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2  VOM  EXPERIMENT ZUM  COMPUTEREXPERIMENT 

Mathematik und Berechnung sind das eine Standbein moderner Wissen-
schaft, Empirie in Form von Beobachtung, Experiment und Messung das 
andere. Um beide miteinander zu verbinden, bedarf es nicht nur geeigne-
ter Rechentechniken wie sie die frühe Neuzeit entwickelt hat, sondern 
auch einer entsprechend angepassten Forschungslogik und eines Ver-
ständnisses dessen, was als real angesehen wird. Wie dem Rechnen, geht 
auch der empirischen Forschung eine Entwicklungsgeschichte voraus, 
welche die Voraussetzungen dafür schuf, dass sich Wissenschaft aktiv 
mit den Phänomenen und Prozessen der Natur auseinandersetzt und die-
se reproduzierbar macht. Die Geschichte des empirischen Wissens reicht 
weit ins Mittelalter zurück und dokumentiert die Transformation dessen, 
was unter wissenschaftlicher Erfahrung und Forschung, aber auch unter 
Realität und dem Verhältnis des Menschen zur Realität verstanden wur-
de. Diese Transformation kumuliert in der neuzeitlichen Konzeption des 
mechanistischen Weltbildes und dessen Verständnis von Empirie als 
instrumentenvermittelter Beobachtung, Messung und Experiment.  
 
Zu Beginn dieser Entwicklung im frühen Mittelalter sind Experimente, 
die in die natürliche Ordnung eingreifen, noch undenkbar. Zwar hatte 
Aristoteles als die maßgebliche philosophische Autorität des Mittelalters 
350 v. Chr. bereits empirische Studien betrieben, doch basierten diese 
vor allem auf Beobachtungen. Zwei Aspekte prägen entscheidend die 
mittelalterliche Wissenschaftsauffassung und dokumentieren den Unter-
schied zum Denkstil der Neuzeit und Moderne. Das eine ist die theologi-
sche Interpretation der Welt, denn in der Natur zeige sich der Schöpfer-
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wille Gottes und diesen galt es in ehrfürchtigem Staunen zu betrachten.1 
„Das Staunen hatte seinen Ursprung in der philosophischen Kontempla-
tion. […] Neugier dagegen war das moralisch zweifelhafte Begehren, 
Sachen herauszufinden, die einen nichts angingen, seien es die Geheim-
nisse der Natur oder die der Nachbarn“ (Daston 2001: 81). Neugierde 
oder gar Eingriffe in die natürliche Ordnung durch Experimente verbo-
ten sich daher von selbst und so waren theologischen Spekulationen über 
Naturphänomene Tür und Tor geöffnet. Aus heutiger Sicht wunderlich 
anmutende Theorien über die Wasser des Himmels oder die Transmuta-
tion unedler Metalle in Gold waren anerkannte und diskutierte Themen. 
Vor diesem spekulativen Hintergrund ist Albertus Magnus Bemerkung 
anlässlich der Gründung des ersten Studiums Generale im deutschspra-
chigen Raum 1248 in Köln zu verstehen: „Wenn wir Naturwissenschaf-
ten betreiben, dann müssen wir danach forschen, was auf natürliche 
Weise in der natürlichen Wirklichkeit geschehen kann, nach den inneren 
Ursachen der Natur, und nicht nach der Art und Weise erkunden zu su-
chen, nach der Gott, der Schöpfer, gemäß seinem freien Willen das von 
ihm geschaffene Wunder vollbringt, um seine Macht zu demonstrieren“ 
(Albert 1248, übersetzt in: Sturlese, 1993: 344). 
 Der zweite Aspekt scholastischer Wissenschaftsauffassung zog sich 
als Disput durch das gesamte Mittelalter und verhandelte die Frage, was 
als real anzusehen sei: die Allgemeinbegriffe und Prinzipien oder das 
Einzelne, sinnlich Wahrnehmbare. Setzten sich im so genannten Univer-
salienstreit zunächst die idealistischen Realisten mit ihrer Auffassung 
durch, die Universalien seien als reale Wesenheiten zu denken, so ent-
wickelten sich ab dem 10. Jahrhundert konträre Ansichten. Die Nomina-
listen, allen voran Anselm von Canterbury, waren der Auffassung, dass 
nur Dinge, die wir mit unseren Sinnen wahrnehmen können, real seien. 
Begriffe hingegen seien nur Bezeichnungen. Diese Via moderna kriti-
sierte die reale Existenz allgemeiner Begriffe, auch die eines Gottes oder 

                                              
1  „War das Interesse an methodisch strenger Erforschung der Natur schon in 

der Spätantike auf die Herausarbeitung des Exempelhaften und Wunderba-
ren zusammengeschrumpft, so verstärkte sich diese Tendenz bei den Kir-
chenvätern noch. Sie betrachteten die Natur vornehmlich als Symbol der 
Weisheit Gottes und als einen Weg, der über die Natur hinausführte. Au-
gustinus warnte davor, ihr zu viel Eigeninteresse zuzuwenden. Was wir 
heute Naturwissenschaft nennen, war in seinen Augen verwerfliche Neu-
gier (curiositas), weil sie nicht darauf abzielte, über die sichtbare Natur hi-
nauszugehen“ (Flasch 1995: 117). Das Mittelalter berief sich bezüglich 
der Naturerscheinungen vor allem auf Plinius Naturgeschichte aus dem 
ersten Jahrhunderts n. Chr. Plinius behandelte darin die Kosmologie, die 
Erdteile, den Menschen, Tiere, Pflanzen und Mineralien.  
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der Seele.2 Die Frage nach der Natur der Allgemeinbegriffe war jedoch 
für die Entwicklung eines wissenschaftlichen Denkens entscheidend, 
denn sie klärte die Grundlage wissenschaftlicher Erkenntnis und den 
Gegenstand von Forschung. Solange das Allgemeine die Grundlage bil-
dete, konnte man den Einzeldingen – sei es durch Beobachtung oder 
Experiment – nichts Interessantes entlocken. Wenn aber die Einzeldinge 
das Reale waren, dann ließen sich auf dieser Grundlage durch Beobach-
tung und Experiment wichtige Erkenntnisse gewinnen. 
 Der Universalienstreit war eng verknüpft mit den maßgeblichen 
Quellen des mittelalterlichen Denkens, insbesondere mit den Auslegun-
gen der Schriften des Aristoteles und, durch diesen vermittelt, Platons. 
Da bis weit ins Mittelalter nur die logischen Schriften Aristoteles be-
kannt waren, konnte sich das Ideal, Erkenntnis aus dem Allgemeinen zu 
deduzieren, behaupten: Ausgehend von obersten Grundsätzen sollten – 
wie es die Geometrie mit ihrer Axiomatik seit Euklid praktizierte – mit-
tels Beweise Erkenntnisse deduziert werden.3 Zwar konnten sinnliche 
Erfahrungen herangezogen werden, um induktiv zu Axiomen zu gelan-
gen, doch mussten diese, allgemein einsichtige Sachverhalte darstellen. 
Wissenschaft wurde nicht als Aufzählung einzelner Fakten verstanden, 
geschweige denn als experimentelle Einzeluntersuchungen. Erst im 12. 
Jahrhundert drangen über die arabischen Kommentatoren die realwis-
senschaftlichen Texte des Aristoteles ins mittelalterliche Bewusstsein 
und damit neue Konzepte wissenschaftlicher Praxis. Aristoteles hatte 
über Meteorologie, Biologie, Botanik, Medizin, Astronomie und vieles 
mehr geschrieben und legte dabei ein strukturiertes Vorgehen basierend 
auf wissenschaftlichen Beobachtungen an den Tag. Als empirischer For-

                                              
2  Mit ihrem gemäßigten Realismus bemühten sich Albertus Magnus und 

Thomas von Aquin um einen gangbaren Mittelweg, indem sie dem All-
gemeinen keine eigene Realität zusprachen, es aber in den Einzeldingen 
realisiert sahen. Ohne diese Realisierung in den Einzeldingen sei dass All-
gemeine nur ein Gedanke. 

3  Die aristotelische Axiomatisierung und die Geometrie Euklids, die als 
Paradebeispiel der geometrischen Beweiskunst galt, stellten die Grundlage 
des frühmittelalterlichen Wissenschaftsideals dar. Eingeführt wurde dieses 
Ideal durch die Kommentare des Proclus Diadochus zu Euklids Werk 
Elemente im 5. Jahrhundert, Boethius Übersetzung der logischen Schriften 
des Aristoteles im 6. Jahrhundert sowie durch die Übersetzung des fälsch-
licherweise Aristoteles zugeschriebenen Liber Causis im 12. Jahrhundert 
ins Lateinische (vgl. Schüling 1969; Flasch 1995). „Wissenschaftlich den-
ken, das hieß: die Logik des Aristoteles auf ein gegebenes Feld anwenden“ 
(Flasch 1995: 48). Im Unterschied zu Aristoteles war Platon nur durch 
Aristoteles Platon-Kritik bekannt. Von den Platonischen Dialogen waren 
vor dem 12. Jahrhundert nur Menon, Phaidon, Timaios und Parmenides 
ins Lateinische übersetzt. 
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scher gründete er seine naturwissenschaftlichen Überlegungen auf Fak-
tensammlungen, beispielsweise von Tieren und Pflanzen. Er dokumen-
tierte deren charakteristische Eigenschaften und klassifizierte sie nach 
gemeinsamen Merkmalen bzw. grenzte sie durch Unterschiede vonei-
nander ab.4 Auf Basis solcher Faktensammlungen und den daraus ge-
wonnenen Induktionen, gab er dann Erklärungen für mögliche Ursachen 
der Erscheinungen an. Dabei wurden die Induktionen als Prämissen für 
deduktive Schlüsse in Form von Syllogismen gewonnen.5 Auch wenn 
diese Form der Schlussfolgerung dem antiken Wissenschaftsideal ver-
pflichtet war und neuzeitlichen Ansprüchen nicht genügte, so vermittel-
ten die realwissenschaftlichen Texte des Aristoteles dem späten Mittelal-
ter eine Vorstellung davon, was es hieß, Wissenschaft basierend auf ge-
nauen Beobachtungen zu betreiben und empirische Ordnungen vorzu-
nehmen.  
 Allerdings hatte die aristotelische Naturforschung ihre Grenzen. 
Obwohl die Praktik recht modern wirkte, die epistemische Verankerung 
der aristotelischen Naturstudien war es nicht. Aristoteles führte zwar das 
induktiv-deduktive Schema wissenschaftlicher Forschung in seinen 
realwissenschaftlichen Schriften ein. Studien der Natur mussten aber 
allein auf allgemein einsichtige Beobachtungen basieren. Oder, wie Pe-
ter Dear es in seiner Studie Discipline and Experience beschrieb: „Sin-
gular, unusual events were of course noticed and reported, but they were 
not, by definition, revealing of how nature behaves ‚always or for the 
most part’, as  said; instead, they might be classified as ‚mon-
sters’ or even ‚miracles’“ (Dear 1995: 14). Beobachtungen und Experi-
mente mit Hilfe von Instrumenten, die Einblicke in die Natur gaben, die 
nicht von jedermann nachvollzogen werden konnten, galten im aristote-
lischen Sinne als nicht wissenschaftlich. Noch im 17. Jahrhundert muss-
te sich Galileo, als er durch sein Teleskop die raue Oberfläche des Mon-
des und die Jupitermonde entdeckte, gegen die Spekulationen seiner 
                                              
4  Für Aristoteles wurden Verallgemeinerungen induktiv aus allgemein ein-

sichtigen Sinneserfahrungen gewonnen. Induktionen sind dabei einfache 
Aufzählung der Art: x1 hat Eigenschaft P, x2 hat Eigenschaft P, etc. aus 
welchen folgt, dass alle x die Eigenschaft P besitzen. Induktionen dienten 
als Prämissen für Deduktionen. Dieses induktiv-deduktive Schema ist ty-
pisch für die aristotelische Realwissenschaft. Es wurde von den mittel-
alterlichen Philosophen und Naturforschern als Methode der Auflösung 
und Zusammensetzung der Phänomene betitelt, um die natürlichen Phä-
nomene zu rekonstruieren (vgl. Losee 1977: 17ff). 

5  Eine dieser typischen Schlussfolgerungen Aristoteles war, dass alle Lebe-
wesen, die eine Lunge aufwiesen einen Hals haben müssen. Den Grund 
dafür sah Aristoteles in der Funktionsweise der Lunge. Er hatte in seiner 
Faktensammlung festgestellt, dass Lebewesen mit Lunge eine Luftröhre 
aufweisen.  

 Aristotle
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Kollegen zur Wehr setzen. Entsprechend der scholastischen Kosmologie 
galten die Planeten als perfekte Kugeln und die Erde als das Zentrum 
des Universums. Raue Oberflächen und Trabanten, die sich um Jupiter 
bewegen, passten nicht in das Weltbild. In einem Brief an Johannes Ke-
pler amüsierte sich Galileo über einen Kollegen, „professor of philoso-
phy at Pisa labouring before the Grand Duke with logical arguments, as 
if with magical incantations, to charm the new planets out of the sky“ 
(Galileo, übersetzt in: Roberts 1937: 55). 
 Doch bereits frühe Experimentatoren wie Roger Bacon, die davon 
überzeugt waren, dass „wir nur durch die eigene Forschung und durch 
das Experiment zur Wahrheit gelangen können“ (Bacon 1268, übersetzt 
in: Vogel, 1904: 17) begannen, diese allgemeine Einsichtigkeit in Frage 
zu stellen. Sie forderten eine Scientia experimentalis, deren Forschungs-
logik alle unnötigen und komplizierenden Erklärungen und vor allem 
unbelegten Spekulationen vermeidet. Die den Ursprung von Erkenntnis 
hinterfragt und diese nur durch direkte Gegenstandserfassung erzielt, 
indem sie die Verknüpfung der Dinge oder Eigenschaften auf ihre Kau-
salität hin untersucht. Diese Forderungen verfestigten das Verständnis, 
dass alles was real sei nicht nur sinnlich wahrnehmbar, sondern auch 
individuell sei und damit Gegenstand von Erkenntnis. Roger Bacons 
Auffassung markierte die Wende im mittelalterlichen Naturverständnis 
und bereitete den Weg für die neuzeitliche Wissenschaft, die sich am 
deutlichsten zweihundert Jahre später im Wissenschaftsprogramm Fran-
cis Bacons artikulierte.6 Aus der Passivität des Staunens wird nun die 
Aktivität der forschenden Neugierde, die als intellektuelle Begierde 
maßgeblich das wissenschaftliche wie technische Handeln bis heute 
prägt. Denn, so die Meinung Roger Bacons, man könne das induktive 
Verfahren nur dann erfolgreich anwenden, wenn man ein genaues und 
umfassendes Tatsachenwissen besäße, und dazu sei aktives und syste-
matisches Experimentieren notwendig. Das Ideal des Erkenntnisfort-
schritts gründet ebenso in diesem kognitiven Wechsel wie die Idee der 
Beherrschbarkeit der Natur. 
 
 

                                              
6  Diese Entwicklung zeigte sich auch an den veränderten Studienbedingun-

gen. Galten seit der Antike neben der Theologie das Quadrivium (Arith-
metik, Geometrie, Musik und Astronomie) und Trivium (Grammatik, Rhe-
torik und Dialektik) als klassische Ausbildungsfächer, so kristallisierte 
sich im 13. Jahrhundert eine neue Einteilung des Studiums in theoretische 
Philosophie (Naturphilosophie, Mathematik und Metaphysik), praktische 
Philosophie (Ethik, Ökonomie und Politik) sowie Logik heraus (vgl. 
Flasch 1995: 306ff). 
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Sciencia exper imental is 
 

In seiner Fabel Neu-Atlantis beschrieb Francis Bacon 1642 eine Institu-
tion, die den Zweck habe „die Ursachen des Naturgeschehens zu er-
gründen, die geheimen Bewegungen in den Dingen und die inneren 
Kräfte der Natur zu erforschen und die Grenzen der menschlichen Macht 
so weit auszudehnen, um alle möglichen Dinge zu bewirken“ (Bacon 
1642/1982: 43). Dazu seien Forschungen in systematischer Form nötig, 
um „den kausalen Zusammenhang der Dinge möglichst klar darzulegen, 
der Natur ihre tiefsten Geheimnisse zu entlocken und eine leichtver-
ständliche, eindeutige Auskunft über die unbekannten Bestandteile und 
Kräfte in den verschiedenen Körpern zu erhalten“ (Bacon, 1642/1982: 
55). Damit skizzierte Bacon das Programm der neuzeitlichen Wissen-
schaft, die instrumentelle Beobachtung und Experiment zu ihren Er-
kenntnismedien machte. War der mittelalterliche Mensch Teil der 
Schöpfung, die er bestaunte, so begann er jetzt als Homo faber die Natur 
gezielt zu ergründen, sie zunehmend durch Technik zu beherrschen und 
ihre Ressourcen auszubeuten. Wissen sollte von nun an nützlich sein 
und der Verbesserung der Lebensumstände dienen, statt kontemplativ 
oder moralistisch zu sein. Diese Entwicklung zeichnete sich bereits im 
Aufstieg des Merkantilismus und der Handelszentren seit 1300 ab sowie 
durch die pragmatische Position des Franziskanerordens, vor allem aber 
durch die Ansichten Roger Bacons in Oxford.7 Doch Nützlichkeit stellt 
andere Anforderungen an die Produktion und Vermittlung von Wissen, 
als kontemplatives Staunen oder theologische Dogmen. Auch wenn die 
frühen Experimente nicht den heutigen Standards entsprechen, so revo-
lutionierten sie doch im Laufe des 17. und 18. Jahrhunderts die wissen-
schaftliche Erkenntnisproduktion. 1666 beschrieb Robert Hooke in 
seinem Essay A General Scheme, or Idea of the Present State of Natural 
Philosophy, and How its Defects may be Remedied by a Methodological 
Proceeding in the making of Experiments and collecting Observations, 
whereby to compile a Natural History, as the Solid Basis for the Super-
structure of True Philosophy unterschiedliche Möglichkeiten der Beo-
bachtung und des Experiments je nach wissenschaftlichem Interesse: 
„By observing how nature proceeds in distributing the same property in 

                                              
7  Roger Bacon beschäftigte sich im 13. Jahrhundert als einer der ersten Na-

turforscher mit experimentellen Studien. Er prangerte „das Schwören auf 
eine unwürdige und hinfällige Autorität, die Macht der Gewohnheit, die 
Denkweise der gewöhnlichen großen Masse und die Blindheit gegen die 
eigene Unwissenheit verbunden mit Prahlerei mit der eigenen Weisheit“ 
(Bacon 1268, übersetzt in: Vogel 1904: 17) als hinderlich für den Er-
kenntnisfortschritt an.  
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several bodies [...] by observing the transitions it makes from one prop-
erty to another [...] by taking notice of all such processes of nature, 
wherein by the same effective principle it causes quite different prod-
ucts,“ etc. (Hooke 1666: 992). 
 Typische Experimente jener Zeit waren Studien zur Lichtbrechung 
und Optik, zur Bewegung und Geschwindigkeit von Gegenständen, zur 
Erzeugung eines Vakuums oder zur Funktionsweise des Auges. Experi-
mentieren war zu Beginn der Neuzeit eine Angelegenheit einzelner Na-
turforscher in privaten Studierzimmern, Universitäten oder Klöstern. 
Auch waren Experimente oft mit öffentlichen Demonstrationen auf 
Messen und Märkten verbunden.8 Forschungsinstitute gab es noch nicht 
und erst im Laufe des 17. Jahrhunderts begannen sich Gelehrtengesell-
schaften in Form von Akademien zu etablieren.9 Mess- und Experimen-
tiergeräte waren ungeeichte Einzelanfertigungen und viele Messgrößen 
waren noch nicht bekannt. Präzise Beschreibungen und vertrauenswür-
dige Zeugen waren daher für die Glaubwürdigkeit der experimentellen 
Resultate von entscheidender Bedeutung. Robert Boyle, einer der erfolg-
reichsten Experimentatoren jener Zeit, forderte nicht nur von seinen 
Zeitgenossen, dass sie ihre Experimente präzise beschreiben und da-
durch nachvollziehbar und wiederholbar machen sollten.10 Er selbst 
wiederholte sein Vakuumexperiment, mit dem er zeigen konnte, dass 
das Barometer den Druck der Atmosphäre anzeigte und nichts anderes, 
in Anwesenheit namhafter Forscher wie John Wallis, Seth Ward und 
Christopher Wren (vgl. Crombie 1994: 954). Diese frühe Experimental-
kultur wurde in den bildhaften Darstellungen von Experimenten samt 
Experimentator und Zuschauer bis weit ins 18. Jahrhundert dokumen-
tiert. 
 Die Forderung nach der Standardisierung empirischer Forschung 
spiegelte das zunehmende Verständnis von Wissenschaft als Gemein-

                                              
8  „Auch Theater wurden bis weit ins 19. Jahrhundert benutzt, um naturwis-

senschaftliche Experimentalkunst angemessen in Szene zu setzen, woraus 
sich schließlich unter Titeln wie Lecture Theatre oder auch Automatical 
Theatre spezialisierte Einrichtungen entwickelten“ (Schramm 2006: XVI).  

9  Die Akademien waren Gelehrtengesellschaften, die sich zu Wissenschafts-
institutionen entwickelten. So wurde die Accademia Nazionale dei Lincei 
1603 in Rom, die Deutsche Gesellschaft der Naturforscher Leopoldina 
1652 in Schweinfurt und die Royal Society 1660 in London gegründet. 
Weitere Akademiegründungen folgten wie die Académie des Sciences in 
Paris 1666, die Akademie der Wissenschaften in Berlin 1700 und andere.  

10  Galileo Galilei wurde für seinen Stil bewundert, den Weg der Erkenntnis 
in seinen Schriften offen darzulegen, so dass dieser nachvollziehbar war, 
während Isaac Newton – nach der Praktik der antiken Geometer – die ge-
fundenen Resultate diskutierte, ohne ihren Entstehungskontext allzu genau 
zu beschreiben. 
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schaftsunternehmen wider, in das sich im Laufe des 17. und 18. Jahr-
hunderts die einzelnen Naturforscher einordneten. Dazu galt es, die Be-
dingungen der Erkenntnisproduktion neutral, also kontext- und interpre-
tationsunabhängig, zu gestalten und offenzulegen. Jeder Forscher sollte 
in der Lage sein, die Experimente, Beobachtungen und Messungen sei-
ner Kollegen zu wiederholen und gegebenenfalls die dazu nötigen Ins-
trumente nachzubauen. Um eine solche Nachvollziehbarkeit zu gewähr-
leisten, bedurfte es einheitlicher Beschreibungsformate, Nomenklaturen 
und Standards. Zur Durchsetzung dieser Standards waren wissenschaft-
liche Institutionen, wie eben die Akademien, wissenschaftliche Kom-
munikations- und Publikationsmedien, wie Briefe, Bücher und Journa-
le,11 aber auch ein Verständnis von Wissenschaft als intersubjektives 
und kollaboratives Unternehmen von Nöten. In diesem Wechselspiel 
von Standardisierung und Institutionalisierung bildete sich nicht nur das 
neuzeitliche und moderne Wissenschaftsverständnis heraus, sondern 
auch die Identifikation der Forscher als Scientific Community. Die 
Glaubwürdigkeit wissenschaftlicher Erkenntnisse löste sich im Zuge 
dieser Entwicklungen von individuellen Zeugen ab und wurde an Ins-
trumente, Methoden und Standards delegiert.12 Wissenschaft emanzi-
pierte sich von der Sphäre subjektiver Praktiken zu einem intersubjekti-
ven und reglementierten Unternehmen, das zunehmend Anspruch auf 
objektives Wissen erhob. Dieser Anspruch fand Ende des 19. Jahrhun-
derts in der Rede von der exakten Wissenschaft seinen Höhepunkt.  
 
Obwohl dieser Prozess der Standardisierung und Institutionalisierung bis 
ins 19. Jahrhundert andauerte, war es die maßgebliche Leistung des 17. 
Jahrhunderts, die Argumentation auf Basis experimenteller Ergebnisse 

                                              
11  Es ist kein Zufall, dass ab dem 14. Jahrhundert die ersten Papiermühlen in 

den intellektuellen Zentren gegründet wurden (Bologna 1293, Padua 1340, 
Troyes 1338, Nürnberg 1390). Mit der Erfindung des Buchdrucks entstan-
den ab dem 15. Jahrhundert die ersten Druckereien. Um 1500 gab es euro-
paweit bereits mehr als 1.000 Drucker und Verleger, die 27.000 Titel mit 
einer geschätzten Gesamtauflage von insgesamt eins- bis acht Millionen 
Bänden druckten. Im 17. Jahrhundert waren bereits über eine Million 
unterschiedlicher Titel im Umlauf. 1682 erschien mit den Leipziger Acta 
eruditorum das erste wissenschaftliche Journal im deutschsprachigen 
Raum (vgl. Flasch 1995: 146f; Hiebel 1997: 49ff). 

12  „Um die Mitte des achtzehnten Jahrhunderts war das Staunen der Natur-
philosophie fremd geworden und noch dazu in schlechte Gesellschaft ge-
raten. … Die Pariser Académie Royale des Science war so besorgt darum, 
dieser verbreiteten ‚Liebe zum Staunen’ keinen Vorschub zu leisten, dass 
sie sich jahrzehntelang weigerte, Berichten über Meteoriten Glauben zu 
schenken, weil vom Himmel fallende Steine einen Beigeschmack von 
Wunderzeichen hatten“ (Daston 2001: 92). 
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wissenschaftlich zu etablieren. Dabei lieferten die instrumentenbasierten 
Experimente und Beobachtungen eine wachsende Sammlung von Fak-
ten, die es mit Hilfe von Annahmen und Theorien zu erklären galt. Auch 
hier waren geeignete Praktiken und Standardisierungen gefordert. Erfah-
rene Experimentatoren wie Robert Boyle kritisierten die Lust ihrer Kol-
legen an spekulativen Interpretationen magerer, experimenteller Befun-
de und forderten „that men, in the first place, would forbear to establish 
any theory, till they have consulted with [...] a considerable number of 
experiments, in proportion to the comprehensiveness of the theory to be 
erected on them. And, in the next place, I would have such kind of 
superstructures looked upon only as temporary ones“ (Boyle 1661 in: 
Crombie 1994: 948). Auch wenn von systematischer, theoriegeleiteter 
Wissenschaft noch nicht die Rede sein konnte – und dessen waren sich 
die frühen neuzeitlichen Forscher durchaus bewusst – so stellte die sorg-
fältige Sammlung von Fakten und Beobachtungen die Grundlage für 
spätere Systematisierungen dar.13 Bernard de Fontenelle forderte daher 
1709 im Programm der Pariser Académie des Science: „Die Akademie 
ist auf der ersten Stufe, auf der sie einen großen Bestand von gut be-
gründeten Beobachtungen und Tatsachen sammelt, die eines Tages die 
Grundlage für ein System sein werden. Denn die systematische Physik 
muß von der Errichtung ihres Gebäudes solange Abstand nehmen, bis 
die experimentelle Physik in der Lage ist, sie mit den nötigen Materia-
lien zu versorgen“ (Fontenelle 1709, übersetzt in: Böhme, van den Dae-
le, Krohn 1977: 190). 
 
Doch worauf sollte eine systematische Wissenschaft basieren, auf empi-
rischen Ordnungen oder allgemeinen Prinzipien? Für Bereiche, die der 
direkten Beobachtung zugänglich waren und eine Fülle an Erscheinun-
gen boten wie die Botanik, die Biologie oder die Mineralogie, wurden 
seit der Antike Versuche unternommen, diese zu klassifizieren. Dabei 
dienten die empirischen Ordnungen dem Zweck, die unüberschaubare 
Fülle von Einzelerscheinungen zu strukturieren. Bereits Aristoteles hatte 
in seinen botanischen Studien über sechshundert Pflanzenarten aufgelis-
tet. Im 17. Jahrhundert waren bereits mehr als sechstausend Pflanzenar-
ten bekannt und bis Mitte des 20. Jahrhunderts waren es achtzehntau-
send. Anhand von Beobachtungsvariablen bestimmten Botaniker rele-

                                              
13  Während den Baconischen Wissenschaften theoretische Entwicklungsli-

nien fehlten – Thomas Kuhn bezeichnete diese Phase in seiner Studie Die 
Struktur wissenschaftlicher Revolutionen als strukturlosen Empirismus 
(vgl. Kuhn 1962) – sind Astronomie, Mechanik und Optik bereits im 17. 
Jahrhundert systematische, d.h. theoriegeleitete Wissenschaften, die Empi-
rie mit mathematisierter Theorie verbinden. 

https://doi.org/10.14361/9783839409862-002 - am 13.02.2026, 18:31:24. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.14361/9783839409862-002
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/


I HISTORISCHER KONTEXT 

 48

vante Merkmale, auf deren Basis sie dann durch Merkmalskombinatio-
nen und Unterscheidungen Klassifikationen entwickelten. Dabei kam es 
vor, dass sich Klassifikationssysteme als hinderlich für den Erkenntnis-
fortschritt erwiesen.14 In seiner Geschichte der Botanik vom 16. Jahr-
hundert bis 1860 schrieb Julius Sachs:  
 
„Die Botaniker in den letzten drei Decennien des 17. Jahrhunderts mussten 
erkennen, daß die von Lobelius und Bauhin aufgestellten Verwandtschaftsrei-
hen auf dem von Caesalpin betretenen Weg durch a priori festgestellte Merk-
male nicht charakterisiert und nicht zu einem wohlgegliederten System ausge-
bildet werden können“ (Sachs 1875: 69). „Eine beinahe 300jährige ununter-
brochene Arbeit, welche immer wieder von dem selben Grundsatz ausging 
oder factisch sich doch in dieser Weise beschäftigte, hat den inductiven Be-
weis geliefert, dass der von Caesalpin [1583] eingeschlagene Weg ein Irrweg 
ist. Wenn dennoch bei der Verfolgung desselben bis zur Mitte des 18. Jahr-
hunderts die natürlichen Verwandtschaftsgruppen immer deutlicher hervortre-
ten, so geschah es, weil eben auch der auf einem Irrweg Begriffene nach und 
nach die Gegend, in welcher er umherirrt, immer besser kennen lernt und end-
lich ahnt, welcher Weg der richtige gewesen sein würde“ (Sachs 1875: 63).15  
 
Ein Großteil der beobachteten Phänomene waren jedoch nicht Objekte, 
sondern Prozesse wie die Brechung des Lichts, die Verbrennung organi-
scher Stoffe oder die Fortpflanzung von Lebewesen. Klassifikationen 
anhand von Beobachtungsmerkmalen lieferten kaum Informationen, 
denn Klassifikationen sind lediglich Beschreibungen und keine wissen-
schaftlichen Erklärungen. Erst empirisch fundierte Modelle und Theo-
rien, basierend auf Experimenten und Messungen, ermöglichten entspre-
chende Erklärungen der Phänomene und Prozesse, um die zugrundelie-

                                              
14  Die frühen botanischen Systeme waren Mischgebilde künstlicher und na-

türlicher Ordnungen. Erst Carl von Linné beschränkte sich in seiner Ab-
handlung Species Plantarum von 1753 auf eine Art von Systematik. Ba-
sierend auf mehr als dreißig verschiedenen Beobachtungsvariablen er-
arbeitete er ein künstliches System von Klassen und Ordnungen, das sich 
unabhängig von natürlichen Pflanzenverwandtschaften auf die Form der 
Pflanzen konzentrierte. Allerdings wurde Linnés künstliches System stark 
kritisiert, schließlich erhoffte man sich von der natürlichen Ordnung Auf-
schlüsse über die Entstehung und Entwicklung der Pflanzenarten. Ähnli-
che Klassifikationen wurden im Laufe des Mittelalters und der Neuzeit für 
die Welt der Tiere, Gesteine oder chemische Verbindungen in zunehmend 
umfangreicherer Weise erstellt. 

15  Andrea Cesalpino beschrieb in seinem De Plantis Libri 1583 bereits 840 
Arten. „Caesalpin war der erste, der ein Pflanzensystem nach der Form-
verschiedenheit und Ähnlichkeit beschrieb ohne auf ihre Eigenschaften 
und Kräfte zu sehen. Mit ihm beginnt die wahre methodische Systematik“ 
(Schultz 1832: 17-18). 
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genden Prinzipien zu verstehen. Denn das Ziel der Naturforschung des 
17. Jahrhunderts war es, die Gesetze der Natur in ihren Erscheinungen 
zu erkennen und diese zu formulieren. Vorbild war dabei die Astrono-
mie und ihre Himmelsmechanik, die mit Newtons Mechanik auf die 
Bewegung aller physischen Objekte anwendbar wird und sich mathema-
tisch formulieren lässt. Doch um „eindeutige Auskunft über die unbe-
kannten Bestandteile und Kräfte in den verschiedenen Körpern zu erhal-
ten“ (Bacon, 1642/1982: 55), müssen die Forscher tiefer blicken als es 
die Wahrnehmung erlaubt. Sie müssen ihren Blick anders gestalten als 
das natürliche Sehen, denn „[...]every natural action depends on things 
infinitely small, or at least too small to strike the sense,“ schrieb Bacon 
im New Organon. „No one can hope to govern or change nature until he 
has duly comprehended and observed them“ (Bacon 1620/2004: II. Buch 
VI). Der Wunsch, Einblicke jenseits des direkt Beobachtbaren zu ge-
winnen, zeigt sich in den verschiedenen Formen des wissenschaftlichen 
Blicks, die seit der Neuzeit die Forschung maßgeblich bestimmen: Im 
beobachtenden Blick mit Hilfe von Instrumenten in mikroskopische und 
makroskopische Bereiche. Im messenden Blick in Bereiche jenseits des 
Sichtbar- und Wahrnehmbaren. Im experimentellen Blick auf kausale 
Zusammenhänge. Im theoretischen Blick auf die den Phänomenen zu-
grunde liegenden Gesetzlichkeiten und schließlich im mathematischen 
Blick auf allgemein formulierte Prinzipien. Diese Einblicke veränderten 
das, was wissenschaftlich als real galt und bis heute gilt. Vor allem mit 
dem Blick auf das Kausale versuchen die Forscher immer tiefer in die 
Phänomene einzudringen. „In the seventeenth century old practices 
changed and new ones appeared. Those changing practises represent 
shifts in the meaning of experience itself – shifts in what people saw 
when they looked at the events in the natural world“ (Dear 1995: 12-13).  
 Ohne Instrumente der Messung, der Beobachtung und des Experi-
mentierens sind diese Einblicke nicht denkbar. Die Entwicklung leis-
tungsfähiger und zunehmend genauerer Instrumente spielt daher eine 
maßgebliche Rolle im wissenschaftlichen Erkenntnisfortschritt, denn 
verbesserte oder neue Instrumente erlauben Einsichten in neue Bereiche, 
generieren neue Entdeckungen und erweitern wissenschaftliche Erfah-
rung. „Das Projekt der neuzeitlichen Wissenschaft leitet seine Macht aus 
dem spezifisch technologischen Charakter der Darstellungsräume her. 
Die Kräfte und die Art von Überlegungen, die sie freisetzen, ebenso wie 
die Regeln, denen sie gehorchen, sind weniger die von cartesischen Sub-
jekten als vielmehr die von technologisch-epistemischen Texturen“ 
(Rheinberger 2002: 243, 244). Natur wird mit Hilfe experimenteller 
Versuchsanordnungen, systematischer Beobachtungen und instrumentel-
ler Messungen rekontextualisiert. Der technologische Charakter leitet 
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sich dabei aus den methodischen und reglementierten Praktiken des For-
schens ab, die zunehmend an Instrumente delegiert werden. Mit der fort-
schreitenden Standardisierung und Normierung dieser Praktiken erwirbt 
die neuzeitliche Wissenschaft die Fähigkeit, aus der Komplexität natür-
licher Erscheinungen Phänomene zu isolieren, zu stabilisieren und unter 
kontrollierten Bedingungen beherrschbar zu machen. Diese ‚Revolution 
der Denkart‘, wie Immanuel Kant sie in seiner Vorrede zur Kritik der 
reinen Vernunft 1787 betitelte, setzte ein, als: „Galilei seine Kugeln die 
schiefe Fläche mit einer von ihm selbst gewählten Schwere herabrollen, 
oder Torricelli die Luft ein Gewicht, was er sich zum voraus dem einer 
ihm bekannten Wassersäule gleich dachte, tragen ließ … Sie begriffen, 
dass die Vernunft nur das einsieht, was sie selbst nach ihrem Entwurf 
hervorbringt“ (Kant 1787/1993: B XIII). Der Preis, den die Naturfor-
schung dafür zahlen muss, ist die zunehmende Abhängigkeit von den 
immer komplizierter werdenden Apparaten. Die Konstruiertheit wissen-
schaftlicher Realitäten als Labor-Realitäten entfernt sich im Laufe der 
Wissenschaftsentwicklung immer weiter von der lebensweltlich erfahr-
baren Realität.16 Aus heutiger Perspektive lässt sich feststellen, dass die 
„durch die Fundamentalaussagen eines Forschungsprogramms darge-
stellten Sachverhalte … [sich] in der Regel überhaupt nicht in der ‚unbe-
rührten Natur’ beobachten [lassen]. Es bedarf äußerst umfangreicher 
technisch-apparativer Vorkehrungen und die führen meist nicht zu einer 
vollständigen, sondern nur zu einer angenäherten Realisierung der Fun-
damentalaussagen eines Forschungsprogramms“ (Tetens 1987: 9). 
 
 
Quanti f iz ierung 

 
Ein maßgeblicher Faktor der Rekontextualisierungen natürlicher Phäno-
mene und Prozesse ist deren Quantifizierung. Quantifizierung schafft 
Ordnungen als ein Mehr oder Weniger, als ein Wärmer oder Kälter, ein 
Größer oder Kleiner, oder allgemein, als ein Schwächer oder Stärker einer 
Intensität. Quantitative Ordnungen unterscheiden sich von qualitativen, 
insofern sie das Nebeneinander der Zustände in eine Reihenfolge bringen. 
Qualitative Ordnungen können Klassen und Gruppen mit ähnlichen 
Merkmalen bilden, aber sie stellen keine Reihenfolgen innerhalb der 
Klassen oder zwischen diesen dar. Erst die Quantifizierung erlaubt eine 

                                              
16  Laborforschungen rekonstruieren die aktuellen konstruktiven Prozesse der 

Forschung anhand von Fallstudien (vgl. beispielsweise Latour, Woolgar 
1979; Knorr Cetina 1981; Lynch 1985; Rheinberger 2002).  
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komparative Ordnung der Phänomene und Prozesse.17 „Von einer bloß-
empirischen, schlechthin ‚gegeben‘ Vielheit wird ausgegangen: aber das 
Ziel der theoretischen Begriffsbildung ist darauf gerichtet, sie in eine ra-
tional-überschaubare, in eine ‚konstruktive‘ Vielheit zu verwandeln. Die-
se Verwandlung ist niemals abgeschlossen – aber sie wird stets von neu-
em und mit immer komplexeren Mitteln in Angriff genommen. [… Da-
bei] wird den Phänomenen gewissermaßen gewaltsam ein anderer Ord-
nungstyp aufgedrückt“ (Cassirer 1929/1990: 482), der sie der rationalen 
Kontrolle zugänglich macht. Historisch zeigt sich dieser Prozess in der 
Verschmelzung von Beobachtung, Experiment und Messung. Nicht nur 
entdecken die Astronomen des 16. und 17. Jahrhunderts dank der Fern-
rohre neue Monde und die Naturforscher mit Hilfe des Mikroskops neue 
Welten jenseits der natürlichen Wahrnehmungsgrenze.18 Es dauert nicht 
lange, bis den Beobachtungen ein geometrisches Ordnungsraster unterlegt 
wird und diese dadurch metrisiert werden.19 

Die Phänomene werden mit Hilfe von Messinstrumenten unter die-
sen neuen, da quantitativen Ordnungstyp subsumiert. Die typischen 
Messinstrumente der neuzeitlichen Experimentierstuben waren Pendel, 
Thermometer, Barometer, Luftpumpe, Waage und Kompass.20 1667 

                                              
17  Dabei ist die Quantifizierung eine gängige Praktik, die so alt ist wie die 

Zahlen. Mit dem aufkommenden Merkantilismus des Mittelalters verstärk-
te sich jedoch ihr Einfluss auf alle Bereiche der Gesellschaft. „Die Zahlen, 
die Zählbarkeit der Dinge, die rationale Kontrolle und die Abzweckung 
auf Nützlichkeit prägte das merkantile Denken in den Handelszentren, die 
gegen 1300 die kulturelle Führung an sich gerissen hatten. Wenn nun ein 
Chronist über irgendeinen Vorgang berichtete, z.B. über einen Brücken-
bau, dann gab er Länge und Breite, Arbeitszeit und Zahl der Arbeiter prä-
zise an“ (Flasch 1995: 484). Diese Praktik der rationalen Kontrolle wurde 
nach und nach in Form von Messung auf die Natur übertragen und ersetzte 
die qualitativen Erklärungen der aristotelischen Physik. 

18  Im 17. Jahrhundert gelangen zahlreiche Entdeckungen mit Hilfe des Tele-
skops, aber auch des Mikroskops wie beispielsweise die 1661 von Marcel-
lo Malpighi dokumentierten mikroskopischen Befunde über die Kapilla-
rendurchströmung in Zellen oder die 1683 von Anthony van Leeuwenhoek 
an die Royal Society gesandten Zeichnungen von Bakterien. 

19  Zu Beginn des 18. Jahrhunderts wurden Mikrometer, feine Raster zur Be-
stimmung der Größenverhältnisse, mit Mikroskopen kombiniert. Dabei 
sind Messungen mehr als das Abzählen oder Ordnen sichtbarer Objekte. 
Sie stellen Vergleiche von Zuständen einer zu messenden Größe quantita-
tiv dar und erfassen nicht sichtbare, oft auch nicht wahrnehmbare Größen 
der Phänomene und Prozesse. Allgemein gesprochen sind Messungen ho-
momorphe Abbildung von Objekten und Zuständen auf Zahlen (vgl. Sup-
pes, Zinnes 1963). Im einfachsten Falle heißt dies: Je intensiver der ge-
messene Effekt, desto größer der Zahlwert. 

20  Grundlegend für die Entwicklung der neuzeitlichen Wissenschaft war die 
Verbesserung der Zeitmessung. Galileo hatte in seinen Studien zum Pen-
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zählte Thomas Sprat bereits mehr als fünfzig Instrumente, die von Mit-
gliedern der Royal Society erfunden worden waren (vgl. Letwin 1963). 
Diese Instrumente wurden zu Beginn vor allem qualitativ genutzt. Auf-
grund mangelnder theoretischer Bestimmungen der zu messenden Grö-
ßen galten die Messungen mehr der experimentellen Untersuchung der 
Instrumente selbst, als den zu messenden Phänomenen. Erst im Wech-
selspiel zwischen empirischen Studien, theoretischen Entwicklungen 
sowie der experimentellen Überprüfung und Normierung der Apparate 
entwickelten sich die Messinstrumente von einfachen Anzeigen zu kom-
plizierten Apparaten, die immer genauer wurden. So zog sich beispiels-
weise die Verbesserung der Wärmemessung von Galileos erstem Ther-
mometer um 1600 über mehr als ein Jahrhundert hin, bis 1724 mit dem 
Gefrierpunkt von Wasser ein geeigneter Fixpunkt für die Vergleichbar-
keit der Messungen gefunden worden war. Im Laufe der Zeit konnte 
Temperatur als Messgröße generalisiert und unabhängig von spezifi-
schen Instrumenten exakt messbar gemacht werden. Dazu waren expe-
rimentelle und theoretische Arbeiten von Daniel Fahrenheit zur Kon-
stanz des Eispunktes (1724), von Anders Celsius zur Abhängigkeit des 
Siedepunktes vom Luftdruck (1742), von Robert Boyle zur Kompressi-
bilität von Flüssigkeiten (1662), von Jean-André Deluc zur Wärmeaus-
dehnung von Flüssigkeiten (1772) und anderen Forschern nötig (vgl. 
Böhme, van den Daele, 1977: 201ff). Die Instrumentenentwicklung, 
nicht nur die des Thermometers, unterläuft dabei charakteristische Sta-
dien. Messungen unterschiedlicher Instrumente werden zunehmend mit-
einander vergleichbar und von den technischen Grenzen einzelner Ins-
trumente unabhängig. Die damals geläufigen Basisgrößen sind die Län-
ge, die Masse und die Zeit. „The numerical measures of angle, length, 
time and weight or mass continued to be the quantities in terms of which 
almost all other quantities were measured, even the newly quantified 
properties of physics such as ‚magnetic intensity’ or fluid pressure“ 
(Roche 1998: 52). Beispielsweise definierte Isaac Newton 1687 das Maß 
der Kraft als Produkt von Masse und Beschleunigung oder Carl Fried-
rich Gauß bestimmte 1838 die erdmagnetische Intensität durch die Ba-
sisgrößen Länge, Masse und Zeit.  
 
Doch Messinstrumente alleine genügen nicht, um quantitativ aussagekräf-
tige Resultate zu erzielen. Dazu bedarf es der Spezifizierung dessen, was 
aussagekräftig ist. Durchschnittswerte und Naturkonstanten spielen eine 

                                                                                                                       
del dessen Eigenschaften für die Zeitmessung entdeckt. Pendelschwingun-
gen wurden zum wichtigsten Instrument wissenschaftlicher Zeitmessung, 
bis im 20. Jahrhundert Quarzkristallschwingungen und schließlich der 
Zerfall von Atomen für die Zeitbestimmung genutzt wurden. 
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entscheidende Rolle, denn sie geben Referenzpunkte zur Beurteilung der 
Resultate an. Um diese Werte zu ermitteln, bedarf es unzähliger Messun-
gen und Berechnungen auf Basis gut bestätigter Theorien. Zudem wird 
eine Theorie der Fehlerrechnung benötigt, da jedes Messinstrument in-
nerhalb einer Fehlerspanne operiert.21 Als Charles Babbage 1832 eine 
Tabelle mit allen damals bekannten Durchschnittswerten und Konstanten 
wie astronomische Größen, Atomgewichte, geographische, biologische 
und andere Größen veröffentlichte, hatte sich die Idee der Quantifizierung 
der Natur vollends durchgesetzt. Babbage brachte mit seiner Tabelle zum 
Ausdruck „was vielen seiner Zeitgenossen vorschwebte, nämlich daß man 
die Welt mit Hilfe einer Reihe von Zahlen definieren könne, und diese 
Zahlen sollten Konstanten heißen“ (Hacking 1996: 387).  
 Babbages Tabelle dokumentierte nicht nur die zunehmende Vermes-
sung der Natur, sie kondensierte die Arbeit kollaborativer und zunehmend 
standardisierter Forschung eines ganzen Jahrhunderts.22 Schon im 17. 
Jahrhundert wurden von den Akademien, vor allem im Bereich der Me-
teorologie, groß angelegte Messprogramme initialisiert. So verfasste 
Robert Hooke bereits 1663 für die Royal Society A Method for Making a 
History of the Weather. Beobachtungsdimensionen wie Temperatur, Nie-
derschlag oder Luftdruck wurden darin ebenso vorgeschrieben wie die 
Konstruktionen und Skalen der Messinstrumente sowie die tabellarischen 
Notierungsstandards.23 Wie aufwendig die Organisation von Messkampa-
gnen war, um geeignete Mittelwerte zu erhalten, zeigen die Aufzeichnun-
gen von Carl Friedrich Gauß, die er in den 1830er Jahren über seine ma-
gnetischen Beobachtungen zur Bestimmung der Deklinationen machte. 
Deklinationen geben den Winkel zwischen der Richtung der magneti-
schen Feldlinien und der Richtung auf den geographischen Nordpol am 
Beobachtungsort an. Da sich die Abweichung zwischen dem magneti-

                                              
21  1809 gelang es Carl Friedrich Gauß eine solche Fehlertheorie zu formulie-

ren, die er in seinem Werk Theoria Motus Corporum Coelestium in sec-
tionibus conicis solem ambientium als Methode der kleinsten Quadrate 
publizierte (vgl. Gauß 1809, 1816; Knobloch 1992). 

22  Die älteste bekannte Naturkonstante ist die Gravitationskonstante (G), die 
seit 1798 bekannt war. Andere sind die Elementarladung (e), die magneti-
sche Feldkonstante (µ0), die Lichtgeschwindigkeit (c) oder das Plancksche 
Wirkungsquantum (h). 

23  1781 nahm die Pfälzische Meteorologische Gesellschaft erstmals weltweit 
synchron Messungen vor. Ende des 19. Jahrhunderts gab es in Europa be-
reits ein gut ausgebautes Netz an Wettermessstationen. „In principle, 
everybody was measuring the same quantities. But instruments and practi-
ces remained discrepant, and it was enormously difficult to coordinate 
them. For years, as the Norwegian Vilhelm Bjerknes complained, the fai-
lure of coordination appeared on most weather maps in the form of a 
wholly artifactual cyclon over Strasbourg” (Porter 1995: 27). 
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schem und dem geographischem Nordpol jährlich um einige Kilometer 
verschiebt, ändern sich die Deklinationen laufend. Die aktuellen Abwei-
chungen müssen jedoch erfasst werden, um mit einem magnetischen 
Kompass navigieren zu können. Diese Abweichungen wurden bis ins 15. 
Jahrhundert als Messfehler gedeutet, da man das Magnetfeld für konstant 
hielt. Als 1634 Henry Gellibrand in London Messungen durchführte und 
diese mit Messungen von William Borough aus dem Jahr 1580 und Ed-
mund Gunters Messungen von 1622 verglich (vgl. Gunter 1624a), stellte 
er die Veränderung der Deklination in London zwischen 1580 bis 1634 
um etwa sieben Bogengrad fest und schärfte das Bewusstsein für die Va-
riabilität der Deklinationen (Gellibrand 1935). Zweihundert Jahre nach 
Gellibrand startete Gauß in Göttingen seine umfangreichen Messungen 
des Erdmagnetfeldes, um einen Atlas des Erdmagnetismus zu erstellen. 
Unter seiner Leitung führte der Göttinger Magnetische Verein von 1836 
bis 1841 eine internationale Messkampagne durch. An den Messungen, 
deren Vorgehen Gauß 1836 in der Schrift Das in den Beobachtungstermi-
nen anzuwendende Verfahren festlegte, beteiligten sich bis zu fünfzig 
erdmagnetische Observatorien in aller Welt. Auf über achtzehn Seiten 
diskutierte Gauß die verschiedenen Aspekte, die es zu berücksichtigen 
galt, um vergleichbare Resultate über einen längeren Messzeitraum zu 
erzielen: An festgelegten Tagen waren im 5-minütigen Takt Messungen 
durchzuführen, um jeweils 289 Messresultate zu erhalten. Da die Green-
wich Mean Time erst 1884 eingeführt wurde, mussten die an der Messung 
beteiligten Personen ihre Uhren auf eine bestimmte Zeit ausrichten, in 
diesem Fall die Göttinger Zeit. Die Anweisungen von Gauß gingen so-
weit, dass in der wärmeren Jahreszeit vor den Messungen darauf zu ach-
ten sei, ob sich „eine Spinne im Kasten“ (Gauß 1836: 551) befände, deren 
Netz die freie Schwingung der Magnetnadel behindern könne. Auch den 
Einfluss der Beleuchtung bei nächtlichen Messungen auf das Ablesen der 
Skala oder die unterschiedlichen Sehschärfen der messenden Personen 
wurden besprochen.  
   
 
 
 

 
 
 

Abbildung 4: Berechnetes Beobachtungsresultat vom 15. August 1836 
 für T 15:30:00 Uhr in Göttingen (Gauß 1836: 545) 
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Ein weiteres Problem ergab sich durch das von Gauß 1832 verbesserte 
Messinstrument, den Magnetometer. „Bei den viel grösseren Forderun-
gen, die man an die Genauigkeit der Bestimmung durch die jetzt einge-
führten Apparate machen kann und machen muss, kann aber von einer 
solchen unmittelbaren Bestimmung nicht mehr die Rede sein. Es steht 
nicht in unserer Macht, die Nadel des Magnetometers so vollkommen zu 
beruhigen, dass gar keine erkennbaren Schwingungsbewegungen zu-
rückbleiben. […] Es werden daher an die Stelle der unmittelbaren Beob-
achtung solche mittelbaren Bestimmungen treten müssen, zu denen eine 
vollkommene Beruhigung unnöthig ist“ (Gauß, 1836: 542). Gauß gibt 
verschiedene Möglichkeiten an, die Abweichungen auszugleichen: Zum 
einen per Hand, indem man das Minimum und Maximum der Schwin-
gungsbewegung auf der Skala anzeichnet und das Mittel zwischen bei-
den nimmt. Zum anderen indem man für einige Zeitmomente um den 
eigentlichen Messzeitpunkt T Messungen durchführt und dann das Mit-
tel als Endresultat daraus errechnet, wie in Abbildung 4 dargestellt. Als 
Mathematiker plädierte er für letztere Methode. Aufgrund all dieser Un-
sicherheitsfaktoren ging er davon aus, dass man „eben deshalb […] zu 
einer genauen Bestimmung der Mittelwerthe erst durch mehrjährige Be-
obachtungen gelangen [wird] können“ (Gauß 1836: 560). Vier Jahre 
später veröffentlichte er gemeinsam mit Wilhelm Weber den Atlas des 
Erdmagnetismus mit umfangreichem Kartenmaterial der gemessenen 
Werte (vgl. Gauß 1840).24 
 
Drei Entwicklungen charakterisieren ab Mitte des 19. Jahrhunderts die 
zunehmende Vermessung der Welt durch die Wissenschaft. Die erste 
forcierte die Standardisierung der Messresultate durch internationale 
Kooperationen. Isolierte Messungen und Expeditionen, wie sie bei-
spielsweise Alexander von Humboldt 1799 bis 1804 in Amerika unter-
nahm, lieferten zwar wichtige Erkenntnisse, aber keine international 
vergleichbaren Messresultate.25 Carl Weyprecht, Vordenker des 1. Inter-
nationalen Polarjahres, formulierte dieses Problem 1875 auf der 48. Ver-
sammlung der Deutschen Naturforscher und Ärzte in Graz: „Stellt man 
die wissenschaftlichen Resultate der vergangenen Expeditionen zusam-

                                              
24  Deklinationen werden in Isogonenkarten dargestellt. Eine der ersten Iso-

gonenkarten stammt aus dem Jahre 1753 von Leonhard Euler. Seit 1979 
werden die Veränderungen des Erdmagnetfeldes von Satelliten gemessen. 

25  Alexander von Humboldt führte bei seiner Expedition in die Neue Welt 
rund fünfzig Messinstrumente mit sich. Das Resultat seiner Reisen publi-
zierte er unter dem Titel Voyage aux régions équinoxiales du nouveau 
continent, fait en 1799, 1800, 1801, 1802, 1803 et 1804 (vgl. Humboldt 
1997). 
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men, so wird man finden, dass sie den darauf verwendeten Mitteln 
durchaus nicht entsprechen. […] Mit den Mitteln, welche eine einzige 
neue Expedition zur Erreichung der höchsten Breite kostet, ist es mög-
lich, diese sämtlichen Stationen auf ein Jahr zu beziehen. Die Aufgabe 
wäre die, mit gleichen Instrumenten zu möglichst gleichen Zeiten durch 
ein Jahr Beobachtungen anzustellen“ (vgl. Weyprecht 1875). Das 1. 
Internationale Polarjahr von 1882/1883 bildete den Auftakt zu interna-
tional koordinierten Messkampagnen, wie sie heute in zahlreichen Wis-
senschaftsbereichen, insbesondere in der Klimaforschung, die Regel 
sind.26  
 Die zweite Entwicklung basierte auf internationalen Absprachen und 
Konventionen zu Maßeinheiten. Am 20. Mai 1875 übernahmen zahlrei-
che Staaten in der Internationalen Meterkonvention das in Frankreich 
1795 eingeführte metrische System. Normale wie das Urkilo oder der 
Urmeter, die der Kalibrierung von Messgeräten dienen, sollten Messun-
gen weltweit vergleichbar machen.27 1884 wurde die Greenwich Mean 
Time, basierend auf der mittleren Sonnenzeit am Nullmeridian, dessen 
Verlauf die Internationale Meridian-Konferenz im Oktober 1884 durch 
das Observatorium in Greenwich festgelegt hatte, zur Weltzeit erklärt.28 
Dadurch ließen sich weltweit Messungen synchronisieren, indem sie von 
jedem Ort der Welt auf einheitliche und ortsunabhängige Raum-Zeit-
Koordinaten bezogen werden konnten. Doch nicht nur die Forschung 

                                              
26  1932/33 folgte das 2. Internationale Polarjahr und 1957/58 wurden die 

Messungen im Internationalen Geophysikalischen Jahr auch auf Gebiete 
außerhalb der Polarregionen ausgedehnt (vgl. Internationales Polarjahr 
2008). 

27  Metrische Einheiten werden heute im Internationalen Einheitensystem des 
BIMP Internationales Büro für Maß und Gewicht in Sèvres bei Paris gere-
gelt. Bislang wurden sieben Basiseinheiten eingeführt – Kilo (kg), Meter 
(m), Sekunde (s), Ampere (A), Grad Kelvin (K), Candela (cd) und Mol 
(mol) – sowie zahlreiche abgeleitete Einheiten wie Pascal (Pa) für den 
Druck (m-1 · kg · s-2), Hertz (Hz) für die Frequenz (s-1), Coulomb (C) für 
die elektrische Ladung (s · A) oder Newton (N) für die Kraft (m · kg · s-2) 
(vgl. Haustein 2001; BIMP 2009). 

28  Bereits 1766 legte der Astronom Nevil Maskelyne seine Berechnungen 
des Nautical Almanac auf die Ortszeit des Observatoriums von Greenwich 
aus. 1972 wurde die Greenwich Mean Time durch die koordinierte Welt-
zeit (UTC), die immer noch am Greenwich Nullmeridian ausgerichtet ist, 
abgelöst. Seit den 1970er Jahren vollzieht sich eine Zeitnormierung ganz 
anderer Art. Die Zeitdefinition des Computerbetriebssystems UNIX, die 
seit dem 1. Januar 1970 00:00 h UTC die vergangenen Sekunden zählt, hat 
sich im Computerbereich als UNIX-Epoche gegen die UTC durchgesetzt. 
(1218126923 UNIX Zeit entspricht dem 7.8.2008 um 18:25:23 h UTC.) 
Da die UNIX-Zeit jedoch Schaltsekunden nicht berücksichtigt, sind die 
Zeitsysteme nicht eindeutig aufeinander abbildbar. 
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forderte zunehmend Standardisierungen ein. Im Zuge der industriellen 
Revolution und ihrer technischen Produkte gewannen Normierungen 
praktisch wie ökonomisch an Bedeutung. Es ist kein Zufall, dass Wis-
senschaftler und Ingenieure gemeinsam – Karl-Heinrich Schellbach, 
Werner von Siemens und Hermann von Helmholtz – 1887 in Berlin die 
Gründung der Physikalisch-Technischen Reichsanstalt vorantrieben.29 
Die Reichsanstalt sollte als Eichamt fungieren und konnte bereits 1893 
mit der Durchsetzung der elektrischen Einheiten auf dem Internationalen 
Elektrischen Kongress in Chicago ihren ersten Erfolg verbuchen (vgl. 
Vec 2006: 194). 

Die dritte Entwicklung zeigte sich darin, dass zunehmend indirekte
Messungen, die auf mathematischen Ableitungen basieren, eingeführt 
wurden. Während direkte Messungen aus dem Vergleich einer Messgrö-
ße mit einem vorher definierten Maßstab resultieren, werden indirekte 
Messungen in Bezug auf eine leicht zugängliche Größe bestimmt oder 
aus einer Kombination verschiedener Messgrößen abgeleitet. 

 
„Überall daher, wo physikalische Größen nur auf diesem indirecten Weg ge-
messen werden können, sind mathematische Hülfsoperationen die Werkzeuge 
solcher Messung. Weil aber nur an verhältnismässig wenige unter den Er-
scheinungen, auf deren genaue Kenntnis es uns ankommt, unsere verschiede-
nen Maße direct angelegt werden können, so fällt die Mehrzahl der physika-
lisch wichtigen Größen einer indirecten Messung anheim, die in der mathema-
tischen Ableitung der gesuchten Grössen aus anderen durch die directe Mes-
sung gefundenen besteht. Da alle physikalischen Maße auf Raummaße zurück-
führen, so bildet die geometrische Construction den natürlichen Ausgangs-
punkt dieser Hülfsoperationen, und erst an sie schliessen sich die arithmeti-
schen Verfahrensweisen an, durch welche es schliesslich möglich wird, die 
gefundenen Größen in bestimmten Zahlenwerthen auszudrücken“ (Wundt, 
1894: 416-417).  
 
Ein Beispiel für verschiedene Möglichkeiten der Wärmemessung gibt 
Carl Runge in seinem Kapitel über Indirekte Vergleiche und Messungen 
in der Encyklopädie der mathematischen Wissenschaften. Die 1887 vom 
Comité International des Poids et Mesures festgelegte Definition der 
Temperatur durch das Wasserstoffthermometer, bezogen auf den Ge-
frierpunkt von Wasser unter normalem atmosphärischem Druck als 
Nullpunkt, lässt sich auch als Strahlungsenergie schwarzer Körper be-
                                              
29  Für moderne Messsysteme gelten normierte Prüfvorschriften zur Evaluie-

rung der Messabweichungen, um Genauigkeit, Kalibrierung, Wiederhol-
präzision und Vergleichbarkeit festzulegen. Die seit 1942 bestehende DIN 
Norm 1319 regelt die Grundbegriffe der Meßtechnik; Messen, Zählen, 
Prüfen (vgl. DIN 2009). 
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stimmen. „Danach heißen zwei Temperaturen einander gleich, wenn die 
Energie der Strahlung, welche ein Oberflächenteil des schwarzen Kör-
pers von gegebener Fläche in gegebener Zeit in einem gegebenen Raum 
entsendet, bei beiden Temperaturen die gleiche ist. Zwei Temperatur-
unterschiede sollen gleich heißen, wenn die Unterschiede der Strah-
lungsenergie einander gleich sind“ (Runge 1902: 8). Damit erhält man 
eine Skala, jedoch keinen Nullpunkt als Referenzpunkt. Beide Skalen – 
Wasserstoffthermometer und Strahlungsenergiemessung – sind keine 
ähnlichen Abbildungen aufeinander. „Es zeigt sich aber, dass bei geeig-
neter Annahme der Nullpunkte die Abbildung durch eine einfache rech-
nerische Beziehung der Zahlen dargestellt wird, soweit die Beobachtun-
gen reichen. Die Zahlen des Wasserstoffthermometers sind bei geeigne-
ter Annahme der Nullpunkte sehr nahe proportional den vierten Wurzeln 
der Zahlen aus den Skalen der Strahlungsenergien“ (Runge 1902: 8). 
Durch dieses indirekte Verfahren lässt sich anhand der Helligkeitsmes-
sung die Temperatur für Körper bestimmen. Vor allem die Astronomie 
nutzt dieses indirekte Verfahren zur physikalischen Fernerforschung der 
Sterne. Im 19. und 20. Jahrhundert wurden die unterschiedlichsten Zu-
sammenhänge zwischen Temperatur und physikalischen Effekten ent-
deckt, wie die Veränderung des elektrischen Widerstandes in Metallen, 
die Diffusion und der Brechungsindex von Gasen oder die Drehung der 
Polarisationsebene in Quarz, und für Temperaturmessungen genutzt.  
 
 
Mathemat is ierung und Momentum 
 
Quantifizierung, Standardisierung und Koordinierung instrumentenba-
sierter Einsichten auf Basis immer genauer arbeitender Messinstrumente 
leiten Mitte des 19. Jahrhunderts einen Wandel der Forschungslogik ein. 
Während zu Beginn der Neuzeit Beobachtung, Experiment und Messung 
noch weitgehend voneinander getrennt sind, da die vereinheitlichende 
Struktur der Quantifizierung noch wenig ausgebildet ist, fallen im Laufe 
der Wissenschaftsentwicklung alle drei Formen der empirischen Er-
kenntnisproduktion zusammen. Bei genauer Betrachtung zeigt sich, dass 
in der Quantifizierung, Standardisierung und Koordinierung empirischer 
Forschung die zunehmende Mathematisierung der Wissenschaft zur Ent-
faltung kommt.  
 
„Es ist höchst bemerkenswert,“ schreibt 1947 Max Planck rückblickend auf 
die Entwicklungen in der Physik, „daß, obwohl der Anstoß zu jeder Verbesse-
rung und Vereinfachung des physikalischen Weltbildes immer durch neuartige 
Beobachtungen, also durch Vorgänge in der Sinnenwelt, geliefert wird, den-
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noch das physikalische Weltbild sich in seiner Struktur immer weiter von der 
Sinnenwelt entfernt, daß es seinen anschaulichen, ursprünglich ganz anthro-
pomorph gefärbten Charakter immer mehr einbüßt, daß die Sinnesempfindun-
gen in steigendem Maße aus ihm ausgeschaltet werden – man denke nur an die 
physikalische Optik, in der vom menschlichen Auge gar nicht mehr die Rede 
ist – daß damit sein Wesen sich immer weiter ins Abstrakte verliert, wobei 
rein formale mathematische Operationen eine stets bedeutendere Rolle spielen 
und Qualitätsunterschiede immer mehr auf Quantitätsunterschiede zurückge-
führt werden“ (Planck 1947a: 14).30 
 
Die Voraussetzung für die von Max Planck angesprochene Mathemati-
sierung der Physik liegt in der Transformation der Mathematik zu Be-
ginn der Neuzeit. Diese lässt sich am plakativsten als Transformation 
von der geometrischen Anschaulichkeit und Konstruierbarkeit in die 
abstrakte Darstellung der Algebraisierung und Arithmetisierung der 
Geometrie charakterisieren. Oder mit den Worten von Felix Klein ge-
sprochen:  
 
„Gemeinhin verbindet man mit dem Begriffe der Mathematik schlichtweg die 
Idee eines streng logisch gegliederten auf sich selbst ruhenden Systems, wie 
uns ein solches etwa in der Geometrie des Euklid entgegentritt. Indes ist der 
Geist, aus dem die moderne Mathematik geboren wurde, ein ganz anderer. 
Von der Naturbeobachtung ausgehend, auf Naturerklärung gerichtet, hat er ein 
philosophisches Prinzip, das Prinzip der Stetigkeit an die Spitze gestellt. So ist 
es bei den großen Bahnbrechern bei Newton und Leibniz, so ist es das ganze 
18. Jahrhundert hindurch, welches für die Entwicklung der Mathematik recht 
eigentlich ein Jahrhundert der Entdeckungen gewesen ist. Allmählich erst er-
wacht wieder eine strenge Kritik, welche nach der logischen Berechtigung der 
kühnen Entwicklungen fragt“ (Klein 1895: 232). 
 
Diese Transformation spielt für die Entwicklung der neuzeitlichen Na-
turwissenschaft eine ebenso große Rolle wie die Einführung des Expe-
riments. Der Auftakt zu dieser Entwicklung liegt in der Ablehnung des 
vorherrschenden, auf der klassischen Geometrie basierenden Wissen-
schaftsideals. Die experimentellen Naturforscher wenden sich am Be-
ginn der Neuzeit nicht nur gegen die theologischen Spekulationen, son-
dern auch gegen die Demonstratio more geometrico, also die aus geoem-
                                              
30  Zwar hatte Planck bereits die weit reichenden Folgen der Mathematisie-

rung, die Formulierung des Quantenprinzips (vgl. Planck 1900) und des 
Relativitätsprinzips (vgl. Einstein 1905), vor Augen. Vorbereitet wurde 
diese Entwicklung eines neuen Forschungsstils jedoch bereits Mitte des 
19. Jahrhunderts, beispielsweise in Wilhelm Webers Arbeiten zur Elektro-
dynamik, der wiederum die erdmagnetischen Forschungen von Gauß zum 
Vorbild nahm (vgl. Weber 1846). 
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trischen Axiomen abgeleiteten Folgerungen. In seinen Hydrostatical 

paradoxes von 1666 formulierte Robert Boyle diese Auffassung deut-
lich. „And, about the very Subjects we are now upon, the following Par-
adoxes will discover so many mistakes of eminent writers, that pretend 
to have Mathematically demonstrated what they teach, that it cannot but 
make wary Naturalists [...] be somewhat diffident of Conclusions, whose 
proofs they do not well understand. And it cannot but, to such, be of 
great satisfication to find the things, that are thought them, verified by 
the visible testimony of Nature herself“ (Boyle 1666: Einleitung). Expe-
rimentelle Physik – Pneumatik, Hydrostatik, Elektrizitätslehre, Wärme-
lehre, etc. – bleibt bis ins 19. Jahrhundert qualitativ orientiert. „Unlike 
physico-mathematics, experimental physics was not presented in a 
mathematical framework until the nineteenth century“ (Roche 1998: 51). 
 Zum anderen wird in der Astronomie und später in der Mechanik die 
Mathematisierung den Beobachtungen angepasst, indem geometrische 
Modelle induktiv aus den Daten gewonnen werden. Noch in seinem 
Frühwerk, Mysterium Cosmographicum von 1596, versuchte Johannes 
Kepler die Harmonie des Kosmos geometrisch-spekulativ auf Basis der 
Platonischen Körper zu erklären.31 Doch schon in seiner Astronomia 

Nova trug er 1609 dem Problem Rechnung, dass Tycho Brahes Beob-
achtungsdaten der Marsumlaufbahn, in die er als dessen Nachfolger 
1602 Einsicht erhalten hatte, nicht mit den von Claudius Ptolemäus be-
rechneten epizyklischen Bahnen übereinstimmten.32 In jahrelangen Be-

                                              
31  Im Timaeus beschrieb Platon fünf regelmäßige Körper als Erklärungs-

grundlage der Materie und ihrer Eigenschaften – Tetraeder (Feuer), Wür-
fel (Erde), Oktaeder (Luft), Ikosaeder (Wasser), Dodekaeder (Himmels-
materie) – und folgte damit der pythagoreischen Tradition mathematisch-
spekulativer Naturtheorien. „Greek geometers and applied mathematicians 
found many ways of applying geometry to nature and to artifacts, without 
sacrificing its ideal character. All of the Greek exact sience and arts, in-
cluding the Pythagorean science of musical harmonics, geometrical as-
tronomy, solar horology, geodesy, cartography, ray optics, the theory of 
machines, the determination of centers of gravity and hydrostatics were 
heavily geometrical“ (Roche 1998: 38). 

32  Claudius Ptolemäus hatte in den dreizehn Büchern des Almagest ca. 150 n. 
Chr. versucht, die Beobachtungsdaten mit dem aristotelischen, geozentri-
schen Modell kreisförmiger Planetenbahnen zur Deckung zu bringen. Da-
zu konzipierte er ein epizyklisches Modell, in dem die Planeten kleine 
Kreise entlang eines größeren Kreises durchlaufen. Das ptolemäische Epi-
zykloiden-Modell deckte sich weitgehend mit der Mess(un)genauigkeit 
der antiken Beobachtungsdaten. Auch Nikolaus Kopernikus konzipierte 
sein heliozentrisches Modell als epizyklisches Modell. Erst Johannes Kep-
ler führte 1609 die ellipsenförmige Bahn aufgrund wesentlich genauerer 
Beobachtungsdaten der Planetenbewegung ein.  
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rechnungen extrahierte Kepler aus Brahes Beobachtungsdaten die tat-
sächliche Gestalt der Planetenbahn des Mars und passte schließlich die 
Geometrie als Modell ellipsenförmiger Bahnen den Beobachtungen an. 
Resultat seiner Bemühungen waren die ersten beiden Keplerschen Ge-
setze, auf deren allgemeiner Herleitung Newton später seine Mechanik 
aufbaute. Diese induktive Vorgehensweise Keplers revolutionierte die 
Astronomie und im Anschluss daran die Mechanik. In diesem Sinne ist 
auch Galileos Auffassung zu deuten, wenn er die Ordnung der Phäno-
mene durch Mathematik gestaltet sieht. „Philosophie steht in diesem 
großen Buch – ich meine das Universum – das stets offen vor uns liegt; 
aber wir können es erst verstehen, wenn wir Sprache und Buchstaben 
verstehen, in denen es geschrieben ist. Es ist in der Sprache der Mathe-
matik geschrieben,“ formulierte Galileo 1623 im Il Saggiatore, „seine 
Buchstaben sind Dreiecke, Kreise und andere geometrische Figuren, 
ohne die es dem Menschen unmöglich ist, ein einziges Wort daraus zu 
verstehen“ (Galileo 1623, übersetzt in: Losee 1977: 25, 26). Selbst wenn 
sich die geometrisch inspirierten Modelle zunehmend den Beobach-
tungsdaten anpassen, so verdeutlicht Galileos Bemerkung doch den ho-
hen Idealisierungsgrad dieser Modelle aufgrund ihrer idealisierten Ele-
mente. 
  
Der wirklich revolutionäre Schritt, hin zu einer neuzeitlichen und mo-
dernen Form der Mathematisierung von Wissenschaft, basierte jedoch 
auf der Integration neuer Konzepte in die Geometrie und damit auf ihrer 
Transformation in Analytische und Differential Geometrie. Diese Ent-
wicklung setzt ein, als sich Naturforscher und Mathematiker zunehmend 
für die konzeptuelle Handhabung von Bewegung interessieren. Statt der 
statischen, auf Endlichkeit und Anschaulichkeit konzentrierten klassi-
schen Geometrie mit ihrem Ideal der Konstruierbarkeit verhaftet zu 
bleiben, werden nun die Konstruktionsmechanismen selbst – Herstel-
lung geometrischer Figuren mit Zirkel und Lineal auf Papier – mit Hilfe 
der Algebra operationalisiert. Dazu müssen die, zuvor per Hand ausge-
führten oder gedachten Bewegungen, in typographische Operationen 
übersetzt werden. Vorbild sind zeichenbasierte, sukzessive Bewegungen 
in Form von Zahlen und Reihenbildung. Voraussetzung dafür ist die 
Verknüpfung der beiden mathematischen Darstellungssysteme – kons-
truktive Geometrie einerseits, operative Algebra und Arithmetik ande-
rerseits – wie sie 1637 von René Descartes in seiner Geometrie vorge-
schlagen wurde, indem er auf das im 16. Jahrhundert von Francois Vieta 
eingeführte Rechnen mit Buchstaben zurückgreift. Dies führt zur alge-
braischen und arithmetischen Generierung geometrischer Figuren in der 
Weise, dass „die verschiedenen Gestalten der ebenen Kurve dadurch 
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entstehen,“ schreibt Ernst Cassirer in seiner Untersuchung zu Substanz-
begriff und Funktionsbegriff, „daß wir einem bestimmten Punkt, den wir 
als Grundelement fixieren, relativ zu einer vertikalen und einer horizon-
talen Achse, verschiedene Arten des Fortschritts vorschreiben. Aus der 
Festhaltung und Vereinigung dieser Fortschrittsarten muß sich die Be-
stimmtheit der Linien, die auf diese Weise als ‚Bahnen’ von Punkten 
erzeugt werden, zuletzt vollständig und eindeutig ableiten lassen. […] 
Die anschauliche geometrische Linie löst sich kraft dieses Verfahrens in 
eine reine Wertfolge von Zahlen auf, die durch eine bestimmte arithme-
tische Regel miteinander verknüpft sind“ (Cassirer 1910: 94, 95). Die 
Bewegung der Punkte – ob als sinnliche Vorstellung oder geometrisches 
Konstruieren – wird zu einer aufeinander bezogenen, regelbasierten Re-
lation innerhalb eines, durch Koordinaten metrisierten Raumes. Des-
cartes gelingt damit die Kalkülisierung der Geometrie als typographi-
sches Operieren.33 Doch er lässt nur solche Kurven gelten, die sich 
durch arithmetische Regeln konstruieren lassen. So genannte transzen-
dente Kurven werden von ihm explizit ausgeschlossen. Damit wird der 
Anwendungsbereich dieser frühen analytischen Geometrie erheblich 
eingeschränkt.  
 Der nächte Schritt besteht deshalb darin, den Verlauf einer Bahn aus 
dem Punkt selbst heraus zu bestimmen, wobei die Verlaufsbestimmung 
über die arithmetische Operationalität hinausgeht. Dazu bedarf es zum 
einen der Durchdringung des Zahlenbegriffs mit dem Funktionsbegriff, 
der neue Relationen zwischen den Größen ermöglicht. Tatsächlich 
taucht der Begriff ‚Function‘ erstmals 1694 bei Leibniz auf und nimmt 
in den folgenden Diskussionen mit Jakob Bernoulli und später durch 
Leonhard Euler allmählich Gestalt an (vgl. Leibniz 1694; Euler 1748). 
Zum anderen muss sich die Vorstellung durchsetzen, dass geometrische 
Figuren wie Linien, Flächen und Körper aus unendlich vielen Punkten 
ohne Größen bestehen.34 Akzeptiert man diese Vorstellung und damit 
die Lockerung des Exaktheitsanspruches der endlichen Geometrie – 
denn die neuen Relationen sind nur dann handhabbar, wenn unendlich 

                                              
33  „So, wie die Einführung des Ziffernrechnens die Zahlbildung ablöste vom 

Zählen und zurückführte auf das regelgeleitete Herstellen von Ziffernkon-
figurationen, wird die Bildung von Typen geometrischer Gegenstände zu-
rückgeführt auf das regelgeleitete Erzeugen von Buchstabenkonfiguratio-
nen. Konstruieren wird zum typographischen Operieren“ (Krämer 1991: 
151). 

34  Der Umgang mit infinitesimalen Größen bleibt nicht unwidersprochen. 
Beispielsweise greift George Berkeley in seiner Streitschrift The analyst: 
or a discourse addressed to an infidel mathematician die neue Mathematik 
und Naturlehre von Newton und Leibniz heftig an (vgl. Berekeley 
1734/1951). 
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kleine Terme in den Berechnungen vernachlässigt werden können – 
dann werden Abstraktionen für Näherungsverfahren, wie die von Isaac 
Barrow geschilderte, möglich: „Wenn in die Berechnung ein unendlich 
kleines Stück einer Curve eingeht, so wird stattdessen ein richtig ge-
wähltes Stück der Berührungslinie oder irgend eine wegen der unendli-
chen Kleinheit des Curvenstücks gleichwerthige gerade Strecke ge-
nommen“ (Barrow 1670, übersetzt in: Cantor 1901: 135). 
 Doch noch fehlt ein Kalkül zur Erzeugung solcher Kurvengebilde. 
Ein derartiger Algorithmus muss folgendes leisten: „Die Synthese […] 
unendlich vieler Richtungsbestimmtheiten zu einem einheitlichen, be-
stimmten Gebilde“ zusammenzufassen (Cassirer 1910: 97). Interessan-
terweise haben sich zwei unterschiedliche Betrachtungsweisen der sym-
bolbasierten Generierung von Kurven herausgebildet, die in jeweils 
eigener Weise den neuen Begriff des Infinitesimalen begreifen: Entwe-
der lässt sich eine Kurve aus der Bewegung eines Punktes entstehend 
denken oder als unendliches Vieleck permanenter Richtungsänderungen. 
Newtons Momentum und dessen Fluxionen35 sowie Leibniz’ infinitesi-
male Dreieckchen dokumentieren diese verschiedenen Denkansätze, die 
Ende des 17. Jahrhunderts zu einem Kalkül der Infinitesimalrechnung 
führen. Während Newton, durch physikalische Überlegungen inspiriert, 
die Momentangeschwindigkeit eines bewegten Körpers mit Hilfe seiner 
Fluxionsmethode zu ermitteln sucht, geht Leibniz geometrisch anhand 
des Tangentenproblems vor. „Am 29. October 1675 erfolgt der grosse 
Schritt der Erfindung des neuen Algorithmus [durch Leibniz]. […] es 
wird nützlich sein ∫ statt omnia zu schreiben, um die Summe einer Ge-
samtheit zu bezeichnen. Hier zeigt sich, heisst es in der an demselben 
Tag geschriebenen Fortsetzung weiter, eine neue Gattung des Calcüls, 
sei dagegen ∫l = ya gegeben, so biete sich ein entgegengesetzter Calcül 
mit der Bezeichnung l = ya/d […]: Wie nämlich ∫ die Abmessung ver-
mehrt, so vermindert sie d. ∫ aber bedeutet Summe, d Differenz“ (Cantor 
1901: 166).36 Mit diesem Kalkül eröffnet sich der Bereich transzenden-

                                              
35  Die Geschwindigkeitsveränderung der einzelnen Fluenten heißen bei 

Newton Fluxionen und sind Ableitungen der Momentangeschwindigkeit. 
36  Zwischen Newton und Leibniz kam es zu einem Streit, wer der Erfinder 

des Differentialkalküls sei. Newton stellte seine Schrift De methodis serie-
rum et fluxionum 1671 fertig, die jedoch erst 1736 veröffentlicht wurde. In 
dieser Schrift wie auch in seinem Hauptwerk Philosophiae Naturalis 
Principia Mathematica von 1687 beschreibt er die Fluxionsrechnung. 
Leibniz konzipierte 1673 in seiner Schrift Novae methodus pro maximis et 
minimis die Differentialrechnung, die im Oktober 1684 in den Acta erudi-
torum erschien. Jason Bardi beschreibt in seiner Studie The Calculus Wars 
detailliert die Verwicklungen zwischen Newton und Leibniz (vgl. Bardi 
2006). Auch Moritz Cantor beschreibt in seinen vierbändigen Vorlesungen 
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ter Gleichungen, in die unendlich kleine Größen eingehen und die Leib-
niz mit seinem ‚nouveau calcul des transcendantes‘ zu konstruieren in 
der Lage ist.37 Der Preis ist der Verlust der Anschaulichkeit dieser Kur-
ven, die sich nur noch algebraisch begreifen lassen, sowie die Aufgabe 
des Exaktheitsanspruches der antiken Geometrie. Zudem sind viele Re-
geln der Infinitesimalrechnung nur durch Intuition und Praktikabilität 
motiviert. Erst im 19. Jahrhundert versucht man, die Infinitesimalrech-
nung in der für die Mathematik übliche logischen Strengen zu begrün-
den.  
 Nichtsdestotrotz schafft die Transformation der Geometrie die 
Grundlagen der neuzeitlichen und modernen Mathematisierung der Wis-
senschaft, welche es erlauben, die physikalischen Grundbegriffe in ihrer 
relationalen Veränderlichkeit zu erfassen, in mathematische Formeln zu 
übersetzen und analytisch zu behandeln. Physikalische Phänomene wer-
den nicht mehr qualitativ, sondern quantitativ in einem raum-zeitlichen 
Raster als reine Wertefolgen von Zahlen verortet erfasst. Ihre relationale 
Veränderlichkeit wird in Form quantitativer Bilder – zumeist als Kur-
venverläufe für einfache Abhängigkeiten – darstellbar und operational 
handhabbar. Bereits Isaac Barrow nutzte in seinen Lectiones opticae et 
geometricae von 1670 quantitative Bilder zur Versinnbildlichung physi-
kalischer Vorgänge. Senkrecht zur Zeitlinie gezogene Geraden dienten 
ihm zur Veranschaulichung von Momentangeschwindigkeiten, die je 
nach Geschwindigkeit eine unterschiedliche Länge aufweisen. Dabei 
ergeben die geometrische Darstellung der Zeitlinie und einiger Augen-
blicksgeschwindigkeiten eine Zusammenschau der vollzogenen Bewe-
gung: beispielsweise bei gleichförmig abnehmender Geschwindigkeit 
ein spitz zulaufendes Dreieck. Ungleichförmige und zusammengesetzte 
Bewegungen hingegen erzeugen komplexere Gebilde, für die Barrow 

                                                                                                                       
zur Geschichte der Mathematik ausführlich die Entstehung der Infinitesi-
malrechnung inklusive des Prioritätenstreites der Anhänger von Newton 
und Leibniz (vgl. Cantor 1901: Abschnitt XVII). Interessant ist folgende 
Einschätzung Cantors: „Wir haben das Hauptgewicht auf die Bezeichnung 
legen zu müssen geglaubt. Das steht im Zusammenhang mit unserer wie-
derholt ausgesprochenen Ansicht, dass die Infinitesimalbetrachtungen 
selbst schon vor Newton und Leibniz so weit gediehen waren, dass es 
hauptsächlich auf die Erfindung einer zweckmäßigen Bezeichnung ankam, 
ehe wesentliche Fortschritte möglich waren“ (Cantor 1901: 167). Es ist 
Leibniz’ Notation, die sich durchsetzt. 

37  Diese Kurven sind zum Teil visuell nicht mehr darstellbar. Sie sprengen 
den Darstellungsbereich der Geometrie, lösen die Analysis von der geo-
metrischen Anschaulichkeit und verhelfen der algebraischen Formel zur 
Autonomie. 
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die Tangentenberechnung, eine Vorform der Infinitesimalrechnung, 
nutzte.38  
 
Einen ersten Höhepunkt findet diese physico-mathematische Betrach-
tungsweise in Newtons Philosophiae Naturalis Principia Mathematica 
(vgl. Newton 1687). Physikalische Vorgänge werden als Wechselwir-
kungen von Raum, Zeit und Materiepunkten betrachtet. Entsprechend 
des Trägheitsgesetzes bewegen sich diese, zu Körpern zusammengefass-
ten Materiepunkte auf determinierten Bahnen im metrisierten Raum, 
seien es Planeten, Billardkugeln oder Sandkörnchen. Newton orientierte 
sich dabei an Descartes mechanistischem Konzept, auch wenn er Begrif-
fe wie den der Bewegung neu fasste. „Die ‚Errungenschaften’ dieses 
Weltbildes [von Descartes] waren: ein neuer Begriff der Materie (Exten-
sion als physische Substanz), die Beseitigung des Unterschieds von 
himmlischer und irdischer Physik, die Errichtung eines neuen Erklä-
rungsideals (physische Prozesse galten als erklärt, wenn sie auf Stoff-
prozesse zurückgeführt waren), die Formulierung universeller Prinzipien 
für diese Erklärungen (Erhaltung der Bewegungsgröße, Trägheitsge-
setz)“ (Böhme 1977: 242). Die Bahnen der Materialpunkte werden mit 
Hilfe der Fluxionsmethode näherungsweise berechenbar. „Die Einheit,“ 
schreibt Newton, „für die Augenblicksveränderung ist Oberfläche wo es 
um Körperinhalte, Linie wo es um Flächenräume, Punkt wo es […] um 
Längen sich handelt, und ich scheue mich nicht von Punkten oder un-
endlich kleinen Linien als Einheiten zu reden“ (Newton 1669, übersetzt 
in: Cantor 1901: 160). Die Geometrie erlaubt es Newton, die physikali-
schen Begriffe als Maße – bezogen auf Raum und Zeit – zu definieren. 
Dadurch wird es möglich, „den alten Begriff der Kraft zu mathematisie-
ren, indem ihr Maß definiert wird als das Produkt von Masse und Be-
schleunigung oder nach der ursprünglichen Form Newtons F = mš (š = 
zweite Ableitung des Weges), woraus dann bei Leibniz die Formel für 
die ‚lebendige Kraft’ K = mv2 geworden ist. Dabei sind Masse sowie 
Geschwindigkeit und Beschleunigung zunächst durchaus als kontinuier-
liche Größen gedacht und werden auch mathematisch als solche behan-
delt“ (von Fritz 1971: 103). Erst wenn diese physikalischen Konzepte 
als raum-zeitlich differenzierbar aufgefasst werden, beginnt das Prinzip 
der Stetigkeit, das Felix Klein als das philosophische Prinzip der neu-
zeitlichen und modernen Mathematik der Naturerklärung bezeichnete, in 

                                              
38  Barrow stand in engem Kontakt mit Newton und kannte dessen Fluxions-

methode lange bevor diese veröffentlicht wurde. Die Tangentenbestim-
mung wie von Barrow vorgeschlagen war bereits seit der Antike bekannt 
und wurde von Pierre de Fermat in De maximis et minimis 1629 alge-
braisch formuliert.  
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Form von Differentialgleichungen die Physik zu durchdringen. Diese 
Entwicklung findet 1788 mit Joseph-Louis Lagranges Mécanique analy-
tique und 1798-1825 mit Pierre de Laplaces Traité de mécanique céleste 
einen vorläufigen Abschluss. In Lagranges Werk wird die Analysis auf 
die Theorie bewegter Körper in Form unzähliger Differentialgleichun-
gen angewandt, ohne jegliche geometrische Darstellung.  

Die Folge dieser neuen Forschungslogik ist nicht nur ihre zuneh-
mende Unanschaulichkeit, sondern die Identifikation von wahrem Wis-
sen mit mathematisch explizierbarem und berechenbarem Wissen, die 
zur dominanten Struktur der physikalischen Interpretation von Wirk-
lichkeit wird: Empirische Einzeldaten lassen sich unter Gesetze subsu-
mieren, die mit Hilfe mathematischer Gleichungen strukturiert, in die 
Zukunft extrapolierbar werden. ‚Hypotheses non fingo!‘ konstatierte 
Newton zur Rechtfertigung seiner mathematischen Annahmen. Damit 
kehrt sich die auf Aristoteles gründende Methode der Auflösung und 
Zusammensetzung der Phänomene in eine induktiv-deduktive Rekons-
truktion der Phänomene. „When the Fellows adopted Newton as their 
champion, the mathematical sciences achieved their final triumph over 
scholastic natural philosophy. But in the process, those sciences had 
themselves mutated into something new, because explicitly experimen-
tal. When John Wilkins spoke of ‚Physico-Mathematicall-Experimentall 
Learning’ as the intended business of the new Royal Society, he invoked 
a form of knowledge that Newton´s work would be the first fully to ex-
emplify“ (Dear 1995: 247). Die Richtigkeit dieses Weltbildes scheint 
sich 1848 eindrucksvoll zu bestätigen, als Urban Le Verrier, allein auf 
Basis von Berechnungen, den Planeten Neptun entdeckte. Le Verrier 
hatte die Planetenbahn des Uranus unter der Annahme des Einflusses 
eines bis dahin unentdeckten Planeten per Hand berechnet. Seine Pro-
gnose wurde mit der tatsächlichen Entdeckung des Planeten Neptuns 
innerhalb einer Nacht von dem Astronomen Johann Galle des Berliner 
Observatoriums bestätigt (vgl. Galle 1846). 
 
Die Metrisierung der physikalischen Begriffe, die Mathematisierung der 
physikalischen Theorie sowie die Erweiterung der Geometrie durch die 
Infinitesimalrechnung koordinieren Experiment, Messung und Theorie 
im selben Darstellungsraum: einem durch Koordinaten metrisierten, rein 
symbolischen Raum der Mannigfaltigkeiten. Allerdings erweitert sich 
dieser Symbolraum auf Seiten der mathematisierten Theorie durch im-
mer komplexere Formen seiner Generierung in zunehmend abstrakterer 
Weise, während der empirische Anschauungsraum der orthogonalen 
Dreidimensionalität der euklidischen Geometrie verhaftet bleibt. Dies 
erlaubt einerseits die Konstitution neuer physikalischer Konzepte, bedarf 
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aber andererseits der Anpassung an die Struktur des empirischen An-
schauungsraumes mit seiner Dreidimensionalität, die in den Netzen der 
Messpunkte und im experimentellen Setting erhalten bleibt. Je weiter 
jedoch die Mathematik in das Abstrakte vordringt, desto verwickelter 
wird das Kopplungsverhältnis zwischen empirischem Datenraum und 
physico-mathematischem Theorieraum. Die Folge ist Mitte des 19. Jahr-
hunderts die Zuspitzung der physico-mathematischen Forschungslogik 
im hypothetisch-deduktiven Forschungsstil der modernen Physik und 
Ingenieurswissenschaften. Dieser Forschungsstil setzt Experimentalfor-
schung mit Präzisionsmessung gleich. Eindrucksvoll belegt wird dies 
durch den von Carl Friedrich Gauß 1838 in seiner Allgemeinen Theorie 
des Erdmagnetismus beschrieben Zweck seiner Messungen. 
 
„Vom höheren Standpunkt der Wissenschaft aus betrachtet ist aber diese mög-
lichst vollständige Zusammenstellung der Erscheinungen auf dem Wege der 
Beobachtung noch nicht das eigentliche Ziel selbst: man hat damit nur ähnli-
ches gethan, wie der Astronom, wenn er z.B. die scheinbare Bahn eines Ko-
meten auf der Himmelskugel beobachtet hat. Man hat nur Bausteine, kein Ge-
bäude, so lange man nicht die verwickelten Erscheinungen einem Princip 
unterwürfig gemacht hat. Und wie der Astronom, nachdem sich das Gestirn 
seinen Augen entzogen hat, sein Hauptgeschäft erst anfängt, gestützt auf das 
Gravitationsgesetz aus den Beobachtungen die Elemente der wahren Bahn 
berechnet, und dadurch sogar sich in den Stand setzt, den weiteren Lauf mit 
Sicherheit anzugeben: so soll auch der Physiker sich die Aufgabe stellen, […] 
die die Erscheinungen des Erdmagnetismus hervorbringenden Grundkräfte 
nach ihrer Wirkungsart und nach ihren Grössenwerthen zu erforschen, die Be-
obachtungen so weit sie reichen, diesen Elementen unterwerfen, und dadurch 
selbst wenigstens mit einem gewissen Grade von sicherer Annäherung die 
Erscheinungen für die Gegenden, wohin die Beobachtung nicht hat dringen 
können, zu anticipiren“ (Gauß 1838: 122). 
 
Das Unterwerfen der gemessenen Beobachtungen unter die mathemati-
sierte Theorie ermöglicht es der physikalischen Forschung, hypotheti-
sche Annahmen aufzustellen. Dadurch wird das ontologische Primat der 
Empirie desavouiert und das Verhältnis von Theorie und Empirie be-
stimmt sich neu, denn die Annahmen sind nicht mehr zwingend an vor-
theoretische Beobachtungen gebunden. Sie müssen jedoch durch quanti-
tative Prognosen der mathematisierten Theorie in der messenden Expe-
rimentalforschung bestätigt werden. Extrapolation wird im Zuge dieser 
Entwicklung zu einem wichtigen Forschungsinstrument, um quantifi-
zierbare Prognosen aus der Theorie ableiten zu können. Wissen schaffen 
wird zunehmend zu einem Unterfangen der ins Unbekannte und in die 
Zukunft projizierenden Mathematik. „Wir [Mathematiker] sind daran 
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gewöhnt zu extrapolieren; das ist ein Mittel, die Zukunft aus der Ver-
gangenheit und aus der Gegenwart abzuleiten“ (Poincare 1914: 17). 
Quantitative Prognose und Experimente als Präzisionsmessungen ver-
zahnen sich dabei „zu einem eng verknüpften Forschungsprozeß. […] 
Die Antwort, die das Experiment gibt, ist nicht mehr ein einfaches ‚ja‘ 
oder ‚nein‘, vielmehr ein gemessener Zahlenwert, der immer in gewis-
sem Grade vom Erwartungswert differiert“ (Stichweh 1984: 232, 233).39 
Statt eines experimentellen Gelingens oder Fehlschlagens tritt nun die 
exakte Messung. Exakt, insofern Wissenschaft „allenthalben mit Maß 
und Zahl [rechnet]“ (Planck, 1941: 5), aber von da an auch den Grenzen 
der Präzision unterworfen ist, denn Messungen sind immer mit Fehlern 
behaftet und Infinitesimalberechnungen sind immer nur Näherungsver-
fahren. Tatsächlich wird das Ringen um Präzision zu einem entschei-
denden Charakteristikum moderner Wissenschaft bis heute. 1835 
schreibt Heinrich Wilhelm Dove in seinem Buch Über Maass und Mes-
sen: „Die Wahrscheinlichkeit der aus vielen Beobachtungen abzuleiten-
den Bestimmungen muss daher das Resultat einer Rechnung sein, wel-
che lehrt, aus lauter unrichtigen Beobachtungen, nicht das richtige Re-
sultat abzuleiten, denn dies ist unmöglich, sondern eins, welches wahr-
scheinlicher ist, als eine einzelne Beobachtung. Die Beobachtungskunst 
verdankt ihre hohe Vollendung in neuerer Zeit vielleicht eben so sehr 
der Entwickelung der sich auf sie beziehenden mathematischen Metho-
den, als der technischen Vervollkommnung der Beobachtungsmittel“ 
(Dove 1935: 166). Die Geschicklichkeit des Experimentators wird durch 
die theoretischen und mathematischen Kenntnisse erweitert, wenn nicht 
sogar abgelöst, denn Messfehler lassen sich mithilfe der Mathematik im 
Voraus berechnen und der Versuchsaufbau exakt planen. Fehlertheorie 
und Kontrollmessungen – Messungen unter Beibehaltung des Versuchs-
aufbaus bei variierenden Experimentalbedingungen – werden zu grund-
legenden Bestandteilen des Messexperiments. Was Gauß 1832 mit sei-
nen magnetischen Messungen vorexerzierte, wird Mitte des 19. Jahr-
hunderts zur beherrschenden Forschungslogik der experimentellen Na-
turwissenschaften. Diese neue Weise des Experimentierens birgt jedoch 
die Gefahr in sich, den Zufall als Möglichkeit neuer Entdeckungen zu 
eliminieren. Zum einen lassen sich Variationen als wahrscheinliche Be-
obachtungsfehler deklarieren und nicht als Hinweise auf bislang unbe-

                                              
39  Rudolf Stichweh beschreibt in seiner Studie Zur Entstehung des modernen 

Systems wissenschaftlicher Disziplinen: Physik in Deutschland 1740 – 
1890 den Prozess der Mathematisierung der Physik, der im hypothetisch-
deduktiven Forschungsstil gipfelt, als Folge institutioneller Entwicklungen 
in der Physik und Mathematik in Deutschland (vgl. Stichweh 1984; Hem-
pel, Oppenheim 1948). 
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kannte Effekte. Zum anderen führt die Planung und Vorausberechnung 
der Experimente mehr oder weniger zu den erwarteten Resultaten.40 
 
 
M i t  Exper imenten rechnen 
 
Die Möglichkeit, Beobachtungen aus Theorien zu prognostizieren und 
anhand von Messexperimenten zu verifizieren, lässt sich nur für einige 
Wissenschaftsbereiche und insbesondere nur für einfache Phänomene 
erfolgreich anwenden. Für komplexe Vorgänge ist es wesentlich schwie-
riger, Prognosen abzuleiten. Entweder weil es keine allgemeine Theorie 
dafür gibt und man nur empirische Gesetze mit beschränkter Reichweite 
kennt. Oder weil die mathematischen Gleichungen der allgemeinen 
Theorie zu komplex sind und sich aus ihnen keine mathematischen Lö-
sungen und damit quantitative Prognosen analytisch deduzieren lassen. 
Die Folge ist eine Spaltung in theoretische Forschung und experimentel-
le Anwendungsforschung wie sie für zahlreiche Bereiche der Physik des 
19. Jahrhunderts charakteristisch ist. Die wachsende Bedeutung techni-
scher Entwicklungen in dieser Zeit verstärkte diese Kluft zunehmend. 
Ein typisches Beispiel für diese Situation ist die Strömungsdynamik. 
„More than a hundred years after Beroulli’s and Euler’s work, hydrody-
namics and hydraulics were certainly no longer regarded as synonymous 
designations for a common science. Hydrodynamics had turned into a 
subject matter for mathematicians and theoretical physicists – hydraulics 
became technology. Aerodynamics, too, became divorced from its theo-
retical foundations in hydrodynamics. […] In all these areas of applica-
tion, air resistance was the central problem. Aerodynamic theory could 
not provide a single formula that accounted for the various practical 
goals. Therefore, empirical formulae derived from experimental investi-
gations were introduced for each special area“ (Eckert 2006: 25, 26). 
Das Scheitern der theoretischen Strömungsdynamik, die empirischen 
Gesetze zu generalisieren, gründete in deren stark idealisierten Model-
len. Diese mathematischen Modelle beschrieben das Verhalten idealer 
Fluide und vernachlässigten dabei die Dichteänderungen, die Reibung 
sowie die Bildung von Wirbeln. Die grundlegende Bewegungsgleichung 
für idealisierte Strömungsprozesse wurde 1755 von Leonhard Euler in 
seiner Schrift Principes généraux du mouvement des fluides formuliert. 
Sie basiert auf Newtons zweitem Axiom F = dp/dt, das den Einfluss von 

                                              
40  Phänomennahe Experimente, die weniger auf Messung, denn auf unerwar-

tete Effekte und Phänomene ausgerichtet sind, bleiben daher weiterhin Be-
standteil der Experimentalkultur. Beide Experimentalstile prägen die mo-
derne Physik wie auch andere naturwissenschaftliche Disziplinen. 
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Kräften (F) auf die zeitliche Veränderung (dt) von Impulsen (dp als Pro-
dukt von Masse m und Geschwindigkeit ν) beschreibt. Die so genannte 
Euler-Gleichung formuliert die Bewegung reibungsfreier Fluide in Form 
eines partiellen Differentialgleichungssystems erster Ordnung. Doch mit 
dieser Gleichung für ideale Gase sind nur wenige praktische Probleme 
darstellbar. Daher fügte Claude M. Navier 1822 einen weiteren Term 
hinzu, der Eulers Gleichung in eine Beschreibung für viskose Fluide 
überführte. Viskosität ist die innere Reibung eines Fluids, die von dünn- 
bis zähflüssig reichen kann, und als Stoffkenngröße eine wichtige Rolle 
spielt.41  
 Unabhängig von Navier formulierte George G. Stokes 1845 in seiner 
Abhandlung On the theories of the internal friction of fluids in motion 
die Viskosität als ‚tangential force‘, wie in Abbildung 5 dargestellt. „In 
reflecting on the principles according to which the motion of a fluid 
ought to be calculated when account is taken of the tangential force, and 
consequently the pressure not supposed the same in all directions, I was 
led to construct the theory [...] which consists of equations (13), and of 
the principles on which they are formed“ (Stokes 1885: 76). „These 
equations [13] are applicable to the determination of the motion of water 
pipes and canals, to the calculation of the effect of friction on the mo-
tions of tides and waves, and such questions“ (Stokes 1845: 93).42 In 
seinem Report on recent researches in hydrodynamics präsentierte Sto-
ckes 1846 auf dem Treffen der British Association in Cambridge seine 
entscheidenden Ideen, die zur Navier-Stokes-Gleichung als der grundle-
genden Gleichung der Strömungsmechanik bis heute führte. 
 
„M. Navier was, I beli e, the first to give equations for the motion of fluids 
without supposing the pressure equal in all directions. His theory is contained 
in a memoir read before the French Academy in 1822. He considers the case 
of a homogeneous incompressible fluid. He supposes such a fluid to be made 
up of ultimate molecules, acting on each other by forces which, when the 
molecules are at rest, are functions simply of the distance, but which, when the 
molecules recede from, or approach to each other, are modified by these cir-
cumstances, so that two molecules repel on each other less strongly when they 
are receding, and more strongly when they are approaching, that they do when 

                                              
41  Beispielsweise ist die Viskosität von Wasser 1,002, die von Quecksilber 

1,55 und die von Glyzerin 1480,0. Die zweite Stoffkenngröße ist die Dich-
te. In der Regel geht man von räumlich und zeitlich konstanter Dichte 
eines Fluids aus.  

42  „I afterwards found that Poisson had written a memoir on the same sub-
ject, and on referring to it I found that he had arrived at the same equa-
tions. The method which he employed was however so different from mi-
ne that I feel justified in laying the latter before this Society” (Stokes 
1885: 77).  

ev
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they are at rest“ (Stokes 1846: 182). „In a paper read last year before the Cam-
bridge Philosophical Society, I have arrived at the equations of motion in a 
different manner. The method employed in this paper does not necessarily 
require the consideration of ultimate molecules. Its principle feature consists in 
eliminating from the relative motion of the fluid about any particular point the 
relative motion which corresponds to a certain motion of rotation, and examin-
ing the nature of the relative motion which remains. The equations finally 
adopt in the case of a homogeneous incompressible fluid, and of an elastic 
fluid in which the change of density is small, agree with those of Poisson“ 
(Stokes 1846: 184, 185). 
 
 
 
 

 
Abbildung 5: Bewegungsgleichung unter Berücksichtigung der 

Viskosität µ (Stokes 1845: 93)43  
 

Die Navier-Stokes-Gleichung beschreibt in Form einer nichtlinearen 
partiellen Differentialgleichung zweiter Ordnung die Änderung des Be-
trags und der Richtung der Geschwindigkeit eines Fluidelements gewis-
ser Masse in Abhängigkeit von den einwirkenden Kräften wie Druck, 
Schwerkraft und Viskosität. Charakteristisch für die Ablenkung eines 
Fluids ist seine Trägheit, die von seiner Dichte bestimmt ist.44 Die Kom-
plexität dieser Gleichung hat jedoch zur Folge, dass sie nur für seltene 
Fälle analytisch zu lösen ist. „Könnte man diese Gleichungen allgemein 
analytisch lösen, so ergäben sich ungeahnte Einblicke in die Natur von 
Strömungen und Turbulenzen; man würde vieles verstehen, was uns 
heute noch rätselhaft ist. Hier stehen wir vor einer Situation, in der die 
Unzulänglichkeit mathematischer Methoden den physikalischen Fort-
                                              
43  „Let us now consider in what case it is allowable to suppose µ to be inde-

pendent of the pressure. It has been concluded by Dubuat, from his expe-
riments on the motion of water in pipes and canals, that the total retarda-
tion of the velocity due to friction is not increased by increasing pressure. 
The total retardation depends, partly on the friction of the water against 
the sides of the pipe or canal, and partly on the mutual friction, or tangen-
tial action, of the different portions of the water. Now if these two parts of 
the whole retardation were separately variable with p, it is very unlikely 
that they should when combined give a result independent of p. The 
amount of internal friction of the water depends on the value of µ. I shall 
therefore suppose that for water, and by analogy for other incompressible 
fluids, µ is independent of the pressure” (Stokes 1885: 92, 93). 

44  Die Volumenkraft eines inkompressiblen, elektromagnetisch neutralen 
und makroskopischen Fluids wird durch die SI-Einheit N/m3 = kg s-2 m-2 
dargestellt. 
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schritt ernsthaft behindert“ (Bergmann 1998: 478, 479). Da eine allge-
meine Lösung der Navier-Stokes-Gleichung nicht zu erwarten war – und 
bis heute auch nicht zu erwarten ist – musste sich die Physik mit nume-
rischen Berechnungen der Gleichung für spezifische Rand- und An-
fangsbedingungen, mit idealisierten Modellen oder mit experimentellen 
Resultate begnügen. Beispielsweise beschreibt Stokes Law den speziel-
len Fall des Widerstandes einer Kugel in einer Flüssigkeit mit konstanter 
Fließgeschwindigkeit. Die Idealisierung des Reibungswiderstandes ver-
nachlässigt jedoch die Bildung von Wirbeln, ein wichtiges Phänomen 
jeder Strömung. Verwirbelungen konnten nur auf Phänomenebene beob-
achtet, aber nicht mathematisch beschrieben werden. Einer der erfol-
greichsten Experimentatoren in diesem Gebiet, Osborn Reynolds, kon-
statierte: „Now the reason why mathematicians have thus been baffled 
by the internal motions of fluids appears to be very simple. Of the inter-
nal motions of water or air we can see nothing. On drawing the disc 
through the water there is no evidence of the water being in a motion at 
all, so that those who have tried to explain these results have had no 
clue; they have had not only to determine the degree and direction of the 
motion, but also its character“ (Reynolds 1877: 185). 

Mithilfe von Rauch, dem Einspritzen einer farbigen Flüssigkeit in 
einen Wassertank oder mit Seifenblasen machte man in aufwendigen Ex-
perimenten das Verhalten turbulenter Strömungen sichtbar und analysier-
bar. In den Proceedings der Philosophical Society of Manchester vom 
Februar 1877 werden die Experimente von Reynolds beschrieben: „Pro-
fessor Osborn Reynolds exhibited various forms of vortex motion in a 
large glass tank by means of colour, or bubbles of air, the vortex lines 
behind an oblique vane, the vortex ring behind a circular disc, the vortex 
rings caused by raindrops, and the vortex rings caused by a puff of water. 
The various ways in which these vortices move were also shown“ (Rey-
nolds 1877a: 183). Reynolds gelang es mit diesen Experimenten den 
Übergang von laminarer zu turbulenter Strömung aufzuklären. Durch das 
Studium der Größen der Navier-Stokes-Gleichung konnte er eine dimen-
sionslose Verhältniszahl, die so genannte Reynoldszahl, ableiten. Diese 
Zahl gibt das Verhältnis zwischen kinetischer Energie und Reibungsener-
gie an und charakterisiert den Zustand einer Strömung: Mit zunehmender 
Reynoldszahl überwiegt der Anteil der kinetischen Energie. Ab einer 
Reynoldszahl von 103 verhält sich die Strömung, abhängig von den Rand-
bedingungen, turbulent. Für eine unendlich große Reynoldszahl geht die 
Navier-Stokes-Gleichung in die Euler-Gleichung für idealisierte Fluide 
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ohne Reibung über, die Viskosität spielt keine Rolle mehr.45 Trotz dieser 
Erfolge gibt es bis heute keine hinreichende Theorie der Turbulenz und 
man behilft sich mit unterschiedlichen Turbulenzmodellen.46 Die zuneh-
mende Bedeutung technischer Entwicklungen und das Problem der Tur-
bulenz vergrößerte die Spaltung zwischen Theorie und experimenteller 
Forschung. In einem Lehrbuch für Flugzeugbau von 1929 heißt es:  
 
„A broad discussion of the motion of air under the influence of friction is of 
little real use. We discuss as briefly as possible a few terms often found and 
enter into the practical part of the theory, - the model rules. The simple model 
rules are only approximations, but as such they are of immense practical use, 
and they refer to all kinds of flow, not only to theoretical ones. They are used 
by employing coefficients of the air forces, assumed to be constant. The model 
rules that include friction deal with the variations of these coefficients. They 
occur chiefly in connection with the interpretation of model tests, a subject of 
great practical importance. [...] Our knowledge of the surface air friction is 
wholly based on experience, but the model rules suggest a convenient formula 
for its magnitude“ (Munk 1929: 137).  
 
Wissenschaft und Technik fanden sich in der Zwickmühle zwischen Idea-
lisierung und Komplexität, zwischen Stagnation der Analytik und dem 
Mangel an Rechenkraft gefangen. Die Anwendungsforscher waren ge-
zwungen, das Dilemma durch experimentell gewonnene Gleichungen und 
Koeffizienten zu überbrücken. Sie mussten mit Experimenten rechnen, 
wollten sie neue und dringend benötigte Erkenntnisse gewinnen, auch 
wenn diese nur eine eingeschränkte Reichweite besaßen. „In 1896 a text-
book on ballistics lists in chronological order 20 different ‚laws of air re-
sistance,’ each one further divided into various formulae for different 
ranges of velocity. […] No physical theory could provide a logical 
framework for justifying these empirical ‚laws’“ (Eckert 2006: 26). Der 
Nachteil dieser spezifischen Gleichungen in Form empirischer, also ana-
loger Berechnungen lag in ihrer Beschränkung auf die analysierten Fall-

                                              
45  Beispielsweise hat ein Flugzeugrumpf eines modernen Passagierflugzeugs 

bei einer Geschwindigkeit von 300 m/s eine Reynoldszahl von 109. Eine 
Schnecke hingegen kommt auf Re = 2 und verursacht kaum Turbulenzen. 

46  „Die Schließungsannahmen zur Beschreibung der Reynoldsschen Span-
nungen werden als ‚Turbulenzmodell’ bezeichnet, die nach empirischen 
Annahmen in Hierarchien gegliedert sind. Man unterscheidet algebraische 
Modelle, die eine turbulente Zähigkeit beschreiben, Eingleichungsmodel-
le, in denen die Transportgleichung für die turbulente kinetische Energie 
gelöst wird, Zweigleichungsmodelle, die die Transportgleichung für die 
turbulente kinetische Energie und eine zum Teil mit empirischen Ansätzen 
entwickelte Differentialgleichung zur Beschreibung der turbulenten Dissi-
pationsrate (k-є-Modell) beinhalten“ (Hoßfeld 1996: 20). 
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studien. Sie gaben keinen mathematisch verallgemeinerten Einblick in die 
grundlegenden Probleme der Strömungsdynamik. „The practical impor-
tance of such questions as those above mentioned [magnitude and form of 
an aqueduct] has made them the object of numerous experiments, from 
which empirical formulae have been constructed. But such formulae, al-
though fulfilling well enough the purposes for which they were con-
structed, can hardly be considered as affording us any material insight 
into the laws of nature; nor will they enable us to pass from consideration 
of the phenomena from which they were derived to that of others of a dif-
ferent class, although depending on the same causes“ (Stokes 1845: 76).  
 
Zur Bestimmung der empirischen Gleichungen und ihrer Reichweite 
wurden immer aufwendigere Experimente durchgeführt. Ab Ende des 
19. Jahrhunderts kamen Windkanäle in Gebrauch, um numerische In-
formationen unter variierenden Bedingungen zu gewinnen. Mangels 
theoretisch anwendbarer Ansätze und mangels Rechenkapazitäten wur-
den Windkanäle als Analogrechner benutzt. Dafür wurden neue Mess-
instrumente entwickelt. Beispielsweise benutzten Forscher an der Uni-
versität Delft in den 1920er Jahren Modelle aus Draht, um die Windge-
schwindigkeit an deren Oberfläche im Windkanal zu messen. Dabei 
machten sie sich das Prinzip zunutze, dass der elektrische Widerstand 
des Drahtes von dessen Temperatur abhängt. Die Abkühlung durch den 
Luftstrom gibt indirekt Aufschluss über die Windgeschwindigkeiten. 
„The velocity of the air stream, therefore, can be electronically moni-
tored by accounting for the ensuing changes in electrical resistance. This 
method has already been described before the First World War, but only 
with the use of extremely thin wires (with a diameter of approximately 
0.015 mm) and sophisticated electronic circuits did it become feasible 
for measurements of velocity fluctuations“ (Eckert 2006: 109). Doch 
auch wenn diese empirischen Ergebnisse für die praktischen Anwen-
dungen unverzichtbar waren, die numerische Darstellung auf Basis phy-
sikalischer Größen war ungenau. „The validity of such estimates is at 
any rate limited by the wide variety of existing analog devices, which 
use a great number of different mechanical, elastic, and electrical meth-
ods of expressing and of combining quantities as well as mixtures of 
these, together with most known methods of mechanical, electrical and 
photo electrical control and amplification. Moreover, all analogy ma-
chines have a marked tendency towards specialized, one-purpose char-
acters“ (Goldstine, von Neumann 1946: 9).47 
                                              
47  Eine einfache Weise die Ableitung einer Funktion analog zu berechnen ist 

die Verwendung von Elektrizität. „If the form of a varying current through 
a pure inductance represents a function, the voltage across the inductance 
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Beispielsweise erzeugten die ersten Windtunnel keine gleichförmig 
strömenden Luftmassen, sondern turbulente Ströme. Solange es sich um 
kleine Testmodelle oder langsame Strömungsgeschwindigkeiten handelte, 
konnten die Effekte der turbinenerzeugten Turbulenzen vernachlässigt 
werden. Doch mit höheren Geschwindigkeiten und größeren Modellen 
wirkte sich die Konstruktion der Windtunnel auf die Resultate aus. Die 
Frage, wie zuverlässig die gewonnen Daten für die Ableitung empirischer 
Gleichungen waren, wurde daher zu Beginn der 1920er Jahren laut. In 
einem Bericht des US-amerikanischen NACA National Advisory Commit-
tee for Aeronautics von 1925 hieß es: „The data collected here [Langley 
Laboratory] must be considered, primarily, as data concerning the tunnel, 
and not the models tested here“ (Reid 1925: 219). Zudem war es nicht 
möglich, die Ströme der verschiedenen Windtunnel zu standardisieren, d.h. 
dasselbe Modell erzeugte in verschiedenen Tunneln unterschiedliche Er-
gebnisse. Die Ironie dabei war, dass das zu untersuchende Phänomen, die 
Turbulenz verursacht durch die Testmodelle, als Turbulenz des erzeugten 
Windstromes zum Problem der Experimentaleinrichtung wurde. Da es im-
mer noch an einer allgemeinen Theorie der Turbulenz fehlte, waren die 
Forscher gezwungen, ihre Windtunnel auf Basis empirischer Versuche zu 
verbessern und die Experimente trotzt allem zum Rechnen zu nutzen. Denn 
der Zweck dieser Experimente war es nicht, theoretische Annahmen zu 
verifizieren, sondern „to replace a computation from an unquestioned theo-
ry by direct measurement. Thus wind tunnels are, for example, used at pre-
sent, at least in large parts, as computing devices of the so-called analogy 
type […] to integrate the non-linear partial differential equations of fluid 
dynamics“ (Goldstine, von Neumann 1946: 4).  
 
Doch in den 1940er Jahren begann sich ein neuer Weg abzuzeichnen. „It 
seems clear, however, that digital wind (in the Wiener – Caldwell termi-
nology: counting) devices have more flexibility and more accuracy, and 
could be made much faster under present conditions. We believe, there-
fore,“ schreibt John von Neumann – Computerpionier wie Erfinder der 
Computersimulation – 1946 in seinem grundlegenden Bericht On the 
Principles of large Scale Computing Machines, „that it is now time to 
concentrate on effecting transition to such devices, and that this will in-
crease the power of the approach in question to an unprecedented ex-
tent“ (Goldstine, von Neumann 1946: 4). Die Resultate der Computer-
experimente, so hoffte er, sollten wesentlich akkurater und problemlos 

                                                                                                                       
represents the derivative. Unfortunately it is not easy either to cause a cur-
rent to vary precisely in a prescribed manner, nor to measure precisely a 
varying voltage. [...] None of these applications require the precision desi-
rable in mathematical instruments” (Bush 1936: 657). 
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miteinander vergleichbar sein. Damit sollte nicht nur in der Strömungs-
dynamik ein Meilenstein gesetzt werden. „Das Schisma zwischen der 
Ingenieurshydraulik und der theoretischen Hydrodynamik der Physiker 
(‚Tabellenkunde gegen realitätsferne Theorie’) wurde lange nicht über-
wunden. […] Erst die numerische Simulation eröffnete die Möglichkeit, 
die Hydrodynamik realer Fluide auch praktisch anzuwenden“ (Malche-
rek 2001: 37). Die Idee, nicht mit Experimenten zu rechnen, sondern mit 
Rechnern zu experimentieren hat ihren Ursprung in dem Schisma von 
Theorie und Anwendung, das für viele Bereiche der Natur- und Tech-
nikwissenschaften zu Beginn des 20. Jahrhunderts kennzeichnend war. 
Die Entwicklung automatischer Rechenmaschinen geht auf die Notwen-
digkeit numerischer Simulationen zurück und diese treiben bis heute die 
Entwicklung der Supercomputer an. 
 
 
John von Neumanns digita ler  Windkanal   
 
Zu Beginn der computerbasierten Simulation taucht ein Name wiederholt 
auf: John von Neumann, ein ungarischer Mathematiker, der 1929 in die 
Vereinigten Staaten emigrierte. Von Neuman war während des Zweiten 
Weltkrieges in das Manhattan-Projekt involviert, er publizierte 1944 zu-
sammen mit Oskar Morgenstern The Theory of Games and Economic Be-
havior, er entwarf die grundlegende Architektur moderner Computer und 
er entwickelte eine Methode, um Differentialgleichungen auf Computern 
zu berechnen. Aus seiner Feder stammten maßgebliche Beiträge zur 
Quantenmechanik, zur Mengenlehre und zur Statistik. Von Anfang an 
war sich von Neumann über die Bedeutung automatischer Rechenma-
schinen für Wissenschaft und Technik bewusst und er forcierte daher in 
den 1940er Jahren die Entwicklung von Rechnern wie ENIAC Electronic 
Numerical Integrator and Calculator, EDVAC Electronic Discrete Variab-
le Computer und NORC Naval Ordnance Research Calculator. Herman 
Goldstine, Offizier der U.S. Army und Koordinator des ENIAC Projekts, 
nannte John von Neumann den Doyen der Computerentwicklung wie 
auch der numerischen Simulation. Goldstine hatte von Neumann 1943 in 
Los Alamos kennen gelernt. Von Neumann war dort für die Berechnung 
von partiellen Differentialgleichungen kugelförmiger Explosionswellen 
zuständig, die zu komplex waren, um sie algebraisch lösen zu können. In 
Los Alamos entwickelte er sich zu einem der ersten Experten in der nu-
merischen Simulation komplexer Differentialgleichungen, damals aller-
dings noch als Berechnungen per Hand. „The blackboard was filled with 
very complicated equations that you could encounter in other forms in 
other offices,“ beschrieb Stanislav Ulam die Situation 1943 in Los Ala-
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mos. „This sight scared me out of my wits: looking at these I felt that I 
should never be able to contribute even an epsilon to the solution of any 
of them. But during the following days, to my relief, I saw that the same 
equations remained on the blackboard. I noticed that one did not have to 
produce immediate solutions. […] Little as I already knew about partial 
differential equations or integral equations, I could feel at once that there 
was no hope of solution by analytical work that could yield practical an-
swers to the problems that appeared“ (Ulam 1980: 95). 
 
Im selben Jahr, 1943, begann eine Gruppe von Wissenschaftlern und In-
genieuren an der Moore School of Engineering der Universität von Penn-
sylvania den Rechner ENIAC zu entwickeln. Herman Goldstine war der 
verantwortliche Koordinator seitens der U.S. Army, J. Presper Eckert der 
Chefingenieur, John Mauchly sein Assistent und J.G. Brainerd der Pro-
jektmanager. „The ENIAC was an electronic calculator that inaugurated 
the era of digital computing in the United States. Its purpose was to calcu-
late firing tables for the U.S. Army, a task that involved the repetitive so-
lution of complex mathematical expressions“ (Ceruzzi 1998: 15). Ziel war 
es, einen elektronischen Computer zu bauen, der auf Basis einfachster 
Rechenregeln komplexere Funktionen für die Lösung von Differential-
gleichungen ausführen sollte. „The arithmetic design of ENIAC was in-
fluenced mainly by two kinds of calculators: mechanical desk calculators, 
electrically powered and hand operated; and electromechanical card oper-
ated IBM machines“ (Burks 1980: 315). ENIAC war für seine Zeit ein 
unglaublich schneller Computer, basierend auf 18.000 Vakuumröhren, 
dessen Leistungsfähigkeit jedoch durch mangelnde Speicherkapazitäten 
limitiert wurde.48 Nur zwanzig Dezimalzahlen konnten im Computer ab-
gespeichert werden. Zwischen- und Endresultate mussten auf Lochkarten 
gestanzt werden und das Programm wurde durch Steckverbindungen ma-
nuell für jedes Programm aufs Neue ausgeführt. Das manuelle Program-
mieren und das Stanzen der Lochkarten verlangsamte ENIAC erheblich 
und inspirierte von Neumann, der 1944 von Goldstine als Experte für das 
Lösen von Differentialgleichungen in das ENIAC Team geholt worden 

                                              
48  „John [Mauchly] and Pres [Eckerts] proposed to achieve this very high 

computing speed by operating vacuum-tube circuits at 100,000 pulses/sec. 
[...] The first development task on the ENIAC project was to design relia-
ble counters that worked at 100,000 pulses/sec and to show by test that 
switching circuits could work at a comparable speed. The final ENIAC 
operated at 100,000 pulses/sec and this became the first computer to ex-
ploit fully the vacuum-tube technology of the time” (Burks, 1980: 314). J. 
Presper Eckert und John W. Mauchly verließen 1946 das ENIAC Team, 
um die Eckert-Mauchly Computer Corporation zu gründen und UNIVAC 
Universal Automatic Computer zu bauen. 
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war, zu der Idee, Programme und Daten im selben Speicher abzuspei-
chern. In einem Bericht von 1945 an die U.S. Army, First Draft of a Re-
port on the EDVAC, schlug von Neumann deshalb mit EDVAC ein Nach-
folgemodell für ENIAC vor. Neben zahlreichen Verbesserungen sollte 
EDVAC einen umfangreichen Speicher für Programme wie Daten erhal-
ten, die so genannte von-Neumann-Architektur. Arthur W. Burks, Her-
man H. Goldstine und John von Neumann beschrieben später das neue 
Design detailliert in dem Artikel Preliminary Discussions of the Logical 
Design of an Electronic Computing Instrument, der seither als einer der 
wegweisenden Publikationen der Computerentwicklung gilt (vgl. Burks, 
Goldstine, von Neumann 1946).  

John von Neumanns Motivation automatische Rechner zu bauen, lag 
in der Überwindung der Begrenzung der analytischen Methode bei der 
Lösung nicht-linearer Differentialgleichungen. Um Computer jedoch ex-
perimentell nutzen zu können, beispielsweise als digitalen Windkanal, 
bedarf es einer Mathematik, die an die Arbeitsweise der Computer ange-
passt ist. Denn die Berechnungen der Gleichungen müssen in Einzel-
schritte zerlegt werden, damit der Computer sie schrittweise ausführen 
kann. Diese Form der Mathematik existierte bis in die 1940er Jahre nur 
rudimentär. Zwar gab es Erfahrungen für die arbeitsteilige Berechnung 
einfacher Gleichungen, seit Berechnungen in größerem Umfange an 
menschliche Computer delegiert wurden. David A. Grier beschreibt in 
seinem Buch When Computers were human die Geschichte dieser zu-
nehmenden Arbeitsteilung sowie ihrer praktischen Anforderungen, bei-
spielsweise in der Astronomie. 

 
„[Andrew] Crommlin, with the assistance of an observatory colleague, Phil 
Crowell (1879 – 1949), identified the basic differential equations that described 
the path of the comet and created a computing plan for the Greenwich Observa-
tory computing staff. The computing plan had certain similarities to the plan that 
Clairaut had used in 1757. It located all the key objects in space and described 
the forces acting between them. At each step of the calculation, the computers 
advanced the comet, Saturn, Jupiter, and the other planets forward by a small 
distance. They did not worry about elliptical orbits but instead followed the di-
rection of the forces. Once they had moved the objects, they had to recalculate 
all the forces. It was a slow and methodological process, one that required much 
grinding of Brunsvigas and other calculating machines“ (Grier 2005: 121).  
 
Doch die Methoden, die gebraucht wurden, um umfangreiche Berechnun-
gen an einen automatischen Rechner zu delegieren, stellten eine weitaus 
größere Herausforderung dar als die ‚computing plans‘, die vor Erfindung 
der Computer entworfen und ausgeführt wurden. Denn es ging nicht nur 
um ausgefeilte Berechnungspläne in Form maschinentauglicher Algo-
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rithmen, die angaben, wie die Berechnungen schrittweise auszuführen 
seien oder wie Daten abgerufen und gespeichert werden. Es ging um neue 
Methoden einer diskreten und an Maschinen delegierbaren Mathematik.  
 Im Falle von Differentialgleichungen, die das Verhalten von Syste-
men in einem Raum-Zeit-Kontinuum beschreiben, bedeutet dies, dass 
Menschen oder Computer, je nach Leistungskapazität, nur einige wenige 
Raum-Zeit-Punkte näherungsweise berechnen können. Ende der 1940er 
Jahre entwickelte von Neumann die Differenzenmethode für den Compu-
ter weiter. Diese Methode ersetzt die Differentiale der Differentialglei-
chungen durch Differenzenquotienten und wurde erstmals 1759 von Jo-
seph-Luis Lagrange verwendet. Dadurch werden die Gleichungen für ein 
Gitter an Berechnungspunkten berechenbar.49 Durch die schiere Rechen-
gewalt erhoffte sich von Neumann wissenschaftliche Durchbrüche, die 
durch die Stagnation der analytischen Methode bisher unerreichbar wa-
ren. Noch in Los Alamos schrieb er bezüglich der numerischen Simula-
tion von Wellengleichungen: „The solution of hyperbolic equations with 
more than two independent variables would afford a great advance to 
fluid dynamics since most problems there involve two or three spatial 
variables and time, i.e. three or four independent variables. In fact the 
possibility of handling hyperbolic systems in four independent variables 
would very nearly constitute the final step in mastering the computational 
problems of hydrodynamic“ (Goldstine, von Neumann 1946: 12).  
 Obwohl diese Prognose zu optimistisch war,50 zeichnete sie den Weg 
vor, den die computerbasierte Simulation in den folgenden Jahren und 
Jahrzehnten nehmen sollte. Rechengeschwindigkeit wurde dabei zum ent-
scheidenden Kriterium der neuen Simulationswissenschaften und ist es 
bis heute.51 Denn um beispielsweise die möglichen Kurvenbahnen der 

                                              
49  „In fact, in an early paper (1759) we see him [Lagrange] solving linear 

difference equations with constant coefficients with the help of the so-
called characteristic equation” (Goldstine 1977: 145). Später wurde die 
Differenzenmethode von den Human Computing Laboratories zur Be-
rechnung verschiedenster Tabellen benutzt. Beispielsweise organisierte 
Gertrude Blanch 1941 „a series of eight mathematics courses. [...] The fi-
nal course presented the methods of the planning committee: matrix calcu-
lations, the theory of differences, and special functions“ (Grier 2005: 259). 

50  „The intrinsic difficulties of science have delayed the attainment of the 
goal. The coupling between very short and very long length scales within 
a single problem, and the proliferation of degrees of freedom are examples 
typical of these difficulties. Their importance was not fully appreciated by 
von Neumann” (Glimm 1990: 186). 

51  Bereits die Rechengewalt dieser ersten elektronischen Computer war 
überzeugend im Kampf gegen die Begrenzungen der analytischen Mathe-
matik. Gleichwohl ließ die Kritik an dieser Art, Mathematik zu betreiben, 
nicht lange auf sich warten. Bereits zu Beginn der 1940er Jahre in Los 
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Masseteilchen (Trajektorien) entsprechend der Wellengleichungen im 
dreidimensionalen Raum näherungsweise berechnen zu können, bedarf es 
unzähliger Rechenoperationen, wie in Abbildung 6 dargestellt und von 
John von Neumann und Herman Goldstine vorgerechnet: „For such pro-
blems the number of multiplications rises enormously due to the number 
of lattice points. It is not unreasonable to consider between 106 and 5 x 
106 multiplications for a 3-variable problem and between 2.5 x 107 and 
2.5 x 108 multiplications for a 4-dimensional situation. Hence these are 
roughly equivalent to 1,300 to 6,700 trajectories and to 33,000 to 330,000 
trajectories“ (Goldstine, von Neumann 1946: 12). Erfahrenes Rechenper-
sonal benötigte per Hand sieben Personenstunden, um die 750 Operatio-
nen für die Berechnung einer einzigen Trajektorie auszuführen. Der Dif-
ferential Analyzer, ein mechanischer Analogrechner, der zwischen 1928 
und 1932 von Vannevar Bush am MIT Massachussets Institute of Tech-
nology gebaut und betrieben wurde, benötigte zehn bis zwanzig Minuten 
für dieselbe Berechnung (vgl. Bush 1931, 1936). ENIAC konnte die 750 
Operationen in 2,25 Sekunden ausführen.  
 

 
 
Computer 

1 Trajektorie = 
750 Operationen 

3D (Ebene/Zeit)
Ø 4.000 Traj. = 
3 Mio. Op. 

4D (Raum/Zeit)
Ø 165.000 Traj. = 
124 Mio. Op. 

 
Per Hand 
 

 
7 std. 

 
3,2 Jahre 

 
131,8 Jahre 

Analogrechner 
Dif. Analyzer 
1932 

 
15 min. 

 
41,5 Tage 

 
4,7 Jahre 

Digitalrechner 
ENIAC  
1946 

 
2,25 sec. 

 

 
2,5 std. 

 
4,3 Tage 

Parallelrechner
BlueGene/L 
2007 

 
1,5 piko sec. 

 
6 nano sec. 

 
0,25 mikro sec. 

 
Abbildung 6: Entwicklung der Rechengeschwindigkeit am Beispiel der  
Berechnungen nach John von Neumann 1948 (Gramelsberger 2008) 

 
Eine diskrete und an Maschinen delegierbare Mathematik geht jedoch 
mit dem basalen Konzept der Neuzeit – dem Prinzip der Stetigkeit wie 

                                                                                                                       
Alamos, als man die numerischen Berechnungen per Hand anstelle der 
analytischen Theorie vorantrieb, zeigte sich die Spaltung zwischen Nume-
rikern und Analytikern. Stanislav Ulam, ein Kollege von John von Neu-
mann in Los Alamos, stellte fest: „Proceeding by ‚brute force’ is consid-
ered by some to be more lowbrow” (Ulam 1980: 94). Nichtsdestotrotz 
ging man im ENIAC-Team davon aus, dass die Praktikabilität und Kos-
teneffizienz schneller automatischer Rechner entscheidende Kriterien der 
zukünftigen Entwicklung von Wissenschaft und Technik seien. 
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Felix Klein es 1895 genannt hatte – anders um, als die analytische Me-
thode. Denn grundsätzlich stellt die numerische Simulation eine Appro-
ximation dar. Es lässt sich nicht immer beweisen, dass die numerische 
Simulation einer Gleichung sich der exakten, aber unbekannten Lösung 
stetig annähert oder ob überhaupt eine Lösung existiert.52 Ob die be-
rechneten Punkte der exakten und kontinuierlichen Lösung tatsächlich 
nahe kommen, ist nicht einfach zu entscheiden. Daher erhalten prakti-
sche Kriterien wie die Stabilität der Lösung eine grundlegende Bedeu-
tung. „Der Laxsche Äquivalenzsatz sagt aus, daß der Nachweis der nu-
merischen Stabilität die notwendige und hinreichende Bedingung für die 
Konvergenz der Lösung darstellt, wenn die Differenzenapproximation 
konsistent formuliert ist. Unter einer konsistenten Formulierung versteht 
man, daß die Differenzenapproximation wieder in die zu approximie-
rende Differentialgleichung übergeht, wenn die Abstände der Gitter-
punkte gegen Null streben. Eine Differenzenapproximation wird nume-
risch stabil genannt, wenn bei der Auflösung der resultierenden Diffe-
renzengleichungen Abbruch-, Rundungs- und Verfahrensfehler nicht 
beliebig anwachsen“ (Krause 1996: 15).53 Verhält sich die Lösung nicht 
stabil, ist sie entweder falsch oder man hat es mit einer mehrdeutigen 
Lösung zu tun. Bei der Diskretisierung, also der Umwandlung einer Dif-
ferential- in eine Differenzengleichung, gilt es, Stabilitätskriterien zu 
befolgen, damit die berechneten Näherungswerte aussagekräftig sind. 
Dazu müssen die zeitlichen und räumlichen Auflösungen der Berech-
nungen aufeinander abgestimmt sein. 1947 beschrieb von Neumann die-
se Erkenntnis in dem Bericht On the Numerical Solution of Partial Dif-
ferential Equations of Parabolic Type.  
 
„A method is described for solution of parabolic differential equations by cal-
culating routines involving stepwise integration of both variables. The main 
features of the method arise from manipulation introduced to avoid instabili-
ties that generally appear when partial differential equations are converted into 
difference equations“ (von Neumann, Richmyer 1947: 652). „The difference 
equations may be unstable, that is, under some circumstances irregularities 

                                              
52  Beispielsweise deutet „alles darauf hin, daß die Lösungen der Navier-

Stokes-Gleichungen echt mehrdeutig sind. Die Gründe dafür werden der-
zeit im Rahmen der Nichtlinearen Dynamik und Chaostheorie erforscht“ 
(Malcharek 2001: 51). 

53  Stabilität bedeutet, dass ein numerisches Verfahren gegenüber kleinen 
Änderungen der Daten (Eingabedaten wie auch Rundungsfehlern) unemp-
findlich ist. Weitere Kriterien sind die Kondition und die Konsistenz eines 
numerischen Verfahrens. Die Kondition beschreibt die Abhängigkeit der 
Lösung von den Eingabedaten, die Konsistenz bedeutet, dass das numeri-
sche Verfahren tatsächlich das gegebene Problem löst und kein anderes.  
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may be amplified and grow without limit as time goes on; a solution of (2) 
[Differenzengleichung] does not in general approach a solution of (1) [Differ-
entialgleichung] as the mesh is made finer and finer unless a certain restriction 
[…] is applied to the relation between ∆y [Abstand der Berechnungspukte] and 
∆t [zeitliche Auflösung] at each stage of the limiting process. […] The condi-
tion for stability (condition that all disturbance get smaller as t increases) is 
clearly that the real part of ά should be negative for all real β, or that the quan-
tity eά∆t […] should be lie between -1 and +1. […] if ∆y is chosen very small in 
the interest of accuracy, ∆t must be chosen very very small in the interest of 
stability“ (von Neumann, Rich yer 1947: 653, 654).   
 
Stabilitätsbedingungen sind bis heute für explizite Verfahren der nume-
rischen Simulation von Differentialgleichungen zu befolgen.54 Werden 
sie nicht berücksichtigt, verhält sich die Simulation instabil, da sich Feh-
ler aufsummieren können. Damit laufen die Resultate ins Fiktive. Com-
puterbasierte Berechnungen können verschiedenen Fehlerquellen unter-
liegen, wobei einige dieser Fehler unvermeidbar sind. Beispielsweise 
ergeben sich zwangsläufig Fehler durch die Ungenauigkeiten der Einga-
bedaten. „Any uncertainty of all these inputs (data as well as equations) 
will reflect itself as an uncertainty (of the validity) of the results. […] 
This type of error is absolutely attached to any mathematical approach to 
nature, and not particularly characteristic of the computational ap-
proach“ (Goldstine, von Neumann 1946: 16). Eine weitere Fehlerquelle 
liegt in der Natur der Simulation selbst, da die Diskretisierung als Ver-
fahren mathematisch nicht eindeutig ist. Unter Umständen kann die ge-
wählte Differenzenapproximation zu falschen Lösungen führen. 
Schließlich ist zu beachten, „that no machine, no matter how it is con-
structed, is really carrying out the operations of arithmetic in the rigor-
ous mathematical sense“ (Goldstine, von Neumann 1946: 16). Computer 
verwenden endliche Zahlen, die in ihrer Genauigkeit begrenzt sind. 
Rundungsfehler können sich daher auf die Berechnungen auswirken. Es 
bedarf daher der Untersuchung des Lösungsverhaltens simulierter Glei-
chungen anhand der durchgeführten Simulationsläufe. Hier zeigt sich 
aber auch der Erkenntnisgewinn von Computerexperimenten, denn die-
ser liegt im Studium des Lösungsverhaltens komplett mathematisierter, 
diskretisierter und in Algorithmen formulierter Modelle. Dies ist eine 
relativ neue und durch die Effizienzsteigerung der Computer zunehmend 
die Naturwissenschaft dominierende Erkenntnisstrategie. Diese Ver-
                                              
54  Die explizite Methode nutzt für die Berechnung von tn+1 nur die Werte tn. 

Die implizite Methode hingegen nutzt für die Berechnung für tn+1 die Wer-
te tn und tn+1. Die Stabilitätsbedingungen sind nur für explizite Simula-
tionsverfahren zu berücksichtigen. John von Neumann konzipierte auch 
ein implizites Verfahren (vgl. von Neumann, Richmyer 1947).  

tm
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wendungsweise des Computers, wie John von Neumann sie in den 
1940er Jahren vorschlug, markierte den Beginn der Überwindung der 
Stagnation in der Analysis und setze damit den Auftakt zur Nutzung von 
Computerexperimenten in den Wissenschaften.  
 
„John von Neumann wollte den ‚digitalen Windkanal’! Er erwartete, daß wirk-
lich effiziente digitale Hochleistungsrechner den toten Punkt bei den rein ana-
lytischen Methoden zur Behandlung nichtlinearer Probleme überwinden und 
daß aus der derart numerisch erschlossenen Hydrodynamik die mathematische 
Durchdringung des Gebietes der nichtlinearen partiellen Differentialgleichun-
gen stimuliert werden könnte, indem sich aus den Computerresultaten jene 
heuristischen Fingerzeige ergäben, die von jeher in allen Bereichen der Wis-
senschaft den Schlüssel für entscheidende mathematische Ideen liefern könn-
ten. In gewissem Sinne klingen seine damaligen Argumente jung und vertraut, 
denn die weltweit initiierten nationalen Förderprogramme des Höchstleis-
tungsrechnens folgen dieser Zielsetzung, allerdings nicht nur mit dem Blick 
auf Strömungsprobleme, sondern auf der breiten Ebene der Computational 
Sciences & Engineering“ (Hoßfeld 1996: 4). 
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