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1. Introduction

From the 19th century to the early 20th century, geometry had changed its character 

considerably. Discoveries, such as non-Euclidean geometry, alongside the development of 

differential geometry with its definition of the manifold, instigated a plurality of geometries. 

Encompassing this plurality was a trend of thought that called for situating geometry 

on stable foundations, one might say even static pre-determined ones. Against this 

backdrop of a growing move towards axiomatization, Richard Buckminster “Bucky” Fuller 

(1895 –1983), an American architect, designer and inventor, offered a critic of Euclidean 

and Cartesian geometry from a novel reconsideration of practical actions and operations 

like folding – folding, as a form of thinking on and through movement, enabling a different 

conception of geometry. This paper aims to show that beyond an axiomatized motionless 

geometry, on the one hand, and the various forgotten mathematizations of the fold, on 

the other, Fuller suggests to think of movement from a different perspective: movement 

as the provocation of thinking. It is what provokes and initiates thinking itself. Starting 

with Fuller’s critique of geometry and concluding with his conception of mobility, we 

examine notions of movement present in Fuller’s thought. Indeed, folds and folding lie 

at the core of Fuller’s work as an example of mastering movement. 
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2.	Fuller and Geometry: Fuller’s critique and the conception of  
		  geometry and folding at the beginning of the 20th century

Before turning to Fuller’s conceptions of the fold and mobility, as what provokes stable 

structures and buildings, we examine Fuller’s critique of the axiomatic conception of 

geometry, as exemplified in Euclidean axiomatics. We then review the manner in which 

geometry in general and folding in particular were perceived within mathematics, from 

the beginning of the 19th century till the middle of the 20th century, in order to assess 

correctly Fuller’s critique of the problematic relation between movement and geometry 

and his conception of folding.

2.1 Fuller and the Euclidean geometry

Needles to say, Euclid’s geometry – as presented in his book Elements – is one of the most 

influential theories of western civilization. However, little is known about the author, be-

yond the fact that he lived in Alexandria around 300 BCE. Most of the theorems appearing 

in the Elements were not discovered by Euclid himself, but were the work of earlier Greek 

mathematicians such as mathematicians of the Pythagorean School, Hippocrates of Chios, 

Theaetetus of Athens and Eudoxus of Cnidos. Credited to Euclid is the arrangement of 

these theorems in a logical manner, in order to show that they necessarily follow from 

basic definitions, postulates and axioms.1 The geometrical constructions employed in 

the Elements are restricted to those achieved by using a straightedge and a compass. 

Empirical proofs using measurement were not allowed: i.e., the only statements that 

were allowed were these in form of declaring that magnitudes are either equal, or that 

one is greater than the other.

 

Euclid’s rigor and organization was admired throughout the ages and considered as one 

of the main methods of proper mathematical investigation. What constitutes rigor has 

changed over the years: modern mathematics returned to Euclidean geometry, revealing 

missing axioms and finding gaps in proofs, while trying at the same time to reaffirm its 

consistency together with the consistency of the 19th century analytic geometry. Never-

theless, the basic tools and methods of Euclidean geometry persisted throughout the 

centuries: an infinite line, a circle and a scribe – a system of basic signs and propositions 

– from which every other true proposition can be derived. 

It is at this point that Fuller attacks Euclid’s geometry, by criticizing its tools: “Euclid 

limited himself in his theorems to construction and proof by the use of three tools – 

1	 Cf. Heath 1921, 319; Proclus 1992, 53.
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straightedge, dividers, and scribe. He, however, employed a fourth tool without accrediting 

it – this was the surface upon which he inscribed his diagrammatic constructions.”2 

In his paper from January 1944, Fuller presents his position, in which he sets the ground-

work for his “energetic geometry” that would later become “synergetics.” Fuller follows 

up his critique, of the lack of use of a tool that was completely forgotten, by giving a 

historical explanation: 

“It must be remembered that Euclid argued his geometric cases at 

a time in history when the spherical concept of the universe, which 

some assert was known to ancient Greek philosophers, had if so, 

been lost again. At that time, the savants were subscribing to a flat 

or planar earth concept. Therefore, it is not surprising that his use 

of that flat plane as a surface upon which to work went as axiomatic. 

Logical to the misconception was the beginning of his proofs in the 

special abstract realm of an imaginary plane geometry.”

Fuller’s critique is in effect a contrarian stance against Euclid, whom he accuses of being 

the one who “had come in by the wrong entrance” and hence had insufficiently reflected 

upon his own tools. This has led, according to Fuller, to an illusory elementarism in the 

sciences: it not only reduced geometry into a sequence of logical steps, from which one 

could eventually draw a conclusion, but at the same time expelled from geometry the 

pivotal concept of movement,3 at best reducing it to a secondary concept derived from 

more fundamental objects, which could be removed at any point from the geometrical 

structure of which it stems. Euclidean geometry, according to Fuller’s conception, is 

static; the concept of movement is invoked through axioms, a step that can be avoided 

and is in fact redundant. Fuller says so explicitly, when he remarks:

“We find experimentally that two lines cannot go through the same 

point at the same time. One can cross over or be superimposed upon 

2	 This citatation and the following two are taken from a 1944 paper by Fuller: Dymaxion comprehensive 

system, introducing energetic geometry. In: Krausse/Lichtenstein 2001, 160 –168, here: 164.

3	 The history of the mathematical geometrical use of the notions of motion and movement (for example, 

whether they should be used as tools in mathematical proofs, how they should be conceptualized, what 

kind of entities – curves, surfaces – do moving objects create) starts already in antiquity; it is intricate 

and subtle. Aristotle condemned the use of motion in Geometry, stating “[t]he objects of mathematics 

are without motion” (Aristotle 1928 –1952, vol. 8, 989b), whereas Euclid does use the concept of motion 

in some of his definitions (Book XI of Euclid’s Elements, definitions 14,18 and 21. See Heath 1908b, 

261 – 262). For overviews concerning motion, space and geometry, see e.g. Rosenfeld 1988, esp. chapter 3 

and De Risi 2015. As we merely aim to point at the mathematical background against which Fuller 

developed his own thought, we by no means attempt to give even a partial account of it, as it would take 

us outside the scope of this paper.
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another. Both Euclidian and non-Euclidian geometries misassume that 

a plurality of lines can go through the same point at the same time. 

But we find experimentally that two or more lines cannot physically 

go through the same point at the same time.”4

All known geometries presuppose the totality of all lines already exists, since only then can 

two lines pass through a single point at the same time. Fuller makes the claim geometry 

does not take into account the dimension of time, and therefore may also not take into 

account time-consuming movement required in order to draw a line.5 The movement, 

which acts as the dynamic aspect of the structure, is in effect what keeps a built structure 

stable, as we will see in Section 3.1 in connection with Semper. According to Fuller, this 

is not apparent as long as one restricts oneself to plane geometry:

“[…] the Greek geometers were first preoccupied with only plane geom-

etry. They were also either ignorant of – or deliberately overlooked – the 

systematically associative minimal complex of inter-self-stabilizing forces 

(vectors) operative in structuring any system (let alone our planet) 

and of the corresponding cosmic forces (vectors) acting locally upon 

a structural system. These forces must be locally coped with to insure 

the local system’s structural integrity […]”6

It is clear Fuller’s critique did not merely target Euclidean geometry as embedded in its 

context of origin. It was rather aimed at its revival during the late 19th century. It is here 

that we should take a step back in order to understand the mathematical landscape that 

served background to his critique. What was the conception of geometry during the 

end of the 19th century to the beginning of the 20th century? How were the concepts of 

motion and movement reshaped?

2.2  The structural understanding of geometry at the beginning of the 20th century

In this section we will briefly review the conception of geometry from the end of the 19th 

century until the middle of the 20th century, focusing on Felix Klein’s Erlangen program and 

David Hilbert’s Grundlagen der Geometrie, and finishing with Alfred Tarski’s axiomatization 

of geometry. We wish to highlight that Fuller’s critique did not solely take aim at Euclid’s 

Elements; it was particularly interested in the revival of interest in axiomatic methods. 

At the end of the 19th century the interest in the foundations of geometry was growing 

4	 Fuller 1975a, section 517.03.

5	 Hence, there is only a partial overlapping of events. See Section 3.2.

6	 Ibid, section 986.042.
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both from a group-theoretic viewpoint and an axiomatic viewpoint. The emergence of 

non-Euclidean geometry at the beginning of the 19th century (Bolyai’s and Lobachevsky’s 

treatises), the mathematization of space via Riemannian manifolds and the mathematical 

definition of curvature prompted major philosophical questions regarding the nature 

of space and its epistemology.7 The emergence of non-intuitive geometries gave rise 

to a need to discover the relations between the axioms of geometry and experience. In 

order to give a proper albeit incomplete historical account of this period, we begin with a 

recourse to group theory, which was one of the main topics of mathematical investigation 

during the 19th century, and which served as one important source for the development 

of a conception of geometry of that time.

A group, denoted by the letter ‘G’, is set of elements equipped with a binary action, denoted 

by ‘*’, which fulfills certain requirements. An obvious example for a group is the set of 

whole numbers together with addition as its binary action. The requirements the action 

should fulfill are considered to be the most elementary, when we think about actions such 

as addition or multiplication. To be more specific, there are four requirements: closure 

(if the elements a,b belong to G, denoted as a,b ∈G, then a*b belongs to G, denoted as 

a*b ∈G), associativity (if a,b,c ∈G, then a*(b*c) = (a*b)*c), unit element (there exists 

an element e ∈G s.t. e*g = g*e = g for every element g ∈G) and inverse element (for every 

g ∈G there exists an h∈G such that g*h = h*g = e).8

The study of group theory and its applications is usually considered to originate from 

the work of Évariste Galois (1811 –1832), who was working on the necessary conditions 

for solving an algebraic equation using the four known arithmetical operations (addition, 

subtraction, multiplication and division) together with roots of any order. What interested 

Galois around 1830 was not the equations themselves or their solutions, nor was he 

interested in the type of algebraic relations the roots hold among themselves. He was 

interested instead in the set of permutations of the roots themselves that preserve their 

algebraic relations.9 In other words, Galois’s discoveries prompted a process by which 

numbers were no longer considered fundamental to algebra. More crucial was a grasp 

of the algebraic-structural setting for which numbers assembled into various sets serve 

only an example and considered as a derivative of this structure.

7	 For an extensive survey on the changing face of geometry during the 19th century see Gray 2006.

8	 This definition can be found in all textbooks on group theory. See e.g. Rotman 1999, 12.

9	 For example, for the equation x4 –5 x2+ 6 = 0, the solutions are A = √2, B = –√2, C = √3, D = –√3 and one 

of their mutual relations is: AB+CD = –5. Not every permutation of the roots A, B, C and D will preserve 

this relation. For example, if the permutation, denoted by f, is A → B, B → C, C → D, D → A then  

f(A)f(B)+f(C)f(D) = BC + DA = –2√6 ≠ –5. More surprisingly, out of the set of 24 possible permutations 

of 4 elements, only 4 permutations preserve the above relation.
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The concept of a permutation group was derived from developments in the theory of 

algebraic equations and from what became known as Galois theory. This historical 

strand is just one of the roots of group theory. Indeed, Klein’s Erlangen program makes 

it clear the development of the concept of the abstract group had another historical 

root, namely, geometry. Felix Klein (1849 –1925) was a German mathematician and 

mathematics educator, known for his work in group theory and non-Euclidean geometry, 

and for his work on the connections between geometry and group theory that spurred 

his Erlangen program.10

Klein’s program incorporated the idea that to every geometrical entity one can associate 

an underlying group of symmetries. By symmetry we mean a one-to-one transformation 

of the space onto itself that preserves certain properties of the space in question. The 

notion of a group is essential here: its set of elements was the set of symmetries, and 

the binary action was composition, as in the composition of functions. If S is our space 

(e.g. S is the three-dimensional Euclidean space), and f is a symmetry transformation 

of S (e.g. f acts by rotation with respect to an axis) then there are distinct subsets of S, 

which are not transformed by f (e.g. the axis of rotation). From this standpoint, Klein 

stated the task of geometry as follows:

“Given a manifold and a group of transformations of the manifold, 

to study the manifold configurations with respect to those features, 

which are not altered by the transformations of the group.”11 

The mathematical hierarchy of geometries is thus represented as a hierarchy of these 

groups, and the hierarchy of their invariants. For example, lengths, angles and areas 

are preserved with respect to the Euclidean group of two-dimensional symmetries, 

while only incidence and cross-ratio are preserved under the more general group of 

two-dimensional projective transformations. One might be under the impression that, in 

opposition to Fuller’s conception of the Euclidean Elements, Klein’s Erlangen program 

does indeed deal with movements and transformations (such as rotation, translation 

and reflection). However, let us consider the following citation from Klein’s: “We peel off 

the mathematically inessential physical image and see in space only an extended manifold; 

[…] transformations of manifold […] also form groups”.12 Together with peeling off the 

“inessential physical image”, one obtains a removal of any physical movement at the 

foundation of geometry. In this respect, Fuller might have regarded Klein’s program as a 

10	 Klein 1872.

11	 Klein 1893, 67.

12	 Ibid.
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descendant of the axiomatic method: group theory deals with movement as an abstract 

movement that can and should be formalized and axiomatized; a static structure, that is.13 

One consequence of Klein’s program was that it enabled the acceptance of Hilbert’s 

axiomatic-structural approach to geometry. Indeed, as Wussing states “the transition 

to the notion of an abstract group was a partial cause, as well as a partial effect, for the 

growing acceptance of the ‘axiomatic method’ in Hilbert’s sense of the term.”14

Recognized as one of the most influential mathematicians of the late 19th and early 20th 

centuries, David Hilbert (1863 –1943) was a German mathematician, who advanced 

research on the axiomatization of geometry, culminating in one of his most influential 

works: Grundlagen der Geometrie. It should be noted that Hilbert was not the first to 

suggest geometry should return to its axiomatic origins. Moritz Pasch, Mario Pieri and 

Hermann Wiener,15 among others, also dealt with the subject at that time. However, 

Hilbert’s approach was decisive for the way geometry was conceived in the early 20th 

century. Hilbert conceived of geometry as a natural science, one in which intuition 

plays a crucial role, though its experimental foundations may be regarded somewhat 

retroactively.16 Hilbert states in his lectures on mechanics: 

“Geometry is an experimental science […]. But its experimental founda-

tions are so irrefutably and so generally acknowledged, they have been 

confirmed to such a degree, that no further proof of them is deemed 

necessary. Moreover, all that is needed is to derive these foundations 

from a minimal set of independent axioms and thus to construct the 

whole edifice of geometry by purely logical means.”17 

Once a minimal set of independent axioms is put together, geometry is studied through 

logical means: 

“Geometry […] requires for its logical development only a small number 

of simple, fundamental principles. […] [T]he choice of the axioms and 

the investigation of their relations to one another is […] tantamount to 

the logical analysis of our intuition of space. The following investigation 

13	 See Wussing 1984, Part III.2 for an extensive analysis of Klein’s program, and 194 –196 for a description 

of mechanical movements in terms of group-theoretic concepts. It should be noted that Klein was also 

an ardent supporter of the use of models in mathematical teaching and research especially in the field of 

geometry. See for example: Mehrtens 2004; Sattelmacher 2013; Rowe 2013.

14	 Wussing 1984, 251.

15	 Pasch 1882; Wiener 1892; Pieri 1898.

16	 See Corry 2004, chapter 3. 

17	 Ibid, 162. See also Corry 1997.
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is a new attempt to choose for geometry a simple and complete set 

of independent axioms […]”18 

Hilbert’s views on geometry in particular and mathematics in general therefore did not 

regard mathematics as an empty formal game;19 they rather emphasized independence 

and consistency of an axiomatic system derived from intuition and experience. That view 

was promoted in Grundlagen der Geometrie, where Hilbert’s objective was to identify 

and fill ‘gaps’ or remove ‘extraneous hypotheses’ in Euclid’s reasoning. The manuscript 

laid out a clear and precise set of axioms for Euclidean geometry, and demonstrated 

in detail the relations of those axioms to one another and to some of the fundamental 

theorems of geometry.

In Grundlagen der Geometrie Hilbert considers three collections of basic objects, which he 

calls ‘points’, ‘straight lines’ and ‘planes’, and five relations between them. The conditions 

prescribed in Hilbert’s system of axioms are sufficient to characterize the basic objects 

and their relation to each other. In order to prove axiomatic independence, Hilbert builds 

several different geometries by negating some axioms while keeping others intact. Albeit 

possibly counter-intuitive, the resulting geometries are consistent. Geometry’s innate 

structure is maintained as a consistent one, unrelated to physical reality, to which it does 

not correspond. This can be seen in Hilbert’s words:

“We think of these points, straight lines, and planes as having certain 

mutual relations, which we indicate by means of such words as ‘are 

situated,’ ‘between,’ ‘parallel,’ ‘congruent,’ ‘continuous,’ etc.”20

What points, lines and planes have are their relations to each other. An object ‘point’ 

does not necessarily refer to a point in the physical sense: the only necessary and suf-

ficient condition for it to be such is that it satisfies the relations between what is called 

‘point’, ‘line’ and ‘plane’. It divorces geometry from any recourse to a specific instinctive 

meaning (or notions such as movement or motion). This was apparent already in 1893, 

when Hilbert, upon his return from Halle after hearing Wiener’s lecture, famously said: 

“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs, 

and beer mugs’”.21 

The understanding that geometry is not about describing a space, but rather about 

conceiving it as what is grounded in a system of axioms, gave rise to a plurality of different 

18	 Hilbert 1899, 1.

19	 See Corry 2004, 161.

20	 Ibid, 2.

21	 Blumenthal 1935, 402 – 3.
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geometries. It opened the way to view geometry (and algebra) first and foremost as an 

internal structure, one that is not based on movement, measuring or counting. This 

is manifest in the shift from Hilbert to Tarski. Hilbert, having advanced mathematical 

formalism considerably, still regarded geometry as fundamentally empirical, though 

experimentation in itself need not be performed.22 Tarski, on the other hand, considered 

geometry wholly in its structural interiority. Alfred Tarski (1901 –1983) was a Polish logi-

cian, mathematician and philosopher considered as one of the greatest logicians of the 

20th century. He proved in 1930 that geometry, once formulated according to a specific 

choice of notations and axioms, admits an elimination of quantifiers: every formula is 

equivalent to a Boolean combination of basic formulae, that is, geometrical propositions 

can be written using first order logic alone. Once setting up the basic objects, relations 

and axioms, every claim of Euclidean geometry can be formulated using the quantifiers 

∃ (‘there is’) and ∀ (‘for every’) together with its basic objects serving as variables.23 

While Hilbert is considered one of the influencing mathematicians to reformulate to 

Euclid’s axiomatic geometry, it is Tarski who found a more economic and efficient axi-

omatization for it.24 Tarski’s system of axioms for Euclidean geometry was based on a 

single primitive element – ‘point’ – and two undefined relations among those elements 

– betweenness and equidistance (or congruence). For every three points a, b and c, the 

relation ‘betweenness’ takes the value ‘true’ if the point b lies on the line segment with 

ends a and c. For two pairs of points – thinking of each pair as the endpoints of a line 

segment – the relation ‘equidistance’ holds if the two segments are of equal length. All 

other relations are consequently derived; for example, the collinearity of three points 

is defined in terms of betweenness (a, b and c are collinear if and only if one of them is 

between the other two). Tarski did not take ‘line’ or ‘incidence’ to be primitive notions; 

indeed, the only primitive notion is the point. 

The primary significance of Tarski’s elementary geometry lies in its satisfying three 

essential meta-mathematical properties: it is deductively complete (every assertion is 

either provable or refutable), decidable (there is a procedure for determining whether or 

not any given assertion is provable), and it is consistent (and this is why it is a correct 

axiomatization).25 In order to prove these three, Tarski, in a move similar to Hilbert’s, 

based geometry on the real numbers. To prove the completeness of the systems of 

complex algebra and Euclidean geometry, Tarski proved the completeness of the system 

22	 Concerning Hilbert’s contribution to the rise of modern algebra and modern geometry, see for example: 

Corry 2004, chapter 3; Mancosu 1998, Part III; Hasse 1932.

23	 Here is an example of one claim of Euclidean geometry: for any triangle, the sum of the lengths of any 

two sides must be greater than or equal to the length of the remaining side.

24	 By “more efficient” we mean that Tarski proved with this axiomatization that the euclidean geometry is 

consistent. For an extensive survey on Tarski’s life and work, see Feferman/Feferman Burdman 2004.

25	 See Tarski 1967.
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of algebra based on real numbers – one that Hilbert assumed as evident and therefore did 

not bother to prove.26 Not only that, Tarski noted: “it is possible to construct a machine 

which would provide the solution of every problem in elementary algebra and geometry”.27 

This mechanical description of geometry is expressed in Tarski’s formulation: all axioms 

and propositions are expressed in terms of first order logic. For example, the famous 

parallel axiom can be expressed as follows:28

[B(abf ) ⋀ ab ≡ bf ⋀ B(ade) ⋀  ad ≡ de ⋀ B(bdc) ⋀ bd ≡ dc] → bc ≡ fe

where the variables are points and B(–,–,–) designates betweenness. This is a description 

that does not resemble Euclid’s in any form: “If a line segment intersects two straight 

lines forming two interior angles on the same side that sum to less than two right angles, 

then the two lines, if extended indefinitely, meet on that side on which the angles sum 

to less than two right angles.”29

In Tarski’s framework one does not need several basic objects. Such plurality might induce 

problematic relations between these objects, or a tacit form of abuse of notation might 

take place, as seen in Hilbert’s Grundlagen der Geometrie.30 A single object is all that is 

called for – an abstract object without presupposed properties, bearing no particular 

relation to empirical reality or intuition.31 Its properties are exclusively derived from 

a system of axioms: the point in Tarski’s work is an object defined according to what 

satisfies the axioms.

What is then the essence of geometry in its various faces from Klein to Tarski? It is clear 

Fuller’s critique bears merit, though not entirely well grounded from a historical stand-

point. From Fuller’s perspective, motion and movement were formulized so that they 

became pure mathematical objects, a maneuver that leads to a reduction of dynamics 

into axiomatics, that is, a static structure. Hilbert’s views on geometry encouraged a 

consolidation of it as what does not have an essential connection to movement (as a line 

can also be named a chair). Fulfilling Hilbert’s program for an axiomatically consistent 

geometry, Tarski had come to speak of geometry in mechanical terms. Tarski no longer 

refers to geometry as the study of space (together with constructions in and through it); 

he rather refers to its meta-properties as a static structure. Following Fuller, one may 

26	 See Hilbert 1899, section 9.

27	 Tarski 1967, 306.

28	 Tarski/Givant 1999, 184, axiom 103.

29	 Heath 1908a, 155.

30	 Note that in Grundlagen der Geometrie a line is a collection of points but also functions as a basic object.

31	 Cf. Hilbert’s reference to Kant’s citation regarding the origin of abstract ideas from intuition (Hilbert 1899, 1).
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say the Greeks’ static constructs (e.g. the square or the cube) were replaced by a static 

structure for geometry itself.

2.3 The two sides of the mathematization of the fold at the 19th century

In light of a static conception of geometry, we ask how folding, as a dynamic operation, 

was perceived mathematically starting from the 19th century. Before turning to Fuller’s 

conception of the fold, we will shortly examine the dual role folding played in mathematics 

at that time. This will help us situate Fuller’s thought within a pertinent historical tradition. 

A folded piece (of paper, fabric etc.) is regarded as such when one or two of the following 

operations are involved: creasing (as in folding a paper by a mountain- or valley-fold) or 

bending (without introducing creases). In this section we provide two examples of 19th 

century mathematizations of folding that took both operations into account: Sundara 

Row in his 1893 manuscript Geometrical exercises in paper folding, and Leonhard Euler, 

who described developable surfaces as folded. These mathematizations considered 

folding not only as a mathematical tool, but also as what expresses essential characters 

of the geometric form.

2.3.1 Row’s Folds and the emergence of the physical straight line

Tandalam Sundara Row was an Indian mathematician, who worked for the Indian gov-

ernment in the revenue department. Row is mainly known for his book Geometrical 

exercises in paper folding.32 Klein’s favorable mention of Row’s work in Vorlesungen über 

ausgewählte Fragen der Elementargeometrie sparked a general interest in the geometry 

of paper folding.33 Why was Klein so impressed by Row’s work on folding? To answer 

this question, let us examine how Row deals with geometry. To begin with, Row refers 

to the folding of paper as “kindergarten gifts” (the word ‘Origami’ does not feature). He 

invokes Friedrich Fröbel’s gifts and occupations: “[t]he idea of this book was suggested 

to me by Kindergarten Gift No. VIII. Paper-folding”.34 Row states that “[t]hese exercises 

do not require mathematical instruments,” referring to the straightedge and compass 

used in Euclidean geometry.35 Row also dispenses with the need for axioms:

“The teaching of plane geometry in schools can be made very inter-

esting by the free use of the kindergarten gifts …. [the paper folding] 

32	 Cf. Friedman 2016 for a detailed account of Row’s life and work.

33	 Klein 1897, 42: “[…] we may mention a new and very simple method of effecting certain constructions, 

paper folding. […] Sundara Row, of Madras, published a little book Geometrical Exercises in Paper 

Folding […] , in which the same idea is considerably developed.”

34	 Row 1893, vii.

35	 Ibid.
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would give them [school children] neat and accurate figures, and 

impress the truth of the propositions forcibly on their minds. It would 

not be necessary to take any statement on trust.”36 

Row suggests teaching Euclidean geometry to children could be done without axioms, 

that is, without “statement[s] [taken] on trust.” In comparison to Euclid, Row proposes 

a different conception of geometry: a geometry not grounded in axioms or ideal objects, 

but rather based on folding as its one and only allowable operation. As a result, the 

status of the straight line, as a product and producer at the same time, becomes clearer.

The opening chapter to Row’s manuscript starts with a description of materiality, not 

with any foundational system of axioms:

“Look at the irregularly shaped piece of paper […] and at this page which 

is rectangular. Let us try and shape the former paper like the latter. 

Place the irregularly shaped piece of paper upon the table, and fold 

it flat upon itself. Let X’X be the crease thus formed. It is straight.”37 

Row starts with an operation based on paper and hence on materiality: the folding of 

an  “irregularly shaped” sheet of paper and later the passing of a knife.38 The important 

point to consider here is that the line produced is straight as a direct result of folding.39 

There is no need to prove the line is straight, or define it as what passes through two points.

As the line X’X is only considered a consequence of folding, it obtains another status: it is 

that along which we fold: “Fold the paper again as before along BY, so that the edge X’X 

is doubled upon itself.”40 Row now folds the paper along the line that was just created, 

such that a part of this line X’X will be folded upon itself. When considering the crease 

BY that is created, Row discovers that BY and X’X are perpendicular.41 Creating thus a 

rectangle, Row continues with the folding of a square whose side is of unit length. Then 

a smaller square is folded inside, rotated by 45 degrees in relation to the initial square. 

The process continues repetitively, creating via folding a sequence of squares embedded 

one into the other. 

In Row’s treatment, the straight physical line acquires a special status: it is at once 

created by the fold and creating it. It is crucial to emphasize Row always deals with line 

36	 Ibid, viii.

37	 Ibid, 1 (our italics).

38	 Ibid.

39	 In contrast to Kempe’s 1887 treatment of straight lines (Kempe 1887, 2 – 3).

40	 Row 1893, 1.

41	 “Unfolding the paper, we see that the crease BY is at right angles to the edge X’X.” (ibid).
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segments – the inevitable result of folding a piece of paper of finite dimensions. There are 

neither infinite lines (and hence no dispute over the parallel axiom), nor basic objects to 

begin with. There is rather a basic operation that initiates geometry. The basic objects, 

the Grundbegriffe and the relations between them do not play the same crucial role in 

Row’s book, as they did for many of his contemporaries. Row takes into account neither 

group theory nor axiomatic methods he was surely well aware of.42 In Row’s work it is 

the fold – as what causes the discrete, finite, straight line to emerge as a material, discrete 

unit – that plays the crucial role. 

2.3.2 Euler, folded surfaces and differential geometry

Let us now turn to developable surfaces: in this context the fold is considered a continuous 

operation. The history of developable surfaces can be traced as far back as Aristotle 

(384 –322 B.C.).43 In their current definition, developable surfaces are regarded as a special 

type of ruled surfaces: they have zero Gaussian curvature and can be mapped onto the 

plane without distorting curves. 44 Though the history of developable surfaces deserves a 

detailed account, we will only provide a brief survey focusing on their relation to folding.45 

In his development of calculus, Leonhard Euler (1707 –1783) initiated the first serious 

mathematical study of ruled surfaces. He wrote his celebrated manuscript About solids, 

the surfaces of which can be developed on the plane – in the original: De solidis quorum 

superficiem in planum explicare licet – where he identified surfaces as boundaries of 

solids. Euler opened the manuscript with the statement that cylinders and cones have 

the property that they can be flattened out or “developed on the plane” unlike spheres. 

Euler wished to know which other surfaces share this property.46 

It is important to note for the purpose of our discussion that explicare in Latin means ‘to 

explain’, ‘to develop’ but also ‘to unfold’. The expression “in planum explicare,” which 

features all throughout the paper,47 can be translated verbatim into ‘to unfold onto a 

plane’. The term ‘developable surfaces’ is a later nomenclature. 

Euler failed to find developable surfaces (besides cylinders and cones) through analyt-

ical means. Using geometric principles, however, he did reach a solution. Employing 

geometrical results, Euler understands that lines that were parallel on the flat paper will 

also not meet on the folded one, concluding that the line element of the surface has 

42	 Row’s awareness of other mathematical methods can be seen in Row 1906. Note the same year (1893) 

another manuscript on folding was published by the mathematician Hermann Wiener. See: Friedman 2016.

43	 Aristotle states in De Anima that “a line by its motion produces a surface” (Aristotle 1928 –1952, vol. 3, 409a).

44	 Gaussian curvature is defined as the product of the two principal curvatures, which are the eigenvalues 

of the second fundamental form of the surface in question (the second fundamental form being a 

quadratic form defined on the tangent plane to a point on the surface). See e.g. Pressely 2001, 147.

45	 For more detailed surveys see: Cajori 1929; Reich 2007; Lawrence 2011.

46	 In Euler’s words, “quorum superficiem itidem in planum explicare licet.” In: Euler 1772, 3.

47	 Ibid, 7, 8, 11, 27, 31 and 34.
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to be the same as the line element of the plane. What is surprising perhaps is that the 

geometric principles in question were inspired by folded paper: “charta plicae”.48 It was 

folded paper and not solids, which informed the intuition behind developable surfaces 

in their early incarnation.49

Euler was not the only one to employ such terminology: the mathematician Gaspard 

Monge (1746 –1818) also studied developable surfaces at the time, and, as with the former, 

described developable surface (and curves on them) as pliée, i.e., ‘folded’.50 It might be 

claimed that mathematicians (e.g. Monge, Euler) considered folding during those decades 

an essential action for creating surfaces, as an operation grounded in the materiality 

of the paper. However, it is important to remark that, with the further development of 

calculus and the rise of differential geometry, the term Manifold (Mannigfaltigkeit), albeit 

having an etymological connection to ‘fold’, was not chosen to describe surfaces as 

inherently folded. In his 1854 talk Über die Hypothesen, welche der Geometrie zu Grunde 

liegen,51 Bernhard Riemann used the term Mannigfaltigkeit almost synonymously with 

‘magnitude’, when he stated he set himself “the task of constructing the notion of a 

multiply extended magnitude,”52 and invoked various motivations when first using the 

term. ‘Mannigfaltigkeit’ for Riemann can equally be discrete; it does not necessarily refer 

to a surface. When talking about continuous manifolds, the intuitions Riemann provides 

for choosing the term “Mannigfaltigkeit” are positions of objects and colors. No wonder 

a developable surface was and is considered a manifold and not a folded piece of paper.

3. Fuller’s mobile structures

As was seen in sections 2.2 and 2.3, a withdrawal from materiality occurred in geometry 

at the end of the 19th century: consider for example Tarski’s obvious mechanization 

of geometry. Row’s manuscript on the other hand was either completely ignored or 

criticized for being “too infantile for a grown person.”53 Against this background, Fuller 

suggested that stable geometry (in the form of planes and lines) emerges in fact from 

mobile moving folds, threads and transformations.

48	 Ibid, 7.

49	 Euler was of course also one of the founding fathers of topology, along Henri Poincaré , Solomon Lefschetz 

and Johann Listing. Fuller was interested in topological transformations (e.g. the Jitterbug transformation, 

see section 3.5) and was aware of Euler’s polyhedron formula: V – E + F = 2 (see section 3.4).

50	 For example in: Mémoire sur les développées, les rayons de courbure, et les différens genres d'inflexions des 

courbes a double courbure (Monge 1785, 517 – 519); Application de l'analyse a la géométrie, a l'usage de 

l'Ecole impériale polytechnique (Monge 1809, 348 among others), Géographie descriptive (Monge 1811, 141).

51	 Riemann 1868. Cf. also Cantor 1878, where it can be said that both mathematicians took manifolds as sets.

52	 Riemann 1868, 133: “Ich habe mir daher zunächst die Aufgabe gestellt, den Begriff einer mehrfach 

ausgedehnten Größe aus allgemeinen Größenbegriffen zu construiren.”

53	 Young/Young 1905, vii.
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3.1 Fuller and Semper: folds and interlaces

Folds and folding are not the primary consideration in Fuller’s work. However, the most 

characteristic of his artifacts – should they be experimental buildings, maps or geometric 

modeling – are indeed folded or otherwise rely on folding as a deforming operation, as 

can be seen in fig. 1.54 Considering how vitally important folds and folding were for Fuller’s 

practical design, his remarks on the issue were dispensed sparingly, with most dedicated 

to specific problems of folding, such as the great circles.55 Where one would otherwise 

expect a theory of folding to accompany Fuller’s rich discourse on design, it is only found 

implicitly in his artifacts and the geometry of the Synergetics.56 This disproportionality 

calls upon us to rediscover a tacit theoretical foundation from which to reconstruct the 

fold and the deforming operation.

54	 See also fig. 6 and 7: the Jitterbug transformation.

55	 Fuller 1975a (sections 450 – 9) demonstrates eight models (a cuboctahedron and an octahedron, among 

others) that can be constructed by folding whole circles (with a protractor, using origami-style folding). 

See Fuller 1975a, section 459.03: “The six great circles of the icosahedron can be folded from central 

angles of 36 degrees each to form six pentagonal bow ties.” Cf. also Fearnley 2009.

56	 The changing and developing relationship between theory and design in Fuller’s work is seen in: 

Krausse/Lichtenstein 1999; Krausse/Lichtenstein 2001.

Fig. 1: Necklace-Dome: One of the first folded geodesic domes of Fuller, done in 1950.
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In his earlier studies Fuller examined ways to reduce weight loads in architecture and 

construction. He was famous for provoking fellow architects with the question: “Does 

anybody know what a given building weighs?”57 Weight load reduction, employed as a 

design strategy, was for him a means for examining economical and efficient construction. 

Fuller noted how weight specifications come up naturally in the design of marine vessels, 

vehicles and aircrafts, while in building construction this information is considered 

irrelevant. His question attempted to bridge the gap between the two practices (or 

mentalities): the mobile and the stationary.

Techniques for consolidation, folding and size or shape adaptation are present in all 

mobile forms of human habitation (such as tents, yurts and tipis). This is true not only 

for the architectural structures themselves, but also for equipment and furniture that 

go along with them. For a nomadic way of life, weight is not the only crucial criterion. 

Objects belonging to the household must fit requirements for transport. Folding fulfills 

these requirements in great measure: it allows objects to assume various shapes, being 

either flattened or spatially expanded. Folding allows for a transformation, with which 

objects can be adapted to mobility. Folds are thus both a result and an expression of 

movements, whose event-patterns Fuller summarizes under the concept of precession.58

One can observe firsthand the direct link between movement and folding in everyday 

clothes and textiles: dresses, cloaks, curtains, carpets and so on, as well as adjustable 

flexible space partitions.59 The fact that, under this aspect of regulation between inner 

and outer, a systemic correspondence between organisms and artifacts can be devised, 

is not least suggested by the fact that the use of hides of animals and barks of trees 

belongs to one of the oldest techniques for space subdivision. 

The architect Gottfried Semper (1803 –1879), regarded as one of the originators of research 

into material culture, derived his theory of architecture from primitive artifacts, such as 

clothing, used for space partition. This theory finds expression in his monumental work 

Style in the Technical and Tectonic Arts; or Practical Aesthetics (1860 –3).60 What is of special 

57	 “Does anybody know what a given building weighs? I once asked an American Symposium of architects 

including Raymond Hood and Frank Lloyd Wright as well as the architects of Rockefeller Centre, the 

Empire State Building and the Chrysler Building what the different structures they were designing 

weighed. Clearly, weight was not one of their considerations. They didn’t know.” In: Fuller 1963, 53.

58	 “The effects of all components of Universe in motion upon any other component in motion is 

precession, and in as much as all the component patterns of Universe seem to be motion patterns, is 

whatever degree they affect one another, they are inter-affecting one another precessionaly, and they are 

bringing about resultants other than 180 degrees. Precess means that two or more bodies move in an 

interrelationship pattern of other than 180 degrees.” In: Fuller 1975a (section 533.01), 287.

59	 Fuller encompasses an overarching notion of a dwelling place with “environment controls.” See Fuller 

1963, 55 ff; Compare Krausse 2002b, 97 ff.

60	 Semper 2004.
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interest for us here is his account of the textile origins of architectural space enclosures, 

exemplified through the wall as an architectural element. In his draft of 1853 he writes: 

“We have in our German language a word which signifies the visible 

part of the wall, we call this part of the wall, die Wand, a word which 

as a common root and is nearly the same with Gewand which signifies 

woven stuff; the constructive part of the wall has another name, we 

call it Mauer. This is very denoting.”61

“Denoting” hence distinctive. Here one finds not only two classes of materials – fabric and 

fiber on the one hand, rocks and soil on the other – but also two different principles of 

structure, reflected in two different types of construction. While hard crystalline materials 

tend to resist compressive forces till they give way to pressure in the form of fractures 

and fissures, fiber-based materials absorb tensile, attractive forces and bending stresses; 

in contrast to crystalline materials they are flexible. Semper shows in his early writings, 

it is the latter that preceded masonry.

“It is a fact,” he writes, “that the first attempts of industrial art, which 

have been made and which we still observe to be made by human 

beings, standing on the sill of civilization, are dresses and mats. This 

part of industry is observed to be known even by tribes, which have 

no idea of dressing.”62

Plaits, carpets, interlaces and hangings were originally used for space arrangement and 

partition, to which solid structures were subsequently added,

“the thick stone-walls, were only necessary with respect to other 

secondary considerations, as for instance to give strength, stability, 

security etc. Where these secondary considerations had no place, 

there remained the hangings the only means of separation; and even 

when the first became necessary, they formed only the inner scaffold 

of the true representative of the walls, namely the variegated hangings 

and tapestries.”63

Semper demonstrated how these elements enable flexible interior partitions.64 Flexibility 

and mobility originally form a unit that is lost with the use of solid structures, and must 

61	 Semper 1983, 21.

62	 Ibid.

63	 Ibid.

64	 As an example, Semper cites the Caribbean hut in which the walls are transferable and not connected to 

the roof. Cf. Semper 1986, 34f.
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be compensated for using doors. This idea experienced a modernist revival in the form 

of mobile room dividers and separators, sliding doors and accordion folding partitions. A 

most striking example is found in curtain walls, whose construction in recessed reinforced 

concrete columns (as in Bauhaus Dessau 1926) accounts for the old truth: the space-en-

closing elements of architecture are in effect suspension structures subject to tension.

3.2 Fuller’s non-simultaneous foldings

Semper’s reintroduction of fiber-based materials into the processing and manipulation 

of form was taken on by Fuller; this time of course under the conditions of advanced 

industrialization, new materials, innovative construction techniques and global trans-

portation systems. Fuller defines the fundamental relationship of human existence to 

mobility as follows:

“Man was designed with legs – not roots. He is destined to ever-increas-

ing freedom of individually selected motions, articulated in preferred 

directions, as his spaceship, Earth, spinning its equator at 1000 miles 

per hour, orbits the sun at one million miles per day, as all the while 

the quadrillions of atomic components of which man is composed 

inter-gyrate and transform at seven million miles per hour. Both man 

and universe are indeed complex aggregated of motion.”65

This is a concise summary of what Fuller called scenario universe. It is this scenario that 

forms an indispensable part of the exposition to Fuller’s energetic-synergetic geometry.66 

A scenario is favored over theorems or axioms; it emphasizes the a priori temporality 

of a (geometrical) event:

“The Universe”, so presented in his book Synergetics, “can only be 

thought of competently in terms of a great unending, but finite sce-

nario whose as yet unfilled film-strip is constantly self-regenerative […]. 

Our Universe is finite but non-simultaneously conceptual: a moving 

picture scenario of non-simultaneous and only partially overlapping 

events”.67

The reference to the scenario and to the agility and mobility of the film expresses Fuller’s 

deep mistrust in the image, the still image, the single frame with its implied immobility. 

65	 Fuller 1969, 348.

66	 Fuller 1975a (section 320.01 – 02), 87.

67	 Ibid.
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The single image evokes the illusion of simultaneity of events, as in the image of the 

starry sky, an image that exhibits light, which in fact emanated from stars at different 

moments in time.

Only when considering longer time spans can one observe evolution and metamorphosis 

in nature. An emphasis on non-simultaneity (with partial overlapping at the most) is also 

present in the way ‘folding’ is present in the German words Überlegung and überlegen. The 

verb überlegen has indeed the following three different meanings: 1) cover; coat; overlap, 

2) consider; contemplate, 3) lay an object down over another object.68

The introduction of the scenario, as a form of thinking and of presentation, allows us 

to work with partially overlapping events, where scenarios are both descriptive and 

prescriptive – prescriptive with respect to actions that would be performed, carried out 

and so executed.69 The performative aspect of the scenario also plays a role in Fuller’s 

geometry, which insists on the embodiment and the materialization of geometric figures 

in the model, as well as in the live-performance of transformations that he discovered.

How did Fuller come to adopt the scenario as a framework for cognition? We already 

detect its origins in his first architectural project, as a framework for design. The structure, 

which he has in mind, is not developed in response to the layout of its designated lot, 

but in accordance with easy transport. The tower house, which was designed in 1928, 

could be industrially prefabricated and then shipped by air (with a Zeppelin); it could be 

delivered to any location on the globe. Fuller, even before clarifying what was needed and 

implied in constructing such a house, first simulated this unprecedented procedure. To 

that end, Fuller drew a series of sketches in the manner of a comic strip, which depicted 

the key events of this scenario.70

Fuller’s recordings from this period show how attentively he followed the development 

of this popular genre and reflects on its potential as a form of presentation: “Undeniably 

the ‘funnies’ are the most generally inspected portions of our daily newspapers and may 

be considered the economic frosting that sells the cake – It is more than significant that 

these funnies have completely lost race of ‘slapstick’ and have become serials of handy 

philosophy.”71 Even later on, in his preparation of maps and diagrams of complex global 

data (world energy map, global transport development, history of isolation of chemical 

elements), Fuller insisted on “maintaining a comic strip lucidity”.72

68	 Grimm 1936, column 385.

69	 Regarding the various aspects of performance in Fuller’s work, cf. Krausse 2016.

70	 Krausse/Lichtenstein 1999, 99 –103.

71	 Krausse/Lichtenstein 2001, 102. 

72	 Ibid, 152 (from Fuller’s Earth incorporated (1947)).
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Traces of scenario-thinking, partial overlapping and comic-strip lucidity can be found 

also in Fuller’s pictorial depiction of the construciton process. Take for example the 

sequence of photos that illustrated the construction of the Dymaxion house starting from 

its components, through the individual assembling steps, to the finished and furnished 

residential house. The same pattern appeared in his second attempt to build this house 

– albeit with an altered outline – in an aircraft factory. This time it was indeed realised as 

a prototype.73 Besides the process of assembling, the most important thing about this 

sequence of photos is its demonstration of initial and final construction stages: the initial 

assembly of lightweight thin parts, occupying but little space, set against the finished 

space-consuming building. Before construction commences, building parts are laid out 

as one spreads clothes before packing a suitcase.

In this way one may inspect all components in order; they were designed to fit into a 

container in the most space efficient way. In the case of the Wichita house of 1946, the 

cylindrical, metal, storage container served also a key structural element of the building. 

Packaging aligns well with the concept and practice of folding. Transportation to and 

unpacking at the construction site need to be taken into account in the design of the 

container and its contents. Unpacking should fit color-coded step-by-step assembly all 

the way up to the finished, fully furnished, turn-key house. This turns building into a 

performance that follows a precise scenario.74

It is no coincidence, that this performance, as in a sequence of movie frames, resembles 

the process of the unfolding of a plant from seed to bud to leaf, save that its origin goes 

back to design, from which mechanical parts are developed as affiliated and connected. 

3.3 Seedpods, Viruses and Geodesic domes

Fuller related design scenarios to organic growth processes on various occasions. One of 

his experimental constructions, the Flying Seedpod of 1953, is a pure folding mechanism.75 

Flying Seedpod is a dome, 42 feet in diameter, which can set itself up semi-automatically. 

Whether compacted as a transportable bundle or deployed as an architectural structure, 

73	 The corresponding photo series of the Dymaxion House and the Wichita dwelling machine are printed 

in: Marks 1960, 84 f and 128 –133. 

74	 Fuller’s scenario-thinking looks beyond the finished product onto its ultimate end-of-use. With its 

structures he envisages “demountability”, with its materials, “recirculation.” Responsibility in design 

extends to the entire life cycle of the product – what Fuller called “cradle-to-grave.” It took the combination 

of product-cycle together with recycling to go from “cradle-to-grave” to the slogan “cradle-to-cradle”. 

Regarding “demountability” cf. Marks 1960, 112 –113. Regarding recycling, cf. Fuller 1938, chapter 38, 

316 – 322; Reprint in: Krausse/Lichtenstein 2001, 117 –120. Regarding “cradle-to-cradle”, cf. Braungart/

McDonough 2009.

75	 See fig. 2: series of four photos “Flying Seedpod” 1954/5.
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all parts stay connected to each other by flexible nodes or joints. The bundle consists 

of 30 inwardly folded tripods, whose chains come together in ball joints. The system of 

tripods can be unfolded and straightened up by extending pistons in pneumatic cylinders 

– radially directed tubes at the vertices of the dome. With the extension of pistons, a net 

made of cables is stretched. The clear span unsupported dome-structure obtains firmness 

and rigidity, through the interaction of its push-pull components. Flying Seedpod was 

a project that Fuller realized in 1953 with students from Washington University (fig. 2).

The study of folding structures of geodesic domes developed alongside progress in space 

exploration missions, so that one might see in Flying Seedpods – “the first scientifically 

designed apartment” – a rocket capsule to the moon.76 

Though the seedpod was nicknamed “the moon structure,” it did not fly to the moon. 

Instead it appeared in other ways in the world of molecular biology. Fuller tells how it 

came about: 

76	 “You may possibly be looking at the prototype of the structural principles that we may use in sending 

history’s first (little) scientific dwelling to the moon. As you see, all the structural members are tightly 

bundles together in parallel so that they may be transported in minimum volume within a rocket capsule.” 

In: Fuller 1965, 70; Fuller’s foundations for folding structures were later continued by his pupil Joe Clinton 

for NASA. Cf. Clinton 1971.

Fig. 2: Flying Seedpod. Washington University, St. Louis, 1953; A folding-out geodesic structure.
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“The principle of structural dynamics of the […] moon structure, the 

flying seedpod and its logistic pattern transformability, are double 

interesting because they have turned out to be also the same structural, 

self-realization system employed by a class of microcosmic struc-

tures – the protein shells of all the different types of viruses. About 

three and one half years ago molecular biologists in England and their 

colleagues in America, working in teams, were trying to discover the 

structural characteristics of the protein shells of the viruses with X-ray 

diffraction photographic analysis. These virus scientists discovered 

that the viruses’ protein shells were all some type of spherical geodesic 

structure. Having previously seen published pictures of my geodesic 

structures they corresponded with me and I was able to give them 

the mathematics and show them how and why these structures occur 

and behave as they do. They have now found the poliovirus structure 

to be the same structure as the possible ‘moon structure’. The polio 

virus instead of having the tripods on the outside and the clusters of 

five and six feet on the inside, has the five – and six – way jointings 

outside and the tripods or three–ways on the inside.”77 

The encounter between Fuller’s experimental architectural structures and science of 

the day could be passed for incidental – a random correspondence between structures 

on widely disparate scales – if not for geometry that provides a connection of a more 

general nature.

The researchers at Birkbeck College in London engaged with a striking resemblance 

between viral capsids and Fuller’s geodesic domes,78 when the largest was just completed, 

almost 120 m in diameter, making it the largest ever built clear span dome.79 It appeared 

as if the same such spherical structure found in nature was anticipated by Fuller, or 

rather as if he had built his geodesic domes according to models from nature. The first 

recorded images of capsids produced by an electron microscope were published in 

1962; they finally made resemblance evident.80 On this basis and other of Fuller’s 1960 

77	 Fuller 1965, 72.

78	 Cf. Morgan 2003, 86: “In the mid 1950s, Francis Crick and James Watson attempted to explain the 

structure of spherical viruses. […] biophysical and electron micrographic data suggested that many 

viruses had > 60 subunits. Drawing inspiration from [Fuller’s geodesic domes and] architecture, Donald 

Caspar and Aaron Klug […] proposed that spherical viruses were structured like miniature geodesic 

domes,” by forming a (protein) shell. Indeed, “[t]he idea was that identical viral subunits could bind 

together in quasi-equivalent positions to form a shell with > 60 subunits while conserving the same 

specific contact pattern between subunits” (ibid, 88).

79	 Union Tankcar Company Geodesicdomes, Baton Rouge, Louisiana; Railway repair facility, October 1958, 

cf. Marks 1960, 222f.

80	 Ubell 1962, 1.
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architectural structures, the mathematician Harold Scott MacDonald Coxeter was able 

to match individual domes, each slightly different in its geometric resolution of geodetic 

networks, to individual types of viruses, whose capsids likewise vary geometrically.81 

This new visual input, brought to bear through advances in electron microscopy (EM), 

made the resemblance even more apparent in microorganisms. Fuller got to see electron 

microscope images of marine microorganisms (magnified up to about 50,000 times), 

taken by biologist Gerhard Helmcke (who specialized in lightweight constructions in 

nature), in a 1962 meeting together with his colleague Frei Otto and Helmcke himself. 

The architect Frei Otto, who had just launched the research group Biology and Building, 

later reported how impressed Fuller was:

“The stereoscopic photographs looked like models of [Fuller’s] famous 

domes. To the participants it was clear: Had he [Fuller] known the 

diatom shells before, the whole world would have said that he had 

learnt this by watching the living nature. Had he knew the diatom 

shells, how they were really, he would not have probably dared to 

build his shells.”82 

When Fuller met Aaron Klug and his interdisciplinary team of researchers in July 1959 

there were no clear images yet, only clues coming from the X-Ray analysis of crystals. 

Even when Klug succeeded in applying crystallographic EM to the analysis of complex 

viral capsids, the images obtained were rather confusing: due to its extensive depth of 

focus, all structures were depicted one on top the other. Klug, who received the Nobel 

Prize in Chemistry in 1982 for this work and others, remarked in his Nobel lecture: “Thus, 

we knew what we were looking for, but we soon found that we did not understand what 

we were looking at”.83 Fuller’s geodesic domes served not only as a possible guide to 

deciphering those EM images. They were geometrical models at large which allowed 

patter recognition of an unidentified micro-phenomenon.

3.4 Platonic solids: a stable habitat?

The point of contact between Fuller’s designs and structural chemistry is derived from a 

functional correspondence: both deal with a problem of habitation that needs to be solved 

with utmost care for resources – one might consider protein shells to be the smallest 

houses in nature. In the case of the virus the space within is occupied by DNA and RNA 

molecules, which are densely folded and packed waiting for a suitable host to open the 

81	 Coxeter 1971. On the relationship between Coxeter and Fuller, see Roberts 2006, chapter 9.

82	 Otto 1985, 8.

83	 Klug 1992, 89.
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protein shell. Nevertheless, both Fuller’s domes and capsids represent an attempt to 

solve an optimization problem – maximum capacity for the smallest surface area. The 

geometric solution to the problem is the sphere, which both Fuller and viruses opt for.84 

Turning now to the structural elements of an approximately spherical casing or shell, a 

method of regular subdivision of the sphere must be developed.

In subdividing the sphere, Fuller – similarly to viruses, marine microorganisms and carbon 

molecules – chooses another way, compared with dividing the globe into a network of 

longitudes and latitudes. He avoids the classical construction of a dome using meridian 

groins and horizontal rings or bands. Instead, the sphere is symmetrically divided into 

regular polygons, described by Plato as the Elements in his dialog Timaeus.

Common to all Platonic solids – the tetrahedron, hexahedron (cube), octahedron, do-

decahedron and icosahedron – is that their vertices lie on a circumscribed sphere and 

their edges, once projected onto the circumscribed sphere, form arc segments of equal 

length. The arc segments are all part of great circles. Roughly speaking, great circles 

are the paths of minimal length on the sphere. They correspond to the straight lines of 

Euclidean geometry. Together, great circles and lines belong to a class of paths known as 

geodesics. Back to Platonic solids, the system of geodesic segments, obtained through 

projection onto the circumscribed sphere, forms a regular grid that divides the surface 

of the ball into equal polygons.

With the icosahedron, one obtains the most tightly arranged subdivision; it consists of 20 

equilateral triangles adjoining along 30 edges and touching at 12 vertices. According to 

Euler’s characteristic formula, V– E+ F = 2, where V denotes the number of vertices, E the 

number and F the number of faces. Five edges meet at the vertices of the icosahedron. A 

fivefold rotation symmetry is maintained throughout all of its subdivisions. This becomes 

clear when one looks at the truncated icosahedron:85 the 12 vertices are trimmed; one 

third of each edge is truncated at each of both ends, resulting in a new polyhedron 

consisting of 12 pentagons and 20 hexagons, with each pentagon surrounded by five 

regular hexagons. The truncation of the icosahedron affords a way to refine the spherical 

subdivision thereby better approximating a sphere. The truncated icosahedron is now well 

known for the Telstar football and the discovery of the carbon molecule C60. The 1996 

chemistry Nobel laureates, Harold Kroto, Richard Smalley and Robert Curl, responsible 

for the discovery, named it Buckminsterfullerene in recognition of the architect’s work.86

84	 We leave aside a class of rod-shaped viruses such as the prototypical tobacco mosaic virus.

85	 Comprising 32 faces, 90 edges and 60 vertices.

86	 Kroto 1996. See also Krausse 2002a.
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3.5 From folding and foldable platonic solids to the Jitterbug transformation

A question that occupied virologists was whether viral capsids – comprising at least 

120 protein subunits under seemingly identical conditions – contrived their structure in 

a manner similar to Fuller’s geodesic domes, domes which might have more than 180 

of triangular subunits. These domes are able to modify themselves slightly, such that 

they arrange themselves according to a geodesic grid on a sphere.87 Fuller could clarify 

this through his grid and through a formula, describing the total number of edges of 

these triangulated domes. Situating at every corner of a triangle a ball of radius 1, Fuller 

imagined a growing shell structure, beginning with the 12 balls, whose center situated 

on the surface of a sphere, then while the structure grows and another layer is situated 

symmetrically on the outside of the former layer, there are 42 balls, then 92 balls and so 

on, according to the formula: n = 10 f 2+2. With this formula, Fuller bases his calculation 

on the cuboctahedron, being one of the 14 semi-regular Archimedean polyhedra: while 

inscribing a cuboctahedron with edge length 1 in a sphere, Fuller instructs, as explained 

above, to posit 12 balls centered on the vertices. As one may enlarge the sphere and the 

cuboctahedron (when now the edge length of the cuboctahedron is 2), one may posit 42 

balls centered on the vertices, edges and faces of the cuboctahedron. In Fuller’s formula 

n stands for the balls situated symmetrically in the growing shells, where f stands for the 

number of the layers of these growing structures.88 And the higher the frequency – that 

is, the number of layers, the greater the number of balls and hence triangular subunits 

(created by drawing a line between three adjacent, tangent balls) is and the more fine-

meshed the network of geodetic structures. Fuller adds that “[t]hese successive layers, 

which permeate each other in all directions may be identified with energy waves radiant 

in all directions from a nucleus.”89 By “nucleus” Fuller points to the fact, that while 

situating the 12 balls of radius 1 on the sphere, having their center as the vertices of the 

cuboctahedron, there is a room for an additional ball – called “nucleus”, located exactly 

in the center of the sphere and touches all the other 12 balls (see fig. 5).

Fuller’s mathematical model was therefore not developed from the icosahedron or from 

any of the other Platonic solids: as we will explain later, when balls are positioned at the 

vertices of the icosahedron, the structure thus obtained does not have a nucleus, from 

which “energy waves” emanate. To see how a nucleus is necessary, one constructs 

87	 “[…] we have discovered that the way these viruses were built was similar to the way the geodesic domes 

were Built. Geometrically you cannot put more than 60 identical units on the surface of a sphere with 

each one making identical contacts […] The virus we had been working on had 180 sub-units – three 

times 60 – so they couldn’t all be in identical environments.” In: Klug 1995, 10.

88	 For a detailed explanation, see: Edmondson 1987, 114 –116. For a proof of Fuller’s statement:  

Coxeter 1974.

89	 Krausse/Lichtenstein 2001, 169.
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dense sphere packing using identical spheres. By connecting the centers of spheres in 

certain arrangements one can obtain the elementary forms, for example Platonic solids. 

Sphere-packing arrangements – being an arrangement of non-overlapping, possibly 

touching spheres – go back to Johannes Kepler’s 1611 book De Nive sexangula. In it Kepler 

distinguishes between two types of packing: one that forms a cube and another that 

forms a tetrahedron.90 Kepler’s book is primarily an investigation into the hexagonal form 

of snowflakes. As to the densest space-filling arrangement of spheres, Kepler conjec-

tured that the tightest packing produces rhomboidal aggregates, known as the rhombic 

dodecahedral honeycomb. The density η of a packing of solid spheres is today defined as:

η = lim  
∑
∞

i= 1 μ (Ki ∩ Bt )

μ (Bt
)t → ∞

where μ(X) is the volume of X, Bt is a ball of radius t centered at the origin, and Ki are 

balls which are used for the packing.91 It follows that the density of a packing of balls is 

always smaller then 1. When Kepler discusses sphere packing, he proposes two types. 

The first is the simple cubic packing and the second is what is called today an FCC packing, 

i.e. the hexagonal arrangement. On the cubic arrangement, Kepler concludes: “The 

arrangement will be cubic, and the pellets, when subjected to pressure, will become cubes. 

But this will not be the tightest pack.” However, when considering the second packing, 

Kepler remarks that “[t]his arrangement will be more comparable to the octahedron 

and pyramid. The packing will be the tightest possible, so that in no other arrangement 

could more pellets be stuffed into the same container”.92 It is known today that the 

density of the FCC packing is π ⁄(3√2)∼0.7405 , whereas the density of the simple cubic 

90	 See: Kepler 1966. See also fig. 3.

91	 See e.g. Conway/Sloane 2013, 8.

92	 Kepler [1611] 1966, 15.

Fig. 3: Kepler’s two types of planar packing of spheres.
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packing is approximately 0.6802, but Kepler does not give any reason why this pyramidal 

arrangement is the densest. 93

Fuller studied sphere packing through his work on the suspended construction of the 

Dymaxion House. For this purpose, he used cables wrapped around an inner rope. When 

cross-sectioning the cables, one sees that the cross-section consists accordingly of six 

units around one center (“six around one”. See fig. 4b).94 In this cross-sectioning Fuller 

sees a prototype of symmetrical growth. Fuller’s first study of a wave-mechanical matrix 

appears in grids for his hexagonal layout of the house on a mast, in which the intervals 

are specified not only in length dimensions, but also in time units.95 The initial intuition 

for the matrix (or isotropic vector matrix) is found in the hexagonal configuration packed 

with circles: it belongs to the class of two-dimensional densest packing. Connecting the 

centers of adjacent circles with lines, one obtains a part of a configuration of 9 triangles, 

which the Pythagoreans called tetractys, as can be seen in fig. 4a. 

93	 Kepler’s assertion, better known as the Kepler’s conjecture (that the densest packing of identical balls in 

space is either a cubic arrangement or an hexagonal arrangement), was proved only in 2014 by Thomas Hales.

94	 In the magazine he edited SHELTER (November 1932, 106 –107) Fuller assembled pictures that, inter alia, 

show snow crystals, cable cross-sections and the Dymaxion House hexagonal plan. See facsimile reprint 

in: Krausse/Lichtenstein 1999, 172 –173.

95	 Krausse/Lichtenstein 1999, 114 f. “Time based plan for the 4D House”, Figure 1928.

Fig. 4: (a) Only with the most right image (the tetractys) one may notice the appearance of the nucleus, in the 

middle of the inscribed hexagon. (b) Fuller's “six around one” construction, obtained from the tetractys. The 

nucleus is the grey circle.

(a)

(b)
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When extending this method to three-dimensional densest packing modeled on the 

cuboctahedron, Fuller indicates: 

“When the centers of equiradius spheres in closest packing are joined 

with lines [i.e. a possibly infinite truss modeled as the cuboctahedron], 

an isotropic vector matrix is formed. This constitutes an array of equi-

lateral triangles which is seen as the comprehensive coordination 

frame of reference of nature’s most economical, most comfortable 

structural interrelationships employing 60-degree association and 

disassociation.”96

What Fuller searched for becomes clear in his 1938 book Nine Chains to the Moon. There 

Fuller calls for a time-based geometry that takes into account propagation of waves and 

rays and growth processes in space and time: “Time, or how far (or more properly ‘fast’) 

radially outward, in time and space, integrated as rate or the center of the sphere.”97 The 

mental image Fuller uses is that of the “expanding sphere” or the “halo” – a radiation in 

all directions. As was seen above, Fuller finds a framework for such processes in a poly-

hedron consisting of 8 triangles and 6 squares: the cuboctahedron. In its representation 

using sphere packing there are not “six around one” but rather “twelve around one.”98 Its 

shell consists of 12 balls. Growing symmetrically with additional layers, 42, 92, 162, 362 

(or more) spheres can be packed. The cuboctahedron may be regarded a form of sphere 

packing: it forms a shell of 12 balls with a nucleus. Having a different shape compared 

with that of the cuboctahedron, one might say the icosahedron consists merely of a shell, 

whereas the cuboctahedron has its nucleus, as noted above and as can be seen in fig. 5.

96	 Fuller 1975a, caption to figure 420.02 (our italics).

97	 Fuller 1938, 134.

98	 Fuller 1975a, 116 –120, section 413.00.

Fig. 5: On the left, a packing of 12 white balls, where the center of each (white) ball is placed on a vertex of a 

cuboctahedron; note the existence of a grey nucleus. On the right, a packing of 12 balls, where the center of each 

ball is placed on a vertex of the icosahedron; in this case there is no space for a nucleus of the same size. Note 

that the density of the icosahedral packing is approx. 0.6882, being lower than the density of the FCC packing.
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Since the hollowed space in the center of the icosahedron has smaller dimensions com-

pared with the ball in the nucleus of the cuboctahedron, the radii of the balls layering the 

icosahedron are somewhat shorter than the edges. Therefore, the icosahedron cannot 

provide a basis – a matrix, in Fuller’s terminology – for symmetrical growth processes. It 

always remains the same perfect space division, through all of its modifications: be it a 

capsid, a shell or a geodesic dome. Conversely, the cuboctahedron provides a matrix for 

growth processes – what Fuller refers to by “isotropic vector matrix” – but is unsuitable as 

a building structure. The six square faces of the cuboctahedron lack stabilizing diagonals. 

Fuller has repeatedly demonstrated this effect, for example, in his Necklace Performance.99 

A square, according to Fuller, is not a structure; it is a temporary opening at the most. 

Only the triangle is a structure, as it is self-stabilizing. This feature appears only when 

one builds the cuboctahedron as a model and connects the rods with flexible joints.

These and many other aspects come to light in a geometric transformation Fuller named 

Jitterbug after a 1940 popular dance. Though there are different ways to dance the Jitter-

bug,100 we will limit ourselves to one, the easiest, which is performed with a model. The 

model consists of 24 individual rods that may move while being connected to flexible 

nodes. Thus, various configurations can be produced via folding. It begins with the most 

extended configuration: the cuboctahedron. Though the cuboctahedron also has square 

faces, we focus on the behavior of the triangles during the transformations (see fig. 6 and 

7). Its 14 faces can be seen clearly, and it is evident via touching that the cuboctahedron 

is not rigid. When slight pressure is applied to the model’s upper triangle, the result is 

a left or right rotation of the remaining triangles. This draws the 6 squares in a diagonal 

direction, deforming them into rhombi. At this point the squares crease, forming an 

invisible, “silent” edge, while an inserted rod could have prevented this deformation. 

When the rods are inserted in the middle of the creased squares, the result is of an 

icosahedron: each folded rhombus supplies 2 triangles. A total of 12 new triangles plus 

the original 8 add up to the 20 triangles of the icosahedron. In the absence of intervention 

to stop the process of folding it goes on: adjacent edges of the cuboctahedron’s original 

squares join in pairs. The result is an octahedron, whose 8 triangles are formed with 

double-tipped edges. The next two stages of the Jitterbug transformation are more 

complicated since they require further extension and folding of area, suffice it to say, 

this procedure produces a tetrahedron, with quadruple edges and culminates in a planar 

triangle with eightfold edges. Throughout the process of transformation the polyhedra 

emerge in a process of phase transitions.

99	 Fuller 1975a, 317 – 319, sections 608.00 – 609.01.

100	 Cf. “Five ways to dance the jitterbug” in Krausse/Lichtenstein 2001, 24 – 33.
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The Jitterbug transformation demonstrates convertibility in a rigid and stable structure; 

it demonstrates metamorphosis from one “solid” into the next in a single, continuous 

process of contraction and expansion up to the structure’s limits. This metamorphosis 

not only offers a different view on geometry, it also offers another perspective on thought: 

equally abundant in forms, the Jitterbug transformation is also abundant in patterns of 

movement. Fuller demonstrates ongoing articulations of movement have a relationship 

to epistemology:

Fig. 6: The initial and the final position of the Jitterbug transformation cuboctahedron and triangle.

Fig. 7: Photos taken from R. Buckminster Fuller’s 1975 lecture “The Vector Equilibrium”, where several stages 

of the Jitterbug transformation are presented.
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“There is quite possible a scientific truth to be evolved from the fact 

that motion, particularly rhythmic motion, is highly provocative of 

thought objectivation. Certainly travel provides perspective, broad 

angles, and accelerated progression potential of clarification of the 

experience trend.”101 

4. Folding: The provocation of thought

Mobile structures, as with the Jitterbug transformation, are at the core of Fuller’s thought. 

Opposing geometry’s withdrawal from materiality and architecture’s withdrawal from 

mobility, Fuller suggests a revival of both concepts back into geometry. Indeed, partial 

overlapping and non-simultaneity are pilled off via the axiomatized mechanized concep-

tion of geometry – as all lines and axioms appear at once – whereas the mathematization 

of the fold ignores its materiality as a guiding principle. Following Semper and taking 

the German word Überlegung as a cue, folding suggests an interlacing of thought and 

contemplation together with a materialized geometry and partially overlapping events. 

This enables Fuller to tie together his conception of geometry as a material mathematical 

science – a point is a place where two lines pass through but not at the same time – and 

the scenario as a form of thinking. Folding, weaving and interlacing engender this form 

of thinking. As Semper indicated, it is flexible, mobile, foldable interior partitions that 

enable the wall to be a pure structural element, not the other way around. Fuller takes 

on this viewpoint and pursues it into the macroscopic world (seedpods and the dance 

of human beings) as well as into the microscopic world (inspiring the discovery of the 

structure of viral capsids through his geodesic domes). It is indeed the same line of 

thought that is apparent in Fuller’s work: geometry, whose essence in exemplified in 

the folding and unfolding of platonic solids as they metamorphose through the Jitter-

bug transformation, is not a rigid structure that lacks movement or consideration to 

materiality, but rather it is the thought-provoking scenario universe of material, flexible, 

non-simultaneous, partial overlapping. 

101	 Fuller 1938, 139.
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