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Maschinen, Fahrzeuge, Geräte, industrielle Anlagen oder Bauwerke sowie zur 
Gewährleistung ihrer Sicherheit und Langlebigkeit muss ihr Schwingungsverhalten 
sorgfältig untersucht werden. Eigenschaften der Strukturdynamik werden vor allem 
durch Eigenform- und Betriebsschwingformanalysen ermittelt. Dazu werden 
Strukturen zum Schwingen angeregt und die resultierenden Strukturantworten 
gemessen. Durchführung und nachträgliche Auswertung solcher strukturdynamischer 
Messketten sind sehr zeitaufwendig und erfordern insbesondere bei Einsatz 
elektromechanischer Sensoren umfangreiches Erfahrungswissen. 
 
Um die Reproduzierbarkeit erzeugter Schwingungen zu erhöhen, wird in der 
vorliegenden Arbeit zunächst ein Aktor zur Strukturanregung vorgestellt, der 
Sensordaten unmittelbar im Gerät auswertet und auf Bewegungen des Hammerarms 
rückkoppelt sowie interne Schlagvalidierung ermöglicht. Damit wird erstmals ein 
Modalhammer mit stativ-, aber auch handgeführter Strukturanregung auf der 
Grundlage vollständig automatischer und reproduzierbarer Impulsanregung mit 
einstellbaren Impulsparametern realisiert. Neuartige Algorithmen werden angegeben, 
die deutlich Strukturkonfiguration und Messaufwände durch automatische 
Bestimmung der Sensorpositionen und -orientierungen vereinfachen. Sie ermöglichen, 
untersuchte Strukturen effizient dreidimensional in Form geometrischer Objekte 
rechnerunterstützt nachzubilden sowie Messdaten kabellos zu übertragen. Unter 
realen Anregungsbedingungen lassen sich Schwingungsmuster von Strukturen in 
geometrische Modelle und Videobilder von ihnen einbetten sowie in Echtzeit am 
Prüfort unmittelbar visualisieren und auswerten. Diese neuen Möglichkeiten 
reduzieren den zeitlichen Aufwand strukturdynamischer Analysen. Sie verbessern die 
Sicherheit untersuchter Strukturen und die Reproduzierbarkeit der Prüfungen, indem 
sie erhöhte Messauflösungen und verkürzte schwingungstechnische Prüfzyklen 
erlauben. Die Neuheit der so umrissenen technischen Lehre wurde durch Erteilung 
des deutschen Patents DE102018103333 bestätigt. 
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XII 

Abstract 
 
In the course of designing and technically monitoring mechanical structures such as 
machines, vehicles, equipment, industrial plants or buildings, their vibrational 
behaviour must carefully be investigated to ensure their safety and long-term durability. 
Properties of structural dynamics are primarily determined by eigenmode and 
operating deflection shape analyses. For this purpose, structures are excited to vibrate 
and the resulting structural responses are measured. Execution and later evaluation 
of such structural-dynamics measurement chains are very time-consuming and require 
substantial empirical knowledge particularly when employing electromechanical 
sensors. 
 
In order to increase the reproducibility of the vibrations generated, the present work 
introduces an actuator for structural excitation that evaluates sensor data directly in 
the device and feeds them back to movements of the hammer arm, and which enables 
internal impact validation. Thus, for the first time, a modal hammer with both stand- 
and hand-guided structural excitation based on fully automatic and reproducible pulse 
excitation with adjustable pulse parameters is realised. Novel algorithms are devised, 
which significantly simplify structure configuration and measurement efforts by 
automatically determining sensor positions and orientations. They enable, with 
computer support, to efficiently pattern three-dimensional geometrical objects of 
investigated structures, as well as wireless transmission of measurement data. Under 
real excitation conditions, vibration patterns of structures can be embedded into 
geometric models and video images of them, as well as directly be visualised and 
evaluated in real time at the test location. These new capabilities reduce the time 
required for structural-dynamics analyses. They improve the safety of examined 
structures and the reproducibility of tests by allowing for increased measurement 
resolutions and shorter vibration test cycles. The novelty of this technical approach 
was confirmed by granting the German patent DE102018103333. 
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