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Abstract

The creation of versatile 3D face models from limited training data has
been a long-standing goal in facial animation. These models need to fully
represent each individual face shape, including changes of facial expressions
without the loss of individual facial features.

This difficulty is especially well-known in the movie industry, where even
nowadays extensive manual work is necessary to achieve a natural represen-
tation of a human face with convincing expressive performance. This process
is already challenging if sufficient high-quality 3D material of one person is
available, but is considerably more difficult in the case of low-quality in-
put data caused by limited hardware. In this work, different methods are
presented to create 3D face models from databases of 3D face scans. The
databases contain scans of various persons showing different expressions, a
variety of points per 3D scan and different numbers of scans per person.
Throughout this work objective quality criteria are carefully designed to
quantify the quality requirements of each specific application.

In the first part of this work a preprocessing pipeline is presented, followed
by a procedure to achieve dense meaningful correspondences between the 3D
face scans. Then, based on the assumption of a shared motion pattern, a
temporal alignment is estimated, which provides the same number of scans
per person, such that facial motions are performed in synchrony. In this
process, a robust descriptor for expression intensity is proposed, for which
additional applications are presented, e.g. person-specific emotion cluster
unveiling a variance in performance for each emotion between persons.

Since the resulting 3D faces are in full dense point-wise correspondence
and their temporal facial movements are synchronized, they are aligned in
space and time. Therefore, the processed 3D face scans can be arranged
into a single data structure representing a 3D cube with axes corresponding
to the number of 3D points, subjects and expressions, respectively. This
data structure is referred to as tensor and outperforms the separation of
different modes of individual shape and expression compared to traditional
approaches based on 2D data structures, i.e. matrices. A 3D face model
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is created from the data tensor by factorization into different modes. In
contrast to former methods, the structures of the expression subspace are
employed to derive reasonable constraints. In the expression subspace, it is
observed that the six basic emotions (anger, disgust, fear, happiness, sad-
ness, surprise) performed in different strengths, each form linear trajectories
within the subspace. These six lines, each corresponding to one emotion,
converge at a point which defines the natural origin of all expressions. It
appears that this specific expression is not part of the database and that
it differs from the neutral expression. Due to the fact that the database
is based on posed instead of spontaneously performed expressions, the ex-
pression labeled as neutral differs from the fully relaxed face which would
represent the expected case. Therefore the newly discovered origin is re-
ferred to as apathetic, which corresponds to an expression with fully relaxed
facial muscles. It can be used for various applications: (1) to neutralize faces
and replace the face with the original label neutral in the database, thereby
improving the quality of the originally posed data without the need for new
recordings, (2) to synthesize more convincing facial animations with an im-
proved separation of distinct emotions, and (3) to adapt the statistical face
model to render it more compact and robust, thereby enabling to perform
stable expression and person transfer.

In this work four different face tensor models based on three databases are
presented and compared for different applications: (1) 3D face synthesis, (2)
3D approximation, person and expression transfer, and (3) 3D reconstruction
from 2D. The experiments show that dense 3D face reconstructions from
sparse 2D landmarks based on the proposed models outperform those of the
two state-of-the-art methods, although they employ more information from
the original image.

Keywords: 3D face scans, 3D faces, nonrigid registration, correspondence
estimation, expression intensity, tensor, factorization, statistical models, ex-
pression transfer, 3D reconstruction
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Kurzfassung

Schon lange arbeiten Menschen daran aus begrenzten Trainingsdaten vielsei-
tig einsetzbare 3D-Gesichtsmodelle zu erzeugen. Diese sollen einerseits das
Gesicht gut reprisentieren und andererseits glaubhafte Anderungen des Ge-
sichtsausdrucks ermoglichen. Insbesondere in der Filmindustrie ist das Pro-
blem bekannt ein iiberzeugendes Ergebnis eines menschlichen Gesichts mit
natirlichen Gesichtsausdriicken zu erzeugen und erfordert noch heute viel
manuelle Arbeit. Trotz der Verfiigbarkeit hochqualitativer Daten ist dies
weiterhin eine Herausforderung, insbesondere dort, wo limitierte Hardware
weniger gute Ergebnisse liefert. In dieser Arbeit werden Ansétze préisentiert,
um verschiedene 3D-Gesichtsmodelle zu erzeugen. Diese basieren auf Da-
tenbanken mit 3D-Scans von Gesichtern, die jeweils verschiedene Personen
und Gesichtsausdriicke enthalten, sich jedoch in der Anzahl der Punkte und
Scans pro Person unterscheiden. Zudem werden in jedem Teil dieser Arbeit
objektive Qualitatskriterien definiert, die jeweils Eigenschaften speziell fiir
die jeweilige Anwendungen quantifizieren.

Im ersten Teil dieser Arbeit wird eine zielgerichtete Vorverarbeitung der
Daten présentiert, gefolgt von einem Ansatz, um sinnvolle Korrespondenzen
zwischen den 3D Gesichts-Scans zu schétzen. Unter der Annahme, dass es ein
gemeinsames Bewegungsmuster in mehreren Aufnahmen von Gesichtsaus-
driicken gibt, wird eine zeitliche Ausrichtung geschétzt, um dieselbe Anzahl
von Scans pro Person zu erhalten, so dass Gesichtsbewegungen synchron er-
folgen. Dabei werden ein Deskriptor fiir die Intensitéit des Gesichtsausdrucks
definiert und weitere Anwendungen présentiert.

Die verarbeiteten 3D-Gesichts-Scans sind nun in Zeit und Raum sinnvoll
geordnet. Daher kénnen diese in eine Datenstruktur sortiert werden, die
einem Wiirfel entspricht, bei dem die drei Dimensionen folgende Informatio-
nen enthalten: Anzahl der 3D-Punkte, der Identitdten und der Gesichtsaus-
driicke. Diese Datenstruktur wird als Tensor bezeichnet und erleichtert die
Trennung von individueller Gesichtsform und Gesichtsausdruck im Vergleich
zu traditionellen Methoden, welche die Daten in eine 2D-Datenstruktur, d.h.
Matrizen, einordnen. Basierend auf dieser Datenstruktur wird ein Gesichts-
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modell mit einem Faktorisierungssatz erstellt. Anders als vorangegangenen
Arbeiten, werden hier die gefundenen Strukturen in den Unterrdumen ver-
wendet um sinnvolle Nebenbedingungen zu definieren. In einem Unterraum
finden sich Strukturen, in denen die sechs prototypischen Emotionen (Arger,
Ekel, Angst, Gliick, Trauer, Uberraschung), die in unterschiedlicher Stéirke
ausgefiihrt wurden, jeweils eine Gerade in dem Unterraum bilden. Diese sechs
Geraden, jeweils zugehorig zu einer Emotion, treffen sich in einem gemein-
samen Punkt, welcher dem natiirlichen Ursprung aller Gesichtsausdriicke
entspricht. Es stellt sich heraus, dass dieser Gesichtsausdruck nicht Teil der
Datenbank ist und sich von dem als neutral gekennzeichneten Gesichtsaus-
druck unterscheidet. Basierend darauf, dass die Datenbank aus Aufnahmen
von gestellten und nicht aus spontan ausgefiihrten Gesichtsausdriicken be-
steht, folgt, dass Gesichter, die als neutral gekennzeichnet sind, individu-
elle Merkmale enthalten, die nicht immer dem erwarteten neutralen Ge-
sichtsausdruck entsprechen, ndmlich einem entspannten Gesichtsausdruck.
Daher wird der gefundene neue Ursprung als apathischer Gesichtsausdruck
bezeichnet, da er einem Ausdruck entspricht, bei dem alle Gesichtsmuskeln
vollstdndig entspannt sind. Dieser kann fiir verschiedene Anwendungen ge-
nutzt werden: (1) Nachtrigliche Neutralisierung des Gesichtsausdrucks, um
die originalen Daten mit dem Label neutral zu ersetzen, wobei die Qualitét
der Daten verbessert werden kann ohne neue Aufnahmen zu benétigen. (2)
Synthese {iberzeugender Gesichtsanimationen, welche die Vermischung ver-
schiedener Emotionen verhindert. (3) Dariiber hinaus wird demonstriert wie
statistische Gesichtsmodelle robuster gemacht werden kénnen, so dass der
Austausch von Gesichtsausdriicken und Personen stabilisiert wird.

In dieser Arbeit werden vier verschiedene tensorbasierte Gesichtsmodelle,
erstellt aus drei Datenbanken, vorgestellt und anhand verschiedener Anwen-
dungen verglichen: (1) Synthese von 3D-Gesichtern, (2) 3D-Approximation,
Transfer von Gesichtsausdriicken und Identitét, und (3) 3D-Rekonstruktion
aus 2D-Input. Es wird gezeigt, dass die préasentierten 3D Rekonstruktio-
nen basierend auf wenigen 2D-Landmarken, die durch die vorgestellten Mo-
delle erzeugt wurden, bessere Ergebnisse liefern als zwei State-of-the-Art-
Methoden, obwohl diese mehr Informationen aus den Bildern verwenden.

Stichworte: 3D-Gesichts-Scan, 3D-Gesichter, nicht-rigide Registrierung, Kor-
respondenzschitzung, Intensitidt von Gesichtsausdriicken, Tensor, statisti-
sche Modelle, Transfer von Gesichtsausdriicken, 3D-Rekonstruktion
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Abbreviations and Nomenclature

Abbreviations

3DMM 3D Morphable Model

AU Facial Action Unit

CPD Coherent Point Drift

DTW  Dynamic Time Warping

ECPD Extended Coherent Point Drift

EM Expectation Maximization

FACS Facial Action Coding System

fip facial feature point

FAP Facial Animation Parameter

FAU Facial Action Unit

GCTW Generalized Canonical Time Warping
GMM  Gaussian Mixture Model

HOSVD High-Order Singular Value Decomposition
ICA Independent Component Analysis
ICP Iterative Closest Point

LFAU Lower Facial Action Unit

MAP  Maximum A Posteriori

ML Maximum Likelihood
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PCA Principal Component Analysis
pdf probability density function
SVD Singular Value Decomposition
UFAU  Upper Facial Action Unit
Nomenclature
C complex numbers
R real numbers
N natural numbers
E(y) expectation value of random variable y
s lower case italic letters define scalar values: s € R.
v lower case bold letters define column vectors: v € RV*!
M upper case bold letters define matrices: M € RM*N
T upper case slanted letters define sets or tensors, e.g. a 3D tensor
T € RLXMxN
v; 1th element of vector v
My element of ith row and jth column of matrix M
M(i,:)  ith row of matrix M
M(:,j)  jth column of matrix M
M(:) concatenate columns of matrix M to vector
vT, MT transposed vector v and matrix M
-1 inverse matrix

n vector of n ones: 1, € R"
I, unity matrix I,, € R™"*"
|al absolute value of scalar value
la| length of vector a
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X1V Abbreviations and Nomenclature

|A] determinant of matrix A

lvllo 0-norm of vector v

lv|lx 1-norm of vector v

lv]]2 Euclidean norm of vector v

|M| F Frobenius norm of matrix M

1(4) the indicator function evaluates to either 0 if A is false and 1 if
A is true

0ij Kronecker delta is 0 if ¢ # j or 1 if i = j

® Kronecker product of vectors or matrices

N(u,0?)  Gaussian distribution with expectation value p and variance o>

N(p,X) multivariate Gaussian distribution with vector-valued expecta-
tion value p and covariance matrix ¥

T x M  mode-k tensor product between tensor 7 and matrix M

In(-) logarithm to base e

diag(v) returns diagonal matrix with input vector on the diagonal

diag(M) extracts diagonal from matrix M as vector

tr(M) trace of matrix M
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1 Introduction

Reconstruction, animation and analysis of human faces has a long history.
Starting with various facial reconstructions by drawings and sculptures of
humans thousands of years ago, the technical possibilities of today offer very
detailed portrayals of human faces in 2D and 3D, both static and varying over
time, while allowing for modifications beyond recognition. Each year changes
in this area lead to new insights, pushing the State-of-the-Art constantly
forward. This process is fueled by the increase of availability of human face
data, offering large variability and diversity, also with respect to different
modalities.

The vast majority of human face data today still consists of images.
Though they are static, already one image of a face can give enough informa-
tion for various applications, e.g. for face analysis and 3D reconstruction. In
contrast to single images, videos of human faces consists of multiple images,
usually accompanied by speech contributing audio information. Additionally
3D face scans are on the rise, which are directly available via e.g. Kinect
and even on mobile phones today, however on the current consumer level
they only provide coarse representations of faces which lack detail. In this
work we will focus on 3D face data obtained by professional 3D scanners and
images obtained by consumer camera models.

Apart from the digital 2D and or 3D representations of faces, humanoid
robots, also called androids, are on the raise. The Japanese Professor Hiroshi
Ishiguro first presented a female human robot Repliee Q1Fzpo, in July 2005,
which was already able to interact with people [1, 2]. He then created a
robotic lookalike after his own image, called Geminoid HI-1' in October
2008 [3], which is a full-body robot with hair, and silicon skin. The robot is
used to provide a real presence of Prof. Ishiguro to look after his students,
while he is absent, operating it from distant locations. Similarly Professor
Nadia Magnenat Thalmann created herself a robotic doppelganger?, who is

IMore details on the android Geminoid HI-2 can be found here: http://www.geminoid.
jp/projects/kibans/resources.html.
2More details on the android Nadine can be found here: http://imi.ntu.edu.sg/
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2 1 Introduction

able to recognize humans, and interact with them in a way that it “greets
you back, makes eye contact, and remembers all the conversations you had
with her” [4].

From now on humanoid robots and interactions, in terms of responsive
faces of any kind, will not be discussed any further in this work, as this
thesis deals with digitally generated 2D and 3D faces. In the following
specific problems and proposed solutions will be introduced, examined and
discussed.

1.1 The Difficulty of Quality Assessment

What makes the digital generation of synthetic faces especially challenging?
The facial area is particularly familiar and humans are very sensitive to
subtle changes. Humans are naturally skilled to distinguish and recognize a
lot of different individuals by their face, even if the overall appearance has
changed, e.g. by age, injury, make-up, or facial expression. In fact not only
the outer appearance alone contributes to persons being recognized again,
but speech and person-specific performances of facial movements contribute.
Parts of this work aim to separate individual person-specific shape in contrast
to universal, person-independent expressions.

Attempts to measure the requirements for a face representation, which
makes a human accept their animated or mechanical counterpart lead to a
surprising observation: In theory it is expected that increasing the likeli-
ness to a human increases the acceptance. However it was found that this
relation does not hold on, in general. Assuming a linear relation between
human similarity and acceptance leads to the expectation that an increase
in likeliness to humans leads to an increase in acceptance, likewise. However
a contradictory observation revealed that an object which is “too close” to
a human, but not yet real, actually puts humans off [5], see Fig. 1.1.

In detail it was observed that increasing the resemblance of the presented
character first leads to a raise of acceptance, as expected, until the represen-
tation is very close to a real human being, but not yet completely. Starting
from this point a fast decrease of acceptance is observed, which is the result
of a negative emotional response, see Fig. 1.1 for illustration. In this area
humans describe their feelings towards the represented character as “odd”
or “uncanny”. Due to the fast increase afterwards, this area is called the

IMIResearch/Research_Areas/Nadine/Pages/default.aspx.
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Figure 1.1: Tllustration of the uncanny valley. (Image based on a work by

Prof. Masahiro Mori of 1970, newly published in [5], adapted by
Smurrayinchester [6].)

uncanny valley, a term which was first introduced by the Japanese Professor
Mori in 1970 [5]. Even now researchers, developers and animators aim to
overcome the uncanny valley with each new technique, invention and result-
ing animation.

For example in VideoRewrite [7] a technique to edit video of speech is
presented. Given audio input, a new video is generated, by selecting spe-
cific training images to match the underlying audio information (phonemes).
Due to the lack of a feasible objective quality measure, results are evaluated
subjectively with respect to different focuses (e.g., lip synchronization, spa-
tial registration). For a reliable quality measure a subjective evaluation for
each parameter setting needs to be carried out, which is not practicable for
a large number of experiments. In [8, 9] a sample-based talking head is
used to create facial animations, where the author addresses the problem of
quality assessment for lip synchronization by objective and subjective eval-
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uation. The objective criteria weight different properties against each other,
i.e. lip-synchronization vs. smoothness and quality vs. speed to quantify the
quality of a synthesized sequence for each parameter set. Additionally the
mouth heights are compared between recorded and synthesized sequences.

Today facial animations in movies and games are hardly distinguishable
from real humans, but usually still demand a lot of manual work [10]. One
goal of this thesis is to automatize some of the incorporated necessary pro-
cesses, hence for the different tasks involved, suitable quality measures are
proposed.

Yet an extensive training is necessary to achieve believable facial anima-
tions enabling for person or expression transfer. This is referred to as facial
reenactment if the original footage of one person is changed to match the
facial expression of another individual. In [11] the authors rely on image
and depth (RGBD) input for source and target actors, to first accomplish
the offline training of the source person and then change the expression of
the target (output). In their follow-up work [12] they only need image in-
puts (RGB) and produced even better results. Yet both methods employ
a prior known textured face model. Recently new techniques referred to as
DeepFake [13, 14] come closer to creating credible facial animations. In this
approach images are provided as input to a trained neural networks, more
specifically a Generative Adversarial Network (GAN). Currently the best-
performing works all rely on some kind of face models within, which are the
focus of this work.
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1.2 Face Models

In general face models can be separated into three categories: First, the
models created manually by artists or animators [15], second, models learned
from data [16, 17, 18], and last but not least, a combination of both [10, 11].
Apart from that, other categories of face models can be considered as 2D vs.
3D and textured vs. non-textured, which will be referred to accordingly.

Category 1: Manually Generated Face Models

One of the earliest and most cited works for facial animation is Parke et al.
[19, 20, 21], who introduced a 3D polygon-based face model, consisting of
400 vertices and 250 polygons. Though many years have passed since then,
many approaches of today are very similar. Some of the techniques still in
use are:

e a polygonal mesh is used to approximate the 3D facial surface, also
allowing for assigning colors to each vertex or polygon,

e points and polygons are drawn on the skin for data acquisition,

o the symmetry of the face is used advantageously,

o sensible shading and rendering techniques are applied,

« nonlinear motion is considered by interpolation between two (or more)
different facial expressions.

Despite their simplicity, many of the mentioned principles are still applied
today. To incorporate physical prior knowledge Waters et al. [22, 23] intro-
duced a muscle-based model. While many models enable to approximate a
face and create facial animations, they do not explicitly include a distinct
description of facial expressions. But how can they be objectively described?

In their work The Facial Action Coding System (FACS), Ekman and
Friesen [24] put a lot of effort into describing and categorizing the mus-
cles of the human face, thereby enabling objective descriptions for facial
expressions. This is in contrast to more broad descriptions using prototyp-
ical emotions, i.e. anger, disgust, fear, happiness, sadness, surprise, which
are still widely used. Though there are common patterns for each emo-
tion performance, they are not as universally applicable as the Facial Action
Units (AUs) introduced by Ekman and Friesen.

Several models, as e.g. Candide-3 [25], already incorporate some of these
Facial Action Units (AUs) in their model definition. Attempts to standardize
face models and Facial Animation Parameters (FAPs) lead to the MPEG-4
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Facial Animation Standard [26], which also includes certain boundaries of
facial movements, based on the distances between anatomical landmarks.
However, these were manually defined as well and should be regarded as
rough boundaries.

On the one hand, manually generated models are beneficial in a sense that
the creating humans in general aim to separate person-specific shape and
universal facial expressions by design. On the other hand, the disadvantages
of these models are the large amount of manual work, requiring a lot of
time, effort and special skills, along with the to be expected inaccuracies
introduces by human creators.

Category 2: Automatically Generated Face Models Directly from Data
In contrast to the formerly introduced category, it is possible to estimate
face models directly from data. One of the most famous works, still widely
used today is the 3D Morphable Model from 1999 [16]. The model is based
on a factorization of a set of 200 scans of human heads with a neutral facial
expression, where the vertices of all scans have been computed to correspond
to one-another. The model allows for changes in individual shape and texture
but is limited to the neutral facial expression, due to the underlying used
data. In the meantime various extensions have been provided, enabling to
change person and facial expression, and incorporating more detailed color
information [27, 28]. Similarly, in [18] a factorization was used on face images
ordered in a higher-dimensional data structure.

The advantage of these models is that they can be generated fast, directly
from data, without the need of an expert. However it is common that an
expert alters the model space to establish semantic directions, which facili-
tate the use of the models [16, 29]. A disadvantage of these models is their
limitation to the underlying data, which implies that non-seen expressions or
face shapes are difficult to generate. One goal of this thesis is to investigate
the data-based models and improve the face model creation process.

Category 3: Combined Manual and Automatic Procedures

While the previously described two categories contain models which have
either been created manually or estimated automatically directly from data,
there are attempts to combine both approaches. Some focus on creating one
high-quality model for a single person [10], where high quality and specificity
comes at high costs in efforts during the creation process, which are not
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Figure 1.2: Visualization of a schematic face model demonstrating that vary-
ing parameters lead to reasonable faces.

automatable and must be redone for each person. In [30] the authors apply
the 8D Morphable Model (3DMM) [16] and a blendshape model created by
an artist to approximate different faces. The resulting data is then used to
generate a factorization-model. These works generally fail to investigate the
differences between the original blendshape model and the model based on
shapes reconstructed by the blendshape model, hence it is unknown if the
new model is superior. In this work we therefore focus on automatically
generated face models directly estimated from data.

Challenges and Contributions

The biggest challenges of face model creation are to automatically disentan-
gle individual person-specific shape and universal facial expressions from 3D
face scans, while additionally enabling the resulting model to cover a large
variability of unseen faces, and allowing large deformations within anatomi-
cally correct boundaries.

The goal of this thesis is to provide a statistical face model including
parameters for person specific shape and facial expression, which both can
be estimated and changed separately while still obtaining reasonable faces,
see Fig. 1.2. The proposed model is based on a factorization approach of
a higher-dimensional data structure, i.e. data tensor, of processed 3D face
scans. The proposed model estimation framework makes use of the under-
lying structures in the expression space, which reveal that the actual origin
of expressions can be estimated although the participating persons in the
provided data did not show it. This means the new model is able to over-
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come the per-person-variability of prototypical emotional facial expressions
and enables additional applications for face neutralization, synthesis and
animation.

Summarizing the contribution of this work is a 3D face model, which
separates shape and expression, while taking into account underlying sub-
structures of the parameter space without any assumptions of statistical
distributions of the data, enabling a variety of applications.

1.3 Data Preprocessing and Alighment

From now on we assume that the models to be used are not manually created,
but learned from data. The most crucial assumption is that the underlying
data represents the diversity of individual face shapes and large variations of
facial expressions. Data-based models are of good use to interpolate between
known faces, but generally bad at extrapolating shapes or expression which
are not part of the data used to create the model. Furthermore spatial and
temporal alignment, correspondence estimation, and model estimation are
considered separate steps. Before a statistical model for human faces can be
obtained, the data to be used has to be preprocessed very carefully to fulfill
the following requirements:

e The data should be balanced, which means for each person and expres-
sion there should be the same number of samples. In the best case
this can be achieved by a good selection of a subset. Missing data is a
problem.

e The points belonging to each sample must not include outliers.

¢ All samples should be well aligned in 3D space and each data set must
have the same number of points, necessitating spatial alignment.

o If time-varying data is considered, each data set must have the same
number of frames, necessitating temporal alignment.

The listed requirements ensure that the resulting data is well suited to create
a versatile model, reflecting the large range of underlying face scans, which
is the bottleneck of any statistical face model. In this work the spatial and
temporal alignment will be discussed in more detail. An overview of the
steps is provided in Figure 1.3.
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Spatial Alignment

Given images, it is common practice to center, scale and crop the images,
such that the faces are well aligned and the resulting images have the same
size. Considering 3D input data, the process is more complex as the input
data from 3D scanning devices tends to be very noisy. Also 3D face scans
are especially challenging to align, due to the wide variability of face shapes.
Nonrigid deformations introduced by a large range of facial expressions, in-
cluding e.g. opening and closing of eyes and mouth, lead to occlusions and
holes in the 3D scans. This poses additional challenges. In most applica-
tions the spatial alignment is based on the non-rigid Iterative Closest Point
(nICP) algorithm [31], which is capable to take advantage of provided land-
marks. The objective quality is measured by the Euclidean distance between
corresponding points. In this work it is shown that this criteria alone is not
suitable to quantify the quality of the resulting aligned face scans, while the
proposed criteria enables to select the best spatial alignment, in accordance
to subjective quality.

Temporal Alignment

Up to now the considered data is supposed to be balanced such that in the
best case there are exactly the same number of recordings for each person.
However the actual data may vary in time, resulting in samples of different
length, e.g. image sequences which vary in length, due to the fact that hu-
mans perform the same facial expression at different speed [32]. The goal
of temporal alignment is to create data, where all sequences have the same
length and the facial expressions are performed in synchrony. To calculate
time-aligned data, in general well-known techniques are used, such as Dy-
namic Time Warping [33] and generalizations [34, 35] on one-dimensional
data, such as audio. Apart from the alignment itself the more crucial ques-
tion is how each sequence can be described using only a one-dimensional
representation in order to use DTW.

In this work similarly to [36] the expression intensity is estimated. The
proposed estimation method is based on landmarks, which can be estimated
automatically, is model-free, independent of manual annotations (such as
start and end of expression) and offers the use of different applications,
such as expression intensity estimation, temporal alignment, person-specific
emotion cluster. This makes it superior to previous works, which require
a model estimation step with annotated data [37] or are very restrictive in
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their applications. Using the proposed methods for spatial and temporal
alignment, the data is properly prepared, and can then be used to generate
a 3D face model.

1.4 Summary of Contributions

In the following an overview of the contributions of this work is provided per
Chapter.
Chapter 4: From 3D Face Scans to Aligned Faces

e A preprocessing of 3D face scans is proposed, including an automatic
detection an adaption of erroneous 3D landmarks.

e To estimate dense 3D correspondences between 3D faces, we propose
an improvement of the nonrigid point registration algorithm Coherent
Point Drift (CPD) employing additional knowledge.

e The proposed CPD+ outperforms the ECPD (extended CPD), as well
as the common nonrigid Iterative Closets Point Algorithm (nICP).

¢ Objective quality measures are proposed, each quantifying different
desired aspects for either known or unknown correspondences. The
unified joint quality measure enables automatic evaluation of the cor-
respondence quality.

o A feature describing frame-wise expression intensity is proposed which
can be estimated directly from 2D or 3D points. Instead of relying on
manual frame-wise annotations and learning from them, in this work
a general motion pattern is assumed to achieve temporal synchrony of
facial motion.

Chapter 5: Face Models

o The factorization of 3D face tensors reveals structures in the subspaces,
suggesting that the facial expression labeled as neutral is not the nat-
ural origin of all emotions.

e The six prototypical emotions are performed with varying expression
intensities which form linear trajectories. These intersect in a new
facial expression not part of the training database, representing a fully
relaxed facial expression as the natural origin of all expressions, defined
as apathetic with all facial muscles relaxed.

e From the structures in the subspaces constraints for the model param-
eters are derived, leading to three new parameterizations for the tensor
face model.
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e With each change fewer expression parameters are utilized. The fi-
nal 4D model decouples emotion and its strength, and sparse model
parameter vectors.

o For the final 4D model automatic penalty weights are introduced.

e Assuming 2D input we show that model parameters can still be esti-
mated linearly, although a nonlinear projective camera model is used.

Chapter 6: Experiments

e« We demonstrate facial animations by synthesizing unseen facial ex-
pressions is superior if the apathetic facial expression is employed.

e The approximation of shapes based on the apathy-centered leads to
smaller errors than the neutral-centered model.

o It is shown that the expression transfer error decreases with each new
model adaptation, while the person transfer error only changes slightly.

e For 3D reconstruction from 2D input the proposed tensor-based face
models outperform state-of-the-art approaches.

1.5 Thesis Overview

The parts described previously form a pipeline, starting with 3D face scans,
which are then preprocessed, and aligned in space and time, thereafter a
face model is build from them, which then offers various applications. An
overview of the described pipeline presented in this thesis is shown in Fig. 1.4.
The first step is the face model creation based on a database of 3D face scans,
shown in yellow. After careful preprocessing, followed by a spatial and tem-
poral alignment a face model is estimated based on the dense 3D face data.
The first application based on the input of 3D points is highlighted in blue.
Given 3D points of a 3D face, the model parameters which best approximate
the input can be estimated. They can be used to define a dense 3D model
representation using sparse data, in conjunction with the model. If the in-
put consists of one or multiple face images, shown in green, 2D landmarks
can be retrieved for each. Assuming sparse correspondence is provided to
some model points, camera and model parameters can be estimated in an
alternating scheme, such that the projected model points approximate the
2D landmarks well. During the process the model parameters give a 3D
representation of the 2D input, giving the second application of the model,
namely 3D reconstruction from sparse 2D. Due to the fact that model pa-
rameters are estimated for person-specific shape and expression both, they
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give rise to utilize them individually for applications such as person or ex-
pression transfer. Additionally the model can be used to synthesize unseen
faces.
The remainder of the thesis is organized as follows:

Chapter 2 contains the fundamentals, describing basic concepts and tools,
which will be used throughout this thesis. Different face databases are pre-
sented in Chapter 3, followed by Chapter 4, which describes how the data,
varying in space and time can be processed and aligned to fulfill prerequisites
for face model generation. In Chapter 5 different face models are presented,
where the proposed models make use of the formerly processed data. The
experiments conducted with proposed and foreign models are described in
Chapter 6 to compare the performance on different applications. The final
Chapter 7 gives a conclusion and short discussion of this thesis.
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Figure 1.3: Given a set of unaligned 3D face scans varying in number of
points and samples per person, we first perform a spatial align-
ment, which consists of a careful preprocessing, followed by a
nonrigid registration resulting in a set of shapes in dense cor-
respondences. Then the 3D motion of the landmarks is used
to estimate a temporal alignment, such that the same number of
scans per person with synchronous expression change is obtained.
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Figure 1.4: This flow chart shows a condensed overview of the content of
this thesis. First a face model is estimated from 3D face scans
(yellow), which can then be used to generate sparse or dense 3D
faces from model parameters. These can be estimated based on
3D input (blue) or 2D input (green) or manually set.
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2 Fundamentals

In the following fundamental concepts and mathematical tools are intro-
duced, which will be used throughout the thesis and referenced accordingly.

2.1 Camera Models

In the following common camera models corresponding to different projec-
tion models are introduced. Commonly different assumptions are made to
approximate the reality, which are often based on the pinhole-camera model.
As camera models are not the focus of this work, in this chapter only brief
descriptions of commonly known models, which are used in this thesis, are
presented. More details on camera models, their derivation, properties and
estimation can be found in [38].

2.1.1 Orthographic Camera Model

Assuming the projection of a 3D point onto the xy-plane along the z-axis, a
common practice is to drop the z-component of a 3D point  to receive its
corresponding 2D image point u € R? as follows

u_<ux)_K(,(Ra:+t), (2.1)

1 00
010
and t € R? is a 3D translation vector. Due to the simplicity of this model
changes of the object scale are modeled by the distance between object and
camera.

where K, := ( ) € R?*3 where R € R3*%3 is a 3D rotation matrix

2.1.2 Weak-Perspective Camera Model

Another commonly used camera model is the weak-perspective camera model
[39, 40]. The weak-perspective camera model maps a 3D point € R? to
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2D image coordinates u € R? as follows

u:(ug”>:cKa(R:c+t), (2.2)
Uy
1 00
010
a 3D rotation matrix and ¢ € R3 is a 3D translation vector.

This model is very popular because it is linear in the 3D model points and
therefore easy to use, which is in contrast to the following model.

where K, := < > € R2*3, ¢ € RY is a scaling factor, R € R3*3 is

2.1.3 Projective Camera Model

We assume that pixels are square elements on the image sensor. Nowadays,
most consumer cameras satisfy this assumption. A 3D point x € R? is
mapped to a 2D image point u € R? as follows

7(x) = f: =K (Rz +1) (2.3)
) = /T ) u
7Tpro( )— ( %y/%z ) - (2'4)

where R € R3%3 is a 3D rotation matrix, t € R3 is a 3D translation vector
and

fsz 0 ¢
K= 0 fsy, ¢, |eR¥>3 (2.5)
0 0 1

is a matrix with the following parameters: f € RT is the focal length, s, s,
are positive factors which depend on the scale of the sensor elements, and
(cz7cy)T € R? are the coordinates of the principal point. The principal point
specifies the point where the optic axis intersects the image plane. Regarding
the domains related to this work this model is less popular because it is not
linear with respect to the input world coordinates. However it is able to
account for perspective distortion, making it a more accurate approximation
of reality.
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2.2 Estimation of Camera Parameters

Previously different projections from 3D to the image plane were presented.
In most applications the camera parameters describing the projection from
3D to the image plane are unknown, hence need to be estimated. This
process to compute the projection matrix from known point correspondences
between 3D world and 2D image points is called resectioning.

We begin with the linear transformation part in Eq. (2.3) which can be
rewritten using homogeneous coordinates for the 3D point 2" = (x,y,2,1)T
and its corresponding 2D image point as

~K [R|t]z". (2.6)

PR3x4

IS
I
= R

The matrix P is referred to as the projection matriz and its elements are
defined as p;;, hereafter. To obtain the actual projected 2D point u = (u,v)T
according to a projective camera as in Eq. (2.4), the first two components
must be divided by the third component which gives

w— P11% + P12y + P132 + P14 v — D21T + P22l + P23z + Pos

, .27
P31 + P32y + P332 + P34 D31T + P32y + P332 + P34 27)

Multiplying each fraction with its denominator reveals two equations, which
are linear in the elements p;; of the projection matrix as

u (p317 + P32y + P33z + Paa) = p1x + pr2y + P13z + pua (2.8)
v (312 + p3ay + P332z + P3a) = D2a1& + P2y + P23z + P2a (2.9)

Rearranging them leads to the following linear homogeneous equation system

T

y 2z 1 00 0 0 —ur —uy —uz -—u
00 00 29y 2z 1

—vxr -y —vzZ —U p=0, (210)

T .
where p = (p11,p12,P13, P14,D21,D22,D23, P24,P31,P32,P33, P3a) € R'? contains
the elements of the projection matrix. Given a set of n corresponding points,

the matrix on the left hand side can be extended row-wise, such that it has
2n rows. Considering there are 12 unknowns, at least 6 such point cor-
respondences must be provided because each pair of corresponding points
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contributes 2 rows to the equation system. If more than 6 points are pro-
vided, or noise is present in the data, there will not be an exact solution.
Therefore this linear solution is often used as an initialization for a nonlinear
estimation procedure, minimizing the distance between the 2D projections
of the 3D points and their provided corresponding 2D counterparts on the
image plane. It is also common to impose additional constraints, see [38] for
details. One of these constraints is ps4 = 1, which we applied in this work.
It alters the above equation system to an inhomogeneous one as

0 0 —ur —wy -uz | , [ u
) (1) e

Ty
0 —vr —vYy —vz

z 1 0 O

0 00 z vy
T

where p’ = (p11,p12,P13, P14,P21,P22.P23, P24.P31,P32,P33) € R

Estimate Camera Parameters from the Projection Matrix
Assuming P € R3** is a projection matrix, obtained as before, it takes the
form

P=K[R|t]=[Ab] (2.12)
3x4

where R € R3*3 is a rotation matrix, ¢ € R3*! is a translation vector
and K is a upper triangle matrix of Eq. (2.5). In the following a RQ-
factorization is used to compute K, R from A, while making use of the
orthogonal properties of R. Using this factorization, it is not guaranteed
that ks3 equals 1. Therefore, we introduce a scaled version of the matrix K
as

a, 0 d
K,=sK=| 0 a, ¢, |. (2.13)
0 0 s

The i-th row of matrix A and R will be referred to as a; and r;, such that

al a, 0 rt
A= a; |=K,R=| 0 a, c ry | . (2.14)
ai 0 0 s Ty
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The last row of Eq. (2.14) states ag = srs. Because R is orthonormal, its
rows must have length 1, which leads to

s = |las]2 (2.15)
as

= —. 2.16

s = (2.16)

Proceeding with the second row of Eq. (2.14) gives a5 = ay 72 + ¢;r3. Using
the properties of an orthogonal matrix 7373 = 1 and 7] r3 = 0, the equation
can be simplified as

¢, =a;T3. 2.17
ay, = [z — c;7s2 (2.18)
as—cr
rp = ——v2 (2.19)
y

. =ajr; (2.20)

ay = [lar —c;m3]2 (2.21)
Y

=2 a/cm (2.22)

After all parameters for K, and R have been computed the translation
vector is

t=K_'b. (2.23)

In general it cannot be assumed that this computation will lead to s = 1.
Therefore to identify the final inner camera parameters K, the matrix K
must be divided by s, leading to

1 a, 0 ¢
K = ;Ks = 0 ay ¢ . (2.24)
0 0 1

After the matrix K has been determined, the intrinsic camera parameters
are known and hence the camera is considered calibrated.
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2.3 Factorization

In general the term factorization means rewriting a matrix (or another math-
ematical object) as a product of “simpler” factors. Depending on the ap-
plication, there are various possibilities to do so and incorporate different
assumptions. First assume there are n data samples x; € R?, i =1,... n,
produced by a random process x, they are ordered into a data matrix
X = [x1,...,2,] € R¥™ which can be transferred to mean-free data by
first computing the arithmetic mean value as an estimator of the expected
value as

1
m= E;m (2.25)
which is equivalent to
m = % Xo1, € R (2.26)
where 1,, = (1,...,1)T € R” is a vector of length n, whose elements are all

one. Then the matrix X, ist defined to contain the mean over the columns
of X repeatend n times, hence

X, =1, ®mT e R>*", (2.27)
Then the mean-free data
X =Xo— X, (2.28)
can be factorized as
X=VY. (2.29)

Given these assumptions, different factorization methods will be presented
in the remainder of this Section.

2.3.1 Principal Component Analysis

The goal of the Principal Component Analysis (PCA) is to find the direction
which best represents the data X, by finding the direction of highest vari-
ance in the data. The observed data is then represented as a sum of linearly
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uncorrelated principal components using a linear orthogonal transformation.
Depending on the field of research synonyms are used, e.g. Karhunen-Loewe-
Transformation (KLT). To obtain decorrelated output the steps are as fol-
lows:

1. Compute covariance matrix Cx of X € R¥*n

Cx =

1
1XXT € Réxd (2.30)

n —

While this represents the unbiased estimator, the scalar ﬁ is often
found replaced by % in the literature, which then conforms to the

maximum-likelihood-estimate. Yet both versions are in use today.
2. Solve eigenvalue problem
Cx’UZ‘ = )\ivi, 1= 1,...,d (2.31)

where \; are the eigenvalues, and v; are the eigenvectors of the covari-
ance matrix, hence

Cx =VAVT, (2.32)

where
A = diag (\p, ..., Am) (2.33)
V =[vy,...,0n] (2.34)

with m referred to as cropping factor, selected as m < d. The choice of
m depends on the application. For m = d V is an orthogonal matrix,
hence it holds VTV = 1.

3. To compute the decorrelated output

Y =V'X. (2.35)

Please note that here PCA has been described based on the sample data
covariance matrix, however the correlation matrix can be used instead be-
ing a scaled version of the covariance matrix, the resulting data is still de-
correlated. Additionally the Singular Value Decomposition can be used to
compute the basis, giving an analogue result, presented shortly in the fol-
lowing.

1P 216.73.216143, am 02.02.2026, 17:48:15. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

22 2 Fundamentals

The Singular Value Decomposition (SVD) of a (real- or complex-valued)
matrix X € R4*" is defined as

X =Uzv"? (2.36)

where U € R?? is a unitary matrix, V' € R™*" is a unitary matrix, and
3 € R?*™ is a diagonal matrix, which contains the so-called singular values
of X on its diagonal. The columns of U are called the left singular vectors
of X, because they are the orthonormal eigenvectors of the matrix X XT.
Conversely the columns of V' are the right singular vectors of X, which are
the orthonormal eigenvectors of XTX.

There is, however, a sign ambiguity of the singular vectors since any left-
right singular vector pair (u,v) of a matrix can be equivalently replaced by
(—u, — v). To resolve this ambiguity, the sign for the singular vectors can
be selected such that the first element of each left singular vector is always
non-negative.

2.3.2 Whitening

The goal of whitening is to transform a signal such that the components are
decorrelated and have same variance. Though the whitening transform is
not unique, parts of the presented PCA-solution already offer an solution.
Given the matrices V', A from Eq. (2.32) one solution for the transformation
matrix W is given by

W =A"12yT (2.37)

Leading to the whitened signal

Z=WX. (2.38)

2.3.3 Correlation vs. Dependence

First it is important to notice that in general uncorrelated random vari-
ables are not independent in consequence. In fact after applying PCA, the
data is uncorrelated. However assuming it does not stem from a Gaussian
distribution, it is not necessarily independent.

The commonly used correlation coefficient of Pearson is a measure for the
linear association between two random variables, which does not take into
account nonlinear transformations. In contrast to the previously described,
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there are other factorization methods, which are based on measurements able
to capture nonlinear transformations to quantify (in)dependence. Techni-
cally two random variables are independent if their joint probability density
function is a product of the single density functions:

random variables X,Yare independent = pxy (z,y) = px () - py (v).

2.3.4 Independent Component Analysis

The most famous application of the Independent Component Analysis (ICA)
[41] is the blind signal separation (BSS), where the task is to estimate the
original source signals from a mixture, usually without any prior informa-
tion. While the PCA gives the direction which best represents the data in
terms of Euclidean distance, the ICA aims to identify directions which are
“most independent” from one another, hence the name. For this section it
is assumed that PCA and Whitening have already been performed on the
input data Xy as a preprocessing step, hence being transformed to Z of
Eq. (2.38).

First assume that a mixture of source signals s;, stored row-wise in the
matrix S € R?™ is obtained by a mixing matrix A resulting in

Z=AS (2.39)

where the matrix Z contains the preprocessed observed signals. The source
signals s; are assumed to be statistically independent and non-Gaussian
distributed, while at most one s; can be Gaussian. Given that A, S are
both unknown, the ICA cannot retrieve the order and scale of the underlying
source signals. Given the mixing matrix is invertible, the separation matrix
is given as A1,

Under these assumptions there are many possible solutions. Following
the Central Limit Theorem (CLT) the distribution of a sum of independent
random variables tends towards a Gaussian distribution. Hence under the
assumption that the source signals in S are independent, the key to estimate
A and S is to maximize the non-Gaussianity of the sources signals s;. This
can be done by minimizing the Gaussianity, for which there are different
measures, which will be described shortly in the following. More details on
how these can be implemented in practice can be found in [42, 43, 41, 44].
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Comment on Reprojection

To obtain the original data from the estimated source signals, a reprojection
is necessary to return to the original signal space. Assuming the original
input data is X its mean m is stored in a matrix X, extended to the same
size, and the whitening matrix is W of Eq. (2.38), then the factorization
presented in Eq. (2.39) with respect to the original data is

Z =W (Xy—-X,,) = AS. (2.40)
Therefore to return to the original data space

Xo=W1AS + X,,. (2.41)

2.3.4.1 Measuring Non-Gaussianity

Hereafter the descriptions are simplified by the assumptions that the consid-
ered scalar-valued random variable z is centered and has a variance of one.
This means that PCA and Whitening must be performed as preprocessing
before applying one of the non-Gaussianity measures introduced hereafter.

Kurtosis
The kurtosis is the fourth-order cumulant, defined as

2

kurt(z) := E(2*) — 3 (E(2?)) (2.42)
Based on the unit variance assumption it simplifies to
kurt(z) := E(z*) — 3. (2.43)

The kurtosis is zero for a Gaussian random variable!. Because the kurtosis
can be negative, the absolute or squared value is usually used to measure
Gaussianity. Therefore to identify independent components the absolute
kurtosis can be maximized. While it is simple and efficient to compute, one
of the drawbacks of this measure is its sensitivity to outliers, when estimated
from a sample.

L Actually there are rare cases, where the kurtosis is zero for non-Gaussian random vari-
ables, but these are considered exceptions.
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Fourth-Order Cumulant Tensor

The previously introduced fourth-order cumulants are often presented as
so-called tensors [45], which contain the multivariate data ordered into a
4D data structure, hence similar to matrices, but using four instead of two
indices. A more detailed introduction to multivariate data representations,
i.e. tensors is presented in Sec. 2.4. The fourth order moment tensor is
constructed from the mean centered and whitened input data correcting
with the lower order moment terms. Using tensor notation, the fourth order
moment tensor M € R**"*™X" with elements m;;x; hence takes the form

mijk = E [zizjzi21] — E [2:25] E [22] —

2.44
E[zize] E2;21] — Elz2] E[z2],  t5,kl=1,....,n (2.44)

where the total number of elements in this structure is n* and the expected
value is estimated from the sample mean. The eigenmatrices of M are rank-
one orthogonal projectors in the case of independent signals [45]. We select
the most significant eigenmatrices on the basis of their eigenvalues. The
steps to retrieve the mixing matrix and the sources are as follows:

e reoder elements into matrix to receive the flattened cumulant tensor

e compute eigenmatrices of the flattened cumulant tensor

o perform eigen decomposition on the submatrices

o the eigenvectors of the sub-eigenmatrices define the columns of the
separation matrix

e the inverse of the separation matrix defines the mixing matrix

o the separation matrix applied to the preprocessed input data defines
the sources

Neg-Entropy

In information theory the entropy is considered to quantify the information
content or the randomness of a random variable. For a discrete random
variable Y with realizations a; and probabilities P(a;) the entropy of the
random variable Y is defined as:

H(Y)=— Z P(Y = a;)log(P(Y = a;)). (2.45)

For a continuous vector-valued random variable y with density p(y)

H(y) = —/p(y) log (p(y)) dy. (2.46)
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It has been shown that “a Gaussian variable has the largest entropy among
all random variables of equal variance” [41]. Therefore a measure which is
zero for Gaussian variables can be defined by the Neg-Entropy, as:

J(y) = H(ycauss) — H(y), (2.47)

where Yaauss 1S @ Gaussian random variable, which has the same covariance
matrix as y. Based on this definition J(y) is always positive.

While this measure is theoretically well justified, it is difficult to compute
as it implies estimation of the probability density function (pdf). In prac-
tice various approximations of neg-entropy are used, e.g. approximation by
higher-order moments:

J(y) =~ 1—12 (E(yg))2 + %Skurt(y)? (2.48)

Therefore to maximize non-Gaussianity, the neg-entropy has to be maxi-
mized. Other approximations can be found in the literature, e.g. [41].

2.3.4.2 Mutual Information

Apart from maximizing non-Gaussianity, independent components can be
estimated by minimizing the mutual information between a set of n random
variables, which is defined as

Iy, ... yn) = ZH(yi) — H(y). (2.49)

In fact this measure is zero only if the random variables are statistically
independent. As it considers the joint density and the marginal densities,
it is based on the definition of statistical independence and therefore well
justified.

2.3.5 Projection Pursuit

The previously presented methods all offer a lower dimensional representa-
tion of the high-dimensional data and lead to projections of the original data
with specific and clearly defined properties. In contrast to that projection
pursuit approaches aim to find the most interesting projections of the data,
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which is very imprecise. In conclusion defining non-Gaussian directions as
interesting, thus implies that ICA is a projection pursuit method.

However in this work, we refer to projection pursuit as a more general
method, e.g. if the data is not mean-free, but another datum has been
subtracted, the method can no longer be referred to as an ICA, hence we
apply the term projection pursuit for these cases.

2.4 Tensor Algebra

Assuming the provided data varies in three (or more) dimensions, it is com-
mon practice to order the data into a matrix before further computations
and analysis. For example if the data consists of N points per sample for
P persons in E expressions (actions or repetitions), it can be ordered into
a matrix M € RV*FPE_ After subtracting the mean of all data samples, a
Principal Component Analysis (PCA) or other factorization method is often
used to analyze the properties of the data. One of the major drawbacks of
this approach is that the second and third dimension, i.e. person and ex-
pression, are still mixed and actually only an analysis in the first dimension
is carried out. So how can data varying in more than two dimensions be
disentangled and analyzed?

In [18] the authors suggest to order the data into a structure of higher
dimension, which are referred to as tensors. In fact in general scalar val-
ues, vectors and matrices are considered as low-dimensional tensors, where
several dimensions equal one. Without loss of generality, in the following
descriptions are restricted to three dimensions for easier readability.

2.4.1 Notation

The first important observation is, if the data is sorted into a data tensor
T € RNXPXE then parts of the tensor can still be represented as matrix.
In the following tensors will be denoted as slanted uppercase letters, such as
T, while matrices are depicted as bold uppercase letters, e.g. M. To access
one scalar element of a 3D data tensor 7T, three index-values are required.
Similarly to matrix-notation, in the following one scalar value will be referred
to as T (i,4,k) or Tijk.
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T
IR

NxP o ExN ExN

E-times P-times

Figure 2.1: Illustration of different possibilities to slice a 3D tensor into 2D
matrices. In the original data tensor on the top one shape is
highlighted in green. One shape consists of N 3D point, given
for each of the P persons and F expressions. In the bottom row
the unfoldings of tensor T in dimension 1 and 3, namely 7(;) on
the left and 73y on the right, are shown.

From Tensor to Matrix: Flattening by Unfolding

Fig. 2.1 illustrates three possibilities to slice a three-dimensional data tensor
into multiple matrices. Each of the three sliced versions can then be concate-
nated and ordered into a matrix, where the number of rows then corresponds
to the number of elements of the considered dimension. Considering the pro-
cess is the same, the order in which the dimensions are addressed can differ
from the one presented here. Depending on which dimension remains static
and which are sliced, the resulting matrix is referred to as the unfolding in
direction k. The process is also called flattening of the tensor.

The 1-unfolding of tensor 7~ € RV *FP*FE ig defined as the concatenation of
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matrices as
Toy = [TCLl), TG 2) oo TG B € RVPE (250)

where the notation T(: , : ,e) € RVXP*1 refers to all rows and columns of
one slice of the tensor. Since one dimension equals one, the result is actually
a matrix. Therefore in the following the simplified representation of tensor
slices as matrices will be used as 7 (: , : ,e) € RVXP :=T(: : ) € RN*Px1
without changing the number of elements. An illustration of the unfolding
in the first and third dimension of the tensor is presented in the last row
of Fig. 2.1. The unfolding in other directions can be derived analogously,
leading to

Ty = [T(L:,2), T(2:,3), oo, T(N, 2, )] € RPVE, (2.51)
Ty = [TC1,)7%, TG.2,90% o, TGP )T e REXNVE L (2.52)
where T(n, : , )T € RPXE and T(: ,p, )T € REXN. The transposed

matrices are used to receive the correct number of rows, corresponding to
the dimension of the desired unfolding.

Generalization of Multiplication
Given the definition of unfoldings of a tensor, an mode-k tensor product of
a tensor A and a matrix M is generally defined as

B=Ax, M (2.53)
based on their unfoldings, as
B(n) = MA(.,L). (254)

For example consider the special case of A € R4x%Xds 5 matrix M €
R4 and n = 1, which gives

B=Ax; M (2.55)
& Buy=M A, eRX2d (2.56)

——
lel dl Xdz-dg,

For other dimensions, the definitions are analogue.

1P 216.73.216143, am 02.02.2026, 17:48:15. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

30 2 Fundamentals

2.4.2 High-Order Singular Value Decomposition
For a matrix M € RM™*¥ its SvD is defined as in Eq. (2.36):
M=UXVT,

where U € RM*M is an orthogonal matrix, & € RM*¥ is a diagonal matrix
with non-negative singular values on the diagonal, and V' € RN*V ig a
unitary matrix.

Given a data tensor 7 € RN*PXE the Multilinear Singular Value Decom-
position (MSVD) [46] or High-Order Singular Value Decomposition (HOSVD)
of a tensor is defined as a tensor product based on applying the traditional
SVD on the individual tensor-unfoldings, as

T=8x,UW x,U? x3UO, (2.57)

where & € RV*PXE defines the core tensor, and U*) are orthogonal ma-
trices of the following sizes UM € RN*N U®) ¢ RPXP UG ¢ REXE,
The matrices U®) are computed by applying the traditional SVD on the
unfoldings as follows

Ty = UREEY®T, (2.58)
and the core tensor
S= T X1 U(l)T X9 U(2)T X3 U(B)T. (259)

While the orthogonal matrices U*) are not compatible in size, they are
related by the data tensor or core tensor, respectively.
__To reduce dimensionality and approximate the original data tensor 7 by
T, the core tensor and the orthogonal matrices are cropped, analogue to
SVD, as:

T%%:gxl ﬁ(l) X2[7<2) ngj(B), (260)

S € RVxPxE () ¢ RNN g2 ¢ RPXP B ¢ RFXE such that
N < N, P < P and E < E. Please note that only the columns of the
orthogonal matrices must be cropped, to fit the dimensions of the core tensor
accordingly, see Fig. 2.2 for illustration.

As the presented tensor-factorization is based on factorization of multiple
matrices, the same principles can be applied to compute higher-order vari-
ants of other factorization methods, such as Multidimensional Independent
Component Analysis [47], and others.
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Figure 2.2: Illustration of approximation T of the original data tensor 7T
by HOSVD from Eq. (2.57) by cropped matrices U*) and core
tensor S.

2.5 Numerical Optimization

This section gives an insight to numerical optimization by introducing the
methods, which have been used in this thesis. More details on the wide field
of numerical optimization can be found in [48].

Common optimization problems are formulated as a minimization of a
scalar-valued function f with scalar, vector or matrix input. This section
assumes a scalar-valued function f with vector-valued input & € R", such
that

f:R" > R.

Therefore the minimzation of f can be defined as finding the input *, which
leads to the minimnum function value, as

¥ =argmin f(x), Vo eR™ (2.61)

x

To compute a minimum of a function analytically the first and second deriva-
tives are used, which will be defined in the following.

2.5.1 Definitions

Local vs. Global Minimum
Assuming x € R", f : R® — R a global minimum is defined as the value,
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which is the minimum function value, as
flx") < f(x), Vo # x*.

The input «*, which gives the minimum function value, is referred to as
global minimizer of the function f.

In contrast to the global minimum a local minimum defines the minimum
of the function within a specific area

f(xm) < f(x), Ve : dist(x,zm,) < 0,

where x,, is the local minimizer, and dist(-,-) commonly is chosen as the
Euclidean norm dist(z,y) = [l — y|[2. Other choices are possible. With
these definitions, each global minimum is a local minimum.

Nomenclature for First and Second Derivatives

Assuming the first partial derivatives of the function f exist, the gradient
V f of the function f is defined as a column vector, which contains the first
partial derivatives of f, as

i) o .\
V)= — oo c R".
f@ = (ot )
While the gradient contains the derivatives of a scalar-valued function, the
Jacobian matrix conforms to the extension to vector valued functions g :
R™ — R™, as

991 ... 9;
oxq RE2S
o . . . mxn
Jg(x) = : . : e R™*™,
8gnL . 39m
oz oz,

Assuming the second partial derivatives of the function f exist, the Hessian
matriz Hy of a function f contains the second partial derivatives as

o4 2’ f f
021, Ox10T,
S &
Ox20 Ox20xy,
Hf(il?) — ’62. x1 ’62. T c Rnxn.
_oF . of
0xpn0x1 2z
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Given these definitions, the condition for &* being a local minimizer are
Vf(xz") Z0 and Hy(x™) is positive semidefinite. (2.62)

Unfortunately an analytical solution is not always possible to obtain for each
optimization problem or computationally expensive [48]. Therefore different
numerical approaches have been developed.

2.5.2 Line-Search based Methods

Given an initial estimate @y € R"™ these methods aim to find a direction
pr € R™ and step size a, € RT to compute a new estimate by

Tpr1 = Tk + pPr, k=0,... itermax (2.63)
such that

f(xp41) < f (=), (2.64)

where itery.x is defined as the maximum number of iterations, which should
be defined to prevent an infinite number of iterations. How can the step-size
and search direction be determined?

2.5.2.1 Determining the Step Size

Given a search direction p, € R", finding the step-size a; € RT is actually
a one-dimensional optimization problem

o = argmin,, f (xr + apx) (2.65)

Previously it was assumed that the analytical solution cannot be obtained,
hence a condition is used to approximate the step size. The Wolfe Condition
is defined as:

f(@rs1) < f(xp) +caVf (mk)Tpk, ¢ €]0,1]. (2.66)

For a given small value ¢ this condition gives candidates for the desired
step-size a.
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The Armijo Algorithm
The Armijo algorithm to determine a step size « for a given direction py, is
performed as follows

a® =1
while [ < max; and f (ack + a(l)pk) > f(xg) +c¢ avf (a:k)T Pk
I =1+1
al) .= o= /2 (2.67)

end

The resulting a® is then used as step size oy to proceed the line-search
iteration. Due to its simplicity this procedure is widely used. An additional
benefit is that f (xx) and V[ (xg) can be computed in advance before the
loop, whereas one drawback of this procedure is that f (a:k + a(l)pk) has
to be computed in each iteration, which can be computationally expensive
depending on the evaluation time of the function f. Therefore choosing
a small number for max;, such as 10, has been reported to be beneficial.
This procedure does not guarantee that a step size « exists which fulfills the
Wolfe-Condition, because it is not checked for, and therefore is not failsafe.
In practice the line-search iteration would then be terminated.

2.5.2.2 Determining the Search Direction

Now assuming the step size ay is provided, a search direction py, is searched.
What properties should it have? Given a current estimate of position x; and
step size ay, applying the new search direction py as in Eq. (2.63) should
lead to a decrease of the function value. This property is formulated as
condition. Given a function f : R™ — R, a direction py € R™ is defined as
descent direction at position @ if

Vf(x)Tpy <0. (2.68)

In the following three different possibilities to estimate the search-direction
pi are presented, where the condition is that it is a descent direction and
which make use of the Taylor Approximation.

Given a function with scalar valued input and output: g : R — R, which
is infinitely differentiable at position xg, a function value at position z € R
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can be represented by the Taylor Series as

— z0)*, (2.69)

where ¢(¥) defines the k-th derivative of g and zq is the center of the series.
Using a finite number as the upper limit of the sum gives the error which
can be defined using the big O notation, as:

Y g(k)(l“O) k N
g(z) = Z T(x —z0)" + O((z —z0)"). (2.70)
k=0 ’

Omitting the error and only using the first part to approxmiate the function
g defines the Taylor polynomial of degree N of function g with center xq as

N () (g
o) % Tyglriz) == 3 Tl (0. (2.71)

k=0

Assuming a different scheme, where x considered the center and the function
is evaluated at x + ap, with x,a, p € R, leads to a reformulated version:

g(z + ap) = g(z) + ap g (2) + a*p?g@ (z) (2.72)

Analogously to the one-dimensional case a function with vector-valued
input and scalar-valued output f : R® — R can be approximated by first
and second derivatives as:

f(x+ap) ~ f(x)+aVf(z) p+o’p" He(z)p, (2.73)

which is the second-order Taylor polynomial of the function f. The first-
and second-order polynomial will be used in the following.

Gradient-based Method
Using the first Taylor approximation f(x + px) can be approximated as

f@r +pr) = f(zx) + V() pr (2.74)
~ pr = —V (k) (2.75)
This is a descent direction because: —V f ()T V f(xr) = —||Vf(x1)]]2 < 0.

While this search direction can be calculated efficiently, optimization meth-
ods using this scheme have been proven to converge slowly.
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Newton-based Method

While the previously presented Gradient-based Method uses the first deriva-
tive, this approach employs the second derivatives, additionally. Using the
second-degree Taylor polynomial as approximation, leads to:

f(@y +pi) = f(2r) +pi Vf(2x) + pi Hy (@)pr. (2.76)

F@i+pi) = f(@) = pf (V@) + Hi(@py ) (2.77)
20

~ Hy(xy) pr = =V f(zk) (2.78)

& pr = —H;l(ack) Vf(a:k) (2.79)

Quasi-Newton-based Methods

Instead of computing the second derivative of f, these methods aim to ap-
proximate the second derivative, e.g. by based on the first partial derivatives,
which is the gradient, as:

Hy(zp) = V() V f (1) (2.80)
pe=—H; ' (zx) V/(zx) (2.81)

The advantage of this method is that the approximated Hessian matrix
H(zy) will always be symmetric positive definite (s.p.d.), and therefore
is guaranteed to be invertible, which is in contrast to the previous Newton-
based method.

2.5.2.3 Stopping Criteria

Finally, after step-size and direction are determined, new estimates for min-
imizers & of the function can be computed by line search as defined in
Eq. (2.63), which could be performed an infinite number of times. To guaran-
tee that the algorithm will stop, a maximum number of iterations is chosen.
Additionally, Gill, Murray and Wright [48] defined a stopping criteria based
on different properties, i.e. stop the iteration if there is:

e 1no descent of function,

e no change in iteration values,

e no change in size of gradient,

e maximum number of iterations is exceeded.
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2.6 Generalized Canonical Time Warping

Generalized Canonical Time Warping (GCTW) was introduced in [34] to
perform temporal alignment of multiple sequences with varying dimensions
and lengths by proposing extensions to traditional Dynamic Time Warping
(DTW) and Canonical Correlation Analysis (CCA). The following equations
are taken from the reference [34].

Assuming a set of m time-varying data samples are provided X;, i =
1,...,m with different lengths and dimensions X; = [a:?l, . xﬁh] R x7ni
The goals of the GCTW are to (1) reduce the dimension of the signals by a
feature selection, and (2) perform a temporal alignment to unify their length,
hence to unify the data in space and time domain.

In step (1) the authors adopt CCA as a measure of spatial correlation to
find the linear combinations of variables in X that are most correlated in
space, by searching spatial transformations V; € R%*? which are multiplied
from the left-hand side to the data matrices.

In step (2) the authors extend the definition of the DTW by first suggest-
ing a least-squares formulation to the problem of aligning two sequences,
hence m = 2, where the warping paths p; = (p,....p), pr € {1,...,n;} is
represented as a matrix with binary entries W; = W (p;) € {O,l}""xz. The
aligned signals are obtained by multiplying W, from the right-hand side to
the data matrices.

To combine the two approaches CCA and DTW the so-called Canonical
Time Warping (CTW) is introduced which processes a pair of multi-modal
data sequences, i.e. data of dimensions bigger than one, which cannot be
handled by traditional DTW, thereby introducing the term mCCA (multi-
set CCA). The extended version to align m > 2 sequences is then called the
GCTW, which minimizes

. 1 - T T 2
viemin  Jgetw = 5;;”‘6 XiWi — Vi X W[5 (2.82)

m

+Z( D+ b)),

where the spatial transformations V; are constrained by penalizing compo-
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nents with high-frequencies by
mA
o(Vi) = ﬁ”%“%v (2.83)

where A € [0,1] is a regularization parameter weight. To enforce decorrelated
outputs, the spatial transformations are constrained to be orthogonal by

. {{W}T SV (- VX WWIXT A1) Vi = I} s
=1

For GCTW the binary warping matrices W; = W (p;) are defined by their
warping paths p;, which are represented as a linear combination of functions
as

k
p= Zacqc = QCL, (285)
c=1

where a € R¥, 0 < q; are the positive weights and Q = [qi, ..., qx] € R>¥F,
¢ij € [1,...,n] represent a set of monotonically increasing basis functions.
Common choices presented in [34] are specific polynomial, exponential, log-
arithm, and hyperbolic functions. To constrain the warping paths similarly
as for DTW, additional conditions are imposed on the weights a. To enforce
continuity of the warping paths, a temporal regularization is applied leading
to

U(a) = 1l|FiQall3 (2.86)

where F; € R! is a first order differential operator. Thereby the term
¥(a;) replaces ¥(p;) in Eq. (2.82). Additionally the monotonicity requires
to enforce t1 < to — py, < py,, which is achieved by the positivity constraint
on the weights. The boundary condition for DTW defines a tight boundary,
requiring that the warping paths starts at the first element and ends at the
last element for both sequences, i.e. p; = 1 and p; = n, which is relaxed
for GCTW to p1 = ¢Wa > 1 and p; = ¢Pa < n, where gV € R1** and
gV € RY™F refer to the first and last row of Q. Thereby it is no longer
required that the first and last frame must be part of the warping path,
which allows to index a sub-part. In consequence is capable of sub-sequence
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alignment, which the DTW is not. In conclusion the constrains for the
warping paths are

U(p;) ={a | La < b} (2.87)
—1I 0y

L= —qV | eREFDxE | 1 | ¢ RFF2, (2.88)
¥ n

The optimization of Eq. (2.82) is carried out estimating the spatial and
temporal warping in an alternating scheme using a Gauss-Newton algorithm.
Given an estimate for the time-warping, mCCA is used to compute new
estimates for the spatial warping V; using a generalized eigen decomposition.
To solve for the temporal weights a, the authors compute iterative updates
using a first-order Taylor approximation of the optimization function with
respect to a, in conjunction with a Gauss-Newton optimization scheme.
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In this chapter selected face databases will be described and compared.
While databases contain 3D data, or 2D data, or both, this chapter reflects
the focus of this work, which is 3D.

The versatility of algorithms and models highly depends on the under-
lying data used for their creation, which was already shortly discussed in
Sec. 1.3. While different applications demand for miscellaneous properties
of the data, in general the estimated models and algorithms resulting from
common methods of Machine Learning cannot extrapolate the training data
well. This emphasizes the necessity of a broad range of training data and
demand of high quality to build a face model.

Revisiting Sec. 1.3 the data must fulfill the following requirements to be
suited to build a versatile 3D face model:

o data must have a big variance, e.g. different ages, face shapes, expres-
sions.

e image and 3D data must have a high quality in terms of a high level
of detail (may pixels or many 3D points).

e balanced, i.e. for each person there must be the same number of sam-
ples, with the same expressions performed,

e 3D scans must not contain outliers, which include all points which are
not part of the facial surface.

e 3D scans must be well aligned in space and time.

e Each scan must have the same number of points, which must be in
point-to-point correspondence to all others.

Some items of the list can be more easily achieved for provided data, while
some criteria are difficult or even impossible to retain afterwards. E.g. while
outliers can in general be easily excluded by preprocessing, missing variance
in appearance of included faces cannot be compensated for by processing.
The criteria which are difficult or impossible to meet after data acquisition
are the following:

1. variance in appearance by shape (person) or expression
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quality of images and 3D data

balance (no missing data)

alignment in time

dense correspondence between 3D scans.

Gk

Some databases provide additional information, e.g. labels to describe the
individual person (gender, race, age, etc.) and the captured facial expres-
sion, which are either given as prototypical emotions (anger, disgust, fear,
happiness, neutral, sadness, surprise) or more detailed so-called Facial Ac-
tion Unit (AU). AUs have been introduced by Ekman and Friesen [24] to
define an objective code for facial muscle movements. They are considered
the smallest units of facial motion and hence offer a more detailed and precise
description than emotions. Some examples are given in Tab. 3.3. Addition-
ally sometimes a sparse set of 2D image points or 3D points (as subset of the
3D face scan) are provided, referred to as facial feature point (ffip). These are
informative points, e.g. the corners or the eyes and lips, which are illustrated
as black points on the 3D face surface in Fig. 3.1(a).

In the remainder of this chapter, for each database the corresponding sec-
tion concludes with a short list summarizing which of the preceding prop-
erties are met and some notes if they are fulfilled. Currently there is no
database which meets all requirements. Therefore in Chapter. 5 remedies
are proposed to enhance the data, before the actual model estimation pro-
cess.

3.1 Overview

This section provides a short overview of the databases which are described
in more detail hereafter, illustrated in Table 3.1, where the properties of one
database are listed in one column.

Given the above quality criteria, Table 3.2 shows which properties are met
by which database.

IThe term free means the data can be obtained for research purposes with no charge.

2Number of 3D sequences containing scans, not total number of scans.

3FW is the only model which includes ears and back of the head, which downgrades the
actual number of points in the facial region.

4The provided 3D faces differ in gender, age, race, and AU, but are not labeled accord-
ingly.
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Table 3.1: Overview of selected properties of the databases, which are pre-
sented in this chapter. In each row the best value is highlighted in
bold, if it exists. fip stands for facial feature point and AU stands
for Facial Action Unit.

database BU3DFE [49] BU4DFE [32] Bosphorus [50] FW [30]
year 2006 2008 2009 2014
free! X X

#datasets 2500 60402 4666 750
#sequences? 700 606 - -
hardware 3DMD [51] Di3D [52] Inspeck [53] Kinect
3D scans

#points 3346-11288 26937-40772 22500-93292 115103
3D ffp 83 83 0-26 X
images

resolution 512 x 512 1040 x 1392  ca. 1600 x 1200 640 x 480
2D fIp X X 0-26 -
individuals 100 101 105 105
male/fem. 44/56 43/58 60/45 4
age 18- 70 18 - 45 25 - 35 7 - 80*
race X X x4
expressions 25 7 53 47
emotions 7 6 7 x4
AU X X 28 A

3.2 Selected Databases

3.2.1 BU3DFE

The Binghamton BUSDFE database [49] contains a total of 2500 datasets.
These were captured using the 3DMD digitizer [51], a 3D face imaging system
consisting of six synchronized cameras and two projectors, which project a
random light pattern onto the subjects face. One 3D scan is retrieved in
less than 2ms by merging the six views. 100 persons were asked to perform
the six prototypical emotions: anger, disgust, fear, happiness, sadness and
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Table 3.2: Illustration of which of the databases fulfill the desired criteria
for a 3D face model. The fields contain either grades or symbols.
The symbols mean the following: «: fulfills requirement fully, X:
does not fulfill. The grades range from 1 to 3, where 1 refers to

the best.
Database BU3SDFE BU4DFE Bosphorus FW
variance in person 2 2 2 1
variance in expr. 2 2 1 1
quality 3 2 1 3
balance () X
time aligned X
correspondence X X X

surprise. For each emotion 4 different expression intensities were recorded,
ranging from slightly to fully extended expression (apex). Additionally a
neutral facial expression was captured, leading to a total of 25 recordings
per person, and therefore a balanced data set. The provided labels include
emotion, level, gender, age, and race. Fach dataset consists of a 3D face scan
of 3D points, which is accompanied by connective information provided as
a triangular mesh, 83 manually annotated 3D face landmarks, and images,
see Fig.3.1. One of these image of varying sizes (ca. 1348 x 1036), shows
the left and the right side of the face, which are merged to a frontal view
image of resolution 512 x 512 of pixels. In Fig. 3.3 24 of the 25 frontal face
images of one selected person are presented. Unfortunately under further
inspection, it can be seen that some images contain artifacts, e.g. in the
last row of the Fig. 3.3 the inner part of the open mouth is highly distorted.
Additionally Fig. 3.3 reveals shadows of the nose on both sides of the face,
which is unfavorable. Some more examples of distortion are presented in
Fig. 3.2.

Property Check We found two to three of the five criteria are met by the
BU3DFE.

1. variance in appearance:
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(a) 3D scan with ffp  (b) two side views with fip (c) merged frontal view

Figure 3.1: Example of a dataset of the BU3SDFE: subject ID 1, female,
surprise, level 4.

The database contains different ages and races, which is beneficial, but
can still be improved.

2. quality of images and 3D data:
The 3D face scans are smooth due to relatively low resolution if com-
pared to some other considered databases. Unfortunately the images
contain some artifacts due to the processing steps after recording and
are slightly noisy. The frontal view images are relatively small.

3. balance (no missing data):

4. alignment in time:
The data is aligned in time by design.

5. dense correspondence between 3D scans:
Due to the varying number of points between scans, there is no dense
correspondence. However the sparse 3D landmarks can be chosen as a
set of sparse corresponding points.

3.2.2 BU4DFE

The Di3D (Dimensional Imaging) face capturing system [52] was used to
capture the data for the Binghamton BU4DFE database [32]. The system
consists of three cameras, two stereo cameras and one texture video camera,
which are able to record 3D videos at a speed of 25 frames per second.
Compared to the previously described BUBDFE database, the BUADFE
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(a) Surprise-2 (b)

Figure 3.2: Pictures from left and right side of one person of BUSDFE. The
image (a) contains some distortions in the region of mouth and
eye, which are shown in a higher level of detail in (b) and (c).

offers very similar data. The BU4DFE database contains 3D face scans and
images accompanied by 3D face landmarks of 101 persons who were asked
to perform the six prototypical emotions (anger, disgust, fear, happiness,
sadness, surprise). For each of the 606 sequences, the recorded individuals
were supposed to start in neutral, slowly change into the specific emotional
facial expression to full extend (apex) and then return to the neutral facial
expression. This means the BU4ADFE offers more than four expression inten-
sity levels for each emotion, varying by the number of frames per sequence.
On the one hand it is beneficial to have more variability in motion compared
to BU3BDFE, on the other hand the changes over time for each person and
expression vary in length, see Fig. 3.5, which makes this dataset unsuitable
for a 3D data structure. To unify the length of frames for each sequence a
temporal alignment is required to obtain balanced data, which is explained
in detail in Sec. 4.3. Unfortunately we found not all individuals perform the
facial motion as described, which means some start or end in full expres-
sion, instead of neutral. The different problems are described and handled
in Sec. 4.3.2.1.

In Fig. 3.4 it can be seen that the 3D scans contain more than only the
facial region, i.e. hair, neck and shoulders. Therefore some processing and
heavy cropping is required to retain the face region only.

Property Check We found two to three of the five previous criteria are met
by the BU4DFE.
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1. variance in appearance: (V)
is comparable to the previously described BUSDFE.

2. quality of images and 3D data: (V)
The resolution of images and 3D scans is higher compared to the
BU3DFE.

3. balance (no missing data):
For each person six sequences are provided.

4. alignment in time:
The scans are not aligned in time, however they share a general scheme
of motion from neutral to full emotion and back, which can be assumed
as prior knowledge to perform a temporal alignment.

5. dense correspondence between 3D scans:
Due to the varying number of points between scans, there is no dense
correspondence. However the sparse 3D landmarks can be chosen as a
set of sparse corresponding points.

3.2.3 Bosphorus

The data for this database was captured using the Inspeck Mega Capturor
IT 3D [53]. This structured-light based device is able to capture a face in less
than one second.

The Bosphorus database [50] offers a total of 4666 3D face scans of 105
individuals. Each dataset consists of a 3D face scan, provided as a 3D point
cloud with triangular connectivity information, with manually annotated
facial feature points, varying from 9 to 26, and a high resolution image (size
varies, ca. 1158 x 1440) with 2D facial feature points corresponding to the
3D landmarks. One example dataset is shown in Fig. 3.6.

For each dataset one of 53 labels is provided, which include emotions, ac-
tion units, rotations and occlusions. A complete list is provided in table 3.3.

In Fig. 3.8 a selection of these labels is illustrated, which include se-
lected Lower Facial Action Units (LFAUs) Upper Facial Action Units (UFAUSs).
Among all described databases, the Bosphorus database offers the largest
resolution of 3D face scans and images, along with the highest variety of
captured expressions.

For each person up to 54 scans are available, which may contain duplicates
for some expressions. As the total number of scans per individual varies, the
data is imbalanced. Additionally not only the number of points per scan, but
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also the number of facial feature points vary, which means that no pointwise
correspondence, neither sparse, nor dense, is provided. To receive a balanced
data set, a subset of the database can be selected, which will in consequence
reduce the variance in shape and/or expression.

In Fig 3.7 the different numbers of available facial feature points for the
datasets is visualized by color, where a value of zero indicates that this
specific dataset is missing completely. It is important to note that the same
number of landmarks may still to dissimilar point sets, i.e. facial locations.
Additionally a large disadvantage of the few provided 3D landmarks is that
they do not enable to differentiate between opened and closed eyes. Also
they do not include the face contour and the provided images are heavily
cropped to an extent leading to difficulties if the face contour is to be detected
afterwards because it is partly excluded.

Property Check Among the described databases, the Bosphorus offers the
highest resolution in 2D and 3D.

1. variance in appearance: (V)
While the variance in age (person) is smaller compared to the BUSDFE
database, the variance in appearance by expression is larger, due to
more recordings including different AUs, occlusions, and rotations.

2. quality of images and 3D data
The number of points and pixels per dataset is larger compared to the
BU3DFE and BU4DFE database.

3. balance (no missing data)
Data is highly imbalanced, i.e. the number of expressions per person
is highly inconsistent. Because not all persons share a common set
of performed expressions, a balanced subset has to be chosen or the
missing data has to be estimated.

4. alignment in time
For this database there is no necessity for time alignment, because
there is no time-variance.

5. dense correspondence between 3D scans:
Due to the varying number of points between scans, there is no dense
correspondence. Due to the fact that the datasets do not even share
sparse corresponding points between landmarks, no sparse correspon-
dence is provided neither. This is a disadvantage compared to the
previous databases.
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Figure 3.3: Morphed frontal view 2D images provided by the BUSDFE. The
images were estimated from the two side-views. From top to bot-
tom each row contains one emotion as follows: Anger, Disgust,
Fear, Happiness, Sadness, Surprise. The level increases from left
to right by values 1 to 4.
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Figure 3.4: Selected frames of subject with ID 3 of the BU4DFE database.
From top to bottom each row contains the frames 1, 25, 50, 100
of one emotion sequence as follows: Disgust, Fear, Happiness,
Sadness, Surprise. (Anger is not depicted.) The last column
shows the 3D face scan corresponding to frame 50.
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Figure 3.5: Illustration of the varying number of frames for each of the 101
persons and 6 sequences of the BU4ADFE database.

—

(a) 3D scan with ffp (b) corresponding image

Figure 3.6: Example of a dataset of the Bosphorus database.
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Table 3.3: Labels of Bosphorus database, where the abbreviations mean the
following: FAU: Facial Action Unit, LFAU: lower FAU, UFAU:
upper FAU, CAU: combined FAU.

label interpretation label interpretation
N_N Neutral CAU__A12A15 Lip Corner: Puller
IGN_INV Invalid + Depressor
LFAU_9 Nose Wrinkler CAU__A22A25 Lip: Funneler + Part
LFAU_ 10 Upper Lip Raiser CAU__A26A12lw  Jaw Drop + Low Int.
LFAU_ 12 Lip Corner Puller Lip Corner Puller
LFAU 12L Left Lip Corner Puller E ANGER Anger
LFAU_12R Right Lip Corner Puller E_DISGUST Disgust
LFAU_12LW  Low Int. Lip Corner E FEAR Fear

Puller E_HAPPY Happiness
LFAU_ 14 Dimpler E_SADNESS Sadness
LFAU_ 15 Lip Corner Depressor E_SURPRISE Surprise
LFAU_16 Lower Lip Depressor YR_RI10 Yaw +10 Right
LFAU 17 Chin Raiser YR R20 Yaw 420 Right
LFAU_18 Lip Puckerer YR_R30 Yaw +30 Right
LFAU 20 Lip Stretcher YR R45 Yaw 445 Right
LFAU_ 22 Lip Funneler YR_ R90 Yaw 490 Right
LFAU_ 23 Lip Tightener YR_L45 Yaw -45 Left
LFAU_ 24 Lip Presser YR_L90 Yaw -90 Left
LFAU 25 Lips Part PR U Pitch Upwards
LFAU 26 Jaw Drop PR SU Pitch Slight Up
LFAU_ 27 Mouth Stretch PR_SD Pitch Slight Down
LFAU 28 Lip Suck PR D Pitch Downwards
LFAU_34 Cheek Puff CR_RD Right-Downwards
UFAU_ 1 Inner Brow Raiser CR_RU Right-Upwards
UFAU_ 2 Outer Brow Raiser O_EYE Eye Occlusion
UFAU 4 Brow Lowerer O _MOUTH Mouth Occlusion
UFAU_ 43 Eyes Closed O__GLASSES Eyeglasses Occlusion
UFAU_ 44 Squint O_HAIR Hair Occlusion
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Figure 3.7: Number of facial feature points (fips) for each individual and
expression of the Bosphorus database, where the value zero rep-
resents missing data.
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Figure 3.8: Selected examples of images from the Bosphorus database.
row: emotions: anger, disgust, fear, happiness, sadness, surprise,
2. row: selected facial action units (UFAU43, UFAU4, LFAU
22, LFAU 28, LFAU 15, LFAU 34), 3. row: selected rotations
(down, up, 20°,30°,45°, 90°), and 4. row: occlusions.
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3.2.4 Facewarehouse

The Facewarehouse Database [30] contains data of 150 persons in 20 expres-
sions (including neutral). Unfortunately there are no labels provided, but
additionally 74 landmarks were computed on the images. The recording was
performed using a Kinect and the KinectFusion framework [54], leading 3D
data and images of 640 x 480. Due to the use of the Kinect hardware, the
images have a low resolution of bad quality, where the face is only a fraction
of the complete image. Also the actual depth scans obtained from Kinect
are very noisy. To enhance the quality, the performing person was asked to
rotate his or her head slightly. The KinectFusion [54] algorithm was used to
fuse these multiple depth scans into one smooth 3D surface model.

For each person, the 3D Morphable model of Vetter and Blanz [16] was
used to fit a 3D mesh model to the neutral facial expression and a defor-
mation approach was used to fit the remaining expressions. In the database
these 20 face meshes per person are referred to as training poses. Then a
3D blendshape model of higher resolution is fitted to the training shapes to
refine the expression, which leads to a set of dense 3D faces, illustrated in
Fig. 3.9. Additionally other facial expression were simulated, leading to a
total of 47 fitted blendshape models per person, of which 40 are illustrated
in Fig. 3.10 (ears and back of head have been cropped).

We found the provided training poses and fitted blendshapes only differ
slightly, where the quality of change cannot be judged. Also ears and back
of the head are provided in the models, which no other model offers. However
they cannot be expected to reflect the original individual shapes well because
these parts are hardly visible in the original data or are highly distorted.

Property Check While the resolution is of the provided data is below the
level of the other databases, this databases fulfills other relevant criteria.

1. variance in appearance:

While the range in age is very large compared to the other databases,
there are no informations about the included ethnicities of the subjects.
Also the variance in expression is difficult to rate, because the individu-
als actually performed 20 expression, which is mediocre in comparison,
but in total 47 expressions are offered for each subjects fitted blend-
shape model. In total the missing labels for age, race and expression
are the biggest drawback.
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(a) fitted  blend- (b) original image (c) cropped image
shape

Figure 3.9: Example of a dataset of Facewarehouse. (a) A fitted 3D
blendshape-model (in mesh representation) resulting from (b)
the original image and (c) the cropped image in to illustrate the
provided image quality.

2. quality of images and 3D data:
In the provided low-resolution images, the actual face of the person is
only located in a very small area. The actual raw 3D data captured by
Kinect is very noisy, which is of no use for a high-quality face model.
However the additional provided individual fitted blendshape models
have a high resolution.

3. balance (no missing data): v/
Due to the chosen setting the 150 persons each offer the same number
of recordings, by either 20 actual recordings from Kinect or 47 fitted
blendshape models.

4. alignment in time: v/
Because there is no time-variance considered, there is no need for time
alignment. The fitted blendshape-model-based data is therefore con-
sidered well aligned in space and time.

5. dense correspondence between 3D scans: v/
While the actual 3D recordings from Kinect do not correspond point-
wise, the blendshape-model fitted 3D models do, because the 3D data
points are in dense correspondence to one-another by design.
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Figure 3.10: Illustration of 40 of the 47 expressions, IDs 8 to 47, of the mean
person provided by the Facewarehouse blendshape model. The
first shape shows the neutral facial expression. The color rep-
resents the point-wise distance to the neutral face shape, where
dark blue refers to zero and red to large distances. Ears and the
back of the head have been cropped for a better visualization.
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3.2.5 MMI

The MMI database [55] was named after the M&M Initiative, where the
letters M refer to the first name of the two main authors, Majla Pantic and
Michel Valstar.® The database contains images and videos of 67 subjects®
with varying ethnic background. The recordings contain temporal informa-
tion of facial movements from neutral to specific full extended expressions
and back to neutral. The sequences are labeled accordingly by their shown
expression, e.g. one of the six prototypical emotions and specific AUs, along
with additional frame numbers referring to the different temporal phases for
neutral (NE), onset (ON), apex (AP) and offset (OF). The data consists of
videos and still images, taken from frontal and side view. An example of one
frame is shown in Fig. 3.11.

(b)

Figure 3.11: Example frame of the MMI database. (a) First frame of a se-
lected sequence of subject 1, (b) one frame of subject 12.

5Details and updates on the ongoing project can be found on the webpage https://
mmifacedb.eu/.

5The original paper states the database consists of 19. We assume the prevalent difference
is caused by later update of the database.
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3.2.6 ADFES

The Amsterdam Dynamic Facial Expressions Set (ADFES) [56] is a 2D
database, which contains image sequences of 22 persons performing emotions
starting from neutral to full emotion (apex) with varying sequence length.
The emotions include the six basic emotions (anger, disgust, fear, joy, sad-
ness, and surprise), which are the same as in the BUSDFE and BU4DFE
databases, and neutral. An example is shown in Fig. 3.12.

Figure 3.12: Selected example frames of person 2, showing the apex expres-
sion of the ADFES database [56]. From left to right, top to
bottom: anger, disgust, fear, happiness, sadness, surprise.

3.3 Conclusion

Reviewing Tab. 3.2 suggests that the database of choice is the Facewarehouse
[30], see Sec. 3.2.4. However, the provided 3D meshes were retrieved by two
other 3D face models. Therefore, if a new 3D face model is build upon these
3D meshes, it will entail the initial model-fitting errors.

In contrast to that the other databases contain actual 3D scans obtained
directly from hardware, and are of higher resolution. Since some other de-
sired properties are not yet fulfilled, in the following chapter algorithms are
described to retrieve them, namely for alignments in space and time, and
dense correspondences between 3D points.

1P 216.73.216143, am 02.02.2026, 17:48:15. Inhalt,
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

59
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Why is an alignment in space and time for 3D face scans necessary? To
enable the creation of a 3D face model from 3D face scans, they must be of
high quality and fulfill specific demands, which are:

1. The scan must not contain points, which do not belong to the face, i.e.
must be free of outliers.

2. The scans must all cover the complete face, but not extend it. If part
of a face is missing in one scan or if one scan contains part of the neck,
it cannot be used for a model describing the complete face.

3. All 3D scans must be well-aligned in space, e.g. all faces are translated
and rotated such that they lie roughly in the same plane, and each
nose (or other reference point) lies in the origin.

4. The scale of each scan must be compatible to all others, which ensures
the differences in scale relate to variation in individual shapes.

5. All 3D scans must have the same number of points, because otherwise
they cannot be ordered into a matrix or tensor.

6. The points between each pair of two scans must correspond to one-
another anatomically, e.g. the index of the point referring to the nose
tip must be the same for all point sets, i.e. anthropometric correspon-
dences.

7. The selected data must be balanced, which means the number of scans
must be the same for each person.

In general the listed prerequisites are not satisfied by databases. In the
following the databases BUSDFE [49] and BU4DFE [32] will be considered
as an example for which not all the requirements are met, yet.

In the remainder of this chapter, the process from the original 3D face
scans to 3D data points suitable to build a 3D face model is described in three
steps: First in Sec. 4.1 the process of individual preprocessing is explained
aiming to improve the quality of each single scan. This resolves the points 1
to 3. Second in Sec. 4.2 spatial alignment is applied to unify the number of
points among scans by nonrigid registration. After this the data fulfills the
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points 5 and 6. Third in Sec. 4.3 temporal alignment is used to select the
same number of scans of each sequence of 3D face scans for different persons,
resolving the last 7th point on the upper list.

4.1 Preprocessing

The process described in the following consists three steps:

1. a rigid global alignment, such that all scans lie in the same region of
the global coordinate system,

2. detecting and removing outliers and

3. deleting points, which do not lie on the desired face surface.

In this section the scans from the databases BUSDFE [49] and BU4DFE [32]
are considered.! Conveniently these offer full face scans, without occlusions,
e.g. by glasses, and both provide additional information such as triangles,
which connect the 3D points. Among the points of each scan 83 are labeled
as facial feature points (fips), also referred to as 3D landmarks, see Fig. 3.1
and Fig. 3.4. These ffps serve as prior knowledge, later referred to as sparse
correspondences, which are shared among all scans.

4.1.1 Rigid Global Alignment

As a first step, to achieve a joint global alignment the 83 provided 3D land-
marks are selected to determine a rigid transformation to translate and ro-
tate each face, such that it lies in the zy-plane in upright position, where
the height extends towards the positive y-axis, width along z-axis and the
nose pointing towards the positive z-axis. In the end the upper part of the
nose lies in the origin.

4.1.2 Detection of Outliers

In the following outliers of a scan are defined as points, which do not belong
to the actual desired face region. We found that there are scans which con-
tain unconnected points, which are not in any triangle, and disjoint smaller
groups of points connected among themselves. These should be discarded.

1Please see Sec. 3.2.1 and Sec. 3.2.2 for a detailed description of the databases [49] and
BU4DFE [32].
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The triangles which are isolated from the biggest triangular mesh region,
i.e. which do not belong to the group of largest amount of points, are iden-
tified and deleted, along with the points involved. In Fig. 4.1(c) one such
a group is highlighted by a blue box. Please note that in each step where
points are deleted, an adaptation of the triangular connectivity information
is necessary, because the indices of the points change.

4.1.3 Removing Points outside of the Face Region

In this section a joint face region for 3D face scans is defined and used to
crop the provided data accordingly.

Detect and Delete Points Outside Contour

The provided annotated facial feature point (ffp) contain the face contour,
see Fig. 4.1(a). As the scans include points beyond this, we chose to define
the face contour as a joint boundary of the face region among all scans. To
detect and delete the points beyond these boundaries, the scan is projected
onto a 3D cylinder and unfolded on a 2D plane. The resulting 2D projected
points are shown in Fig. 4.1(b). The points which do not lie within the
polygon spanned by the 2D face contour points shall be discarded. However
the points of the contour do not extend to the forehead, which therefore needs
to be treated separately, because otherwise it would be deleted. Therefore
the points above the contour are kept if their z coordinates lie within the
x coordinates of the two uppermost contour points. In Fig. 4.1(b) the red
points are to be deleted. The sample shown in Fig. 4.1 belongs to the
BU3DFE database, however the scans of the BU4DFE database are more
challenging to preprocess, because they contain more points outside of the
face region. Therefore Fig. 4.2 provides an example for a more challenging
setting.

Detect and Delete Points Inside of the Mouth

As can be seen in Fig. 4.1(c), (d), the face scans showing an open mouth
contain points of the inside of the mouth. These points are detected using
different decision criteria based on the provided landmarks. First in frontal
view, the points which lie within the convex hull of the polygon spanned
by the inner mouth contour points are detected and deleted. If this results
in unconnected points or triangles, they are deleted as well. Among the
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remaining points in the mouth area there may still be some located inside
of the mouth, clearly below the facial surface. These are detected by several
threshold-based criteria: e.g. if a triangle has a large edge length and a low
z-value, or if the normal vector is oriented wrongly, the corresponding point
is selected as candidate. In Fig. 4.1(c),(d) the points depicted in red are to
be discarded.

Special Case: Deleting Landmarks

We found that for BUSDFE [49] and BU4DFE [32] it may occur that the
same point has two labels, which refer to two distinct landmarks. This may
occur if the mouth is closed and therefore the lower and upper lip touch.
Additionally we found some of the provided landmarks are not located on
the facial surface directly but below. This is probably a result of manu-
ally labeling point clouds from a frontal view, where the z-component is
indistinguishable, hence points were defined as landmarks below the facial
surface. Therefore during the previously described process points annotated
as fip can be selected to be deleted. These are handled as special cases, as
described for the inner mouth points. If the considered ffp is not a point of
the mouth region, then the closest point among the remaining ones is chosen
as replacement.

Additional Steps for BU4DFE

The BU3BDFE database offers cropped scans, whereas the scans of the BU4DFE
database contain more points which are not part of the face region, which
can be seen by comparing Fig. 4.2(a) and Fig. 4.1(c). If these scans are
processed as described, some points will remain in the data which lie be-
yond the forehead region. Furthermore the provided landmarks illustrated
in Fig. 4.1(a), do not suffice to crop the face region, because they are re-
stricted to the region below the eyebrows. To overcome this problem we
choose to add another step to the preprocessing to enable a cropping of the
upper part of the face.

The mean of the two uppermost landmark points of the contour, i.e. the
points with IDs 69 and 83 in Fig. 4.1(a), are used to define the center of
a circle, while its radius is defined by the distance to either of the two.
The circle is used to continue the face contour and serves as border of the
face region for the upper part of the face. In Fig. 4.2(a) the original scan
is shown, in Fig. 4.2(c) the to be discarded points are highlighted in red,
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while in Fig. 4.2(d) the two disjoint sets of points, i.e. to be kept and to be
deleted, are illustrated with an additional artificial elevation. The result of
the preprocessing is shown in Fig. 4.2(b).
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Figure 4.1: Illustration of the result of preprocessing for a BU3DFE data
set (person 1, emotion surprise, level 2). (a) illustration of the
provided 83 landmarks in BU3DFE and BU4DFE. (b)-(d): The
black vertices define the 83 provided landmarks, and the red ones
are selected to be deleted. (b) 2D projection, (¢) The blue box
at the top left in highlights unconnected points. (e) scan after

preprocessing.
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(a) original scan (b) after preprocessing

(c) scan with highlighted points (d) disconnected two parts

Figure 4.2: Input and result of preprocessing of an example of the BU4DFE
database (person 6, emotion surprise, frame 77). The subplots
show (a) the original scan, (b) the scan after preprocessing, (c)
the scan with red points indicating which are to be deleted, and
(d) the two sets as disconnected parts.
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4.2 Spatial Alighment by nonrigid Registration

In this section, the 3D face scans will be processed, such that the following
two demands are fulfilled: (1) the number of points between scans must be
unified, (2) they must correspond to one-another anatomically. The fact that
number and order of points differ between 3D scans necessitate a processing
of the 3D face scans, resulting in a form of unification. The goal is that all
point sets share the same number of semantically meaningful corresponding
points of the same order. Due to the fact that the true correspondences
between 3D scans are usually unknown, their retrieval defines the goal of
this chapter.

In the following the necessary terms are defined and selected methods are
provided to retrieve correspondences between pairs of 3D points by nonrigid
registration, followed by objective quality criteria.

4.2.1 Correspondence between Point Sets

Given two disjoint sets of points of dimension D, which are ordered row-wise
into matrices Y € RMXP and X € RV*P  a correspondence between them is
defined based on correspondences of pairs of their points. A correspondence
is defined as a set C of unique pairs of indices, such that if point y, of Y
corresponds to point ; of X, then (4,j) € C:

C(Y,X) :={(ij) | i €{1L,....M}, je{l,....N}, (4.1)

if y; € Y corresponds to x; € X}.
However this definition does not prevent a point of one set being matched
to multiple points in the other, and does not guarantee that at least one
matching point is found for each. The latter problem can be overcome by

adapting the definition, to assign one point x; for each y;. This is done by
defining correspondence as a function

c:{l,... .M} {1,....N}, (4.2)

which demands Vi = 1,...,M, 3 ¢(i) € {1,..., N}, such that y, corresponds
to @.(;). Therefore this function can be represented as a vector ¢ € RM

c=lc,.. .,cM]T7 with 1 < ¢; < N, such that (4.3)
y, € Y corresponds to ., € X.
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Thereby it is guaranteed that each of the M points in Y is matched to
exactly one point in X, whereas one point x; can be assigned to correspond
to different y,. Though this seems to be a drawback the definition is wide-
spread in the literature and commonly used. This is the case because the lack
of information is harder to deal with than having some kind of information,
which means missing correspondences are more challenging to deal with
compared to having one point x; assigned to multiple y;.

Figure 4.3: Hlustration of sparse corresponding points between two 3D point
sets from BU3DFE database [49]. The points depicted in red on
the left shape and blue on the right correspond to one-another
between shapes. The black lines highlight selected corresponding
point pairs.

The preceding terminology defines correspondences between arbitrary points,
which are not necessarily anthropometric, because it was not enforced or de-
manded by definition. In conclusion they do not prevent one point on the
forehead of one set to be defined as corresponding to one point of the chin
in the other set. In Fig. 4.3 there is an example of sparse anthropometric
point correspondences, which are semantically meaningful landmarks pro-
vided with the database. Similarly correspondences should be retrieved for
the remaining points between both faces to receive dense correspondences.
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To estimate them in the following section selected methods are described.
In Sec. 4.2.3 the desired properties are discussed and quality measures are
defined to judge the quality of the results, based on them.

4.2.2 Nonrigid 3D Registration

In general the goal of a registration is to deform one dataset towards another
(e.g. point set, mesh, image, etc.), such that they are as similar as possible
in the end of the process [57]. This common definition demands that only
one dataset can be deformed, whereas the other one must remain static.
While there are generalizations which allow both datasets to change [58], in
the following the former more wide-spread definition is used.

Furthermore the definition of similarity depends on the specific data and
task, as each recording method exhibits different properties. Also the com-
parison of dissimilar dimensions and data modalities is especially challenging,
for example in medical applications the data may stem from different modal-
ities as e.g. MRT and x-ray, which each include a different range of data.
Due to the most common data in the medical field 2D image registration
is wide spread. Some of these techniques have also been used to register
3D datasets, by first mapping the 3D datasets onto a 2D plane [59]. These
methods can be used for 3D registration if a bijective mapping from 3D to
2D is available. However in this chapter we will focus on direct nonrigid 3D
point registration because this is the original data domain, and a discussion
about a feasible bijective 3D to 2D mapping for highly nonrigidly deforming
faces is unnecessary.

In the following the source data Y will be referred to as the data which
is deformed to the static target X dataset. The N points xz, € RP of
the static point set are ordered row-wise into the matrix X € RV*P and
the M points y,, € RP of the deformable point set into the matrix Y €
RMxD. accordingly. Hence the goal of the registration process is to deform
Y towards Y, such that it becomes as close as possible to the static point
set X:

Y - Y~ X.

Considering the correspondence between the sets is unknown and the number
of points differ, finding optimal parameters minimizing the to be defined
distance between the sets is not trivial. Selected methods for this task are
described in detail in the following.
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4.2.2.1 Iterative Closest Point Algorithm

The core idea of the Iterative Closest Point (ICP) algorithm [17, 31] is to
assign an affine transformation A; to each point y, of the source point set Y.
During the iterative optimization the affine transformations are estimated
by minimizing an objective function consisting of the point-wise distance
between the deformed source points g, and their matched target point Te(s)s
and additional constraints. The latter require that the two point sets are
provided with additional mesh connectivity information and landmarks.

In the following homogeneous coordinates are used for a better readability,
ie. :cf refers to the 3D point wf with the value one appended, leading to
wi‘ = (2F,1)" € R*, and analogously for ylh The 12 parameters of each
affine transformation are ordered as a matrix A; € R3*4 which enables the
deformation to be written as g]' = A;y”. All unknown transformations are
stacked to a single matrix as A = [Ay,...,Ay]T € R*™M>3 which is the

argument of the total optimization function to be minimized:
E(A) = Ed(A) + asES(A) + OélEl(A), (4.4)

with positive penalty weights g, «;. The first term defines the distance
between the two point sets as a weighted sum of point-wise distances

M
Eq(A) =Y wi | Ayl — 2l 3, (4.5)
i=1

where c(i) € {1,...,N} denotes the point index of the one point in X which
is closest to A;y”, and w; is a positive value designed to weight the reliability
of the individual point match c(i). In [31] the value w; is set to 0 if no
corresponding point could be found and 1 else. The smoothness of the
deformation is measured by the similarity of neighboring transformations,
as

EJ(A)= Y [(Ai - 4G, (4.6)
(i,5)€€

where & is the set of edges between the points of Y and G := diag(1,1,1,7) €
R**4 is used to weight different parts of the transformation by ~, which
default value is 1. The last term is the distance between the L landmark
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pairs (y',@'1)f_,
1 L R h
Ei(A) = ZZHAzkylk — 'y |3 (4.7)
k=1

The optimization is performed by minimizing Eq. (4.4) iteratively and starts
with a high stiffness, i.e. high value for a, which is faded out, while the
landmark weight «; increases during the estimation process.

In [31] the authors first assume fixed correspondences for each single step,
enabling them to rewrite the optimization function by matrix expressions.
This is beneficial, because it allows to analytically solve for the optimal affine
transformations directly in each step, hence the name optimal step ICP.

4.2.2.2 Coherent Point Drift with Previous and Proposed Extensions

The Coherent Point Drift (CPD) algorithm [60, 61] poses the point set
registration as a density estimation problem. The density is modeled by a
Gaussian Mizture Model (GMM), where the points of the deformable point
set Y represent the centroids of the GMM. The algorithm is defined to
preserve topology by enforcing coherent movement of the deformed points
and solved by an Ezpectation Mazimization (EM) optimization.

Kernel Density Model

The core idea is that the points y,,, of the deformable point set Y € RM*P
serve as GMM centroids, which generate the points x, of the static point
set X € RVXP Assuming the individual Gaussian densities p(-|m) ~
N(y,,,Em) have equal isotropic covariance matrices 3,, = 02Ip, they sim-
plify to

_ 2
p(:c|m702) _ |z ymHQ] , m=1,....M (4.8)

exp | —
(27_[_0_2)D/2 [ 202

Without further knowledge each point is equally as important, hence each
individual density is weighted by P(m) = ﬁ, and additional noise is taken
into account. The total GMM probability density function thus becomes

M
17
pla|o?) = % 4 Ww m:1p(m|m,02), 0<w<l, (4.9)
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where w represents the percentage of noise. For a shorter notation, we
slightly redefine the probability density function (pdf) and prior probabilities
to include the noise to:

1 Jmfymu%] _
p(x|m,o?) = { @re?)P7 exp{ 202 ym=1,..., M (4.10)
% ,m=M+1
and
(1-w) =1,....M
P(m):={ @ T ot (4.11)
w ,m=M+1

which leads to a more compact representation of the GMM pdf:

M+1
p(alo®) = > P(m)p(z|m,o?). (4.12)

m=1

The probability that a random point x,, of X has been generated by the
kernel m, represented by the kernel center y,, is defined as the posterior
probability of the GMM

L Pmpladme?)  P(mp(eime?)
P(m|z,) = p(xn|0?) = Z:\n/[i_ll P(m)p(mn|m,02)' (4.13)

This means the posterior probability of the GMM centroid m given the data
point x,, represents the probability that the points x,, and y,, correspond
and will be referred to as the correspondence probability of the points m and
n.

Optimization

During the registration the initial point set Y is deformed towards the static
point set X, by applying the transformation function 7" with parameters 0,
leading to the updated point set Y = T(Y,0). Accordingly the updated
GMM centroid g, is denoted as g,, = T (y,,,0), and 6 and o2 are to be
determined. They are found in the maximum posterior sense, by estimating
the parameters that maximize the penalized likelihood over the registration
parameters 0, and variance o2. To do so, first the GMM is re-parameterized
by the deformed points y,,,, which are fully described by @ given the initial
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points Y. In favor of a shorter notation, we choose to keep the former
symbols, without explicitly denoting the parameter vector 6 in every place,
where the updated centers ¥y, are used, which means the following symbols
of Eq. (4.10) and (4.12) are now used interchangeably:

p(mn|m702) = p(wn‘ma0—270) (414)
p(®n]0?) = p(zn|o®,0). (4.15)

Then assuming the individual probability density functions (pdfs) p(:|m,o?)
of Eq. (4.10) are independent, the negative log-likelihood of the GMM is

M+1

Zlnp x,|0?) Zln Z m)p(x,|m,o?). (4.16)

m=1

To minimize this function the Expectation Maximization (EM) algorithm
[62] is used. This iterative approach is commonly used to find Mazimum
Likelihood (ML) or Mazimum A Posteriori (MAP) estimates, where the
statistical model depends on underlying unobserved variables. It consists of
two steps: In general in the expectation step (E-step) the current estimate is
used to construct a log-likelihood which can be evaluated, giving a function
for the expectation of the log-likelihood. In the mazimization step (M-step)
the expected log-likelihood is maximized.

E-Step Assuming estimates 6, 0(20 are provided, the posterior probabil-
ity, representing the correspondence probability, is updated using Eq. (4.13):

exp [_ |m712—2§m|3}
Py (ml,) = — © , (4.17)
Z exp |: llen— yk|2:| +e
k=1 %)
where Y, = T (Y,,.0(1)), ¢ = (27rc7(2t))D/2 M

M-step In the M-step, equivalently to maximizing the log-likelihood, the
negative log-likelihood is minimized in order to give updated estimates. In
[62] it was shown that the following function represents an upper bound of
the negative log-likelihood F(0,02) of Eq. (4.16) and can hence be minimized
in place of E:

N M+1

Q0,0°) ==>_ > Py(mlw,) In (P(m)p(zn|m,o?)) . (4.18)

n=1m=1
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Ingoring constants, which do not depend on the input arguments gives

NpD
P n(0?),

n=1m=1

(4.19)

where Np = Z Z Py(m|x,) < N. Therefore minimizing the function Q

gives the updated estlmates as

(9(t+1) U(t+1)) — argmin Q(6,0?). (4.20)

172

During the iterative optimization the E-step and M-step are alternated.
However to this point the deformation function 7 is undefined. To actu-
ally solve for its unknown parameters 6, it is defined in the following.

Definition and Estimation of the Nonrigid Deformation Function

In the original CPD [61] the authors offer different parameterizations of the
deformation function 7(-,0) for rigid, affine and nonrigid registration. How-
ever based on the desired application, we focus on the latter. To represent
nonrigid deformations, the authors introduce a displacement field v to define
the transformation as

T(Y0) =Y +u(Y). (4.21)

To enforce coherent movement, an additional regularization function ¢ is
presented to penalize energy in high frequencies in order to favor smooth
deformations

$(v) = || Lv]3 (4.22)

where L is an operator extracting high frequencies, which must be penalized.
Given this parameterization, the transformation function is fully described
by v. Therefore the argument of the negative log-likelihood E of Eq. (4.16) is
changed from 6 to v and the previously presented penalty is added weighted
by A € R*:

f(v,0) = E(v,0) + gqb(v). (4.23)
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Adapting f with the same scheme leading to Eq. (4.19), the updated opti-
mization function is

M,N
Qv,0%) = 357 > Py(mlan)l|zn — (Y, +v(y,.))3 (4.24)

m,n=1

A
+ 222 In(o?) + Z||Lu].

Please note that the symbol v is used as a function with vector-valued input
here based on single points v : RP? — RP | though previously in Eq. (4.21) it
was defined for multiple point input represented as matrix as v : RM*P —
RM>D This is done on purpose for a shorter notation, as was in the reference
[61]. In [61] the authors argue that the solution v takes the form:

M
U(Z) = Z wmg(zaym)v (425)

m=1

where w,, € RP is defined as

N
Wi = 5 3 Py(mlan) (20 = (i + o)) (420
and
o(z) = oxp [—2}32||z - y||§] , (4.27)

where 3 € RT is a parameter to control the smoothness of the deformation.
In Eq. (4.25) the function v can then be found on both sides of the equation,
and combining Eq. (4.21) and Eq. (4.25) suggests that the deformed point
set can be described as

Y =T(YW)=Y +GW, (4.28)

with matrix G € RM*M consisting of entries g;; = 9(y;,y;), and W =
(wy,...,wy)T € RM*P Hence, given the initial point set Y, the nonrigid
deformation function 7T is fully described by the matrix W. Further assume
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the regularizer ¢ of the motion field, defined in Eq. (4.22), can be replaced by
¢(W) = tr (WTGW), then the updated function @ of Eq. (4.24) becomes

M,N

~ 1
QW.0%) = 5 > Py(mlen) |z, — (Y, + WHG(m, )T)[5  (4.29)

m,n=1

+ %tr (Wrew).

The values Py)(m|z,) define entries of the matrix P € RM*M_ To find the

minimum of @ its derivative is computed with respect to W and then set to
zero which gives

8@(W,02)

1 . !
W = ﬁa[dlag(mN) (Y +GW) - PX| +A\GW =0. (4.30)

Multiplying 02G~! from the left and reordering leads to the final equation
system to compute W from the current estimates

(diag(P1n)G 4 Ao®) W = PX — diag(P1y)Y. (4.31)

Analogously Q of Eq. (4.29) can be differentiated with respect to o2 and set
to zero, leading to an estimate for o2 as

1 M,N
72 = DNp mznilllmn ~Umll3 (4.32)
1 .
= —— (tr(X T diag(P" 1) X) — 2tr(X T PTY) (4.33)
DNp
+ tr(Y T diag(P1y)Y))

To summarize, the optimization problem presented in Eq. (4.20), can be
solved by Eq. (4.31) and Eq. (4.33). The final point correspondences for each
Y., is defined by choosing the point o which has the highest correspondence
probability, i.e.:

¢(m) := k = argmax P(m|zy). (4.34)
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Extensions of the CPD

In the meantime different extensions for the CPD have been proposed. The
previously presented original version of the CPD does not take into account
prior knowledge, for example provided known correspondences. As there
are some databases supplying additional landmarks, it is of general interest
to utilize them for better correspondence estimations. In [63] the Extended
Coherent Point Drift (ECPD) includes prior knowledge as sparse correspon-
dences by modeling them as a separate set of density functions, leading to an
additional summand in the optimization function. This approach has several
drawbacks: first, the meaning of the posterior as correspondence probability
is lost, because of the additional term included, second, the approach alters
the optimization function, and the knowledge of points in the neighborhood
of the landmarks is not used.

Proposed Incorporation of Prior Correspondences

In contrast to the Extended Coherent Point Drift (ECPD) algorithm [63],
we propose to incorporate the prior knowledge of provided landmarks by
directly adapting the prior of Eq. (4.11). We thus incorporate a landmark
prior that (1) automatically connects the known correspondences and (2)
states that the points on the neighborhoods of the corresponding landmarks
have a higher prior matching probability than a random point pair over the
sets. Given L landmark pairs (m!,n'), m! € {1,... .M}, nl € {1,...,N},
l=1,...,L we define a prior as

~ 1 . ifn=nl m=m
B , 1 n nl, m ml (4.35)
0 ,ifn=n"m#m
To accommodate for outliers, we set
~ 0 ifn=n',m=M+1
B, =4 o hnon,m= (4.36)
w Lifn#En' ., m=M+1

In conclusion, for each landmark-related column index n! the prior is initial-
ized with the values 0 or 1, while the last row M + 1 is initialized with value
w, for each non-landmark column. For the non-landmark points, the prior
is defined as the uniform prior distribution

~ 1-w

Pon = =7 n#n', m#ml, m#M+1. (4.37)
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Given the triangulation of the point sets X and Y, we generate a neighbor
graph that connects the closest neighbors and divides the points into disjoint
neighborhood subsets, centered at the landmarks, such that ¢*(x,,:) contains
all points x,,, which are connected to the landmark x,,: with edge distance
k, and U7 (x,,1) NU*(x,,1) = 0, for j # k. Then, for all x,, € U(x,,), for all
landmarks, we set

Pon=<x= ’ 4.38
m P, otherwise, ( )

V {(]— + ak)ﬁmna Ym € uk(yml)

where ai = c¢/k, the parameter ¢ = 0.2, and m = 1,2,... ;M. After the
processing all the landmark neighborhoods P does not sum to 1 over m
anymore, therefore we normalize the prior such that for each non-landmark
index n,

C

D Pmn
Prn=01-w) Vi , (4.39)
> P
=1
where m = 1,...,M. Thereby the differences between landmarks and non-

landmark points are softened, because the points which are closer to the
landmarks receive larger prior probabilities to be matched onto one-another.
The proposed adapted prior P,,, can thus replace the previous P(m) of
Eq. (4.11), leading to an updated posterior defined in Eq. (4.13) as:

ﬁmnp(xn|m70'2)
M+41 ’
Z Pmnp(xn|mao'2)
m=1

P(ml|z,) = (4.40)

which serve as entries for the matrix P. Using the updated form of the pos-
terior instead of the original, the former optimization scheme of the reference
[61] can be applied as before.

Increasing Deformation during Iteration

The parameters A and £ control the smoothness, and therefore stiffness of the
deformation. We propose to decrease the parameters during the iteration to
favor more rigid transformations at the beginning, but enable more flexibility
for later iteration steps. This is done by choosing a value By to start and
[B1 to end with, where 8y > (1. For iteration ¢ the value (3; is obtained by
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decreasing [y towards ;. Also the Gram matrix G needs to be updated if
B is changed. An overview of the updated algorithm is presented in Alg. 1.

4.2.3 Quantifying Quality

The evaluation of registration and correspondence estimation is complicated
because in general there is no ground truth available. Additionally depending
on the choice of parameters, the same algorithm gives different results for the
same pair of point clouds. This section aims to find the best parameter set
based on rating the results by different quality measures, thereby automatize
the quality assessment and the choice of optimal parameters. In the following
different objective measures are introduced, which aim to quantify beneficial
properties, which were defined based on subjective observations. The goal is
to define a metric D, which objectively quantifies the quality of the results,
thereby giving a rating for algorithms and parameter sets, as

D - R#params — R#criteria N ]R+. (441)

4.2.3.1 Quality Measures

After the registration algorithm, the deformable point set Y has been de-
formed to Y, which should be similar to the corresponding points of the
static target set X. The following distances are defined based on the sym-
bols Y and X, which are referred to as starting point sets. Without loss of
generality Y can be replaced by Y where feasible.

For a better overview, the different measures are ordered into three cate-
gories, based on their properties and the provided information, which may
differ:

o Point-based Measures aim to quantify the properties of (corresponding)
points and their neighbors.

o Geometric Measures will include properties of the connectivities be-
tween the points, to prevent folds and spikes.

o Correspondence Quality can be measured if at least sparse correspon-
dence information is provided.

In the following the nomenclature for correspondence of Eq. (4.1) and
Eq. (4.3) are used interchangeably for the same set of correspondences to
facilitate readability in different equations.
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Point-based Measures

If no additional information between the point sets is provided, the distance
between two non-empty sets can be determined by the Hausdorff Distance
as

Dhaus(X,Y) := max{ sup inf dist(y,,x;), sup inf dist(y,,x;)},
y, €Y T;€X z;eX Yi€Y

(4.42)

where the function dist(+) is commonly chosen as Euclidean norm dist(x, y) =
|l —yl|2. If correspondences between the two point sets Y and X are known
or estimated, the most wide-spread quality measure is the mean squared er-
ror (MSE) of Euclidean distances between corresponding points, which is:

M

1
Dise(X,Y ,c) = 3M Z ly; — =,

i=1

5 Y €Y, xeX. (443)

While the true correspondence between the two point sets is usually un-
known, sometimes landmarks are provided as sparse prior correspondences.
Assuming L landmark pairs are defined as pairs of indices in Cj, the distance
between them is

Dina(XYC) 1= o S0 Ny — 2l (.44
(mtnt)e,

The measures Dhaus, Diand and Dy give a distance between corresponding
point sets. However they do not reveal if the distance is lower or higher com-
pared to the start. This implies that an improvement or worsening is not
reflected by these measures. To overcome this limitation, a normalized mea-
sure is computed as fraction of start and end value, by using the deformable
point set from start Y and end Y as follows

- Dmsc(Xv i}v C)

D XYY, =—_—-"—""2. 4.45

nmsc( ) ) ) ) Dmse(X’Y’ c) ( )

In conclusion this measure will be below the value 1 if Dy, has decreased,

i.e. improved, or above 1 if it increased, i.e. worsened, compared to the

start, thereby reflecting an improvement. Analogously normalized measures
Dihaus and Dyjana are defined.
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Limits: For the presented measures it holds the lower the better. How-
ever considering a very unfavorable result, after a registration an estimated
correspondence could assign all points of one set to exactly one point of
the other, where D,,s would be zero, but all points of Y would collapse
to exactly one point. This means that some undesirable properties remain
undetected by previous measures, requiring additional measures to prevent
this behavior.

Geometric Measures

In the following £y consists of pairs indices and defines the edge-connections
between pairs of points of the set Y, while the actual connectivity informa-
tion between the points is provided by triangles.

An undesired property of the outcome of deforming a point set is that two
vertices become too close, such that they are considered indistinguishable,
because one is mapped onto the other. This leads to at least one edge,
which will thus have a length of zero, which we define as edge collapse in
consequence. In Fig. 4.4 the edge colored in the green collapses if the two
points which it connects, are matched to one location. This property is
penalized by a fraction consisting of the new edge length divided by original
edge length, becomes too small, judged by a previously defined threshold:

N 1 Ai o
Dshrink(YaYagY) = g g 1 (Hy 77y]||2 < )\small) y (446)
1€y | (i ly; yj”Q
Z,])GSY

where y,,y, €Y, 4,9, € Y and 1> Asmall € RT must be a small value.
Additionally to prevent spikes, too long edges should be penalized as well:

S 1 19; — 9;ll2
Dextend(Y,Y ,Ey) = el E 1 (_j > Abig | (4.47)
I€y | (i,])eE v, yjH2
) Y

where y,,y, €Y, 9,9, € Y and 1 < Abig € RT must be a value bigger
than one.

Given triangular information, the normal vectors of triangles of the de-
formable set before Y and after Y deformation can be compared to detect
whether a triangle flipped its side. Then the angle between the normal vec-
tors before and after is greater than 90°, resulting in a scalar product which
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Figure 4.4: An example of a collapsed edge caused by an undesired defor-
mation from Y (before) to Y (after), where the two points con-
nected by a green arrow are mapped onto one-another, thereby
being too close.

is below zero.? Assuming the triangles are ordered in the set 7y and triangle
1 is denoted as i € Ty, the desired penalty is

Dyip(Y, Y Ty) = \Ty| > 1(nfn; <0), (4.48)
€Ty

where n; € RP refers to the normal vector of triangle i of the set Y. An-
other measure for geometric similarity of surfaces is the distance between
the normal vectors of corresponding points, which should be similar

Doorm (XY ) : Zn ny, — N, |3 (4.49)

where m,, , ng; are the normal vectors of the points y; € Y, x; € X, see
Sec.B.

Limits: By definition the measures Dgprink and Dexteng Will also penalize
a shrinking or expansion of the initial point set, respectively. However this
can be overcome by an initial global alignment, including scaling, between
the starting point sets Y and X.

2The angle o between two vectors @, ¥ is computed as cos(a) hence Ty =

__aTy
Tl lylly
cos(a)|||l, |lyll,- If 90° < a < 270°, then cos(a) < 0, hence Ty < 0. Since the angle
o between two 3D vectors is limited by 0° < a < 180°, the condition Ty < 0 is
reasonable and reflects angles 90° < o < 180°.
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Correspondence Quality

Assuming ground truth correspondences are provided in ¢, they can be com-
pared to the estimated ones €. In conclusion, using the vector-notation from
Eq. (4.3), the number of correctly estimated correspondences is counted as

le]
Y 1(e=a).
i=1

Here large numbers reflect a good estimate. In order to match the scale of
the previous measures, a minor change is done, such that zero represents the
best value, which gives:

1
DCOI‘I‘(C7/C\) =1-— Z 1 (Ci = a) s (450)

with 0 < Deorr < 1, where 1 means 0% of correspondences where estimated
correctly, while 0 represents 100% correctness. Thereby low values are de-
fined as better to match the definition of the other quality criteria. However
considering the true corresponding point might have been missed by one
point, the edge-distance of the estimated and true corresponding point are
considered as follows:

el
1
Drcorr 7/\75 =1-— s
(eex) | ; edist(x.

where edist(4,7) refers to the number of edges between the two points. Specif-
ically the measures are zero if one correspondence information is provided
as input, i.e. Deorr(€,€) = Dpeorr(€,6,Ex) = 0.

As previously described the correspondence which matches one point in
one set to all points in the other is undesirable and unpractical for further
applications. Therefore the number of points which have exactly one corre-
sponding point in the other set should be maximized, being the number of
unique correspondences:

1

4.51
CC’C\‘)—FI’ ( 5)

47

Ducorr(c):l—%z > 1 #c), nzw, (4.52)

where n is the number of comparisons.
Limits: The first two of the three presented measures are limited to the
case of known correspondences and cannot be computed otherwise.
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Additional Remarks

The above quality measures capture a lot of qualities and problems of regis-
tration and correspondence, but are far from complete. Additional measures
which can be considered in future work are, e.g. the area of overlapping
predefined regions or the volume between the registered surfaces. Also the
size of the triangles has not been considered. Although a consistent trian-
gle size is generally desirable, we did not include any penalty of this kind,
because we do not demand uniformly sized triangles at the start. To quan-
tify the robustness of the registration the Inverse Consistency Error (ICE)
was presented in [64]. This measure is based on the idea that applying the
algorithm two times a row, but in second run in reversed order, the two
successive deformations should reproduce the starting dataset very well. We
consider this as a tool to gain deeper insights in specific algorithm, but not
necessarily the quality of the registration or correspondence.

Joint Unique Quality Measure

In the following Yp and ¢y refer to the results of the algorithm based on the
parameter vector 6, from input X, Y. The proposed quality measures have
all been defined such that small values represent a good result share a sensible
scale between 0 and 1. Therefore they can be combined in a weighted sum,
to retrieve the final joint quality measure as the mean of them as

D(0) :=D(0,X,Y,c, C,Ex.Ey, Ty, Yo.Co) (4.53)
1

= § (Dnllaus(XaYa?G) + Dnmso(X7Y7?07 C) + Dnland(XaYai}Oacl)

+ Dshrink(Yy?G#‘:Y) + Dextend(Y7?9>gY) + Dﬁip(Y>?97TY) (454>
+ Dnorm(XaYac) + Dncorr(caaﬂagX) + Ducorr(EB))

Here c is supposed to represent the true correspondences, but if unavailable
it can be replaced by the estimated ¢g. This measure gives one value for
the quality of the registration and correspondence between Y, X for the
chosen parameter vector 6, thereby enabling to judge which 0 leads to the
best result. However for different inputs Y, X, it is likely to receive varying
optimal parameter vectors. Naturally Eq. (4.54) can be extended to consider
T different static target point sets X;, and then calculate the mean over the
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individual quality measures as

T
1 ~ S~
D(O) = 7Y DO.X.Y e, CliEx, Ex. Ty Yo.C.) (4.55)
t=1
To this end all datasets and quality measures are considered to be equally
important. However depending on the task and properties of the data, adap-
tations of the weights are possible.

Choosing the Best Parameter Set

For a registration and correspondence estimation algorithm the best param-
eter vector 8* is defined to be the one, which minimizes the aforementioned
quality measure presented in Eq. (4.55), such that:

0" = argmin D(0). (4.56)
0

In the following the presented quality measure is applied to compare different
methods for correspondence estimation on synthetic and real data.

4.2.4 Experiments and Evaluation

Eq. (4.56) offers a solution to determine the best parameter set of an algo-
rithm, but can also be used to compare different algorithms. Because the
quality measure requires the knowledge of dense ground truth correspon-
dences, we first compare different algorithms based on synthetic data, which
offers ground truth correspondences. Part of the results were generated using
the bash-tool gnu_parallel [65].

4.2.4.1 Synthetic Data with known Correspondences

To create synthetic 3D face data with known correspondences, a 3D face
model is used, which enables the generation of different faces, by varying the
parameters, while the number of points and their correspondences is known
by design.

1. First we select the 3D face model of [66], which is based on the BUSDFE
database [49], to generate 13 faces by the web-tool of the authors.> The

3The synthetic data was created by an external person, working at DFKI in the field of
point cloud registration. Thereby we guarantee that the data was not chosen in our
favor.
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model parameters are varied in shape and expression to create a set of
different 3D faces.*

2. Each of the created shapes consists of a triangular mesh with n = 5996
points. Their dense ground-truth correspondence is known by design
as c=(1,...,n)", according to definition Eq. (4.3).

3. Among the dense correspondences a sparse subset C is selected to serve
as landmarks.

4. Then one dataset is defined to be the deformable source Y, while the
remaining T = 12 datasets serve as static target sets X;.

5. The registration and correspondence estimation is performed for each
pair, i.e. for each static target X; with deformable source Y changing
to Y; during the process.

6. K different parameter sets 8 are used for the algorithm on each of
the T'= 12 inputs.

7. Each of the results based on one of the K parameter sets is assigned
one number reflecting its quality as the mean over all T samples using
Eq. (4.55).

8. Among these K values, the minimum determines the best parameter
set 6%, as in Eq. (4.56).

The three previously presented algorithms: 1CP, ECPD [63] and our pro-
posed CPD+, were all applied to the synthetic data.® For each of the 12
static target sets X; the registration results in a deformed source Y;. Ex-
periments were performed using different parameters, which were then rated
as described. Accordingly for each algorithm the best parameter set was cho-
sen. The quantitative results are illustrated in Fig. 4.5, where each of the
previously described nine quality measures, see Sec. 4.2.3.1, was computed
for the 12 pairs of the synthetic data, using the best parameter set. For all
of the presented measures the proposed CPD-+ outperforms the ECPD and
ICP, while the latter shows especially poor performance in the category of

4The demo of [66] can be found http://facepage.gforge.inria.fr/FacePage/html/
multilinear.html.

5Special thanks to Vladislav Golyanik and Sk Aziz Ali of DFKI for providing the results
of their ECPD [63] algorithm.
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geometric quality measures. Additionally we present qualitative results in
Fig. 4.7, based on deformable source inputs shown in Fig. 4.6. The subjec-
tive impression is the proposed algorithm CPD+ suits the shapes better than
the ECPD, which supports the conclusions drawn from the objective num-
bers. The deformed sources are color-coded by the point-wise error between
estimated corresponding points of Y; and Xj;.

4.2.4.2 Correlation Analysis of proposed Quality Measures

Before proceeding to real data with unknown correspondences, some consid-
erations are necessary. For real world data usually no dense ground truth
correspondences are provided, hence the previously presented quality mea-
sures cannot be calculated, e.g. Eq. (4.50)-(4.51) compare the true and
estimated correspondences. However the sparse correspondences of 83 fa-
cial feature points (fips) given for the BUSDFE and BU4DFE databases can
be used, and some equations enable the replacement of the true correspon-
dences by their estimated counterparts. In this section the correspondences
between different quality measures is investigated to support the hypothesis
that the joint quality measure does not rely on the availability of true cor-
respondences to quantify the quality. Also it shall be investigated whether
all presented measures are needed or of some are redundant.

For the synthetic data consisting of T = 12 pairs, K = 192 different
parameter sets were tested for the proposed CPD+ algorithm, where the pa-
rameter vector @y, consists of the following parameters: number of iterations,
number of neighbors k, 5y, 51, and A, see Sec. 4.2.2.2 and Algo. 1. For each
of the T'- K = 12 - 192 results all quality measures described in Sec. 4.2.3.1
were computed. If an equation relies on correspondences, two version were
computed: one using the true correspondences ¢ty and one using the esti-
mated ones ¢. This leads to a total of 16 values for each result, which are:

1. Dhaus 7. Dland 13. Dnorm with E
2. Dnhaus 8. Dnland 14. Dcorr

3. Dmse with Ctrue 9. Dshrink 15. Dncorr

4. Dpse with € 10. Dextend 16. Dycorr

5. Dpmse With Ctrue 11. Dgjyp

6. Dpmse with € 12. Dporm with ¢irye

For each of the 12 subjects these values are sorted into a matrix M; €
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R16X192 with the same order as in the previous list. For these the correlation
matrices were computed, which are illustrated in Fig. 4.8. These give great
insights in the relationship between the quality measures. It can be seen
that the first and second entry are strongly correlated for each of the 12,
which proves the reasonable assumption that Dy,us and Dppaus are redundant
and hence choosing one of the two is sufficient. The same holds for the
other normalized vs. their non-normalized counterparts: Dise and Dymse,
and Diang, and Dpjang- Hence choosing one of the two is evidently enough.
Similar observations hold for Doy and Dyeorr (entries 14 and 15).

Additionally the four measures computed in two versions with true and
estimated correspondences are almost 100% correlated which can clearly be
seen by the block-structure in the correlation matrices for the entries 3 to 6
and, the block formed by the entries 12 and 13. While it is true that they are
not 100% correlated in all 12 cases, the revealed correlations are still remark-
able considering they were computed with respect to all of the 192 parameter
settings, where some lead to very unfavorable results. Also the correlations
between the different groups of correlation measures are considerably low,
hence do all contribute information. Among all considered measures the
measure referred to by the 9th row Dgnrink catches the eye, because it is the
least correlated compared to all others. This is no surprise considering the
measure penalizes points which become to close, i.e. become indistinguish-
able after deformation, which is a property the CPD penalizes by design. In
conclusion, given that we are restricted to the estimated correspondences
for real data, and considering the found correlations, the following measures
remain to be calculated for the real world data:

1. Dunaus 9. Dextend

2. Dymse With € 6. Daip

3. Dnland 7. Dnorm with 8
4. Dshrink 8. Ducorr

From the 9 quality measures formerly presented in Eq. (4.54), here only
8 measures remain, because the measure Do relies on unavailable true
correspondences, hence cannot be computed and must be omitted. As a
consequence the slightly adapted versions of Eq. (4.54)-(4.55) are used to
enable the computation of a joint quality measure in the absence of true
correspondences from now on. The adaptations involve the usage of a subset
of the eight chosen quality measures and an unequal weighting scheme.
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Algorithm 1 ¢cpPD+: Nonrigid Coherent Point Drift (CPD) with Prior Cor-
respondences

« Input static point set X € RV*P deformable point set Y € RM*D
sparse correspondences (landmarks)
o Initialization t =0
— set parameters: 0 <w <1, Ag) >0, By >0, k>0
— compute k closest neighbors of each landmark y,,,, in Y
— compute prior P as in Eq. (4.35)-(4.39)
~ N M
- 0(20) = ﬁ Zn:l Zm:l”wn - ym”%
— W(O) =0¢€ RMXD

e Repeat EM optimization until convergence

—t=t+1
— E-step: R

compute correspondence probabilities P € RMXN by Eq. (4.40)
— M-step:

RZ\/[ x M

* update G ;) € , with entries

9i5 = oxp | —g5z-llyi = ;3
* estimate deformation W, by Eq. (4.31), with A
* N, =15, Pyly
« Yy =Y + Gy Wiy
* estimate /O'\(Qt) by Eq. (4.33)
* update ﬁ(t), )\(t)
¢ Output
— deformed aligned point set Y=Y + GW
— correspondence probability matrix P
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Figure 4.5: Quality measures of Sec. 4.2.3.1 as a result of experiments with
synthetic data.
rithm among different parameter sets, based on the minimum of
Eq. (4.54), hence the lower the better. Please note that for the
geometric measures shown in the second row (d)-(f), the values
for CPD+ are zero for all, and zero with only 1-2 exceptions (of
a total of 12) for the ECPD.
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(a) Source (b) with ffps

Figure 4.6: Deformable source Y with and without ffps, used as starting
point for the results shown in Fig. 4.7.
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O

(a) static tar- (c) ECPD (d) static tar- (e) CPD+ (f) ECPD
get get

Figure 4.7: Results of registration and correspondence estimation of syn-
thetic data. 4.6(a)-(b) show the deformable source Y with and
without fips; (a),(d) static targets X;; corresponding deformed
source Y; with color coded error (dark blue=low, red=high):
(b),(e) obtained by cPD+ and (c),(f) by ECPD [63].
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(a) (b)

)

-
(k

)

Figure 4.8: Absolute values of the correlation between quality measures cal-
culated for each of the 12 pairs of synthetic data (see Fig. 4.7),
but over different parameter sets. In (a) the groups of the qual-
ity measures are highlighted as red: point-wise, blue: geometric,
green: correspondence quality measures. Black refers to high
correlation of 100%, whereas white refers to zero correlation.

1P 216.73.216143, am 02.02.2026, 17:48:15.
m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

4.2 Spatial Alignment by nonrigid Registration 93

4.2.4.3 Real Data with unknown Correspondences

Based on the experiments on synthetic data, the proposed CPD+ algorithm
is chosen to estimate correspondences for the databases BUSDFE [49] and
BU4DFE [32]. After a careful preprocessing is performed as described in
Sec. 4.1, different parameters were chosen to perform experiments on a subset
of each of the databases. For each of the subsets, quality measures were
computed to rate the results and determine which parameter set to choose to
calculate the final correspondences among the whole database. In contrast
to the previous experiments on synthetic data, different selections for the
deformable source were examined and hence the choice of the source was
treated as one additional parameter. The best choice is a face scan with
evenly distributed points in an open mouth expression. Choosing a closed
mouth as deformable source is not sensible, because the upper and lower lip
might be connected by triangles. In this case an actual opening of the mouth
can never be performed because lower and upper lip will always remain
connected by their predefined triangles. Additionally the proposed algorithm
is better suited to push points towards each other than pulling them apart
in opposing directions, which implies it can perform mouth closing easier
than mouth opening.

A problem which was not handled during the preprocessing step is that
some scans contain unevenly distributed points, which implies undesired
large triangles in some areas. This issue occurred for some samples of the
BU3DFE database. To prevent these from harming the results, we choose
to upsample the target sets before the correspondence estimation by adding
points in the middle of each triangle. This process allows to fill small holes
easily and leads to an increased number of points for the target sets, hence
increasing the number of candidates for each point in the deformable source
during the correspondence estimation. This minimizes the probability to
match one point of the target to several of the source. This approach is
favorable for the common asymmetric one-directional design of registration
and correspondence estimation algorithms [67]. The final deformable source
chosen for these experiments is shown in Fig. 4.9. Selected results of the
BU3DFE database are illustrated in Fig. 4.10, where the different number
of points between upsampled target and original source are visible in the
mesh representation.

Additionally we analyzed the results to see which parameter sets perform
best with respect to individual quality measures or their categories.

1P 216.73.216143, am 02.02.2026, 17:48:15. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

94 4 From 3D Face Scans to Aligned Faces

Figure 4.9: Deformable source is the dataset of person 21, in emotion happy,
level 2.

Influence of Parameters

As before, different values for the parameters of the proposed procedure
CPD+, see Algo. 1, are used to generate results for the BUSDFE and the
BU4DFE databases. The parameters A, 8 control the stiffness of the de-
formation, hence choosing high values for these should lead to low results
for the geometric quality measures, but higher values for the point-based
measures. We were able to confirm these assumptions in the experiments,
which are visualized in Fig. 4.11. Each column of the figure corresponds to
one group of quality measures: (1) point-based, (2) geometry-based and (3)
correspondence quality, while each row contains the results of varying one
of the selected parameters. It can be seen that increasing A or 5 leads to an
increase of the point-based and correspondence quality measures, whereas
the geometric measures (middle column) decrease. Comparing row-wise re-
veals that changing the final kernel size 5; has the biggest influence on the
outcome. These results reflect that increasing A or 8 forces stiffness of the
deformation, whereas decreasing A or S will hence increase the flexibility
of the deformation and lead to opposing results. In conclusion there is not
one parameter set which leads to the best results for all quality measures, if
considered individually. In Fig. 4.12a and Fig. 4.12b results for selected pa-
rameter sets are visualized as spider plots. Each axis represents one quality
measure, with values varying from the minimum to the maximum among the
presented parameter sets for a better visualization. The results depicted in
yellow refer to the same parameter set, which is chosen as the best to regis-
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ter the complete database. In both examples choosing the lowest or highest
value for A or 8 leads to unbalanced quality measures, i.e. low values for
some on the one hand, combined with high values for the others. In contrast
to that the intermediate parameter values lead to more balanced results.

Apart from the quantitative results, some qualitative insights are pre-
sented in Fig. 4.13 for varying (1, because this parameter has the largest
effect on the results. The first column holds the results for 5; = 0.01, which
contains unfavorable mesh configurations in a sense that some spikes are
clearly visible around the landmarks (especially top left eyebrows), which is
due to too much allowed flexibility. This effect is still visible for 5; = 0.05,
but not anymore for §; = 0.1. On the other side of the spectrum, the last
column contains the deformed source and selected points of the static target
for the 51 = 1. It can clearly be seen that among all presented these vary
the most from the static target in the first row. Apart from the fact that the
deformed source differs, the selected corresponding points in the last row are
unfavorable in this case, because they lead to undesired very large triangles
in the mouth area. This is due to the fact that the selected kernel size was
chosen too big, hence the deformation is limited.
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Disgust, Level 4 Anger, Level 1

Sad, Level 4

Surprise, Level 2

Figure 4.10: Selected results of registration and correspondence estimation
for person 1 of the BUSDFE database. In each row from left
to right: the (upsampled) true static target X, in surface and
mesh representation, followed by the deformed source Y in mesh
representation and with point-wise error, likewise.
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Figure 4.11: Influence of varying the parameters of the CPD+ visualized on
the different groups of quality measures. The parameters were
varied based on the parameter set: it = 100, k =1, A = 2, 5y =
100, 81 = 0.1. (For a better representation here scaled values
are shown for Dyorm < Drorm/15, and Dgprink < 15Dshrink-)
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Duco“l._il=1m. n=1, =2, 4,=100, 5,=0.01

—it=100, n=1, A=2, 3,=100, 3,=0.05
, 8,=100, 3,=0.1
A=2, 4,;=100, 4,=1

Dshrink

Dnland

(a) Quality measures of four selected parameter sets with varying S31.

Dnorm

Dﬂip Ducorr

[—it=100, n=1, A=0.1, 3;=100, 3,=0.1
—it=100, n=1, A=10, 3,=100, 4,=0.1
| it=100, n=1, A=2, 3,=100, 3,=0.1

Dexten d

Dnland

(b) Quality measures of three selected parameter sets with varying A.

Figure 4.12: Spider plot of quality measures of varying the parameters [;
and A. The lowest and highest value lead to unbalanced quality
measures.
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(a) true static target X (upsampled)

i o

(c) selected corresponding points of target X (¢, :) with varying 81 from left to right:
0.01, 0.05, 0.1, 1

Figure 4.13: Results of registration and correspondence estimation for one
dataset of the BUSDFE database with varying parameter (3.
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4.3 Temporal Alignment

After the algorithms of the preceding sections are applied, the 3D face scans
of a database are well aligned in space, and share the same number of points
which are in full anthropometric correspondence. However the number of
scans per person may still vary per sequence, which is the case for the
BU4DFE [32] database. In this section an approach is presented to align
faces with varying motion, hence variations in the duration of performed ex-
pressions, causing different number of frames. Thereby synchronous motion
is obtained between varying persons and expressions, leading to a balanced
dataset with the same number of frames per sequence. An example of the
before and after is presented in Fig. 4.14. While the motivation of the pro-
posed feature was temporal alignment only, the last part of this section is
dedicated to other applications. This Section is based on the published work
[68].

In Chapter 3 different databases of faces were presented, which mainly
contain static data, e.g. single images, hence the temporal change between
the neutral facial expression and an emotion is not captured [30] or limited
to a small number of frames [49]. The databases which capture temporal
change by sequences of facial motion come with the major drawback that
the number of frames usually differs between recordings [32, 55, 56]. In
fact the duration of performed facial expressions will differ not only among
persons and expressions, but also for repeated recordings, e.g. the BU4DFE
database [32]. As described in Sec. 3.2.2 each subject was asked to perform
facial motions from neutral to one basic emotion and return to neutral. In
contrast to the BU3SDFE [49] database, the change between neutral and
each basic emotion is not limited to a fixed number of four levels, hence the
number of frames vary between the sequences.

In the following the distance of a facial expression from the fully relaxed
face, supposedly the neutral expression, is defined as expression intensity or
expression strength. This gives a continuous one-dimensional descriptor of
facial expressions for each frame, which can be scaled between zero (neutral)
and one (full expression, apex). Please note while the proposed definition is
intuitive, it is not easy to compute [69, 36].
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4.3.1 Quantifying Expression Intensity

How can expression intensity be determined? The MMI database [55], see
Sec. 3.2.5, provides image sequence of facial motion from neutral to different
facial expressions (emotions and AUs) and back. It offers discrete labels
for frame numbers for the temporal phases, such as apexr (AP) for peak
expression, onset (ON) for the start of the expression and offset (OF) for
its end, which serve as descriptors for expression intensities. However a
continuous feature is to be preferred over a discrete one, as it offers more
information and a wider variety of applications [36]. Therefore we aim to
retrieve a continuous descriptor for expression intensity for sequences of facial
movement, varying from zero for neutral to one for the apex.

First, after the previous Chapter, it is assumed that a fixed number of
points representing one face are provided for each frame of each sequence,
which correspond to one-another anthropometrically. Here the 83 labeled 3D
landmarks provided in the database BUADFE [32] are used, see Sec. 3.2.2.
Second a global alignment of each instance must be done to exclude global
motion. Last, the sequences to be aligned are assumed to share a joint
motion pattern, which is the case for BU4DFE, varying from neutral to full
extended expression and back. After this the feature can be computed as
described in the following.

Given S sequences, where each is composed of T frames, each containing
N 3-dimensional feature points, the data of each sequence s can be ordered
into a data tensor F, € R3*NxTs s — 1 . . §. If the number of frames
T = T, was the same for all sequences, the data can be gathered as F €
R3XNXTXS in order to build a statistical model [66, 30, 70, 71]. To reach this
goal, the dimensionality of each of the 3D data tensors F; must be reduced
to a one-dimensional feature f, € R”s, representing the expression intensity.
Assuming each sequence is represented by a one-dimensional feature fs, all
sequences can all be aligned in time to have the same predefined number of
frames. An overview of the process is visualized in Fig. 4.15 and described
in detail in the following.

4.3.1.1 Capturing Temporal Motion of 3D Points

To capture the temporal change in position of one single point i, for each
sequence s, we define a matrix, which contains all D = 3 dimensions and
all Ty frames of point i as My,; = Fs(: ,i, :) € R3*Ts. In Fig. 4.15(a) one
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face is displayed with all of the T, - N points, where the time variance is
illustrated with varying color. First a PCA, see Sec. 2.3.1, is computed on
the matrix M, ; to receive the main direction of motion over time in 3D,
which is the first principal component v; ;, shown in Fig. 4.15(b) as a black
dotted line. Using the main direction v,,; and mean of data m;, the line
can be parameterized as

1577;(0[) = OL’USJ' + msﬂ'. (457)

Then, each point is projected onto the first principal component, indicated
by the red lines in Fig. 4.15(b). Thereby each point ¢ of frame ¢ in sequence
st Psi+ is mapped onto the closest point on the line p; ; ;. Each point ps ;¢
on the line can be parameterized by the coefficient «, which represents a
directed distance. For each sequence s, this gives one value fs ;. for each
point 4 in each frame t by

Jsip i=a= vsT:i(ﬁS,i,t — M), (4.58)

which can be ordered into the vector fs; := [fsi1,..., fsi1,], illustrated
in Fig. 4.15(c).° As a result the dimension D = 3 of each feature point is
reduced to one. However for each sequence s there are still N candidate
features f; ; for the expression intensity, each based on one of the N points.
In the following the goal is to define a quality measure for these and compute
exactly one one-dimensional feature for each sequence.

6Detailed derivation can be found in Appendix C.
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Figure 4.14: Schematic representation three sequences before (top) and af-
ter (bottom) temporal alignment, with corresponding expres-
sion intensities per sequence illustrated in the middle. (Image
previously published in [68].)
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(a) Fs € R3%83xTs (b) My a9 = Fs(: ,49, 1)

5| ~

80 90 100  11Q

80 100 120

(d) features for one single point (normalized)

Figure 4.15: In (a) the landmarks of person 15 in emotion happy with varying

position over time are illustrated, where the point ¢« = 49 of
the mouth is highlighted. (b) illustrates its 3D position over
time, while the black dotted line refers to the first principal
component of this point. (c) Resulting feature f, 49 for the
selected point, and its normalized counterpart fi' 49 in (d).
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4.3.1.2 Reference Expression Intensity Feature

Based on the considered database [32], a general motion pattern is assumed
for each sequence, which will serve as an approximated reference expression
intensity 7, € R”s. Hereby it is assumed that a start and end of facial
motion exist which can be observed by a subset of the landmarks. Suppose
each sequence starts with a neutral expression, then changes to the full
emotion (apex) and returns to neutral. Therefore we define the reference
value of expression intensity for the neutral expression as zero, and the full
emotion as 1. This leads to a function which resembles a rectangle, as

0, 1<t<ts
rs €ERT, 1) =41, to1<t<ten. (4.59)
07 ts,2 S t S Ts

This gives a general reference approximation of the expression intensity for
each sequence, for which the frames ¢, ; and £5 » where the expression changes
occur, are still unknown. For each point ¢, these are found based on the
derivatives of fs; over time, which are referred to as fz e R>%:. To
receive one reference for each sequence the information of all N points is
reduced to one by computing the median over all points for each frame,

leading to

rd = [r0(1),...,r{(T)]" eR™ (4.60)
with 7% (t) = median [|f§11(t l,..., |f§N(t)|] . (4.61)

Assuming the described motion pattern from neutral to expression and back
to neutral, % shows two distinct maxima at the positions where the ex-
pression changes, illustrated in Fig. 4.15(d) for one point. These are the
aforementioned values t, ; and t, 2, which define the approximated reference
for each sequence r; of Eq. (4.59).

4.3.1.3 Quality as Distance to Reference Feature

The reference approzimation rs of Eq. (4.59) and the proposed feature f; ;
of Eq. (4.58) differ in two major points: First the values of fs; are not
restricted to be in the range of 0 to 1. Second the direction of f,; may
be flipped compared to rs. To account for these differences, the proposed
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feature values fs ;¢ are normalized to the range [0,1]:

fs,i7t - Intln {fs,i}

fs,i,t = m?X {fs,i} — mtin {fs,i}.

(4.62)

Due to the properties of the PCA the f“ may actually start in 1 instead of
0, which demands the feature to be flipped in this case:

S,1 re (463)
’ 1—fs: ,else

0 {f A s = Fulle < llrs = (1= £l

Given the approximated expression intensity rs of Eq. (4.59) for each se-
quence s, a distance between it and the proposed feature f{'; Eq. (4.63) of
each point ¢ can be computed as:

dists; = ||rs — ;ji||§ (4.64)

4.3.1.4 Final Estimated Expression Intensity

The lowest distance is reached for the feature of point ¢, which resembles
the approximated reference most. As the best point should have the highest
impact on the final feature in consequence, the inverse normalized distance
is defined as weight for each point-feature, which gives

disty ;
Ws,i = 2 1

- i=1,...,N. 4.65
’ max {dists ;}’ T (4.65)
The final feature for each sequence is then defined as weighted sum of all
single-point features fy';:

N
fo=> wei- fIli €R (4.66)
i=1

This feature gives an approximation of expression intensity for each frame
t of the sequence s, which may all differ in length. To perform a temporal
alignment, the different lengths have to be unified.
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4.3.2 Alignment of Expression Intensities

After the previous steps, each of the S sequences is represented by an esti-
mated one-dimensional expression intensity with varying length. To receive
a unified length over all f they can be aligned temporally by Dynamic Time
Warping (DTW) or related algorithms. However before the actual align-
ment can be carried out, some problems with the underlying data have to
be resolved.

4.3.2.1 Resolving Data Problems

Theory and practice often collide with the properties of the provided data,
which is generated facing real-world problems. In this section we describe
problems we encountered with the BUADFE database [32], and how they
were resolved for the application of temporal alignment with the goal of
model construction based on the data.

Problem 1: Erroneous 3D Landmarks

In some sequences 3D landmarks were discovered which change their posi-
tion unexpectedly to an unrelated distant position either for a few frames
only or recurring by repeatedly changing position between two alternating
locations between frames, see Fig. 4.16(a). Due to the fact that these kind
or errors influence the variance, they have a very negative impact on the
results based on global PCA, whereas the proposed method depends on sin-
gle points, thereby ignoring outliers, which makes it independent of single
point-errors and hence more robust and reliable.

Problem 2: Sequence starts or ends in Expression

While the S = 606 sequences of the BU4DFE database are supposed to start
and end in neutral expression, we found this is not the case for all. Two
examples are presented in Fig. 4.16(b)-(c). This implies that the assumed
reference Eq. (4.59) is not correct, as the actual sequence contains only one
transition, instead of two. Therefore the previously described process has to
be slightly adapted, by selecting one of three reference expression intensity
rs Eq. (4.59) per sequence. Instead of one version, which is based on the
assumption of two transitions, there will be three versions, where two only
include one transition, such that it starts in neutral, then changes to full
expression and remains, or vice versa. The two new versions for the reference
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expression intensities thus become

Tl(t):{o’ 1St§ts,1 ,T?(t):{L IStStS,Q ,’I‘;,T?ERTS.
1, ts,l <t<Ty 0, ts’2 <t<T,

(4.67)
Given three different potential references per sequence, exactly one of them
is selected. The derivative feature ff’i contains peaks at the positions where
a transition from neutral to expression, or vice versa, occurs. Therefore it is
a suitable measure to define which of the three references to choose for each
sequence. Given the adapted references, the final feature Eq. (4.66) can still
be calculated robustly.

Problem 3: More than two Transitions

Based on the description of the database it is assumed that each sequence
contains two transitions: the first from neutral to an emotion and the sec-
ond returning from emotion to neutral. In contrast to that some sequences
may actually contain only one, as described in Problem 2, or more than two,
caused by multiple expression changes in one sequence, see Fig. 4.16(d).
While the importance of the different transitions is neither quantified nor
compared by the presented approach, it is guaranteed that exactly one tran-
sition is selected, based on the adaptations of the reference, described in
Problem 2, and the definition of one template feature for the alignment,
described in the following.

Template Expression Intensity

To guarantee a robust alignment for all sequences one template is defined to
which each estimated expression intensity shall be aligned to. Based on the
median over all estimated expression intensities per sequence f; Eq. (4.66)
the template fr is defined as a smoothed trapezoid, where the first and the
last 30 frames contain one smoothed transition. Each feature can then be
temporally aligned to the template, independent of their actual number of
expression transitions.

4.3.2.2 Multiple Alignment with Prior Knowledge

Given a set of S one-dimensional features fs, these can be aligned pair-
wise by Dynamic Time Warping (DTW) or simultaneously by Generalized
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Canonical Time Warping (GCTW) [34], see Sec. 2.6 for details. ~ While
this algorithm specifically offers the alignment of multiple one-dimensional
features at once, it does not allow to incorporate prior information, such as
a template feature. Therefore a pairwise alignment is performed instead,
using the predefined template feature fr € RT for all sequences. This
procedure has been found to be even faster than computing the alignment
of all sequences simultaneously. Thereby each expression intensity feature
fs € RTs is transformed to f, € RT, leading to the same, unified length for
all sequences.

4.3.3 Applications for Proposed Expression Intensities

Apart from the expression intensity estimation for temporal alignment, the
proposed feature can be used for other applications.

4.3.3.1 Face Model Creation from Neutral to Emotion

Given the aligned sequences, we aim to generate a model based on the
BU4DFE database, with comparable properties as the one based on the
BU3DFE database, used on [70, 71], which contains faces with increasing
expression intensity from neutral to full emotion in four discrete steps, which
conforms to one transition. Considering the aforementioned problems of the
BU4DFE database, see Fig. 4.16, this is not straightforward, because we
unveiled that the actual expression intensity per sequence differs from the
standard assumption of two transitions resembling a box-function. There-
fore, we first manually checked each sequence and discarded the ones, which
contain severe tracking errors. From the remaining data, we assume that
each sequence contains at least one transition, either from neutral to expres-
sion or vice versa. When each feature f, € R”" is aligned to the trapezoid
template fr € RT, it results in an updated feature f, € R”, for which the
first or the last 30 frames have to be selected as the one transition. From the
two candidates the one is chosen for the final aligned set, either around ¢; or
to, which is results in the lowest distance, hence in the case t5 is determined,
the order of the samples has to be flipped. The resulting aligned features are
illustrated in Fig. 4.17. Given all features f5, they can now be ordered into a
data tensor F € RP*NXTXS which enables the estimation of a factorization
model, as described in Chapter 5.
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1 5 10 15 20 25 30
Aligned Frames

Figure 4.17: Illustration of the template feature fr € R (red) with the final
aligned sequences f, € R” represented by frame-wise boxplot.
(Image previously published in [68].)

4.3.3.2 Person-specific Subcluster of Emotions

Many databases are build upon the assumption that the six basic emotions
are universal for all persons, although it is known that there is individual
variance in performance [72]. The proposed feature defined in Eq. (4.66)
supports the hypothesis that basic emotions are performed differently by
dissimilar individuals. The proposed feature for expression intensity is de-
fined as a weighted sum of features related to single landmarks. While the
weights relate to the distance of the single-point features to the reference ex-
pression intensity, they directly quantify which landmarks contribute most
to the underlying facial emotion. Investigating the weights reveals that dif-
ferent persons do not necessarily use the same landmarks to perform one
emotion. We found the performance of the six prototypical emotions among
all individuals can be separated into the three subclusters related to their
selected activated landmarks, which are: (1) more mouth-focused, (2) more
eye(brow)-focused, or (3) both. These clusters are visualized in Fig. 4.18 for
each emotion.

4.3.3.3 Action Unit Intensity

Motivated by the prior observation that emotions are not universally per-
formed by different individuals, many works were already dedicated to ob-
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Figure 4.18: Visualization of the subclusters for each emotion with number
of occurrences. (Images were previously published in [68])

jective facial motion descriptors, e.g. Facial Action Units (AUs). In contrast
to the often considered prototypical emotions, which involve several land-
marks and multiple face muscles, AUs are objective descriptors related to
single face muscle activity. As the proposed features are based on single face
landmarks, they have been proven to be feasible to describe AUs, as well.
The MMI database [55] provides action unit labels, such as the frame num-
ber for neutral (NE), onset (ON), apex (AP) and offset (OF) for specific AUs.
These are used to define the reference expression intensity of Eq. (4.59), by
an updated version as trapezoids. Based on these, the proposed features for
expression intensity can be calculated. Setting the 75% lowest weights w; in
Eq. (4.66) to zero, gives an slightly adapted robustified feature for each se-
quence and for each AU-label. We found the resulting feature approximates
the true expression intensity defined by the AU-labels, very good, which is
illustrated in Fig. 4.19, and clearly outperformed the global PCA approach.
This means the proposed feature is able to relate the correct face landmarks
to the corresponding AU, by identifying small movements in the landmarks,
while still being robust against small tracking errors.
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Figure 4.19: Example sequence of MMI with two AUs, with true (orange and
yellow dashed lines) and estimated (orange and yellow solid
lines) expression intensities. The blue line represents an es-
timate based on global PCA. (Image previously published in
[68].)
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5 Face Models

As already shortly presented in the Introduction Chapter 1, among the years
a variety of face model have been proposed. In this Chapter! two state-of-
the-art models will be described, followed by the proposed tensor-based face
model in different variants. An analysis of the proposed model along with
comparisons to the former models is presented in the proceeding Chapter 6.

5.1 Surrey’s 3D Morphable Face Model

The Surrey Face Model (SFM) presented in [74] is a 3D Morphable Model,
build from 169 face scans, offered in three different resolutions. 3D Mor-
phable Models (3DMM) were first introduced in [16]. Given a set of 3D
face shapes with point-wise color information of different persons in neutral
expression, dense point-wise correspondences between their 3D points are
estimated. Then the 3D points and the color information can each be gath-
ered into separate matrices, on which PCA can be computed. The shape of
one 3D face f € RN can then be represented as

f(a) zf—i-Zaiaivi, (51)

i=1

where f is the mean over all face shapes, v; denote the first M principal
components, o; their standard deviation and «; represents the corresponding
weights, which are the actual model parameters to be estimated.

Given n 2D landmarks y; with correspondences to 3D model points f;, the
goal is to estimate the camera parameters, which project the 3D shape onto
the image plane, matching the landmarks. Thereby a 3D reconstruction can
be obtained by minimizing the distance between the projected model points
fng and the corresponding landmarks, while additionally constraining the

1In this chapter some images from previously published work are used [70, 73].
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model parameters, hence the following minimization problem must be solved:

HllIl E
2

where &7 is an optional variance for the landmark points. By using a linear
camera model, this function can be transferred into a linear least squares
formulation and directly solved.

The authors offer code [75], which contains an updated model with ex-
tensions, not mentioned in their original paper [74]. Therein the included
basic face model represents each face shape by 3448 vertices, without tex-
ture, enabling estimation of pose and shape. The updated functionality
incorporates approximations of varying facial expressions, hence faces in the
six basic emotions: anger, disgust, fear, happiness, sadness, surprise. Ad-
ditionally to landmarks, they take into account image edge information to
estimate 3D reconstructions from 2D images, based on [76] using a linear
scaled orthographic projection camera pose estimation.

(@) — ;)" + [lexll?, (5.2)

5.2 Sela’s Neural Network for detailed 3D Face
Reconstruction

In [77] the authors present an neural network approach for 3D face recon-
struction from a single image, based on an image-to-image framework, fol-
lowed by a nonrigid registration and fine detail reconstruction, which uses
additional image information. The authors provide code to reproduce their
results?, which is used in this work to estimate dense 3D reconstructions
from single images, see Sec. 6.3. Given an image the output consists of two
3D faces, either with or without the fine detail reconstruction, which are
both presented in the experiments. How they are retrieved is explained in
the following.

The purpose of the image-to-image network is to estimate a depth map
and a correspondence map from one input image. The training data is syn-
thetically created using a 3DMM (3D Morphable Model) enabling variations
in person, expression, and texture, based on the 3DMM of neutral faces pre-
sented in [16], extended by expressions as in [78]. This model is used to

2The code can be found at https://github.com/matansel/pix2vertex. We used the
commit labl63c.
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generate 3D faces varying in identity, expression, pose, and illumination,
which are placed in front of various backgrounds. Because the generated
shapes are in full anthropometric correspondence, for each a depth map and
correspondence map is known.

As a result, the trained network provides a depth map and a correspon-
dence map for each input image. The depth map is then transformed into
a mesh by connecting neighboring pixels. Then using the information from
the correspondence map, a nonrigid registration between a template mesh,
based upon the same model as the training data, and the mesh retrieved
from the depth map is performed, keeping the latter constant in the mean-
time. As a result the deformed template with fixed triangulation represents
the first 3D mesh output, referred to as without fine details.

To reconstruct the fine details first the former output is interpolated to
increase the total number of 3D points and hence the resolution of the mesh.
Then each 3D point is assigned the intensity value of the nearest pixel in
the image. It is assumed that the local changes in high frequencies of the
image contain the fine detail information, which should be transferred to the
3D mesh. These are estimated from the image and then used to change the
position of each vertex along its normal. The displacements for each 3D point
are not directly obtained from the high frequencies, instead the changes in
the one-ring neighborhood are incorporated and the mean curvature in the
region is considered to regularize the position change. This process results
in a fine detailed 3D face reconstruction.

5.3 Proposed Tensor Face Models

Assuming a set of 3D face scans has been processed as described in Ch. 4,
then all shapes are globally aligned and the top part of the nose is located
at the origin. Given sparse or dense correspondences between the shapes,
the measurements are ordered in a data tensor Ty € R3VXPXEF where N is
the number of 3D vertices, P is the number of persons, and E is the total
number of expressions. Subtracting the mean face f from each shape gives
the centered data tensor T = To — T € R3NXFPXE T = £ 5,17 x5 17 being
the mean face tensor. The centered tensor can be decomposed by HOSVD,
see Sec. 2.4.2, as:

T=8x1UW x, U? x; U, (5.3)
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where § € R3NXPXE ig the core tensor, and UM e ]R3NX3]V, U® ¢ RPXﬁ,

U®) ¢ RF xE are orthogonal matrices, which consist of the singular vectors
corresponding to the k-mode unfolded tensor, with N < N, P < P and
E<E.

5.3.1 The Expression Space and the Apathy Mode

The previously described factorization of a 3D data tensor results in three dif-
ferent subspaces U*) each based on the unfolding of one of the dimensions:
total number of points, person or expression. Therefore in the following

U®) e REXE will be referred to as expression space, which will be presented
for different databases in this section, while pointing out similarities and
differences. The colors in the illustrations are chosen to represent the seven
prototypical emotions as: neutral (gray), anger (dark blue), disgust (orange),
fear (yellow), happiness (violet), sadness (green), surprise (light blue).

BU3DFE

In Fig. 5.1 the expression spaces of the BUSDFE database [49], see Sec. 3.2.1,
for sparse and dense cases, are illustrated by the values of the first three sin-
gular vectors of the expression dimension in the corresponding data tensor,
i.e. the first three columns of U®). For the sparse and dense tensor, it can
be seen that all expressions lie on a planar substructure, in which four ex-
pression levels belonging to the same emotion can be approximated by one
line. All these lines approximately intersect in one expression point aq at the
top right, which is not part of the provided database and even more surpris-
ingly, is not equal to the expression which is labeled as neutral. Inspecting
the newly synthesized expression aq for several different persons, we labeled
it as the apathetic facial expression, referred to as the apathy mode. We de-
fined it as such due to the impression that all facial muscles are completely
relaxed, whereas this is not the case for the expression labeled as neutral. In
Figure 5.2, we show the neutral expression in gray and the newly synthesized
apathetic facial expression in red for the same person. The major difference
between them is that the latter does not exhibit an open mouth, while the
neutral face does. We consider this is a result of the fact that the database
is build upon posed expressions, which include some persons, which perform
the neutral expression with an open mouth or looking happy.
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Figure 5.1: Expression space of the BU3BDFE, based on: (a) the sparse cor-
respondences provided by the 83 3D landmarks, and (b) the ca.
7000 3D vertices, for which the correspondences were estimated
earlier in this work. Both illustrate the first three singular vec-
tors of the expression dimension, i.e. the first three columns of
U®). Tt can be seen that each of the six emotions form linear
trajectories that meet in a common vertex, the point of apathy
(red), of which there was no explicit example in the training
database. The space is also oriented in the way that the stronger
the emotion the further away from the apathy.

BU4DFE

The BU4DFE database [32], see Sec. 3.2.2, contains sequences of facial
motion of 100 persons in 6 emotions with varying length. After spatial
and temporal alignment has been performed, as described in Sec. 4.2 and
Sec. 4.3, we receive a dataset of 79 persons with 30 frames from neutral
to full emotion (apex). We sampled 10 frames from each sequence and
computed the expression space as before. The result is shown in Fig. 5.3,
which resembles the structure of the BUSDFE, presented in Fig. 5.1.
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(a) neutral (b) apathetic

Figure 5.2: Comparison of: (a) the neutral and (b) the newly discovered
and synthesized apathetic expression of the BUSDFE database
of person 6. (Images previously published in [grasshof:2020].)

ADFES

To confirm our hypothesis that the apathy mode, the specific relaxed facial
expression, can be retrieved from posed facial expression databases other
than BU3DFE, we choose a database with similar properties. The Amster-
dam Dynamic Facial Expressions Set (ADFES) [56], see Sec. 3.2.6 contains
image sequences of 22 persons performing emotions starting from neutral to
full emotion (apex). While the length of the sequences differ, the emotions
include the six basic emotions (anger, disgust, fear, joy, sadness, and sur-
prise), which are the same as in the BUSDFE database, and neutral. We
used the OpenFace [79] framework to detect N = 68 2D landmarks for each
frame. To create a data tensor from the ADFES database, all sequences of
the six prototypical emotions and the neutral sequences were extracted. We
then proceeded as follows:

1. The shapes are globally aligned in space, and the top of the nose is
translated to the origin.

2. From each sequence a fixed number of F' = 4 frames was sampled
equidistantly.

3. The shapes are sorted into a 3D data tensor Ty € R3NXPXEF " ith
N =68, P=22 FE =6.
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Figure 5.3: Expression space of the BU4DFE with 10 levels, computed on
the landmarks only and on the set of faces with dense corre-
spondence. Each point corresponds to the first three entries of
one row of Us, i.e. the expression space visualizes the first three
eigenvectors of the expression dimension. The colors represent
the same emotions as in Fig. 5.1.

4. The mean shape is subtracted from 7 = To—T, where T € R3NXPxEF
contains the mean shape f, repeated to suit the size of the original
tensor.

5. HOSVD is performed on T to obtain the expression space U®) as in
Eq. (5.3).

6. The apathy mode is estimated using U(®).

The resulting expression space is depicted in Fig. 5.4, where the apathy mode
is highlighted by the red cross. The colors are analogue to those in Fig. 5.1.
It can be seen that the expression space for this database is planar, star-
shaped and contains linear trajectories for each emotion, just like for the
BU3DFE database as shown in Fig. 5.1. Fig. 5.4(b) displays the synthesized
apathetic facial expression of the mean person for the AFDES data set. It
can be seen that the result is a relaxed facial expression with closed mouth.

Based on these findings, we conclude that the previously discovered apathy
mode is neither a result of overfitting, nor is it a property limited to one
dataset.
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Figure 5.4: (a) Expression space of the ADFES, with (b) the reconstructed
2D apathetic facial expression. (Images previously published in
[73].)

Facewarehouse

Compared to the previous databases, the Facewarehouse database [30], de-
scribed in Sec. 3.2.4, differs in one relevant point: the lack of temporal
information. Since there is no increase of emotion strength over different
samples, there is no chance to find expression trajectories and recovering the
apathetic facial expression from them. Additionally the provided expressions
are action units, not emotions, which include smaller facial movements than
emotions. Some action units are very subtle, e.g. raising one lid, while others
require a larger range of motion, e.g. jaw drop. (See Fig. 3.10 for visualiza-
tion.) This property is reflected in the expression space shown in Fig. 5.5,
where each point represents one of the 47 expressions. Some are “large”; i.e.
change the face a lot, and hence lie far away from the neutral face (ID 1),
whereas some “small” motions are located closer to it. If two expressions
resemble each other, they are very close to one another. Therefore the visu-
alization in Fig. 5.5 is divided into four sub-figures with partial occlusions
covering selected cluster of points, which would be indistinguishable. For
example Fig. 5.5(c) reveals the expressions 2 to 15, related to small changes
in the eye region, are very close to the neutral face with ID 1. While there
are no expression trajectories to be detected in this case, the flat structure
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is shared among all databases.
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Figure 5.5: Expression space resulting from factorization of the Faceware-
house database, with a total of 47 expressions. Colors refer to
involved facial areas: red: eyes, yellow: eyebrows and forehead,
violet: large mouth movements, green: small mouth movements,
and dark violet: cheeks, blue: rest.(a) Some are occluded on
purpose, because they are hardly indistinguishable in this visu-
alization. (b) Selected expressions excluding large mouth move-
ments, (d) mainly eye-related expressions very closely related to
the neutral face (blue, ID 1).
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5.3.1.1 Justification of the Apathy Vertex in 3D Face Shape Space

An important question is whether the apparent intersection of the emotion
trajectories at the point of apathy as indicated by Fig. 5.1 is an effect of the
higher-order tensor factorization. Since we cannot expect that £ = 6 low-
dimensional affine subspaces intersect in a single point in a high-dimensional
space, we locate the point closest to all of the emotion trajectories.

Let fe]’fp denote the 3N-dimensional shape vector of the kth out of k =

l

..p the difference

1,...,4 expression levels of emotion e and person p, and v
féyp — 6171, with [ = 2,...,4, which amounts to three differences per emotion
and per person. These differences are sorted into the matrix V, € R3V*3F,
ie. Vo = [w2,03,,08,,... 02 p,02pvl p]. We then fit a 1-dimensional
subspace to each V,, and denote the basis of the eth subspace by B, € R3V.
Let f, be the average of the shapes fZ, of all persons, f, = % Yoo fep
The closest point ® to each of the affine subspaces with basis B, and
origin f, w.r.t. to the world coordinate origin can be determined by solving

the joint optimization problem

E
min Y@~ (P, (=~ F.) + Fo) I3, (5.4)

e=1

where Pp, indicates the orthogonal projector onto the space spanned by B..
The shape &* minimizing Eq. (5.4) has a root mean square distance of 1.45 to
each of the PE emotion trajectories. In contrast to this, the average neutral
shape has a root mean square distance of 2.45 to each of the trajectories. The
difference is not negligible since the mean square distance between shapes
of the same emotion is 7.81. This confirms that the average neutral shape
is more distant from the optimal center of all emotion trajectories. The
estimated shape x* looks very similar to the apathetic shape shown on the
right in Fig. 5.2.

5.3.2 Model 1: Basic Model

Given the factorization of Eq. (5.3) for the complete data tensor with all
face shapes, there are different ways to parameterize one face shape, each
leading to a different face model. For each of the models presented in the
following, estimation procedures for 3D and 2D input are presented.
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Rewriting Eq. (5.3) for one face shape f € R*", its approximation fcan
be expressed as

frf=F+8x1UY xyuj x3uj, (5.5)

where uy € RY is the parameter vector for person and us € R¥ of expression.
To reconstruct a shape of the original data tensor 7Ty the vectors uy are
chosen as specific rows of the matrices U®) | i.e. to reconstruct person p in
expression e, choose ug :=U®)(p, :) and uj := U®)(e, :). To approximate
a 3D shape f, hence the following minimization problem must be solved:

min || f — f|3. (5.6)
U2,u3

The representation of a face shape given in Eq. (5.5) is commonly used in
published face tensor-models on both image and 3D data [18, 47, 30, 66] and
is an extension of the early work applying PCA on face images [80].

5.3.2.1 Linearized Matrix-vector Model Representation

The presented minimization problem in Eq. (5.5) consists of a squared Eu-
clidean norm, which requires tensor products to compute a face shape, which
does not allow for a closed-form solution for both parameters at once. As
we aim to use an alternating least squares approach to estimate the param-
eter vectors, we rewrite the previous tensor model such that it is linear in
one model parameter in matrix-vector notation. We now assume a fixed
expression parameter vector ui and reorder the elements of Eq. (5.5) to

F=F+8x1 UM x3uf xoul. (5.7)
~—_— ———

3NXLax1

As one dimension of the tensor (8 x1 UM x5 ug) equals one, it can be
rearranged into a matrix My of size 3N X Lo:

R3NV*L2 5 My = 8 x, UWY x3ui e R3NV*L2x1 (5.8)
leading to a parameterization linear in ug

f—F =M, u.. (5.9)
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Similarly a linear representation for the expression parameter uz can be
derived with

M;=8x1 U xyud (5.10)
as

f—F=M;us (5.11)

5.3.2.2 Parameter Estimation for 3D Input

Assuming the model should approximate an input shape f with known
correspondences by a model shape f, hence minimizing Eq. (5.6) by esti-
mating the model parameter vectors. Presuming a global alignment to the
model vertices was performed, the parameters are estimated in an alternating
scheme. Defining the mean facial expression as the initial expression vector
us, the person parameter vector can be estimated directly from Eq. (5.9),
as

uy = M (f — ) = (MF M) MI(f - F). (5.12)

Similarly, if a person parameter vector is known, uz can be directly derived
from Eq. (5.11) as

us = My (f — F) = (M3 Ms) " MI(f — 7). (5.13)

5.3.2.3 Parameter Estimation for 2D Input

Most commonly face images instead of 3D points are provided, for which 2D
landmarks can be manually annotated or automatically estimated, e.g. by
dlib [81] or OpenFace [79]. In the following we assume a set of 2D landmarks
is provided with known correspondences to selected 3D model vertices. The
goal is to estimate a dense 3D reconstruction by the 3D face model from the
sparse set of correspondences. Given one 2D landmark f2P, the correspond-
ing estimated 3D point is defined as ﬁ and its 2D projection is referred to
as f,fD. Assuming camera parameters for the projective camera according
to Sec. 2.1.3 are provided, a 3D point f, is mapped to its corresponding 2D
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point f?D by Eq. (2.4) as

ai,x
= U,y |=K(RFP+1), (5.14)
ﬂi,z
2D ai,ac/ai,z
1= ( Uiy /Ui, ) (5:.15)

Thus 2D points are not linearly related to their 3D counterparts if a projec-
tive camera model is employed. We therefore propose to rewrite Eq. (5.15)
component-wise to retrieve a form which is linear in ps.

In the following let [-], be the z-component of the vector argument, with
analogue notation for the y- and z-component, hence [v;], is the  compo-
nent of the vector v;, for a better readability. Similarly to [82, 83], the z
component the 2D face shape Eq. (5.15) can be rewritten as follows

ZggD = ﬂi,a:/ﬂi,z
= fZQJD ﬁi,z - ai,x
= 2 [k (Rfi+t)] =K (Rfi+1t)] . (5.16)

Inserting the linearized form f = M, uy + f of Eq. (5.9), for one point
fi=Ms; us + f., by selecting specific rows, gives

7D [K (R(Ma; uy + f;) +t)], = [K (R(Ma; us + f;) +t)]  (5.17)

1,T
2D [KRM,,; us + KRf, + Kt] = [KRM,; u; + KRf, (5.18)
+Kt],
[KRM, ], — [’ [KRM> ;] u, = 70 [K (Rf; + )], (5.19)

- [K(Rf; +1)]

x

Stacking the z- and y-components leads to

x_ 'L,ac

[KRM, ;) D [KRM,),
( [KRM, ], — f20 [KRM,,), > 2=
DK (Rf;+1t)], - [K(Rf, +1)
VK (Rf,+t)], — [K (Rf; +t)

@ ) . (5.20)

[T
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This equation system is based on one point-correspondence between one 2D
landmark and one 3D model vertex, which can be extended to n point cor-
respondences by stacking their values accordingly. Naturally, this common
practice can be applied to stack multiple shapes as well, instead of several
points of a single shape. The presented ideas are similar to an early work
using orthographic projection [84]. The derivation for ug is analogue.

5.3.2.4 Camera Parameter Estimation

If the model parameters are provided, the 3D face shape } € R3N can
be computed and given camera parameters it can be projected onto the

~2D
image plane, where its full 2D representation is f,; € R2N. Given n 2D
landmarks stacked in one vector 2P € R2", the Euclidean distance between

~2D
the estimated 2D projections f € R?" and the true 2D landmarks defines
the 2D error of the approximated shape with respect to its original as

1,~2D
€cam = ﬁ”f - szH% (5.21)

The camera parameters are estimated by minimizing Eq. (5.21), as described
in Sec. 2.2. First starting from the mean model face with given correspon-
dences, the projection matrix is estimated and then factorized to obtain
the intrinsic and extrinsic camera parameters. The camera and model pa-
rameters can be estimated in an alternating scheme. Please note that the
global alignment is included in the camera parameter estimation procedure.
To summarize: The person and expression parameters can be estimated
linearly in an alternating scheme for a nonlinear camera model, which we
demonstrated in [71].

5.3.3 Model 2: Subspace-aware Parameterization

The common parameterization Eq. (5.5) comes with a major drawback: it
does not utilize the structure found in the subspaces, hence the parameter
vectors uy are arbitrary in a sense that they are not required to relate to
the original subspaces U®). It does not utilize the learnt n mode singular
vectors in U™ n = 2,3, which contain information of the structure of
the subspace for people and expressions, respectively, that we would like to
utilize when regressing the parameters of a new person or expression. We
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therefore propose to rewrite the model as
F=F+8x1UD x, pIU? x; pIU®), (5.22)

where the parameters p, € R” and p; € R¥ are the coordinate vectors
of the row-space of the person and expression mode singular vectors. For
instance, person ¢ in expression j of the training database has the coordinates
p2 = ez(»Z) € RP and p; = e§3) € R¥ where ez@) and e§3) are the standard
basis vectors, i.e. their elements are all zero except the ¢ or j element which
is one. The vector ps represents how the weights of the corresponding rows
in U® in the training database should be combined to synthesize a new
one. To control the norm of the regressed estimate, the standard way is to
use the diagonal Tikhonov regularizer. In addition, we want to guide the
solution towards a solution that is bounded by the samples in the person
space. This can be achieved by setting an additional constraint pT1 = 1,
where 1 is a vectors of ones. For the expression term we only use the standard
Tikhonov regularizer as the truncated dimension of the row space of U(®)
can be kept small. Minimizing the distance between a true shape f and its
model representation f thus yields a regularized least squares problem of
the form

min || f — £I13 + X2|[p2[l3 + A2.sllp3 1p — 13
P2,P3
+Asllpsll3 + Assllp3 1e — 113 (5.23)

which we minimize using alternating least squares by using the fact that the
energy minimization is separately linear in both arguments. Suitable regu-
larization parameter values Ay are found by leave-one-out cross-validation.

5.3.3.1 Linearized Matrix-vector Model Representation

In the following a shape f defined by the model Eq. (5.22) will be reformu-
lated linear in the model parameter py or ps. Substituting uy with (U?))Tp,
in Eq. (5.9), and defining the matrix My := M, U®T € R3V*P we receive
the final linearized form of the model parameterization with respect to the
person parameter po as follows

o~

f-F=Mp,, M,eRN*P (5.24)
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Similarly, an linear parameterization for p3, can be derived such that

~

f—F=M;p;, M;eRN*E (5.25)

5.3.3.2 Parameter Estimation for 3D Input

Assuming an input shape f was roughly aligned to the model, and full or
sparse correspondences are provided, it shall be approximated by the model
shape f. Hence the model parameters ps and p3 need to be estimated based
on Eq. (5.23). First defining an initial expression parameter vector ps, the
person parameter can be estimated, hence leading to a first approximation
f of the input shape f. If all penalty weights are set to zero Ay = 0, the
person parameter ps which minimizes Eq. (5.23) can be directly derived
from Eq. (5.24). If A;, # 0 the constraints defined in Eq. (5.23) are enforced,
requiring two small adaptations of the equation system. To include the sum
equals one constraint, we extend the matrix of Eq. (5.24) as follows

Ay = [ A2]5W-21T ] , by = [ fA;Sf } (5.26)

To include the Tikhonov constraint, A is added to the diagonal of A} A,
resulting in a linear equation system, whose solution is

po = (AT Ay + 2o0) ' ATb,. (5.27)

Similarly, a linear equation system for the expression parameters can be
derived, using

_| My _[r-7
AS = |: /\373 . 1T :| ) b3 Ea |: )\375 :l (528)
gives
ps = (AT A3 + A1) ATby. (5.29)

Applying Eq. (5.27) and Eq. (5.29) the model parameters can now be es-
timated in an alternating least squares (ALS) scheme. If only a subset of
points corresponding to the model vertices are provided, the model param-
eters can be estimated the by deleting rows of My or M3 which correspond
to missing vertices.
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5.3.3.3 Parameter Estimation for 2D Input

2D £2D)T

Given 2D landmarks points in f7° = (f22, /2]

corresponding to the model

vertex ﬁ-, the estimation of the model parameters is analogue to the previous
model. Starting from Eq. (5.16)

2 i (i +)] = 1 (m 1)

inserting the linear representation for the model vertex }'Z =f.+ ngipg of
Eq. (5.24) gives
2 |[KRMs, p, + KR, + Kt| = |[KRM:, p» + KRF, + K]
(5.30)
s ([KRJT/IM} — 20 [KRJ\’/VIM] ) ps = [0 [KRf, +Kt]_ (5.31)

x

- [KRf, + Kt|
Stacking the x- and y-components leads to
[KRMM] — f2D [KRMM}
T z
{KRMQJ} —f [KRMQJ}
Yy : z

20 [KRf, + Kt]_— [KRf, + Kt]_ 5 39
i [KRf,+ Kt - [KRf, + kt|, | %)

P2 =

For n provided landmarks with known correspondences, this equation system
can be extended to 2n rows by concatenating the 2 dimensions for each of
the n points of one shape. Furthermore one person parameter vector ps can
be estimated for multiple input shapes as well by stacking the components
of all points accordingly. The constraints for ps can be incorporated by
extending the equation system as before by Eq. (5.26) to then retrieve the
final estimate by (5.27).

The fact that the camera parameters K, R, t differ among shapes, but
not among points belonging to the same shape, can be taken into account.
Similarly, for the expression parameter vector ps, the following equation
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system can be obtained

[KR]V[&J
[KRM&,;]

— /2 [KRMs,|
~ /2 |KRM,;|

T

* | ps=

Yy z

22 [KRf,+ Kt]_— [KRf, + Kt]_
i [KRf, + kt|. - [KRf, +Kt|, | )
Given one or several 2D shapes of the same person, each consisting of a sparse
set of n 2D landmarks, and additional estimates for camera parameters for
each shape, the estimated model parameters can be applied as in Eq. (5.22)
to calculate a dense reconstruction of the dense 3D face shape f € R3V,
while the projected 2D shape can be obtained by using Eq. (2.4).

Camera Parameter Estimation As described before, the camera and model
parameters can be estimated in an alternating scheme, see Alg. 3 for details.
Please note that the global alignment is included in the camera parameter
estimation procedure.

5.3.4 Model 3: Projection Pursuit in Expression Space

While the planar substructure of the expression space has been used in the
previous section to motivate the constraints on the model parameters, we
here propose to replace the expression mode matrix U®) by another low-
rank version. Considering that the point of apathy is the natural origin of
all expressions, which form a planar subspace, we will construct a new affine
basis centered at the apathetic expression.

Let w = w3 — ag represent an expression parameter vector, which is
centered with respect to the point of apathy ag. We center each row of the
expression subspace matrix U®) and then apply an ICA on the resulting
matrix, as described in Sec. 2.3.4, but without prior mean centering, which
means we actually perform a projection pursuit on the expression space,
see Sec. 2.3.5. The new expression basis matrix B contains the projection
pursuit directions, centred at the apathy mode. Replacing U®) by the new
basis B in Eq. (5.22) leads to a new model parameterization, which forces
the resulting expression parameter to the planar substructure illustrated in
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Fig. 5.1, which leads to an even more robust model. The updated model is
then defined as

F=F+Sx1UY x, pfU® x5 (alB +al). (5.34)

The new expression space consists of new basis expressions centered around
the apathy mode. The corresponding optimization function is defined as

lp2"1p — 113 (5.35)

min || f — £ + X2[p23 + Azs
p2,a3

+ Asllasll3 + Assllas1p — 13

5.3.4.1 Linearized Matrix-vector Model Representation

Assuming that the model is used with the new apathy centred basis defined
in Eq. (5.34) it can be represented linearly in the new parameter space as
follows

F-F=8x1UY x3u] x3(alB+ay) (5.36)
F-F=M(alB+al)" (5.37)
= MB" a3 + Ma, (5.38)
= Mas+m (5.39)

5.3.4.2 Parameter Estimation for 3D Input

Assuming a 3D faces shape f, which has been previously aligned to the
model, should be approximated and no constraints are enforced, then the
expression parameter vector can be directly estimated from Eq. (5.39) by
the following equation system

M* (f—f—-m)=as. (5.40)

If the penalty weights A\ > 0, then the constraints can be incorporated by
extending the equation system applying the same steps leading to Eq. (5.29).
Since the person parameter space has not been changed, the person param-
eter vector can be estimated as for the previous model defined in Eq. (5.27).
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5.3.4.3 Parameter Estimation for 2D Input

; g LI)T with correspondences to
the 3D face model, the person parameter vector can be estimated as for
the previous model by Eq. (5.32). To obtain the expression parameter as,
the procedure is analogue to the previously presented model. The linear
representation of the current model given in Eq. (5.39) is employed to replace
the one model point fz by its corresponding rows as (M;as+m;+F;), leading
to the following equation system

Given sparse 2D landmarks f2° = (f2D, f2D

[KRM,], — f27 [KRM;),
[KRM,), - fV[KRM,), ) *

i [KR(mi+ f;) + Ki] — [KR(m; + f;) + Kt], 5.41
fy [KR(mi+ ) + Ki] - [KR(mi + f; o

Just as before, given IV images with corresponding 2D landmarks of the same
person, the camera and model parameters are estimated in an alternating
scheme, by minimizing the Euclidean distance between input landmarks f iD

~2D
and the estimated and projected 3D model shapes f;, .

Camera Parameter Estimation The camera parameters can be estimated
as described before.

5.3.5 Model 4: Four-Way Model including Expression
Strength

In Sec. 5.3.1 we unveiled that the actual center of the expression space is not
the neutral facial expression, which varies between persons, but an apathetic
facial expression, which was not part of the databases containing sequences
of facial motion. To exploit the revealed structure found in the expression
space, the natural way is to centre the tensor into the point of apathy.
Moreover, it is natural to fold the expression strength to its own dimension
in the data tensor to separate it from the expression. In this way, the
expression trajectories ideally form one-dimensional linear subspaces where
the zero strength would correspond to the point of apathy while all expect
the most dominant strength-mode singular vectors can be truncated.
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Formally, we therefore represent the original data, by folding them into
3N x P x L x E, four-way data tensor 740, where L refers to the expression
level (strength) and E to the number of emotions. Additionally we define
a mean apathy tensor 7'47apathy, which contains the mean face shape of all
apathetic faces, defined as fapathy Please note that the neutral expression is
skipped for this reordering for two reasons: First, there is only one possible
expression strength for neutral provided, and second it is a non consistent
expression, i.e. it is performed very inconsistently with varying appearances,
e.g. some with open other with closed mouth. Let 7y = Ty — 74,apathy be
the apathy centred tensor that is approximated as

ﬁ = 84 X1 Uil) X9 U£2) X3 Uig) X4 U£4), (542)

where Sy € R3NxPXLxE ig the core tensor, and Uil) € ]R?’N”N, Uf) €
RPXP U® e RIXL UM € REXE with N < N, P < P, L < L, and
E < E. Similarly as above, the faces can be approximated by the four way
model as

I = Fapatny +S1 X1 UL xzud x3ul xquf, (5.43)

where us € S 5 is the parameter vector for person, us € SZ of strength, and
uy € Sz for expression.

Assuming then that the expressions are one-dimensional linear subspaces
centred at the apathetic faces implies that L= 1, hence Uis) e REXT and
u3z = w3 is a scalar, the expression strength parameter. In this case the
core tensor can be truncated and we may define Sy as the corresponding
3N x P x E, which is obtained by trivially unfolding the singleton strength
dimension that yields

f I~ f: ?apathy + §4 X1 Uil) X9 U’QI‘ X3 ’lL3T4, (544)

where uzs = wsuy, hence, the expression parameter vector is modulated
by the scalar strength parameter. Transferring this to the latest model
parameterization of Eq. (5.22) in consequence leads to

F = Fapatny + St x1 USY 52 pi U x5 piUY xa pfULY,  (5.45)
= Fapathy + St X1 UL %2 pi U x5 wspl ULY, (5.46)
——

T
P34
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where ||ps4]| = ws and py = ps4/ws. From now on, let us assume the trun-
cated model Eq. (5.44), where L = 1. For the person mode, we assume the
novel person parameters are a convex combination of only ap close training
people in the database. Additionally for the expression mode, we assume
that novel expression parameters uzs are a convex combination of only ag
close training expressions in the database. The statistical model implies the
following optimization problem

As4

T
5 1LY paall, (5.47)

R A2 2)T
min || f - £I3 + U pall3 +
P2,P34 2 2
subject to

P2>0, py>0, pylp=1, pilp=1,
[p2llo = ap, [[pPsallo = o, (5.48)

where the non-zero elements indicate the ap-neighborhood among row vec-

tors in Uf), and ag-neighborhood among the row vectors in UF), respec-
tively, and

~

F = Fapatny + St X1 UL %2 pi U x5 pR,ULY. (5.49)

The numerical optimization of Eq. (5.47) is described in the following section.

Linearized Matrix-vector Model Representation All presented models re-
quire tensor products to compute a face shape, which prevents a closed-form
solution for both parameters. However, by rewriting the previous tensor
model such that it is linear in one model parameter in the matrix-vector
notation, it allows us to use alternating least-squares (ALS) to estimate the
parameter vectors. Let us assume that expression parameter vector u;f is
fixed, and reorder the elements of Eq. (5.44) to

f— fapathy = §4 X1 Uil) X3 ug4 ><2ug. (550)

3N><;><1

The tensor 54 X1 Uil) X3 u3T4 can be trivially flattened into a 3N x P matrix
M, as

M2 Uo = §4 X1 Uil) X3 ug4 X9 u2T (551)
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thus

F_F @7

f - -fapathy = M2U4 P2, (552)
hence, the difference is linear in ps. Accordingly for ps4 the difference is

f_ ?apathy = §4 X1 UAEl) X2 urQF X3u;)r4? (553)

3NX1xE

where the elements of §4 X1 Uil) Xo ug can be sorted into the matrix M3, €

]R?’NXE, leading to

o~

7 _ @7
f - fapathy - M34U4 D34. (554)

In the following the presented linear representation is used in conjunction
with the additional constraints to estimate the model parameters for 3D and
2D input.

5.3.56.1 Parameter Estimation for 3D Input

Given a 3D input shape f, which shall be approximated by the face model.
Taking only the terms depending on ps from Eq. (5.47) yields the energy
functional

1, - A T
By(p2) = 51 F — I3+ SN0 pal3 + C (5.55)
1
= §P2TQ2P2 +byp2+ C, (5.56)
T —
where Qy = UL (MF My + M) U, by = —UP MI (f — Fapatny)» and

C refers to the missing summand in Eq. (5.47), which does not contain ps.
We thus have the minimization problem

1
min =p; Qops + by ps (5.57)
p2 2
subject to

P2 2 07 P;FlP - ]-7 ||P2||0 = ap,
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where the non-zero elements form the ap-neighborhood among the row vec-

tors in Uf). To form the neighborhood sparsity constraints, we find the

ap-nearest neighbors for each row vector in Uf). The minimization is per-
formed separately over all these neighborhoods, i.e., we define the projection

P as the sparse matrix whose element p; = 1 if the row j in U2(2) is the kth
nearest neighbor of the point ¢ and k = 1,2,...,ap, and p;; = 0, otherwise.

Noting that qo equals PéTpg, we may write the minimization Eq. (5.57) in
the equivalent form

1 oo .
minmin g3 Qigz + by g, (5.58)
T q2 2
subject to

q2 Z 07 Q;Flap = 1)

, , T , .
where Q) = P4 UL” (MF M, + \1) Ui? Pjand b, = —P% UY M7 (f-
Fapatny)- Similarly, considering the minimization of Eq. (5.47) over ps4 yields
the minimization problem

. . 1 - g T
min min *q;}:lQéélqM + b, gs4, (5.59)
i’ ass 2

subject to

q3s > 0,

where Qi = P{ U® (ME My + \3uI) ULY ' PY and

bi, = fPfl'TUf)M?:ﬂ( f — Fapatny)- Please note that the sum one constraint
is omitted intentionally, because it is no longer appropriate for the parameter
vector gs4 which encodes the direction and strength of the emotion. The
minimization problems Eq. (5.58) and Eq. (5.59) with the constraints can
be solved using an interior-point convex quadratic programming.

5.3.5.2 Automatic Penalty Weights

The optimization functions in Eq. (5.58) and Eq. (5.59) each contain one
penalty weight parameter )\, encoded in the matrix @, which is commonly
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selected manually. If the individual constraints and indices are ignored, the
previously described minimization problems share the following structure

1
min 34 Qa+bla, (5.60)
where Q) refers to a matrix, which depends on the parameter \:
Q) =P'U(M™M + ) ) U"P. (5.61)

To determine the best parameter A\ a linesearch procedure, see Sec. 2.5.2 is
applied, such that the X\ is selected, which gives a local minimum for the
former optimization function, given the current estimate of the parameter
vector g and the corresponding constraints.

5.3.5.3 Parameter Estimation for 2D Input

Assuming that the camera parameters are provided, the model parameters
of the proposed model of Eq. (5.49) can be estimated linearly [71], just as
before. Given n 2D landmarks, which correspond to a subset of the N 3D
model vertices, the 3D model point fl is obtained from f by selecting specific
rows, and accordingly My ; defines the matrix obtained by choosing the
corresponding rows of the matrix Ms. In the following the mean apathetic
face is referred to as f for better readability. Using the representation of the
model shape f of Eq. (5.52), a 3D face point generated by the model can

~ T _
be defined linearly in the parameters ps and ps34 as f; = M2ﬂ.U4£2) po+ 1,
~ T _
and f; = M34,iUi4) D34 + f;, which yields

T —
2 {KRMQ,iUﬁ) ps+ KRf, + Kt] -

z

T —
{KRMMUSQ P+ KRS, + Kt] (5.62)

T

T
({KRMMU(Q) } 2D [KRMg,iUfi) ] )pzz

x z

> [KRf, + Kt]_— [KRf, + Kt| . (5.63)

i,
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Stacking the z- and y-components leads to

T

[KRM2 UL ] 2D [KRM2 ;

{KRMQ U } [KRMg U

Y

( > [KRf, + Kt]_ -

7,T

7V |[KRf, + Kt]_ -

%Y

e
}
|

KRf, + Kt]_
KR, + Kt]’ ) (5.64)

This equation system can be extended to 2n rows by concatenating the two
dimensions for each of the n corresponding points of one shape. Furthermore,
one person parameter vector ps can be estimated for multiple input shapes
by stacking the components of all points accordingly. Please note that the
camera parameters K, R, t differ among shapes, but not among points
belonging to the same shape. Similarly, for the expression parameter vector
P34, We obtain

T T
|:KRM34J‘UZE’41-) :| 12,5 |:KRM34,zU4£i)

T v T * P34 =

{KRMM,Z»ULS’;) ] S {KRMSMULE? ]
Yy z

> [KRf,+ Kt]_— [KRf,+ Kt| 5 65
20 |[KRf,+ Kt]_— [KRf,+ Kt| |° (5.65)
2 z Y
In the following, we add constraints introduced above that leads to similar
optimization scheme for 2D input shapes as we proposed for the 3D case.
Let us denote the linear equation (5.64) by Asps = as. We seek to minimize
the regularized energy functional

1 A T
ED(ps) = =[|Asps — as|2 + 22U ps? +C’
2 2 (5.66)

T
PIQEpy + b5 py + ',

T
where Q8 := AT A, + L UPUP " and b8 .= —ATa,.
In analogy to Eq. (5.58), by using the convex combination and neighbor
constraints and by denoting qs = PéTpg7 we the minimization problem takes
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the form
. . 1 T AP p_’iT
minmin - qf QY q> + by o, (5.67)
T q2 2
subject to
q2 Z 03 qQT]-ap = 17

where Q) = P} QEP% and by = P  b. Similarly, for pss the minimiza-
tion problem yields the form

min min ~q3, Q%' gss + by gas, (5.68)
i asa 2
subject to
qs4 > 0,
; ; T DT\ pi ; ; T
where QB = Pi, " [ AT, Agy + A UVUY " ) Py, and bE = —Pi, " AT a4

In effect, the same solver for the estimation of the model parameters for 3D
and 2D input can be used, including the automatic determination of the
weights Ao and Asz4.

Camera Parameter Estimation Analogue to the previous sections, the
camera parameters are estimated as described in Sec. 2.2.

5.3.6 Overview of Presented Tensor Face Models

The previously presented four tensor models can all be used for the same
applications, which are 3D approximation from sparse or dense 3D input,
see Alg. 2 and dense 3D Reconstruction from sparse or dense 2D input, see
Alg. 3.

In the following a short overview of them is provided, thereby enabling
a direct comparison of how one face shape is parameterized using the most
similar representation. Additionally each starts with its abbreviation

1. base: Baseline Model

F=F+Sx U x, uy X3 U3 (Eq. (5.5) revisited)
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2. sub: Subspace-aware Model
F=T+8x1UD 5, piU® x3pIU®,  (Eq. (5.22) revisited)
Ip21l3, P33, P 1p =1, p31p =1
3. pp: Projection Pursuit Model

_/?:f-l-S x1 UM x, pEU(z) X3 (agB +a€";) ,
(Eq. (5.34) revisited)

Ip21l3, llasl3, p31p =1, a31p =1

4. 4D: Four-Way Model

~

_F (1) T T T

J = Fapatny T Sa x1 Uy 7 Xouy X3 uz Xquy
—_———

ugy

_7F S (1) T T
_fapathy+S4X1U4 X2 Uy X3 Uzy

= ?apathy + §4 X1 Uil) X2 ngé§2) X3 pg4U4§4)7
(Eq. (5.49) revisited)

p21p =1, [p2llo = ap, [psallo = ar

Yet not each of these four model designs can be applied on each of the
presented databases, because two of the four models rely on different levels of
the same emotion to estimate the apathy mode, which is incorporated in the
model parameterization. However the FW (Facewarehouse) database does
not provide such kind of data, hence two of four models cannot be build upon
it. Table 5.1 gives an overview of the presented tensor models and which
version can be build for which databases. In the last column parameters are
shown, which have to be set manually, apart from the number of iterations
and the cropping factors, which have to be defined for each setting and are
not listed. While this table suggests a total of 10 versions of tensor models,
each of them can be used with single or multiple inputs, leading to a total
of 20 models, for the cases where multiple datasets per person are available.

5.4 Quality of Face Models

In this chapter different face model were presented. A question arising is
which of these models can be considered the best in general or for a specific
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Table 5.1: Overview of the four tensor model variants represented by one
row. Each model can be build upon different databases, resulting
in a total of 10 variants.

o Z

SICHEE N

a A o 8 £ g

S S B Ee EZ

mmz %8 g &

Model 1: base Uz, U3 -

Model 2: subspace-aware (sub) P2, D3 A2 Aze,
A3, A3
- . A2, A2s,

Model 3: projection pursuit (pp) X Do, as e e
35 3,3
Model 4: 4D apathy centered (4D) X po2,P34  ap,agp

application. In [27] the authors use face recognition rates to rate the quality
of their model for the application of inverse face rendering. However this is
not a reasonable measure, as it has been proven that facial recognition can
be fooled to give high accuracy, although the images differ greatly, which is
commonly referred to as fooling [85].

In [86] the authors aim to define the quality of their model in terms of
generalization, specificity and compactness, which have already been used
in previous works [87]. Although these terms sound reasonable, we do not
agree on how these are chosen to be defined. First the generalization is
defined as the ability of model to represent unseen data, i.e. leave-one-
out-experiments, which is similar to the approach presented in Sec. 6.2.
Second the specificity is defined as similarity of reconstructions from model
to training data, obtained by applying a random vector as parameter vector
to obtain a model shape, then compute the distance to the closest face in
the training set. We consider this not as meaningful, since in the best case
the model should be able to create 3D face shapes which differ greatly from
the training data shapes. Finally, the compactness for model components is
based on data covariance matrix based on training shapes, which is not a
suitable measure because very different models can be build from the very
same training database.
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Algorithm 2 Dense 3D Approximation from sparse or dense 3D Input

Input: n 3D points f € R3", n < N with known correspondence to a
subset of the N model vertices
o Initialization:
— Global rigid alignment of 3D input and face model
— Initialize expression parameter vector to the mean expression
e Model Parameter Estimation
Repeat until convergence:

— Given an estimate for the expression parameter vector, estimate
person parameter vector

— Given the person parameter vector, update expression parameter
vector

Output: model parameters for person and expression, shape f € R3N

In conclusion no objective quality measure for face models has been es-
tablished yet, therefore in the following chapter different quality measures
for each application are presented.
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Algorithm 3 3D Reconstruction and Camera Parameter Estimation from
2D Input

Input: M 2D point sets, each containing n points f,fD e R, k =
1 M

¢ Initialization:

PR

— Initialize parameters (if necessary)
— Initialize M camera parameter vectors
— Initialize expression parameter vector with mean expression Vk

e Repeat until convergence:
— Model Parameter Estimation
repeat until convergence:

x Given expression parameter vector and camera parameters,
estimate person parameter vector

x Given person parameter vector, update estimated expression
parameter vectors for each frame k

— Camera Parameter Estimation

: £3D
* Given model parameters, compute 3D shapes f;

* Project f,i’D to /ZD , using previous camera parameters

* Estimate new camera parameters minimizing Eq. (5.21) for

each set k

~2D  ~3D
Output: model parameter vectors, camera parameters, shapes: f,. , fi
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6 Experiments

In this chapter the previously presented face models will be used on different
applications with varying demands.! The experiments were conducted using
Matlab [88], and parts of this chapter were evaluated using a Bash tool for
parallel computations [65].

6.1 Facial Animation by Improved Synthesis
Using the Apathy Vertex

In the database BU3SDFE we found that the faces labeled as neutral do not
necessarily prevail this expression as we expected it, i.e. some looked rather
happy or showed an open mouth. The benefit of the previously presented
apathetic facial expression, which we recovered, is that it can be used to
replace the actual expected neutral face, which then improves the quality of
following applications.

To obtain a facial animation, where a person starts in an angry expression,
then changes to neutral and then proceeds to a face showing disgust, the com-
mon approach is to interpolate between the known expressions. Therefore
in a first step we generate intermediate expressions by varying a scalar value
w between the values 0 and 1 to receive intermediate expression parameter
vectors as U3 = (1 — w)U3 anger + WU3 neutral, Where for each expression pa-
rameter vector a new face can be synthesized using Eq. (5.5). Accordingly
the second halve of the sequence is obtained by synthesizing faces using ex-
pressions generated by ©s = (1 — w)Us neutral + WUS disgust- The resulting
facial animation is illustrated in the first row of Fig. 6.1 for one person of
the BUSDFE, where the sequence is starting in angry and ending in disgust.
It can be seen that the face in the middle, which is labeled as neutral (gray
box), looks rather happy. However if we replace the intermediate expression
with the synthesized apathetic facial expression (red box), we obtain the
sequence shown in the second row, which gives a more sophisticated result.

IParts of this chapter have been published in [grasshof2017, 73].
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Figure 6.1: Synthesized expression trajectories, each starting and ending in
the same expressions, while in the first line intersecting the neu-
tral expression (grey box), whereas in the second row the face
in the red box represents the synthesized apathetic facial expres-
sion. (Images previously published in [73].)

Please note that the second version makes use of the formerly presented
structure in expression space, see Fig. 5.1 by ensuring that new expressions
are generated along the presented trajectories. Thereby undesired mixtures
between the emotions are prevented, which would occur if the neutral facial
expression was selected as the intermediate.

To support our hypothesis that the apathy-centered model is superior to
the neutral centered model, we compare how both factorization versions
approximate the original data tensor, using the same cropping factors, i.e.
dimension one for the level. Given the original 3D face shapes as data tensor
Tao € R3NXPXLXE and 7'4,apathy representing the tensor which consists of
the mean apathetic face, while T4,neutral contains the mean neutral face
shape, repeatedly to match the size of the original data tensor. Then the 4D
factorization can be computed on the two versions of the difference tensors,
analogue to Eq. (5.42). This means for the apathy centered model, the
difference tensor

Taa = Ta0 — T 4,apathy (6.1)
is approximated by the cropped core tensor and matrices of the HOSVD as

Taa = Tia = Sua X1 Ui,la) X Ufa) X3 Uf’i X4 Uzijla)7 (6.2)
which then approximates the original shapes as

721,0 ~ 7?1,0,04 = ﬁ,a + T4,apathy~ (63)
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Analogue for the neutral centered model the difference tensor

7:1 n — 7:170 - 7-4,neutral (64)

)

is factorized using the same cropping factors
Tam & Tan = Sun x1 UL xo Uf) x5 Uh x4 Uh, (6.5)
which approximates the original shapes as
Tao0~ Taon = 7\-4,71, + 7'4,nelltra1~ (6.6)

We found that the tensor 74,0, which is created using the apathy as center,
gives a lower Euclidean distance to the original shapes in 7,0 than the
approximated shapes 740, using the factorization based on the center of
the neutral facial expression, i.e.

1 1
= T1,0,a — —T1,0,n — Taollr (6.7)
n n

where ||.||r refers to the Frobenius norm, commonly known for matrices,
here applied to tensors by the following slightly adapted definition |7 ||z =

3N P L FE

S5 Z [tipic|?. This relation was verified for the sparse and dense
i=1p=1l=le=

tensor, and various cropping factors. Fig. 6.2 shows that the approximation
errors Eq. (6.7) decrease, if the cropping factors for person and emotion di-
mension are increased. However, the error obtained by the apathy-centered
model (solid lines) is always below the one of the neutral-centered model
(dotted hnes) (For this visualization cropping factors for points and level
are fixed to 3N = 250 and L = 1. ) While Fig. 6.2 illustrates the change
of the approximation error dependent on two cropping values for the dense
BU3DFE, we found similarly smooth decrease for the sparse BU3SDFE ten-
sor, and using other cropping values. This means that the apathy-centered
model preserves more information in the first components than the neutral
centered, i.e. the apathy centered version contains a higher amount of the
variance in the data.
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Figure 6.2: The change of the Euclidean distance, defined in Eq. (6.7), be-
tween the true and estimated shapes, based on the apathy-
centered model (solid lines) and neutral-centered model (dotted
lines), for varying cropping factors. Here the first and third di-
mension are fixed to 3N = 250 and L= 1, while the cropping
factor of dimensions for person P and emotion E are varied.
(Image previously published in [73].)

6.2 3D Approximation, Person and Expression
Transfer

In this section the different tensor models are compared by leave-one-out
experiments, see Sec. 5.3.6 for an overview. For an unknown 3D face shape,
person and expression parameters are estimated by Algorithm 2, using the
sparse model representations limited to landmark points. The estimated
model parameters define the approximated input shape. Then either the
person or expression parameter vector is changed to known values to perform
either person or expression transfer. If the person parameter vector was
estimated reasonably, changing the expression parameter is expected to alter
the expression only. Otherwise the worst result would be a degeneration of
the shape. The error between an estimated shape f and the true shape firue
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is defined by

po N IF = fuells
€ (f,ftrue) T ||ftru6||2 .

One 3D face shape is fully described by the person parameter vector us,
and the expression parameter vector us or uszy4, depending on whether the
chosen factorization is based on 3D or 4D tensor. To investigate how well the
different models perform 3D approximation, person and expression transfer,
one person or level is discarded from the original data. Then the model
is created on the remaining data and used to estimate model parameters
on the unknown shapes. In the following the setup of the experiments is
described according to the parameter vectors us and us and according to a
4D tensor, because this design allows to address single levels and emotions
more conveniently than the 3D tensor representation.

(6.8)

Leave one person out

1. The initial data tensor with 3D face shapes is given as Ty € R3NVXPXLxE,

2. By excluding person p, L - E shapes are excluded, hence the original
data tensor 7y is divided into two sets, one which contain the shapes of
person p: Toip € RINVXIXEXE and the remaining reduced data tensor
without person p: To_, € RINVX(P=U)XLxE,

3. The mean face shape ?ﬂo of the shapes in 79—, is computed, and

subtracted to obtain the mean free tensor 7_, = To—p — T, where
T € R3NX(P=DxLxE contains the mean shape f_, repeatedly.

4. To build one of the four tensor models, see Sec. 5.3.6, upon the tensor
T_p it is factorized by HOSVD, as in Eq. (5.3).

5. Thereafter the resulting model is used to approximate the L - E ex-
cluded shapes f,; . for each person p, hence L - E' model parameter es-
timates are retrieved as (U p,Us ), defining the approximated shape

ﬂ,l,e- This is done by applying the Alg. 2, which is based on 3D input.

6. Approximation error Thus the approximation error between true
and estimated shape can be calculated by Eq. (6.8), as ¢ (fp,l,e,.fp,l,e).
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7.

Expression transfer error Considering the equivalent of the ex-
cluded L x E expressions are still included in the model from the
remaining (P — 1) persons of To_,, the expected expression parameter
vector is known as usz;.. To perform expression transfer, the esti-
mated expression parameter 43 . is replaced by the true one usz; . to
calculate the shape based on the parameters (Us ,,us3,,¢) giving L X E

shapes f, ;.

sion transfer error then is the mean € (fz’] . evfp,l,e)-

approximating the shapes f, ;. € To+p. The total expres-

Person transfer error Due to the fact that person p was excluded
before the model construction, the corresponding true person parame-
ter ug p, is unknown. Yet person transfer can be performed by replacing
the estimated 3, by any other known person parameter vector ug j,
k # p. This leads to the parameter sets (us x,Us3,1,e) defining the shapes
ﬁc,l,e, which approximate fi ;e € To—p, hence a total of (P—1)-L-FE
shapes. The person transfer error is then calculated as the mean over

€ (.fk,l,mfk,l,e) .

Similar as before in the following the experiments are described leaving
out one level for all emotions.

Leave one level out

1.
2.

The 3D face shapes are given as data tensor Ty € R3NVXPXLxXE,

By excluding level I, P- E shapes are excluded, hence the original data
tensor 7y is divided into two sets, one which contain the shapes of level
I Topp € RINXPXIXE and the remaining reduced data tensor without
level [ 76—[ c R3N><P><(L—1)><E

Then the mean face shape f_, of the shapes in 7y_; is computed,

and subtracted to obtain the mean free tensor 7_; = To—; — T, where
T € R¥NV*Px(L=1)XE contains the mean shape f_; repeatedly.

To build one of the four tensor models upon the tensor 7_; it is fac-
torized by HOSVD, as in Eq. (5.3).

Thereafter the resulting model is used to approximate the P - E ex-
cluded shapes f,;. for each level I, hence P - E model parameter
estimates are retrieved as (U p,Us 1 ¢)-
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Table 6.1: Revisiting abbreviations of the different tensor model parameter-
izations, with more details in Sec. 5.3.6.

label  description

base  refers to the baseline model defined in Eq. (5.5)
sub  subspace aware model as in Eq. (5.22)

pp projection pursuit model in Eq. (5.34)

4D 4D model as defined in Eq. (5.49)

6. Approximation error The estimated model parameters define the
approximated shape fj;., and thus using the true shape f,;. the

approximation error can be calculated as € (fp,l,e,.fp,l,e).

7. Expression transfer error Due to the fact that the level [ is ex-
cluded from the data used to define the model, the corresponding true
expression parameter vector us; . is unknown. To perform expression
transfer, the estimated expression parameter U3 . is replaced by one
of the (L — 1) - E known ones, resulting in (U p,us,.) with ¢ # I,

which gives :’,J’e. These approximate the shapes f, ;. € To—;, which

were used to build the model. The person transfer error therefore is

£
6( p,i,e? P7ia€>'

8. Person transfer error Considering one level was excluded, the re-
maining data 7g_; still contains information about all P persons in
other expressions, except level [. Therefore the shape information of
person p is available in the reduced model 7_; and the expected person
parameter is known as ug,,. To perform person transfer, the estimated
person parameter vector s, is replaced by ws ,, which gives P - E

li

shapes defined by (uzp,use) as f, ;.

approximating the excluded

shape fp1.e € To+1, hence € (f}’,vl’e,fm,e) gives the person transfer er-
ror.

The described leave-one-out experiments are performed on the previously
presented four versions of the tensor model, for which the abbreviations are
given in Tab. 6.1, and a more detailed overview with all equations can be
found in Sec. 5.3.6.

The re-estimation of the models in step 4 includes the re-estimation of
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the apathy mode for the two latest models pp and 4D and the re-estimation
of the projection pursuit directions in the case of the model pp for each
experiment.

Considering that subsets of the left-out shapes are either of the same
person or the same emotion it is reasonable to include this knowledge. This
is done by providing multiple input shapes to the algorithm at once and
demanding that the person or the expression parameter vector must be the
same for a (sensibly determined) subset of the shapes. Thereby leading to
three different versions: For the left-out shapes, estimate the person and
expression parameters . ..

1. ...individually for each single shape.

2. ...such that the expression parameter vector must be the same among
(a subset of) the input shapes, while the person parameter vectors may
vary.

3. ...such that the person parameter vector must be the same among
(a subset of) the input shapes, while the expression parameter vectors
may vary.

For the case of “leave one person out”, there are E - L shapes which are
excluded for each sub-experiment, hence unknown to the considered model.
These E-L shapes are of the same person, while the same emotion is prevalent
in subsets of L shapes. Analogously for the “leave one level out” experiment,
among the E - P left out shapes, subsets of E shapes share the same person,
and the subsets of size P share the same emotion. In conclusion in the
presented setup, the case 3 constraint enforcing a joint person parameter
vector employs a larger number of input shapes.

6.2.1 Evaluation

For each model parameterization different parameter settings were evaluated.
To define which is the best among them, the previously presented errors for
approximation e, expression transfer €, and person transfer ¢, are calculated
for each setting and one scalar valued joint criteria is determined as

1
Etotal = g(Ea + € +€), (6.9)

where €g,€.,€, refer to the median value among all experiments. In order to
select the most versatile model, the best setting for each model is defined as
the one, which leads to the minimum median error of the joint criteria €goar-
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The quantitative results of the conducted experiments are presented in
Fig. 6.3. We found that all models lead to similar approximation errors,
except the final model exhibits a minor increase. For each model parame-
terization the three previously described versions are illustrated as a triplet
of the same color. For all models we observe that increasing the number of
input shapes leads to an increase of the approximation error likewise. This
turns out as expected, due to reduced flexibility by prohibiting the use of
individual parameters. Please note the different scales of the y-axis between
the three errors, which suggests that the increased approximation error for
the latest model is negligibly if compared to magnitude of the observed ex-
pression transfer error.

In terms of expression transfer the base model [66, 30] clearly performs
worst. In fact if the estimated parameters are replaced by known values, we
found the result does not resemble a face anymore in some cases. Concerning
the three remaining proposed tensor models, the expression transfer error
decreases with each model change, i.e. the latest model 4D performs best,
while pp outperforms sub? The differences become less apparent the more
input shapes are taken into account. Comparing the results among the three
proposed models by focusing on the two cases with the strongest constraints
enforcing the same person parameter vector for E - L (middle of triplet) or
E- P (third sample of triplet) input shapes, the difference between the models
is hardly noticeable. In conclusion enforcing one joint parameter vector on
subsets of input shapes is proven to be beneficial, because increasing the
number of inputs results in a decrease of the transfer error for each model.

Concerning the person transfer error the models perform similar as good,
while the previously described trend that more input shapes improve the
transfer is still slightly prevalent for all except for the base model. In this
case if more input shapes are used the error even increases slightly.

2In [70] results are based on no constraints demanding joint parameter vectors among
input shapes. Furthermore we reported sub and pp to perform similarly as good with
respect to expression transfer. The difference between the previous results and the
ones presented in this section are due to the selection criteria which is based on mean
values in [70, 71], whereas here the median value is employed.
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Figure 6.3: Quantitative evaluation of the robustness of the proposed algo-
rithms w.r.t. generalization, measured by Eq. (6.8). The abbre-
viations are chosen as in Tab. 6.1 and for each model the triplets
consist of: (1) single shape input, followed by multiple shape
input demanding that (2) emotion parameters or (3) person pa-
rameters must be shared among the estimated shapes.

1P 216.73.216143, am 02.02.2026, 17:48:15.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186868107

156 6 Experiments

6.3 Dense 3D Reconstruction from sparse 2D

Estimating dense 3D shapes from 2D input, i.e. 3D reconstruction, is a very
challenging problem, especially for faces, because of their large variability in
shape and additionally the nonrigid deformations they can perform.

In this section we assume one or several images of a person are provided
for which 3D reconstructions should be estimated without additional infor-
mation. In general given a face image no corresponding 3D scan is available,
which impedes the quality assessment. As a consequence this implies most
methods are restricted to evaluations based on subjective testing or 2D mea-
sures. However there are databases which provide images along with their
corresponding 3D face scans, see Ch. 3, enabling to calculate an error mea-
sure based on two 3D inputs which is more reliable. Therefore the following
section is divided into two subsections to distinguish between the availability
of 3D ground truth. Yet in each of the two cases the process is the same:

1. Given one or several images of one person

2. Detect facial landmarks for each image

3. Employ sparse known correspondences between 2D landmarks and sub-
set of 3D model points to estimate a dense 3D face

The proposed tensor models are used in conjunction with a projective camera
to project the 3D face shape onto the image plane.

In the remainder of this section two state-of-the-art methods are used to
compare our work to, for which the authors provide code, thereby ensuring
a fair comparison. The first work employs a 3D Morphable Model approach,
referred to as SFM (Surrey Face Model), [74] described in Sec. 5.1. We used
the implementation of the author provided in [75] which offers extended
functionality not described in their paper. The second reference is named
Sela NN [77] with code in [89]. The authors trained a neural network ex-
clusively for the purpose of detailed 3D face reconstruction from images, see
Sec. 5.2. All approaches, including the proposed tensor models, return a set
of 3D points and triangular mesh information representing the estimated 3D
facial surface.

6.3.1 3D Reconstruction With Ground Truth

In Sec. 3.2.3 the Bosphorus database [50] was presented, which offers a total
of 4666 2D images accompanied by corresponding 3D scans of 105 individu-
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Figure 6.4: Visualization of missing datasets (depicted in black) of the
Bosphorus database. Each column corresponds to one of the 105
persons, while each row corresponds to one of the seven basic
emotions, depicted from top to bottom: neutral, anger, disgust,
fear, happy, sadness and surprise.

als. From this database we choose the data annotated with the seven basic
emotions: neutral, anger, disgust, fear, happiness, sadness and surprise,
which amount to a total of 7-105 = 735 datasets in theory. However as 178
among them are missing, the actual number of datasets for this experiment
is 557, see Fig. 6.4. Unfortunately the provided landmarks do not enable to
distinguish between open and closed eyes, see Fig. 3.6, and even worse their
number differs between the sets, see Fig. 3.7. Therefore new landmarks are
detected for each image using the library dlib [81] as part of the OpenFace
implementation of [90, 79]. Due to the heavy cropping of the images pro-
vided in the Bosphorus database, the landmark detector initially failed to
detect facial landmarks in some cases, hence black pixels were added around
the original images, which resolved the issue. Then correspondences between
the sparse 2D landmarks and selected subsets of the 3D model points were
defined, leading to a total of 50 point-correspondences for the FW database,
which were carefully manually selected, and 46 for BUSDFE and BU4DFE,
which were chosen as a subset of the initially provided, then improved land-
marks (see Sec. 4.1). These correspondences are then used to estimate the
model parameters, as described in Alg. 3, which define a dense 3D face
shape, approximating the true 3D face scan. Since no dense correspondence
between the true and estimated 3D shape is provided, the quality assessment
is not trivial, and is described in the proceeding section.

6.3.1.1 Quality Assessment

Because ground truth 3D information is provided, the quality of the resulting
3D reconstruction can be defined as a distance based on the true and esti-
mated 3D faces. This is not straightforward, because the number of points
differs between the two sets and they are not aligned in space. Therefore the
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estimated and the true face surface must first be aligned globally in space.
Afterwards a rigid correspondence® estimation is performed which enables
to compute a point-wise 3D error.

Hereafter the ground truth points are defined as P € RN*3, while the
estimated points are referred to as P € RM*3,

Initial Alignment

Different 3D shapes can be projected onto the same 2D points using appro-
priate camera parameters. However considering the 3D information is not
used in this experimental setting during the estimation, a global alignment
between the true and estimated 3D shape is necessary. The position, scale
and rotation of the estimated 3D shape differs from the true shape, due to
the unknown projection from 3D to 2D image space.

Therefore first a global initial alignment for each shape is performed to
transform them into a joint normalized space. We aim to achieve that each
face is in upright position, such that the face lies in the xy-plane, where
the face width corresponds to the z-axis, the height spreads along the y-
axis, while the nose is pointing towards the positive z-axis. Since no 3D
landmarks are provided for each scan, a generalized approach is needed.
The global alignment is achieved by first applying PCA, see Sec. 2.3.1, to the
face consisting of a set of 3D points. The resulting three main directions
are then rotated to match the axis of the coordinate system, which gives the
correctly rotated face.

After successful initial rotation, in the middle face region, the point with
highest z-value is defined as the nose tip. The face is then translated such
that the nose tip lies in the origin of the coordinate system. As a final step
the face width is unified to be of length one, while the other dimensions are
normalized with respect to the face width to retain the aspect ratio of the
face. As a result both faces share the same scale with width set to one,
thei nose pointing towards the positive z-axis, while their nose tips lie in
the origin. After the first initial alignment, rigid correspondence estimation
between the sets is performed.

Rigid Correspondence Estimation
In Sec. 4.2.1 an approach is presented to achieve point correspondences by

3 A nonrigid correspondence estimation must not be used here, because it includes non-
rigid deformation of at least one of the two shapes.
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nonrigid registration, whereas here a rigid correspondence estimation is ap-
plied. This is done on purpose and well justified by the different problem
settings, because in the previously described setting the faces are supposed
to differ greatly, while the differences are supposed to be erased. In contrast
to that the prevalent differences between the true and estimated shape are
supposed to be retained and measured, since the the shapes are supposed
to match well as a result of the 3D reconstruction. Therefore if we would
apply a nonrigid correspondence estimation scheme instead of a rigid one,
as a consequence one shape is allowed to heavily deform towards the other,
thereby erasing prevalent differences in their appearance, which are about
to be quantified.

Assuming a global alignment in space has been performed, for each point
Di € P of the estimated set the point p.(;) € P of the ground truth is defined
as corresponding to p;, which has the smallest point-wise Euclidean distance
among all of the IV points, i.e.

(i) = arg;ninHﬁi — i3 (6.10)

Following this definition ¢ is a function ¢ : {1,...,M} — {1,...,N}. And
accordingly

Q(ﬁivpé(i)) = ||pi — pé(i)”g (6.11)

is the resulting point-wise error. The final 3D error between the two shapes
is then defined as the mean point-wise error as

QPP MZ 4(Pi-pei)) MZ”Pz Peci) 13- (6.12)

Given an initial correspondence between the point sets, a global rigid trans-
formation between the face shapes is determined, which aims to further
minimize Eq. (6.12), such that

M
m;nZHf(@) — pe 13- (6.13)
=1

The function f takes the form f(z) = Rx + t, where R € R**3 is a 3D
rotation matrix and ¢ is a translation vector. f is applied to redefine the
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Table 6.2: Overview of possible tensor models and their abbreviations, re-
sulting from combining one of four parameterizations (given in
first column) and one of three databases used for creation, as in-
dicated as column title of columns two to four. More details in
Tab. 5.1. The prefix m denotes multiple dataset inputs are used,
while no prefix means to single input.

BU3DFE [49] BU4DFE [32] FW [30]
model 1: base (m)basic-BUSDFE  (m)basic-BU4DFE  (m)basic-FW
model 2: sub

(m)sub-BU3DFE (m)sub-BU4DFE (m)sub-FW

subspace-aware
model 3: pp

projection pursuit (m)pp-BU3DFE (m)pp-BU4DFE X
model 4: 4D (m)4D-BUSDFE  (m)4D-BU4DFE X
estimated points as p; := f(p;). The estimation of correspondences ¢ by

Eq. (6.10) and rigid transformation Eq. (6.13) is alternated and repeated for
several steps. Finally Eq. (6.12) defines the quality measure for a 3D recon-
struction as the mean point-wise distance between corresponding points.

In fact due to the lack of known sparse 3D correspondences between es-
timated and true shape Eq. (6.12) defines a very generous measure. If the
result was heavily distorted, the proposed closest-point criteria will select
the closest point of the true shape, which is likely to have a smaller distance
compared to the unknown true corresponding point. Additionally as the de-
termination of correspondences is chosen to be unidirectional and based on
the supposedly smooth model face shape, which is more robust with respect
to noise in the original scans.

6.3.1.2 Results

Considering different databases can be used to build a data tensor, each
leads to another tensor model. A short overview of the possible variants
resulting from the different tensor models parameterizations and databases
is presented in Tab. 6.2. This is a shorter presentation of Tab. 5.1, see
Sec. 5.3.6 for details. The two models pp and 4D rely on an apathy mode by
design, which cannot be estimated for the FW (Facewarehouse) database.
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Figure 6.5: Boxplot of mean Euclidean distances between corresponding
3D points of true and estimated shapes, see Eq. (6.12), for
the selected face models. The colors refer to different training
databases, while the names on the z-axis represent abbreviations
of the tensor model names given in Tab. 6.2, excluding database
names. The y-axis has been cropped slightly, hence the some
outliers of the model Sela NN exceed the displayed range.

The two other model parameterizations can be build based on each of the
three face databases: BUSDFE, BU4ADFE, FW, see Ch. 3. Additionally each
variant can either be used in conjunction with single or multiple inputs per
person. In this experimental setting a total of seven datasets per person is
available, based on the seven emotions.

We found that applying the basic model 1 base in conjunction with a pro-
jective camera model results in highly distorted faces, therefore we choose to
exclude it from the following experiments. Additionally because the models
sub and pp have been found to perform similarly as well [70], we chose to
focus on the two parameterizations sub and 4D and their variants.

In Fig. 6.5 the mean Euclidean distances between corresponding 3D points
of the true and estimated shapes, based on Eq. (6.12), are presented for the
different models. The tensor face models are referred to by the abbreviations
defined in Tab. 6.2. It can be seen that all tensor models clearly lead to lower
errors compared to the reference models Sela NN and SFM. In the following
the results are compared qualitatively with respect to selected subsets of the
models.
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Comparison of Results with Respect to Different Databases
Here the results of the model sub are investigated with respect to the different
databases and using one or multiple input shapes. Among the three newly
proposed tensor model parameterizations, sub is the only one which can
be build from all three databases. In Fig. 6.6 and Fig. 6.7 selected 3D
reconstructions for the six variants of the subspace-aware model sub based
on Eq. (5.23) are presented. In the first row the input image with landmarks
is illustrated along with the reconstructions based on the three different
databases based on single input. In the second row the original 3D scan
with the reconstructions based on multiple landmarks inputs (indicated by
the letter m in front of the database names) are provided. Comparing the
rows shows that they are of comparable quality for the databases BUSDFE,
BU4DFE, while the result based on the FW database improves if multiple
inputs are considered. The selected example shown in Fig. 6.6(d) is based on
the FW database, employing single input only, and represents actually one
of the worse results. Based on [91] it can be assumed that the bad fitting
which affects the eye region is a result of correlations among the parameters
which control the small eye region, resulting from the chosen cropping factor.
In general using more than one input at a time leads to comparable or
improved results. Fig. 6.5 shows that the mean distance between the corre-
sponding points slightly increases for two of the three databases if multiple
inputs are used compared to single input. This behavior was found in the
previous experiment of Sec. 6.2 and occurs due to reduced flexibility by the
additional constraint implying that the person parameter vector must be
the same for all seven input expressions. Investigating the cases where the
error increases, we found the worsening hardly noticeable for BU3DFE and
BU4DFE, as can be seen in Fig. 6.6 and Fig. 6.7.

Comparison of Results with Respect to Reference Models

Additionally the formerly described reference models Sela NN, see Sec. 5.2,
and SFM (Swrrey Face Model), see Sec. 5.1, are used to estimate dense 3D
reconstructions. Please note that in this section the results of the model Sela
NN are shown without fine details. In Fig. 6.8 and Fig. 6.9 selected exam-
ples of dense 3D reconstructions from 2D images are illustrated for different
persons and expressions, where sub refers to the model 2 based on BU3DFE
database. In Fig. 6.8 the 3D shapes and the original facial expressions are
estimated satisfactorily for all models. The additionally illustrated point-
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wise errors show that the distance between the corresponding points of the
two sets is highest at the edges of the face models, while the proposed face
model matches the shape and expression best in these cases. Additionally
Fig. 6.9 shows that the model of Sela NN [77] fails in several cases. This
is probably the case because the images of the Bosphorus database differ
from the original training data of Sela [77]. In fact the experiments for this
approach were conducted with and without the additionally introduced bor-
der of black pixels around the input images, but did not lead to improved
results.

Comparison of Results with Respect to Different Parameterizations

Yet only results based on the tensor model sub were presented. Based on
the proposed quality measure in Eq. (6.12) the results in Fig. 6.5 suggest
that the latest tensor model parameterization labeled 4D performs superior
to the reference models, too. In Fig. 6.10 this claim is confirmed. It presents
original and reconstructed 3D face shapes for person with id 1 in expres-
sion disgust and fear, while the results based on the different tensor model
parameterizations sub and 4D are build from the database BUSDFE.

In Fig. 6.10 the reconstructions based on the network-based approach
Sela NN are illustrated deformed compared to the original, while the overall
expression is roughly matched, which is a repetitive observation. The shapes
based on the reference model SFM presented in Fig. 6.10 match the shape of
the mouth of the original quiet well, while the eye and eyebrow region seem
neutral. In contrast to that the proposed models sub and 4D both match
the eye regions better. The results of model 4D depicted in Fig. 6.10 do not
exhibit a fully close the mouth for the top row example of the expression
disgust, but it does match the mimic folds better and the mouth angles point
more to the bottom, just as in the original.

Also the bottom example in Fig. 6.10 for emotion fear illustrates that ap-
plying more than one input tends to weaken the expressiveness of the model
4d and hence slightly harms the reconstruction. As a consequence the result
based on multiple inputs in resembles the neutral expression more compared
to the one which is based on single input. Due to the additional constraint
requiring the person parameter to be the same among seven shapes this is to
be expected. Yet the model sub does not change in the same extend, which
we assume is because the constraints of the model 4D are more restrictive
than for the model sub.
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Conclusion

In this subsection we showed that the proposed tensor models outperform
two reference models qualitatively and quantitatively for examples of the
Bosphorus database. The proposed models lead to lower distances between
the corresponding points, hence lower values of the quality measure defined
in Eq. (6.12), which can be seen Fig. 6.5. Among the reference models,
the network-based Sela NN performed worst, and often results in highly
deformed shapes. This is a common behavior of neural network approaches
known to occur especially if the input deviates from the training data. In
contrast to that the results of the model SFM (Surrey Face Model) seem to
be less expressive than the ones of the proposed tensor models. Considering
our approach relies on a sparse set of 2D landmarks without employing
additional information the results are remarkable.

Additional examples for reconstructions of the Bosphorus database are
presented in Sec. E, which visualize results of three persons in seven emotions
as a estimated by the models: Sela NN, SFM and the tensormodel sub based
on the three databases: BUSDFE, BU4DFE, FW (Facewarehouse).
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Figure 6.6: Dense 3D reconstructions of person 94 in emotion neutral, using
one or multiple (seven) inputs for the tensor model sub build from
different databases. (a) input image, (e) original scan, (b)-(d) 3D
reconstructions based on sub, based on the databases referred in
the subcaption, whereas (f)-(h) results based on employing seven
landmarks sets of the same person.
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(a) input image (b) BUSDFE ) BUADFE
(e) true 3D scan (f) mBU3SDFE mBU4DFE ) mFW

Figure 6.7: Dense 3D reconstructions of person 95 in emotion disgust, using
one or multiple (seven) inputs for the tensor model sub build from
different databases. (a) input image, (e) original scan, (b)-(d) 3D
reconstructions based on sub, based on the databases referred in
the subcaption, whereas (f)-(h) results based on employing seven
landmarks sets of the same person.
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Figure 6.8: Dense 3D reconstructions of person 1 in expressions neutral and
anger. The columns contain: (1) the original 3D scan or input
image with landmarks, (2)-(4) 3D reconstructions resulting from
the models referred to in the column title: without and with
color-coded error defined in Eq. (6.12) (dark blue: low, dark red:
high error).
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3D scan/image sub SFM Sela NN

i@

Figure 6.9: Dense 3D reconstructions of person 91 in expression neutral and
person 95, happy. The columns contain: (1) the original 3D
scan or input image with landmarks, (2)-(4) 3D reconstructions
resulting from the models referred to in the column title: without
and with color-coded error defined in Eq. (6.12) (dark blue: low,
dark red: high error).
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input image Sela NN

3D scan SFM

input image Sela NN

3D scan msub m4D SFM

Figure 6.10: Selected 3D reconstructions of person 1 in disgust and fear.
The first column contains input images with landmarks and 3D
ground truth scans, columns (2)-(4) contain the results based
on the models as indicated below. (Images previously published
in [73].)
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6.3.2 3D Reconstruction Without Ground Truth

In this section it assumed that no 3D ground truth is provided, therefore
it is not possible to calculate distances between the true and estimated sets
of 3D points, as in the previous section. Yet the approach to retrieve 3D
estimations from 2D input remains the same. Therefore for this case it is
most common to perform subjective evaluation based on selected examples.
As before in this section we focus on the tensor model referred to as sub,
because it can be build upon all three face databases.

Fig. 6.11 contains images which are part of the published work Sela NN
[77] and were chosen to reproduce their results thereby demonstrating that
we applied the code correctly. It can be seen that the detailed facial re-
constructions obtained by Sela NN match the selected examples better than
SFM or the proposed tensor model sub, even though the face shape is not
fully matched in the example of the first row. Therefore compared to the
SEFM or our models we conclude that the Sela NN model is better suited to
reconstruct highly deformed or unsymmetrical shapes in some cases.

Furthermore some images, which were not included in the paper of Sela
NN are presented in Fig. 6.12. The faces obtained by the model Sela NN are
highly distorted, whereas the other reference model SFM and the proposed
framework retain the shapes better, even though they are lacking detail.

6.3.3 Summary

In this section different parameterizations of face tensor models, based on
three databases, and two other reference models were applied to perform
dense 3D reconstructions from sparse 2D input. The experiments were con-
ducted on the Bosphorus database, offering images and ground truth 3D
face shapes. Additionally some example images of celebrities and colleagues
without ground truth were selected. For both cases the reconstructed data
was not part of the training data.

The experiments revealed that the model Sela NN, specifically designed
for 3D reconstruction from uncalibrated images, is the most flexible one,
in a sense it can reconstruct unsymmetrical face shapes best, but only in
some cases. However the high flexibility impedes the stability, which leads
to highly distorted shapes in many cases, some far from resembling a face. In
fact highly deformed face shapes do occur in all considerable cases including
plain faces in frontal view, but also glasses, beards or other occlusions in
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the face region. In contrast to that the SFM (Surrey Face Model) and the
proposed tensor model approaches are guaranteed to result in an actual face
shape, which in the worst case, would not match the face shape or expression
well.

Comparing the different results we found that if one face is reconstructed
very well by one model, it can still belong to one of the worst results of
another model. In general the results of the proposed framework are of
remarkable quality considering that they rely on a sparse set of 46-50 land-
marks only, whereas the SFM employs additional image information such as
edges.
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L3

(a) image with (b) SFM ) Sela NN (d) Sela NN (e) sub-BU3SDFE
landmarks with details

(h) Sela NN (i) Sela NN (j) sub-BUSDFE
with details

(f) image with
landmarks

(k) image with (1) SFM (m) Sela NN (n) Sela NN (o) sub-
landmarks with details BU3DFE

Figure 6.11: Illustration of image input with landmarks, taken from the set
of published images of the reference Sela NN [77], with cor-
responding 3D reconstructions obtained by different models.
(a),(f),(k) show the original input images with detected land-
marks. The 3D reconstructions in (b),(g),(1) are obtained by
SFM, in (c),(h),(m) by Sela without and in (d),(i),(n) with fine
details, while in (e),(j),(o) results of the proposed model are
presented.
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Q

) SFM

(a) image with land- (b) Sela NN  (c¢) Sela NN

) sub-
marks with fine BU3DFE
details

(f) image with land- ) Sela NN (h) Sela NN ) SEM (j) sub-BU3DFE

marks with  fine

details
(k) image (1) Sela NN ) Sela NN with  (n) SFM (o) sub-FW
with land- ﬁne details

marks

Figure 6.12: Illustration of image input with landmarks, with correspond-
ing 3D reconstructions obtained by different models. (a),(f),(k)
show the original input images with detected landmarks. The
3D reconstructions in (b),(g),(1) are obtained by SFM, in
(¢),(h),(m) by Sela without and in (d),(i),(n) with fine details,
while in (e),(j),(0) results of the proposed model are presented.
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7 Summary and Conclusions

Creating a versatile 3D face model, which can be adapted to represent a
various range of human faces and expressions, while also enabling creating
unseen facial expressions of the same person is a complex task at its own.
In this work it is shown how to obtain such a model directly from a set of
3D face scans.

In Chapter 3 selected face databases are presented and compared with
respect to their properties. Considering not all databases are well suited for
creating a 3D face model, careful prerequisites were defined to serve as basis
of comparison. Concluding there is not yet a face database which fulfills all
demands.

To retrieve a balanced set of dense corresponding 3D faces directly from
a set of 3D face scans proved to be challenging. Chapter 4 first describes
criteria which have to be fulfilled in order to obtain a high-quality face model
from 3D face scans, and how they have to be processed, and aligned in space
and time. This includes the definition of outliers as points outside of the fa-
cial surface or inside of the mouth, whose detection and deletion is described.
Therein a problem is addressed and resolved which is only rarely discussed
in the literature, which is the automatic adaptation of erroneous landmarks.
Thereafter an improvement of the Coherent Point Drift (CPD), which is a
method for nonrigid registration of point sets, was proposed as CPD+ and
the effect of its parameters evaluated. An additional contribution of this
chapter consists of an objective quality measure, which quantifies different
predefined demands in specific functions. These are categorized into three
groups which consider distinct areas, i.e. geometric, point-based, and cor-
respondence quality measures, each scaled from zero to one. To verify a
sensible set of functions an additional correlation analysis was performed to
erase redundancy and select a meaningful subset among them. The resulting
joint function was designed for known and unknown true correspondences
to represent the quality of resulting estimations by one scalar value. Since it
can be automatically computed it is possible to determine the best parameter
set for one algorithm automatically. We found that the traditional and wide-
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spread quality measure of Euclidean distances between corresponding points
alone is insufficient, because it does not account for different aspects of the
desired quality of dense correspondence between faces undergoing nonrigid
deformations. Using synthetic data with known correspondences and real
3D face scans from databases with unknown correspondences it was shown
that the proposed CPD+ outperforms two other correspondence estimation
algorithms: one is the traditional nonrigid iterative closes point (nICP), and
the other is named ECPD (Extended Coherent Point Drift), which actu-
ally incorporates prior knowledge similarly as the proposed CPD+, yet the
differences in theory prove to influence the practical results in our favor.

After spatial alignment by nonrigid registration and correspondence es-
timation was established, an algorithm for temporal alignment was pro-
posed. This process is mandatory for databases containing time-varying
data, such as recordings of persons performing facial expressions, to retrieve
synchronous facial movements. The contributions of this section consist of
a representation of expression intensity, which is robust against outliers and
offers various applications. Apart from previous works this one-dimensional
feature can be estimated automatically from 2D or 3D points without anno-
tations, instead only a general motion pattern is assumed. Apart from the
application of temporal alignment to synchronize facial motion patterns, it
was used to unveil person-specific emotion cluster, thereby demonstrating
that emotions are performed subjectively. At this point 3D face scans can
be processed such that they are spatially and temporally well aligned and
the resulting balanced data can be sorted into a data tensor, which is used
in the following.

In Chapter 5 four tensor face models, build from three different databases
were presented, along with two reference models. As part of the contribu-
tions, the applied factorization approach revealed a specific structure, which
was used to improve the estimation of the model parameters, by enforcing
reasonable constraints on the model parameters. This substructure suggests
that the expression labeled as neutral is not the actual origin of all emo-
tions. In fact the expressions, which belong to one emotion but performed
with different intensities form linear substructures which intersect approxi-
mately in one point. This apathetic facial expression prevails a fully relaxed
face, whereas the faces labeled as neutral show a larger variability, which
some persons perform with open mouth or a rather happy face. This is a
result of the fact that many face databases contain posed expressions instead
of spontaneously performed ones. Therefore defining apathy as the new cen-
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ter of all expressions leads to specific model designs enabling to decouple
the emotion and its strength. In fact we showed that this structure and
apathetic facial expression can be found in different databases and hence
conclude that the previously discovered apathy mode is neither a result of
overfitting, nor is it a property limited to one dataset.

In Chapter 6 applications were presented to investigate the performance
of the proposed face models on different tasks. First the benefit of the
apathetic facial expression was demonstrated by synthesizing 3D faces for
facial animation, either employing the apathetic or the neutral expression. If
traditional interpolation methods are used to interpolate between emotions,
the resulting intermediate faces unveil undesired mixtures of expressions,
whereas using the new expression apathy to synthesize facial animations
which change between distinct emotions is possible without mixing them.
Additionally the newly synthesized apathetic expression encourages the use
of face neutralization for further usages.

Afterwards in order to investigate effects of the parameterizations of the
tensor models, they were used to approximate 3D faces, allowing for per-
son and expression transfer by changing the estimated model parameters to
known values. This was possible by carefully designed experiments, where
either one person or one level was deleted from the original data tensor. The
reduced data tensor then served as the basis to re-estimate the model, while
the left-out shapes were employed as input unknown to the model. Thereby
it was demonstrated that the proposed model parameterizations all clearly
outperform the basic method for expression transfer, which suggests that
the proposed models separate person and expression better than the basic
model. Among the three proposed tensor face model parameterizations the
latest model proved to perform worst for 3D approximation, but best for ex-
pression transfer. Therefore with each model evolution in terms of changing
the parameterization, this criteria improved. An additional improvement
was observed if multiple input shapes were sharing either one emotion or
person parameter vector. On the other hand for the person transfer the
differences in performance were clearly less apparent, suggesting that the
variation between emotions are greater than between individual shapes.

Finally the different models were used to create dense 3D reconstructions
from image input. For this experiment first the Bosphorus database was
used, which offers face images and corresponding 3D face scans, hence noisy
ground truth 3D information was available. Using the true 3D face shapes
and their approximated face model counterpart, an objective quality mea-
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sure is defined from Euclidean distances, between estimated dense point
correspondences from on rigid registration. Thereafter the same experiment
was conducted employing images without known ground truth. For the ex-
periments on the Borphorus database we found that the proposed models
outperform the two State-of-the-Art methods, even though one of the com-
peting models was specifically designed for the sole purpose of estimating
detailed 3D face reconstructions from images. Yet there are many examples
where the the neural network-based approach of Sela failed to reconstruct
an actual face, but instead lead to completely deformed output, which can
assumed to be a result of a large visual distance between the image input
and the image data used for training the network, because this is a com-
mon problem of these approaches. On the other hand the second competing
model based on a morphable model, performed a lot better, but was less
expressive than our proposed models, therefore matched the true 3D face
shapes less well. To estimate 3D from 2D, first 2D landmarks were esti-
mated for each image, and sparse correspondences between the landmarks
and each of the three databases were manually defined. Then the proposed
tensor face models were used in conjunction with a projective camera model
projecting 3D model points to the 2D image plane. The camera parameters
were estimated by DLT (Direct Linear Transform) in an iterative alternating
scheme with the model parameters. Based on this application an additional
contribution was shown for the proposed parameterizations, that the model
parameters can still be estimated by a linear equation system even though
we employed a nonlinear camera model.

The dense 3D reconstructions presented in this work proved to be of good
quality considering that these are based on sparse 2D landmarks only, which
are misplaced in some cases, especially for unsymmetrical or more extreme
facial expressions. Therefore currently the accuracy of 3D reconstructions is
limited by the quality of the landmarks.

The models are presented as triangular meshes without texture. This
design was chosen on purpose because thereby structural differences and
changes cannot be covered by texture, which is common in the literature to
mask differences to the desired output. In the current framework the texture
of underlying images can be easily added to the 3D triangular mesh by using
the estimated 3D-to-2D projections.

Summarizing: This work presented different designs of 3D face models,
based on factorization of varying data tensors built from carefully processed
3D face scans. Each of the three proposed parameterizations offers applica-
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tions such as: synthesis of unseen expressions, 3D approximation, transfer
of expression and person, and 3D reconstruction from sparse 2D input.

7.1 Future Work

Considering the current face tensor model does not contain eye-globes or
teeth, they can be added to the proposed tensor models or more precisely
to each data tensor holding the data of one database. Because these facial
parts do not alter their shape, they only perform rigid movements, and can
be added with minor effort.

For future work it is worth to try yet another database to build a tensor
model from, if it prevails more variance in face shapes, and objective action
unit are performed instead of posed emotions. Alternatively, combining
different databases is a common practice in the literature to enhance the
variance. Especially in this case of joining different databases the resulting
data may be unbalanced resulting in a data tensor with missing entries,
which can be replaced by estimates.

The final application of 3D reconstruction from images currently solely
relies on a sparse set of 2D face landmarks. Therefore apart from using im-
proved landmark detectors in the future, improvements can be incorporated
by making use of additional image information, such as edges. These have
already been employed successfully in one of the reference models and oth-
ers. Additionally since the second reference model applied additional facial
details on the 3D facial surface for improvements, this can be considered an
additional possibility for adjustment.
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Appendix

A 3D Rotations and Computing Optimal Angles

Assuming two sets of points P € RV*3 and P € RV*3 with known one-to-
one correspondences are provided. Suppose the points are roughly aligned,
such that only 3D rotation needs to be accounted for, then we aim to min-
imize the distance between the to be rotated points p; € P and p; € P,
which is

N
o1 .
min 37 Y- lnot(arps) ~ Bl (A1)

where rot(a,p;) represents the function, which performs a 3D rotation around
the z-, y-, and z-axis of the point p;, using the angles a = (am,ay,az)T. An
arbitrary rotation is composed of three functions, each referring to one of
the three axis:

rot(ap) = 1. (s (a7 (0.p)) (A2
= R.(a:)Ry(ay)Re(az)p. (A3)

Please note that the order differs in the literature. In the following the three
functions are defined and the optimal angle for each axis is analytically
determined separately, thereby assuming that the other two rotation angles
are fixed.

z-axis rotation
A 3D rotation of the point p = (pg,py.p-)T € R? around the z-axis by angle
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o 1is defined as

1 0 0 Pz
rz(az,p) = Re(az)p=1 0 cos(a)  sin(ay) Dy (A.4)
0 —sin(ay) cos(ay) D2
Pz Dz
= pycos(ag) +pysin(ag) | =| by | =D (A.5)
—py sin(ay) + p, cos(ay,) D2

In the following we substitute ¢ := cos(a;) and s := sin(a, ). Assuming the
rotation angle a, should be determined, while the other two remain fixed,
the Eq. (A.1) becomes:

fﬁ - N Z”TI ava’L ﬁl”% (AG)

This can be rewritten as follows

Z —Pi) = P, pi — 2D, Pi + P, Di (A.7)
—_ SN~

= =K

N

Z + (piyc + pi, 28)? + (=piys+ pi,ZC)Q (A.8)

=1

- 2(pzzﬁz,az + (pi,yc + pi,zs)ﬁi,y + (_pi,ys +pi,zc)ﬁi,z> + K

N
1
= D P, +pE) + R ) (A9)

i=1
-2 (pi,xﬁi,m + C(pi,yﬁi,y +pi,zﬁi,z) + s(pi,zﬁi,y - pl,yﬁz,z)) + K

To get the optimum value, compute the derivative and set it to zero:

N
df 1
d; ( N Zz:: _283(p12,y + pzz,z) + QCS(p?,y + pzz,z) (AlO)
~ ~ ~ ~ !
-2 (_S(I)i,ypi,y + pi,zpi,z) + C(pi,zpi,y - pi,ypi,z)) =0
S N C N
< N Z(szﬁzy + Di,2Piz) = N Z(pi,zﬁi,y — DiyDi,z) (A.11)
i=1 i=1
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Rearranging and substituting back ¢ = cos(a,,) and s = sin(«,,) gives

N
. pi,zﬁi,y - pi,yﬁi,z
sin(a,) =1
tan(ay) = cos(az) == . (A.12)
X PiyDiy PP
2 PiyPi, 2Pi,

The rotation angle around the y- and z-axis can be retrieved similarly, hence
for these cases their definition and the angle is provided, which can be cal-
culated given two sets of points.

y-axis rotation
To rotate a point p around the y-axis by the angle o, compute:

cos(ay) 0 —sin(ay) Da
ry(ay,p) = Ry(oy)p = 0 1 0 Dy (A.13)
sin(ay) 0 cos(ay) D2

Pz cos(ay) — p, sin(ay)
= Dy (A.14)
pe sin(ay) + s cos(ay)

Similarly as previously presented for the z-axis, the rotation angle around
the y-axis can be retrieved as

N
Sin(ay) _ 1; PixPi,z — Pi,zDix

t = = A.15
an(o‘y) cos(ay) N _ _ ( )
Z Di,aDi,x + Di,zPi,z
i=1
z-axis rotation
To rotate a point p around the z-axis by the angle «,, compute:
cos(a,) sin(ay) 0 Da
r.(a,,p) = R(a)p= [ —sin(a,) cos(ay) 0 Dy (A.16)
0 0 1 D=
Pa cos(a) + py sin(a)
= | pycos(a,) — pysin(a;) (A.17)
Pz
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Similarly as previously presented for the z-axis, the rotation angle around
the z-axis can be retrieved as

N
. B SiH(O[Z) B Z;pi,ypi,z — PixDiy Al
an(a;) = — == (A.18)

cos(a;) ~ ~
Z pi,zpi,:v +pi,ypi,y
i=1

B Normal Vector of 3D Points

In Ch. 4 vector normals are applied based on triangles, and points. While
the definition of normals for triangles is well-known, the latter is not. In this
work, we employ an implementation to calculate point-wise normals which is
based on [92]. Given a set of points, the normal vector for one point p; € R3
is defined based on its six neighbors, which are then used to estimate a local
plane. This plane has a well-defined normal vector, which represents the
normal of the considered point.

C Parameterization of Lines along Principal Axis

Suppose a PCA has been performed on a set of 3D points with mean m and
resulting first principal component direction v, then each 3D point on the
line can be parameterized as follows:

lla)=(1-a)m+a(m+v) (C.1)
=m —am +am + av (C.2)
=av+m (C?))
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To find the value a for a given 3D point p on the line, as p E I(a*), the
Euclidean distance between the point and the line must be minimized as

0" = axgmin 2 i(e) - I3 (C.a)
fla) = %Hl(a) —pli3 = (I(a) = p)" (i(e) — p) (C.5)
:%(av+m—p)T(av+m—p) (C.6)

L fa) = o™ (v +m —p) =0 (c.7)
= avTv+vT(m—p)=0 (C.8)

o = w (C.9)

Due to the fact that v is orthonormal, this simplifies to

o =v" (p—m) (C.10)

D Apathy Estimation - How to Find the Point
Closest to Several Lines

In Sec. 5.3.1 the apathy vertexr is defined as the point a resulting from
intersection of E' = 6 lines, where each is based on several levels of the same
emotion. Considering for each of the emotions its representing line has been
estimated according to Sec. C, this results in E lines as

lk(ak) =apvr +mg, k=1,...,F. (D.l)

Given the assumption that the apathy vertex ag is the one point where all
these lines intersect it lies on each of these lines, which means 3o}, such
that ag = l1(af) = ... = Ig(a};). However due to the noise in the data,
it cannot be expected that this is the case, instead for each line one point
can be found, which is closest to the apathy vertex, hence the mean of these
points defines the ag as

E
1 *
apg = E;lk(ak), (D2>
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where the best parameter values aj can be determined by solving the fol-

lowing optimization problem, based on & = (o, ... ,aE)T
min f(a) (D.3)
1 E
= EZHlk(%) — aoll3 (D.4)

=

EZHlk ) Z (a3 (D.5)

To compute the first derivative of this function f : R¥ — R*, we introduce
the function rj, : RF — RP | as

1 E
fla)= 2> (@) (@) (D.6)

E
k=1
1 E
() = le(ar) — & > le(a) (D.7)
e=1
| E
= iU + my, — 5 Z(aeve +m,) (D.8)
e=1

The first partial derivatives of the vector-valued functions r; are gathered
in its Jabobian matrices J,, (a) € RP*E as

I 1 1 1

Ir (o) = (1— E) vl’_Evz’””_EvE} , (D.9)
i 1 1 1 1

Iy (@) = val, (1E> ’UQ,E’Ug,...,E’UE:| (D.10)

[ 1 1 1
JTE(Q): —E'Ul,...,—E’UE_l, (1—E> ’UE:| (Dll)
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which faciliates the computation of the first derivatives of f, resulting in its
gradient:

E
Vi) ==Y (@) ri(a) =0. (D.12)
k=1

&y vo

To obtain an estimate for a* optimization methods such as the gradient
descent or Quasi-Gauss-Newton can be applied. The presented approach is
not restricted to 2D or 3D and can be applied to any dimension if D < E.

E Examples of Dense 3D Reconstruction of
Bosphorus Database

In this section 21 examples of dense 3D reconstructions from 2D input of the
Bosphorus database [50] are presented, in addition to the results in Sec. 6.3.
Fig. E.1-E.3 show selected examples of 3D reconstructions from 2D input
using different models. The examples depict persons with IDs 91, 94, and
95 of the Bosphorus database, each performing basic emotions. FEach figure
consists of six rows and seven columns, where each row illustrates the data
for one of the six emotions: anger, disgust, fear, happiness, sadness, and
surprise. Each column refers to wither true data or result from a model,
indicated by the column title matching the previous abbreviations used in
Sec. 6.3. The first column shows the original input image with 2D automat-
ically detected landmarks, followed by the second column with the original
3D scan. Columns three and four contain the results of the two reference
models: Sela NN refers to a neural network approach of [77], and SFM is the
Surrey Face Model [74] based on a Morphable Model employing additional
image information [75]. Columns five to seven show results of the proposed
tensor models build from three different databases: BUSDFE, BU4DFE and
FW. Please note that the two reference models employ image information,
whereas all tensor models rely on a subset of the shown 2D landmarks only.

The presented examples confirm the observations reported in Sec. 6.3:
i.e. it can be see that reconstructions from Sela NN often lead to highly
deformed shapes hardly recognizable as faces, which never happens for any
of the other models. For the remaining models the facial expressions are
often matched better than the shapes. Additionally the employed database
can be recognized from each example.
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Input 3D scan  Sela NN SFM BU3DFE BU4DFE FW

Figure E.1: 3D reconstructions of person 91. The seven columns contain: (1)
original image with detected landmarks, (2) ground truth scan,
(3)-(4) results of reference models, (5)-(7) results of our model
build from different databases.
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Input 3D scan  Sela NN SFM BU3SDFE BU4DFE FW

¢
(

Figure E.2: 3D reconstructions of person 94. The seven columns contain: (1)
original image with detected landmarks, (2) ground truth scan,
(3)-(4) results of reference models, (5)-(7) results of our model
build from different databases.
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Sela NN

Figure E.3: 3D reconstructions of person 95. The seven columns contain: (1)
original image with detected landmarks, (2) ground truth scan,
(3)-(4) results of reference models, (5)-(7) results of our model
build from different databases.
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