell
angegeben.
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Abbildung A.18: Spannungskomponenten aus der ebenen Belastung nach Abschnitt 6.4
entlang der y-Achse mit Rissspitze bei y = 0 mm. Das T-Element befindet
sich im Bereich −2.5 mm ≤ y ≤ 2.5 mm. Als Vergleichslösungen sind die
Ergebnisse aus dem FE-Grobmodell und dem FE-Feinmodell angegeben.

A.7 Einzelschritte der Gesamtsimulation
In Abb. A.19 sind einige Schritte aus der Gesamtsimulation nach Abschnitt 6.5 für den Fall
i = 2 mit KIIIc = 95 MPa

√
m dargestellt. Die zugehörigen Werte für die Probenauslenkung

∆z und die Rissverlängerung ∆a sowie die von-Mises-Spannung σv sind ebenfalls mit
angegeben. Das T-Element befindet sich jeweils im Bereich der Rissspitze.
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Abbildung A.19: Verformte Probe aus dem Iterationsschritt i = 2 der Gesamtsimulation
nach Abschnitt 6.5 mit KIIIc = 95 MPa

√
m.

∆z 0.00 0.87 9.28 10.14 16.50 26.50
[mm] 43.50 56.17 57.79 57.79 58.36 58.37
∆a 0.0 7.0 17.0 35.0 36.0 40.0

[mm] 40.0 56.0 75.0 90.0 113.0 114.5
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A.8 Elastische Verzerrungsenergie
In Tab. A.2 sind für alle vier in Abschnitt 6.2 beschriebenen Validierungsbeispiele die
elastischen Verzerrungsenergien U der entsprechenden Vergleichslösungen und die mit dem
T-Element berechneten Lösungen zusammengefasst. Die Lösungen für das T-Element wer-
den mit Kmax = 2 und Kmax = 96 sowie mit linearem und kubischem Verschiebungsrahmen
ausgewertet.

Tabelle A.2: Vergleich der elastischen Verzerrungsenergien U der Vergleichsmodelle und
des T-Elements für die vier durchgeführten Validierungsbeispiele. Beim T-
Element erfolgt die Auswertung von U zum Einen durch Integration von∫

σ : ε über ΩT und mit Hilfe von Glg. (4.47).

Beispiel- Vergleichslösung T-Element T-Element Kmax Verschiebungs-
nr. U [J]

∫
σ : ε [J] 1

2ûT KT û [J] rahmen

1 7.094065 7.05473 7.05473 2 kub.
1 7.094065 7.08804 7.08804 96 kub.
1 24.63790 7.30420 7.30420 2 lin.
1 24.63790 19.3157 19.3157 96 lin.
2 38.03459 10.9888 10.9888 2 kub.
2 38.03459 37.8505 37.8505 96 kub.
2 64.02139 11.2908 11.2908 2 lin.
2 64.02139 50.8257 50.8257 96 lin.
3 254.5857 6.77832 6.77832 2 kub.
3 254.5857 45.2790 45.2790 96 kub.
3 257.5246 6.75607 6.75607 2 lin.
3 257.5246 42.9024 42.9024 96 lin.
4 20.32251 13.4107 13.4107 2 kub.
4 20.32251 20.1849 20.1849 96 kub.
4 26.55620 13.6204 13.6204 2 lin.
4 26.55620 24.6291 24.6291 96 lin.

A.9 Plattentheorien im Vergleich
In Abb. A.21 ist für das Validierungsbeispiel aus Abschnitt 6.2 der Verlauf von w entlang
der x-Achse (y = 0) für das obere und untere Rissufer dargestellt. Die Lösung aus dem
feinvernetzten FE-Modell wird dabei mit dem Ergebnis des T-Elements mit Kmax = 2 und
kubischem Verschiebungsrahmen verglichen.

In Abb. A.22 ist für das Validierungsbeispiel aus Abschnitt 6.3 der Verlauf von w entlang
der x-Achse (y = 0) für das obere Rissufer dargestellt. Dabei werden für das feinvernetzte
FE-Modell zwei verschiedene Elementformulierungen miteinander verglichen. Dies ist zum
einen die Elementformulierung auf Basis der Plattentheorie von Kirchhoff, die für alle
Validierungsrechnungen im Rahmen dieser Arbeit eingesetzt wird, und zum anderen eine
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Abbildung A.20: Verlauf der Verzerrungsenergiedichte entlang der x-Achse (y = 0) des
Validierungsbeispiels aus Abschnitt 6.2. Die Rissspitze befindet sich bei
x = 0 mm.

Elementformulierung nach der Theorie von Reissner-Mindlin. Als dritte Modellvarian-
te wird die Vernetzung der Platte mit regelmäßigen Volumenelementen herangezogen.
Dazu wird das feinvernetzte FE-Modell in Dickenrichtung fünfmal expandiert, was zu
160 000 × 5 = 800 000 Volumenelementen führt. In Tab. A.3 sind die mit VCCT ermittelten
Spannungsintensitätsfaktoren für die verschiedenen Formulierungen zusammengefasst.
Beim 3D-Modell sind die Spannungsintensitätsfaktoren an der Position t = 0 mm in
Dickenrichtung angegeben. In Abb. A.23 ist der Verlauf aller Spannungskomponenten
entlang der x-Achse (y = 0) am oberen Rissufer für die drei verschiedenen Formulierungen
von Standardelementen dargestellt. Bei den Volumenelementen erfolgt die Auswertung der
Spanunngen an der Plattenoberseite im Abstand t = 0.75 mm von der Mittelebene.

Tabelle A.3: Ermittelte Spannungsintensitätsfaktoren für das Validierungsbeispiel aus
Abschnitt 6.2 mit verschiedenen Elementformulierungen

Modell KI KII KIII

Kirchhoff 0.0 0.0 2.575431
Reissner-Mindlin 0.0 0.0 2.229678

Volumenele. 0.0 2.477257 2.109632
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Abbildung A.21: Verlauf von w entlang der x-Achse (y = 0) für das Validierungsbeispiel
aus Abschnitt 6.2. w ist dabei für das obere und untere Rissufer dargestellt
und die Rissspitze befindet sich bei x = 0 mm.

-25 -15 -5 5 15 250

5

10

15

0
x [mm]

w
[m

m
]

Kirchhoff
Reissner

3D

Abbildung A.22: Verlauf von w entlang der x-Achse (y = 0) für das Validierungsbeispiel
aus Abschnitt 6.2. Es werden drei verschiedene Elementformulierungen
von Standardelementen miteinander verglichen. Die Rissspitze befindet
sich bei x = 0 mm.
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