Fortschritt-Berichte VDI

Reihe 10

Informatik/ Bastian Wandt, M. Sc.,

Kommunikation Hannover

Nr. 869 Human Pose Estimation

from Monocular Images

tnt

Institut fiir Informationsverarbeitung
www.tnt.uni-hannover.de



https://doi.org/10.51202/9783186869104

216.73.216.60, am 24.01.2026, 03:49:40. ©
m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

Human Pose Estimation from Monocular Images

Von der Fakultét fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur
(abgekiirzt: Dr.-Ing.)
genehmigte

Dissertation

von Herrn
Bastian Wandt, M. Sc.

geboren am 30. September 1984 in Peine

2020

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

Hauptreferent:
Korreferent:
Vorsitzender:

Tag der Promotion:

Prof. Dr.-Ing. Bodo Rosenhahn
Prof. Dr. Ralph Ewerth
Prof. Dr.-Ing. Markus Fidler

21. April 2020

216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
m

mit, flir oder in Ki-Syster


https://doi.org/10.51202/9783186869104

Fortschritt-Berichte VDI

| Reihe 10

Informatik/ Bastian Wandt, M. Sc.,
Kommunikation Hannover

[Nr. 869 | Human Pose Estimation

from Monocular Images

int

Institut fur Informationsverarbeitung
www.tnt.uni-hannover.de



https://doi.org/10.51202/9783186869104

Wandt, Bastian

Human Pose Estimation from Monocular Images

Fortschr.-Ber. VDI Reihe 10 Nr. 869. Disseldorf: VDI Verlag 2020.
130 Seiten, 47 Bilder, 8 Tabellen.

ISBN 978-3-18-386910-7, ISSN 0178-9627,

€ 52,00/VDI-Mitgliederpreis € 46,80.

Keywords: Human Pose Estimation — 3D Reconstruction — Monocular Cameras — Structure
From Motion

This dissertation deals with the problem of capturing human motions and poses using a sin-
gle camera. The first part of the thesis proposes two closely related approaches for the 3D
reconstruction of human motions from image sequences. To resolve inherent ambiguities in
monocular 3D reconstruction the main idea of this part is fo exploit temporal properties of
human motions in combination with a human body model learned from training data. The
second part of the thesis tackles the problem of reconstructing a human pose from a single
image. A human body model is learned by training a deep neural network that covers non-
linearities and anthropometric constraints.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie
(German National Bibliography); detailed bibliographic data is available via Internet at
www.dnb.de.

© VDI Verlag GmbH - Disseldorf 2020

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollstandigen Wiedergabe
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Ubersetzung,
vorbehalten.

Als Manuskript gedruckt. Printed in Germany.
ISSN 0178-9627

ISBN 978-3-18-386910-7

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

ACKNOWLEDGEMENT

This thesis was written in the course of my activity as a research assistant
at the Insitut fir Informationsverarbeitung of the Leibniz Universitét
Hannover.

First, I would like to thank my doctoral advisor Prof. Dr.-Ing. Bodo
Rosenhahn for giving me the opportunity to do my studies under his
supervision. He always supported me in my research and gave me the
freedom I needed to successfully finish my doctorate. I am especially
thankful for long discussions about work and non-work related topics,
which not only helped me grow as a researcher but also as a person. Also
many thanks to him and Prof. Dr.-Ing. Jérn Ostermann for providing
an outstanding research environment.

I also like to thank Prof. Dr. Ralph Ewerth for being the second exam-
iner and Prof. Dr.-Ing. Markus Fidler for being the chair of the defense
committee. I thank the whole committee for making it possible to defend
my thesis during the COVID-19 pandemic.

During my time at the institute, I had many amazing colleagues who
made the time at TNT unforgettable. Especially, I like to thank my
office mate Petrissa Zell for many academic and private conversations
and the fantastic work atmosphere in our office, Roberto Henschel for
very detailed discussions and founding our consulting company together,
and the TNT Alpine Team for 6 memorable trips to Austrian skiing
resorts. Also, many thanks to the administrative staff for their support
in technical and organizational tasks.

Finally, my special thanks go to my family for their support and encour-
agement during my studies.

111

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

v

216.73.216.60, am 24.01.2026, 03:49:40. ©
m mit, fr oder In KI-

ter



https://doi.org/10.51202/9783186869104

CONTENTS

1

INTRODUCTION
1.1 Applications and Commercial Systems . . . . . . .. ..
1.2 Image-based Motion Capture . . ... ... ... ....
1.3 Contributions . . . . . . . . .. ... ... ... .. ...
1.3.1 Time Consistent Human Motion Reconstruction .
1.3.2 RepNet . .. . . .. ... . ... ... ...
1.4 Structure of the Thesis . . . . . . . .. ... ... ....
1.5 List of Publications . . . . . . ... ... ... ......
1.5.1 Human Motion Capture . . . . .. .. ... ...
1.5.2 Other Publications . . . . . . ... ... .....
RELATED WORK

2.1 Non-rigid Structure-from-Motion . . . . . .. ... ...
2.2 Single Image Approaches . . . ... ... ... ... ..
2.2.1 Reprojection Error Optimization . . . . . . . ..
2.2.2 Direct Inference using Neural Networks . . . . .
2.3 Time Consistent Human Motion Capture . . . ... ..

FUNDAMENTALS

3.1 Camera Models . . . . ... ... ... ... .......
3.1.1 Projective Transformations . . . .. .. ... ..
3.1.2 Intrinsic Parameters . . . . . .. ... ... ...
3.1.3 Extrinsic Parameters . . . . . . . .. .. ... ..
3.1.4 Simplified Camera Models . . . . . ... ... ..

3.2 Human Pose Representations . . . . .. ... ... ...
3.2.1 Coordinate-based Representations . . . . .. ..
3.2.2 Surface Mesh-based Representations . . . . . . .
3.2.3 Subspaces of Human Poses . . . ... ... ...

3.3 Non-Rigid Structure from Motion . . . . . . . ... .. ..

3.4 Error Metrics . . . . . .. ... oo

3.5 Datasets . . . . . ... L

EXPLOITING TEMPORAL PROPERTIES

4.1 Periodic and Non-periodic Constraints . . . . . . . . . ..
4.1.1 Factorization model . . . . . . . . ... ... ...
4.1.2 Camera Parameter Estimation . . ... ... ...
4.1.3 Periodic Motion . . . ... ... ... ... .. ..
4.1.4 Non-Periodic Motion . . . . . .. .. .. ... ...
4.1.5 Algorithm . . . ... ... ... ... .. ......
4.1.6 Experimental Results . . .. ... ... ... ...
4.1.7 Conclusion . .. ... ... ... ... ......

4.2 A Novel Kinematic Chain Space . . . ... ... ... ..
4.2.1 Estimating Camera and Shape . . ... ... ...

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

CONTENTS

5

VI

4.2.2 Kinematic Chain Space . . . .. .. .. ... ...
4.2.3 Trace Norm Constraint . . . . ... ... ... ..
4.2.4 Camera . . . . . ...
4.2.5 Algorithm . . . . ... ... ... ... ...,
4.2.6 Experiments . . ... .. .. ... ... ... ..
4.2.7 Conclusion . . .. ... .. ... ... ...
SINGLE IMAGE RECONSTRUCTION USING ADVERSARIAL
TRAINING
5.1 Method . . .. ... .. ...
5.2 Pose and Camera Estimation . . . ... .. ... .....
5.3 Reprojection Layer . . . . . ... ... ... ... ... ..
5.4 Critic Network . . . . . . ... ... ... ... ......
5.5 Camera . . . . . ... e
5.6 Data Preprocessing . . . . .. .. .. ... L.
5.7 Training . . . . . . .. .. L Lo
58 Results. . . . .. .. .
5.8.1 Quantitative Evaluation on Human3.6M . . . . . .
5.8.2 Quantitative Evaluation on MPI-INF-3DHP . . . .
5.8.3 Plausibility of the Reconstructions . . . . . .. ..
5.8.4 Noisy observations . . . . .. ... ... ......
5.8.5 Qualitative Evaluation . . . . . . .. .. ... ...
5.8.6 Conclusion . . .. .. ... ... ...,
CONCLUSIONS
BIBLIOGRAPHY

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster

101


https://doi.org/10.51202/9783186869104

ACRONYMS

2D

3D
3DPE
AUC
CNN
GAN
GT
KCS
NRSfM
MoCap
MPJPE
PA
PCA
PCK
ReLU
RepNet
StM
SVD
SVT

two-dimensional
three-dimensional

3D Positioning Error

Area Under Curve

Convolutional Neural Network
Generative Adversarial Network
Ground Truth

Kinematic Chain Space
Non-Rigid Structure from Motion
Motion Capture

Mean Per Joint Positioning Error
Procrustes Alignment

Principle Component Analysis

Percentage of Correctly Positioned Keypoints

Rectified Linear Units
Reprojection Network
Structure from Motion
Singular Value Decomposition

Singular Value Thresholding

216.73.216.60, am 24.01.2026, 03:49:40. ©

tersagt, m mit, flir oder in Ki-Syster

VII



https://doi.org/10.51202/9783186869104

NOTATIONS

Numbers and Arrays

A scalar (integer or real)

a A vector

A A matrix

AT Transpose of matrix A

AL Inverse of quadratic matrix A

At Moore-Penrose Pseudoinverse of matrix A
trace(A) Trace of matrix A

lal Vector norm of a

[|A]| Matrix norm of A

|- 17 Frobenius norm

|- 1« Nuclear norm

I, Identity matrix of dimension n x n

Vector of all zeros

1 Vector of all ones
Symbols
X Matrix X € R**J describing a human pose with j joints
Xop Backprojection of X to image coordinates
j Number of joints
b Number of bones
f Number of frames
K Camera matrix containing intrinsic and extrinsic parameters
R Rotation matrix
t Translation vector
T,Y, 2 Coordinates in 3D space
U, v Image coordinates
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w Measurement matrix

Q Linear pose basis

B Bone matrix X € R**® for b bones

C Linear mapping from 3D coordinates into the Kinematic Chain
Space

D Linear mapping from the Kinematic Chain Space to 3D coordi-
nates

v Kinematic Chain Space matrix

N(u,0) Gaussian distribution mean p and standard deviation o

L Loss function

X
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ABSTRACT

This dissertation deals with the problem of capturing human motions
and poses using a single camera. The constantly growing research field
has various applications in medicine, sports, autonomous driving and
human-robot interaction. In contrast to traditional multi-sensor solutions,
this thesis presents different methods employing only a single consumer
camera which opens up a wide variety of new applications.

The first part of the thesis proposes two closely related approaches for
the 3D reconstruction of human motions from image sequences. Since
images taken by a camera are projections of a 3D scene to a 2D plane,
depth information is inevitably lost which gives infinitely many possible
3D reconstructions. To resolve these inherent ambiguities the main idea
of this part is to exploit temporal properties of human motions in
combination with a human body model learned from training data. The
natural assumptions that human motions are smooth and bone lengths
of one person do not change are formulated as smoothness constraints
and a variance minimization. This approach gives pleasing results on
several benchmark datasets. However, it is restricted to the motions
used for training the human body model. Therefore, the body model
is replaced by a more general kinematic chain model in a later step.
This allows for the reconstruction of even subtle motion variations, e. g.
limping instead of walking. The first approach accurately reconstructs
everyday motions even with very noisy input data and occlusions but
struggles to recover small variations in the motion. The second approach
complements the first by also reconstructing these small deviations with
only minor degradation in robustness to noise and occlusions.

The second part of the thesis tackles the problem of reconstructing
a human pose from a single image. As shown in the first part, linear
human body models give a strong prior for possible 3D reconstructions.
However, the space of human poses is highly nonlinear. To this end, a
human body model is learned by training a deep neural network that
covers these non-linearities. Similar previous approaches train neural
networks in a supervised manner using known 2D to 3D correspondences.
Due to the limited amount of diverse training data these models tend
to simply memorize specific poses in the training set and ignore rare
poses. To avoid this a weakly supervised training scheme is proposed
that learns a mapping between distributions of 2D and 3D poses. The
consistency with the 2D observations is enforced by a novel reprojection
layer which projects the estimated 3D poses back to 2D. The performance
is shown on several benchmark datasets and achieves state-of-the-art
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ABSTRACT

results, even compared to supervised approaches. The proposed method
shows improved generalization to uncommon human poses and camera
angles. Interestingly, applying this single image approach to sequences
does not significantly increase the reconstruction errors.

Keywords — Human Motion Capture, Pose Estimation, Camera Esti-
mation, Reprojection Error Optimization.
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KURZFASSUNG

Diese Dissertation befasst sich mit der Erfassung menschlicher Bewe-
gungen und Posen mit einer einzigen Kamera. Dieses stédndig wachsende
Forschungsgebiet hat verschiedene Anwendungen in der Medizin, im
Sport, beim autonomen Fahren und bei der Mensch-Roboter Interaktion.
Im Gegensatz zu traditionellen Multisensorlésungen werden in dieser
Arbeit verschiedene Methoden vorgestellt, die nur eine einzige handelsiib-
liche Kamera verwenden, was eine Vielzahl neuer Anwendungen erdffnet.

Der erste Teil der Arbeit préasentiert zwei eng miteinander verbun-
dene Ansétze zur 3D-Rekonstruktion menschlicher Bewegungen aus
Bildsequenzen. Da es sich bei den von einer Kamera aufgenommenen
Bildern um Projektionen einer 3D-Szene auf eine 2D-Ebene handelt,
gehen zwangslaufig Tiefeninformationen verloren, woraus sich unendlich
viele mogliche 3D-Rekonstruktionen ergeben. Um diese inhdrenten Mehr-
deutigkeiten aufzulésen, besteht die Hauptidee dieses Teils darin, die
zeitlichen Eigenschaften menschlicher Bewegungen in Kombination mit
einem menschlichen Kérpermodell zu nutzen, das aus den Trainingsdaten
gelernt wurde. Die physikalisch gegebenen Annahmen, dass menschli-
che Bewegungen glatt sind und sich die Knochenldngen einer Person
nicht &ndern, werden als Glattheitsbeschrénkungen und als eine Varianz-
minimierung formuliert. Dieser Ansatz fiihrt zu guten Ergebnissen bei
mehreren Benchmark-Datensétzen. Er ist jedoch auf die Bewegungen be-
schrénkt, die fiir das Training des menschlichen Kérpermodells verwendet
werden. Daher wird das Kérpermodell in einem spéteren Schritt durch
ein allgemeineres kinematisches Kettenmodell ersetzt. Dies ermdglicht
die Rekonstruktion selbst subtiler Bewegungsvariationen, z.B. Humpeln
statt Gehen. Der erste Ansatz rekonstruiert die alltéglichen Bewegun-
gen selbst bei stark verrauschten Eingabedaten und Verdeckungen sehr
genau, hat aber Schwierigkeiten, kleine Bewegungsvariationen zu rekon-
struieren. Der zweite Ansatz ergénzt den ersten, indem er ebenfalls diese
kleinen Abweichungen rekonstruiert, wobei die Robustheit gegeniiber
verrauschten Daten nur geringfiigig beeintréchtigt wird.

Der zweite Teil der Arbeit befasst sich mit dem Problem der Rekon-
struktion einer menschlichen Pose aus einem einzigen Bild. Wie im ersten
Teil gezeigt wurde, schranken lineare Modelle des menschlichen Koérpers
mogliche 3D-Rekonstruktionen sehr gut ein. Allerdings ist der Raum der
menschlichen Posen hochgradig nichtlinear. Zu diesem Zweck wird ein
menschliches Koérpermodell gelernt, indem ein tiefes neuronales Netzwerk
trainiert wird, das diese Nichtlinearitéten abdecken kann. Ahnliche friihe-
re Ansétze trainieren neuronale Netze in einer iiberwachten Weise unter

XII
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KURZFASSUNG

Verwendung bekannter 2D-3D-Korrespondenzen. Aufgrund der begrenz-
ten Menge an unterschiedlichen Trainingsdaten neigen diese Modelle
dazu, sich héufig vorkommende Posen im Trainingsdatensatz einfach
zu merken und selten vorkommende Posen zu ignorieren. Um dies zu
vermeiden, wird ein schwach tiberwachtes Trainingsschema vorgeschlagen,
das eine Zuordnung zwischen Verteilungen von 2D- und 3D-Posen lernt.
Die Konsistenz mit den 2D-Beobachtungen wird durch eine neuartige
Riickprojektionsschicht erzwungen, welche die geschétzten 3D-Posen
auf die 2D-Positionen zuriickprojiziert. Die Performanz wird auf meh-
reren Benchmark-Datensitzen gezeigt und erreicht selbst im Vergleich
zu iiberwachten Trainingsansitzen Ergebnisse, die mit dem aktuellen
neuesten Stand der Technik konkurrieren. Die vorgeschlagene Losung
zeigt eine verbesserte Verallgemeinerung auf uniibliche menschliche Po-
sen und Kamerawinkel. Interessanterweise erhoht die Anwendung dieses
Einzelbild-Ansatzes auf Videosequenzen den Rekonstruktionsfehler nicht
signifikant.

Stichworte — Erfassung menschlicher Bewegungen, Poseschitzung, Ka-
meraschétzung, Riickprojektionsfehleroptimierung.

XIII
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INTRODUCTION

With the continuous improvement of technology intelligent machines
more and more influence our daily lives. Nowadays, every smartphone
runs several computer programs that assist the owner, robots autono-
mously clean our homes and self-driving cars will be on the streets in
the near future. To be part of the environment these machines need to
interpret their surroundings and particularly people around them. On
the one hand a machine should assist its owner or other people, but on
the other hand it should not negatively influence them. To this end, it
is essential to understand and interpret human motion, behavior and
intentions. Before a machine is able to achieve this goal it first needs to
capture them and translate its sensory input to a numeric representation.
This task is commonly known as Human Motion Capture (MoCap).

1.1 APPLICATIONS AND COMMERCIAL SYSTEMS

Human Motion Capture has a wide range of applications throughout the
whole society. The entertainment market was one of the first to adapt and
develop MoCap technologies. In movie production motions of human-like
avatars are animated from motions of a human actor that are recorded in
specially equipped MoCap studios. Some of the most remarkable entirely
computer-generated avatars created by MoCap technology are King Kong,
Gollum (Lord of the Rings) and Davy Jones (Pirates of the Caribbean).
The consumer entertainment market also benefits from motions capture
systems in the form of gaming devices such as the Microsoft Kinect [110].
They enable the user to interact with the system through natural gestures
instead of a game controller. When integrated into virtual reality devices,
motion capture systems enable the user to interact more realistically
with the virtual environment in the future. In sports applications, the
motions of athletes can be recorded, visualized and analyzed which
helps to prevent injuries, detect unhealthy motions and optimize the
athletes’ movements. This not only allows physiotherapists to analyze
even subtle motions but also gives the athlete the opportunity to have
an external view on his or her movements. For several years the industry
incorporates collaborative robots into their manufacturing processes.
Instead of being isolated by security fences or walls, collaborative robots
can share a workspace with humans by perceiving their environment with
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multiple sensors. Nowadays, collaborative industrial robots are able to
detect human presence or detect contact with a person by torque sensors.
Combining them with MoCap technology to sense or predict human body
parts will pave the way to a more collaborative workspace and increased
security. Also, mobile platforms in logistics need to perceive humans to
avoid collisions and injuries. In medical applications elderly people can
be monitored to detect falls, or trembling of Parkinson patients can be
quantified to adjust their medication.

For these applications there are several commercial systems available
on the market. The most important ones are optical systems, which can
be grouped into marker-based and markerless systems. In the first group
the three most common professional systems are Vicon [95], Qualisys
[67] and OptiTrack [59]. They require the user to wear a tight suit with
optical markers attached to it. These products achieve highly accurate
3D estimations of the captured person. However, due to the high re-
quirements for specific clothing, markerless solutions are developed. The
most notable ones are available from Simi [77] and The Captury [82].
They achieve similar accuracy as the marker-based systems but can also
capture people in everyday clothing. However, they still require a setup
of multiple calibrated cameras. Other products without cameras exist
using electromagnetic sensors [66], mechanical devices [55] and inertial
measurement units [107]. Since these devices are attached to the human
body they can affect the natural movements of the person. An ideal
system, without the restrictions of all the products mentioned above,
will be non-invasive and requires only a minimal uncalibrated sensor
setup. Cameras as sensors appear to be a reasonable choice since they
are physically non-invasive, produce an information-rich sensor output
and are readily available as consumer products. Therefore, this thesis
deals with human motion capture using only a single camera.

1.2 IMAGE-BASED MOTION CAPTURE

Human motion capture is defined as the process of recording the move-
ment of a person from sensor measurements®. Although every kind of
sensor data, e. g. velocities and accelerations from inertial measurement
units [49], can be utilized to record human motions, in the following
the terms human motion capture or human pose estimation (for a single
pose) refers to 3D reconstructions from data recorded by a camera.

For decades video-based MoCap has been realized by placing optical
markers on the human body and capture them with several synchronized
cameras. The detected markers in each camera are then matched among
them. The 3D positions of the markers are obtained by triangulation or

Here, only the major bones in the body are considered. If additionally hands and
face are regarded it is commonly referred to as Performance Capture.
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é

Figure 1.1: An exemplary camera arrangement of a traditional motion capture
setting [33]. Ten infrared cameras capture the reflecting markers from different
perspectives. Four additional RGB cameras acquire video data with 50H z.

T

similar methods. A standard MoCap setup is shown in Figure 1.1 using
10 infrared cameras and 4 RGB cameras to record a capture space of
3 X 4 meters. This technique has proven to be effective and is marketed
in many commercial products (Section 1.1. However, wearing a marker
suit is impractical in many real-world scenarios and a synchronized multi
(infrared) camera setup is expensive, which limits its applicability to
laboratory setups. Moreover, in scenarios where for instance a mobile
device needs to interpret a human, multiple cameras are impractical
or even infeasible. Therefore, this thesis focuses on the special case of
markerless MoCap from a single monocular camera which can
even be a consumer-grade mobile device. In contrast to other measure-
ment devices, a consumer camera is an inexpensive device that produces
an information-rich output. Moreover, a camera is non-invasive which
means it has no physical impact on the movements of the recorded person.
Due to the amount of data a camera produces, sophisticated computer
vision solutions are required to extract the relevant data from the images.
The extraction of only the meaningful information (i.e. a numerical
description of the human pose) remains a challenge in current MoCap
research. In recent years machine learning approaches have shown great
success in accomplishing this task which is the reason why this thesis
develops and improves state-of-the-art machine learning methods to solve
the 3D pose estimation problem.

From Image to 3D. Reconstructing 3D poses of a human from an
image or video is typically divided into two steps: first detecting the 2D
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20 joint detector

Input image 2D joint detections

Figure 1.2: The reconstruction of a 3D human pose from an image or image
sequence is usually divided into two steps: 1. detecting 2D keypoints in the
image and 2. lifting these detections to 3D. The main part of this thesis, the
3D joint estimation, is marked in green. For better visibility the joints are
connected by lines representing the bones of the underlying kinematic chain.

positions of the major joints, second lifting them to 3D. The steps are
visualized in Figure 1.2. For the detection step many off the shelf joint
detectors are available, including the well known and most used Stacked
Hourglass Networks [58] and the real-time detector OpenPose [14]. The
detection step is followed by the 3D reconstruction step which is the
main focus of this thesis. The goal is to find the correct 3D pose of the
person given 2D joint detections. Since the detections are projections of
the corresponding 3D joints® to the image plane, the depth information
is lost. From geometry follows that a candidate for a 3D point can lie
anywhere on a straight line from the camera center through the 2D
observation. Consequently, the 3D reconstruction from a monocular cam-
era is an ill-posed problem with an infinite number of solutions. Many
approaches exist to solve it that can be roughly divided into two cate-
gories. One category relies only on the detected 2D coordinates for the
3D reconstruction step and ignores the image data. The major advantage
is that the detection and reconstruction steps are modular and can be
interchanged. The other category of approaches learns an end-to-end
system that directly infers a 3D pose from image data. However, most of
them still require an intermediate 2D representation to work properly.
When trained on a specific dataset its characteristic visual features (e. g.
the background structure of indoor scenes) are learned which leads to
exceptional performance on this dataset. Expectedly, the transferability
to other image domains (e.g. outdoor scenes) is not ideal for the major-
ity of these approaches. Since all presented methods in this thesis are

2 More precisely, they are only estimates for the projected 3D joints.
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1.2 IMAGE-BASED MOTION CAPTURE

supposed to reconstruct humans in any scenario, here only detections
are considered. This allows for a generalization to an arbitrary scene as
long as a reliable joint detector is available.

3D Reconstruction. Recovering a 3D structure from monocular image
sequences or even single images is a heavily under-constrained problem.
One possible solution arises if sequences of images are regarded, which
allows for the formulation of temporal priors to resolve depth ambiguities.
This is known as the Structure-from-Motion problem [84] or, in the case
of deforming objects, as the Non-Rigid Structure-from-Motion (NRSfM)
[10] problem. For human motion capture the practical applicability is
limited since all solutions to the NRSfM problem require sufficient ob-
ject or camera motion to work reliably. To this end, two methods are
proposed in this thesis to combine knowledge about human motion and
poses which significantly improve traditional NRSfM approaches and
make them applicable to human motion capture.

If only single images are considered, temporal constraints are no
longer possible. Instead, the only knowledge about the scene is the
presence of a person. Therefore, it appears reasonable to formulate a
mathematical model of the human body that can be used to derive
meaningful constraints for the solution space. Most recent approaches
either describe the human body using joint angles or 3D coordinates of
the major joints:

1. In accordance with the major joint types of the human body, namely
ball, saddle and hinge joints, the human pose can be described
by one, two or three angles per joint and the respective bone
lengths. This representation separates the body configuration from
anthropometric properties (e. g. bone lengths) and is therefore well-
suited for motion analysis. However, projecting from joint angles
to 2D key points requires multiple nonlinear processing steps.

2. A simple and intuitive representation is to describe a joint using
its 3D coordinates. It can be easily projected to a 2D plane using
simple matrix multiplications. In contrast to joint angles, properties
of the human skeleton, e. g. constant bone length and symmetry,
have to be enforced implicitly during the 3D reconstruction.

Both variants require a large number of variables to describe a single
human pose, which are unknowns in the 3D reconstruction process. To
reduce them and simplify the reconstruction a promising approach is to
learn a subspace by a principal component analysis (PCA) [19] or similar
methods. Most practicable methods are linear mappings from the data
space into the subspace and vice versa. However, human motions are
highly nonlinear and thus linear mappings appear to be not an optimal
choice. For this reason, a method using a Generative Adversarial Neural
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Network (GAN) [21] to learn a nonlinear subspace of human poses is
proposed.

1.3 CONTRIBUTIONS

The goal of this thesis is to reconstruct 3D human poses from monocular
images or videos. The presented contributions look at the problem from
two perspectives:

1. Human movements are subject to several temporal constraints.
For this reason, physically grounded assumptions are made on
smooth motions, bone lengths constancy and symmetry. They are
formulated to improve traditional NRSfM approaches for human
MoCap.

2. Since human motions are highly nonlinear a Generative Adversarial
Network is used to learn a space of plausible human poses. It is com-
bined with a novel reprojection layer included into a neural network
(called RepNet) that enforces consistency with 2D observations.

1.3.1 Time Consistent Human Motion Reconstruction

Given a time series of human poses a feasible assumption is that specific
properties of the human body only slightly change from frame to frame
or do not change at all: for instance, bone lengths remain constant in the
3D domain for the same person throughout a recorded sequence. Even
for an unknown 3D skeleton this assumption is still valid although the
exact bone lengths are unknown. This thesis formulates this fact as a
minimization of the bone length changes over time. Since the changes
instead of the absolute lengths are minimized the proposed solution is
independent of an anthropometrically predefined skeleton. This led to
plausible and temporally stable reconstructions. However, each human
pose is defined by a previously learned PCA basis of poses and therefore
does not cover all possible human poses.

To generalize, the bone lengths constancy assumption was relaxed and
reformulated as a nuclear norm optimization problem in [98]. Here, only
a known kinematic structure needs to be enforced which was done by
developing the Kinematic Chain Space (KCS). The proposed simple yet
effective algorithm can be applied to every kinematic chain and is not
restricted to human poses. A variation of the KCS is later applied for
single image 3D human pose reconstruction in [99].

Summary of contributions:

e A method to formulate a temporal bone length constancy constraint
as a variance minimization problem.
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e A novel representation of human poses that efficiently encodes a
kinematic chain in a Kinematic Chain Space (KCS).

e A nuclear norm based optimization which is derived by a relaxation
of a bone length constancy constraint based on the KCS.

1.3.2 RepNet

In order to reconstruct a human pose, it needs to be mathematically
represented. There are several representations in the literature. The
most common ones are based on 3D coordinates of major joints of
the human body or joint angles. The variety of human poses includes
strong redundancies, e.g. the possible positions of the left hand are
constrained by the position of the left elbow. Therefore, dimensionality
reduction techniques, e.g. PCA, are helpful to reduce the number of
variables. Although widely used PCA or similar methods only apply linear
transformations. However, human poses are highly nonlinear. Therefore,
a novel representation based on discriminator networks is proposed in
Chapter 5. In contrast to previous approaches that apply neural networks
to directly regress 3D coordinates of the skeletal joints from 2D inputs
[51], a generative adversarial network (GAN) [21] is trained to achieve
a mapping from a distribution of 2D poses to a distribution of feasible
3D poses. To enable the discriminator network to learn anthropometric
properties, such as bone lengths and symmetries, it is extended by a
layer implementing the mapping into the kinematic chain space which
turned out to be very effective. By combining the GAN with a novel
layer called reprojection layer that projects the 3D pose back to 2D the
complete network is trained in a weakly supervised fashion and gives the
proposed method its name RepNet. In contrast to supervised approaches,
this weakly supervised training helps immensely to avoid overfitting.
Summary of contributions:

e A discriminator network that distinguishes predicted 3D coordi-
nates from valid human poses.

e A kinematic chain space layer that enables the discriminator to
learn anthropometric properties.

e A neural network motivated by GANs combined with a novel
reprojection layer to infer 3D human poses from 2D detection.

1.4 STRUCTURE OF THE THESIS

The remainder of this thesis is structured in the following parts and
visualized in Figure 1.3:
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Chapter 2: An overview of the related work. To give a concise overview
of existing methods for human pose estimation the research in the three
fields non-rigid structure from motion, time consistent motion capture
and single image pose estimation are presented and discussed.

Chapter 3: The fundamentals of human pose estimation and 3D recon-
struction are introduced. Different camera representations are described.
Dimensionality reduction techniques are explained and embedded in the
context of human pose estimation.

Chapter 4: Two methods are proposed that exploit temporal properties
of human movements. The first approach formulates a bone lengths con-
stancy constraint as a variance minimization. It is based on a previously
learned PCA basis of human poses. The second approach introduces
the Kinematic Chain Space (KCS) which is employed to relax the bone
length consistency formulation of the first approach. The nuclear norm
optimization derived using the KCS allows for generalization to a larger
set of human poses and can recover even subtle changes in human poses.

Chapter 5: This chapter presents RepNet, a neural network to directly
infer 3D joint coordinates from 2D observations. It combines Generative
Adversarial Networks with a novel reprojection layer. This layer ensures
that the recovered human pose is not only anthropometrically correct
but also satisfies reprojection constraints. The discriminator of the GAN
is enriched with a mapping into the KCS from the previous chapter. In
contrast to previous works, the complete network is trained in a weakly
supervised fashion such that it efficiently avoids overfitting.

Chapter 6: The work is concluded and an outlook to future work
is given.
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1.5

LIST OF PUBLICATIONS

This chapter lists the publications written during the time at TNT. Sec-
tion 1.5.1 contains publications related to this thesis. Parts of this thesis
are taken from these publications. Section 1.5.2 lists other publications
in the fields of video coding and machine learning.

1.5.1 Human Motion Capture

[96]

[97]

10

Bastian Wandt, Hanno Ackermann, Bodo Rosenhahn. 3D Human
Motion Capture from Monocular Image Sequences. In: Proc. of

the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2015.

This paper tackles the problem of estimating non-rigid human 3D
shape and motion from image sequences taken by uncalibrated
cameras. Similar to other state-of-the-art solutions we factorize
2D observations in camera parameters, base poses and mixing
coefficients. Existing methods require sufficient camera motion
during the sequence to achieve a correct 3D reconstruction. To
obtain convincing 3D reconstructions from arbitrary camera motion,
our method is based on a-priorly trained base poses. We show that
strong periodic assumptions on the coefficients can be used to define
an efficient and accurate algorithm for estimating periodic motion
such as walking patterns. For the extension to non-periodic motion
we propose our novel regularization term based on temporal bone
length constancy. In contrast to other works, the proposed method
does not use a predefined skeleton or anthropometric constraints
and can handle arbitrary camera motion. Multiple experiments
based on a 3D error metric demonstrate the stability of the proposed
method. Compared to other state-of-the-art methods our algorithm
shows a significant improvement.

Bastian Wandt, Hanno Ackermann, Bodo Rosenhahn. 3D Recon-
struction of Human Motion from Monocular Image Sequences. In:
Transactions on Pattern Analysis and Machine Intelligence, 2016.

This article tackles the problem of estimating non-rigid human 3D
shape and motion from image sequences taken by uncalibrated
cameras. Similar to other state-of-the-art solutions we factorize
2D observations in camera parameters, base poses and mixing
coefficients. Existing methods require sufficient camera motion
during the sequence to achieve a correct 3D reconstruction. To
obtain convincing 3D reconstructions from arbitrary camera motion,
our method is based on a-priorly trained base poses. We show that
strong periodic assumptions on the coefficients can be used to define
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an efficient and accurate algorithm for estimating periodic motion
such as walking patterns. For the extension to non-periodic motion
we propose a novel regularization term based on temporal bone
length constancy. In contrast to other works, the proposed method
does not use a predefined skeleton or anthropometric constraints
and can handle arbitrary camera motion. We achieve convincing 3D
reconstructions, even under the influence of noise and occlusions.
Multiple experiments based on a 3D error metric demonstrate the
stability of the proposed method. Compared to other state-of-the-
art methods our algorithm shows a significant improvement.

Petrissa Zell, Bastian Wandt, Bodo Rosenhahn. Joint 3D Human
Motion Capture and Physical Analysis from Monocular Videos. In:
Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017.

Motion analysis is often restricted to a laboratory setup with multi-
ple cameras and force sensors which requires expensive equipment
and knowledgeable operators. Therefore it lacks in simplicity and
flexibility. We propose an algorithm combining monocular 3D pose
estimation with physics-based modeling to introduce a statisti-
cal framework for fast and robust 3D motion analysis from 2D
video-data. We use a factorization approach to learn 3D motion
coefficients and join them with physical parameters, that describe
the dynamic of a mass-spring-model. Our approach does neither
require additional force measurement nor torque optimization and
only uses a single camera while allowing to estimate unobservable
torques in the human body. We show that our algorithm improves
the monocular 3D reconstruction by enforcing plausible human
motion and resolving the ambiguity of camera and object motion.
The performance is evaluated on different motions and multiple
test data sets as well as on challenging outdoor sequences.

Thiemo Alldieck, Marc Kassubeck, Bastian Wandt, Bodo Rosen-
hahn, Marcus Magnor. Optical Flow-based 3D Human Motion
Estimation from Monocular Video. In: Proc. of the German Con-
ference on Pattern Recognition, 2017.

This paper presents a method to estimate 3D human pose and
body shape from monocular videos. While recent approaches infer
the 3D pose from silhouettes and landmarks, we exploit properties
of optical flow to temporally constrain the reconstructed motion.
We estimate human motion by minimizing the difference between
computed flow fields and the output of our novel flow renderer. By
just using a single semi-automatic initialization step, we are able to
reconstruct monocular sequences without joint annotation. Our test
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[109

[97]

[99]

12

scenarios demonstrate that optical flow effectively regularizes the
under-constrained prob- lem of human shape and motion estimation
from monocular video.

Petrissa Zell, Bastian Wandt, Hanno Ackermann, Bodo Rosen-
hahn. Physics-based Models for Human Gait Analysis. In: Springer
Handbook of Human Motion, 2018.

This chapter deals with fundamental methods as well as current
research on physics-based human gait analysis. We present valuable
concepts that allow efficient modeling of the kinematics and the
dynamics of the human body. The resulting physical model can
be included in an optimization-based framework. In this context,
we show how forward dynamics optimization can be used to deter-
mine the producing forces of gait patterns. To present a current
subject of research, we provide a description of a 2D physics-based
statistical model for human gait analysis that exploits parameter
learning to estimate unobservable joint torques and external forces
directly from motion input. The robustness of this algorithm with
respect to occluded joint trajectories is shown in a short experiment.
Furthermore, we present a method that uses the former techniques
for video-based gait analysis by combining them with a nonrigid
structure from motion approach. To examine the applicability of
this method, a brief evaluation of the performance regarding joint
torque and ground reaction force estimation is provided.

Bastian Wandt, Hanno Ackermann, Bodo Rosenhahn. A Kine-
matic Chain Space for Monocular Motion Capture. In: Proc. of
the European Conference on Computer Vision Workshops, 2018.

This paper deals with motion capture of kinematic chains (e. g.
human skeletons) from monocular image sequences taken by un-
calibrated cameras. We present a method based on projecting an
observation onto a kinematic chain space (KCS). An optimization
of the nuclear norm is proposed that implicitly enforces structural
properties of the kinematic chain. Unlike other approaches our
method is not relying on training data or previously determined
constraints such as particular body lengths. The proposed algo-
rithm is able to reconstruct scenes with little or no camera motion
and previously unseen motions. It is not only applicable to human
skeletons but also to other kinematic chains for instance animals
or industrial robots. We achieve state-of-the-art results on different
benchmark databases and real world scenes.

Bastian Wandt, Bodo Rosenhahn. RepNet: Weakly Supervised
Training of an Adversarial Reprojection Network for 3D Human
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Pose Estimation. In: Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

This paper addresses the problem of 3D human pose estimation
from single images. While for a long time human skeletons were
parameterized and fitted to the observation by satisfying a repro-
jection error, nowadays researchers directly use neural networks to
infer the 3D pose from the observations. However, most of these
approaches ignore the fact that a reprojection constraint has to be
satisfied and are sensitive to overfitting. We tackle the overfitting
problem by ignoring 2D to 3D correspondences. This efficiently
avoids a simple memorization of the training data and allows for a
weakly supervised training. One part of the proposed reprojection
network (RepNet) learns a mapping from a distribution of 2D poses
to a distribution of 3D poses using an adversarial training approach.
Another part of the network estimates the camera. This allows for
the definition of a network layer that performs the reprojection of
the estimated 3D pose back to 2D which results in a reprojection
loss function.

Our experiments show that RepNet generalizes well to unknown
data and outperforms state-of-the-art methods when applied to
unseen data. Moreover, our implementation runs in real-time on a

standard desktop PC.

1.5.2 Other Publications

Bastian Wandt, Thorsten Laude, Yiqun Liu, Bodo Rosenhahn,
Jorn Ostermann. Extending HEVC Using Texture Synthesis. In:
Proc. of the IEEE Visual Communications and Image Processing,
2017.

The High Efficiency Video Coding (HEVC) standard provides su-
perior coding efficiency compared to its predecessors. Nevertheless,
the encoding of complex and thus hardly to predict textures either
requires high bit rates or results in low quality of the reconstructed
signal. To compensate for this limitation of HEVC, we propose a
sophisticated texture synthesis framework which solves multiple
lacks of previous texture synthesis approaches. By easing the bit
rate cost for synthesizable regions and reallocating the freed bit
rate resources to non-synthesizable regions, we are able to achieve
average BD-rate gains of 21.9% for all-intra, 17.6% for low de-
lay, and 16.3% for random access, respectively, while maintaining
the same objective quality for the latter. Subjective tests for the
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synthesizable regions confirm the objectively measured convincing
results.

Bastian Wandt, Thorsten Laude, Bodo Rosenhahn, Jérn Os-
termann. Detail-aware image decomposition for an HEVC-based
texture synthesis framework. In: Proc. of the Data Compression
Conference, 2018.

Modern video coding standards like High Efficiency Video Coding
(HEVC) provide superior coding efficiency. However, this does
not state true for complex and hard to predict textures which
require high bit rates to achieve a high quality. To overcome this
limitation of HEVC, texture synthesis frameworks were proposed
in previous works. However, these frameworks only result in good
reconstruction quality if the decomposition into synthesizable and
non-synthesizable regions is either known or trivial. The frameworks
fail for more challenging content, e.g. for content with fine non-
synthesizable details within synthesizable regions. To enable texture
synthesis-based video coding with high quality for this content, we
propose sophisticated detail-aware decomposition techniques in this
paper. These techniques are based on an initial coarse segmentation
step followed by a refinement step that detects even small differences
in the previously segmented region. With this new approach, we
are able to achieve average luma BD-rate gains of 13.77 % over
HEVC and 3.03 % over the closest related work from the literature.
Furthermore, the considerably improved visual quality in addition
to the bit rate savings is confirmed by comprehensive subjective
tests.

Bastian Wandt, Thorsten Laude, Bodo Rosenhahn, Jérn Os-
termann. Extending HEVC with a Texture Synthesis Framework
using Detail-aware Image Decomposition. In: Proc. of the Picture
Coding Symposium, 2018.

In recent years, there has been a tremendous improvement in video
coding algorithms. This improvement resulted in 2013 in the stan-
dardization of the first version of High Efficiency Video Coding
(HEVC) which now forms the state-of-the-art with superior coding
efficiency. Nevertheless, the development of video coding algorithms
did not stop as HEVC still has its limitations. Especially for com-
plex textures HEVC reveals one of its limitations. As these textures
are hard to predict, very high bit rates are required to achieve a
high quality. Texture synthesis was proposed as solution for this
limitation in previous works. However, previous texture synthesis
frameworks only prevailed if the decomposition into synthesizable
and non-synthesizable regions was either known or very easy. In
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this paper, we address this scenario with a texture synthesis frame-
work based on detail-aware image decomposition techniques. Our
techniques are based on a multiple-steps coarse-to-fine approach in
which an initial decomposition is refined with awareness for small
details. The efficiency of our approach is evaluated objectively and
subjectively: BD-rate gains of up to 28.81% over HEVC and up to
12.75% over the closest related work were achieved. Our subjective
tests indicate an improved visual quality in addition to the bit rate
savings.

Florian Kluger, Christoph Reinders, Kevin Raetz, Philipp Schelske,
Bastian Wandt, Hanno Ackermann, Bodo Rosenhahn. Region-
based Cycle-Consistent Data Augmentation for Object Detection.
In: Proc. of the IEEE International Conference on Big Data Work-
shops, 2018.

Roads constitute a major part of the lives of everybody. Heavy use,
for instance by cars and especially trucks, and even soil movement
lead to visible damages. While major roads are regularly inspected,
smaller roads often lack attention. It is therefore of great interest
to have camera-based systems which can automatically detect and
even classify damages. This report presents a system developed
by the authors as part of the Road Damage Detection and Classi-
fication Challenge at the 2018 IEEE Big Data Cup [47]. Further
contributions made here are techniques to augment the small set of
training data. As a major contribution we also propose refinements
to the dataset and evaluation metric to improve the challenge.

Marco Rudolph, Bastian Wandt, Bodo Rosenhahn. Structuring
Autoencoders. In: Proc. of the IEEE International Conference on
Computer vision Workshops, 2019.

In this paper we propose Structuring AutoEncoders (SAE). SAEs
are neural networks which learn a low dimensional representation
of data and are additionally enriched with a desired structure in
this low dimensional space. While traditional Autoencoders have
proven to structure data naturally they fail to discover semantic
structure that is hard to recognize in the raw data. The SAE solves
the problem by enhancing a traditional Autoencoder using weak
supervision to form a structured latent space. In the experiments
we demonstrate, that the structured latent space allows for a
much more efficient data representation for further tasks such as
classification for sparsely labeled data, an efficient choice of data to
label, and morphing between classes. To demonstrate the general
applicability of our method, we show experiments on the benchmark
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image datasets MNIST, Fashion-MNIST, DeepFashion2 and on a
dataset of 3D human shapes.
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RELATED WORK

The following chapter presents an overview over the related work. Sec-
tion 2.1 briefly reviews the most important works in the field of non-rigid
structure from motion which is closely related to the first part of the
thesis, see Chapter 4. Section 2.2 discusses several methods for single
image 3D human pose estimation. In Section 2.3 the rather small amount
of publications in the field of time consistent human motion capture is re-
viewed. Commonly used error metrics and MoCap datasets are discussed
in the subsequent chapter in Section 3.4 and 3.5.

2.1 NON-RIGID STRUCTURE-FROM-MOTION

In 1992 Tomasi and Kanade [84] presented the first factorization based
approach for a set of 2D points tracked over a sequence. The presented
factorization allowed for the reconstruction of the underlying rigid 3D
scene. They decomposed the input data via a Singular Value Decompo-
sition (SVD) into two sets of variables, one of which is associated with
the motion parameters, the other with the coordinates of the rigid 3D
structure. An extension to Tomasi and Kanade’s approach was proposed
in 2000 by Bregler et al. [10] which generalizes it to deforming shapes.
They expressed the 3D shape in any particular frame as a linear combi-
nation of multiple rigid basis shapes. Different priors such as Gaussian
assumptions or rank constraints were used by Torresani et al. [85-87]
to avoid the troublesome step of non-rigid self-calibration. The basis
shapes of Bregler et al. [10] are ambiguous as shown by Xiao et al. [106].
They proposed to employ constraints on the basis shapes to resolve the
ambiguity. Later, Akhter et al. [2] showed that these basis constraints
are still not sufficient to resolve the ambiguity. They exploit the duality
of an object-independent trajectory basis and the formerly used shape
basis. By employing a Discrete Cosine Transform (DCT) basis as the
trajectory basis the number of unknown parameters is significantly re-
duced. The idea of [2] was taken over by Gotardo and Martinez [23] who
applied the DCT representation to enforce a smooth 3D shape trajectory.
Since the DCT basis restricts the reconstructions to specific predefined
frequencies Gotardo and Martinez [22] proposed another solution that
uses the kernel trick to model the nonlinear deformations. The kernel
trick was also applied by Hamsici et al. [26] to learn a mapping between
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the 3D shape and the 2D input data. Activity-independent spatial and
temporal constraints were introduced by Park et al. [61]. Valmadre et al.
[94] took inspiration from [2] and [61] which lead to a dynamic program-
ming approach combined with temporal filtering. Dai et al. [17] impose a
sparsity constraint and formulates it as a minimization of the trace norm
of the transformation matrix. To avoid the sparsity constraint Lee et al.
[41] define additional constraints on motion parameters. Rehan et al. [70]
were the first to propose a reconstruction method for rigidly deforming
objects, such as human skeletons. This is achieved by factorizing only a
small number of consecutive frames.

Although the above approaches are targeted to reconstruct arbitrary
deforming objects, they are also suitable for the special case of human
motion capture. Indeed, there is a human motion sequence in the NRSfM
benchmark dataset of [23]. However, due to the more general formulation
of the problem, there are several constraints on the setting that need to
be satisfied. The most concerning one regarding human motion capture is
the need for a large camera motion. Therefore, it is impractical for most
in-the-wild motion capture scenarios. The works [96-98] that are part of
this thesis present how to efficiently solve this problem by introducing
knowledge about human skeletons to the NRSfM problem. Further infor-
mation and detailed discussions about other works on NRSfM can be
found in [60].

2.2 SINGLE IMAGE APPROACHES

The research field of human pose estimation is constantly growing and
there is a vast amount of publications. This section summarizes only the
most relevant works that left an impact and guided future research. An
exhaustive overview can be found in [74]. The recovery of a 3D human
pose from a single image dates back to the work of Lee and Chen [40]
in 1985. They use a binary decision tree and a known skeletal model of
the person in the image. The more recent approaches can be roughly
divided into two categories. The first group contains optimization-based
approaches. The basic idea is to deform a predefined or learned 3D
human body model such that it satisfies a reprojection error, i.e. the
distance of the given 2D points to the inferred 3D points backprojected
to 2D'. The second category contains fairly new approaches benefiting
from the recent rise of neural networks. They try to estimate 3D poses
directly from images or keypoints detected by a 2D joint detector.

The definition of the backprojection error can be found in Section 3.2.
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2.2 SINGLE IMAGE APPROACHES

2.2.1 Reprojection Error Optimization

Jiang [34] divides a pose into the upper and lower body and searches a
database of more than a million poses for the best fitting pose. Chen and
Ramanan [15] follow a similar approach by finding the nearest neighbor
from large human pose database which best fits the observations. Since
this simple database lookup is very expensive a widely used approach
is to compress the knowledge from these databases in an overcomplete
dictionary by either using principal component analysis (PCA) or another
dictionary learning method. The most common method is to use a linear
basis for 3D human poses which is obtained by a PCA basis. Wei et al.
[104] define bone symmetry constraints and rigid body constraints to
restrict the solution space. Ramakrishna et al. [68] propose a regulariza-
tion term based on known proportions in the human body. They also
develop a method called Projected Matching Pursuit for the coordinate
descent on the reprojection error objective function. The approach of
[68] was extended by Wang et al. [103] with a sparsity regularization of
the base pose coefficients. Simo-Serra et al. [78] sample a large amount
of 3D pose candidates that satisfy the reprojection constraint and in a
second step select the most plausible pose in terms of anthropometric
regularity. Akhter et al. [1] calculate joint angle limits for the main body
joints to enforce more plausible 3D reconstructions. Zhou et al. [112]
developed a convex relaxation for the reprojection error.

2.2.2  Direct Inference using Neural Networks

Recently, neural networks are directly applied to regress a 3D human
pose either from image data directly or from 2D joint detections in a
preprocessing step. Li et al. [42] were the first to learn CNNs to directly
regress a 3D pose from image input. By integrating a structured learning
framework into CNNs they later improved their work [43]. Tekin et al.
[81] introduce a deep learning architecture that relies on an overcomplete
autoencoder. Park et al. [63] learn relative 3D positions between joints.
To facilitate depth estimation Du et al. [18] integrated height maps into
their framework. A transfer learning approach is introduced by Mehta
et al. [52] to allow for in-the-wild pose estimation of datasets where
no training data is available. They also released a new dataset called
MPI-INF-8DHP containing more diverse poses than existing datasets
at that time. This framework was later extended by Mehta et al. [53] to
achieve real-time performance. A voxel-based approach is introduced by
Pavlakos et al. [64]. Another real-time approach is proposed by Rogez
et al. [72] that is capable of reconstructing several persons in one image.
Luo et al. [45] represent a human pose by using limb orientations.
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RELATED WORK

There are other approaches that do not consider the image data directly
but use a pretrained 2D joint detector. Moreno-Noguer [56] represents a
human pose as a distance matrix and learns a mapping from 2D to 3D
distance matrices. Martinez et al. [51] directly train a neural network on
2D detections and 3D ground truth. It achieves an impressive performance
on the benchmark dataset Human3.6M [33]. However, this approach is
very sensitive to overfitting on a specific dataset since it has significantly
more parameters than poses in the training set of Human3.6M. Instead of
learning an understanding of the structure of a human pose this indicates
a simple memorization of poses. The approach of [51] was extended by
Hossain et al. [69] by employing a recurrent neural network for sequences
of human poses.

2.3 TIME CONSISTENT HUMAN MOTION CAPTURE

Exploiting temporal coherence in image sequences appears to be a promis-
ing approach to resolve the natural ambiguities that occur from projecting
3D points to 2D. Temporal properties are difficult to formulate as an
optimization problem that can be solved uniquely. The most important
approaches are summarized in the following. An exhaustive overview can
be found in [74].

Early works on human pose estimation from image sequences build
volumetric body models by approximating each major body joint as
a tube or similar geometric shape and project it to the semantically
segmented image plane |9, 76]. Wei and Chai [104] apply a parameterized
human body model and deform it to fit the 2D observations. They
enforce rigidity constraints in several frames and estimate camera and
body pose by a nonlinear optimization algorithm. Valmadre and Lucey
[93] contradicted some of the statements in [104]. They found that
rigidity constraints are not sufficient for a unique solution and should
only be enforced on sub-structures. They proposed an approach using
deterministic structure from motion based on assumptions of rigidity only
in the body’s torso. Tekin et al. [80] use convolutional neural networks
to estimated a spatio-temporal volume of bounding boxes. These are
used to regress the 3D pose in the central frame. In a later work [81]
they employ an autoencoder trained on existing human poses to learn a
structured latent representation of the human pose in 3D. Other latent
variable models are also used by some authors [4, 79, 83, 108]. The
most recent works used a learned pose basis and enforce temporal bone
length constancy constraints [97, 98]? or recurrent neural networks [69]. A
different approach is taken by Alldieck et al. [3]. They estimate the optical

Parts of this thesis are based on these publications.
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2.3 TIME CONSISTENT HUMAN MOTION CAPTURE

flow between two consecutive frames and use a differentiable renderer to
produce an artificial optical flow that best matches the observation.
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This chapter explains the fundamental mathematical concepts used in
this thesis. In Section 3.1 an overview over different camera models and
their simplifications is given which is mainly based on [27]. Represen-
tations of human poses used in this thesis are explained in Section 3.2.
Additionally, linear subspaces (e. g. obtained by a PCA) and nonlinear
(e. g. learned by neural networks) of human poses are introduced. The ba-
sics of factorization based (non-rigid) structure from motion approaches
are explained in Section 3.3. Common error metrics to evaluate the qual-
ity of the 3D reconstructions are discussed in Section 3.4. The datasets
used for training and evaluation are described in Section 3.5.

3.1 CAMERA MODELS

image plane pinhole virtual image plane 3D object

focal length

Figure 3.1: The pinhole camera model. The light emitted by a 3D object enters
a dark box through a small hole and produces an inverted 2D image.

This section explains and derives the different camera models used in
this thesis. A brief discussion on the applicability of the different models
in the context of monocular human motion capture is given.

The common pinhole camera model is visualized in Figure 3.1. A
3D object can be seen through a small pinhole in an otherwise opaque
plane. If an image plane is placed behind the pinhole the 3D object gets
projected to this plane. The distance from the image plane to the pinhole
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3.1 CAMERA MODELS

image plane_ projection ':‘
line “
’—"'H_F‘-/-

S

Y ]
X -l
/__#_,.-’-’"'—/
Z  optical z
axis
I f 1

Figure 3.2: Mathematical description of the pinhole camera model.

is called focal length f. Since the rays of light from the object through
the pinhole are straight the 2D projection appears inverted on the image
plane. From symmetry follows that there is an inverted image plane in
front of the pinhole, called the virtual image plane. The distance of the
virtual image plane to the pinhole is again the focal length. Note that
this is an idealized model with an infinitely small pinhole.

3.1.1 Projective Transformations

Mathematically a camera performs a projective transformation of the
points of the observed 3D scene to map them to the image plane. In
contrast to Euclidean transformations a projective transformation only
maps straight lines to straight lines but does not preserve angles and
distances. In Euclidean space two parallel lines do not have an intersection
or are sometimes referred to as having an intersection at infinity. These
points do not exist in Euclidean space. However, 3D points at infinity can
get projected to a 2D image plane. For example, if two parallel lines in
3D space are observed on the image plane they meet in a specific point,
which is called the vanishing point. To describe these projections of points
at infinity homogeneous coordinates can be used. By definition, a point
in 2D Euclidean space is described by the pair (z,y) and is extended to
homogeneous coordinates by the triplet (z,y,1). Moreover, each triplet
(kz, ky, k) with k € R corresponds to the same point in Euclidean space.

By using homogeneous coordinates cameras can be described as a linear
map of a point P = (x,y, z,1)7 to its projected point P’ = (u,v,w)” on
the image plane which is visualized in Figure 3.2. (z,y, z) are the 3D
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coordinates of P and (u/w,v/w) are the 2D image coordinates of P’.
Let K € R*** be a linear map that projects P to P’ by

P' =KP. (3.1)

The matrix K is called camera matriz in this thesis. The camera matrix
can be decomposed into an intrinsic and ezrtrinsic parameter matrix by

P'=KP = C;,C..P, (3.2)

where C;,, € R®** and C,, € R*** contain the intrinsic and extrinsic
parameters, respectively. The intrinsics model the internal camera proper-
ties such as focal length, center point and distortion. They are described
in Section 3.1.2. The extrinsics describe the rotation and translation
from a global coordinate system to the camera coordinate system and
are explained in Section 3.1.3.

3.1.2 Intrinsic Parameters

x
Reconsidering Figure 3.2 the 3D point P = | 4 | in the camera coordi-

z
nate system is projected to the image plane. From symmetry follows

and v v

with u, v as the image coordinates of the projected point P. The projec-
tion P’ of the point P is obtained by

SR

Using homogeneous coordinates for the 2D projections it can be written
as

U f x f 0 0 T 1 x
_f _ 1 _le., , 3.6
Slvl=210 £ ofy|[=3 y (3.6)
1 ? 0 0 1 z z
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3.1 CAMERA MODELS

where Cj, is the matrix containing the intrinsic camera parameters. If
the origin of the image plane is not at the center but at the point <Cu)
Cy

the matrix Cj, in Eq. (3.6) extends to

f 0 cu
0 0 1

In real-world cameras the pixels are not perfectly square and the
projection plane can be slightly skewed which can be modeled using the
stretching parameters d, e and the skew parameter o by

df o cu
Cin=|0 ef ¢ |- (3-8)
0o 0 1

If the 3D point is described by homogeneous coordinates Eq. (3.8) is
written as

df o ¢ 0
Cin=1|0 ef ¢ O0]- (3.9)
0 0 1 0

Since the methods proposed in this thesis employ no camera intrin-
sics calibration step, distortions from manufacturing inaccuracies are
neglected. Additionally assuming that the 2D coordinate origin is at the
center C;,, simplifies to

f 000
Con=10 f 0 0 (3.10)
00 1 0

3.1.3 Extrinsic Parameters

The extrinsic parameters describe the rotation and translation to a global
coordinate system. Let Px be the 3D point P in the camera coordinate
system. Applying only rotation and translation Pk is calculated by

Px = RP +1, (3.11)

where R € R3*3 is a rotation matrix and t € R® is a vector containing
the translational components. The rotation matrix is orthonormal, i.e.
RTR =1Is0r R™! = R”. Since reflections of 3D objects are impossible to
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achieve by physical manipulation in the real world the second important
property is det(R) = 1. Therefore, R belongs to the group known as the
special orthogonal group SO(3).

To avoid the summation in Eq. (3.11) it is written in homogeneous

coordinates
P} _ (B E) (P (3.12)
1 0 1 1

where 0 = (0 0 0). Combined with the intrinsic camera matrix from

Eq 3.10 it leads to the final formulation for the projection to the image
plane

u L (f 000y L, *
Y

=—1o0 0 0 , 3.13

v P f <0 1) i ( )
0 0 1 0 1

where zk is the z component of the rotated and translated point P.

3.1.4  Simplified Camera Models

This thesis proposes several approaches for 3D reconstruction of non-rigid
objects from multiple keypoints detected in monocular images without
a previously calibrated camera and without knowledge about the exact
shape of the observed object. According to Eq. (3.6) the 2D position
of each point depends on its respective depth. Since the depth of each
point is unknown this results in infinitely many solutions for the 3D
object given only the 2D points. One possible solution to this problem is
a relaxation of Eq. (3.6) to a weak perspective (or scaled orthographic)
projection. For objects with minor deviations in z-direction compared
to the distance to the camera it can be assumed that all points on the
object lie on a plane parallel to the image plane with distance zp. This
is done by relaxing Eq. (3.6) using only a single scale component s = %
which leads to

U s 0 O T
1 0 0 1 1

Visually it can be seen as an orthogonal projection of each point to a
plane with distance zo to the image plane, as seen in Figure 3.3b.

Eq. (3.14) can be relaxed further to an orthographic projection with
s = 1, i.e. C;, = Is. Geometrically this equals to a scene at infinite
distance from the camera or equivalently an optical center at infinity. All
projection lines are parallel to the optical axis. A visual comparison of the
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(a) Perspective camera.

(b) Weak perspective camera.

)

(c¢) Orthographic camera.

Figure 3.3: Comparison of perspective, weak perspective and orthographic
camera models.
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camera models can be seen in Figures 3.3a, 3.3b and 3.3c. Early works
on structure from motion e.g. [84] assumed an orthographic projection
of the observed object.

In this thesis only weak perspective projections are used. By centraliz-
ing the 2D and 3D data points the translation component becomes zero
and the homogeneous coordinates can be avoided. Eq. (3.13) can then

be written as
T
(Z) =sR |y, (3.15)

z

where~R € R?*3 is the first and second row of a rotation matrix. Note
that R is not a rotation matrix since it is not quadratic.

3.2 HUMAN POSE REPRESENTATIONS

Human poses can be mathematically represented in various ways. The
most common ones are based on the skeleton of the human body. De-
pending on the task only the major joints or every single joint of this
skeleton may be regarded. This can simply be defined by the 3D coordi-
nates of these joints which is discussed in Section 3.2.1. Human poses
can also be described by the angles between joints using exponential
maps and twists. Since these descriptions are not considered this the-
sis the reader is referred to [57]. Particularly with the improvement of
3D scanning technology volumetric body shape models caught recent
attention (Section 3.2.2). In contrast to skeletal models, they allow for a
precise definition of the human body shape. Since both representations
have a large number of variables different subspaces of human poses
are discussed in Section 3.2.3. These different representations will be
introduced and discussed in this section.

3.2.1 Coordinate-based Representations

The simplest and most intuitive representation of a human pose considers
only the main joints of the human skeleton. An example skeleton, which
is used in most parts of this thesis, can be seen in Figure 3.4. This
skeleton is also used in most publications using a 17 joint model, e. g. [51].
The choice of the joints depends strongly on the task, e.g. if the pose
of a running person is reconstructed the fingers are less important than
in the task of body and sign language recognition. Although the body
shape is ignored the descriptive power for further tasks, such as motion
recognition or prediction, remains. There are several possibilities to order
the z, y, z-coordinates of the respective joints to describe a single pose.
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3.2 HUMAN POSE REPRESENTATIONS
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Figure 3.4: The 17 joint skeleton model used for most parts of this thesis. The
body is oriented forward, i.e. the joint numbered 13 is the right hand and the
joint numbered 16 is the left hand.

The most important one, which was already used in the seminal work of
Bregler et al. [10], is explained in the following.
Let
X:(;z:o,a:h...,a:J) (316)

represent a human pose with J joints, where every x; € R**! with
i = 1,2,...,J contains the z, y, z-coordinate of the joint i. In con-
trast to simply stacking the coordinate values as a vector of the form
(1,91, 21, T2, Y2, 22, - . ., L0, 4s, 27) ", Eq. (3.16) benefits from being eas-
ily projected to 2D by

X200 =KX, (3.17)

where K € R**3 is a projection matrix (different projections are discussed
in Section 3.1). The reprojection matrix Xo4 then has the form

X4 = (w0, u1, ..., uy), (3.18)

where each u; € R?*! contains the 2D coordinates projected to an image
plane. This allows for the easy definition of a reprojection error

erep = [W = Xaall = |W — KX]|, (3.19)

where || ® || is a matrix norm' and W is the measurement matrix which
has the same structure as Xo4. In almost all works on 3D reconstruction
this error is minimized either implicitly or explicitly.

In this thesis the Frobenius norm is used which is defined by the square root of the
sum over all quadratic matrix entries. It is denoted as || ® || p.
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So far Eq. (3.17) ignores translational components. To generalize to
translations Eq. (3.17) can be written in homogeneous coordinates

Xoq = (K t) (f) ) (3.20)

where 1 denotes a vector filling the respective row with ones and ¢t € R?*?
describes the translation in the image plane. If K represents a (scaled)
orthographic projection (cf. Section 3.1) then the translational component
can be removed by subtracting the mean from the respective z, y, z-
coordinates of W and X, respectively. In geometric terms this equals
to moving the pose to the origin. Since the translational component ¢ is
zero Eq. (3.20) then can again be written as 3.17.

3.2.2  Surface Mesh-based Representations

Figure 3.5: A comparison between SCAPE, BlendSCAPE [30] and SMPL. From
left to right: (light green) Linear blend skinning (LBS), (dark green) Dual-
quaternion blend skinning (DQBS), (blue) BlendSCAPE, (red) SMPL-LBS,
(orange) SMPL-DQBS. The main differences can be seen in the highlighted
regions around the elbow and hip. Image is taken from [44].

If not only the pose but also the shape of the body is of interest it can
be represented as a watertight polygon mesh consisting of vertices, faces
and edges (in the following shortly denoted as mesh). In practice a 3D
point cloud is obtained by a 3D body scanner, a Microsoft Kinect or a
similar device. Subsequently, a mesh with known topology is fitted to the
measured point cloud. Since even small structures such as fingers should
be modeled the mesh obviously must have a large number of vertices.
Considering fitted meshes approximating several people, there is a strong
redundancy in the data. Moreover, a user who wants to modify these
meshes should have an easier deformation method than changing every
single vertex.
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There are two common state-of-the-art human mesh representation in
the literature, namely SCAPE [5] and SMPL [44]. Both models divide
the problem into body shape (e. g. small vs. tall) and pose (e.g. hanging
vs. raised hands) estimation. SCAPE and SMPL both apply a PCA to
registered meshes to account for shape deformation. The main difference
between the models lies in the shape deformation model. In SCAPE it is
based on triangle deformations using twists [57] and a computationally
expensive refinement step. SMPL uses a Blend Skinning [39] based
approach to model deformations. The SMPL algorithm is independent of
the applied skinning technique. The initial blend weights are set manually.
The model parameters are learned such that the complete model reduces
to a function depending only on two variable vectors which define body
shape and pose. Due to its simplicity SMPL is the most used model for
human mesh representation today. A subjective comparison between the
two models can be seen in Figure 3.5.

In this thesis the SMPL model is used only for visualization.

3.2.3  Subspaces of Human Poses

The coordinate-based human body representation in Section 3.2.1 requires
a large set of variables to define a specific pose. Since every joint position
is described by its z,y,z coordinates a pose constructed from J joints
is described by 3J values. However, not all combinations of variables
yield a physically plausible human pose. It can be easily seen that only
some values in the coordinate-based representation give a meaningful
human pose. This gives rise to the idea that there exists a subspace
which contains all physically valid human poses. This section discusses
methods to estimate such subspaces.

3.2.3.1 Linear Subspaces

An overcomplete dictionary can be learned from a dataset of human poses
such that a single pose € R®/ in vectorial form can be reconstructed
from a dictionary D € R37*? with d bases such that

x ~ Dy, (3.21)

where each row in D is one basis vector that is weighted by the mixing
coefficients y € R%. An optimal dictionary can be obtained by minimizing
the optimization problem

%in |z — Dy|| (3.22)
Y

for all poses in the training dataset. Principle Components Analysis
(PCA) [19] is one of the most used techniques to solve this problem.
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The principal components (PC), i.e. the rows in D, are calculated in
such a way that the first PC covers the largest variance in the data. Per
definition, each succeeding PC accounts for the highest variance under
the constraint that it is orthogonal to the previous PC’s.

In [88] it was shown that the first principal component obtained by
a PCA covers 84% of the variance in a gait motion. Only 4 principal
components of a gait motion are required to account for more than
98% of the variance. This idea was adapted by many 3D reconstruction
approaches from single images 2.2.1 and also is the basis for the periodic
and non-periodic reconstruction method proposed in Chapter 4 of this
thesis. With a given PCA basis Q@ € R***7 (obtained by stacking the
mean pose and all principal components converted into the shape of a
pose, as defined in Section 3.2.2) the pose estimation problem defined by
the reprojection error (cf. Section 3.2.1) is simplified to

min | X — K6Ql, (3.23)
where
0= (13 '191-[3 192I3 cee 79dI3) (324)

with 9; as the value of the i-th mixing coefficient. Now only the mixing
coefficients ¥ instead of the complete pose need to be estimated which
significantly reduces the number of variables.

3.2.3.2 Discriminator Networks as Subspace Constraint

Figure 3.6: Structure of a GAN. The training process splits into two alternating
steps: generator and discriminator training. During generator training the
weights in the discriminator are fixed.

The subspace learning methods in Sec 3.2.3 learn a linear mapping
from a data space to a latent space. For the application in human pose
estimation it is important that the inverse mapping from the latent space
to the data space exists. This restricts the choice to invertible subspace
mapping methods. Most of the eligible methods are linear mappings? (see

except autoencoders with nonlinear activation functions
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Section 3.2.3.1). However, human poses are highly nonlinear and therefore
seemingly not the ideal choice. As later shown in Chapter 5 discriminator
networks, as used in Generative Adversarial Networks (GAN) [21], are an
excellent tool to constrain the human pose space. The key idea is to avoid
the explicit mapping into the subspace by constraining the output of the
generator to plausible human poses. Thus, after successful training the
generator can only output human poses that lie in the learned subspace.
The same argument holds for any type of data a GAN outputs. Since the
original GAN paper [21] a vast amount of modifications were made to
improve the performance. For this reason, this section gives an overview
of the key ideas behind generative adversarial networks and avoids going
into the mathematical details of the original implementation.

The original GAN structure of [21] is shown in Figure 3.6. A generator
network learns a mapping from randomly distributed variables (in most
cases a Gaussian or equal distribution) to a target distribution. From
the target distribution only samples from the training data are known.
There exist no correspondences between the input samples to a sample
in the target distribution. The training splits into two alternating steps:
1. training the generator to output a sample labeled as real by the
discriminator and 2. training the discriminator. In the first step the
target distribution is learned by the discriminator network which is
trained to classify data from the training set as real and data produced
by the generator as fake. In the second step the complete adversarial
model (generator connected to the discriminator, as shown in Figure 3.6)
is trained while the discriminator weights are fixed. The target output
of the adversarial model is the class real. In every iteration the generator
gets better to generate data that the discriminator cannot distinguish
from the real data, and simultaneously the discriminator gets better in
classifying data into real and fake. When the training is converged the
generator outputs data that is close to the distribution of the real data.
Consequently, the generator has learned to map from a latent distribution
to the constrained space of the real data. The generator network can be
adapted to the task and cope with nonlinearities in the data. Therefore,
when applied to human poses, it expectedly achieves similar or better
performance than a PCA in terms of reconstruction error. The properties
explained above are exploited in Chapter 5.

In Chapter 5 the Wasserstein GAN [6] and Improved Wasserstein
GAN [25] works were used. Details can be found in Chapter 5 and the
respective papers.

3.3 NON-RIGID STRUCTURE FROM MOTION

Structure from Motion (SfM) deals with recovering the 3D structure
and motion of a rigid object from its 2D projections. The extension to
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Non-Rigid Structure from Motion (NRSfM) additionally includes the
recovery of deforming objects. This section introduces the basic ideas
behind the factorization approaches in the seminal papers of Tomasi and
Kanade [84] (SfM) and Bregler et al. [10] (NRSfM). Further information
and detailed discussions can be found in [60].

Corresponding to the original works the following part assumes an
orthographic projection (cf. Section 3.1.4). A measurement matrix W €
R2/*™ that contains the coordinates Ui, g, Vi,g Of the tracked feature point
i at frame g can be written as

U1,1 Uu2,1 . Un,1
V1,1 V2,1 - Un,1
Uui,2 u2,2 . Un,2
W = | vi2 V22 ... Un2 |, (3.25)
’U,1,f ’u,zyf . un,f
2)17f 'UQ’f e Un’f

where f is the number of frames and n is the number of feature points.
To ignore translational camera movement from each row its mean is
subtracted, i.e. the cameras can be described by only rotational compo-
nents. Since each single observation is a projection of a rigid 3D structure
W contains many redundant equations and therefore is strongly rank
deficient. Without measurement noise rank(W') < 3. The reason is that
W can be factorized into a matrix R € R?/*3 representing the camera
and a shape matrix S € R3*™ by

R,
R 1 T2 Tn _
W= vi Y2 ... yn | =RS. (3.26)
21 z2 Zn
Ry

The shape matrix S contains the 3D coordinates of the n feature points.
The matrix R consists of two rows of a rotation matrix and can be
interpreted as the orientation of the vertical and horizontal camera axis.
Assuming noisy measurements the actual rank of the measurement matrix
can be larger than 3. However, since S represents a 3D shape its rank
should be constrained to 3. Thus, the best possible rank-3 approximation
is calculated by singular value decomposition

w=Uxv". (3.27)
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Setting all but the first three singular values to 0 gives the matrix S and
the candidates R, S for R and S by

R=U%> (3.28)

S=353v" (3.29)

That means W = RS is a valid best rank 3 solution. However, it is not
unique since multiplying with any invertible matrix A € R3*2 also gives
a valid solution in the form

W =(RA)(A'S)=R(AA")S = RS. (3.30)

An estimate for the true R and S can be found by applying the linear
transformation A ~ R
R=RA (3.31)

S=A"'S. (3.32)

This can be solved up to a rotation of the complete system (cameras and
3D shape) by enforcing orthonormality constraints for R, i.e.

RR" = L. (3.33)

The extension to NRSfM by Bregler et al. [10] follows a similar fac-
torization approach. The main idea is that a specific configuration of
a non-rigid shape can be described by a linear combination of k basis
shapes

k
S = Zaﬁ’h (3.34)
=1

With this factorization Eq. (3.26) is extended to

a1R1 OélRl e OL1R1 S1
CMQRQ OéQRQ e CMQRQ SQ

= : . . (3.35)
asRy oayRy ... afRy Sk

Choosing the number of shape bases as k and following the rank deficiency
argumentation of [84] directly determines rank(W') = 3k. The shape,
rotation and weights are obtained by singular value decomposition and
optimization for orthonormality constraints as in [84].
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3.4 ERROR METRICS

Given an estimated human pose X and a ground truth pose Xg4; in
a coordinate-based representation (cf. Section 3.2.1) several evaluation
criteria for the quality of the reconstruction can be defined. The commonly
used metrics in the literature are introduced and reviewed in this section.
For more details and other metrics that are not used in this thesis the
reader is referred to [74].

The most intuitive error metric was first used in [75] to evaluate recon-
structions of the HumanEva dataset. It is the mean euclidean distance
between all joints of one pose known as Mean Per Joint Positioning
Error (MPJPE) which is defined as

J
1
EvpipE = i Z |z — @i gt |2, (3.36)

=1

where j denotes the number of joints and @;, @, ¢¢ are the i-th joints from
the predicted and ground truth poses, respectively. In some cases the
global orientation of the predicted pose is irrelevant. To focus only on
the pose Simo-Serra et al. [78] introduced a rigid alignment step before
calculating the MPJPE. They align a predicted pose to the ground truth
by finding the rotation, translation and scale which minimizes Eq. (3.36).
They refer to it as 3D Pose Error (3DPE). Since the alignment is done
by a Procrustes Analysis (PA) [24] it is also known as MPJPE-PA. This
thesis uses the original naming 3DPE. The MPJPE and 3DPE give a
good hint on the quality of the reconstruction. However, they average over
all distances which can be misleading when only a single joint position is
wrong. This is not reflected in the MPJPE. To deal with this problem
the Percentage of Correct Keypoints (PCK) is defined as the percentage
of matching keypoints that are inside a unit sphere of radius 150mm
around each ground truth keypoint. Different radii can be regarded by
calculating the Area Under Curve (AUC) for radii in the range of Omm
to 150mm.

For other relatively uncommon metrics the reader is referred to [74].

3.5 DATASETS

Human motion capture is a very active research area for many years.
Hence there exists several benchmarking datasets which are described in
the following.

In 2010 Sigal et al. [75] published the first version of HumanEva which
was the first dataset that contains several synchronized cameras and
corresponding 3D data captured by a marker-based MoCap system. It
contains 7 calibrated video sequences (4 grayscale and 3 color) that
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are synchronized with 3D human body poses. Four subjects perform
6 everyday activities. The dataset is split into training, validation and
test set. The subjects are wearing marker suits, the cameras are static
and the background remains unchanged during all sequences. Machine
learning methods trained on the images from HumanEva tend to overfit
to the constrained setting and therefore struggle to transfer to real world
scenarios.

The Human3.6M [33] dataset published in 2014 contains a larger
number of subjects and activities. The subjects wear optical markers
attached to normal clothing which makes there appearance more realistic.
It contains 3.6 million 3D human poses and corresponding images. 11
professional actors (6 male, 5 female) perform 17 scenarios (e.g. discus-
sion, smoking, taking photo, talking on the phone etc.) captured by 4
RGB cameras and a time-of-flight depth sensor. 3D Laser scans of all
subjects are available. Standard evaluation protocols have prevailed in
the MoCap community: the subjects 1,5,6,7,8 are used as training set
and the subjects 9 and 11 as evaluation set. The two most common ones
calculate the average MPJPE and 3DPE (cf. Section 3.4) for the subjects
9 and 11 per activity. Although the number of frames has significantly
increased over the previous state-of-the-art the dataset is still restricted
to everyday activities and a laboratory setup.

Another dataset captured in a laboratory setup is the still growing
CMU dataset [11]. It contains many different activities including very
uncommon motions (e.g. gymnastics) and interacting persons. Unfortu-
nately, it contains only very low resolution grayscale images which does
not allow to perform 2D keypoint detections directly on the images.

The KTH Multiview Football IT dataset is captured by 3 synchronized
videos of 4 sequences from a football match. Although it only contains
800 different 3D poses it is recorded in-the-wild, i.e. no manipulations
such as optical markers has been done to the subjects.

MPI-INF-3DHP [52] was recorded in a MoCap studio with several
synchronized time-of-flight depth sensors. This avoids the optical markers
attached to the body which are required for previous approaches. 8 actors
(4 male and 4 female), perform 8 activities of different complexity which
leads to more diverse motions compared to Human3.6M. The actors
wear 2 different sets of clothing. One set is casual everyday apparel
and the other is plain-colored. The subjects were recorded in front
of a green screen which enables to synthesize various backgrounds to
augment images. Additionally, the appearance of the subjects is changed
augmenting the plain-colored apparel with other textures.

Figure 3.7 shows exemplary images from the datasets discussed above.
All available datasets to date have major limitations since they all are
restricted to laboratory setups. An interesting opportunity to build a
new and realistic in-the-wild dataset comes from the recent advances
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in 3D reconstruction from inertial measurement devices (IMUs) [48-50].
These devices are attached to the human body and have only a negligible
influence on the subjects movements. Moreover, they can be hidden
under the clothing to avoid influencing the subjects appearance in the
image.
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Figure 3.7: Example images from the human MoCap datasets.
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Markerless human motion capture has improved constantly over the
last years and is marketed in commercial products, e.g. from Simz
Reality Motion Systems [77] and The Captury [82]. These systems use
several calibrated cameras arranged around a predefined area in which a
person can be captured with great detail. However, for outdoor or mobile
applications the practicability is very limited and the costs for such
systems are high. A desirable practical solution for these scenarios has a
minimal number of mobile sensors. In this thesis only a single camera is
used as a sensor. Reconstructing a 3D scene from a video recorded by a
single camera is very challenging since the camera projects the 3D scene
to a 2D plane which results in the inevitable loss of one dimension. That
means, without knowledge about the scene or setting, it is impossible
to recover the 3D information completely. Several solutions exist that
impose priors on the camera (Section 2.1). They, however, require a
large amount of camera motion which, in most cases, is not available in
the scenarios mentioned above. Fortunately, several natural constraints
are given by human poses (e.g. the 3D position of the elbow defines
the possible positions for the hand on the same arm) and motions (e. g.
movements are smooth). Identifying and formulating these constraints
as an optimization problem is the main contribution of this chapter.

The following chapter proposes two methods to integrate temporal
constraints into a factorization approach that is motivated by the NRSfM
formulation. Sequences of human poses obey several temporal constraints.
Since the velocity of human body parts is naturally restricted there is
only a minor difference of poses in consecutive frames. It follows that
the 3D motion over several frames is smooth. The same holds true for
the camera motion. Another natural constraint is given by the fact that
bone lengths of one person do not change during a sequence. These
constraints are exploited in Section 4.1 using a periodic prior for periodic
motions and a variance minimization for non-periodic motions. Since
this approach uses a pretrained pose basis it is restricted to motions in
the training dataset. To generalize to other motions knowledge about the
human kinematic chain is employed in Section 4.2 by deriving a so-called
Kinematic Chain Space. This enables the reconstruction of arbitrary
skeletons as long as their structure is known. Parts of the following
sections are taken from the publications [96-99].
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Figure 4.1: Real world scenario of KTH database [36]. Left: frames 115, 136
and 143 of Sequence 1 from Football Dataset II. Right: 3D reconstruction using
our proposed method

The recovery of 3D human poses in monocular image sequences is
an inherently ill-posed problem, since the observed projection on a 2D
image can be explained by multiple 3D poses and camera positions.
Nevertheless, experience allows a human observer to estimate the pose of
a human body, even with a single eye. The purpose of this approach is to
achieve a correct 3D reconstruction of human motions from monocular
image sequences as shown in Figure 4.1.

The recovery of 3D structure of an object is a well studied problem
in computer vision. In 1992 Tomasi and Kanade [84] proposed the first
factorization approach to solve this problem for rigid objects which is
well-known as the Structure from Motion (SfM) problem. It was later
extended by Bregler et al. [10] to the non-rigid case and consequently
named Non-Rigid Structure from Motion (NRSfM) (see Section 3.3).
Since a human skeleton can be considered as an non-rigidly deforming
object it is an obvious choice to solve the MoCap problem by NRSfM.
Recent works considering NRSfM (e. g. [22, 23, 26]) work well as long
as there is a camera rotation around the observed object. However, due
to ambiguities in camera placement and 3D shape deformation they
fail in realistic scenes, e.g. a static camera filming a person walking
by as shown in Figure 4.3. Since there is no frontal view of the person
during the whole sequence severe depth estimation errors occur. To solve
this we propose to employ a pretrained human pose basis combined
with smoothness regularization and bone length constancy constraints.
A trilinear factorization approach similar to [23, 62, 68, 103] is used.
We assume that a set of feature points on the skeleton of the person is
tracked throughout the sequence. Our goal is to decompose it into three
factors for camera motion, base poses and mixing coefficients. Different
to [62] and [23], the second factor is kept fixed which corresponds to 3D
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structure, similar to [103] and [68]. Furthermore, we propose to regularize
the third factor, commonly interpreted as the mixing coefficients: Firstly,
a prior well suited for periodic motion is imposed. Secondly, constraints
on the limb lengths are applied. As opposed to [103] and [68] where
lengths or relations of particular limbs need to be a-priorly known, we
constrain the limbs lengths to be invariant.

We demonstrate that our algorithm works on motion capture data
(CMU MoCap [11], HumanEva [75]) as well as on challenging real world
data as for example the KTH Football Dataset [36] shown in Figure 4.25.
Additionally we analyze the influence of the number of base poses and
the regularization factor on the reconstruction result. Furthermore we
demonstrate that our algorithm is robust to noise and also able to handle
occlusions and reconstruct the occluded body parts correctly. We show
that it can also be used for motion classification tasks.

The proposed method allows to correctly reconstruct 3D human mo-
tion from feature tracks in monocular image sequences with arbitrary
camera motion’. It does not use a predefined skeleton or anthropomet-
ric constraints. Additionally it can handle occlusions and noisy data.
Summarizing, the contributions are:

e A periodic model for the mixing coefficients for periodic and quasi-
periodic motions such as walking is introduced.

e A novel regularization term for non-periodic motions is proposed.

Our approach consists of three main steps (see Figure 4.2). First we
assume, that every 2D motion sequence can be factorized into a camera
model and a series of 3D poses (Section 4.1.1), like in standard structure
from motion approaches (Section 3.3). The 3D poses are composed of
a linear combination of base poses, that are retrieved by a PCA on
different motion databases (Section 4.1.6.1). To model periodic motion
(eg. walking and running), we show that it is possible, to assume a
periodic weight for the base poses to significantly reduce the number
of variables, that have to be calculated (Section 4.1.3). The proposed
algorithm in Section 4.1.5 is alternatingly recovering the camera matrices
(Section 4.1.2) and the 3D poses. Our extension to non-periodic motion
calculates the weights for the base poses for each frame. We handle
the large number of variables by using a regularization term enforcing
bone length constancy over time. This leads to a highly realistic 3D
reconstruction of different types of non-periodic motion (Section 4.1.4).

Arbitrary camera motion also includes non-moving (i. e. static) cameras.
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Figure 4.2: Our method. (1) 3D base poses are learned from training data. (2)
Input sequence. (3) Cameras are recovered from estimated 3D poses and 2D
poses. (4) Weights for base poses are calculated by minimizing the reprojection
error. Steps (3) and (4) are alternated until convergence.

Figure 4.3: 3D reconstruction (green circles, blue lines) and ground truth
data (red crosses) of a walking sequence from the CMU dataset. Top: Using
a traditional NRSfM approach [26]. Most non-rigid structure from motion
approaches with no rotation and unknown base poses fail, although they
produce a small reprojection error (left). From other perspectives (right) a

wrong reconstruction can be observed. Bottom: The proposed approach produces
correct reconstructions in all views.
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4.1.1 Factorization model

A single 3-dimensional pose X € R**® with a joints in homogeneous
coordinates can be written as a linear combination of k previously learned
base poses Q; € R***

k
X =Qo+)Y 6Q, (4.1)

=1

where Qg is the mean pose of all poses used for training and 8; € R***
is the weight matrix for the base pose Q;. With 1J; as the scalar weight
for the [-th base pose each 6; has the form

6, = ( vils ) : (4.2)
0

where I3 is the 3 x 3 identity matrix. Note that only the coordinates in
the mean pose Qo are describing a point in homogeneous coordinates,
while Q1,... x are directions that define deformations. By stacking poses

we can write a 3D sequence as W & R %@ of f images, with X, r as
the poses in frames 1,..., f
X1
= (4.3)
Xy
With Eq. (4.1) we can do a factorization
Qo
Qo+ ,60.Q 0
1
W = : =0 ] =0Q, (4.4)
Qo+X) ,0,;Q
Qx

where ® € R*** contains the weight matrices 6;.
The projection of a 3D pose X; in the i-th frame to a 2D pose
Xi2p € R**? is done by the camera matrix K; € R***

Xi2p = K; X;. (4.5)
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To project the whole 3D sequence described by the matrix W, the camera
matrix K € R2*4f is used. Let K be a sparse block diagonal matrix

K
K = . (4.6)
Ky

The factorization of a 2D sequence given by the matrix Wap € R2/ %
can now be written as
Wap = KOQ. (4.7)

When dealing with missing feature points (for example caused by partly
occluded body parts) the equations corresponding to these feature points
can be excluded from the optimization. This is further explained and
evaluated in Section 4.1.6.7. This model is very similar to the models
proposed by [87], [62] and [23]. While they are fixing ® and optimize for
K and Q, our approach is using a previously learned Q and optimize
for the weights © like [68] and [103] did for single images.

4.1.2  Camera Parameter Estimation

best
reconstruction

Y

3D error {cm)
[~

0 2 10 12 14

4 6 8
regularization parameter 'y

Figure 4.4: Influence of the camera path regularization on the reconstruction
result. A low value for the regularization parameter + avoids flips while a high
value enforces a static camera. The best results are obtained for values between
1 and 5.

To reconstruct the camera parameters we are assuming a weak per-
spective camera. The pose in the i-th frame W3 can be factorized with
the above notation as

Wip = K:0,Q, (4.8)
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where ©; € R**** denotes the weight matrix for this frame. For the
estimation of the camera parameters we assume the 3D pose described
by ©;Q to be known. The solution for the camera matrices for each
frame can be obtained by least squares minimization of the reprojection
error
min
K;

‘WgD - Ki@iQ‘ ‘F (4.9)

In our model each K; describes a weak perspective camera. Therefore we
give the optimization algorithm used to solve Eq. (4.8) correct starting
values for K; which satisfy the constraints for a weak perspective camera.
We rewrite Eq. (4.8) with (@;Q)™ as the right-inverse of ®;Q

K, =W;(©:Q)". (4.10)

The scale parameter s of the weak perspective camera can be determined
by

1
s = SVIIKl + (1Kl (4.11)

with K 1 as the first row and Kj; 2 as the second row of K;. We receive
an unscaled camera matrix by dividing K; by s. Next we orthonormalize
the first 2 x 3 block of the unscaled matrix with the help of a singular
value decomposition, where all singular values are set to 1. Recombining
the orthonormalized block with the scale s and the last column of the
unscaled camera matrix gives a good estimation for the starting values.
If we reconstruct the cameras for each frame separately the camera
orientations can flip. i.e. the camera matrix of the flipped camera not
only describes a weak perspective projection but also a reflection at the
origin of the coordinate system. As this effect rarely occurs it can be
easily avoided by penalizing rapid changes in the camera path. Therefore,
we propose a regularization term that calculates the difference between
the current camera matrix K; and the previous camera matrix K;_1

rr = || Ki — Ki—il|p, (4.12)

with v as regularization parameter.
The whole minimization problem can now be written as

min ‘W;D - Ki@iQ‘ ‘F YT (4.13)
While the regularization term also allows smoothing of the camera
path, its sole purpose is to avoid camera flips. The regularization is not
necessary in most cases as the flips only occur very rarely. Setting the
parameter 7y to a high value would result in a static camera. Therefore we
set v to a very low value where it avoids flips and only slightly effects the
camera path as shown in a small experiment in Figure 4.4. Although the
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reconstruction error without the camera regularization (y = 0) seems low
there are three flips in the camera path causing wrong 3D reconstructions.
In contrast to Zhu et al. [115] who solved the problem by using keyframes,
we do not assume any prior camera positions or poses.

Considering the entries in

Ki _ ( mii miz2 M1z Miqg ) (414)

ma1 m22 M23 M24

we can enforce a weak perspective camera by exploiting the fact that the
first 2 x 3 block in K; consists of two rows of a rotation matrix scaled
by s, as described in Section 3.1.4. The property

K, K =51, (4.15)
gives the constraints
miy +mis +mis — (M3 + mis + mi3) =0 (4.16)
and
mi1me1 + Mi2Mmaz + mizmaz = 0. (4.17)

4.1.3 Periodic Motion

weight

—first
—— second
—third
—fourth

weight

Figure 4.5: Comparison of ground truth coefficients of the first four base poses
(top) with fitted periodic function (bottom) using the dataset of Troje [88].

With the camera matrix K calculated as described in Section 4.1.2 the
weights © for the base poses can be reconstructed. Trying to optimize
the reprojection error for all variables in © fails, as there are to many
degrees of freedom. For periodic motion the number of unknowns can be
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reduced by using a sine function to model the temporal behavior of the
weights in ©.

Figure 4.5 shows the weights of the first four base poses of a gait
sequence and the corresponding fitted sine functions. For this specific
sequence the mean absolute error of the periodic reconstruction to the
ground truth data is 2.05mm. It verifies the results obtained by N. Troje
in [88, 89]. They used the same periodic assumption to describe human
gait patterns and did an extensive research on a large set of persons.
These observations can be made with running motions as well. So the
periodic assumption appears to be appropriate for periodic motion.

As shown in Section 4.1.1 the number of unknowns in ® equals fk.
By modelling the temporal behavior of 9 as

I(t) = asin(wt + ) (4.18)

the number of unknowns can be decreased to 3k. Note that the number
of variables does not depend on the number of frames anymore yet only
on the number of base poses. We can thus minimize the 2D reprojection
error

Jnin ||Wap — KOQ||r. (4.19)

Note, that the objective function in Eq. (4.19) is nonlinear and non-
convex.

The use of sine functions to approximate human motion was firstly
proposed by Troje et al. [88, 89]. We use a similar representation in
Eq. (4.18) which can be motivated from [2], since a sine function can be
represented by a linear combination of DCT bases. Modeling a structure
from motion problem in trajectory space using DCT bases, requires a
manually set or estimated number of DCT bases which mostly results
in too many degrees of freedom. In Figure 4.3 we show that 3D recon-
structions of approaches derived from [2]| (e.g. Gotardo and Martinez
[26]) fail when there is no sufficient camera motion in the sequence (i.e.
low reconstructibility as defined by Park et al. [62]). Combining the use
of a single sine function as weight as proposed by Troje in [88, 89| with
trained base poses results in a low number of variables and plausible 3D
reconstructions.

4.1.4 Non-Periodic Motion

To model non-periodic motion, periodic functions for the weights of the
base poses are not applicable anymore. Trying to optimize all weights
at once without constraints gives good results for the 2D reprojection,
but does not ensure a realistic 3D reconstruction. Figure 4.6 shows the
temporal behavior of the bone lengths using the unconstrained opti-
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Figure 4.6: Temporal behavior of bone lengths obtained by unconstrained
optimization. The maximal variation is about 40mm. Computed on CMU
MoCap (subject7/walkl).

mization. There are variations in lengths up to 40mm. This is caused
by a slightly wrong initial camera position, which the optimizer later
tries to compensate by weighting base poses wrongly. It results in a 3D
reconstruction where unrealistic bone length changes occur. To com-
pensate this we propose a regularization term, which holds the bone
lengths constant over time. Different to [68] and [103] we are not using
bone length constraints. Such a constraint would restrict the model to a
particular person.

The length of a bone is defined by the euclidean distance between the
3D joint coordinates of that bone. These can be directly obtained from
the 3D reconstruction described by @Q. We denote the length of bone s
as

bs = ||gs,2 — ds,1lly (4.20)

where js,1 and js,2 are the coordinates of the endpoints of that bone.
We want to hold the bone lengths nearly constant over time to ensure
a realistic reconstructed skeleton, but do not want to be too restrictive
to the optimizer. In other words the bone lengths should not change
much. In the optimal case they are not changing at all. We are using
the variance of the length changes over time of each bone as a measure.
To build the regularization term rp, we sum the variances Var(e) of all
bone lengths over time

rg=p Z Var(b;), (4.21)
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with £ as the regularization parameter. This regularizer holds the bone
length constant but is not fixing it to a specific value. Note, that the
same variance for a short bone allows larger relative changes in length
than for longer bones. Using the relative variance, i.e. normalizing
Var(b;) by the mean of the bone length avoids this effect. However, as
experimentally shown in Figure 4.11 there is no significant difference in
using the variance or the relative variance. Due to this finding and to
keep computational effort as low as possible, all experiments are using
Eq. (4.21) as regularizer.
The optimization problem can be written as

m@inHWQD—K@Q||F—|—rB. (4.22)

For the minimization of Eq. (4.19), the parameters «, w and ¢ of
the functions defined by Eq. (4.18) are estimated. Here, for minimizing
the nonlinear and nonconvex objective function in Eq. (4.22) we can
estimate the coefficients ©® of the linear combination @Q subject to the
constraints defined by Eq. (4.21) since Q defines the prior knowledge on
the possible deformations of human shapes.

The number of variables equals fk, i.e. it linearly depends on the
number of frames f. Using a skeleton with 15 joints gives the same number
of 2D /3D point correspondences per frame. By keeping the number of
used base poses k low there are more equations than unknowns.

4.1.5  Algorithm

To estimate the f+1 sets of variables K1, ..., Ky and © we alternatingly
optimize for each of the sets while keeping the others fixed. The optimiza-
tion of each camera matrix Kj, j = 2,..., f, requires the regularization
terms rg; and Tk, j4+1. If we use central differences in Eq. (4.12), we
need to optimize all the sets Kj, j =1,..., f, simultaneously. Using the
proposed forward differences allows to sequentially estimate them, i.e.
given K we estimate Ks, then K3 etc. The precision of the estimated
solution is hardly affected while the computation time in our experiments
reduces by the factor 5. Shape parameters are estimated by minimizing
Eq. (4.19) in the case of periodic motion and Eq. (4.22) in the case
of non-periodic motion, respectively. These constrained nonlinear and
nonconvex problems are optimized using a second-order gradient descent
algorithm.

In the first iteration we use the mean pose as initialization. This means
setting all values in ©® to zero except the ones weighting the mean pose
Qo. With that the initial cameras are estimated framewise as described in
Section 4.1.2. The optimization for the weights of the base poses follows.
This step is depending on whether we are using the periodic (Section
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4.1.3) or the non-periodic model (Section 4.1.4). The last two steps are
repeated until the reprojection error is not changing anymore.

Alternating the estimation of the parameter sets can be seen as a vari-
ant of a block-coordinate descent by formulating one objective function
for all parameters:

/
f(K17~~~7Kf:®):f(®)+zgi(Ki): (4.23)
i=2
where
f©)= |Wop - KOQ||z +75 (4.24)
gi(Ki) = TR - (4.25)

The objective function for the periodic reconstruction can be formulated
in the same way. Convergence of coordinate gradient descent is guaranteed
if the joint objective function is strongly-convex [46]. More recently,
results on convergence were established if at least one of the terms
is convex (see, e.g. [90]). Since neither of the terms in Eq. (4.23) is
convex and they are optimized alternatingly, convergence cannot be
guaranteed. However, we will experimentally show that the proposed
algorithm converges to a reasonable local minimum in Section 4.1.6.5.

Algorithm 1 Recover camera and shape

Q + base shapes
while no convergence do
fort=1— f do
calculate starting values for K
optimize ||w§D — KtezQHF + TK,i
insert K; in K
end for
optimize |W — KOQ||r + B
end while

4.1.6 Experimental Results

To evaluate our method, we were using three different databases: CMU
MoCap [11], HumanEva [75] and KTH Football [36]. We trained base
poses (see Section 4.1.6.1) of different motion categories, for example
walking, jogging, running and jumping to demonstrate the generality of
our method. The motions and datasets used for training vary for the
different experiments and will be named in the respective sections.
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Figure 4.7: 2D reprojection error and 3D reconstruction error with different
regularization parameter 8. While the 2D error is not changing much or getting
worse, the 3D error gets significantly better at most parameter values. Computed
on CMU MoCap (subject35/walkl). Qualitatively there is no difference between
different motion categories.

Instead of the 2D reprojection error a 3D error e as evaluation criterion
is defined

1
€= ?"Win_WTecl‘Fa (426)

with W, as the ground truth 3D data and W,.. as the reconstruction.
To compare sequences of different lengths, we are dividing the error
by the number of frames f. Note that this error is not the MPJPE
and 3DPE as described in Section 3.4. Since the proposed algorithm is
similar to traditional NRSfM approaches it uses the same evaluation
criterion (Eq. (4.26)) for comparability. Evaluation in terms of MPJPE
and 3DPE is done in Section 4.2.6. Although the reprojection error
is a common metric for the quality of the results produced by many
SfM approaches it is a bad criterion for judging a 3D reconstruction.
Therefore, it is important to use the 3D error instead of the reprojection
error when evaluating 3D reconstructions. For example with our bone
length regularizer we achieve a worse reprojection error but a significantly
better 3D reconstruction (see Figure 4.7). While the reprojection error
remains nearly constant for values of the regularization parameters up to
60, the 3D error is getting better. Only for very high values both errors
are getting worse. This is further evaluated in Section 4.1.6.4.

4.1.6.1 Learning base poses

For learning the base poses we were using different databases: the well-
known CMU Motion Capture Database [11], the HumanEva dataset [75]
and as a real world example the KTH Football Dataset II [36]. These
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three databases are using slightly different joint annotations, so it is
important to learn the base poses for each database separately.

We are learning the base poses by stacking pose vectors of all frames
and executing a PCA on this matrix. For each of the used motion
categories a linear combination of the first ten eigenvectors obtained
by the PCA is enough to cover more than 99% of the variance in the
dataset. It is also possible to learn base poses for multiple motions at
once. If doing so, the number of base poses should be increased to be
able to fully cover all possible motions. The influence of the used number
of base poses on the reconstruction result is evaluated later in Section
4.1.6.3.

4.1.6.2 Periodic Motion

As shown in Section 4.1.3, the number of unknowns can be reduced when
using periodic base functions. This results in a much faster solving of the
optimization problem. Figure 4.21 shows some frames of a reconstruction
of a gait sequence by just using four base poses. Even with only 12
unknowns to optimize the reconstruction is close to the real 3D data.
Note that the number of variables does not depend on the number of
frames. That means that the computational effort does not increase
much if longer sequences are used as long as the motion does not change.
The reconstruction of the shown sequence of 450 frames took about 15
seconds, which is about two magnitudes faster than the non-periodic
reconstruction on the same sequence. For periodic motion this method is
a fast and efficient way for the 3D reconstruction. Comprehensive results
of the periodic reconstruction on different periodic motions can be seen
in Section 4.1.6.6.

If bone length constancy is used to additionally regularize the recon-
structions we observed no improvement. The reason is that the periodic
assumption is such a strong prior that an additional regularization term
has no effect. Setting the weight of the bone length regularizer too high
results in a local minimum where the skeleton is not moving at all and
stays in the mean pose.

4.1.6.3 Number of base poses

One of the main questions is how many base poses should be used
to achieve a good reconstruction. More base poses can model more
deformation but using too many can cause unnatural deformation.

It is important to notice that all motions used for training lie in the
space spanned by the base poses. However, not every linear combination
of the base poses defines a correct human pose. In fact, every base pose
allows for some non-human deformations. Thus the more base poses are
used for the reconstruction, the more distorted the reconstruction gets.
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Figure 4.8: Influence on the number of used base poses on the 3D error using
the non-periodic reconstruction (labels: walk, run, jump) and the periodic
reconstruction (label: periodic). The number of used base poses is crucial for a
good 3D reconstruction. Using more than 10 base poses for each motion category
worsens the reconstruction error. For better visibility, the errors are normalized
on the 3D error when using 2 base poses. The periodic reconstruction is done
on the same walking sequence as the non-periodic reconstruction. Computed
on CMU MoCap (subject35/walk2/runl, subject13/jumpl).
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Figure 4.9: Influence on the number of used base poses on the 2D error using
the non-periodic reconstruction (labels: walk, run, jump) and the periodic
reconstruction (label: periodic). The 2D error decreases when more base poses
are used. For better visibility, the errors are normalized on the 2D error
when using 2 base poses. The periodic reconstruction is done on the same
walking sequence as the non-periodic reconstruction. Computed on CMU
MoCap (subject35/walk2/runl, subject13/jumpl).
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As shown in Figure 4.8 using 4 to 10 base poses results in the best recon-
structions for periodic and non-periodic motions. On the test datasets six
base poses appear to be the optimum with respect to the 3D error. If too
many base poses are used the reconstruction deteriorates, whereas the
reprojection error reduces. Comparing Figure 4.8 to Figure 4.9 shows the
correlation between the 2D error and 3D error for the same sequences.

4.1.6.4 Influence of reqularization

—walk
1.6¢ : —run
’ : ——jump

good reconstruction

3D error

0 20 40 60 80
regularization parameter

Figure 4.10: Influence of the regularization parameter S on the normalized 3D
error. In a wide range, the reconstruction improves (left of dotted line) if the
regularizer is used as compared to optimization without it (8 = 0). Computed
on CMU MoCap (subject7/walkl/runl, subject13/jump2).

Figure 4.10 shows the influence of the regularizer on the 3D recon-
struction for the motion categories walk, run and jump. For better
comparability the error is normalized for each motion class on the error
value without regularization. Even a small value for the parameter causes
a significant improvement of the 3D reconstruction. In a wide range of
parameter settings the reconstruction is much better with the regularizer
than without it. The selection of values for the regularization factor is
crucial. If the value is too high, the reconstruction is getting worse. Using
a too strong factor causes the reconstruction to not move at all over time.
This is an expectable behavior in the sense of constant bone lengths, but
unwanted for a realistic 3D reconstruction.

A comparison of the temporal behavior of the bone lengths of the same
sequence with different values for the regularization factor is shown in
Figure 4.11. The bone lengths of the periodic reconstruction (first image)
are fluctuating heavily. The second image shows the best non-periodic
reconstruction in terms of the 3D error. The fluctuation is less than the
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one of the periodic reconstruction. The maximal difference in bone length
is about 8mm. Considering possible noisy measurements, this should
be an acceptable value. On the third image the bone lengths are not

changing much, but the 3D error is larger than in the second.
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Figure 4.11: Comparison of the temporal behavior of the bone lengths with
different regularization factors. First: periodic reconstruction with 3D er-
ror of 0.791cm. Second: Non-periodic reconstruction with best 3D error of
0.213cm. Third: Non-periodic reconstruction with very high regularization
factor. Bone lengths are nearly constant over time but the 3D error of 14.553¢cm
is larger.Computed on CMU MoCap (subject35/walkl).

4.1.6.5 Convergence and stability

As stated in Section 4.1.5 the alternatingly optimized objective functions
are nonlinear and nonconvex for the periodic and non-periodic case,
respectively. Thus we cannot prove convergence of the proposed algorithm.
Instead we demonstrate it experimentally. Figure 4.12 shows the mean
and standard deviation of the 2D error during the first 10 iterations of
5 different subjects of the CMU MoCap database. An odd step refers
to camera estimation while an even step refers to pose estimation. All
experiments done during the evaluation (including those in Figure 4.12)
are converging to a plausible local minimum and the value of the 2D
error decreases in every step.

As all nonconvex optimization algorithms the proposed algorithm
is sensitive to initialization. When initialized with bad starting values
it converges to a bad local minimum. As described in Section 4.1.5,
initialization is done by the mean pose of the corresponding motion
category which is an appropriate assumption. However, it is reasonable
to evaluate the stability of the algorithm with bad or noisy initializations.
Figure 4.13 shows the mean and standard deviation of the 3D error with
Gaussian noise added onto the starting values. Up to a noise level of 10%
the reconstructions still look plausible and close to the reconstructions
without noise. Above 10% the 3D reconstructions degenerate to unrealistic
poses.
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Figure 4.12: Mean 2D error and standard deviation for periodic and non-periodic
reconstruction of the CMU dataset (subjects 7,9,13,16,35). Evaluated on 57
different sequences including the motion categories walk, run and jump. Odd
steps refer to camera estimation while even steps refer to pose estimation.
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Figure 4.13: Mean 3D error and standard deviation of 57 different sequences of
the CMU dataset (subjects 7,9,13,16,35) obtained by optimization with noisy

starting values. The noise level is given in percent of body size of the respective
subject.
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4.1.6.6 Different Motion classes

In this section the algorithm is trained on multiple motion classes simul-
taneously including periodic (walking, running, jogging) and non-periodic
motions (jump up/forward). Different datasets are used (CMU MoCap
[11], HumanEva [75], KTH Football [36]). The ground truth for the CMU
Mocap and the HumanEva datasets are generated from marker based
motion capture data of humans performing different actions. The KTH
Football dataset contains video sequences with manually labeled joints.
The 3D reconstruction which we use as ground truth data was computed
using a multi camera system. Overall this dataset is more noisy than the
other two datasets and offers a real world scenario. Table 4.1 shows the
3D reconstruction error of our different methods on some of the used
motion sequences compared to the results of Gotardo and Martinez [26]
and Bregler et al. [10]. It is noticeable that the reconstruction results
of the jumping sequences are worse compared to the other sequences.
The reason is that the variance between jumping motions of different
persons is much larger than between walking motions. So a new (not
trained) jumping motion is insufficiently explained by the base poses,
while every new walking pattern is very similar to those in the training
data. Nevertheless the reconstructions appear realistic (Figure 4.23). All
results except the row labeled "np all" are obtained by training on the
specific motion categories. When training all motions at once (here we
are using walk, run, jog, jump up, jump forward) to get more general
base poses, the results are getting worse but stay realistic and are still
superior to [10] and [26]. The results of [10] and [26] are obtained with
the source code provided by the authors.

Table 4.1: Average 3D reconstruction error in cm on the CMU dataset (walk,
run, jump), HumanEva walking dataset (HE) and KTH Football dataset.
First row: reconstruction with periodic constraints. Second row: non periodic
reconstruction without bone length regularizer. Third row: Best reconstruction
result achieved with bone length regularizer. Fourth row: best result when using
all motions for training simultaneously. Fifth and Sixth row: comparison to
other approaches.

| Method | walk | run [ jump | HE | KTH |

periodic | 0.784 | 0.968 | - | 1.200 | 0.357
np (B=0) | 0.295 | 0.661 | 1.226 | 0.564 | 0.202
best 0.183 | 0.523 | 1.090 | 0.423 | 0.187
np all 0.334 2.805 1.313 - -

[10] 4557 | 10821 | 8531 | 17.824 | 4.427
[26] 16.359 | 11.395 | 17.139 | 5.714 | 14673
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Our 3D reconstructions are highly realistic, which was shown by
surveying the 3D error. Figures 4.21, 4.22, 4.23, 4.24 show reconstructed
motions taken from the CMU MoCap database. Figure 4.21 uses the
periodic reconstruction with only 4 base poses. Figure 4.22, 4.23 and
4.24 are using the non-periodic approach.

4.1.6.7 Occlusions

i >

Figure 4.14: Left: Observation data of a person walking behind a box. The legs
are partly occluded. Right: 3D reconstruction of occluded body parts using our

method.

Figure 4.15: Left: During the whole sequence the left hand is occluded by the
body. Right: 3D reconstruction of occluded body parts using our method.

In realistic scenes, body parts can be occluded. This happens for
example if parts of the observed person are behind an object, for instance
as shown in Figure 4.14. Another common case is self-occlusion where
one body part occludes another body part. The integration of occlusions
in our algorithm is simple. Since we are using the Frobenius norm of
the reprojection error it is possible to set occluded values to zero in
the observation matrix Wzp and the reprojection K©®Q while using
the same objective function (Eq. (4.19) or Eq. (4.22)) as in the non
occluded case. This equals to canceling the corresponding equations in
the objective function.
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Figure 4.16: Comparison of the 3D error of periodic and non-periodic reconstruc-
tion with randomly occluded data points. The periodic reconstruction appears
to be more stable as it puts a smoothness constraint on the reconstruction.
Computed on CMU MoCap (subject35/walkl)

Figure 4.14 shows a person walking (CMU MoCap, subject7/walk2)
behind an artificial box so that the legs cannot be seen in the input
data. Our algorithm is able to reconstruct a realistic leg motion that
is very close to the original motion. Figure 4.15 shows the problem of
self occlusion. In the whole sequence, the back arm (shoulder, elbow
and hand) is fully occluded, i.e. 20% of the input data is unknown. On
the right of Figure 4.15 the back arm is correctly reconstructed by our
method.

For further evaluation of the occlusion handling we randomly delete
data points in the input data. Figure 4.16 shows the 3D error of the
periodic and non-periodic reconstruction. While the non-periodic recon-
struction produces a high 3D error for occlusions higher than 3%, the
periodic reconstruction benefits from the smoothness constraint it puts
on the reconstruction and remains stable for occlusions up to 20%. For
visualization purposes only a single sequence is chosen in Figure 4.16.
Other sequences give qualitatively very similar results.

4.1.6.8 Noise stability

To evaluate the stability of our method we put additional noise on the 2D
input data. Figure 4.17 shows the 3D reconstruction error with respect
to the noise level for the periodic and non-periodic reconstruction. In
this case 5% noise means Gaussian noise with a standard deviation of
5% of the maximal range of motion of the most moving 2D point. With
a very high noise level the reconstruction is still good. Apparently the
periodic reconstruction appears to be more stable than the non-periodic
reconstruction, because it puts a strong smoothness constraint on the
weights © of the base poses. The result is still a smooth motion as shown
in Figure 4.18. While the non-periodic reconstruction (center) is getting
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Figure 4.17: Influence of additional noise on periodic and non-periodic recon-
struction. While the 3D error of the non-periodic reconstruction raises, the
error for the periodic reconstruction remains nearly constant.

weight of base pose
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Figure 4.18: Comparison of the weights for the base poses. Left: Ground truth
weights. Center: Non-periodic reconstruction with 20% noise (3D error: 1.09cm).
Right: Periodic reconstruction with 20% noise (3D error: 1.02cm). Computed
on the first 200 frames of CMU MoCap (subject7/walkl).
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unstable the periodic reconstruction (right) still achieves a realistic output
compared to the ground truth data (left). As in Figure 4.16 only a single
sequence is chosen in Figure 4.17. Other sequences give qualitatively very
similar results.

4.1.6.9 Classification
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Figure 4.19: 2D error using the periodic reconstruction. The base poses are
trained from the CMU running sequences (35/17-26). Reconstructing poses
belonging to the jumping motion results in a large 2D error.

Figure 4.20: Combined running and jumping sequence from [28]. The first two
frames are reconstructed using the periodic reconstruction, the others are using
the non-periodic reconstruction. Although the base poses are trained on another
dataset that does not contain this specific motion, the reconstruction is not
perfect but realistic.

We also used our proposed method for classification of a mixed motion.

In this example we reconstruct the outdoor sequence from [28] of a
person running and jumping over an obstacle (Figure 4.20). For the
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classification the reconstruction is done for 10 frames wide sections over
the whole sequence. Figure 4.19 shows the corresponding 2D error when
using the periodic reconstruction with base poses trained from the CMU
running sequences (35/17-26). The 2D error increases for non-trained
motions, as these can not be reconstructed with the used base poses.
In this example the jump over the obstacle around frame 30 can be
clearly seen. By setting a threshold for the 2D error a classification in
running and non-running motion is possible. For the jumping part of
the sequence we may therefore switch from the periodic reconstruction
(cf. Section 4.1.3) to the less constrained non-periodic algorithm (cf.
Section 4.1.4). Since there is no similar jumping motion in the other
datasets (only jumping with legs closed or on one leg), we use base poses
trained on the motions walk, run and jump simultaneously as mentioned
in Section 4.1.6.6. Although the example sequence is manually labeled
and the base poses are trained on another dataset our method achieves
realistic results as shown in Figure 4.20.

4.1.7  Conclusion

This section presented a new method for the 3D reconstruction of human
motion from monocular image sequences. Using periodic functions to
model the weights of the base poses turned out to be very effective and
stable for periodic motions. Reconstruction of non-periodic motion was
successfully done with the new regularization term. In contrast to state-
of-the-art methods for estimation of nonrigid shapes from monocular
image sequences (e.g. [10, 26]), the proposed regularizations enable to
reconstruct plausible human motion even under low reconstructibility.
Generalization is shown on multiple benchmark datasets with different
motion types. It even performs well under occlusions, noise and on the
real world data of the KTH dataset as well as on the outdoor obstacle
jump sequence. The main reason for the robustness are the learned base
poses. Even if strong noise or occlusions distort the 2D detections the
closest matching point from the base pose subspace is a valid human pose.
However, this is also a drawback of the proposed approach. Motions with
a slight deviation from the learned motion can only be reconstructed as
the learned motion, e. g. walking with hands above the head, will always
be reconstructed as a standard walking pattern as long as it is not in
the training set. A possible solution to this problem is given in the next
section.
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Figure 4.21: Walking sequence 35/02 of the CMU MoCap dataset reconstructed
with the periodic reconstruction using only 4 base poses
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Figure 4.22: Running sequence 35/17 of the CMU MoCap dataset reconstructed
with the non-periodic reconstruction
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Figure 4.23: Jumping sequence 13/11 of the CMU MoCap dataset with the
non-periodic reconstruction
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Figure 4.24: Boxing sequence of the HumanEva dataset with the non-periodic
reconstruction.

64

. 60, am 24,01.2026, 03:49:40. © Urhebarrechtlich geschiltzter Inha 3
tersagt, m ‘mit, fr oder in KI-Syster



https://doi.org/10.51202/9783186869104

4.2 A NOVEL KINEMATIC CHAIN SPACE

4.2 A NOVEL KINEMATIC CHAIN SPACE

3D point representation kinematic chain space

o =\
— 1 X
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Figure 4.25: Mapping from a 3D point representation to the kinematic chain
space. The vectors in the KCS equal to directional vectors in the 3D point
representation. The sphere shows the trajectories of left and right lower arm in
KCS. Since both bones have the same length their trajectories lie on the same
sphere.

The previous section presented a learning-based approach to constrain
the reconstructed human poses. Similar linear subspace training ap-
proaches have been proposed in [1, 68, 103, 112]. They can efficiently
represent human poses, even for 3D reconstruction from single images.
However, they require extensive training on known motions which re-
stricts them to reconstructions of the same motion category. Furthermore,
learning-based approaches cannot recover individual subtleties in the
motion (e.g. limping instead of walking) sufficiently well. Thus, this
section presents an approach to recover 3D human motions from image
sequences without the need for a previously learned model.

The approach presented in this section closes the gap between non-rigid
structure from motion and subspace-based human modeling. Similar to
other approaches that depend on the work of Bregler et al. [10] and
the previous section, we decompose an observation matrix into three
matrices corresponding to camera motion, transformation and basis
shapes. Unlike other works that find a transformation that enforces
properties of the camera matrices, we develop an algorithm that optimizes
the transformation with respect to structural properties of the observed
object. This reduces the amount of camera motion necessary for a good
reconstruction. We experimentally found that even sequences without
camera motion can be reconstructed. Unlike other works in the field
of human modeling we propose to first project the observations into
a kinematic chain space (KCS) before optimizing a reprojection error
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with respect to the kinematic model. Figure 4.25 shows the mapping
between the KCS and the representation based on 2D or 3D feature
points. It is done by multiplication with matrices which implicitly encode
a kinematic chain (cf. Section 4.2.2). This representation enables the
derivation of a nuclear norm optimization problem which can be solved
efficiently by off-the-shelf solvers. Imposing a low rank constraint on a
Gram matrix has shown to improve 3D reconstructions [17] which follows
a similar idea to the proposed method. However, the method of Dai et
al. [17] is only based on constraining the camera motion. Therefore, it
requires sufficient camera motion. In contrast, the KCS allows for using
a geometric constraint which is based on the topology of the underlying
kinematic chain. Thus, the required amount of camera motion is much
lower.

The proposed method is evaluated on different benchmark databases
(CMU MoCap [11], KTH [36], HumanEva [75], Human3.6M [33]) as well
as on our own databases qualitatively and quantitatively. The proposed
algorithm achieves state-of-the-art results and can handle problems like
motion transfers and unseen motions. Due to the noise robustness of our
method we can apply a 2D joint detector [32, 65] which allows us to
directly reconstruct human poses from unlabeled videos. Although this
method is developed for human motion capture it is applicable to other
kinematic chains such as animals or industrial robots as shown in the
experiments in Section 4.2.6.3.

Summarizing, our contributions are:

e A method for 3D reconstruction of kinematic chains from monocular
image sequences is proposed.

e An objective function based on structural properties of kinematic
chains is derived that not only imposes a low-rank assumption on
the shape basis but also has a physical interpretation.

e A nuclear norm optimization in a kinematic chain space is applied.

e In contrast to other works the proposed method is not limited
to previously learned motion patterns and does not use strong
anthropometric constraints such a-priorly determined bone lengths.

4.2.1 Estimating Camera and Shape

The i-th joint of a kinematic chain is defined by a vector @; € R® contain-
ing the z,y,z-coordinates of the location of this joint. By concatenating j
joint vectors we build a matrix representing the pose X of the kinematic
chain

X = (:1:1,11227--- 7:13]'). (427)
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The pose X, in frame k can be projected into the image plane by
X, = Ky Xy, (4.28)

where K, is the projection matrix corresponding to a weak perspective
camera. For a sequence of f frames, the pose matrices are stacked
such that W = (X1, X4,...,X})" and X = (X1, X2,..., Xs)". This
implies

W =KX, (4.29)

where K is a block diagonal matrix containing the camera matrices
K, . 5 for the corresponding frame. After an initial camera estimation
we subtract a matrix Xo from the measurement matrix by

W =W — KX, (4.30)

where X, is obtained by stacking Xo multiple times to obtain the
same size as W. Here, we take X to be a mean pose. We will provide
experimental evidence that the algorithm proposed in the following is
insensitive w.r.t. the choice of Xy as long as it represents a reasonable
configuration of the kinematic chain. In all the experiments dealing with
kinematic chains of humans, we take X to be the average of all poses
in the CMU dataset.

Following the approach of Bregler et al. [10] we decompose w by
Singular Value Decomposition (SVD) to obtain a rank-3K pose basis
Q € R3¥*J_ While [10] and similar works then optimize a transformation
matrix with respect to orthogonality constraints of camera matrices, we
optimize the transformation matrix with respect to constraints based
on a physical interpretation of the underlying structure. With A as
transformation matrix for the pose basis we may write

W = K(X, + AQ). (4.31)

In the following sections we will present how poses can be projected
into the kinematic chain space (Section 4.2.2) and how we derive an
optimization problem from it (Section 4.2.3). Combined with the cam-
era estimation (Section 4.2.4) an alternating algorithm is presented in
Section 4.2.5.

4.2.2  Kinematic Chain Space

To define a bone by, in the kinematic chain, a vector between the r-th
and t-th joint is computed by

by = K, — K, = Xe, (4.32)
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where
c¢=(0,...,0,1,0,...,0,—1,0,...,0)", (4.33)

with 1 at position r and —1 at position ¢t. The vector by has the same
direction and length as the corresponding bone. Similarly to Eq. (4.27),
a matrix B € R3*? can be defined containing all b bones

B = (b1,ba,...,by). (4.34)
The matrix B is calculated by

B=XC, (4.35)

where C' € R7*? is built by concatenating multiple vectors c. Analogously
to C, a matrix D € R**7 can be defined that maps B back to X:

X = BD. (4.36)

D is constructed similar to C. Each column adds vectors in B to
reconstruct the corresponding point coordinates. Note that C and D
are a direct result of the underlying kinematic chain. Therefore, the
matrices C' and D perform the mapping from point representation into
the kinematic chain space and vice versa.

4.2.3  Trace Norm Constraint

One of the main properties of human skeletons is the fact that bone
lengths do not change over time.
Let

R P
v =B"B-= : . (4.37)

I
be a matrix with the squared bone lengths on its diagonal. From B €
R3*? follows rank(B) = 3. Thus, ¥ has rank 3. Note that if ¥ is
computed for every frame we can define a stronger constraint on W.

Namely, as bone lengths do not change for the same person the diagonal
of ¥ remains constant.

Proposition 1. The nuclear norm of B is invariant for any bone
configuration of the same person.
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Proof. The trace of ¥ equals the sum of squared bone lengths (Eq. (4.37))

b
trace(¥) = Z 7. (4.38)
i=1

From the assumption that bone lengths of humans are invariant during a
captured image sequence the trace of W is constant. The same argument
holds for ¢trace(v/¥). Therefore, we have

| B||+ = trace(v'®) = const. (4.39)
O

Since this constancy constraint is non-convex we will relax it to derive
an easy to solve optimization problem. Using Eq. (4.35) we project
Eq. (4.31) into the KCS which gives

WC = K(X,C + AQC) (4.40)

The unknown is the transformation matrix A. For better readability we
define By = XoC and S = QC.

Proposition 2. The nuclear norm of the transformation matriz A for
each frame has to be greater than some scalar c, which is constant for
each frame.

Proof. Let B = B; + By be a decomposition of B into the initial bone
configuration By and a difference to the observed pose B;. It follows
that

[|B|l« = ||B1 + Bol|+ = c1, (4.41)

where c; is a constant. The triangle inequality for matrix norms gives
| Bil« + [|Boll« > [[B1 + Bol|« = 1. (4.42)
Since By is known, it follows
IBill. > e — |Boll. = ¢, (4.43)

where ¢ is constant. By can be represented in the shape basis S (cf.
Section 4.2.1) by multiplying it with the transformation matrix A

B, = AS. (4.44)

Since the shape base matrix S is a unitary matrix the nuclear norm of
B; equals
|1Bil« = || All«. (4.45)
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By Eq. (4.43) follows that
All« > e (4.46)
O

Proposition 2 also holds for a sequence of frames. Let A be a matrix
built by stacking A for each frame and By be defined similarly, we relax
Eq. (4.46) and obtain the final formulation for our optimization problem

min |4
A A X (4.47)
st.  ||[WC — K(AS + By)||lr =0.

Eq. (4.47) does not only define a low rank assumption on the transfor-
mation matrix. By the derivation above, we showed that the nuclear
norm is reasonable because it has a concise physical interpretation. More
intuitively, the minimization of the nuclear norm will give solutions close
to a mean configuration By of the bones in terms of rotation of the bones.
The constraint in Eq. (4.47) which represents the reprojection error pre-
vents the optimization from converging to the trivial solution ||Al|« = 0.
This allows for a reconstruction of arbitrary poses and skeletons. More-
over, Eq. (4.47) is a well studied problem which can be efficiently solved
by common optimization methods such as Singular Value Thresholding
(SVT) [12].

The following paragraph briefly introduces SVT and its application to
Equation (4.47). For further details the reader is referred to [12]. SVT
was originally proposed to solve the matrix completion problem of a
measurement matrix M with the known entries (i, k) € 2, where Q is a
subset of all entries in M, by a low rank approximation of the form

min  rank(Y)

(4.48)
s.t. Yir = M.

Since this is an ill-posed problem it is relaxed to a nuclear norm opti-
mization [13] by
min Y.

(4.49)
s.t. Y. = M.

With a starting value Z° which has the same dimension as M the SVT
algorithm is defined by two alternating steps:

1. Perform a Singular Value Decomposition (SVD) Z'~! = USV7T
and set all singular values in 3 to zero that are below a predefined
threshold. The updated Y is given by Y* = UZ V7 using the
updated X.
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2. Update Z' = Z'"™' + §(M — Y") with § as the step size which
relates the speed of convergence.

In [12] also constraints in the form f(Y') are considered, where f is
as a convex function. This is exactly the form of Equation 4.47. That
means the SVT algorithm can be applied directly to the pose estimation
problem.

4.2.4 Camera

The objective function in Eq. (4.47) can also be optimized for the camera
matrix K. Since K is a block diagonal matrix, Eq. (4.47) can be solved
block-wise for each frame. With X/ and K; corresponding to the obser-
vation and camera at frame ¢ the optimization problem can be written
as

rrfl{in\|X£CfK¢(AS+Bo)HF. (4.50)

Similar to Section 4.1.2 considering the entries in

K, = < mir  Miz2 M3 ) (4.51)

m21  M22 M23
we can enforce a weak perspective camera by the constraints
2 2 2 2 2 2
miy +miz +mis — (ma1 +mz +mi3) =0 (4.52)

and
mi1me1 + MmizMmaz + mizmes = 0. (4.53)

4.2.5 Algorithm

In the previous sections we derived an optimization problem that can be
solved for the camera matrix K and transformation matrix A respec-
tively. As both are unknown we propose algorithm 2 which alternatingly
solves for both matrices. Initialization is done by setting all entries in
the transformation matrix A to zero. Additionally, an initial bone con-
figuration By is required. It has to roughly model a human skeleton but
does not need to be the mean of the sequence.

4.2.6 FEzxperiments

For the evaluation of our algorithm different benchmark datasets (CMU
MoCap [11], HumanEva [75], KTH [36], Human3.6M [33]) were used. The
quality of the 3D reconstructions is evaluated in terms of the MPJPE
and 3DPE as described in Section 3.4. To compare sequences of different
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Algorithm 2 Factorization algorithm for kinematic chains

% Input:

By < initial bone configuration
C <+ kinematic chain matrix
W < observation

f < number of frames

A+0

while no convergence do
fort=1— f do
optimize | X:C — K(AS + Bo)||r
insert Ky in K
end for
perform SVT on
min ||A|. s.t. [WC — K(AS + Bo)||r =0
end while

% Output:
I{ : camera matrices
(AS + Bo)D: 3D poses

lengths the mean of the 3DPE over all frames is used. In the following it
is referred to as 3D error.

Additional to this quantitative evaluation we perform reconstructions
of different kinematic chains in Section 4.2.6.3 and on unlabeled image
sequences in Section 4.2.6.4. All animated meshes in this section are
created using SMPL [44]. The SMPL model is fitted to the reconstructed
skeleton and is used solely for visualization.

4.2.6.1 FEwvaluation on Benchmark Databases

To qualitatively show the drawbacks of learning-based approaches we
reconstructed a sequence of a limping person. We use the method of
Section 4.1 trained on walking patterns to reconstruct the 3D scene.
Although the motions are very similar, the algorithm of Section 4.1 is
not able to reconstruct the subtle motions of the limping leg. Figure 4.28
shows the knee angle of the respective leg. The learning-based method
reconstructs a periodic walking motion and cannot recover the unknown
asymmetric motion which makes it unusable for gait analysis applications.
The proposed algorithm is able to recover the motion in more detail.
We compare our method with the unsupervised works [2, 26] and
the learning-based approach of Section 4.1. The codes of [2] and [26]
are freely available. Although there are slightly newer works, these two
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Figure 4.26: Reconstruction of the highly articulated directions sequence from
the Human3.6M dataset subject 1.

Figure 4.27: Reconstruction of a running motion from the CMU database
subject 35/17.

approaches show the inherent problem of these unsupervised methods
(as also shown in [70]). We are not aware of any works that are able
to reconstruct scenes with very limited or no camera motion without
a model of the underlying structure. Rehan et al. [70] assume a local
rigidity that allows for defining a kinematic chain model. This reduced
the amount of necessary camera motion to 2 degrees per frame. However,
due to their assumption that the observed object is approximately rigid
in a small time window they are limited to a constantly moving camera.

For each sequence we created 20 random camera paths with little or
no camera motion and compared our 3D reconstruction results with
the other methods. Table 4.2 shows the 3D error in mm for different
sequences and datasets. For the entry walk35 we calculated the mean
overall 3D errors of all 23 walking sequences from subject 35 in the CMU
database. The columns jump and limp show the 3D error of a single
jumping and limping sequence. KTH means the football sequence of
the KTH dataset [36] and HE the walking sequence of the HumanEva
dataset [75]. The last four columns are average errors over all subjects
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Figure 4.28: Knee angle of reconstructions of a limping motion. The learning-
based method (Section 4.1) struggles to reconstruct minor differences from the
motion patterns used for training whereas the proposed learning-free approach
recovers the knee angle in more detail.

performing the respective motions of the Human3.6M dataset [33]. Note
that the highly articulated motions from Human3.6M dataset vary a lot
in the same category and therefore are harder to learn by approaches
like in Section 4.1. All these sequences are captured with little or no
camera motion. The unsupervised methods of [2] and [26] require more
camera motion and completely fail in these scenarios. The learning-based
approach of Section 4.1 reconstructs plausible poses for all sequences.
They even achieve a better result for the walking motions. However,
motions with larger variations between persons and sequences (e.g.
jumping and limping) are harder to reconstruct from the learned pose
basis. Although the results look like plausible human motions, they
lack the ability to reconstruct subtle motion variations. In contrast, the
proposed method is able to reconstruct these variations and achieves a
better result. Some of our reconstructions are shown in Figs. 4.26 and
4.27 for sequences of the Human3.6M and CMU dataset, respectively.

4.2.6.2 Convergence

We alternatingly optimize the camera matrices (Eq. (4.47)) and transfor-
mation matrix (Eq. (4.50)). Since convergence of the algorithm cannot be
guaranteed we show it by experiment. Figure 4.29 shows the convergence
of the reprojection error in pixel for a sequence from the CMU MoCap
database. However, the reprojection error only shows the convergence of
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Table 4.2: 3D error in mm for different sequences and datasets. The column
walk35 shows the mean 3D error of all sequences containing walking motion
from subject 35 in the CMU database. jump refers to the jumping motion of
subject 13/11 of the CMU database and limp to the limping motion of subject
91/16. KTH means the football sequence of the KTH dataset [36]. The column
HE shows the 3D error for the HumanEva walking sequence [75]. The last four
columns are average errors over all subjects performing the respective motions
of the Human3.6M dataset [33]. The row 4.1 shows the results obtained by
the method presented in this Section 4.1 and the row KCS shows the results
obtained by the method presented in this section.

step

walk35 jump limp KTH HE
[2] 228.68 210.14 99.37 108.91 106.92
[26] 264.75 186.70 112.92 114.03 102.99
4.1 11.22 45.49 64.46 68.88 58.62
KCS 18.94 36.50 19.24 53.10 44.36
3.6M walk | 3.6M dir. | 3.6M pose | 3.6M photo | 3.6M mean
[2] 86.76 130.43 121.33 145.44 120.99
[26] 66.70 121.40 120.56 136.30 111.24
4.1 71.54 110.36 135.87 124.52 110.57
KCS 74.44 80.83 109.28 101.76 91.58
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Figure 4.29: Reprojection error and 3D error with respect to number of iterations
for subject35/sequencel from the CMU MoCap dataset. Even steps refer to
camera estimation while odd steps correspond to shape estimation.
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Figure 4.30: Computation time for walking, running and jumping sequences of
the CMU dataset using unoptimized Matlab code. It mostly depends on the
number of frames and less on the observed motion.

Figure 4.31: Reconstruction of the sword play sequence of the CMU database.
The kinematic chain is extended such that the hands are rigidly connected.
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the proposed algorithm but cannot prove that the 3D reconstructions
will improve every iteration. We additionally estimated the convergence
of the 3D error in Figure 4.29. In most cases our algorithm converges
to a good minimum in less than 3 iterations. Further iterations do not
improve the visual quality and only deform the 3D reconstruction less
than 1mm. The 3D error remains constant during camera estimation
which causes the steps in the error plot.

Figure 4.30 shows the computation time over the number of frames for
three different sequences. The computation time mostly depends on the
number frames and less on the observed motion. We use unoptimized
Matlab code on a desktop PC for all computations.

4.2.6.3 Other Kinematic chains

Figure 4.32: Reconstruction of a sequence of an industrial robot moving along
a path. The reconstruction is shown as an augmented overlay over the images.

Figure 4.33: Reconstruction of a horse riding sequence. Although a very rough
model for the skeleton of the horse is used plausible reconstructions are obtained.

Although our method was developed for the reconstruction of human
motion, it generalizes to all kinematic chains that do not include transla-
tional joints. In this section we show reconstructions of other kinematic
chains such as people holding objects, animals and industrial robots.
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Figure 4.34: Reconstruction of a running and jumping sequence from [28]
automatically labeled by deeperCut [32, 65].

In situations where people hold objects with both hands the kinematic
chain of the body can be extended by another rigid connection between
the two hands. Figure 4.31 shows the reconstruction of the sword fighting
sequence of the CMU dataset. By simply adding another column to the
kinematic chain space matrix C (cf. Section 4.2.2) the distance between
the two hands is enforced to remain constant. The exact distance does
not need to be known, however.

Figure 4.32 shows a robot used for precision milling and the recon-
structed 3D model as overlay. The proposed method is able to correctly
reconstruct the robots motion. In Figure 4.33 we reconstructed a more
complex motion of a horse during show jumping. We used a simplified
model of the bone structure of a horse. Also in reality the shoulder joint
is not completely rigid. Despite these limitations the algorithm achieves
plausible results.

4.2.6.4 Image Sequences

The proposed method is designed to reconstruct a 3D object from labeled
feature points. In the former sections this was done by setting and tracking
them semi-interactively. In this section we will show that our method
is also able to use the noisy output of a human joint detector. We use
deeperCut [32, 65] to estimate the joints in the outdoor run and jump
sequence from [28]. Figure 4.34 shows the joints estimated by deeperCut
and our 3D reconstruction. As can be seen in Figure 4.34 we achieve
plausible 3D reconstructions even with automatically labeled noisy input
data.
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4.2.7 Conclusion

This section presented a method for the 3D reconstruction of kinematic
chains from monocular image sequences. By projecting into the kinematic
chain space a constraint is derived which is based on the assumption
that bone lengths are constant over time. This results in the formulation
of an easy to solve nuclear norm optimization problem. It allows for the
reconstruction of scenes with little camera motion where other non-rigid
structure from motion approaches fail. The presented method does not
rely on previous training or predefined body measures such as known
limb lengths. It generalizes to the reconstruction of other kinematic
chains and achieves state-of-the-art results on benchmark datasets. In
comparison to Section 4.1 it also reconstructs subtle motions such as
limping in Figure 4.28. However, the robustness to occlusions is limited.
To summarize, the method proposed in the previous Section 4.1 is a
good choice for 2D detections with strong noise and occlusions, whereas
the algorithm described in this section is preferred to reconstruct small
deviations from everyday motions.
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SINGLE IMAGE RECONSTRUCTION USING
ADVERSARIAL TRAINING

Figure 5.1: The proposed network predicts 3D human poses from noisy 2D joint
detections. We use weakly supervised adversarial training without 2D to 3D
point correspondences. The critic networks enforces a plausible 3D pose while a
reprojection layer projects the 3D pose back to 2D. Even strong deformations
and unusual camera poses can be reconstructed.

Parts of this chapter are based on a previous publication [99]. This
chapter presents RepNet, a neural network that infers 3D joint coordinates
directly from 2D observations. In contrast to Chapter 4, RepNet produces
3D reconstructions from single images, and therefore cannot employ
temporal priors. It builds upon the findings of Section 4.1 that a learned
space of human poses gives reasonable constraints. Since the presented
linear model contains many implausible poses it needs to be regularized
by temporal smoothness and bone lengths constancy priors. Since single
images do not allow for temporal priors a nonlinear model is learned
using a generative adversarial network (Section 3.2.3.2) that only contains
plausible human poses. Additionally, the kinematic chain space, which
was successfully applied to image sequences in Section 4.2, is integrated
into a neural network layer to improve the network’s capability of learning
meaningful anthropometric constraints.

Comparable recent approaches are able to infer 3D human poses
from monocular images in good quality (Section 2.2). However, most
of them use neural networks that are straightforwardly trained with a
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Figure 5.2: The proposed adversarial training structure for RepNet consists of
three parts: a pose and camera estimation network (1), a critic network (2) and
a reprojection network (3). There are losses (green) for the critic, the camera,
and the reprojection. Similar to the training of GAN’s the shown network is
alternatingly trained with the discriminator network (Section 3.2.3.2).

strict assignment from input to output data, which are also mentioned in
Section 2.2.2. This leads to surprisingly impressive results on similar data,
but usually, the generalization to unknown motions and camera positions
is problematic. This chapter presents a method to overcome this problem
by using a neural network trained with a weakly supervised adversarial
learning approach. We relax the assumption that a specific 3D pose is
given for every image in the training data by training a discriminator
network —widely used in generative adversarial networks (GAN) [21]- to
learn a distribution of 3D human poses. A second neural network learns
a mapping from the distribution of detected 2D keypoints (obtained by
[58]) to the distribution of 3D keypoints which are valid 3D human poses
according to the discriminator network. From the generative adversarial
network point-of-view this can be seen as the generator network. To
force the generator network to generate matching 3D poses to the 2D
observations we propose to add a third neural network that predicts
camera parameters from the input data. The inferred camera parameters
are used to reproject the estimated 3D pose back to 2D which gives this
framework its name: Reprojection Network (RepNet). Note that neither
2D-3D pairs nor known cameras are required, which enables the network
to be trained with 2D poses from datasets without 3D annotations.
Figure 5.2 shows an overview of the proposed network. Additionally, to
further enforce kinematic constraints we propose to employ an easy to
calculate and implement descriptor for joint lengths and angles inspired
by the kinematic chain space (KCS) presented in Section 4.2.

In contrast to other works the proposed method is very robust against
overfitting to a specific dataset. This claim is reinforced by our ex-
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periments where the network can even infer human poses and camera
positions that are not in the training set. Even if there are strong de-
formations or unusual camera poses our network achieves good results
as can be seen in the rock climbing image in Figure 5.1. This leads to
our conclusion that the discriminator network does not memorize all
poses from the training set but learns a meaningful manifold of feasible
human poses. As we will show the inclusion of the KCS as a layer in
the discriminator network plays an important role for the quality of the
discriminator.

We evaluate our method on the three datasets Human3.6M [33], MPI-
INF-3DHP [52] and Leeds Sports Pose (LSP) [35]. On all the datasets
RepNet achieves state-of-the-art results and even outperforms most
supervised approaches. Furthermore, the proposed network can predict
a human pose in less than 0.1 milliseconds on standard hardware which
allows to build a real-time pose estimation system when combining it
with state-of-the-art 2D joint detectors, such as OpenPose [14].

Summarizing, the contributions in this chapter are:

e An adversarial training method for a 3D human pose estimation
neural network (RepNet) based on a 2D reprojection.

e Weakly supervised training without 2D-3D correspondences and
unknown cameras.

e Simultaneous 3D skeletal keypoints and camera pose estimation.

e A layer encoding a kinematic chain representation that includes
bone lengths and joint angle informations.

e A pose regression network that generalizes well to unknown human
poses and cameras.

5.1 METHOD

The basic idea behind the proposed method is that 3D poses are regressed
from 2D observations by learning a mapping from the input distribution
(2D poses) to the output distribution (3D poses).

In standard generative adversarial network (GAN) training [21] a gen-
erator network learns a mapping from an input distribution to an output
distribution which is rated by another neural network, called discrimi-
nator network. The discriminator is trained to distinguish between real
samples from a database and samples created from the generator network.
When training the generator to create samples that the discriminator
predicts as real samples the discriminator parameters are fixed. The
generator and the discriminator are trained alternatingly and therefore
compete with each other until they both converge to a minimum.
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5.2 POSE AND CAMERA ESTIMATION

In standard GAN training the input is sampled from a gaussian or
uniform distribution. Here, we assume that the input is sampled from a
distribution of 2D observations of human poses. Adopting the Wasserstein
GAN [6] naming we call the discriminator critic in the following. Without
knowledge about camera projections the network produces random, yet
feasible human 3D poses. However, these 3D poses are very likely the
incorrect 3D reconstructions of the input 2D observations. To obtain
matching 2D and 3D poses we propose a camera estimation network
followed by a reprojection layer. As shown in Figure 5.2 the proposed
network consists of three parts: The pose and camera estimation network
(1), the critic used in the adversarial training (2) and the reprojection
part (3). The critic and the complete adversarial model are trained
alternatingly as described above.

5.2 POSE AND CAMERA ESTIMATION

The pose and camera estimation network splits into two branches, one
for regression of the pose and the other for the camera estimation. In
the following X € R**™ denotes a 3D human pose where each column
contains the zryz-coordinates of a body joint. In the neural network this
matrix is written as a 3n dimensional vector. Correspondingly, if n joints
are reconstructed the input of the pose and camera estimation network
is a 2n dimensional vector containing the coordinates of the detected
joints in the image.

The pose estimation part consists of two consecutive residual blocks,
where each block has two hidden layers of 1000 densely connected neurons.
For the activation functions we use leaky ReLUs [29] which produced the
best results in our experiments. The last layer outputs a 3n dimensional
vector which contains the 3D pose and can be reshaped to X . The camera
estimation branch has a similar structure as the pose estimation branch
with the output being a 6 dimensional vector containing the camera
parameters. Here, we use a weak perspective camera model that can be
defined by only six variables. To obtain the camera matrix the output
vector is reshaped to K € R**3,

5.3 REPROJECTION LAYER

The reprojecting layer takes the output pose X of the 3D generator
network and the camera K of the camera estimation network. The
reprojecting into 2D coordinate space can then be performed by

W' =KX, (5.1)
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Real/Fake Critic

KCS Layer | FC

Concat H FC |-‘—— Wasserstein loss

FC

3D Pose

Figure 5.3: Network structure of the critic network. In the upper path the 3D
pose is transformed into the KCS matrix and fed into a fully connected (FC)
network. The lower path is build from multiple FC layers. The feature vectors
of both paths are concatenated and fed into another FC layer which outputs
the critic value.

where W is called the 2D reprojection in the following. This allows for
the definition of a reprojection loss function

Lrep(X,K)=||W - KX||F, (5.2)

where W is the input 2D pose observation matrix which has the same
structure as W'. || - || denotes the Frobenius norm. Note that the
reprojection layer is a single layer which only performs the reprojection
and does not have any trainable parameters. To deal with occlusions
columns in W and X that correspond to not detected joints can be
set to zero. This means they will have no influence on the value of the
loss function. The missing joints will then be hallucinated by the pose
generator network according to the critic network. In fact, the stacked
hourglass network that produces the 2D joint detections [58] that we
use as the input does not predict the spine joint. We therefore set the
corresponding columns in W and X to zero in all our experiments.

5.4 CRITIC NETWORK

The complete network in Figure 5.2 is trained alternatingly with the
critic network. The loss on the last layer of the critic is a Wasserstein loss
function [6]. The obvious choice of a critic network is a fully connected
network with a structure similar to the pose regression network. However,
such networks struggle to detect properties of human poses such as kine-
matic chains, symmetry and joint angle limits. Therefore, the kinematic
chain space (KCS) introduced in Section 4.2 is integrated into the model.
We develop a KCS layer with a successive fully connected network which
is added in parallel to the fully connected path. These two paths in the
critic network are merged before the output layer. Figure 5.3 shows the
network structure of the critic.
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5.4 CRITIC NETWORK

The KCS matrix is a representation of a human pose containing
joint angles and bone lenghts and can be computed by only two matrix
multiplications. A bone by, is defined as the vector between the r-th and
t-th joint

by =pr —p: = X, (5.3)

where
c¢=(0,...,0,1,0,...,0,—1,0,...,0)", (5.4)

with 1 at position 7 and —1 at position ¢t. Note that the length of the
vector by has the same direction and length as the corresponding bone.
By concatenating b bones a matrix B € R**® can be defined as

B = (b1,by,....by). (5.5)

This leads to a matrix C € R7*® The matrix B is calculated by concate-
nating the corresponding vectors c. It follows

B =XC. (5.6)

Multiplying B with its transpose gives the KCS matriz as defined in
Section 4.2

v-B"B=| S (5.7)

Iy

Because each entry in ¥ is an inner product of two bone vectors the
KCS matrix has the bone lengths on its diagonal and a (scaled) angular
representation on the other entries. In contrast to an Euclidean distance
matrix [56] the KCS matrix ¥ is easily calculated by two matrix multi-
plications. This allows for an efficient implementation as an additional
layer. By giving the discriminator network an additional feature matrix it
does not need to learn joint lengths computation and angular constraints
on its own. In fact, in our experiments it was not possible to achieve an
acceptable symmetry between the left and right side of the body without
the KCS matrix. Section 5.8.1 shows how the 3D reconstruction benefits
from adding the additional KCS layer. In our experiments there was no
difference between adding convolutional layers or fully connected layers
after the KCS layer. In the following we will use two fully connected
layers, each containing 100 neurons, after the KCS layer. Combined with
the parallel fully connected network this leads to the critic structure in
Figure 5.3.

85

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

SINGLE IMAGE RECONSTRUCTION USING ADVERSARIAL TRAINING

5.5 CAMERA

Since the camera estimation sub-network in Figure 5.2 can produce any
6-dimensional vector we need to force the network to produce matrices
describing weak perspective cameras. If the 3D poses and the 2D poses
are centered at their root joint the camera matrix K projects X to W’
according to Eq. (5.1). A weak perspective projection matrix K has the
property

KK" = 5L, (5.8)

where s is the scale of the projection and I is the 2 X 2 identity matrix.
Since the scale s is unknown we derive a computationally efficient method
of calculating s. The scale s equals to the largest singular value (or the
¢3-norm) of K. Both singular values are equal. Since the trace of K K7
is the sum of the squared singular values

s =y/trace(KKT)/2. (5.9)

The loss function can now be defined as

2 T
Leam = KK — I|F, 5.10
”tmce(KKT) 2l (5.10)
where || - || denotes the Frobenius norm. Note that only one matrix

multiplication is necessary to compute the quadratic scale.

5.6 DATA PREPROCESSING

The camera estimation network infers the parameters of the weak per-
spective camera. That means the camera matrix contains a rotational
and a scaling component. To avoid ambiguities between the camera and
3D pose rotation all the rotational and scaling components from the
3D poses are removed. This is done by aligning every 3D pose to a
template pose. We do this by calculating the ideal rotation and scale for
the corresponding shoulder and hip joints via Procrustes alignment. The
resulting transformation is applied to all joints.

Depending on the persons size in the image the 2D joint detections
can have arbitrary scale. To remove the scale component we divide
each 2D pose vector by its standard deviation. Note that using this
scaling technique the same person can have different sized 2D pose
representations depending on the camera and 3D pose. However, the value
for all possible 2D poses is constrained. The remaining scale variations
are compensated by the cameras scale component. In contrast to e.g.
[51] we do not need to know the mean and standard deviation of the
training set. This allows for an easy transfer of our method to a different
domain of 2D poses.
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5.7 TRAINING

We implemented the Improved Wasserstein GAN training procedure
of [25]. In our experience this results in better and faster convergence
compared to the traditional Wasserstein GAN [6] and standard GAN
training [21] using binary cross entropy or similar loss functions. We use
an initial learning rate of 0.001 with exponential decay every 10 epochs.

5.8 RESULTS

We perform experiments on the three datasets Human3.6M [33], MPI-INF-
3DHP [52] and LSP [35]. Human3.6M is the largest benchmark dataset
containing images temporally aligned to 2D and 3D correspondences.
Unless otherwise noted we use the training set of Human3.6M for training
our networks. To show quantitative results on unseen data we evaluate
our method on MPI-INF-3DHP. For unusual poses and camera angles
subjective results are shown on LSP. Matching most comparable methods
we use stacked hourglass networks [58] for 2D joint estimations from the
input images in most of the experiments.

5.8.1 Quantitative Fvaluation on Human3.6M

The two main evaluation protocols on the Human3.6M dataset are fol-
lowed (Section 3.5) by using subjects 1, 5, 6, 7, 8 for training and subject
9, 11 for testing. Both protocols calculate the mean per joint positioning
error (MPJPE), i.e. the mean Euclidean distance between the recon-
structed and the ground truth joint coordinates (Section 3.4). Protocol-I
computes the MPJPE directly whereas protocol-II first employs a rigid
alignment between the poses. For a sequence the MPJPE’s are summed
and divided by the number of frames.

Table 5.1 shows the results of protocol-I without a rigid alignment.
The rotation of the pose relative to the camera can be directly calculated
from the camera matrix estimated by the camera regression network.
Rotating the reconstructed pose in the world frame of the dataset gives
the final 3D pose. Table 5.2 shows the results of protocol-II using a
rigid alignment before calculating the error. The row RepNet-noKCS
shows the errors without using the KCS layer. It can be seen that the
additional KCS layer in the discriminator significantly improves the pose
estimation. We are aware of the fact that our method will not be able to
outperform supervised methods trained to perform exceptionally well on
Human3.6M, such as [51] and [45]. Instead, in this section we show that
even if we ignore the 2D-3D correspondences and train weakly supervised
our network achieves comparable results to supervised state-of-the-art
methods and is even better than most of them. Comparing to weakly
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GT RepNet GT RepNet

0 2

e

-/ -

Figure 5.4: One example reconstruction for every motion from the test set
of Human3.6M. The left 3D skeleton is the ground truth (GT) and the right
shows our reconstruction (RepNet). Even difficult poses such as crossed legs or
sitting on the floor are reconstructed well.
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Table 5.1: Results for the reconstruction of the Human3.6M dataset compared
to other state-of-the-art methods following Protocol-I (no rigid alignment).
All numbers are taken from the referenced papers. For comparison the row
RepNet+2DGT shows the error when using the ground truth 2D labels. The
column WS denotes weakly supervised approaches. Note that there are no
results available for other weakly supervised works.

Protocol-1 WS Direct. Disc. Eat Greet Phone Photo Pose Purch.
LinKDE [33] 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3
Tekin et al. [80] 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2
Zhou et al. [111] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8
Du et al. [18] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2
Park et al. [63] 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9
Zhou et al. [113] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8
Luo et al. [45] 68.4 77.3 70.2 71.4 75.1 86.5 69.0 76.7
Pavlakos et al. [64] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3
Zhou et al. [114] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6
Martinez et al. [51] 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7
RepNet (Ours) v 77.5 85.2 82.7 93.8 93.9 101.0 82.9 102.6
RepNet+2DGT (Ours) v 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3
Sit SitD Smoke Wait Walk ‘WalkD ‘WalkT Avg.
LinKDE [33] 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
Tekin et al. [80] 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0
Zhou et al. [111] 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Du et al. [18] 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5
Park et al. [63] 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3
Zhou et al. [113] 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3
Luo et al. [45] 88.2 103.4 73.8 72.1 83.9 58.1 65.4 76.0
Pavlakos et al. [64] 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Zhou et al. [114] 75.2 111.6 64.2 66.1 63.2 51.4 55.3 64.9
Martinez et al. [51] 81.9 99.8 69.1 63.9 50.9 67.1 54.8 67.5
RepNet (Ours) ‘ v ‘ 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9
RepNet+2DGT (Ours) s 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9
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Table 5.2: Results for the reconstruction of the Human3.6M dataset compared
to other state-of-the-art methods following Protocol-II (rigid alignment). All
numbers are taken from the referenced papers, except rows marked with * that
are taken from [91]. Although we do not improve over supervised methods on
this specific dataset our method clearly outperforms all other weakly supervised
approaches (column WS). The best results for the weakly supervised methods
are marked in bold. The second best approach that is not ours is underlined.
For comparison the last row RepNet+2DGT shows the error when using the
ground truth 2D labels.

Protocol-IT ‘ ‘WS | Direct. Disc. Eat Greet  Phone  Photo Pose Purch.
Akther and Black [1] 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3
Ramakrishna et al. [68] 37.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1
Zhou et al. [112] 99.7 95.8 87.9 116.8  108.3 107.3 93.5 95.3
Bogo et al. [8] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3
Moreno-Noguer [56] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3
Martinez et al. [51] 44.8 52.0 44.4 50.5 61.7 59.4 45.1 41.9
Luo et al. [45] 40.8 44.6 42.1 45.1 48.3 54.6 41.2 42.9
3Dinterpreter* [105] v 78.6 90.8 92.5 89.4 108.9 112.4 7.1 106.7
AIGN [91] v 77.6 91.4 89.9 8.0 107.3  110.1 75.9 107.5
RepNet (Ours) v 58.3 59.6 66.5 72.8 71.0 56.7 69.6
RepNet-noKCS (Ours) v 67.4 71.5 78.5 85.9 82.6 70.8 82.7
RepNet+2DGT (Ours) v 38.8 32.6 37.5 36.0 44.1 37.8 34.9
Sit SitD  Smoke ~ Wait Walk  WalkD  WalkT Avg.
Akther and Black [1] 160.7 173.7 177.8 181.9 198.6 176.2 192.7 181.1
Ramakrishna et al. [68] 168.6  175.6 160.4  161.7 174.8 150.0 150.2 157.3
Zhou et al. [112] 109.1 137.5 106.0 102.2 110.4 106.5 115.2 106.7
Bogo et al. [8] 100.3  137.3 83.4 7.3 79.7 86.8 87.7 82.3
Moreno-Noguer [56] 103.5 74.6 92.6 69.6 78.0 71.5 73.2 74.0
Martinez et al. [51] 66.3 7.6 54.0 58.8 35.9 49.0 40.7 52.1
Luo et al. [45] 55.5 69.9 46.7 42.5 36.0 48.0 41.4 46.6
3Dinterpreter* [105] v 1274 139.0 103.4 91.4 79.1 - - 98.4
AIGN [91] vo| 1242 1378 1022 903 186 - - 972
RepNet (Ours) v 78.3 95.2 66.6 58.5 63.2 57.5 49.9 65.1
RepNet-noKCS (Ours) v 92.2 116.6 7.6 72.2 65.3 73.2 69.6 779
RepNet+2DGT (Ours) v 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2
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supervised approaches [91, 105] we outperform the best by about 30% on
protocol-I1. For subjective evaluation the 1500th frame for every motion
can be seen in Figure 5.4. For comparability we show the same frame
from every motion sequence from the same viewing angle. Even difficult
poses, for instance sitting cross-legged, are reconstructed well.

All approaches in Table 5.1 and Table 5.2 perform 3D reconstructions
from single images. For comparison, the average MPJPE over all se-
quences from the Human3.6M dataset for the approaches in Chapter 4
are 110.6mm (Section 4.1) and 91.6mm (Section 4.2), which is compara-
ble to the error of RepNet under protocol-I (89.9mm). Comparing the
MPJPEs of single image approaches and methods employing temporal
priors could be misleading since a small number of wrongly estimated
joints in single images only have a minor impact on the MPJPE but
can strongly distort a human pose. Moreover, oscillation around the
ground truth occurs frequently when single image approaches are used
for sequences. Although the performance of both approaches in Chapter 4
is not better than RepNet, they produce smoother 3D motions and are
more robust to outliers and occlusions in the 2D detections.

In our opinion, although widely used on Human3.6M, the Euclidean
distance is not the only metric that should be considered to evaluate
the performance of a human pose estimation system. Since there are
some single frames that cannot be reconstructed well and can be seen
as outliers we also calculate the median of the MPJPE over all frames.
Additionally, we calculate the percentage of correctly positioned keypoints
(PCK3D) as defined by [52] in Table 5.3.

Table 5.3: Performance of our method regarding the median and PCK3D errors
for the Human3.6M dataset. For comparison the last row RepNet+2DGT shows
the error when using the ground truth 2D labels.

‘ mean median PCK3D
RepNet 65.1 60.0 93.0
RepNet+2DGT | 38.2 36.0 98.6

In the following section we will show that although we do not improve
on all supervised state-of-the-art methods directly trained on Human3.6M
our approach outperforms every other known method on MPI-INF-3DHP
without additional training.

5.8.2  Quantitative Evaluation on MPI-INF-3DHP
Our main contribution is a neural network that infers even unseen human

poses while maintaining a meaningful 3D pose. We compare our method
against several state-of-the-art approaches. Table 5.4 shows the results
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Table 5.4: Results for the MPI-INF-3DHP dataset. All numbers are taken from
the referenced papers, except the row marked with * which is taken from [54].
Without training on this dataset the proposed method outperforms every other
method. The row RepNet SDHP shows the result when using the training set
of MPI-INF-3DHP. The column WS denotes weakly supervised approaches. A
higher value is better for 3DPCK and AUC while a lower value is better for
MPJPE. The best results are marked in bold and the second best approach is
underlined.

Method WS | 3DPCK AUC MPJPE
Mehta et al. [52] 76.5 40.8 117.6
VNect [53] 76.6 404 1247
LCR-Net[72]* 50.6  27.6 1584
Zhou et al. [114] 69.2 32.5 137.1
Multi Person [54] 75.2 37.8 122.2
OriNet [45] 81.8 452  89.4
RepNet H36M (Ours) v 81.8 54.8 92.5
RepNet 3DHP (Ours) | v | 825 585  97.8

for different metrics. We clearly outperform every other method without
having trained our model on this specific dataset. Even approaches
trained on the training set of MPI-INF-3DHP perform worse than ours.
This shows the generalization capability of our network. The row RepNet
8DHP is the result when training on the training set of MPI-INF-3DHP.
There is only a minor improvement of the 3DPCK and AUC and even a
minor deterioration of the MPJPE compared to the network trained on
Human3.6M. This suggests that the critic network converges to a similar
distribution of feasible human poses for both training sets.

5.8.3 Plausibility of the Reconstructions

Table 5.5: Symmetry error in mm of the reconstructed 3D poses on the different
datasets with and without the KCS. Adding the KCS layer to the critic networks
results in significantly more plausible poses.

Method mean  std max

H36M noKCS | 31.9 9.3 61.3

H36M KCS 8.2 3.8 20.5

3DHP noKCS | 329 21.9 143.9

3DHP KCS 11.2 8.0 54.7
92
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5.8 RESULTS

The metrics used for evaluation in Section 5.8.1 and 5.8.2 compare
the estimated 3D pose to the ground truth. However, a low error in this
metrics is not necessarily an indication for a plausible human pose since
the reconstructed pose can still violate joint angle limits or symmetries
of the human body. For this purpose we introduce a new metric based on
bone length symmetry. We calculate bone lengths of the lower and upper
arms and legs since there is the largest error per joint. By summing the
absolute differences of all matching bones on the right and left side of the
body we can calculate a symmetry error. The mean symmetry error of the
ground truth poses from the test set of Human3.6M and MPI-INF-3DHP
for all subjects is 0.7mm £ 0.8mm (max. 2.6mm) and 2.1mm £ 1.3mm
(max. 7.6mm), respectively. This leads us to the conclusion that an
equality between the left and right side and therefore a low symmetry
error is one reasonable metric for the plausibility of a human pose.
Table 5.5 compares several implementations of our network in terms of
the symmetry error. It can be clearly seen that the KCS layer has a
significant impact on this metric. The higher values for the MPI-INF-
3DHP dataset can be explained by the larger differences in symmetry of
the ground truth data.

5.8.4 Noisy observations

Table 5.6: Evaluation results for protocol-II (rigid alignment) with different
levels of Gaussian noise NV (0,0) (o is the standard deviation) added to the
ground truth 2D positions (GT'). The 2D detector noise has large impact on the
3D reconstruction. The right three columns show the mean, standard deviation,
and maximal symmetry error in millimeters.

Protocol-11 Direct. Disc. Eat Greet  Phone  Photo  Pose Purch. Sit
GT 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2
GT + N(0,5) 54.0 56.8 52.7 56.5 54.4 59.7 55.7 54.1 56.3

GT + N(0,10) | 70.4 722 728 751 70.2 841 684 893 740
GT + N(0,15) | 86.3 88.0 875 899  84.0 98.1 840 1042 874
GT + N(0,20) | 101.6  103.0 101.6 1045  97.5 1122 993 1181  100.9

symmetry
SitD Smoke Wait Walk WalkD WalkT  Avg. mean std max
GT 52.0 37.5 39.8 34.1 40.3 34.9 38.2 6.2 3.7 20.8
GT + N(0,5) 68.5 56.1 58.7 57.6 56.7 55.3 56.9 9.6 4.0 25.0

GT -+ N(0,10) 94.1 68.3 74.3 67.7 73.5 70.0 74.9 13.0 3.8 24.2
GT + N(0,15) 107.7 82.3 89.3 85.1 89.0 86.0 89.9 17.6 4.2 32.1
3T + N(0,20) 121.5 95.9 104.0 101.6 104.7 102.3  104.6 22.7 4.5 37.5

Since the performance of our network appears to depend a lot on
the detections of the 2D pose detector we evaluate our network on
different levels of noise. Following [56] we add Gaussian noise N(0, o) to
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the ground truth 2D joint positions, where ¢ is the standard deviation
in pixel. The results for Human3.6M under protocol-II are shown in
Table 5.6. The error scales linearly with the standard deviation. This
indicates that the noise of the 2D joint detector has a major impact on
the results. Considering Tables 5.1 and 5.2 an improved detector will
enhance the results to a level where they outperform current state-of-
the-art supervised approaches.

Please note that the maximum person size from head to toe is ap-
proximately 200px in the input data. Therefore, Gaussian noise with a
standard deviation of o = 20px can be considered as extremely large.
However, due to the critic network using the KCS layer the output of the
pose estimation network is still a plausible human pose. To demonstrate
this we additionally investigated the average, standard deviation and
maximal symmetry error for the different noise levels which is also shown
in Table 5.6. As expected the error increases only slightly since the critic
network enforces plausible human poses. Even for noise levels as high as
N(0,20) we achieve an average symmetry error of only 22.7mm +4.5mm
which can be considered as very low.

5.8.5  Qualitative Evaluation

For a subjective evaluation we use the Leeds Sports Pose dataset (LSP)
[35]. This dataset contains 2000 images of different people doing sports.
There is a large variety in poses including stretched poses close to the
limits of possible joint angles. Some of these poses and camera angles
were never seen before by our network. Nevertheless, it is able to predict
plausible 3D poses for most of the images. Figure 5.5 shows some of the
reconstructions achieved by our method. There are many subjectively well
reconstructed poses, even if these are extremely stretched and captured
from uncommon camera angles. Note that RepNet was only trained on
the camera angles of Human3.6M. This underlines that an understanding
of plausible poses and 2D projections is learned. The bottom row in
Figure 5.5 shows some failure cases and emphasizes a limitation of this
approach: poses or camera angles that are too different from the training
data cannot be reconstructed well. However, the reconstructions are still
plausible human poses and in most cases at least near to the correct
pose.

5.8.6  Conclusion

This chapter presented RepNet: a weakly supervised training method for
a 3D human pose estimation neural network that infers 3D poses from 2D
joint detections in single images. We proposed to use an additional camera
estimation network and our novel reprojection layer that projects the
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5.8 RESULTS

Figure 5.5: Example 3D pose estimations from the LSP dataset. Good recon-
structions are in the left columns. The bottom row shows some failure cases
with very unusual poses or camera angles. Although not perfect, the poses are
still plausible and close to the correct poses.
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estimated 3D pose back to 2D. By exploiting state-of-the-art techniques
in neural network research, such as improved Wasserstein GANs [25] and
kinematic chain spaces [98], we were able to develop a weakly supervised
training procedure that does not need 2D to 3D correspondences. This
not only outperforms previous weakly supervised methods but also
avoids overfitting of the network to a limited amount of training data.
We achieved state-of-the-art performance on the benchmark dataset
Human3.6M, even compared to most supervised approaches. Using the
network trained on Human3.6M to predict 3D poses from the unseen
data of the MPI-INF-3DHP dataset showed an improvement over all
other methods. We also performed a subjective evaluation on the LSP
dataset where we achieved good reconstructions even on images with
uncommon poses and perspectives.
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CONCLUSIONS

This thesis deals with the problem of image-based Human Motion Cap-
ture. Several applications can already be found in our everyday lives,
e.g. in gaming devices or movies. There is a large amount of other possi-
ble applications in the industry, sports, medicine, autonomous driving.
However, it still poses a major challenge to integrate existing MoCap
technology into a product. The main reason is the need for traditional
systems for multiple synchronized cameras and persons wearing optical
markers. This is inconvenient and impractical in most scenarios and
not suitable for mobile applications. To this end, this thesis focuses on
monocular MoCap, i.e. using only a single camera. Since this makes
the problem significantly harder compared to multi camera systems it
requires sophisticated computer vision and machine learning solutions.
Three of them are proposed in this thesis. The first combines a bone
length consistency prior with a learned pose basis and temporal priors.
Since a pretrained basis is very restrictive in terms of possible reconstruc-
tions the second approach avoids training a model for human poses by
replacing it by a kinematic chain. The third approach learns a distribu-
tion of human poses using an adversarial neural network which is able
to even reconstruct poses that are not in the training dataset.

PERIODIC AND NON-PERIODIC CONSTRAINTS

The approach presented in Section 4.1 exploits the facts that human
motions are smooth and bone lengths remain constant for one person
during an image sequence. Inspired by traditional NRSfM methods we
factorize a measurement matrix into three matrices corresponding to
the camera, the pose basis and coefficients for the bases. In contrast,
we propose to learn the pose basis in advance from training data which
gives strong constraints for possible 3D reconstructions. The smoothness
of periodic motions is enforced by using periodic functions to model the
weights of the base poses which turned out to be very effective and stable
for periodic motions such as walking or running. For the reconstruction
of non-periodic motions a novel regularization term was proposed. It
regularizes the temporal bone length changes over time by a variance
minimization. This led to high-quality 3D reconstructions of human
motions even under difficult conditions, e.g. low camera motion where
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previous NRSfM methods produce degenerated solutions. Moreover, the
learned pose basis enables the proposed algorithm to produce good
reconstructions even with occlusions, noise and on the real-world data of
the KTH dataset as well as on outdoor sequences.

KINEMATIC CHAIN SPACE

This part of the thesis (Section 4.2) introduces a more general method
compared to the formerly presented approach. It generalizes to the
reconstruction of arbitrary kinematic chains. The only requirement is a
known kinematic chain. More specifically, only the connections between
the joints are known while the bone lengths can be unknown. The novel
kinematic chain space is introduced which allows for the derivation of
an easy to solve nuclear norm optimization problem. In contrast to
the previous approach it does not require a learned pose basis and is
therefore able to reconstruct even subtle motions, for instance stumbling
or limping. The proposed algorithm not only achieves state-of-the-art
results on benchmark datasets but also generalizes to the reconstruction
of other kinematic chains which was shown for industrial robots and
horses.

REPNET

The second part of the thesis (Chapter 5) deals with 3D reconstruction of
humans from single images. In contrast to the previous approaches that
perform a global optimization over several frames the presented approach
enables online deployment. It combines the key ideas of both of the former
methods, namely learning a meaningful pose basis and representing poses
in the kinematic chain space. The contribution of this chapter is to learn
a nonlinear space of plausible human poses by applying a GAN. Instead
of giving a randomly distributed input vector to the GAN, it receives
2D pose detections and learns a mapping to the 3D pose space that is
evaluated by a discriminator network. It turned out that enriching the
discriminator with a layer implementing a mapping into the kinematic
chain space (introduced in Section 4.2) significantly improves its ability
to distinguish plausible from implausible human poses. Additionally,
to enforce consistency with the 2D detections a reprojection layer is
proposed that reprojects the inferred 3D poses back to 2D which allows
for the definition of a reprojection loss during training. Combining these
ideas leads to a neural network that is trained with weak supervision and
does not require 2D to 3D pose correspondences. This efficiently avoids
overfitting to a specific dataset or activity that all previous state-of-the-
art methods struggle with. We achieve state-of-the-art performance on the
benchmark datasets Human3.6M and MPI-INF-3DHP, even compared

98

- 216.73.216.60, am 24.01.2026, 03:49:40. © Urhebarrechtiich geschitzter Inhaf 2
tersagt, m mit, flir oder in Ki-Syster



https://doi.org/10.51202/9783186869104

CONCLUSIONS

(a) Frame from [52]. (b) Indoor climbing. (c) Outdoor climbing.

Figure 6.1: Recordings of humans performing different activities. Capturing
these activities gets more complicated from (a) to (c). Although the persons in
(b) and (c) perform the same activity the outdoor scene in (c) is significantly
harder to capture.

to most supervised approaches. The good generalization to other poses
is shown in several experiments subjectively and objectively.

FUTURE WORK

This thesis presents approaches to the human pose and motion estima-
tion problem from monocular cameras by either exploiting temporal or
structural properties.

One major drawback of every learning-based method is their depen-
dency on the training data since they are only able to reproduce formerly
seen poses in the database. Existing databases mostly contain everyday
motions, for instance walking, sitting, or different working motion. For
some motions, such as rock climbing, parkour running, horse riding or
skateboarding recording is extremely challenging or even impossible.
Figure 6.1 shows the increasing domain gap between studio-recorded
everyday activities in Figure 6.1a, indoor scenes in Figure 6.1b and
outdoor scenes in Figure 6.1c. Even if data for the respective activity
domains would exist, the inter-domain variability is still large, e.g. if
indoor climbing is compared to the more complex setting of outdoor
climbing. The presented RepNet is a step in the direction to generalize to
a complete human pose space by learning a distribution of human poses
instead of simply memorizing them from a database. Although it is able
to reconstruct unseen poses it is still restricted to poses and camera views
close to the training data. A possible research direction is to adapt the
features learned from traditional MoCap datasets (e.g. by RepNet) to
the target activity domain that does not exist in the training set. A vast
number of domain adaptation techniques for image classification tasks
have been proposed in the recent past. The most notable are DANN [20]
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and CyCADA [31] that both use adversarial training but are not yet
applied to human pose estimation. Another route is taken by [16, 38, 71,
92| who use unlabeled images to train neural networks self-supervised.
They, however, require multiple views from the same pose for training.

A step beyond human motion capture is physical motion analysis.
Given a 3D sequence of poses, the goal is to estimate the forces and
torques acting on the inside and outside of the body. There exists a
large amount of biomechanics literature that builds dynamics models
of the human body. Even musculoskeletal models exist that model each
muscle in the body individually. A rarely considered and very challenging
problem is to estimate the torques and forces from monocular image
data. One approach [109] was published in a joint work during the time
at TNT that estimates the torques in the knees during gait motions and
in the back during lifting motions. It was used to detect different gait
patterns and unhealthy lifting motions and can give recommendations on
how to improve these movements. Including knowledge about external
forces into human pose estimation can also help to resolve the ambiguity
between depth and person height as shown in [7].
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