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Folding and Geometry:
Buckminster Fuller’s Provocation
of Thinking

1. Introduction

From the 19'" century to the early 20™" century, geometry had changed its character
considerably. Discoveries, such as non-Euclidean geometry, alongside the development of
differential geometry with its definition of the manifold, instigated a plurality of geometries.
Encompassing this plurality was a trend of thought that called for situating geometry
on stable foundations, one might say even static pre-determined ones. Against this
backdrop of a growing move towards axiomatization, Richard Buckminster “Bucky” Fuller
(1895—1983), an American architect, designer and inventor, offered a critic of Euclidean
and Cartesian geometry from a novel reconsideration of practical actions and operations
like folding — folding, as a form of thinking on and through movement, enabling a different
conception of geometry. This paper aims to show that beyond an axiomatized motionless
geometry, on the one hand, and the various forgotten mathematizations of the fold, on
the other, Fuller suggests to think of movement from a different perspective: movement
as the provocation of thinking. It is what provokes and initiates thinking itself. Starting
with Fuller’s critique of geometry and concluding with his conception of mobility, we
examine notions of movement present in Fuller’s thought. Indeed, folds and folding lie

at the core of Fuller’s work as an example of mastering movement.
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2. Fuller and Geometry: Fuller’s critique and the conception of
geometry and folding at the beginning of the 20t century

Before turning to Fuller’s conceptions of the fold and mobility, as what provokes stable
structures and buildings, we examine Fuller’s critique of the axiomatic conception of
geometry, as exemplified in Euclidean axiomatics. We then review the manner in which
geometry in general and folding in particular were perceived within mathematics, from
the beginning of the 19™ century till the middle of the 20t century, in order to assess
correctly Fuller’s critique of the problematic relation between movement and geometry

and his conception of folding.

2.1 Fuller and the Euclidean geometry

Needles to say, Euclid’s geometry —as presented in his book Elements — is one of the most
influential theories of western civilization. However, little is known about the author, be-
yond the fact that he lived in Alexandria around 300 BCE. Most of the theorems appearing
in the Elements were not discovered by Euclid himself, but were the work of earlier Greek
mathematicians such as mathematicians of the Pythagorean School, Hippocrates of Chios,
Theaetetus of Athens and Eudoxus of Cnidos. Credited to Euclid is the arrangement of
these theorems in a logical manner, in order to show that they necessarily follow from
basic definitions, postulates and axioms.! The geometrical constructions employed in
the Elements are restricted to those achieved by using a straightedge and a compass.
Empirical proofs using measurement were not allowed: i.e., the only statements that
were allowed were these in form of declaring that magnitudes are either equal, or that

one is greater than the other.

Euclid’s rigor and organization was admired throughout the ages and considered as one
of the main methods of proper mathematical investigation. What constitutes rigor has
changed over the years: modern mathematics returned to Euclidean geometry, revealing
missing axioms and finding gaps in proofs, while trying at the same time to reaffirm its
consistency together with the consistency of the 19" century analytic geometry. Never-
theless, the basic tools and methods of Euclidean geometry persisted throughout the
centuries: an infinite line, a circle and a scribe — a system of basic signs and propositions

— from which every other true proposition can be derived.

It is at this point that Fuller attacks Euclid’s geometry, by criticizing its tools: “Euclid

limited himself in his theorems to construction and proof by the use of three tools —

1 Cf Heath 1921, 319; Proclus 1992, 53.
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straightedge, dividers, and scribe. He, however, employed a fourth tool without accrediting

it — this was the surface upon which he inscribed his diagrammatic constructions.”?

In his paper from January 1944, Fuller presents his position, in which he sets the ground-
work for his “energetic geometry” that would later become “synergetics.” Fuller follows
up his critique, of the lack of use of a tool that was completely forgotten, by giving a

historical explanation:

“It must be remembered that Euclid argued his geometric cases at
a time in history when the spherical concept of the universe, which
some assert was known to ancient Greek philosophers, had if so,
been lost again. At that time, the savants were subscribing to a flat
or planar earth concept. Therefore, it is not surprising that his use
of that flat plane as a surface upon which to work went as axiomatic.
Logical to the misconception was the beginning of his proofs in the

special abstract realm of an imaginary plane geometry.”

Fuller’s critique is in effect a contrarian stance against Euclid, whom he accuses of being
the one who “had come in by the wrong entrance” and hence had insufficiently reflected
upon his own tools. This has led, according to Fuller, to an illusory elementarism in the
sciences: it not only reduced geometry into a sequence of logical steps, from which one
could eventually draw a conclusion, but at the same time expelled from geometry the
pivotal concept of movement,? at best reducing it to a secondary concept derived from
more fundamental objects, which could be removed at any point from the geometrical
structure of which it stems. Euclidean geometry, according to Fuller’s conception, is
static; the concept of movement is invoked through axioms, a step that can be avoided

and is in fact redundant. Fuller says so explicitly, when he remarks:

“We find experimentally that two lines cannot go through the same

point at the same time. One can cross over or be superimposed upon

2 This citatation and the following two are taken from a 1944 paper by Fuller: Dymaxion comprehensive
system, introducing energetic geometry. In: Krausse/Lichtenstein 2001, 160 —168, here: 164.

3 The history of the mathematical geometrical use of the notions of motion and movement (for example,
whether they should be used as tools in mathematical proofs, how they should be conceptualized, what
kind of entities — curves, surfaces — do moving objects create) starts already in antiquity; it is intricate
and subtle. Aristotle condemned the use of motion in Geometry, stating “[t]he objects of mathematics
are without motion” (Aristotle 1928 —1952, vol. 8, 989b), whereas Euclid does use the concept of motion
in some of his definitions (Book Xl of Euclid’s Elements, definitions 14,18 and 21. See Heath 1908b,
261-262). For overviews concerning motion, space and geometry, see e.g. Rosenfeld 1988, esp. chapter3
and De Risi 2015. As we merely aim to point at the mathematical background against which Fuller
developed his own thought, we by no means attempt to give even a partial account of it, as it would take
us outside the scope of this paper.
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another. Both Euclidian and non-Euclidian geometries misassume that
a plurality of lines can go through the same point at the same time.
But we find experimentally that two or more lines cannot physically

go through the same point at the same time.”*

All known geometries presuppose the totality of all lines already exists, since only then can
two lines pass through a single point at the same time. Fuller makes the claim geometry
does not take into account the dimension of time, and therefore may also not take into
account time-consuming movement required in order to draw a line.> The movement,
which acts as the dynamic aspect of the structure, is in effect what keeps a built structure
stable, as we will see in Section 3.1 in connection with Semper. According to Fuller, this

is not apparent as long as one restricts oneself to plane geometry:

“[...] the Greek geometers were first preoccupied with only plane geom-
etry. They were also either ignorant of — or deliberately overlooked — the
systematically associative minimal complex of inter-self-stabilizing forces
(vectors) operative in structuring any system (let alone our planet)
and of the corresponding cosmic forces (vectors) acting locally upon
a structural system. These forces must be locally coped with to insure

the local system’s structural integrity [...]"¢

It is clear Fuller’s critique did not merely target Euclidean geometry as embedded in its
context of origin. It was rather aimed at its revival during the late 19" century. It is here
that we should take a step back in order to understand the mathematical landscape that
served background to his critique. What was the conception of geometry during the
end of the 19 century to the beginning of the 20™ century? How were the concepts of

motion and movement reshaped?

2.2 The structural understanding of geometry at the beginning of the 20*" century

In this section we will briefly review the conception of geometry from the end of the 19
century until the middle of the 20t century, focusing on Felix Klein’s Erlangen program and
David Hilbert’s Grundlagen der Geometrie, and finishing with Alfred Tarski’s axiomatization
of geometry. We wish to highlight that Fuller’s critique did not solely take aim at Euclid’s
Elements; it was particularly interested in the revival of interest in axiomatic methods.

At the end of the 19™ century the interest in the foundations of geometry was growing

4 Fuller 1975a, section 517.03.
5 Hence, there is only a partial overlapping of events. See Section 3.2.
6 Ibid, section 986.042.
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both from a group-theoretic viewpoint and an axiomatic viewpoint. The emergence of
non-Euclidean geometry at the beginning of the 19" century (Bolyai’s and Lobachevsky’s
treatises), the mathematization of space via Riemannian manifolds and the mathematical
definition of curvature prompted major philosophical questions regarding the nature
of space and its epistemology.” The emergence of non-intuitive geometries gave rise
to a need to discover the relations between the axioms of geometry and experience. In
order to give a proper albeit incomplete historical account of this period, we begin with a
recourse to group theory, which was one of the main topics of mathematical investigation
during the 19" century, and which served as one important source for the development

of a conception of geometry of that time.

A group, denoted by the letter ‘G’, is set of elements equipped with a binary action, denoted
by “*’, which fulfills certain requirements. An obvious example for a group is the set of
whole numbers together with addition as its binary action. The requirements the action
should fulfill are considered to be the most elementary, when we think about actions such
as addition or multiplication. To be more specific, there are four requirements: closure
(if the elements a,b belong to G, denoted as a,b €EG, then a*b belongs to G, denoted as
a*b €G), associativity (if a,b,c €EG, then a*(b*c) = (a*b)*c), unit element (there exists
an elemente EGs.t. e*g =g*e = g for every element g EG) and inverse element (for every
g EG there exists an h€G such that g*h=h*g=¢).2

The study of group theory and its applications is usually considered to originate from
the work of Evariste Galois (1811-1832), who was working on the necessary conditions
for solving an algebraic equation using the four known arithmetical operations (addition,
subtraction, multiplication and division) together with roots of any order. What interested
Galois around 1830 was not the equations themselves or their solutions, nor was he
interested in the type of algebraic relations the roots hold among themselves. He was
interested instead in the set of permutations of the roots themselves that preserve their
algebraic relations.? In other words, Galois’s discoveries prompted a process by which
numbers were no longer considered fundamental to algebra. More crucial was a grasp
of the algebraic-structural setting for which numbers assembled into various sets serve

only an example and considered as a derivative of this structure.

7  For an extensive survey on the changing face of geometry during the 19" century see Gray 2006.

8  This definition can be found in all textbooks on group theory. See e.g. Rotman 1999, 12.

9  For example, for the equation x*—5x2+6 =0, the solutions are A= V2, B=-V2, C=V3, D=-V3 and one
of their mutual relations is: AB+CD =—5. Not every permutation of the roots A, B, C and D will preserve
this relation. For example, if the permutation, denoted by f, is A= B, B—»C, C— D, D—A then
f(A)f(B)+f(C)f(D)=BC+DA=-2V6 = —5. More surprisingly, out of the set of 24 possible permutations
of 4 elements, only 4 permutations preserve the above relation.
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The concept of a permutation group was derived from developments in the theory of
algebraic equations and from what became known as Galois theory. This historical
strand is just one of the roots of group theory. Indeed, Klein’s Erlangen program makes
it clear the development of the concept of the abstract group had another historical
root, namely, geometry. Felix Klein (1849 —1925) was a German mathematician and
mathematics educator, known for his work in group theory and non-Euclidean geometry,
and for his work on the connections between geometry and group theory that spurred

his Erlangen program.!

Klein’s program incorporated the idea that to every geometrical entity one can associate
an underlying group of symmetries. By symmetry we mean a one-to-one transformation
of the space onto itself that preserves certain properties of the space in question. The
notion of a group is essential here: its set of elements was the set of symmetries, and
the binary action was composition, as in the composition of functions. If S is our space
(e.g. S'is the three-dimensional Euclidean space), and fis a symmetry transformation
of S (e.g. facts by rotation with respect to an axis) then there are distinct subsets of S,
which are not transformed by f (e.g. the axis of rotation). From this standpoint, Klein

stated the task of geometry as follows:

“Given a manifold and a group of transformations of the manifold,
to study the manifold configurations with respect to those features,

which are not altered by the transformations of the group.”™

The mathematical hierarchy of geometries is thus represented as a hierarchy of these
groups, and the hierarchy of their invariants. For example, lengths, angles and areas
are preserved with respect to the Euclidean group of two-dimensional symmetries,
while only incidence and cross-ratio are preserved under the more general group of
two-dimensional projective transformations. One might be under the impression that, in
opposition to Fuller’s conception of the Euclidean Elements, Klein’s Erlangen program
does indeed deal with movements and transformations (such as rotation, translation
and reflection). However, let us consider the following citation from Klein’s: “We peel off
the mathematically inessential physical image and see in space only an extended manifold;
[...] transformations of manifold [...] also form groups”.'? Together with peeling off the
“inessential physical image”, one obtains a removal of any physical movement at the

foundation of geometry. In this respect, Fuller might have regarded Klein’s program as a

10 Klein 1872.
1 Klein 1893, 67.
12 1bid.
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descendant of the axiomatic method: group theory deals with movement as an abstract

movement that can and should be formalized and axiomatized; a static structure, that is.”®

One consequence of Klein's program was that it enabled the acceptance of Hilbert'’s
axiomatic-structural approach to geometry. Indeed, as Wussing states “the transition
to the notion of an abstract group was a partial cause, as well as a partial effect, for the

growing acceptance of the ‘axiomatic method’ in Hilbert’s sense of the term.”™

Recognized as one of the most influential mathematicians of the late 19'" and early 20t
centuries, David Hilbert (1863—1943) was a German mathematician, who advanced
research on the axiomatization of geometry, culminating in one of his most influential
works: Grundlagen der Geometrie. It should be noted that Hilbert was not the first to
suggest geometry should return to its axiomatic origins. Moritz Pasch, Mario Pieri and
Hermann Wiener,® among others, also dealt with the subject at that time. However,
Hilbert’s approach was decisive for the way geometry was conceived in the early 20t
century. Hilbert conceived of geometry as a natural science, one in which intuition
plays a crucial role, though its experimental foundations may be regarded somewhat

retroactively.'® Hilbert states in his lectures on mechanics:

“Geometry is an experimental science [...]. But its experimental founda-
tions are so irrefutably and so generally acknowledged, they have been
confirmed to such a degree, that no further proof of them is deemed
necessary. Moreover, all that is needed is to derive these foundations
from a minimal set of independent axioms and thus to construct the

whole edifice of geometry by purely logical means.”"”

Once a minimal set of independent axioms is put together, geometry is studied through

logical means:

“Geometry [...] requires for its logical development only a small number
of simple, fundamental principles. [...] [T]he choice of the axioms and
the investigation of their relations to one another is [...] tantamount to

the logical analysis of our intuition of space. The following investigation

13 See Wussing 1984, Part I11.2 for an extensive analysis of Klein's program, and 194—196 for a description
of mechanical movements in terms of group-theoretic concepts. It should be noted that Klein was also
an ardent supporter of the use of models in mathematical teaching and research especially in the field of
geometry. See for example: Mehrtens 2004; Sattelmacher 2013; Rowe 2013.

14 Wussing 1984, 251.

15 Pasch 1882; Wiener 1892; Pieri 1898.

16 See Corry 2004, chapter 3.

17  Ibid, 162. See also Corry 1997.

Folding and Geometry: Buckminster Fuller’s Provocation of Thinking

https://dol.org/10.14361/9783839434048-007 - am 13.02.2026, 16:23:17. https://www.Inllbra.com/de/agh - Open Access - [ TR

145


https://doi.org/10.14361/9783839434048-007
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

146

is a new attempt to choose for geometry a simple and complete set

of independent axioms [...]”®

Hilbert’s views on geometry in particular and mathematics in general therefore did not
regard mathematics as an empty formal game;' they rather emphasized independence
and consistency of an axiomatic system derived from intuition and experience. That view
was promoted in Grundlagen der Geometrie, where Hilbert’s objective was to identify
and fill ‘gaps’ or remove ‘extraneous hypotheses’ in Euclid’s reasoning. The manuscript
laid out a clear and precise set of axioms for Euclidean geometry, and demonstrated
in detail the relations of those axioms to one another and to some of the fundamental

theorems of geometry.

In Grundlagen der Geometrie Hilbert considers three collections of basic objects, which he
calls ‘points’, ‘straight lines’ and ‘planes’, and five relations between them. The conditions
prescribed in Hilbert’s system of axioms are sufficient to characterize the basic objects
and their relation to each other. In order to prove axiomatic independence, Hilbert builds
several different geometries by negating some axioms while keeping others intact. Albeit
possibly counter-intuitive, the resulting geometries are consistent. Geometry’s innate
structure is maintained as a consistent one, unrelated to physical reality, to which it does

not correspond. This can be seen in Hilbert’s words:

“We think of these points, straight lines, and planes as having certain
mutual relations, which we indicate by means of such words as ‘are

situated, ‘between,” ‘parallel, ‘congruent, ‘continuous, etc.”?°

What points, lines and planes have are their relations to each other. An object ‘point’
does not necessarily refer to a point in the physical sense: the only necessary and suf-
ficient condition for it to be such is that it satisfies the relations between what is called
‘point’, ‘line’ and ‘plane’. It divorces geometry from any recourse to a specific instinctive
meaning (or notions such as movement or motion). This was apparent already in 1893,
when Hilbert, upon his return from Halle after hearing Wiener’s lecture, famously said:
“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs,

and beer mugs’”.”

The understanding that geometry is not about describing a space, but rather about

conceiving it as what is grounded in a system of axioms, gave rise to a plurality of different

18 Hilbert 1899, 1.

19 See Corry 2004, 161.

20 1Ibid, 2.

21 Blumenthal 1935, 402-3.
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geometries. It opened the way to view geometry (and algebra) first and foremost as an
internal structure, one that is not based on movement, measuring or counting. This
is manifest in the shift from Hilbert to Tarski. Hilbert, having advanced mathematical
formalism considerably, still regarded geometry as fundamentally empirical, though
experimentation in itself need not be performed.? Tarski, on the other hand, considered
geometry wholly in its structural interiority. Alfred Tarski (1901-1983) was a Polish logi-
cian, mathematician and philosopher considered as one of the greatest logicians of the
20 century. He proved in 1930 that geometry, once formulated according to a specific
choice of notations and axioms, admits an elimination of quantifiers: every formula is
equivalent to a Boolean combination of basic formulae, that is, geometrical propositions
can be written using first order logic alone. Once setting up the basic objects, relations
and axioms, every claim of Euclidean geometry can be formulated using the quantifiers

3 (‘there is’) and V (“for every’) together with its basic objects serving as variables.??

While Hilbert is considered one of the influencing mathematicians to reformulate to
Euclid’s axiomatic geometry, it is Tarski who found a more economic and efficient axi-
omatization for it.* Tarski’s system of axioms for Euclidean geometry was based on a
single primitive element — ‘point’ — and two undefined relations among those elements
— betweenness and equidistance (or congruence). For every three points a, b and ¢, the
relation ‘betweenness’ takes the value ‘true’ if the point b lies on the line segment with
ends a and c. For two pairs of points — thinking of each pair as the endpoints of a line
segment — the relation ‘equidistance’ holds if the two segments are of equal length. All
other relations are consequently derived; for example, the collinearity of three points
is defined in terms of betweenness (g, b and c are collinear if and only if one of them is
between the other two). Tarski did not take ‘line’ or ‘incidence’ to be primitive notions;

indeed, the only primitive notion is the point.

The primary significance of Tarski's elementary geometry lies in its satisfying three
essential meta-mathematical properties: it is deductively complete (every assertion is
either provable or refutable), decidable (there is a procedure for determining whether or
not any given assertion is provable), and it is consistent (and this is why it is a correct
axiomatization).?® In order to prove these three, Tarski, in a move similar to Hilbert’s,
based geometry on the real numbers. To prove the completeness of the systems of

complex algebra and Euclidean geometry, Tarski proved the completeness of the system

22 Concerning Hilbert’s contribution to the rise of modern algebra and modern geometry, see for example:
Corry 2004, chapter 3; Mancosu 1998, Part Ill; Hasse 1932.

23 Here is an example of one claim of Euclidean geometry: for any triangle, the sum of the lengths of any
two sides must be greater than or equal to the length of the remaining side.

24 By “more efficient” we mean that Tarski proved with this axiomatization that the euclidean geometry is
consistent. For an extensive survey on Tarski’s life and work, see Feferman/Feferman Burdman 2004.

25 See Tarski 1967.
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of algebra based on real numbers — one that Hilbert assumed as evident and therefore did
not bother to prove.? Not only that, Tarski noted: “it is possible to construct a machine

which would provide the solution of every problem in elementary algebra and geometry”.?’

This mechanical description of geometry is expressed in Tarski's formulation: all axioms
and propositions are expressed in terms of first order logic. For example, the famous

parallel axiom can be expressed as follows: 2
[B(abf) ANab=bf A\ B(ade) A ad =de A B(bdc) A bd = dc]— be =fe

where the variables are points and B(—,—,—) designates betweenness. This is a description
that does not resemble Euclid’s in any form: “If a line segment intersects two straight
lines forming two interior angles on the same side that sum to less than two right angles,
then the two lines, if extended indefinitely, meet on that side on which the angles sum

to less than two right angles.”?

In Tarski's framework one does not need several basic objects. Such plurality might induce
problematic relations between these objects, or a tacit form of abuse of notation might
take place, as seen in Hilbert’s Grundlagen der Geometrie.’® A single object is all that is
called for — an abstract object without presupposed properties, bearing no particular
relation to empirical reality or intuition.’' Its properties are exclusively derived from
a system of axioms: the point in Tarski’s work is an object defined according to what

satisfies the axioms.

What is then the essence of geometry in its various faces from Klein to Tarski? It is clear
Fuller’s critique bears merit, though not entirely well grounded from a historical stand-
point. From Fuller’s perspective, motion and movement were formulized so that they
became pure mathematical objects, a maneuver that leads to a reduction of dynamics
into axiomatics, that is, a static structure. Hilbert’s views on geometry encouraged a
consolidation of it as what does not have an essential connection to movement (as a line
can also be named a chair). Fulfilling Hilbert’s program for an axiomatically consistent
geometry, Tarski had come to speak of geometry in mechanical terms. Tarski no longer
refers to geometry as the study of space (together with constructions in and through it);

he rather refers to its meta-properties as a static structure. Following Fuller, one may

26 See Hilbert 1899, section 9.

27 Tarski 1967, 306.

28 Tarski/Givant 1999, 184, axiom 103.

29 Heath 19083, 155.

30 Note that in Grundlagen der Geometrie a line is a collection of points but also functions as a basic object.

31 Cf. Hilbert's reference to Kant’s citation regarding the origin of abstract ideas from intuition (Hilbert 1899, 1).
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say the Greeks’ static constructs (e.g. the square or the cube) were replaced by a static

structure for geometry itself.

2.3 The two sides of the mathematization of the fold at the 19" century

In light of a static conception of geometry, we ask how folding, as a dynamic operation,
was perceived mathematically starting from the 19" century. Before turning to Fuller’s
conception of the fold, we will shortly examine the dual role folding played in mathematics

at that time. This will help us situate Fuller’s thought within a pertinent historical tradition.

Afolded piece (of paper, fabric etc.) is regarded as such when one or two of the following
operations are involved: creasing (as in folding a paper by a mountain- or valley-fold) or
bending (without introducing creases). In this section we provide two examples of 19t
century mathematizations of folding that took both operations into account: Sundara
Row in his 1893 manuscript Geometrical exercises in paper folding, and Leonhard Euler,
who described developable surfaces as folded. These mathematizations considered
folding not only as a mathematical tool, but also as what expresses essential characters

of the geometric form.

2.3.1 Row’s Folds and the emergence of the physical straight line

Tandalam Sundara Row was an Indian mathematician, who worked for the Indian gov-
ernment in the revenue department. Row is mainly known for his book Geometrical
exercises in paper folding.>? Klein's favorable mention of Row’s work in Vorlesungen iiber
ausgewdhlte Fragen der Elementargeometrie sparked a general interest in the geometry
of paper folding.?* Why was Klein so impressed by Row’s work on folding? To answer
this question, let us examine how Row deals with geometry. To begin with, Row refers
to the folding of paper as “kindergarten gifts” (the word ‘Origami’ does not feature). He
invokes Friedrich Frébel’s gifts and occupations: “[t]he idea of this book was suggested
to me by Kindergarten Gift No. VIII. Paper-folding”.** Row states that “[t]hese exercises
do not require mathematical instruments,” referring to the straightedge and compass

used in Euclidean geometry.?> Row also dispenses with the need for axioms:

“The teaching of plane geometry in schools can be made very inter-

esting by the free use of the kindergarten gifts..... [the paper folding]

32 Cf. Friedman 2016 for a detailed account of Row’s life and work.

33 Klein 1897, 42: “[...] we may mention a new and very simple method of effecting certain constructions,
paper folding. [...] Sundara Row, of Madras, published a little book Geometrical Exercises in Paper
Folding[...], in which the same idea is considerably developed.”

34 Row 1893, vii.
35 Ibid.
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would give them [school children] neat and accurate figures, and
impress the truth of the propositions forcibly on their minds. It would

not be necessary to take any statement on trust.”3¢

Row suggests teaching Euclidean geometry to children could be done without axioms,
that is, without “statement([s] [taken] on trust.” In comparison to Euclid, Row proposes
a different conception of geometry: a geometry not grounded in axioms or ideal objects,
but rather based on folding as its one and only allowable operation. As a result, the

status of the straight line, as a product and producer at the same time, becomes clearer.

The opening chapter to Row’s manuscript starts with a description of materiality, not

with any foundational system of axioms:

“Look at the irregularly shaped piece of paper [...] and at this page which
is rectangular. Let us try and shape the former paper like the latter.
Place the irregularly shaped piece of paper upon the table, and fold

it flat upon itself. Let X'X be the crease thus formed. It is straight.”*’

Row starts with an operation based on paper and hence on materiality: the folding of
an “irregularly shaped” sheet of paper and later the passing of a knife.*® The important
point to consider here is that the line produced is straight as a direct result of folding.*

There is no need to prove the line is straight, or define it as what passes through two points.

As the line X’X is only considered a consequence of folding, it obtains another status: it is
that along which we fold: “Fold the paper again as before along BY, so that the edge X’X
is doubled upon itself.”*® Row now folds the paper along the line that was just created,
such that a part of this line X’X will be folded upon itself. When considering the crease
BY that is created, Row discovers that BY and X’X are perpendicular.! Creating thus a
rectangle, Row continues with the folding of a square whose side is of unit length. Then
a smaller square is folded inside, rotated by 45 degrees in relation to the initial square.
The process continues repetitively, creating via folding a sequence of squares embedded

one into the other.

In Row’s treatment, the straight physical line acquires a special status: it is at once

created by the fold and creating it. It is crucial to emphasize Row always deals with line

36 Ibid, viii.
37 Ibid, 1 (our italics).
38 Ibid.

39 In contrast to Kempe's 1887 treatment of straight lines (Kempe 1887, 2—3).
40 Row 1893, 1.
41 “Unfolding the paper, we see that the crease BY is at right angles to the edge X'X.” (ibid).
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segments — the inevitable result of folding a piece of paper of finite dimensions. There are
neither infinite lines (and hence no dispute over the parallel axiom), nor basic objects to
begin with. There is rather a basic operation that initiates geometry. The basic objects,
the Grundbegriffe and the relations between them do not play the same crucial role in
Row’s book, as they did for many of his contemporaries. Row takes into account neither
group theory nor axiomatic methods he was surely well aware of#2 In Row’s work it is
the fold — as what causes the discrete, finite, straight line to emerge as a material, discrete

unit — that plays the crucial role.

2.3.2 Euler, folded surfaces and differential geometry

Let us now turn to developable surfaces: in this context the fold is considered a continuous
operation. The history of developable surfaces can be traced as far back as Aristotle
(384—322 B.C.).*® In their current definition, developable surfaces are regarded as a special
type of ruled surfaces: they have zero Gaussian curvature and can be mapped onto the
plane without distorting curves.* Though the history of developable surfaces deserves a
detailed account, we will only provide a brief survey focusing on their relation to folding.*
In his development of calculus, Leonhard Euler (1707-1783) initiated the first serious
mathematical study of ruled surfaces. He wrote his celebrated manuscript About solids,
the surfaces of which can be developed on the plane — in the original: De solidis quorum
superficiem in planum explicare licet — where he identified surfaces as boundaries of
solids. Euler opened the manuscript with the statement that cylinders and cones have
the property that they can be flattened out or “developed on the plane” unlike spheres.

Euler wished to know which other surfaces share this property.*®

Itis important to note for the purpose of our discussion that explicare in Latin means ‘to
explain’, ‘to develop’ but also ‘to unfold’. The expression “in planum explicare,” which
features all throughout the paper,¥” can be translated verbatim into ‘to unfold onto a

plane’. The term ‘developable surfaces’ is a later nomenclature.

Euler failed to find developable surfaces (besides cylinders and cones) through analyt-
ical means. Using geometric principles, however, he did reach a solution. Employing
geometrical results, Euler understands that lines that were parallel on the flat paper will

also not meet on the folded one, concluding that the line element of the surface has

42 Row’s awareness of other mathematical methods can be seen in Row 1906. Note the same year (1893)
another manuscript on folding was published by the mathematician Hermann Wiener. See: Friedman 2016.

43 Avristotle states in De Anima that “a line by its motion produces a surface” (Aristotle 1928 -1952, vol. 3, 409a).

44  Gaussian curvature is defined as the product of the two principal curvatures, which are the eigenvalues
of the second fundamental form of the surface in question (the second fundamental form being a
quadratic form defined on the tangent plane to a point on the surface). See e.g. Pressely 2001, 147.

45 For more detailed surveys see: Cajori 1929; Reich 2007; Lawrence 2011.

46 In Euler’s words, “quorum superficiem itidem in planum explicare licet.” In: Euler 1772, 3.

47 1bid, 7, 8, 11, 27, 31 and 34.
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to be the same as the line element of the plane. What is surprising perhaps is that the
geometric principles in question were inspired by folded paper: “charta plicae”.*® It was
folded paper and not solids, which informed the intuition behind developable surfaces

in their early incarnation.®

Euler was not the only one to employ such terminology: the mathematician Gaspard
Monge (1746 —1818) also studied developable surfaces at the time, and, as with the former,
described developable surface (and curves on them) as pliée, i.e., ‘folded’.*° It might be
claimed that mathematicians (e.g. Monge, Euler) considered folding during those decades
an essential action for creating surfaces, as an operation grounded in the materiality
of the paper. However, it is important to remark that, with the further development of
calculus and the rise of differential geometry, the term Manifold (Mannigfaltigkeit), albeit
having an etymological connection to ‘fold’, was not chosen to describe surfaces as
inherently folded. In his 1854 talk Uber die Hypothesen, welche der Geometrie zu Grunde
liegen,”' Bernhard Riemann used the term Mannigfaltigkeit almost synonymously with
‘magnitude’, when he stated he set himself “the task of constructing the notion of a

multiply extended magnitude,”*2

and invoked various motivations when first using the
term. ‘Mannigfaltigkeit’ for Riemann can equally be discrete; it does not necessarily refer
to a surface. When talking about continuous manifolds, the intuitions Riemann provides
for choosing the term “Mannigfaltigkeit” are positions of objects and colors. No wonder

a developable surface was and is considered a manifold and not a folded piece of paper.

3. Fuller’s mobile structures

As was seen in sections 2.2 and 2.3, a withdrawal from materiality occurred in geometry
at the end of the 19" century: consider for example Tarski’s obvious mechanization
of geometry. Row’s manuscript on the other hand was either completely ignored or
criticized for being “too infantile for a grown person.”* Against this background, Fuller
suggested that stable geometry (in the form of planes and lines) emerges in fact from

mobile moving folds, threads and transformations.

48 1bid, 7.

49 Euler was of course also one of the founding fathers of topology, along Henri Poincaré , Solomon Lefschetz
and Johann Listing. Fuller was interested in topological transformations (e.g. the Jitterbug transformation,
see section 3.5) and was aware of Euler’s polyhedron formula: V — E + F = 2 (see section 3.4).

50 For example in: Mémoire sur les développées, les rayons de courbure, et les différens genres d'inflexions des
courbes a double courbure (Monge 1785, 517—1519); Application de I'analyse a la géométrie, a I'usage de
I'Ecole impériale polytechnique (Monge 1809, 348 among others), Géographie descriptive (Monge 1811, 141).

51 Riemann 1868. Cf. also Cantor 1878, where it can be said that both mathematicians took manifolds as sets.

52 Riemann 1868, 133: “Ich habe mir daher zunichst die Aufgabe gestellt, den Begriff einer mehrfach
ausgedehnten GréRe aus allgemeinen GréfRenbegriffen zu construiren.”

53 Young/Young 1905, vii.
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3.1 Fuller and Semper: folds and interlaces

Folds and folding are not the primary consideration in Fuller’s work. However, the most
characteristic of his artifacts — should they be experimental buildings, maps or geometric
modeling — are indeed folded or otherwise rely on folding as a deforming operation, as
can be seen in fig. 154 Considering how vitally important folds and folding were for Fuller’s
practical design, his remarks on the issue were dispensed sparingly, with most dedicated
to specific problems of folding, such as the great circles.® Where one would otherwise
expect a theory of folding to accompany Fuller's rich discourse on design, it is only found
implicitly in his artifacts and the geometry of the Synergetics.’® This disproportionality
calls upon us to rediscover a tacit theoretical foundation from which to reconstruct the

fold and the deforming operation.

Fig.1: Necklace-Dome: One of the first folded geodesic domes of Fuller, done in 1950.

54 See also fig.6 and 7: the Jitterbug transformation.

55 Fuller 1975a (sections 450 —9) demonstrates eight models (a cuboctahedron and an octahedron, among
others) that can be constructed by folding whole circles (with a protractor, using origami-style folding).
See Fuller 1975a, section 459.03: “The six great circles of the icosahedron can be folded from central
angles of 36 degrees each to form six pentagonal bow ties.” Cf. also Fearnley 2009.

56 The changing and developing relationship between theory and design in Fuller’s work is seen in:
Krausse/Lichtenstein 1999; Krausse/Lichtenstein 2001.
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In his earlier studies Fuller examined ways to reduce weight loads in architecture and
construction. He was famous for provoking fellow architects with the question: “Does

anybody know what a given building weighs?”%

Weight load reduction, employed as a
design strategy, was for him a means for examining economical and efficient construction.
Fuller noted how weight specifications come up naturally in the design of marine vessels,
vehicles and aircrafts, while in building construction this information is considered
irrelevant. His question attempted to bridge the gap between the two practices (or

mentalities): the mobile and the stationary.

Techniques for consolidation, folding and size or shape adaptation are present in all
mobile forms of human habitation (such as tents, yurts and tipis). This is true not only
for the architectural structures themselves, but also for equipment and furniture that
go along with them. For a nomadic way of life, weight is not the only crucial criterion.
Objects belonging to the household must fit requirements for transport. Folding fulfills
these requirements in great measure: it allows objects to assume various shapes, being
either flattened or spatially expanded. Folding allows for a transformation, with which
objects can be adapted to mobility. Folds are thus both a result and an expression of

movements, whose event-patterns Fuller summarizes under the concept of precession.®

One can observe firsthand the direct link between movement and folding in everyday
clothes and textiles: dresses, cloaks, curtains, carpets and so on, as well as adjustable
flexible space partitions.>® The fact that, under this aspect of regulation between inner
and outer, a systemic correspondence between organisms and artifacts can be devised,
is not least suggested by the fact that the use of hides of animals and barks of trees

belongs to one of the oldest techniques for space subdivision.

The architect Gottfried Semper (1803—-1879), regarded as one of the originators of research
into material culture, derived his theory of architecture from primitive artifacts, such as
clothing, used for space partition. This theory finds expression in his monumental work

Style in the Technical and Tectonic Arts; or Practical Aesthetics (1860 —3).5° What is of special

57 “Does anybody know what a given building weighs? | once asked an American Symposium of architects
including Raymond Hood and Frank Lloyd Wright as well as the architects of Rockefeller Centre, the
Empire State Building and the Chrysler Building what the different structures they were designing
weighed. Clearly, weight was not one of their considerations. They didn’t know.” In: Fuller 1963, 53.

58 “The effects of all components of Universe in motion upon any other component in motion is
precession, and in as much as all the component patterns of Universe seem to be motion patterns, is
whatever degree they affect one another, they are inter-affecting one another precessionaly, and they are
bringing about resultants other than 180 degrees. Precess means that two or more bodies move in an
interrelationship pattern of other than 180 degrees.” In: Fuller 1975a (section 533.01), 287.

59 Fuller encompasses an overarching notion of a dwelling place with “environment controls.” See Fuller
1963, 55 ff; Compare Krausse 2002b, 97 ff.

60 Semper2004.
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interest for us here is his account of the textile origins of architectural space enclosures,

exemplified through the wall as an architectural element. In his draft of 1853 he writes:

“Denoting” hence distinctive. Here one finds not only two classes of materials — fabric and
fiber on the one hand, rocks and soil on the other — but also two different principles of
structure, reflected in two different types of construction. While hard crystalline materials
tend to resist compressive forces till they give way to pressure in the form of fractures
and fissures, fiber-based materials absorb tensile, attractive forces and bending stresses;

in contrast to crystalline materials they are flexible. Semper shows in his early writings,

“We have in our German language a word which signifies the visible
part of the wall, we call this part of the wall, die Wand, a word which
as a common root and is nearly the same with Gewand which signifies
woven stuff; the constructive part of the wall has another name, we

call it Mauer. This is very denoting.”®’

it is the latter that preceded masonry.

Plaits, carpets, interlaces and hangings were originally used for space arrangement and

“Itis a fact,” he writes, “that the first attempts of industrial art, which
have been made and which we still observe to be made by human
beings, standing on the sill of civilization, are dresses and mats. This
part of industry is observed to be known even by tribes, which have

no idea of dressing.”

partition, to which solid structures were subsequently added,

Semper demonstrated how these elements enable flexible interior partitions.®* Flexibility

and mobility originally form a unit that is lost with the use of solid structures, and must

“the thick stone-walls, were only necessary with respect to other

secondary considerations, as for instance to give strength, stability,

security etc. Where these secondary considerations had no place,

there remained the hangings the only means of separation; and even
when the first became necessary, they formed only the inner scaffold
of the true representative of the walls, namely the variegated hangings

and tapestries.”%

61

62
63
64

Semper 1983, 21.

Ibid.
Ibid.

As an example, Semper cites the Caribbean hut in which the walls are transferable and not connected to

the roof. Cf. Semper 1986, 34f.
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be compensated for using doors. This idea experienced a modernist revival in the form
of mobile room dividers and separators, sliding doors and accordion folding partitions. A
most striking example is found in curtain walls, whose construction in recessed reinforced
concrete columns (as in Bauhaus Dessau 1926) accounts for the old truth: the space-en-

closing elements of architecture are in effect suspension structures subject to tension.

3.2 Fuller’s non-simultaneous foldings

Semper’s reintroduction of fiber-based materials into the processing and manipulation
of form was taken on by Fuller; this time of course under the conditions of advanced
industrialization, new materials, innovative construction techniques and global trans-
portation systems. Fuller defines the fundamental relationship of human existence to

mobility as follows:

“Man was designed with legs — not roots. He is destined to ever-increas-
ing freedom of individually selected motions, articulated in preferred
directions, as his spaceship, Earth, spinning its equator at 1000 miles
per hour, orbits the sun at one million miles per day, as all the while
the quadrillions of atomic components of which man is composed
inter-gyrate and transform at seven million miles per hour. Both man

and universe are indeed complex aggregated of motion.”%

This is a concise summary of what Fuller called scenario universe. It is this scenario that
forms an indispensable part of the exposition to Fuller's energetic-synergetic geometry.®
A scenario is favored over theorems or axioms; it emphasizes the a priori temporality

of a (geometrical) event:

“The Universe”, so presented in his book Synergetics, “can only be
thought of competently in terms of a great unending, but finite sce-
nario whose as yet unfilled film-strip is constantly self-regenerative [...].
Our Universe is finite but non-simultaneously conceptual: a moving
picture scenario of non-simultaneous and only partially overlapping

events”.%’

The reference to the scenario and to the agility and mobility of the film expresses Fuller’s

deep mistrust in the image, the still image, the single frame with its implied immobility.

65 Fuller1969, 348.
66 Fuller 1975a (section 320.01-02), 87.
67 Ibid.
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The single image evokes the illusion of simultaneity of events, as in the image of the
starry sky, an image that exhibits light, which in fact emanated from stars at different

moments in time.

Only when considering longer time spans can one observe evolution and metamorphosis
in nature. An emphasis on non-simultaneity (with partial overlapping at the most) is also
present in the way ‘folding’ is present in the German words Uberlegung and iiberlegen. The
verb tiberlegen has indeed the following three different meanings: 1) cover; coat; overlap,

2) consider; contemplate, 3) lay an object down over another object.®®

The introduction of the scenario, as a form of thinking and of presentation, allows us
to work with partially overlapping events, where scenarios are both descriptive and
prescriptive — prescriptive with respect to actions that would be performed, carried out
and so executed.® The performative aspect of the scenario also plays a role in Fuller's
geometry, which insists on the embodiment and the materialization of geometric figures
in the model, as well as in the live-performance of transformations that he discovered.
How did Fuller come to adopt the scenario as a framework for cognition? We already
detect its origins in his first architectural project, as a framework for design. The structure,
which he has in mind, is not developed in response to the layout of its designated lot,
but in accordance with easy transport. The tower house, which was designed in 1928,
could be industrially prefabricated and then shipped by air (with a Zeppelin); it could be
delivered to any location on the globe. Fuller, even before clarifying what was needed and
implied in constructing such a house, first simulated this unprecedented procedure. To
that end, Fuller drew a series of sketches in the manner of a comic strip, which depicted

the key events of this scenario.”

Fuller’s recordings from this period show how attentively he followed the development
of this popular genre and reflects on its potential as a form of presentation: “Undeniably
the ‘funnies’ are the most generally inspected portions of our daily newspapers and may
be considered the economic frosting that sells the cake — It is more than significant that
these funnies have completely lost race of ‘slapstick’ and have become serials of handy
philosophy.””! Even later on, in his preparation of maps and diagrams of complex global
data (world energy map, global transport development, history of isolation of chemical

elements), Fuller insisted on “maintaining a comic strip lucidity”.”?

68 Grimm 1936, column 38s.

69 Regarding the various aspects of performance in Fuller’s work, cf. Krausse 2016.
70 Krausse/Lichtenstein 1999, 99—103.

71 Krausse/Lichtenstein 2001, 102.

72 1bid, 152 (from Fuller’s Earth incorporated (1947)).
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Traces of scenario-thinking, partial overlapping and comic-strip lucidity can be found
also in Fuller’s pictorial depiction of the construciton process. Take for example the
sequence of photos that illustrated the construction of the Dymaxion house starting from
its components, through the individual assembling steps, to the finished and furnished
residential house. The same pattern appeared in his second attempt to build this house
— albeit with an altered outline — in an aircraft factory. This time it was indeed realised as
a prototype.”® Besides the process of assembling, the most important thing about this
sequence of photos is its demonstration of initial and final construction stages: the initial
assembly of lightweight thin parts, occupying but little space, set against the finished
space-consuming building. Before construction commences, building parts are laid out

as one spreads clothes before packing a suitcase.

In this way one may inspect all components in order; they were designed to fit into a
container in the most space efficient way. In the case of the Wichita house of 1946, the
cylindrical, metal, storage container served also a key structural element of the building.
Packaging aligns well with the concept and practice of folding. Transportation to and
unpacking at the construction site need to be taken into account in the design of the
container and its contents. Unpacking should fit color-coded step-by-step assembly all
the way up to the finished, fully furnished, turn-key house. This turns building into a

performance that follows a precise scenario.”

It is no coincidence, that this performance, as in a sequence of movie frames, resembles
the process of the unfolding of a plant from seed to bud to leaf, save that its origin goes

back to design, from which mechanical parts are developed as affiliated and connected.

3.3 Seedpodes, Viruses and Geodesic domes

Fuller related design scenarios to organic growth processes on various occasions. One of
his experimental constructions, the Flying Seedpod of 1953, is a pure folding mechanism.”
Flying Seedpod is a dome, 42 feet in diameter, which can set itself up semi-automatically.

Whether compacted as a transportable bundle or deployed as an architectural structure,

73 The corresponding photo series of the Dymaxion House and the Wichita dwelling machine are printed
in: Marks 1960, 84 f and 128 -133.

74 Fuller’s scenario-thinking looks beyond the finished product onto its ultimate end-of-use. With its
structures he envisages “demountability”, with its materials, “recirculation.” Responsibility in design
extends to the entire life cycle of the product — what Fuller called “cradle-to-grave.” It took the combination
of product-cycle together with recycling to go from “cradle-to-grave” to the slogan “cradle-to-cradle”.
Regarding “demountability” cf. Marks 1960, 112—113. Regarding recycling, cf. Fuller 1938, chapter 38,
316-322; Reprint in: Krausse/Lichtenstein 2001, 117-120. Regarding “cradle-to-cradle”, cf. Braungart/
McDonough 2009.

75 See fig.2: series of four photos “Flying Seedpod” 1954/5.
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all parts stay connected to each other by flexible nodes or joints. The bundle consists
of 30 inwardly folded tripods, whose chains come together in ball joints. The system of
tripods can be unfolded and straightened up by extending pistons in pneumatic cylinders
—radially directed tubes at the vertices of the dome. With the extension of pistons, a net
made of cables is stretched. The clear span unsupported dome-structure obtains firmness
and rigidity, through the interaction of its push-pull components. Flying Seedpod was
a project that Fuller realized in 1953 with students from Washington University (fig.2).

Fig.2: Flying Seedpod. Washington University, St. Louis, 1953; A folding-out geodesic structure.

The study of folding structures of geodesic domes developed alongside progress in space
exploration missions, so that one might see in Flying Seedpods — “the first scientifically

designed apartment” — a rocket capsule to the moon.”

Though the seedpod was nicknamed “the moon structure,” it did not fly to the moon.
Instead it appeared in other ways in the world of molecular biology. Fuller tells how it

came about:

76 “You may possibly be looking at the prototype of the structural principles that we may use in sending
history’s first (little) scientific dwelling to the moon. As you see, all the structural members are tightly
bundles together in parallel so that they may be transported in minimum volume within a rocket capsule.”
In: Fuller 1965, 70; Fuller’s foundations for folding structures were later continued by his pupil Joe Clinton
for NASA. Cf. Clinton 1971.
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“The principle of structural dynamics of the [...] moon structure, the
flying seedpod and its logistic pattern transformability, are double
interesting because they have turned out to be also the same structural,
self-realization system employed by a class of microcosmic struc-
tures — the protein shells of all the different types of viruses. About
three and one half years ago molecular biologists in England and their
colleagues in America, working in teams, were trying to discover the
structural characteristics of the protein shells of the viruses with X-ray
diffraction photographic analysis. These virus scientists discovered
that the viruses’ protein shells were all some type of spherical geodesic
structure. Having previously seen published pictures of my geodesic
structures they corresponded with me and | was able to give them
the mathematics and show them how and why these structures occur
and behave as they do. They have now found the poliovirus structure
to be the same structure as the possible ‘moon structure’. The polio
virus instead of having the tripods on the outside and the clusters of
five and six feet on the inside, has the five — and six — way jointings

outside and the tripods or three—ways on the inside.””’

The encounter between Fuller’s experimental architectural structures and science of
the day could be passed for incidental — a random correspondence between structures
on widely disparate scales — if not for geometry that provides a connection of a more

general nature.

The researchers at Birkbeck College in London engaged with a striking resemblance
between viral capsids and Fuller’s geodesic domes,’® when the largest was just completed,
almost 120 m in diameter, making it the largest ever built clear span dome.” It appeared
as if the same such spherical structure found in nature was anticipated by Fuller, or
rather as if he had built his geodesic domes according to models from nature. The first
recorded images of capsids produced by an electron microscope were published in

1962; they finally made resemblance evident.®? On this basis and other of Fuller’s 1960

77 Fuller 1965, 72.

78 Cf. Morgan 2003, 86: “In the mid 1950s, Francis Crick and James Watson attempted to explain the
structure of spherical viruses. [...] biophysical and electron micrographic data suggested that many
viruses had > 60 subunits. Drawing inspiration from [Fuller’s geodesic domes and] architecture, Donald
Caspar and Aaron Klug [...] proposed that spherical viruses were structured like miniature geodesic
domes,” by forming a (protein) shell. Indeed, “[t]he idea was that identical viral subunits could bind
together in quasi-equivalent positions to form a shell with > 60 subunits while conserving the same
specific contact pattern between subunits” (ibid, 88).

79 Union Tankcar Company Geodesicdomes, Baton Rouge, Louisiana; Railway repair facility, October 1958,
cf. Marks 1960, 222f.

80 Ubell 1962, 1.
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architectural structures, the mathematician Harold Scott MacDonald Coxeter was able
to match individual domes, each slightly different in its geometric resolution of geodetic
networks, to individual types of viruses, whose capsids likewise vary geometrically.®'
This new visual input, brought to bear through advances in electron microscopy (EM),
made the resemblance even more apparent in microorganisms. Fuller got to see electron
microscope images of marine microorganisms (magnified up to about 50,000 times),
taken by biologist Gerhard Helmcke (who specialized in lightweight constructions in
nature), in a 1962 meeting together with his colleague Frei Otto and Helmcke himself.
The architect Frei Otto, who had just launched the research group Biology and Building,

later reported how impressed Fuller was:

“The stereoscopic photographs looked like models of [Fuller’s] famous
domes. To the participants it was clear: Had he [Fuller] known the
diatom shells before, the whole world would have said that he had
learnt this by watching the living nature. Had he knew the diatom
shells, how they were really, he would not have probably dared to
build his shells.”#

When Fuller met Aaron Klug and his interdisciplinary team of researchers in July 1959
there were no clear images yet, only clues coming from the X-Ray analysis of crystals.
Even when Klug succeeded in applying crystallographic EM to the analysis of complex
viral capsids, the images obtained were rather confusing: due to its extensive depth of
focus, all structures were depicted one on top the other. Klug, who received the Nobel
Prize in Chemistry in 1982 for this work and others, remarked in his Nobel lecture: “Thus,
we knew what we were looking for, but we soon found that we did not understand what
we were looking at”.®® Fuller's geodesic domes served not only as a possible guide to
deciphering those EM images. They were geometrical models at large which allowed

patter recognition of an unidentified micro-phenomenon.

3.4 Platonic solids: a stable habitat?

The point of contact between Fuller’s designs and structural chemistry is derived from a
functional correspondence: both deal with a problem of habitation that needs to be solved
with utmost care for resources — one might consider protein shells to be the smallest
houses in nature. In the case of the virus the space within is occupied by DNA and RNA

molecules, which are densely folded and packed waiting for a suitable host to open the

81 Coxeter 1971. On the relationship between Coxeter and Fuller, see Roberts 2006, chapter g.
82 Otto198g, 8.
83 Klug 1992, 89.
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protein shell. Nevertheless, both Fuller's domes and capsids represent an attempt to
solve an optimization problem — maximum capacity for the smallest surface area. The
geometric solution to the problem is the sphere, which both Fuller and viruses opt for.2*
Turning now to the structural elements of an approximately spherical casing or shell, a

method of regular subdivision of the sphere must be developed.

In subdividing the sphere, Fuller — similarly to viruses, marine microorganisms and carbon
molecules — chooses another way, compared with dividing the globe into a network of
longitudes and latitudes. He avoids the classical construction of a dome using meridian
groins and horizontal rings or bands. Instead, the sphere is symmetrically divided into

regular polygons, described by Plato as the Elements in his dialog Timaeus.

Common to all Platonic solids — the tetrahedron, hexahedron (cube), octahedron, do-
decahedron and icosahedron — is that their vertices lie on a circumscribed sphere and
their edges, once projected onto the circumscribed sphere, form arc segments of equal
length. The arc segments are all part of great circles. Roughly speaking, great circles
are the paths of minimal length on the sphere. They correspond to the straight lines of
Euclidean geometry. Together, great circles and lines belong to a class of paths known as
geodesics. Back to Platonic solids, the system of geodesic segments, obtained through
projection onto the circumscribed sphere, forms a regular grid that divides the surface

of the ball into equal polygons.

With the icosahedron, one obtains the most tightly arranged subdivision; it consists of 20
equilateral triangles adjoining along 30 edges and touching at 12 vertices. According to
Euler’s characteristic formula, V—E+ F=2, where V denotes the number of vertices, E the
number and F the number of faces. Five edges meet at the vertices of the icosahedron. A
fivefold rotation symmetry is maintained throughout all of its subdivisions. This becomes
clear when one looks at the truncated icosahedron:?® the 12 vertices are trimmed; one
third of each edge is truncated at each of both ends, resulting in a new polyhedron
consisting of 12 pentagons and 20 hexagons, with each pentagon surrounded by five
regular hexagons. The truncation of the icosahedron affords a way to refine the spherical
subdivision thereby better approximating a sphere. The truncated icosahedron is now well
known for the Telstar football and the discovery of the carbon molecule Cg,. The 1996
chemistry Nobel laureates, Harold Kroto, Richard Smalley and Robert Curl, responsible

for the discovery, named it Buckminsterfullerene in recognition of the architect’s work.8

84 We leave aside a class of rod-shaped viruses such as the prototypical tobacco mosaic virus.
85 Comprising 32 faces, 9o edges and 60 vertices.
86 Kroto 1996. See also Krausse 2002a.
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3.5 From folding and foldable platonic solids to the Jitterbug transformation

A question that occupied virologists was whether viral capsids — comprising at least
120 protein subunits under seemingly identical conditions — contrived their structure in
a manner similar to Fuller's geodesic domes, domes which might have more than 180
of triangular subunits. These domes are able to modify themselves slightly, such that
they arrange themselves according to a geodesic grid on a sphere.?’ Fuller could clarify
this through his grid and through a formula, describing the total number of edges of
these triangulated domes. Situating at every corner of a triangle a ball of radius 1, Fuller
imagined a growing shell structure, beginning with the 12 balls, whose center situated
on the surface of a sphere, then while the structure grows and another layer is situated
symmetrically on the outside of the former layer, there are 42 balls, then 92 balls and so
on, according to the formula: n = 10f2+2. With this formula, Fuller bases his calculation
on the cuboctahedron, being one of the 14 semi-regular Archimedean polyhedra: while
inscribing a cuboctahedron with edge length 1in a sphere, Fuller instructs, as explained
above, to posit 12 balls centered on the vertices. As one may enlarge the sphere and the
cuboctahedron (when now the edge length of the cuboctahedron is 2), one may posit 42
balls centered on the vertices, edges and faces of the cuboctahedron. In Fuller’s formula
n stands for the balls situated symmetrically in the growing shells, where fstands for the
number of the layers of these growing structures.® And the higher the frequency — that
is, the number of layers, the greater the number of balls and hence triangular subunits
(created by drawing a line between three adjacent, tangent balls) is and the more fine-
meshed the network of geodetic structures. Fuller adds that “[t]hese successive layers,
which permeate each other in all directions may be identified with energy waves radiant
in all directions from a nucleus.”?® By “nucleus” Fuller points to the fact, that while
situating the 12 balls of radius 1 on the sphere, having their center as the vertices of the
cuboctahedron, there is a room for an additional ball — called “nucleus”, located exactly

in the center of the sphere and touches all the other 12 balls (see fig.5).

Fuller’s mathematical model was therefore not developed from the icosahedron or from
any of the other Platonic solids: as we will explain later, when balls are positioned at the
vertices of the icosahedron, the structure thus obtained does not have a nucleus, from

which “energy waves” emanate. To see how a nucleus is necessary, one constructs

87 “[...] we have discovered that the way these viruses were built was similar to the way the geodesic domes
were Built. Geometrically you cannot put more than 60 identical units on the surface of a sphere with
each one making identical contacts [...] The virus we had been working on had 180 sub-units — three
times 60 — so they couldn’t all be in identical environments.” In: Klug 1995, 10.

88 For a detailed explanation, see: Edmondson 1987, 114—116. For a proof of Fuller’s statement:

Coxeter 1974.
89 Krausse/Lichtenstein 2001, 169.
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dense sphere packing using identical spheres. By connecting the centers of spheres in

certain arrangements one can obtain the elementary forms, for example Platonic solids.

» R

Fig.3: Kepler's two types of planar packing of spheres.

Sphere-packing arrangements — being an arrangement of non-overlapping, possibly
touching spheres — go back to Johannes Kepler’s 1611 book De Nive sexangula. In it Kepler
distinguishes between two types of packing: one that forms a cube and another that
forms a tetrahedron.®® Kepler’s book is primarily an investigation into the hexagonal form
of snowflakes. As to the densest space-filling arrangement of spheres, Kepler conjec-
tured that the tightest packing produces rhomboidal aggregates, known as the rhombic
dodecahedral honeycomb. The density 1) of a packing of solid spheres is today defined as:

. Ly(K,ﬂBt)
=lim ———

t— o0 I’I(Bt)

where p(X) is the volume of X, B, is a ball of radius t centered at the origin, and K; are
balls which are used for the packing.®' It follows that the density of a packing of balls is
always smaller then 1. When Kepler discusses sphere packing, he proposes two types.
The first is the simple cubic packing and the second is what is called today an FCC packing,
i.e. the hexagonal arrangement. On the cubic arrangement, Kepler concludes: “The
arrangement will be cubic, and the pellets, when subjected to pressure, will become cubes.
But this will not be the tightest pack.” However, when considering the second packing,
Kepler remarks that “[t]his arrangement will be more comparable to the octahedron
and pyramid. The packing will be the tightest possible, so that in no other arrangement
could more pellets be stuffed into the same container”.®? It is known today that the
density of the FCC packing is /(3vV2)~0.7405 , whereas the density of the simple cubic

90 See: Kepler 1966. See also fig. 3.
91 See e.g. Conway/Sloane 2013, 8.
92 Kepler [1611] 1966, 15.
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packing is approximately 0.6802, but Kepler does not give any reason why this pyramidal

arrangement is the densest. **

Fuller studied sphere packing through his work on the suspended construction of the
Dymaxion House. For this purpose, he used cables wrapped around an inner rope. When
cross-sectioning the cables, one sees that the cross-section consists accordingly of six
units around one center (“six around one”. See fig. 4b).** In this cross-sectioning Fuller
sees a prototype of symmetrical growth. Fuller’s first study of a wave-mechanical matrix
appears in grids for his hexagonal layout of the house on a mast, in which the intervals
are specified not only in length dimensions, but also in time units.>® The initial intuition
for the matrix (or isotropic vector matrix) is found in the hexagonal configuration packed
with circles: it belongs to the class of two-dimensional densest packing. Connecting the
centers of adjacent circles with lines, one obtains a part of a configuration of g triangles,

which the Pythagoreans called tetractys, as can be seen in fig. 4a.

1 interval 2~ 1 intervals 3 mtervals
h= 31edge e /) +3 edges

0 Frequency Trlangle
2 Frequency Triangle

(a)

3 Frequency Trangle

(b)

Fig.4: (a) Only with the most right image (the tetractys) one may notice the appearance of the nucleus, in the

[

middle of the inscribed hexagon. (b) Fuller's “six around one” construction, obtained from the tetractys. The

nucleus is the grey circle.

93 Kepler’s assertion, better known as the Kepler’s conjecture (that the densest packing of identical balls in
space is either a cubic arrangement or an hexagonal arrangement), was proved only in 2014 by Thomas Hales.

94 In the magazine he edited SHELTER (November 1932, 106 —107) Fuller assembled pictures that, inter alia,
show snow crystals, cable cross-sections and the Dymaxion House hexagonal plan. See facsimile reprint
in: Krausse/Lichtenstein 1999, 172-173.

95 Krausse/Lichtenstein 1999, 114 f. “Time based plan for the 4D House”, Figure 1928.
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When extending this method to three-dimensional densest packing modeled on the

cuboctahedron, Fuller indicates:

“When the centers of equiradius spheres in closest packing are joined
with lines [i.e. a possibly infinite truss modeled as the cuboctahedron],
an isotropic vector matrix is formed. This constitutes an array of equi-
lateral triangles which is seen as the comprehensive coordination
frame of reference of nature’s most economical, most comfortable
structural interrelationships employing 60-degree association and

disassociation.”%

What Fuller searched for becomes clear in his 1938 book Nine Chains to the Moon. There
Fuller calls for a time-based geometry that takes into account propagation of waves and
rays and growth processes in space and time: “Time, or how far (or more properly ‘fast’)
radially outward, in time and space, integrated as rate or the center of the sphere.”¥ The
mental image Fuller uses is that of the “expanding sphere” or the “halo” — a radiation in
all directions. As was seen above, Fuller finds a framework for such processes in a poly-
hedron consisting of 8 triangles and 6 squares: the cuboctahedron. In its representation
using sphere packing there are not “six around one” but rather “twelve around one.” % Its
shell consists of 12 balls. Growing symmetrically with additional layers, 42, 92, 162, 362
(or more) spheres can be packed. The cuboctahedron may be regarded a form of sphere
packing: it forms a shell of 12 balls with a nucleus. Having a different shape compared
with that of the cuboctahedron, one might say the icosahedron consists merely of a shell,

whereas the cuboctahedron has its nucleus, as noted above and as can be seen in fig. 5.

Fig.5: On the left, a packing of 12 white balls, where the center of each (white) ball is placed on a vertex of a
cuboctahedron; note the existence of a grey nucleus. On the right, a packing of 12 balls, where the center of each
ball is placed on a vertex of the icosahedron; in this case there is no space for a nucleus of the same size. Note
that the density of the icosahedral packing is approx. 0.6882, being lower than the density of the FCC packing.

96 Fuller 1975a, caption to figure 420.02 (our italics).
97 Fuller 1938, 134.
98 Fuller 19753, 116 —120, section 413.00.
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Since the hollowed space in the center of the icosahedron has smaller dimensions com-
pared with the ball in the nucleus of the cuboctahedron, the radii of the balls layering the
icosahedron are somewhat shorter than the edges. Therefore, the icosahedron cannot
provide a basis — a matrix, in Fuller’s terminology — for symmetrical growth processes. It
always remains the same perfect space division, through all of its modifications: be it a
capsid, a shell or a geodesic dome. Conversely, the cuboctahedron provides a matrix for
growth processes — what Fuller refers to by “isotropic vector matrix” — but is unsuitable as
a building structure. The six square faces of the cuboctahedron lack stabilizing diagonals.
Fuller has repeatedly demonstrated this effect, for example, in his Necklace Performance.”
A square, according to Fuller, is not a structure; it is a temporary opening at the most.
Only the triangle is a structure, as it is self-stabilizing. This feature appears only when

one builds the cuboctahedron as a model and connects the rods with flexible joints.

These and many other aspects come to light in a geometric transformation Fuller named
Jitterbug after a 1940 popular dance. Though there are different ways to dance the Jitter-
bug,’ we will limit ourselves to one, the easiest, which is performed with a model. The
model consists of 24 individual rods that may move while being connected to flexible
nodes. Thus, various configurations can be produced via folding. It begins with the most
extended configuration: the cuboctahedron. Though the cuboctahedron also has square
faces, we focus on the behavior of the triangles during the transformations (see fig. 6 and
7). Its 14 faces can be seen clearly, and it is evident via touching that the cuboctahedron
is not rigid. When slight pressure is applied to the model’s upper triangle, the result is
a left or right rotation of the remaining triangles. This draws the 6 squares in a diagonal
direction, deforming them into rhombi. At this point the squares crease, forming an
invisible, “silent” edge, while an inserted rod could have prevented this deformation.
When the rods are inserted in the middle of the creased squares, the result is of an
icosahedron: each folded rhombus supplies 2 triangles. A total of 12 new triangles plus
the original 8 add up to the 20 triangles of the icosahedron. In the absence of intervention
to stop the process of folding it goes on: adjacent edges of the cuboctahedron’s original
squares join in pairs. The result is an octahedron, whose 8 triangles are formed with
double-tipped edges. The next two stages of the Jitterbug transformation are more
complicated since they require further extension and folding of area, suffice it to say,
this procedure produces a tetrahedron, with quadruple edges and culminates in a planar
triangle with eightfold edges. Throughout the process of transformation the polyhedra

emerge in a process of phase transitions.

99 Fuller 19753, 317-319, sections 608.00—609.01.
100 Cf. “Five ways to dance the jitterbug” in Krausse/Lichtenstein 2001, 24—-33.
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Fig.7: Photos taken from R. Buckminster Fuller’s 1975 lecture “The Vector Equilibrium”, where several stages

of the Jitterbug transformation are presented.

The Jitterbug transformation demonstrates convertibility in a rigid and stable structure;
it demonstrates metamorphosis from one “solid” into the next in a single, continuous
process of contraction and expansion up to the structure’s limits. This metamorphosis
not only offers a different view on geometry, it also offers another perspective on thought:
equally abundant in forms, the Jitterbug transformation is also abundant in patterns of
movement. Fuller demonstrates ongoing articulations of movement have a relationship

to epistemology:
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“There is quite possible a scientific truth to be evolved from the fact
that motion, particularly rhythmic motion, is highly provocative of
thought objectivation. Certainly travel provides perspective, broad
angles, and accelerated progression potential of clarification of the

experience trend.”'"!

4. Folding: The provocation of thought

Mobile structures, as with the Jitterbug transformation, are at the core of Fuller’s thought.
Opposing geometry’s withdrawal from materiality and architecture’s withdrawal from
mobility, Fuller suggests a revival of both concepts back into geometry. Indeed, partial
overlapping and non-simultaneity are pilled off via the axiomatized mechanized concep-
tion of geometry — as all lines and axioms appear at once — whereas the mathematization
of the fold ignores its materiality as a guiding principle. Following Semper and taking
the German word Uberlegung as a cue, folding suggests an interlacing of thought and
contemplation together with a materialized geometry and partially overlapping events.
This enables Fuller to tie together his conception of geometry as a material mathematical
science —a point is a place where two lines pass through but not at the same time —and
the scenario as a form of thinking. Folding, weaving and interlacing engender this form
of thinking. As Semper indicated, it is flexible, mobile, foldable interior partitions that
enable the wall to be a pure structural element, not the other way around. Fuller takes
on this viewpoint and pursues it into the macroscopic world (seedpods and the dance
of human beings) as well as into the microscopic world (inspiring the discovery of the
structure of viral capsids through his geodesic domes). It is indeed the same line of
thought that is apparent in Fuller's work: geometry, whose essence in exemplified in
the folding and unfolding of platonic solids as they metamorphose through the Jitter-
bug transformation, is not a rigid structure that lacks movement or consideration to
materiality, but rather it is the thought-provoking scenario universe of material, flexible,

non-simultaneous, partial overlapping.

101 Fuller 1938, 139.
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