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Kurzfassung

Im Zuge der Konstruktion und technischen Uberwachung mechanischer Strukturen wie
Maschinen, Fahrzeuge, Gerate, industrielle Anlagen oder Bauwerke sowie zur
Gewabhrleistung ihrer Sicherheit und Langlebigkeit muss ihr Schwingungsverhalten
sorgféltig untersucht werden. Eigenschaften der Strukturdynamik werden vor allem
durch Eigenform- und Betriebsschwingformanalysen ermittelt. Dazu werden
Strukturen zum Schwingen angeregt und die resultierenden Strukturantworten
gemessen. Durchfihrung und nachtragliche Auswertung solcher strukturdynamischer
Messketten sind sehr zeitaufwendig und erfordern insbesondere bei Einsatz
elektromechanischer Sensoren umfangreiches Erfahrungswissen.

Um die Reproduzierbarkeit erzeugter Schwingungen zu erhdéhen, wird in der
vorliegenden Arbeit zundchst ein Aktor zur Strukturanregung vorgestellt, der
Sensordaten unmittelbar im Gerat auswertet und auf Bewegungen des Hammerarms
riickkoppelt sowie interne Schlagvalidierung ermdglicht. Damit wird erstmals ein
Modalhammer mit stativ-, aber auch handgeflihrter Strukturanregung auf der
Grundlage vollstdndig automatischer und reproduzierbarer Impulsanregung mit
einstellbaren Impulsparametern realisiert. Neuartige Algorithmen werden angegeben,
die deutlich Strukturkonfiguration und Messaufwdnde durch automatische
Bestimmung der Sensorpositionen und -orientierungen vereinfachen. Sie erméglichen,
untersuchte Strukturen effizient dreidimensional in Form geometrischer Objekte
rechnerunterstiitzt nachzubilden sowie Messdaten kabellos zu Ubertragen. Unter
realen Anregungsbedingungen lassen sich Schwingungsmuster von Strukturen in
geometrische Modelle und Videobilder von ihnen einbetten sowie in Echtzeit am
Prifort unmittelbar visualisieren und auswerten. Diese neuen Mdglichkeiten
reduzieren den zeitlichen Aufwand strukturdynamischer Analysen. Sie verbessern die
Sicherheit untersuchter Strukturen und die Reproduzierbarkeit der Priifungen, indem
sie erhdhte Messauflésungen und verkirzte schwingungstechnische Priifzyklen
erlauben. Die Neuheit der so umrissenen technischen Lehre wurde durch Erteilung
des deutschen Patents DE102018103333 bestatigt.
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Abstract

In the course of designing and technically monitoring mechanical structures such as
machines, vehicles, equipment, industrial plants or buildings, their vibrational
behaviour must carefully be investigated to ensure their safety and long-term durability.
Properties of structural dynamics are primarily determined by eigenmode and
operating deflection shape analyses. For this purpose, structures are excited to vibrate
and the resulting structural responses are measured. Execution and later evaluation
of such structural-dynamics measurement chains are very time-consuming and require
substantial empirical knowledge particularly when employing electromechanical
sensors.

In order to increase the reproducibility of the vibrations generated, the present work
introduces an actuator for structural excitation that evaluates sensor data directly in
the device and feeds them back to movements of the hammer arm, and which enables
internal impact validation. Thus, for the first time, a modal hammer with both stand-
and hand-guided structural excitation based on fully automatic and reproducible pulse
excitation with adjustable pulse parameters is realised. Novel algorithms are devised,
which significantly simplify structure configuration and measurement efforts by
automatically determining sensor positions and orientations. They enable, with
computer support, to efficiently pattern three-dimensional geometrical objects of
investigated structures, as well as wireless transmission of measurement data. Under
real excitation conditions, vibration patterns of structures can be embedded into
geometric models and video images of them, as well as directly be visualised and
evaluated in real time at the test location. These new capabilities reduce the time
required for structural-dynamics analyses. They improve the safety of examined
structures and the reproducibility of tests by allowing for increased measurement
resolutions and shorter vibration test cycles. The novelty of this technical approach
was confirmed by granting the German patent DE102018103333.
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