
Ökonomische Erkenntnisse zur algorithmischen Kollusion

Die allgemeine ökonomische Literatur zu tacit collusion hat aufgezeigt, dass 
einige der Faktoren, welche Kollusion befördern können, durch algorithmi­
sche Preissetzung verstärkt auftreten. Zugleich wurden die generellen Hür­
den deutlich, aufgrund derer die Gefahr einer tacit collusion grundsätzlich als 
gering eingeschätzt wird. Im Folgenden werden die wichtigsten Erkenntnisse 
der Aufsätze, die sich sich explizit mit den Auswirkungen algorithmischer 
Preissetzung auf tacit collusion auseinandergesetzt haben, dargestellt und die 
Art der Untersuchungen zusammengefasst. Beginnend mit den theoretischen 
Auseinandersetzungen zur algorithmischen Preissetzung (I.), werden neben 
Computersimulationen (II.) auch auf Felddaten beruhende Analysen (III.) 
vorgestellt. Abschließend werden die Befunde in einem Zwischenergebnis 
zusammengefasst (IV.).

Theoretische Ansätze

Verschiedene theoretische Modelle haben versucht, die Besonderheiten algo­
rithmischer Preissetzung herauszustellen und ihre Auswirkungen auf den 
Wettbewerb zu analysieren. Auf Grundlage der bekannten Modelle werden 
hierbei unterschiedliche Eigenschaften betrachtet, die die algorithmische 
Preissetzung auszeichnen oder in Zukunft auszeichnen könnten.

Informationsaustausch durch Preissetzungsalgorithmen

Bruno Salcedo betrachtet ein dynamisches Bertrand-Marktmodell, in dem 
beide Wettbewerber algorithmische Preissetzung einsetzen.651 In seinem 
Modell kommt der Autor zu dem Ergebnis, dass die langfristigen Profite 
durch Algorithmen nahe dem Monopolgewinn liegen. Salcedo schreibt, dass 
tacit collusion in seinem Modell nicht nur ein mögliches Gleichgewicht 
sei, sondern sogar „inevitable.“652 Allerdings trifft der Autor hierfür einige 
Annahmen, die in der Realität grundsätzlich nicht gegeben sein dürften. 

D.

I.

1.

651 Salcedo (2015).
652 Salcedo (2015), S. 3.
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Demnach wird angenommen, dass die Algorithmen der Unternehmen in der 
Lage sind, die Strategie des Wettbewerbers nach einer gewissen Zeit abzulei­
ten oder den Algorithmus ganz zu entschlüsseln. Aus diesem Grund kennen 
die Unternehmen in seinem Modell nach einer zufällig bestimmten und vom 
Wettbewerber unabhängigen Zeit die Preissetzungsstrategie ihres Wettbe­
werbers und können ihre Strategie entsprechend anpassen.653 Darüber hi­
naus setzt das Modell voraus, dass die Strategien der Algorithmen nur lang­
fristig und nie zeitgleich verändert werden können.654 Nur unter diesen Vor­
aussetzungen kommt Salcedos Modell zu dem Ergebnis, dass die Algorithmen 
kollusive Marktergebnisse zur Folge haben. 

Bessere Vorhersage der Zahlungsbereitschaft durch Preisalgorithmen

In Anlehnung an die Literatur zum Verhältnis von Markttransparenz zur 
Kollusion modellieren Jeanine Miklós-Thal und Catherine Tucker ebenfalls 
einen Bertrand-Markt und setzen sich mit dem Einfluss einer besseren 
Vorhersage der Nachfrage durch Algorithmen auseinander.655 In ihrem 
Modell variiert die Zahlungsbereitschaft der Nachfrage zufällig: Mit je fünfzig 
Prozent Wahrscheinlichkeit haben die potenziellen Kundinnen eine hohe 
beziehungsweise eine niedrige Zahlungsbereitschaft für das angebotene Gut. 
Die Unternehmen können die Zahlungsbereitschaft der Nachfrage prognos­
tizieren, bevor sie eine Preisentscheidung treffen und sich so der erwarteten 
Nachfrage anpassen.656 Hierbei kommen die Autoren zu dem Ergebnis, dass 
eine genauere Vorhersage der Zahlungsbereitschaft auch positive Auswirkun­
gen auf den Wettbewerb haben kann. Demnach erhöht sich der Anreiz, 
den Wettbewerber zu unterbieten, wenn sich eine hohe Nachfrage prognos­
tizieren lässt.657 Jason O’Conner und Nathan E. Wilson setzen sich ebenfalls 
mit der besseren Vorhersage der Zahlungsbereitschaft durch Algorithmen 
auseinander.658 Im Gegensatz zu Miklós-Thal und Tucker bedienen sie sich 
eines anderen Grundmodells, dem Modell der Nachfrageungewissheit von 

2.

653 Salcedo (2015), S. 9 f.
654 Salcedo (2015), S. 3 f.
655 Miklós-Thal/C. Tucker (2019), ManSci 65 (4), 1552; Ihr Modell baut auf dem Kollusi­

onsmodell von Julio J. Rotemberg und Garth Saloner auf (Theorie der Preiskriege in 
Zeiten von Hochkonjunktur), Rotemberg/Saloner (1986), AER 76 (3), 390.

656 Miklós-Thal/C. Tucker (2019), ManSci 65 (4), 1552 (1554).
657 Miklós-Thal/C. Tucker (2019), ManSci 65 (4), 1552 (1557).
658 O’Connor/N. E. Wilson (2021), Information Economics and Policy 54, 100882.
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Green und Porter.659 Konnten sich die Unternehmen im vorherigen Modell 
perfekt überwachen, haben die Unternehmen bei O’Conner und Wilsons An­
satz nur Informationen über das endgültige Marktergebnis.660 In ihrer Ana­
lyse zeigt sich ein zweiseitiger Effekt der algorithmischen Vorhersage: Die 
bessere Vorhersage kann zum einen bei sich nicht verändernder Marktstruk­
tur Kollusion wahrscheinlicher machen, zum anderen erhöht sie aber auch 
den Anreiz für eine Abweichung.661 Die Ergebnisse entsprechen dem diffe­
renzierten Bild, welches die ökonomischen Modelle zur Marktransparenz 
bereits vorgezeichnet haben.662

Der frequenzielle Wettbewerb mit Algorithmen

Zach Brown und Alexander MacKay analysieren Daten von fünf Online-
Händlern und nutzen diese im Anschluss, um den Erkenntnissen entspre­
chende Märkte zu modellieren.663 Ihre Analyse der Online-Märkte zeigt auf, 
dass Verkäuferinnen ihre Preise in regelmäßigen Intervallen anpassen, wobei 
sich die Zeitpunkte der Anpassung zwischen den Unternehmen unterschei­
den. Des Weiteren stellen sie das schnelle Anpassen einiger Händler an 
Preisanpassungen von Unternehmen mit einer geringeren Preisfrequenz fest, 
was darauf hindeutet, dass automatisierte Systeme zum Einsatz kommen.664 

Brown und MacKay modellieren einen Markt mit asymmetrischer Preisset­
zung und homogenen Gütern. Hierbei können die Unternehmen in einem 
ersten Modell in unterschiedlichen Frequenzen Preise festlegen.665 Darüber 
hinaus bewerten sie algorithmische Preissetzung als ein Werkzeug, um sich 
als Unternehmen glaubhaft bezüglich einer Preisstrategie zu verpflichten. 
Deshalb erweitern sie ihr Modell in einem nächsten Schritt und gehen – 
ähnlich wie Salcedo – von einem Duopol aus, in dem die Unternehmen einen 
Preissetzungsalgorithmus wählen, welchen sie in regelmäßigen Intervallen 
anpassen können. Zwischen diesen Intervallen ist der Algorithmus jedoch auf 
eine Strategie festlegt, ungeachtet dessen, ob sie kurzfristig zum optimalen 

3.

659 Green/R. H. Porter (1984), Econometrica 52 (1), 87; siehe hierzu Kapitel C. I. 2. d) 
bb) (2).

660 Vgl. O’Connor/N. E. Wilson (2021), Information Economics and Policy 54, 100882 (3).
661 O’Connor/N. E. Wilson (2021), Information Economics and Policy 54, 100882 (18).
662 Siehe hierzu Kapitel C. II. 2. d) bb) (2).
663 Z. Brown/MacKay (2022), AEJ: Micro (im Erscheinen).
664 Z. Brown/MacKay (2022), AEJ: Micro (im Erscheinen) (11).
665 Z. Brown/MacKay (2022), AEJ: Micro (im Erscheinen) (15 ff.).
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Ergebnis führt.666 Ihre Ergebnisse zeigen auf, dass die Asymmetrien in der 
Preissetzung zu höheren Preisen als in einem synchronen Bertrand-Modell 
führen, unabhängig davon, ob sie aufgrund der differierenden Frequenzen 
oder der langfristigen Festlegung auf eine Strategie zu Stande kommen.667 

Hieraus schließen Brown und MacKay, dass „das Bertrand-Gleichgewicht auf 
Online-Märkten eher die Ausnahme als die Regel sein könnte.“668

Simulationen

Neben rein theoretischen Arbeiten zu algorithmischer Preissetzung gibt 
es einige Arbeiten, in denen Wissenschaftlerinnen in Simulationen selbst­
lernende Algorithmen in einem Marktmodell zum Einsatz bringen. Im 
Kontrast zu Laborexperimenten treffen hierbei ausschließlich Algorithmen 
Entscheidungen, sodass sich die Interaktion mehrerer Algorithmen und ihre 
Fähigkeiten in einem Marktumfeld analysieren lassen. In einem Großteil der 
bisher durchgeführten Simulationen kommen selbstlernende Algorithmen 
zum Einsatz, welche sich des reinforcement learnings bedienen. Die Entschei­
dungen der hierbei verwendeten sogenannten Q-learning Algorithmen wer­
den nach einer abgeschlossenen Lernphase im Wettbewerb untereinander 
analysiert. Im Folgenden werden zunächst die Eigenschaften der Q-learning 
Algorithmen dargestellt (1.). Anschließend wird ein Überblick über die wich­
tigsten Veröffentlichungen und Ergebnisse auf diesem Gebiet präsentiert (2.).

Q-LearningAlgorithmen

Q-learning Algorithmen gehören zu den am häufigsten verwendeten und 
bekanntesten Algorithmen aus dem Bereich des reinforcement learnings.669 

Das auf Christopher J. C. H. Watkins zurückgehende Q-learning wurde ur­
sprünglich zur Lösung von Markow-Entscheidungsproblemen entwickelt.670 

Hierbei handelt es sich um dynamische Entscheidungsprobleme mit mehre­

II.

1.

666 Z. Brown/MacKay (2022), AEJ: Micro (im Erscheinen) (23 ff.).
667 Z. Brown/MacKay (2022), AEJ: Micro (im Erscheinen) (20).
668 Aus dem Englischen übersetzt, siehe Z. Brown/MacKay (2022), AEJ: Micro (im 

Erscheinen) (41).
669 Stone, in: Sammut/Webb (Hrsg.), Encyclopedia of Machine Learning and Data mi­

ning, S. 1033.
670 Watkins, Learning from Delayed Rewards.
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ren Perioden und Unsicherheit über die Folge einer Entscheidung.671 Mittels 
Ausprobieren (trial and error) versucht der Algorithmus ohne Vorkenntnisse 
(model-free learning), den langfristigen Gewinn durch die hierfür bestmögli­
che Handlung zu maximieren.672 Diese Form des Lernens wird als temporal 
difference learning bezeichnet.673 Der zu Beginn unerfahrene Algorithmus 
trifft eine Entscheidung und erhält durch die Folgen seiner Handlung 
Informationen, aus denen er Schlüsse für die zukünftigen Entscheidungen 
ziehen kann.674 Der Algorithmus beobachtet hierbei zunächst seine aktuelle 
Entscheidungssituation, trifft eine Entscheidung, bekommt eine Reaktion 
auf die Entscheidung und beobachtet die daraus folgende Entscheidungssi­
tuation.675 Durch wiederholtes Ausprobieren erlernt der Algorithmus, welche 
Handlung am vielversprechendsten ist, um den diskontierten langfristigen 
Gewinn zu maximieren.676 Q-learning muss dabei das Erkunden mit dem 
Ausnutzen kombinieren: Der Algorithmus steht dabei in dem Spannungsfeld, 
zum einen seine Handlungsoptionen umfassend zu erkunden (exploration) 
und zugleich das bereits erlernte Wissen zu nutzen (exploitation).677 

Mathematisch lässt sich das Vorgehen wie folgt darstellen: Betrachtet 
wird die Periode t, in der der Algorithmus einen Zustand (st   feststellt und 
eine Handlungsentscheidung trifft at  ∈  A st  ].678 Sowohl Zustands- als 
auch Handlungsraum sind hierbei endlich. Für jeden Zustand st  und jede 
Handlung at  erhält der Algorithmus eine Auszahlung πt  und gelangt zu 
einem neuen Zustand st + 1 .    Ziel des Algorithmus ist es,eine Strategie zu 
wählen,welche den erwarteten Nutzen unter Berücksichtigung des Diskon­
tierungsfaktors maximiert:  E  ∑t = 0∞ πt∗δt  .679 Hierbei ergibt sich aus einer 
Matrix der Zustände und der möglichen Handlungen je ein Wert für die 
Qualität einer Handlungsoption at in einem Zustand st  (Q-Wert). Dieser 
Q-Wert gibt die aktuelle Approximation des Nutzens einer Entscheidung 
an. Durch Ausprobieren kann der Algorithmus die Werte der Tabelle an­
hand seiner gewonnenen Erfahrungen aktualisieren und so die Auswirkung 

671 Hu/Yue, in: Hu/Yue (Hrsg.), Markov decision processes with their applications, S. 1.
672 Charniak, Introduction to Deep Learning, S. 119.
673 Stone, in: Sammut/Webb (Hrsg.), Encyclopedia of Machine Learning and Data mi­

ning, S. 1033.
674 Charniak, Introduction to Deep Learning, S. 117.
675 Watkins/Dayan (1992), Machine Learning 8 (3), 279 (281).
676 Watkins/Dayan (1992), Machine Learning 8 (3) (279).
677 Kaelbling et al. (1996), jair 4, 237 (243).
678 Nie/Haykin (1999), IEEE Trans. Veh. Technol. 48 (5) (1676).
679 Calvano et al. (2020), AER 110 (10), 3267 (3270).
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seiner Entscheidungen besser einschätzen. Der Q-Wert berücksichtigt den 
unmittelbaren sowie den diskontierten zukünftigen Gewinn. Indem der 
Algorithmus in einem Lernprozess wiederholt Entscheidungen trifft, ihre 
Folgen beobachtet und die entsprechende Zelle der Q-Matrix aktualisiert, 
verbessert er die Prognose. 

Trifft der Algorithmus eine Entscheidung in Periode t erhält er die Auszah­
lung πt   und gelangt in den Zustand  st + 1 .    Die entsprechende Zelle der 
Matrix  Q st, at    wird in der Folge aktualisiert Qneu st, at ,    wobei α  ∈   0,1   
als Faktor für den Lernfortschritt berücksichtigt wird und angibt, welches 
Gewicht dem neuen Wert beziehungsweise dem alten Wert gegeben werden 
soll.680 Dies ist notwendig, da die einzige Information über die Qualität 
eines Zuges in dem Wert der Zelle der Q-Matrix liegt und dieser nicht 
nur die neueste Erfahrung, sondern auch die zuvor gemachten Erfahrungen 
berücksichtigen sollte, um eine gute Prognose zu ermöglichen und um 
unwahrscheinliche Ergebnisse nicht überzubewerten.681 So besteht Qneu st, at   
aus einer Kombination des alten Q-Werts (multipliziert mit 1 − α ) sowie 
der neu gewonnenen Erfahrung (multipliziert mit α ), welche jeweiles den 
erwarteten Gewinn der folgenden Periode sowie den diskontierten Gewinn 
der zukünftigen Perioden angeben:

Qneu st, at = 1 − α  Q st, at +  α   πt +  δ∗ maxα Q st + 1, a  .
Alle übrigen Zellen (für s  ≠ st und a ≠ at   bleiben unverändert. Damit der 
Algorithmus eine möglichst genaue Prognose treffen kann,muss er alle 
Entscheidungen ausprobiert haben. Damit dies gelingt,trifft der Algorithmus 
in der Lernphase nicht immer die vermeintlich beste Entscheidung,sondern 
wählt mit der Wahrscheinlichkeit ε eine zufällige Handlungsoption aus 
(epsilon greedy exploration).682 Um die tatsächliche Gewinn-Matrix bestmög­
lich abzubilden, muss der Algorithmus darüber hinaus mehrfach dieselbe 
Entscheidung in demselben Zustand treffen, weshalb der Lernprozess viel 
Zeit in Anspruch nimmt.683

680 T. Klein, RJE 52 (3) (2021), 538 (545).
681 Charniak, Introduction to Deep Learning, S. 119.
682 Rodrigues Gomes/Kowalczyk (2009), ICML '09, 369 (370).
683 Calvano et al. (2020), AER 110 (10), 3267 (3272).
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Algorithmische Kollusion mittels Q-learning Algorithmen

Das Scheitern zu Konkurrieren

Ludo Waltman und Uzay Kaymak gehören zu den ersten, die den Einsatz von 
Q-learning Algorithmen in einer Marktumgebung untersuchten.684 Hierfür 
simulieren sie den Wettbewerb zwischen Algorithmen in Cournot-Oligopo­
len und variieren die Marktgröße zwischen den Simulationen, von zwei 
bis hin zu sechs Wettbewerbern.685 Für ihre Simulationen verwenden die 
Autoren sowohl Algorithmen mit der Fähigkeit vergangene Aktionen zu 
berücksichtigen (memory), als auch Algorithmen ohne ein solches „Gedächt­
nis“ (no memory).686 Je umfangreicher das memory eines Algorithmus ist, 
desto mehr Zustände (st ) berücksichtigt dieser als eigene Zelle innerhalb 
seiner Matrix. In der Simulation von Waltman und Kaymak können die 
Algorithmen, die über ein Gedächtnis verfügten, die Kombination aus ihrem 
eigenen Produktionslevel, sowie dem Produktionslevel der Wettbewerber 
aus der vorherigen Periode als einen eigenen Zustand berücksichtigen 
(memory one).687 

Innerhalb der memory one Algorithmen variieren die Autoren darüber 
hinaus die Weitsichtigkeit der Algorithmen der Wettbewerber. Während 
die weitsichtigen Algorithmen diskontierte zukünftige Gewinne in ihre 
Berechnung miteinbeziehen (δ = 0,9 ), berücksichtigen die kurzsichtigen Al­
gorithmen die Auswirkungen ihres Handelns auf zukünftige Gewinne nicht, 
sodass der Diskontierungsfaktor null entspricht (δ = 0 ).688 Alle Variationen 
werden über eine Millionen Perioden simuliert. 

Die Analyse der Algorithmen konzentriert sich auf ihr langfristiges Verhal­
ten, bei dem das zufällige Ausprobieren einer Handlung – das Training – 
bereits abgeschlossen ist (ε = 0 ). Ihre Ergebnisse zeigen, dass die Nutzung 
der q-learning Algorithmen sogar bei großen Märkten (n = 6) zu kollusivem 
Verhalten führt und das sowohl bei den memory one, als auch bei den no 
memory Algorithmen.689 Dieses Ergebnis ist insofern erstaunlich, als dass die 
Entscheidung der Algorithmen ohne Berücksichtigung der vorherigen Ent­
scheidung einem one-shot game gleicht. So sind mögliche Bestrafungen einer 

2.

a)

684 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275.
685 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275 (3280 ff.).
686 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275 (3282).
687 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275 (3282).
688 Hieraus ergibt sich für Qneu : Qneu st, at = 1 − α  Q st, at +  α   πt  .
689 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275 (3284).
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Abweichung vom kollusiven Verhalten nicht möglich, sofern die Unterneh­
men dieses Verhalten nicht mit in die Entscheidung einfließen lassen können. 
Auch die kurzsichtigen Algorithmen sollten kein Interesse an einer Kollusion 
haben, da sie die langfristigen Vorteile einer Kollusion unberücksichtigt las­
sen. Dadurch ist ein kooperatives Verhalten der Algorithmen irrational. Die 
Ergebnisse von Waltman und Kaymak deutet somit weniger auf ein Erlernen 
von kollusivem Verhalten hin, als vielmehr auf ein gescheitertes Erlernen 
wettbewerblichen Verhaltens.

Das Erlernen zu Kolludieren

Emilio Calvano et al. setzten sich ebenfalls mit der Frage selbstlernender 
Algorithmen und ihrem Einfluss auf den Wettbewerb auseinander.690 Die Au­
toren lassen memory one Q-learning Algorithmen in einem Bertrand-Duopol 
miteinander in den Wettbewerb treten. Die Algorithmen haben dabei in der 
Ausgangssituation (Baseline) die Auswahl zwischen 15 möglichen Preisen. In 
1.000 unabhängigen Simulationsdurchläufen (Sessions) pro Treatment lassen 
sie die Algorithmen mittels trial and error lernen, bis die optimale Strategie 
in einem Zustand für 100.000 Perioden konstant bleibt.691 Abhängig von 
der Häufigkeit des Ausprobierens zufälliger Handlungen (ε ), benötigten die 
Algorithmen zwischen 400.000 und mehreren Millionen Perioden, um den 
Prozess des Lernens abzuschließen und stabile Entscheidungen zu treffen.692 

Im Ergebnis zeigen Calvano et al., dass die Algorithmen kollusives Ver­
halten erlernen und im Duopol überwettbewerbliche Gewinne nahe dem 
Monopolgewinn erzielen.693 Anders als bei Waltman und Kaymak erreichen 
die Algorithmen überwettbewerbliche Marktpreise nämlich nur dann, sofern 
es sich nicht um no memory Algorithmen handelt oder der Diskontierungs­

b)

690 Calvano et al. (2020), AER 110 (10), 3267.
691 Calvano et al. (2020), AER 110 (10), 3267 (3273, 3276).
692 Die Autoren nutzen ein ε -greedy Modell, bei dem die zwischen den Algorithmen 

variierende Zahl der zufälligen Entscheidungen mit der Zeit abnahm, Calvano et al. 
(2020), AER 110 (10), 3267 (3274, 3276).

693 Betrachtet man die Gewinne als prozentualen Wert über dem Bertrand-Gleichge­
wicht, wobei 0 % dem Gewinn im wettbewerblichen Gleichgewicht und 100 % dem 
Monopolgewinn entsprechen, so erzielen die Algorithmen mit nahezu homogenen 
Gütern zwischen 70-90 % (∅ = 85 % ) zusätzlichen Gewinn im Duopol, Calvano et al. 
(2020), AER 110 (10), 3267 (3277 f.).
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faktor δ gering ist.694 Ein weiteres Argument dafür, dass die Algorithmen tat­
sächlich kollusives Verhalten erlernen, ergibt sich bei Betrachtung der Stra­
tegien. So kommen die Autoren in ihrer Analyse zu dem Ergebnis, dass die 
Algorithmen das Abweichen des Wettbewerbers von einer kollusiven Strate­
gie bestrafen und die Abweichungen so unrentabel machen.695 Nach einigen 
Perioden der Bestrafung kehren die Algorithmen wieder zu ihrer kollusiven 
Strategie zurück und erzielen überwettbewerbliche Gewinne. Dies ist sogar 
bei beidseitiger Abweichung der Fall.696 In ihren Simulationen betrachten 
Calvano et al. auch größere Oligopole. Zwar nimmt die Kollusion mit Zu­
nahme der Marktteilnehmer ab, allerdings kommen die Algorithmen auch in 
einem Markt mit drei oder vier Unternehmen zu suprakompetitiven Prei­
sen.697 

Wenngleich es für eine solche Feststellung an einer Kontrollgruppe mit 
menschlichen Teilnehmern mangelt, vermuten die Autoren aufgrund ihrer 
Ergebnisse, dass die Kollusion mit Anstieg der Marktgröße langsamer ab­
nimmt, als in vergleichbaren Märkten mit menschlicher Preissetzung. Die 
Autoren überprüfen ihre Ergebnisse im Duopol darüber hinaus unter Hinzu­
nahme von Kosten- und Nachfrageasymmetrien, stochastischer Nachfrage, 
der Produkthomogenität und Marktzutritten. Alle Faktoren beeinflussen 
das Marktergebnis, wenngleich sie nie dazu führen, dass die Kollusion 
zusammenbricht und die Unternehmen zum vollständigen Wettbewerb zu­
rückkehren.698

Die Bestätigung der Befunde in weiteren Simulationen

Neben Calvano et al. gibt es weitere Veröffentlichungen, in denen Wissen­
schaftlerinnen kollusives Verhalten in Simulationen mit Q-learning Algorith­
men feststellen. Timo Klein wählt einen ähnlichen Aufbau wie Calvano et 
al., indem er Algorithmen in einem Duopol untersucht, die miteinander im 
Preiswettbewerb stehen.699 Sein Ansatz unterscheidet sich dahingehend von 

c)

694 Calvano et al. (2020), AER 110 (10), 3267 (3280 f.).
695 Calvano et al. (2020), AER 110 (10), 3267 (3281 ff.).
696 Calvano et al. (2020), AER 110 (10), 3267 (3287).
697 So lagen die durchschnittlichen zusätzlichen Gewinne bei 64 % (n = 3) bzw. 56 % (n 

= 4), Calvano et al. (2020), AER 110 (10), 3267 (3288).
698 Calvano et al. (2020), AER 110 (10), 3267 (3289 ff.).
699 T. Klein, RJE 52 (3) (2021), 538.
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Calvano et al., dass er – vergleichbar mit den theoretischen Ansätzen zur 
algorithmischen Kollusion von Salcedo sowie Brown und MacKay –700 einen 
sequentiellen Preiswettbewerb betrachtet, bei dem die Preisentscheidungen 
asynchron erfolgen. Während der eine Algorithmus immer in den geraden 
Perioden eine Preisentscheidung trifft, passt der Wettbewerber in den unge­
raden Perioden seine Preise an. Darüber hinaus variiert er die Anzahl der 
möglichen Preisoptionen (k  ∈   6,  12,  14  ). 

Haben die Algorithmen die Auswahl zwischen sechs verschiedenen Preis­
optionen, erlernen sie zunächst den kurzfristigen Gewinn zu erhöhen, indem 
sie den Wettbewerber immer wieder leicht unterbieten. Fällt der Preis jedoch 
zu tief, heben die Algorithmen das Preisniveau wieder an. Dieses Vorgehen 
entspricht den sogenannten Edgeworth-Preiszyklen. Der Edgeworth-Preiszy­
klus beschreibt ein wiederkehrendes asymmetrisches Preismuster, das von 
vielen kleinen Preissenkungen und wenigen großen Preissprüngen gekenn­
zeichnet ist. Von einem hohen Preis beginnend unterbieten sich die Wettbe­
werber, bis sie den Preis wieder deutlich anheben und sich in der Folge erneut 
unterbieten.701 Nachdem die Algorithmen diesen Kreislauf kennengelernt 
und seine Folgen verstanden zu haben scheinen, stabilisieren sie sich auf 
einem hohen kollusiven Niveau.702 Somit führt der Versuchsaufbau ebenfalls 
dazu, dass die Algorithmen kollusives Verhalten selbstständig erlernen und 
ein suprakompetitives Gleichgewicht finden. Für den Versuchsaufbau mit 
einer größeren Auswahl von Preisoptionen (k = 12 und k = 24 ) entspricht 
der Preiswettbewerb dauerhaft einem Edgeworth-Preiszyklus.703 

Auch die Arbeit von Ibrahim Abada und Xavier Lambin zeigt, dass 
Q-learning Algorithmen kollusive Marktergebnisse erzielen können.704 Ihr 
Ansatz unterscheidet sich von den zuvor vorgestellten Simulationen dahinge­
hend, dass sie ein Arbitrage Problem betrachten. In ihrer Simulation unter­
suchen sie – den Energiemarkt als Vorbild nehmend – den Wettbewerb von 
Algorithmen, welche homogene Güter auf einem Markt mit preiselastischer 

700 Vgl. Kapitel D. I. 1. und 3.
701 Das von Eric Maskin und Jean Tirole entwickelte Modell bezeichneten diese auch als 

eine „Theorie von tacit collusion“, Maskin/Tirole (1988), Econometrica 56 (3), 571 (571, 
592). Allerdings gibt es auch einige Stimmen, die Edgeworth-Preiszyklen als ein Indiz 
für einen stärkeren Wettbewerb verstanden wissen wollen, Noel, in: Jones (Hrsg.), The 
new Palgrave dictionary of economics, S. 3463.

702 T. Klein, RJE 52 (3) (2021), 538 (549).
703 T. Klein, RJE 52 (3) (2021), 538 (540).
704 Abada/Lambin (2020).
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Nachfrage anbieten.705 Auf dem Energiemarkt werden Speicherkapazitäten 
genutzt, um so die Marktschwankungen auszunutzen. So wird Energie zu 
niedrigen Preisen gekauft und gespeichert, um sie bei größerer Nachfrage zu 
hohen Preisen wieder zu veräußern. 

Ihre Ergebnisse zeigen, dass die selbstlernenden Algorithmen in der Lage 
sind ihre Marktmacht auszuweiten und zu suprakompetitiven Ergebnissen zu 
gelangen.706 Allerdings ziehen die Autoren in Zweifel, dass es sich hierbei tat­
sächlich um erfolgreiche tacit collusion handelt. So gehen sie nicht davon aus, 
dass ihre Algorithmen eine Bestrafungsstrategie erlernt haben und vermuten 
eher, dass die kollusiven Ergebnisse auf eine unzureichende Erfahrung mit 
alternativen Strategien zurückzuführen sind.707

John Asker et al. erweitern den Ansatz von Calvano et al. dahingehend, 
dass sie die Struktur der Algorithmen variieren.708 Hierbei unterscheiden 
sie zwischen Algorithmen, die ihre Handlungen synchron beziehungsweise 
asynchron aktualisieren. Während die asynchron lernenden Algorithmen 
– entsprechend Calvano et al. – ihr Verhalten an der vorgenommenen 
Handlung und der resultierenden Auszahlung ausrichten, berücksichtigen 
die synchron lernenden Algorithmen darüber hinaus die Auszahlungen, 
welche auf alternative Handlungen gefolgt wäre.709 Berücksichtigen die 
Algorithmen keine zukünftigen Gewinne (δ = 0 ), gelangen der synchron 
lernenden Algorithmen zum Bertrand-Gleichgewicht, wohingegen die asyn­
chron lernenden Algorithmen überwettbewerbliche Preise erzielen.710 Bei 
Berücksichtigung zukünftiger Gewinne erhöhen sich die Preise auch bei 
den synchron lernenden Algorithmen, bleiben aber deutlich hinter den 
asynchron lernenden Algorithmen zurück.711 Mit Zunahme der Marktgröße 
nimmt der Preis ab.712 Die Autoren kommen zu dem Ergebnis, dass das 
Verhalten der asynchron lernenden Algorithmen, welche selbst in Szenarien 
entsprechend eines one shot games zu suprakompetitiven Preisen gelangen, 
dazu führt, dass es für die Unternehmen im Duopol ein Gleichgewicht ist, 

705 Abada/Lambin (2020), S. 8.
706 Abada/Lambin (2020), S. 23 ff.
707 Abada/Lambin (2020), S. 33 f.
708 Asker et al. (2021).
709 Asker et al. (2021), S. 13.
710 Asker et al. (2021), S. 26 f.
711 Asker et al. (2021), S. 32 ff.
712 Asker et al. (2021), S. 27.
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entsprechend „naive“ asynchrone Algorithmen einzusetzen, um suprakom­
petitive Preise zu erzielen.713

Tobias Werners Arbeit verbindet Simulationen mit einem Laborexperiment 
und liefert mit einem sehr ähnlichen Aufbau wie Calvano et al. Evidenz 
dafür, dass Q-learning Algorithmen in der Lage sind Bestrafungsstrategien 
zu erlernen und tatsächlich zu mehr Kollusion gelangen als menschliche 
Entscheider in derselben Marktumgebung.714 Der Autor untersucht das 
Verhalten von Algorithmen im Vergleich zu menschlichen Teilnehmern im 
Labor und kommt zu dem Ergebnis, dass zwei Algorithmen im Duopol 
signifikant höhere Marktpreise erzielen als zwei menschliche Entscheider.715 

Dabei erlernen die Algorithmen eine Strategie, die der win-stay, lose-shift 
Strategie ähnelt. Bei dieser Strategie behält der Algorithmus eine Entschei­
dung bei, wenn sie zu einer erfolgreichen Auszahlung geführt hat, wechselt 
die Strategie allerdings, sofern die Auszahlung nicht zufriedenstellend ist.716 

Weichen Wettbewerber ab, wählt der Algorithmus in den folgenden Perioden 
den Bestrafungspreis. Haben alle Marktteilnehmer diesen Bestrafungspreis 
gewählt kehrt der Algorithmus jedoch zu einen kollusiven Preis zurück. 

Mit drei Wettbewerbern kommen die Algorithmen ebenfalls zu durch­
schnittlich leicht besseren Ergebnissen als menschliche Teilnehmer. Aller­
dings fällt der Preis in den Algorithmen-Treatments bei Vergrößerung des 
Marktes deutlich stärker, als in den menschlichen Gruppen, sodass der Effekt 
algorithmischer Preissetzung im Triopol nicht mehr signifikant ist.717 Die von 
Calvano et al. geäußerte Vermutung, dass beim Einsatz von Algorithmen das 
kollusive Ergebnis mit der Zunahme der Marktgröße weniger stark abnimmt, 
als im Wettbewerb menschlicher Marktteilnehmer,718 lässt sich nicht durch 
die Ergebnisse aus Werners Arbeit belegen. 

In einer weiteren Simulation mit Q-learning Algorithmen betrachten die 
Autoren Emilio Calvano et al. das Verhalten der Algorithmen in Abhängigkeit 
zur Markttransparenz.719 Entsprechend Green und Porter verwenden sie 
hierzu einen Cournot-Markt, bei dem sie variieren, welche Informationen 

713 Asker et al. (2021), S. 40.
714 Werner (2021).
715 Werner (2021), S. 29.
716 M. Nowak/Sigmund, Nature 364 (6432) (1993), 56.
717 Werner (2021), S. 28.
718 Siehe Calvano et al. (2020), AER 110 (10), 3267 (3288).
719 Calvano et al. (2021), IJIO 79, 102712.
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den Algorithmen zur Verfügung stehen.720 Während das Verhalten der Algo­
rithmen bei perfekter Überwachung dem festgestellten Verhalten aus den 
Bertrand-Simulationen721 entspricht, nimmt die Kollusion bei Wegfall der 
Informationen ab, wenngleich sie mit 75% des perfekten Kollusionsgewinns 
noch immer deutlich über den nicht-kooperativen Gleichgewicht liegt.722

Algorithmische Kollusion mittel deep learning Algorithmen

Vorteile gegenüber Q-Learning

Q-learning Algorithmen sind relativ unkompliziert und können „mit wenigen 
Parametern, deren ökonomische Bedeutung klar ist, vollständig charakteri­
siert werden.“723 Die einfache Anwendung hat zu einer weiten Verbreitung 
dieser Technologie geführt. Die sehr aufwendige und langwierige Trainings­
phase bringt allerdings erhebliche Schwierigkeiten für ihre Anwendung 
auf realen Märkten mit sich. Jeder zusätzliche Wettbewerber, eine bessere 
Erkundung durch eine höhere Zufallsrate sowie die Zunahme an Preisop­
tionen, sorgen dafür, dass sich die Lernphasen der Algorithmen erheblich 
verlängern. So ist ein Lernprozess im laufenden Betrieb (on-the-job) schwer 
zu realisieren. Ginge man davon aus, dass ein Unternehmen täglich 30 
Preisanpassungen in einer Stunde vornähme,724 würde ein Algorithmus 
mit einer durchschnittlichen Lerndauer entsprechend der Bertrand-Simula­
tion von Calvano et al. erst nach über drei Jahren zu zufriedenstellenden 

3.

a)

720 So variieren sie zum einen, ob die Algorithmen die gewählte Menge der Wettbewerber 
in der vergangenen Periode überwachen können, zum anderen, ob sie die Nachfrage 
kennen. Der aus den Entscheidungen und der Nachfrage resultierende Preis ist stets 
ersichtlich, Calvano et al. (2021), IJIO 79, 102712 (7 f.).

721 Siehe Calvano et al. (2020), AER 110 (10), 3267.
722 Calvano et al. (2021), IJIO 79, 102712.
723 Aus dem Englischen übersetzt, siehe Calvano et al. (2020), AER 110 (10), 3267 (3270).
724 Bisher liegen die durchschnittlichen Preisanpassungen im Online-Handel erheblich 

niedriger. So ergab eine Stichprobe des Statistischen Bundesamtes von 2.680 Produk­
ten aus 14 Internetgeschäften, dass es bei 88 % der beobachteten Produkte zu weniger 
als 15 Preisanpassungen in 3 Monaten gekommen ist. Beispielhaft für eine sehr häufige 
Preisanpassung wird ein Produkt mit einer Preisanpassung im Intervall von knapp 
über 2 Stunden benannt, Blaudow/Burg (2018), WISTA 2018 (2), 11 (15 ff.); Chen et al. 
analysieren die Preissetzung einiger Händler auf Amazon Marketplace. Hierbei kom­
men sie zu dem Befund, dass einige der Algorithmen die Preise „dutzende oder sogar 
hunderte Male am Tag anpassen.“, Chen et al., WWW ’16, 1339 (1348, 1343).
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Ergebnissen gelangen.725 Bei aufwendigeren Lernumgebungen würden die 
Algorithmen zum Teil sogar weit über fünf Jahre benötigen, bevor sie in der 
Lage wären, eine konstante Strategie zu verfolgen.726 Eine Möglichkeit, dieses 
Problem zu umgehen, ist ein Training außerhalb des laufenden Betriebes 
(off-the-job), indem der Algorithmus mit historischen oder hypothetischen 
Daten trainiert und erst im Anschluss im realen Wettbewerb eingesetzt wird. 
Doch auch hierbei ergibt sich das Problem, der Anpassungsfähigkeit gegen­
über neuartigen Marktphänomenen und der sich vom echten Wettbewerb 
unterscheidenden Trainingsbedingungen. Aus diesem Grund sind entspre­
chende Algorithmen „unpraktisch für komplexe Marktkonstellationen, z.B. 
in großen Oligopolen.“727 Dem überlegen können komplexere Algorithmen, 
wie deep-Q-networks, sein, welche in verschiedenen Marktsimulationen be­
reits zum Einsatz gekommen sind. 

Deep-Q-networks wurden erstmalig von Volodymyr Mnih et al. entwickelt 
und kombinieren reinforcement Q-learning mit artificial neural networks.728 

Während beim Q-learning die Werte einer Tabelle fortlaufend aktualisiert 
wurden, werden Tabellen beim deep-Q-network durch ein neuronales Be­
rechnungsmodell ersetzt.729 Dieses dient dazu, sich der unbekannten Q-
Funktion so weit wie möglich anzunähern (Funktionsapproximation).730 

Einer der Vorteile ist, dass der Algorithmus nicht mehr auf die Optimierung 
einer Zelle pro Periode begrenzt ist und seinen Lernprozess erheblich 
beschleunigen kann. Außerdem ist der Algorithmus so in der Lage, deutlich 
größere Zustandsräume zu erlernen. Mnih et al. haben gezeigt, dass ihre 
Methode in 43 von 49 getesteten Atari Spielen besser abschneidet, als die 
besten Alternativen aus dem reinforcement learning.731

725 Hettich (2021), Fn. 3.
726 So benötigen die Algorithmen bei Calvano et al. in der Spitze über 2 Millionen 

Perioden zum Trainieren, was bei 30 Perioden pro Stunde 7,6 Jahren entspräche, 
Calvano et al. (2020), AER 110 (10), 3267 (3276).

727 Kastius/Schlosser (2022), J Rev Pricing Man 21, 50.
728 Mnih et al., Nature 518 (7540) (2015), 529.
729 Charniak, Introduction to Deep Learning, S. 119.
730 Mnih et al., Nature 518 (7540) (2015) (529).
731 Mnih et al., Nature 518 (7540) (2015), 529 (530).
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Der überlegene Algorithmus?

Matthias Hettich nutzt deep-Q-networks (DQN) für eine Simulation des 
Wettbewerbs von Unternehmen in einem Bertrand-Markt.732 Der Autor zeigt, 
dass zwei DQNs ebenfalls in der Lage sind eigenständig kollusive Strategien 
zu erlernen. Hierbei wenden die Algorithmen Bestrafungsstrategien an, mit 
denen sie Abweichungen sanktionieren. Allerdings führt ein „gegenseitiges 
Verständnis“ dazu, dass die DQNs die Preise anheben, sofern sich diese 
nahe des Bertrand-Gleichgewichts bewegen.733 In der Folge finden sie so 
zum kollusiven Gleichgewicht zurück und das selbst dann, wenn zuvor eine 
Abweichung durch beide Wettbewerber stattgefunden hat. Mit Zunahme der 
Marktgröße nimmt auch bei Hettichs Simulation der kollusive Gewinn der 
Unternehmen ab. So beträgt der durchschnittliche zusätzliche Gewinn im 
Duopol 67%, bei einem Markt mit drei Wettbewerbern liegt er noch bei 57%. 
Auch beim Wechsel von vier (36%) auf fünf Unternehmen (27%) nimmt der 
kollusive Gewinn ab, bevor er ab sechs Unternehmen im Markt unter die 
20-Prozent-Marke fällt.734 

Während die Algorithmen bei Calvano et al. im Schnitt 850.000 Perioden 
benötigen, um kollusive Strategien zu erlernen, erhöhen die deep-Q-networks 
bereits nach 20.000 Perioden ihre Preise und erzielen nach weniger als 
100.000 Perioden suprakompetitive Gleichgewichte.735 Hettich kommt somit 
zu dem Schluss, dass bei 30 Preisanpassungen pro Stunde immerhin nach 
einem Monat höhere Preise erzielt werden können. Bei einer Betrachtung 
heterogener Märkte, auf denen ein DQN und ein Q-learning Algorithmus 
für 100.000 Perioden im Wettbewerb stehen, zeigt er, dass der deep-learning 
Algorithmus dem Q-learning Algorithmus überlegen ist. Indem das DQN 
eine kompetitive Strategie anwendet, ist es in der Lage, hohe Gewinne zu 
erzielen und den Q-learning Algorithmus auszubeuten.736 Hierbei profitiert 
er von der schnellen Anpassungsfähigkeit seines neuronalen Netzwerks. 
Stehen zwei DQNs mit einem kompetitiven statischen Algorithmus im 
Wettbewerb, gelingt es ihnen auch, suprakompetitive Marktergebnisse zu 
erzielen. Der statische Algorithmus wendet hierbei eine Penetrationsstrategie 
an, bei der er den Preis der Konkurrenten in der vorangegangenen Periode 

b)

732 Hettich (2021).
733 Hettich (2021), S. 11.
734 Hettich (2021), S. 13.
735 Hettich (2021), S. 10.
736 Hettich (2021), S. 14.
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stets unterbietet. Die dynamischen Algorithmen stellen fest, dass sie das Ver­
halten des statischen Algorithmus nicht wirksam bestrafen können und lassen 
diesen in der Folge einen Gewinn nahe des Monopolgewinns (> 80%) reali­
sieren.737 Hierdurch sind die DQNs in der Lage, trotz des kompetitiven Wett­
bewerbers suprakompetitive Preise zu erzielen und einen Gewinn von durch­
schnittlich 61% zu realisieren. Dieser Wert liegt etwas unter dem Gewinn 
zweier DQN-Algorithmen im Duopol, aber über dem Gewinn im Tripol.

Alexander Kastius und Rainer Schlosser nutzen ebenfalls DQNs und da­
rüber hinaus noch einen weiteren deep reinforcement learning Algorithmus, 
Soft Actor Critic (SAC),738 und testen diese in verschiedenen Marktmodel­
len.739 Zur Untersuchung kollusiven Verhalten ergänzen sie einen Wettbe­
werber, dessen Strategie eine Kollusion zu einem festen Betrag anbietet 
und die Algorithmen im Wettbewerb immer wieder unterbietet. Während 
der SAC Algorithmus bei einer kompetitiven Strategie bleibt und nicht zu 
einem kollusiven Gleichgewicht findet, lässt sich der DQN-Algorithmus auf 
den überwettbewerblichen Preis hochziehen.740 Somit zeigt das Experiment, 
dass ein relativ einfache kollusive Strategie eines statischen Algorithmus 
dem DQN in dieser Marktumgebung eine Kollusion „aufzwingen“ kann. 
Die Autoren kommen zu dem Schluss, dass die Unternehmen „keine Infor­
mationen außer Preisreaktionen austauschen müssen, um ein Kartell zu 
bilden und den Wettbewerb auszuschalten.“741 Bei der Untersuchung des 
Wettbewerbs zwischen den beiden deep reinforcement learning Algorithmen 
schafft es keiner der Algorithmen, eine überlegene Strategie zu entwickeln 
und den anderen Algorithmus zu „besiegen“. Beide Algorithmen finden 
jeweils Antworten auf die Strategie des Gegenübers, ohne dass ein Zyklus oder 
Gleichgewicht festzumachen ist.742

Overfitting und mögliche Probleme in der Praxis

Die bisherigen Experimente haben gezeigt, dass (deep-)reinforcement 
learning Algorithmen kollusive Strategien erlernen können. Ein Problem 

4.

737 Hettich (2021), S. 15.
738 Siehe hierzu Haarnoja et al. (2018). 
739 Kastius/Schlosser (2022), J Rev Pricing Man 21, 50.
740 Kastius/Schlosser (2022), J Rev Pricing Man 21, 50 (10).
741 Aus dem Englischen übersetzt, siehe Kastius/Schlosser (2022), J Rev Pricing Man 21, 

50 (10).
742 Kastius/Schlosser (2022), J Rev Pricing Man 21, 50 (11).
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bezüglich der Übertragbarkeit der Ergebnisse könnte jedoch darin begründet 
sein, dass sich die Algorithmen hierbei stets in ihrem Trainingsumfeld 
befunden haben.743 Nachdem die Algorithmen das Training abgeschlossen 
hatten, setzten sie den Wettbewerb in derselben Umgebung fort.744 Bei 
entsprechenden Simulationen lässt sich das Ergebnis somit nicht auf das 
Problem des overfitting überprüfen. Overfitting bezeichnet eine übermäßige 
Anpassung des von den Algorithmen entwickelten Modells an die Trainings­
umgebung.745 Sofern ein selbstlernender Algorithmus überangepasst auf 
seinen Trainingsdatensatz ist, liefert er sehr gute Ergebnisse innerhalb 
der Trainingsumgebung, allerdings schafft er es nicht, in einer anderen 
Umgebung, mit anderen Voraussetzungen und Einflüssen, entsprechende 
Erfolge zu übertragen.746 Nicolas Eschenbaum et al. nehmen dies zum Anlass, 
kollusive Q-learning Modelle in einem Trainingsumfeld zu trainieren und in 
der Folge in einem leicht angepassten Testumfeld auszuprobieren.747 Hierbei 
orientieren sich die Autoren an dem Versuchsaufbau von Calvano et al.748 

und nehmen einen Bertrand-Markt als Grundlage. Im Ergebnis schaffen es 
die Algorithmen aufgrund des overfitting nicht, ihr kollusives Verhalten in 
die leicht veränderte Umgebung zu übertragen. Unternehmen könnten dieses 
Problem jedoch verhindern, indem sie die Strategiemöglichkeiten der Algo­
rithmen beschränken und eine Beobachtung der Preise des Wettbewerbers 
verhindern.749 Die Autoren nehmen an, dass algorithmische Systeme „auf 
einfacheren Mustern beruhen und aufeinander abgestimmt sein“ müssen, um 
Kollusion in unterschiedlichen Umgebungen erfolgreich zu erzielen.750

743 Eine Ausnahme stellt Werner (2021) dar, dessen Ergebnisse allerdings ebenfalls auf 
eine schlechte Anpassung der Algorithmen auf neue Marktgegebenheiten hindeu­
tet (s.u.).

744 Eschenbaum et al. (2022).
745 Xue Ying (2019), Journal of Physics: Conference Series 1168, 22022.
746 Verschiedene Untersuchungen haben sich bereits mit dem Problem des overfittings 

bei selbstlernenden Algorithmen auseinandergesetzt. Sie statt vieler C. Zhang et 
al. (2018).

747 Eschenbaum et al. (2022).
748 Calvano et al. (2020), AER 110 (10), 3267.
749 Die Algorithmen können dann lediglich ihren eigenen Preis aus der vergangenen Pe­

riode beobachten, Eschenbaum et al. (2022), S. 20 f.
750 Aus dem Englischen übersetzt, siehe Eschenbaum et al. (2022), S. 24.
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Daten aus dem Feld

Die bisher dargestellte Literatur hat sich mit den (theoretischen) Möglich­
keiten algorithmischer Preissetzung auseinandergesetzt und ihr kollusives 
Potenziale in Modellmärkten untersucht. Zur Beobachtung tatsächlicher 
Marktgegebenheiten werden darüber hinaus Daten im Feld erhoben und 
analysiert. Mit Hilfe dieser lässt sich die tatsächliche Verbreitung algorith­
mischer Preissetzung untersuchen und ihre vermeintliche Auswirkung auf 
den Wettbewerb analysieren. Hierbei gilt es jedoch zu beachten, dass auf 
realen Märkten – anders als in kontrollierten Laborumgebungen – unter­
schiedliche Einflussfaktoren gleichzeitig ihre Wirkung entfalten und sich 
kausale Zusammenhänge anhand von Felddaten nicht feststellen lassen. 
Auf dem Gebiet der algorithmischen Preissetzung gibt es bisher nur wenig 
empirische Feldforschung. Die wichtigsten Veröffentlichungen werden im 
Folgenden dargestellt.

Verbreitung algorithmischer Preissetzung auf dem Amazon Marketplace

Le Chen et al. betrachten den Wettbewerb auf der digitalen Verkaufsplattform 
Amazon Marketplace.751 Hierfür beobachten die Autoren im Jahr 2014 über 
einen Zeitraum von vier Monaten Händler der 1641 meistverkauften Produk­
te. Auf Grundlage zweier Kriterien analysieren sie, wie viele der Händler bei 
ihrer Preissetzung auf Algorithmen zurückgreifen. In einem ersten Schritt 
untersuchen Chen et al., inwieweit die Preissetzung eines Händlers abhängig 
von den Preisen der Wettbewerber ist. In einem weiteren Schritt wird 
überprüft, wie häufig Preisanpassungen vorgenommen werden. Basiert die 
Preissetzung eines Händlers in einem gewissen Umfang auf den Preisen 
seiner Konkurrenz und werden seine Preise darüber hinaus hinreichend 
häufig angepasst, so gehen die Autoren davon aus, dass algorithmische 
Preissetzung zum Einsatz kommt.752 Mit diesem Vorgehen identifizieren sie 
über 500 Händler (> 30%), die mit großer Wahrscheinlichkeit bei mindestens 
einem ihrer Produkte Algorithmen zur Festlegung der Preise verwenden.753 

III.

1.

751 Chen et al., WWW ’16, 1339.
752 Chen et al., WWW ’16, 1339 (1344-1345).
753 Die Autoren der Studie gehen davon aus, dass Gründe hierfür das Verkaufsvolumen 

sowie die Bewertungen sind, Chen et al., WWW ’16, 1339 (1348).
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Die Gefahr des Einfachen

Marcel Wieting und Geza Sapi nehmen in ihrer Untersuchung die größte 
niederländische Online-Verkaufsplattform bol.com in den Blick.754 Zwischen 
2018 und 2020 sammeln die Autoren zweimal über einen Zeitraum von 
einem Monat Daten von 2 846 Produkten auf der Plattform, um den Einsatz 
algorithmischer Preissetzung zu untersuchen. Entsprechend Chen et al. iden­
tifizieren die Autoren den Einsatz algorithmischer Preissetzung anhand einer 
Zunahme der Preisfrequenz sowie der Korrelation der Preise mit Preisen der 
Wettbewerber.755 Bei der ganz überwiegenden Mehrheit der Produktmärkte 
(> 80%) können die Autoren keinen Algorithmus identifizieren, während 
es einige Märkte gibt, auf denen ein Händler algorithmische Preissetzung 
einzusetzen scheint (je nach Definition circa 5-15%) und wenige Märkte auf 
denen zwei oder drei Händler automatisiert Preise festzusetzen scheinen 
(< 2%).756 Eine Analyse der Märkte mit algorithmischer Preissetzung ergibt, 
dass Algorithmen im Monopol deutlich niedrigere Preise verlangen, als 
Monopolisten ohne algorithmische Preissetzung auf vergleichbaren Märk­
ten.757 Allerdings scheinen in Oligopolen Händler mit Preissetzungssoftware 
häufiger die Buy Box zu gewinnen. Darüber hinaus scheinen Algorithmen 
von der wechselseitigen Präsenz weiterer Algorithmen zu profitieren, indem 
Märkte mit Algorithmen höhere Preise und Margen realisieren.758 

Des Weiteren betrachten Wieting und Sapi die Preisstrategien der Algorith­
men für 300 Produkte und können wiederkehrende Muster feststellen. Beson­
ders verbreitet scheinen dabei sehr kurz andauernde Preissprünge zu sein.759 

Die Autoren erkennen bei circa der Hälfte der algorithmisch bepreisten Pro­
dukte Phasen, in denen die Preise kurzzeitig fallen oder ansteigen.760 In 11% 
der Märkte mit algorithmischer Preissetzung stellen sie darüber hinaus einen 
hohen Anstieg des Preises, gefolgt von einer Abwärtsspirale entsprechend 

2.

754 Wieting/Sapi (2021).
755 Im Gegensatz zu Chen et al. müssen die beiden Faktoren hierbei nicht zwingend 

kummulativ vorliegen, sodass z.B. eine sehr hohe Preissetzungsfrequenz ausreichen 
kann, damit der Einsatz von Algorithmen angenommen wird. Insgesamt liefern die 
Autoren drei unterschiedliche Definitionen, anhand derer sich drei verschiedene Ver­
teilungen ergeben, Wieting/Sapi (2021), S. 15 ff.

756 Wieting/Sapi (2021), S. 17 ff.
757 Wieting/Sapi (2021), S. 2.
758 Wieting/Sapi (2021), S. 25 ff.
759 Wieting/Sapi (2021), S. 19 ff.
760 Wieting/Sapi (2021), S. 20 mit dem Hinweis, dass auch Chen et al. von entsprechenden 

Preissprüngen berichtet, Chen et al., WWW ’16, 1339 (1341).
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einem Edgeworth-Preiszyklus fest.761 In 6% der Fälle beobachten die Autoren 
einen umgekehrten Zyklus, indem der Preis niedrig startend ansteigt und ab 
einer gewissen Höhe auf den Ausgangspunkt zurückfällt.762 Auch ein vor­
übergehendes, aber sehr häufiges Hin- und Herspringen zwischen zwei Prei­
sen sowie häufige und scheinbar zufällige Preiswechsel werden als Preismus­
ter beobachtet. Insgesamt schlussfolgern die Autoren, dass die beobachteten 
Händler „relatively unsophisticated“ Preissetzungssoftware verwenden, die 
aus einer endlichen Menge von „if-then statements“ zu bestehen scheint.763

Hohe Preise aufgrund zyklischer Strategien

Leon A. Musolff verwendet Daten eines Repricing-Unternehmens, das Dritt­
anbieter auf der Plattform Amazon Marketplace im Preiswettbewerb unter­
stützt.764 Er nutzt die Daten um Preisstrategien zu analysieren und auf 
dieser Grundlage die Entwicklung der Märkte in einem Modell zu prognos­
tizieren.765 Der Autor zeigt zwei häufig angebotene und verwendete algo­
rithmische Preissetzungstrategien auf: Eine zyklische Preisstrategie, sowie 
eine Strategie des Unterbietens.766 Sowohl bei der unterbietenden Strategie, 
als auch der zyklischen Strategie werden die Preise für das Unternehmen 
stets entsprechend einem vorgegebenen Betrag unterhalb der Preise der 
Wettbewerber festgelegt. Den zyklischen Strategien ist darüber hinaus ein 
kritischer Wert oder ein bestimmtes Ereignis vorgegeben, ab dem der eigene 
Preis auf einen hohen Preis „zurückgesetzt“ wird.767

Da auch die Algorithmen mit einer unterbietenden Strategie ihre Preise 
in Abhängigkeit der Wettbewerber bestimmen, kommt es auch hier zu 
einer zyklischen Preissetzung.768 Musolffs Daten zeigen, dass an Tagen des 
Zurücksetzens der Preise die Preise des Unternehmens im Schnitt 7,75% 

3.

761 Wieting/Sapi (2021), S. 20 f; vgl. hierzu auch die Ergebnisse bei T. Klein, RJE 52 (3) 
(2021), 538.

762 Wieting/Sapi (2021), S. 21.
763 Wieting/Sapi (2021), S. 40 f.
764 Musolff (2021), S. 12.
765 Musolff (2021); der Datensatz umfasst Preisänderungen von 319.514 Produkten zwi­

schen dem 26.8.2018 und dem 30.10.2019.
766 Musolff (2021), S. 10 f.
767 Bezüglich der Ereignisse, die ein Zurücksetzen auslösen können, kommen beispiels­

weise gelegentliche Anpassungen zu Zeiten geringer Nachfrage in Betracht. Musolff 
(2021), S. 10 ff.

768 Vgl. hierzu auch Wieting/Sapi (2021); T. Klein, RJE 52 (3) (2021), 538.
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höher sind, als an anderen Tagen.769 Darüber hinaus nehmen auch die Preise 
der Wettbewerber an diesen Tagen um durchschnittlich 1,09% zu.770 Musolff 
modelliert in der Folge den Wettbewerb der Unternehmen in Bezug auf die 
Übertragung der Preisentscheidung an einen Algorithmus. Sein Modell geht 
davon aus, dass der Anstieg der Preise nicht an die Grenzkosten gekoppelt 
und keine zwingende Folge ruinösen Wettbewerbs ist, sondern der Zyklus so 
festgelegt wird, dass er Durchschnittspreise nah am Monopolpreis zur Folge 
hat.771 Der Autor kommt zu dem Ergebnis, dass es bei der Auswahl zwischen 
den beiden aufgezeigten Strategien sowie einer passiven Strategie eines fest­
gelegten Preises langfristig zu einer Verbreitung der beiden algorithmischen 
Preissetzungstrategien und somit einer zyklischen Preissetzung kommen 
sollte.772

Musolff vermutet, dass der Wandel auf dem von ihm untersuchten Markt 
gerade erst begonnen hat.773 Die Einführung dieser Strategien könnte zu an­
fänglich geringeren Preisen führen und die Täuschung hervorrufen, es gäbe 
keinen Grund zur Sorge.774 Langfristig ergäben sich aus seinem Modell hin­
gegen erhebliche Wohlfahrtsverluste. Sofern sich seine Befunde in weiteren 
Untersuchungen bestätigen würden, „sollte dies als ernsthafte Warnung vor 
den möglichen Auswirkungen einer automatischen Preisanpassungssoftware 
auf die gesamtgesellschaftliche Wohlfahrt“ verstanden werden.775

Der Preisanstieg an der Tankstelle

Algorithmen werden ebenfalls in einigen Bereichen des stationären Handels 
zur Preissetzung eingesetzt. So bietet unter anderem der dänischen Software­
entwickler a2i systems A/S Preissetzungssoftware für Tankstellen an, sodass 
diese mit Hilfe künstlicher Intelligenz automatisiert Preise festlegen lassen 
können.776 Stephanie Assad et al. untersuchen die Auswirkungen algorith­
mischer Preissetzung auf die deutschen Tankstellenmärkte.777 Grundlage 
hierfür bilden die Daten der Markttransparenzstelle für Kraftstoffe (MTS-

4.

769 Musolff (2021), S. 15.
770 Musolff (2021), S. 15.
771 Musolff (2021), S. 39.
772 Musolff (2021), S. 19 ff.
773 Musolff (2021), S. 2.
774 Musolff (2021), S. 27.
775 Aus dem Englischen übersetzt, siehe Musolff (2021), S. 38.
776 Siehe https://www.a2isystems.com/products/.
777 Assad et al. (2020).
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Kraftstoffe),778 wodurch den Autoren Preisinformationen über alle gängigen 
Kraftstoffe von 16 661 Tankstellen in Deutschland in minütlichen Intervallen 
zur Verfügung stehen. In einem ersten Schritt versuchen Assad et al. zu 
identifizieren, welche Tankstellen ab welchem Zeitpunkt automatisierte 
Preissetzungen eingesetzt haben und in einem weiteren Schritt, welche 
Auswirkungen die Einführung auf den Wettbewerb hat.779 Zur Identifizie­
rung der Einführung betrachten die Autoren das Preissetzungsverhalten der 
Tankstellen und nehmen eine Adaption algorithmischer Preissetzung an, 
sofern sich zwei der drei folgenden Faktoren innerhalb eines Zeitraums von 
acht Wochen zugleich umgestellt haben: Zunächst wird überprüft, ob die 
Frequenz der Preissetzung erhöht wurde, darüber hinaus wird untersucht ob 
sich die Sprünge innerhalb einer Preisanpassung reduziert haben und zuletzt, 
ob eine schnellere Reaktion auf Preisanpassungen der Wettbewerber erfolgte. 
Die Analyse der Autoren erlaubt die Vermutung, dass 4 441 Tankstellen 
( 30%) ihre Preissetzung auf Algorithmen umgestellt haben, der Großteil 
von ihnen in der Mitte des Jahres 2017.780 

In einem nächsten Schritt betrachten Assad et al. die Veränderung der 
täglichen Margen. Auf monopolistischen Märkten lässt sich nach der Um­
stellung kein signifikanter Anstieg der Margen feststellen. Stellt eines von 
zwei Unternehmen in einem Duopol auf algorithmische Preissetzung um, 
lässt sich ebenfalls keine Veränderung der Margen feststellen.781 In einem 
Duopol, in dem beide Unternehmen einen Algorithmus eingeführt haben, 
steigen die Margen allerdings durchschnittlich um 29% an. Aufgrund der 
Tatsache, dass sich die Margen im ersten Jahr nicht verändert haben und 
erst danach langsam ansteigen, gehen die Autoren davon aus, dass die 
Algorithmen nicht – wie bei Waltman und Kaymak, Asker et al. und anderen782 

– daran scheitern, effektiv zu konkurrieren, sondern vielmehr lernen zu 

778 Die Markttransparenzstelle für Kraftstoffe ist eine Organisation des Bundeskartell­
amtes und dient der Förderung der Transparenz auf Seiten der Verbraucher. Tank­
stellenbetreiber übermitteln seit 2013 in Echtzeit Preisänderungen der Kraftstoffe 
an die Markttransparenzstelle, welche diese über Drittanbieter an die Verbraucher 
weiterleitet, siehe Deutscher Bundestag, Unterrichtung durch die Bundesregierung, 
3.8.2018; in Kapitel E. I. 1. wird näher auf das Konzept eingegangen.

779 Assad et al. (2020), S. 12 f.
780 Assad et al. (2020), S. 22 f.
781 Assad et al. (2020), S. 29 ff.
782 Waltman/Kaymak (2008), J.E.D.C. 32 (10), 3275; Asker et al. (2021); auch Karsten 

Hansen et al. zeigen auf, dass selbstlernende Algorithmen zu suprakompetitiven 
Preisen gelangen können, indem sie aufgrund eines unzutreffenden Modells die 
Preissensitivität des Marktes überbewerten. K. T. Hansen et al. (2021), MarkSci 40 (1), 1.
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kolludieren.783 Somit scheint die Adaption algorithmischer Preissetzung tacit 
collusion im Tankstellenmarkt zu befördern, sofern beide Unternehmen eines 
Duopols auf Algorithmen zurückgreifen.784 

Zwischenergebnis

Die Potenziale algorithmischer Preissetzung wurden in unterschiedlichen 
wissenschaftlichen Studien untersucht. Sowohl theoretische Modelle als auch 
Marktsimulationen und empirische Untersuchungen realer Märkte haben 
sich mit der algorithmischen Preissetzung auseinandergesetzt. 

In der theoretischen Literatur wurden unter anderem die Auswirkungen 
einer höheren Transparenz sowie einer besseren Vorhersage zukünftigen 
Nachfrageverhaltens durch Algorithmen analysiert. Hierbei zeigen sich 
gegenläufige Effekte: Die bessere Vorhersage durch Algorithmen kann 
wettbewerbsförderndes Potenzial entfalten, indem es den Anreiz für eine 
Abweichung erhöht. Zugleich können die in Aussicht gestellten zukünftigen 
Gewinne sowie eine bessere Überwachung der Wettbewerber eine Kollusion 
befördern und stabilisieren. Darüber hinaus deuten theoretische Modelle 
darauf hin, dass die höhere Frequenz algorithmischer Preissetzung sowie 
die zeitlich versetzte Preissetzung der aufeinander reagierenden Algorithmen 
suprakompetitive Marktergebnisse wahrscheinlicher macht. 

In Simulationen wurde insbesondere die Fähigkeit selbstlernender Algo­
rithmen untersucht, selbstständig kollusive Marktergebnisse zu erzielen. Eine 
Vielzahl entsprechender Untersuchungen zeigt, dass Q-learning Preisset­
zungsalgorithmen nach einem längeren Lernprozess eigenständig und ohne 
eine entsprechende Programmierung zu einem erhöhten Preisgleichgewicht 
gelangen können. Ebenso zeigt sich, dass selbstlernende Algorithmen eigen­
ständig Bestrafungsstrategien entwickeln können, die darauf hindeuten, dass 
die hohen Preise nicht Folge eines Scheiterns am Wettbewerb, sondern eines 
aktiven Erlernens kollusiven Verhaltens sind. Insbesondere die Ergebnisse zu 
in heterogenen Märkten ausbeutenden und in homogenen Märkten kollusiv 
spielenden DQNs legen nahe, dass selbstlernende Algorithmen grundsätzlich 
dazu in der Lage sind, tacit collusion eigenständig zu erlernen. 

IV.

783 Assad et al. (2020), S. 43.
784 Denkbar ist hierbei auch, dass es sich um Algorithmen desselben Anbieters handelt 

und so ein Fall entsprechend des hub-and-spoke Szenarios vorliegt.
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Allerdings handelt es sich bei diesen Simulationen um stark vereinfachte 
Modellmärkte, deren Eigenschaften sich deutlich von realen Marktgegeben­
heiten unterscheiden.785 Sowohl die Zunahme der Marktgröße, als auch die 
Erweiterung des Strategieraums durch zusätzliche Marktfaktoren schwächt 
die kollusiven Ergebnisse algorithmischer Systeme ab. Insbesondere in he­
terogenen Marktzusammensetzungen scheinen selbstlernende Algorithmen 
Schwierigkeiten zu haben, kollusive Gleichgewicht zu erreichen. Darüber 
hinaus ist unklar, inwiefern es in einigen der Simulationen zu einem overfit­
ting-Effekt gekommen sein könnte, der die Übertragbarkeit der Ergebnisse 
auf Marktgegebenheiten außerhalb der Trainingsumgebung in Frage stellt. 
Desweiteren lässt die lange Lernphase der in den vorgestellten Simulationen 
verwendeten Algorithmen einen Einsatz auf realen Märkten unwahrschein­
lich erscheinen. Die verwendeten Algorithmen waren erst nach langen 
off-the-job Trainingsphasen in der Lage, kollusive Ergebnisse zu erzielen. 
Ein on-the-job Lernen dürfte mit den hier dargestellten Algorithmen keine 
für Unternehmen realistische Option darstellen. Selbst den Q-learning Algo­
rithmen überlegene DQNs benötigen mehrere Wochen mit einer Vielzahl 
täglicher Preisänderungen, ehe sie kollusive Gleichgewichte erzielen können.

Dennoch zeigen die Ergebnisse der Simulationen das kollusive Potenzi­
al algorithmischer Systeme an. Insbesondere die Vermutung, dass es für 
Unternehmen sinnvoll erscheinen kann, in ihren Fähigkeiten beschränkte 
Algorithmen einzusetzen, welche aufgrund ihrer Unbedarftheit eine tacit 
collusion erreichen, dürfte die Sorge vor algorithmischer Kollusion zusätzlich 
verstärken. Vor allem einfache Strategien scheinen ein vielversprechendes 
Mittel zu sein, um tacit collusion in unterschiedlichen Marktgegebenheiten 
zu ermöglichen. Simulationen haben gezeigt, dass relativ einfache – tacit 
collusion belohnende – Strategien auch selbstlernende Algorithmen von einer 
Kollusion überzeugen können. 

Empirische Untersuchungen haben die Verbreitung algorithmischer 
Preissetzung auf realen Märkten sowie ihre Auswirkungen auf den Wettbe­
werb untersucht. Es zeigt sich, dass eine Vielzahl von Unternehmen bereits 
seit längerem auf entsprechende Unterstützung zurückzugreifen scheint. 
Wenngleich die Vorteile algorithmischer Preissetzung darauf hindeuten, 
dass sich diese langfristig flächendeckend verbreiten könnte, scheint sie 
derzeit jedoch noch nicht alleinig die Preissetzung zu bestimmen. Die Daten 
deuten darauf hin, dass der Einsatz algorithmischer Preissetzung auf realen 
Märkten zu höheren Preisen führen kann. Insbesondere für Märkte, auf 

785 Vgl. Schwalbe/Zimmer, Kartellrecht und Ökonomie, S. 541.
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denen Algorithmen gegeneinander im Wettbewerb stehen, konnten für 
Online Plattformen leichte und für den deutschen Tankstellenmarkt starke 
Preisanstiege festgestellt werden. 

Die bisherigen Erkenntnisse lassen vermuten, dass gerade einfache Stra­
tegien dazu beitragen können, hohe Gleichgewichtspreise in einem Markt 
durchzusetzen. Durch die Reduzierung möglicher Strategieoptionen, direkte 
Abhängigkeiten in der Preissetzung, die leichte Interpretierbarkeit der Strate­
gien sowie die Selbstbindung der Unternehmen wird eine Koordination über 
den Markt erheblich erleichtert. Es ist deshalb zu erwarten, dass auf digitalen 
Märkten vermehrt Preiszyklen auftreten, welche im Ergebnis zu Lasten der 
Verbraucher sowie des Wettbewerbs gehen. Darüber hinaus scheint es für 
Unternehmen leichter eine kollusive Absicht zu bekunden und sich durch den 
Algorithmus an diese zu binden. Indem die Wettbewerber durch die eigene 
Preisüberwachung die Preissetzung analysieren und interpretieren können, 
liegt es an ihnen, ein solches „Angebot“ für überwettbewerbliche Preise 
anzunehmen. Es ist zu vermuten, dass sich die tatsächliche wettbewerbs­
schädigende Wirkung erst mit der weiteren Verbreitung algorithmischer 
Preissetzung zeigen wird.786

786 Vgl. Musolff (2021), S. 2.
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