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Notation

Numbers and Arrays
a A scalar
A A set
a A vector
A A matrix
Aᵀ Transpose of matrix A
A−1 Inverse of square matrix A
〈a,b〉 Scalar product of a and b
a ? b Convolution of a and b
df
dx

Derivative of f with respect to x
d2f
dx2 Second derivative of f with respect to x
∇f Gradient of f
bxc Integer part of x
||a|| L2-norm of a
det(A) Determinant of A
I Identity matrix
1 Matrix of ones
0 Zero matrix
E[X] Expectation of random variable X
[n] Set of natural numbers from 1 to n
[n]0 Set of natural numbers from 0 to n
[n1 : n2] Set of natural numbers from n1 to n2

Symbols
f Frame index
nR Number of frames in a recording
R Set of frames indices of a recording

X
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Notation

d ∈ D A detection d in a set of detections D
Df Set of all detections in frame f

γ ∈ Γ A trajectory γ in a set of trajectories Γ
supp(γ) Set of frames for which trajectory γ contains detections
φ Unary feature
ψ Pairwise feature
P Deterministic polynomial time complexity class
NP Nondeterministic polynomial time complexity class
L A loss
∧ Logical AND
∨ Logical OR
O(n) Big O notation
P Probability measure

Graphs
G A graph
v ∈ V A vertex v in a vertex set V
e ∈ E An edge e in an edge set E
GV The vertex set of graph G
GE The edge set of graph G
nnod Number of nodes
P A path
vw-paths(G) The set of paths in G starting at v and ending in w

G[Ṽ ] The subgraph of G induced by the vertex set Ṽ
dG(v) Neighborhood of node v within the graph G
Vf All nodes at frame f

c Vertex weights
q Edge weights
Ğ = (V̆ , Ĕ) Lifted graph Ğ with edge set Ĕ and vertex set V̆
q̆ĕ Weight of lifted edge ĕ
R Reachability relation
nobj Number of labels

Optimization
P Polyhedron
PB Polyhedron P with additional binary constraints
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Notation

P◦B Continuous relaxation of PB
P(A,b) A polyhedron in canonical H-representation
conv(A) Convex hull of a set A
H≤ Closed half-space
x,y Binary indicator variables
[v ⇀ k] Linear index to indicator variable for the assignment of node v to label

k

WGL(G) Weighted graph labeling problem defined on graph G
WGLNMS(G) Problem WGL(G) with additional non-maxima suppression
RWGL(G) Continuous relaxation of WGL(G)
PB(G) Underlying polyhedron of problem WGL(G)
PNMS
B (G) Underlying polyhedron of problem WGLNMS(G)
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Abstract

This dissertation deals with methods for camera-based multiple object tracking (MOT).
More precisely, the task is to compute the association between objects of a specified
class and corresponding image contents of a video recording. To tackle this extremely
difficult problem, the so-called tracking-by-detection paradigm is usually employed:
First, object detections are generated for the entire recording. Then, an association
between detections and objects is computed. Finding the correct assignment is called
the data association problem. A solution to the problem provides the trajectories for
the desired objects.
Since the tracking-by-detection paradigm is computed sequentially, errors of the detector
as well as wrongly assessed temporal consistencies between detections can lead to
propagation of errors. Therefore, the employed data association model substantially
determines the accuracy of the computed trajectories. In order to achieve highly
accurate results, this thesis focuses on building robust data association models. At the
same time, standard detectors are used to meaningfully compare the corresponding
results with previous approaches.
Many established methods use data association models that exploit temporal consistency
only between detections that directly follow each other in a trajectory. However, such
simple models are highly susceptible to the errors mentioned above. This thesis
presents more robust tracking methods by using higher-order data association models
(higher-order multiple object tracking). Here, all pairs of detections associated with
a trajectory, and not only the consecutive ones, contribute to the evaluation of the
consistency of a trajectory. To comprehensively exploit the entire information of a
video recording, this thesis formulates two data association models, each as a global
optimization problem. Accordingly, the recordings are processed offline, using all
information available. However, the underlying optimization problems are NP-hard,
which makes it difficult to compute good solutions. A suitable optimization method
is presented for each proposed data association model. The corresponding optimizer
yields in practice near-optimal or even (to the best of our knowledge for the first time)
provable global optimal solutions, depending on the model used.
In the first part of this thesis, a method for improved utilization of the signals available
at a point in time is presented. While the standard tracking approach uses only object
detections, the proposed method allows multiple input signals to be fused globally for
the tracking task. A higher-order data association model is proposed that evaluates
consistency within a signal as well as between different signals. By using complementary
signals, weaknesses of individual signals can be compensated and advantages can be
combined. The proposed data association model is based on an NP-hard weighted
graph labeling problem. Due to the complexity of the problem, computing an optimal
solution is difficult. A suitable approximate optimization method for the graph labeling
problem is presented. Evaluations show that near-optimal solutions are generated with
this method. The benefits of the fusion are analyzed using two applications of the
graph-labeling formulation. (i) To exploit more image information, person detections
are combined with head detections. It is shown that the fusion achieves much better
results than when only using person detections. In particular, the fusion helps to detect
and remove false-positive person detections, as these often do not have matching head
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detections. In addition, the fusion approach results in persons being tracked for longer
periods of time, since in the case of missing person detections, head detections can be
used to locate and track persons. (ii) A video is fused with inertial measurement units
(IMU). For this purpose, it is assumed that each person to be tracked wears an IMU on
his or her back. Acceleration and orientation measurements from the IMUs are linked
with corresponding values estimated from the video recording. The corresponding graph
labeling problem generates trajectories that are temporally consistent with respect
to the video recording and the IMU signals. The fusion leads to significantly better
trajectory results compared to purely video-based MOT methods, especially when the
visual information is impaired (e.g., due to motion blur or similarly dressed persons).
Missing detections can be reconstructed very robustly by the fusion so that the method
has a lower dependence on the quality of the detections compared to purely video-based
methods. In addition, the proposed fusion allows people to be identified in the image
since each trajectory is associated with an IMU. Overall, the methods from the first
part of this thesis demonstrate that the proposed fusion formulation enables to exploit
provided data more extensively by being able to process more image information and
integrate more signals. This substantially improves tracking accuracy.
Nonetheless, object detections provide valuable information not fully exploited by
existing methods. Higher-order data association models are either not used at all due
to their complexity or are based on heuristic optimization methods. Both cases can
lead to false associations.
In contrast, in the second part of this thesis, an optimization method is presented
that allows for the first time to solve a suitable higher-order data association model
by means of global optimization despite being NP-hard. This enables to exploit
long-term temporal information and long-range temporal interactions. To this end, a
novel data association model is proposed and described as a binary linear program.
Efficient separation algorithms are presented to solve the optimization problem within
a cutting-plane method. The global optimization enabled the method to outperform
the state of the art on all tested datasets by a large margin. In addition, conducted
experiments show that the method benefits significantly from the use of long-term
information. On the datasets used, the presented method leads to nearly optimal
assignment accuracies for given detections. Future work can therefore focus on other
areas, such as a more accurate extraction of detections. Overall, the second part of this
thesis shows that improved exploitation of the information provided over time leads to
substantial improvements in trajectory results. For the first time, a global optimization
method has been successfully used to solve higher-order data association models.

Keywords: Multiple Object Tracking, Video, Higher-Order Data Association Models,
Sensor Fusion, Binary Linear Program, Binary Quadratic Program, Global Optimal
Solution
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Kurzfassung

Diese Dissertation befasst sich mit Verfahren zur kamerabasierten Verfolgung mehrerer
Objekte (Multiple Object Tracking, abgekürzt MOT). Genauer besteht die Aufgabe
in der Zuordnungsberechnung zwischen Objekten einer gewählten Objektklasse und
zugehörigen Bildinhalten einer Videoaufnahme. Um dieses äußerst schwere Problem
anzugehen wird für gewöhnlich das sogenannte Tracking-durch-Detektionen Paradigma
verwendet: Als Erstes werden für die gesamte Aufnahme Objektdetektionen erzeugt. Im
zweiten Schritt werden die Zuordnungen zwischen Detektionen und Objekten berechnet.
Das Finden der korrekten Zuordnungen wird als Datenassoziationsproblem bezeichnet.
Aus der Lösung ergeben sich die Trajektorien der Objekte.
Da das Tracking-by-Detection-Paradigma sequentiell berechnet wird, können sowohl
Fehler des Detektors, als auch falsch bewertete zeitliche Konsistenzen zwischen De-
tektionen zu Fehlerfortpflanzungen führen. Entsprechend bestimmt das verwendete
Datenassoziationsmodell die Genauigkeit der Trajektorien wesentlich. Um möglichst
genaue Resultate zu erreichen, fokussiert sich diese Arbeit auf die Erforschung robuster
Datenassoziationsmodelle. Gleichzeitig werden Standard-Detektoren verwendet, um
die entsprechenden Ergebnisse aussagekräftig mit vorherigen Ansätzen vergleichen zu
können.
Viele der etablierten Verfahren nutzen für die Datenassoziation lediglich die zeitliche
Konsistenz zwischen Detektionen aus, welche in einer Trajektorie direkt aufeinander-
folgen. Solch einfache Modelle sind jedoch stark anfällig gegenüber den erwähnten
Fehlern. In dieser Arbeit werden robustere Tracking-Verfahren durch die Verwen-
dung von Datenassoziationsmodellen höherer Ordnung (Higher-Order Multiple Object
Tracking) präsentiert. Dabei tragen nicht nur aufeinanderfolgende, sondern alle Paarun-
gen von Detektionen, welche einer Trajektorie zugeordnet werden, zur Bewertung der
Konsistenz einer Trajektorie bei. Um die Gesamtinformationen einer Videoaufnahme
umfassend auszunutzen, formuliert diese Arbeit die Datenassoziationsmodelle als globale
Optimierungsprobleme. Entsprechend werden die Aufnahmen offline, unter Verwendung
aller verfügbaren Informationen verarbeitet. Die zugehörigen Optimierungsprobleme
sind jedoch NP-schwer. Entsprechend ist es schwierig, gute Lösungen zu berechnen.
Zu jedem vorgeschlagenen Datenassoziationsmodel wird ein passendes Lösungsverfahren
präsentiert, welches in der Praxis je nach verwendetem Model nahezu optimale oder
sogar (nach unserem Wissen erstmalig) beweisbar global optimale Ergebnisse liefert.
Im ersten Teil dieser Arbeit wird ein Verfahren zur verbesserten Ausnutzung der zu
einem Zeitpunkt bereitstehenden Signale präsentiert. Während der Standard-Tracking-
Ansatz nur Objektdetektionen verwendet, erlaubt die vorgeschlagene Methode, mehrere
Eingangssignale global für die Tracking-Aufgabe zu fusionieren. Ein Datenassoziations-
model höherer Ordnung wird vorgeschlagen, bei dem die Konsistenz sowohl innerhalb
eines Signals, als auch zwischen verschiedenen Signalen bewertet wird. Durch die
Verwendung komplementärer Signale können Schwächen einzelner Signale kompen-
siert und Vorteile kombiniert werden. Das vorgeschlagene Datenassoziationsmodell
basiert auf einem NP-schweren gewichteten Graph-Labeling Problem. Auf Grund der
Komplexität des Problems ist die Berechnung einer Optimallösung schwierig. Es wird
ein dafür passendes, approximatives Optimierungsverfahren für das Graph-Labeling
Problem vorgestellt. Die Evaluierungen zeigen, dass damit nahezu optimale Lösungen
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erzeugt werden. Der Nutzen der Fusionierung wird anhand von zwei Anwendungen der
Graph-Labeling Formulierung analysiert. (i) Um mehr Bildinformationen auszunutzen,
werden Personendetektionen mit Kopfdetektionen kombiniert. Es zeigt sich, dass
durch die Fusion wesentlich bessere Ergebnisse als bei ausschließlicher Verwendung von
Personendetektionen erreicht werden. Insbesondere hilft es falsch-positive Personen-
detektionen zu erkennen und entfernen, da diese oft keine passenden Kopfdetektionen
haben. Ferner führt der Fusionierungssansatz zu einer längeren Verfolgung von Personen,
da im Falle von fehlenden Personendetektionen die Kopfdetektionen zur Lokalisierung
und Verfolgung der Personen verwendet werden. (ii) Es werden Inertialmesseinheiten
(IMUs) mit einer Videoaufnahme fusioniert. Dazu wird angenommen, dass jede zu
verfolgende Person eine IMU am Rücken trägt. Es werden die Beschleunigungs- und
Orientierungsmessungen der IMUs mit entsprechend aus der Videoaufnahme geschätzten
Werten gekoppelt. Das entsprechende Graph-Labeling Problem erzeugt Trajektorien,
welche sowohl zeitlich konsistent bezüglich der Videoaufnahme, als auch zu den zuge-
hörigen IMU-Signalen sind. Die Fusionierung führt insbesondere dann zu erheblich
besseren Trajektorienergebnissen gegenüber rein videobasierten MOT-Verfahren, wenn
die visuellen Informationen beeinträchtigt sind (etwa durch Bewegungsunschärfe sowie
bei ähnlich gekleideten Personen). Fehlende Detektionen lassen sich durch die Fusionie-
rung sehr robust rekonstruieren, sodass die Methode eine geringere Abhängigkeit von
der Qualität der Detektionen, verglichen mit rein videobasierten Verfahren, aufweist.
Darüber hinaus ermöglicht die Fusionierung, Personen im Bild zu identifizieren, da jede
Trajektorie einer IMU zugeordnet wird. Insgesamt zeigen die Methoden aus dem ersten
Teil dieser Arbeit, dass die vorgeschlagene Fusionsformulierung es ermöglicht, bereit-
gestellte Daten umfassender zu nutzen, da mehr der vorhandenen Bildinformationen
und Signale integriert werden können. Dadurch verbessert sich die Tracking-Genauigkeit
erheblich.
Nichtsdestotrotz stellen Objektdetektionen wertvolle Informationen bereit, welche durch
bestehende Verfahren nicht komplett ausgenutzt werden. Datenassoziationsmodelle
höherer Ordnung werden auf Grund der Komplexität entweder gar nicht verwendet
oder basieren auf heuristischen Optimierungsverfahren, wodurch falsche Zuordnungen
erzeugt werden können.
Im Gegensatz dazu wird im zweiten Teil dieser Arbeit ein Optimierungsverfahren
vorgestellt, welches es erstmalig ermöglicht, ein dafür passendes Datenassoziationsmo-
dell höherer Ordnung mittels globaler Optimierung zu lösen, wodurch sich insbesondere
Langzeitinformationen und -interaktionen ausnutzen lassen, obwohl das Problem NP-
schwer ist. Dazu wird ein neues Datenassoziationsmodell vorgeschlagen und als ein
binäres lineares Programm beschrieben. Es werden effiziente Separierungsalgorithmen
vorgestellt, um das Optimierungsproblem mittels eines Schnittebenenverfahrens zu
lösen. Durch die globale Optimierung konnte das Verfahren auf allen getesteten Daten-
sätzen den Stand der Technik erheblich verbessern. Außerdem zeigen durchgeführte
Experimente, dass die Methode wesentlich von der Verwendung von Langzeitinforma-
tionen profitiert. Die vorgestellte Methode führt auf den verwendeten Datensätzen zu
einer nahezu optimalen Zuordnungsgenauigkeit bei gegebenen Detektionen. Zukünftige
Arbeiten können sich daher auf andere Bereiche, wie der genaueren Extraktion von
Detektionen konzentrieren. Insgesamt zeigt der zweite Teil dieser Arbeit, dass die
verbesserte Ausnutzung der über die Zeit bereitgestellten Informationen zu einer erhe-
blichen Verbesserung der Trajektorienergebnisse führt. Erstmalig wurde ein globales
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Optimierungsverfahren zur Lösung von Datenassoziationsmodellen höherer Ordnung
erfolgreich eingesetzt.

Schlagwörter: Verfolgung mehrerer Personen, Video, Zuordnungsmodelle höherer
Ordnung, Sensorfusion, Binäres lineares Programm, Binäres quadratisches Programm,
Global optimale Lösung

XVII

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


1 Introduction

Computer systems capable of sensing and interpreting their environment have the
potential to positively impact human lives in numerous areas, for instance road safety,
as a tool to support urban planning, or in human-computer interaction.
A prerequisite towards obtaining a high-level understanding of the environment is the
localization of all objects of a specified object class and the retrieval of their movements
using a numerical representation. This task is commonly known as Multiple Object
Tracking (MOT) or Multiple People Tracking (MPT) if only humans are to be tracked.

Figure 1.1: Exemplary application of multiple object tracking: Tracking soccer
players for performance analyses (see also Section 3.5).

1.1 Applications

A computer system that tracks multiple objects simultaneously has a wide range of
applications, as briefly highlighted in this section.

Autonomous Driving. Enabling cars to drive autonomously is considered to be a
major improvement to our society [1]. A necessity to achieve this goal is to understand
the surrounding of a car. This includes being able to track other cars and people.
Therefore, tracking objects filmed by a car is a relevant and ongoing research topic [2].
High tracking accuracies are required. At the same time, a fast computation is needed
in order to react quickly. The information obtained from trajectories is used to predict
future movements of other road users and, based on that, decide next actions [3]. Thus,
the number of accidents is expected to be reduced drastically. Several approaches perform

1

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


1 Introduction

tracking based on Radio Detection And Ranging (RADAR) or Light Detection and
Ranging (LIDAR) signals [4]. There exist also methods based on video information [5,
6]. However, tracking cars in a video signal is challenging as different vehicles may look
very similar [7].

Video surveillance. Using MOT, various security-related applications can be imple-
mented. In a surveillance setup, MOT enables the detection of abnormal behavior [8–10].
When tracking cars, accidents or stalled vehicles can be detected as well as cars moving
in unusual directions or with excessive speeds. In an epidemic, when social distancing
is an important measure to limit the spread, an MPT method can be crucial to detect
misconduct [11], take appropriate actions and draw conclusions accordingly.

Object counting. MOT allows counting the number of objects entering, leaving,
or being present in a specified area. When applied to a street scene, MOT provides
quantitative data about road utilization. This can be used to detect traffic jams or lead
to necessary measures such as road extensions or putting up traffic lights. MOT may
also deliver detailed information on the number and the behavior of shop customers [12],
providing useful and necessary information for example when optimizing the placement
of products. Also, tracking information can be used for urban planning [13], e.g., to
construct new train stations [14] that better satisfy the needs and behaviors of citizens.

Vehicle speed estimation. Using a static and calibrated camera, the velocity of
a car, described in three-dimensional (3D) world coordinates, can be estimated by
tracking methods [10]. These cost-effective alternatives to RADAR-based approaches
enable speed limit enforcement.

Sports. For different areas in sports, tracking athletes (see Figure 1.1) provides useful
insights that are either presented to the viewers during a sports broadcast or used to
analyze and optimize the performance of athletes [15–19].

Social behavior. Several works have studied human behavior, such as group dynam-
ics [20] and social force models [21]. It has been shown that integrating such models
into the tracking formulation yields more accurate trajectory results [22, 23]. In turn,
MPT can be used to collect data that allows studying and forming behavior models [14,
24–28].

Animal tracking. Observing the behavior of animals is of great interest to biologists.
While animals with a high activity radius are typically tracked independently by a
Global Positioning System (GPS) device attached to the animals, e.g., birds [29], such
an invasive approach is undesirable, and it is often not applicable to smaller animals.
Thus, several tracking methods have been developed to compute trajectories for animals
based on a video signal [30]. For instance, by using a camera, it is possible to track
bees and, based on that, study the waggle dance [31–33]. Also, analyzing fish behavior
has a long tradition so that different trackers exist, using two-dimensional (2D) [30, 34]
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1.2 The Multiple Object Tracking Problem

Figure 1.2: Example frames from a test sequence [43, 44] that was used to
evaluate the tracking methods of this work. The images are ordered chronologically
from left to right and from top to bottom.

or 3D [35] data. Other works focus on tracking ants [36] or bats [37]. Difficulties in
video-based tracking of animals arise from high similarities of appearance and frequent
occlusions.

Microbiology. Multiple object tracking has also drawn attention in microbiology. For
example, it is possible to track swimming microorganisms from microscopic data [38].
Based on that, motion patterns of organisms can be detected [39]. Closely related
to tracking is lineage tracing [40–42], the tracking of living cells. Here, the setting
differs from the standard tracking setup, as cells may divide. The task is to reconstruct
so-called lineage trees that encode which cells originate from another cell.

1.2 The Multiple Object Tracking Problem

The task of Multiple Object Tracking (MOT) is to localize all objects of a specified class,
e.g., persons or cars, and to capture their movements. Both subtasks use measurements
from sensor data. By assigning each localization to its corresponding object identity,
the trajectory of each object is formed. Thus, a trajectory describes the location of a
corresponding object as a function of time.
Various sensor types can be used to perform the task such as LIDAR [4] or RADAR [45].
Application scenarios based only on these sensors are limited, though. For instance,
LIDAR sensors are relatively expensive1. Using LIDAR or RADAR, object occlusions
cannot be handled well since re-identification is difficult. In contrast, video camera
sensors are cheap, widely used, and allow extracting rich image features that facilitate
re-identification of objects after being occluded. Therefore, this work focuses mainly on

1Prices range from $75.000 down to a few hundred dollars depending on the quality demands and
requirements [46].
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1 Introduction

video-based tracking. Subsequently, this work considers MOT as the task of computing
the locations and trajectories of all objects that appear in a video recording and belong
to a determined object class. Figure 1.2 shows parts of a prototypical sequence to which
the MOT methods of this work were applied.
In the following, the MOT problem is formalized. First, by a general and abstract
definition. Then, the standard procedure to perform MOT is introduced which simplifies
the computational costs so that computing trajectories becomes feasible. Finally, the
methods are further classified into different model types.

1.2.1 Video-based MOT

An MOT method must return the locations of tracked objects in terms of bounding-box
detections2. A detection describes the location and shape of an object in terms of an
axis-aligned rectangle, see Figure 1.3(a). In addition, the MOT method must assign an
identity to each of these detections. Ideally, all detections of a sequence that mark the
same object obtain the same identity. Accordingly, the detections of an identity result
in the trajectory of an object. Figure 1.3(a) demonstrates various challenges an MOT
method needs to cope with. Objects may be partially (or fully) occluded. This often
causes missing or misaligned detections. Further errors that can be seen in Figure 1.3(a)
are double and false positive detections. An MOT method needs to be robust against
these types of errors when assigning detections to identities which poses a challenging
problem. Also, objects may look similar so that creating a method that decides reliably
which detections belong to the same object is challenging. More details about various
challenges in MOT are highlighted in Section 1.3. Finally, an example input image
with corresponding outputs produced by an MOT method, i.e., object detections and
trajectories, is depicted in Figure 1.3(b).
The ultimate goal of MOT is an optimal tracking method. As there is no established
standard terminology for such a method in the literature, a formalization is provided
subsequently.

Definition 1.1. Let R := {1, . . . , nR} and D be the set of frame indices and the set of
detections of a recording, respectively.

(a) A map A : D → {0} ∪ {1, . . . , nobj} of detections to nobj ∈ N identities is called
quasi data association if A−1({n}) 6= ∅ ∀n ∈ {1, . . . , nobj}.

(b) Let Df ⊆ D denote all detections in frame f ∈ R and let o ∈ {1, . . . , nobj} be
an object identity. The set γ := γo := A−1({o}) is a trajectory for object o if
|γ ∩Df| ≤ 1 ∀f ∈ R, i.e., γ contains at least one detection of object o, and at most
one detection of object o per frame. Accordingly, the trajectory of γ at frame f is
given by γ(f) := γ ∩Df.

(c) A quasi data association is called data association if the preimage γo = A−1({o})
is a trajectory for all objects o ∈ {1, . . . , nobj}.

(d) The number of frames nR is the length of a recording.
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(a)

(b)

Figure 1.3: (a) Video frame of the MOT17 test set [44] with superimposed
input detections from the DPM detector [47]. (b) Resulting trajectories using the
tracking method Lif_T of Chapter 4.
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Remark 1.2. Any detection mapped to 0 by A is considered a false positive detection
and is suppressed for the tracking result.

The following definition then categorizes an MOT method.

Definition 1.3. For a recording, a multiple object tracking method returns

(a) a finite set D of bounding-box detections,

(b) a data association A : D → {0} ∪ {1, . . . , nobj} to nobj identities, where nobj ∈ N.

The objective is to create the best possible MOT result, which may be measured in
terms of the errors produced by an MOT method. Since errors may occur both at the
localizations (e.g., by failing to detect an object) and the assignments to identities (e.g.,
by assigning a detection to a wrong identity), assessing the quality of an MOT system
is not straightforward; various metrics have been proposed that all reflect different
characteristics of a tracking result. They are introduced and discussed in Section 2.7.4.
The optimal MOT result is a set of detections D that describe all appearing objects and
the data association A groups all detections to their respective identities. To formalize
an optimal MOT method, let nobj denote the number of all individual objects of a
specified object class that appear in a recording. For object o ∈ {1, . . . , nobj} and frame
f, we assume a labeling function l(o, f) ∈ {0, 1} to output 1 if object o is within the
captured image space at the respective frame, and 0 otherwise.

Definition 1.4. Let R = {1, . . . , nR} be the set of frame indices of a recording. A
multiple object tracking method is optimal if:

(a) There is a bijection b from {(o, f) ∈ {1, . . . , nobj} ×R | l(o, f) = 1} to D such that
b ((o, f)) =: d ∈ D if and only if detection d localizes3 object o in frame f.

(b) The data association A of the MOT method satisfies for all d1,d2 ∈ D, A(d1) =
A(d2) if and only if d1 and d2 correspond3 to the same identity.

Hence, an optimal MOT method localizes each object by exactly one detection box
according to Definition 1.4(a). Moreover, if Definition 1.4(b) holds, the data association
assigns each object correctly to its identity.
Optimally solving the MOT problem is demanding as it includes the two tasks object
detection (which is a research field on its own [48, 49]) and data association (which
often leads to difficult combinatorial problems [50–55]). These two problems pose
correlated tasks: detections apparently influence the data association. Conversely, the
data association may reflect information about the presence of objects in time and
space. Some works exploit this relation by formulating an optimization problem that
simultaneously optimizes both tasks [56–60].

2A formal definition of a bounding box detection is provided in Section 2.7.
3 There are different definitions for this term, each resulting in a different assessment of a tracking

method, see Section 2.7.4.
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1.2 The Multiple Object Tracking Problem

1.2.2 Tracking-by-detection

The predominant approach to tackle the MOT problem is to consider the two necessary
outputs of Definition 1.3 as consecutive tasks [54, 61–67]. Such a procedure is called
the tracking-by-detection paradigm [68]. In the first step, an object detector returns for
each frame independently the putative locations of all objects, yielding a set of initial
detections D′ for a sequence. In the second step, these hypotheses are linked across
frames to form trajectories, ensuring consistency between all detections of an identity
and removing implausible detections. The final result is the set of remaining detections
D ⊂ D′ and corresponding data association A.
By decoupling the two tasks, greater flexibility is achieved. Any object detector that
outputs detections for the considered object class may be used for the tracking-by-
detection paradigm. Technical progress in object detection therefore usually leads to
improvements of an MOT method. At the same time, advances on the data association
part are developed that are often independent of a specific object detector. Accordingly,
the two tasks can be considered as (nearly) independent research fields.
Within the scope of tracking-by-detection, the goal is to compute the best trajectories
conditioned on pre-computed detections. Here, best is understood probabilistically as a
maximum a-posteriori problem [68].

Definition 1.5. The MOT task using the tracking-by-detection paradigm is to find
the trajectories that maximize the posterior probability w.r.t. a probability measure P,
given all observed input detections D, formally:

Γ̂ = arg max
Γ

P(Γ |D) , (1.1)

where the optimization is performed over all trajectories Γ that can be created from
the detections D.

Thus, for a given set of detections D, the quality of an MOT outcome depends entirely
on the chosen probability model P and how well the problem defined by Eq. (1.1) can
be maximized.
Solving Eq. (1.1) is infeasible in practice since the search space of problem (1.1) is
huge and an efficient solver for the corresponding optimization problem does not exist.
Therefore, in the following, assumptions on the search space and probability model are
made to simplify the computations.

Assuming independence in the probability model. Assuming pairwise indepen-
dence of the trajectories Γ and conditional independence of the detections D given the
trajectories Γ, the solution Γ̂ to the maximum a-posteriori problem of Eq. (1.1) for a
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1 Introduction

Figure 1.4: Visualization of the tracking-by-detection paradigm. First, de-
tections are generated. Then, pairwise costs between detections are computed.
Finally, the information is used in a graph model that represents all feasible
connections between detections. Typically a discrete optimization problem is
solved to obtain the trajectories. The data association needs to compensate for
errors introduced by the preceding steps. Some parts of the image are taken from
the MOT16 dataset [44].

sequence of length nR can be obtained4 following Zhang et al. [61] as:

Γ̂ = arg max
Γ

P(D | Γ)P(Γ) , (1.2)

= arg max
Γ

nR∏
f=1

P(Df | Γ)P(Γ) ,

= arg max
Γ

∏
d∈D1∪···∪DnR

P(d | Γ)
∏
γ∈Γ

P(γ) ,

= arg min
Γ
−

nR∑
f=1

∑
d∈Df

log(P(d | Γ))−
∑
γ∈Γ

log(P(γ)) .

The imposed simplifications ignore any dependencies between trajectories. An optimal
solution corresponds to the most plausible trajectories that are consistent with the
observed detections. The difficulty of problem (1.2) is analyzed in Section 1.3.3, showing
that the optimization problem is challenging. Accordingly, the more general problem
(1.1) is indeed challenging, too.

Reducing MOT to pairs of detections. To further reduce the complexity of
Eq. (1.2), it is a common approach to assume that P(γ) can be computed based on
probabilities between pairs of detections belonging to γ, see e.g., Zhang et al. [61]. Some
models additionally use start and end probabilities of a trajectory. As in Eq. (1.2),
probabilities are converted into negative log-likelihoods, which we call costs. They are
further categorized into pairwise costs corresponding to probabilities between pairs of
detections and unary costs corresponding to probabilities of detections.
An MOT method based on the tracking-by-detection paradigm using pairwise costs
performs mainly three steps. First, an object detector is applied to a video recording to
obtain hypotheses about the presence of objects of a specified object class. Then, unary
and pairwise costs are computed based on the input detections. Finally, an optimization

4The reformulation as a minimum makes it applicable to the optimization methods presented in
Section 2.6.
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1.2 The Multiple Object Tracking Problem

problem is solved to obtain the most likely trajectories given the object hypotheses and
likelihoods. Figure 1.4 illustrates these steps.
The last step is typically computed within a data association graph5 that models
all feasible trajectories given the object hypotheses and associates each trajectory
with a corresponding cost value. If a node (corresponding to a detection) or an edge
(representing a possible link of two nodes to a trajectory) is part of the solution, the
respective costs are summed up in the objective function.
One way to simplify P(γ) based on pairwise costs is to assume that P(γ) depends only
on the pairwise probabilities of consecutively linked detections of a trajectory. Thus, the
probabilistic model assumes that trajectories obey the Markov chain assumption [69]:
Given a family of random variables Y = (Xi)i∈N, where each random variable Xi has
the same finite set S as measurement space, then Y obeys the first-order Markov chain
assumption if

P(Xn = sn |Xn−1 = sn−1, . . . , X1 = s1) = P(Xn = sn |Xn−1 = sn−1) (1.3)

for all s1, . . . , sn ∈ S and for all n ∈ N. In this case, the probability of a trajectory
γ = {d1, . . . ,dM} using the chain rule and the Markov property is given by

P(γ) = P(d1)
M∏
i=2

P(di | di−1)P(dM) , (1.4)

where we assume that detection di is from frame fi and fi < fj if i < j. Thus, the
probabilistic model assumes that the assignment of a detection di to a trajectory γ is
only stochastically dependent on di−1. An MOT approach based on assumption (1.3)
is a Markovian multiple object tracking method or a first-order MOT method. The
corresponding optimization problem can be solved efficiently to global optimality [61].
A Markovian data association graph is depicted in Figure 1.5. However, the tracking
accuracy deteriorates due to an oversimplified model.

Higher-order MOT. More expressive MOT models exploit not only the local in-
formation between detections that are directly linked within a trajectory but also the
global consistency of an entire trajectory, which we call Higher-Order Multiple Object
Tracking (HO-MOT). Problem (1.2), without further simplifications, is an explicit
HO-MOT formulation, as the consistency of an entire trajectory is explicitly modeled.
So far, explicit HO-MOT is of limited use in practice, as the underlying optimization
problem is too challenging to be solved, and in addition, the mapping of each possible
trajectory to a probability value is difficult. An alternative approach is to employ a
non-Markovian MOT formulation that assesses trajectories by incorporating all available
pairwise probabilities within a trajectory. This enables to exploit implicitly long-range
temporal interactions. Since such a model reasons only from pairwise costs, we call it
implicit HO-MOT. Figure 1.6 shows a prototypical situation that is often not solved
correctly by first-order MOT methods, in contrast to higher-order approaches. Using an
HO-MOT formulation helps to improve the precision of tracking results, see Figure 1.7.
For implicit HO-MOT, it is crucial to include many pairwise probabilities into the deci-
sion process, especially long-term connections to take long-range temporal interactions

5Terminologies of graph theory are briefly summarized in Section 2.3.
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S

T

transition

observation

enter/exit

Figure 1.5: Data association using a network flow graph [61]. The start and
end of a trajectory are encoded by an enter edge from node S and an exit edge to
node T , respectively. Each detection of a trajectory corresponds to an observation
edge. The linking of two detections between different frames to a trajectory is
represented by a transition edge. All edges have costs indicating the likelihood for
the respective event. The number of selected incoming edges at a node must equal
the number of selected outgoing edges, except for nodes S and T . Transition
edges skipping frames are not drawn for visualization purposes.

into account. At the same time, long-term connections allows for the compensation of
detector errors in cases where objects are temporarily missed, see Figure 1.8. While an
HO-MOT approach (implicit and explicit) is theoretically preferable to a Markovian
MOT formulation, the underlying optimization problem is challenging, as it usually
leads to an NP-hard optimization problem [52, 54, 63, 64, 70]. Existing methods
deliver only heuristic HO-MOT solutions so that the tracking accuracy deteriorates due
to non-optimal decisions.

Connectivity priors. With longer temporal distances between detections, corre-
sponding pairwise costs become less discriminative and unreliable. This becomes
apparent if a motion model is employed to define pairwise costs. When spatial distance
is considered between detections that are temporally far apart, many of the possible
connections will be plausible. At the same time, there may be connections that can be
clearly classified as false, e.g., a connection that represents a motion that would be too
fast for an object to perform due to physical constraints.
In order to leverage information of long temporal distances, an extension to standard
data association graphs is the introduction of additional lifted edges that induce path
connectivity priors [50, 64]. A lifted edge between nodes (representing detections)
ensures when activated that a trajectory on the original data association graph (called
base graph) has to connect the two ends of the respective lifted edge and vice versa.
Thus, it augments the underlying tracking model by additional connectivity priors,
resulting in a more expressive tracking model. Two settings are of particular interest:
(i) Base edges connect nodes over short temporal distances while lifted edges connect
nodes over long temporal distances. This allows taking long-term considerations reliably
into account. If a lifted edge indicates that matching the respective two detections is
plausible, there must still be a consistent trajectory connecting the end nodes of the
lifted edge. Conversely, if a lifted edge indicates that two detections very likely contain
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Figure 1.6: Comparison of first-order MOT vs. higher-order MOT on a bench-
mark sequence [44]. The person detected in frame f1 is fully visible. Due to
partial occlusion, only the right and left side of the person is visible in frame
f2 and f3, respectively. As there is sufficient overlap of the image contents, the
detections of frame f1 and f2 are linked by an appearance-based first-order MOT
method. However, there is little overlap between the image contents defined by
the detections in frame f2 and f3. Also, the background has greatly changed. Con-
sequently, a first-order appearance-based MOT method erroneously creates a new
trajectory (indicated by the green detection). In contrast, a higher-order MOT
method exploits that (i) the detection in frame f1 shares appearance similarities
with the detection in frame f2 and f3 since both depict one side of the person and
that (ii) the detections in frame f2 and f3 do not completely rule out a common
trajectory. As a result, an HO-MOT method assigns all detections to the same
person.

different objects, there must not be a trajectory connecting the corresponding nodes.
A prototypical situation demonstrating the two cases is shown in Figure 1.9. A graph
with lifted edges is depicted in Figure 1.10. (ii) Each base edge is duplicated by a lifted
edge. In this case, connectivity priors induce an implicit HO-MOT model, as shown in
Figure 1.11.
The existing MOT formulation [64] with lifted edges poses a challenging NP-hard opti-
mization problem so that existing methods rely on heuristic solvers [51, 64]. Accordingly,
the tracking accuracy is deteriorated.

1.3 Challenges of Multiple Object Tracking

Although MOT has been a focus of research for decades [71, 72], it still poses a
challenging problem. We discuss the corresponding challenges for all three steps of the
tracking-by-detection paradigm (see Figure 1.4).
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(b)

Figure 1.7: Optimal trajectories according to different data association models.
Both figures depict the same data association graph with all feasible detection
assignments between the frames f, f + 1, and f + 2, together with corresponding
pairwise costs. Nodes of the same color form respective trajectories. (a) The
Markovian model considers only costs between directly linked detections of a
trajectory. Thus, the optimal trajectory has an objective value of (−1.2)+(−1.5) =
−2.7. It ignores the edge from frame f to frame f + 2 that signals that the first
and last detection belong to a different object. (b) An implicit HO-MOT model
takes all pairwise probabilities within a trajectory into account. Consequently, it
prevents the creation of the wrong tracking result.

1.3.1 Errors caused by the object detector

The first step within a tracking-by-detection approach, the object detection, has seen
tremendous improvements with the rise of neural networks in computer vision [73]. This
becomes apparent when comparing a traditional method, depicted in Figure 1.3(a),
with detections from a neural network [73] in Figure 1.12. However, detectors are still
far from being perfect.

False negative detections. Objects are frequently missed in the case of (partial)
occlusion, as shown in Figure 1.12. Missing detections can also occur when objects are
far away from the camera, as objects then appear small in the projected image. Also,
persons in rare poses might be missed. Such severe errors are not directly solvable by
employing a better data association graph or using a more complex probability model,
as there is no input to be assigned. Instead, if a detection at a time before an occlusion
and after an occlusion are assigned to the same object, the missing detection can be
potentially recovered, e.g., using linear interpolation. Accordingly, it is crucial that
the employed MOT model incorporates not only edges connecting detections between
consecutive frames but also edges that skip frames.

Misaligned detections. Multiple objects to be tracked might be contained within
a single detection box. This frequently happens if objects are close together or if
one object is partially occluding another object, as shown in Figure 1.13(a). As a
consequence, appearance information might be misleading. Since each detection box is
assumed to represent at most one object, the error case is not correctly representable
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Figure 1.8: Improvement in recall when using an implicit HO-MOT model over
a Markovian MOT formulation. Incorporating connections that skip some frames
is a prerequisite for correctly creating trajectories for objects that are missed by
the detector for some frames. (a) In the Markovian setting, at most one detection
from a later image frame is selected for each detection. Consequently, all possible
connections are competing with each other so that long-term temporal edges
might deteriorate the tracking quality in the Markovian setting by mistakenly
skipping detections. In the depicted example, the thick edge forms a trajectory
resulting from a Markovian MOT model that skips frame f + 1. (b) In contrast,
an implicit HO-MOT model groups all three detections correctly together, as all
pairwise costs are negative (indicating that all detections likely belong to the
same object).

and resolvable by the tracking-by-detection paradigm.

False positive detections. Detectors might create detection boxes that do not
localize the desired object, i.e., false positives, see Figure 1.3. An MOT method thus
needs to recognize and remove these detections, which is particularly difficult if the
detector consistently creates false positives, e.g., at a background object.

1.3.2 Challenges in discriminative features

By assuming that the probability of a trajectory is decomposable into pairwise prob-
abilities, the probability measure P needs to reflect the probability of two detections
belonging to the same person.

1.3.2.1 Pairwise features.

Given a pair e = {v, u} of two detections that might belong to the same object, a vector
ψψψ(e) ∈ Rn is constructed, called pairwise feature or pairwise affinity. A discriminative
(pairwise) feature distinguishes pairs of detections belonging to the same object from
detections of different objects in terms of its vector representation. A feature vector
can be transformed into probability pψψψ(e) ∈ [0, 1] using logistic regression [74].
In order to decide whether two detections belong to the same identity, most tracking
methods employ affinities that can be categorized as either processing geometric infor-
mation based on the corner coordinates of a detection box or visual information within
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(a) (b)

Figure 1.9: Lifted edges enable to incorporate long-term temporal information.
Two images of an MOT benchmark [44] with a temporal distance of 5.5 seconds
are shown. (a) The green rectangle marks a person that shall be tracked. (b)
Purple detections indicate high appearance similarities to the query person. Due
to the long temporal distance, pairwise features between the two frames are
unreliable. However, lifted edges allow exploiting these correspondences reliably.
A lifted edge enforces that each potential match must be supported by a plausible
trajectory connecting the detections of the two frames. The blue detection box
indicates a person that can be clearly distinguished from the query person. A
lifted edge then encodes that each trajectory must not connect the two detections.

v w
2 3 1 4

−4

Figure 1.10: Data association graph with base edges and weights (black), and
lifted edge and lifted weight (blue). The cost value of the lifted edge indicates that
the nodes v and w correspond to the same object. However, this is not consistent
with the (short-term) base edges. As a result, the detections are not grouped to a
trajectory since summing up all weights gives a worse objective value than not
creating a trajectory.

a detection box. However, constructing discriminative features poses a challenging
problem on its own, as the features need to cope with many different situations that
may appear during a recording.
Geometry-based features, or spatio-temporal features, incorporate position and motion
cues. For people tracking, these features can be designed specifically to the characteristics
of humans, e.g., using a constant velocity assumption [22, 23] or by incorporating social
force models [22, 23]. However, the performance of these approaches degrades if
motions become more dynamic or people get temporarily occluded. Also, without
prior knowledge about the scene or camera calibration, the 3D position information
of objects is available only in the form of projected pixel coordinates in the image
space which causes ambiguities regarding their positions and motions. If the camera
is non-static, measured motions represent movements of objects superimposed by the
camera motion. Consequently, spatio-temporal features are robust only within a limited
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0.6

−4

0

Figure 1.11: If all depicted nodes belong to the same trajectory, then all
costs within the trajectory contribute to the objective value of the underlying
optimization problem by definition of lifted edges, thus inducing higher-order
consistencies. The information given indicates that all nodes belong to the same
object. Accordingly, the optimal result is to group all nodes to one trajectory,
which is indicated by the green nodes. Base edges (and weights) are drawn in
black and lifted edges (and weights) in blue.

Figure 1.12: The input frame of Figure 1.3(a) with detections from FRCNN
[73]. The detection method is introduced in Section 2.7.

temporal range [63].
As a consequence, current state-of-the-art methods employ pairwise features that reason
from appearance information [55, 63, 64, 76–82]. In contrast to spatio-temporal cues,
appearance features can be applied more reliably to comparatively long temporal
distances as they are more robust to camera motions. Also, they do not rely on the
constant velocity assumption. Some works thus exploit appearance cues using an object-
dependent visual object tracker [81, 83, 84] that requires an initial mask of the object
to be tracked and essentially detects the object in each frame. During this process, the
appearance model of the object is updated frequently. Also, attention weights [80, 82]
have been used to estimate whether the appearance information of a detection box is
reliable. However, the accuracy of appearance-based trackers still deteriorates under
different frequently occurring effects, e.g., lighting or camera perspective changes, partial
occlusions, tiny detection boxes, or if noise is present, see Figure 1.14. Particularly
difficult when using appearance features are cases where the apparel of different objects
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(a) (b)

Figure 1.13: Exemplary scene showing detection errors due to partial occlusion.
Depicted is a clip of the MOT17-03 sequence [44] with provided input detections
(FRCNN). (a) Multiple people appear within a detection box and some persons are
not detected at all. (b) The errors can be resolved using, in addition, fine-graded
head detections (blue).

(a) (b) (c)

Figure 1.14: Exemplary scenes that show difficult situations for pairwise MOT
features. (a) & (b) show two scenes of the MOT16 dataset [44] that are filmed by
a moving camera. People are frequently occluded. (c) shows a clip of an image
of the VIMPT2019 dataset [75]. Due to the jerseys, distinguishing identities is
difficult for a computer vision system.

are very similar, for instance in team sports as depicted in Figure 1.14(c) or when
people are changing clothes during a recording. Building accurate pairwise features is
thus challenging as they need to cope with all these issues.

1.3.3 Combinatorial challenges

The optimal assignment of detections to identities, as described by Eq. (1.1), poses
a discrete optimization problem. Finding a global optimal solution without further
simplifications is not feasible in practice from a combinatorial point of view, as no
efficient solver for the optimization problem is known. The following shows that even a
simplified model (explicit HO-MOT) is difficult to solve, as it belongs to the complexity
class NP-hard. Such problems are considered challenging. Even the further simplified
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γ2

γ1

f f + 1

Figure 1.15: Depicted are two trajectories γ1 and γ2 with a vector representation
I(γ1) = (1, 1) and I(γ2) = (2, 0), respectively, using an order on the detections
accordingly.

implicit HO-MOT models [52, 54, 63, 64, 70] are commonly NP-hard. In particular,
no algorithm that solves all instances of an NP-hard problem with polynomial runtime
complexity is known6. The existence of one such algorithm would imply that many
difficult problems could be solved efficiently. We conclude that the MOT problem is
challenging.

Complexity of problem (1.2). Assuming all detections to be equally probable,
HO-MOT problem (1.2) simplifies to

arg max
Γ

P(Γ |D) = arg min
Γ
−
∑
γ∈Γ

log(P(γ)) . (1.5)

Now Eq. (1.5) can be rewritten as a binary linear optimization problem: For a sequence
consisting of nR frames, let nf := |Df| denote the number of detections in frame f. We
consider the bijection I, mapping a trajectory γ to a vector I(γ) = (i1, . . . , inR), where
I(γ)f = if denotes the index of the selected detection by γ in frame f, and equals 0 if
γ(f) = ∅. An example is given in Figure 1.15. Each non-empty trajectory γ is assigned
the cost value cI(γ) := − log(P(γ)), while we set c(0,...,0) := 0 for an empty trajectory.
Let N := {0, . . . , n1} × . . .× {0, . . . , nR} be the set of all possible tuples that encode a
trajectory. Then, problem (1.5) is equivalent to the binary optimization problem

min
z∈{0,1}N

n1∑
i1=0
· · ·

nR∑
inR =0

c(i1,i2,··· ,inR )z(i1,i2,··· ,inR ) (1.6)

such that
n1∑
i1=0
· · ·

nf−1∑
if−1=0

nf+1∑
if+1=0

· · ·
nR∑

inR =0
z(i1i2···inR ) = 1 , ∀f ∈ R,∀if ∈ {1, . . . , nf} . (1.7)

The constraints (1.7) ensure that each detection is assigned to at most one trajectory.
Problem (1.6) is a multidimensional assignment problem [85]. In the context of MOT,
it is also called multi-hypothesis tracker. However, the multidimensional assignment
problem is known to be NP-hard for nR ≥ 3 [86]. Note also that the solution space
has exponential growth. Hence, computing the global optimum is difficult. Besides, it

6A summary of the field is provided in Section 2.5.
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f−4past − 1 f− 1f−4past f

Figure 1.16: Data association graph for online tracking at frame f. Nodes
left to the dashed line correspond to unused detections or to already computed
trajectories of the past. The nodes from the past may be linked to a detection of
frame f if they contain at least one detection in frame f′ ∈ {f−4past, . . . , f− 1}.
The green nodes form an active trajectory that may be connected to a node of
frame f.

is challenging to accurately assign each possible trajectory γ a meaningful cost value c
(corresponding to − log(P(γ)). Therefore, solving MOT in terms of Eq. (1.1) or even
problem (1.5) is challenging.

1.4 Related Work

For fixed input detections and pairwise features, the tracking accuracy of an MOT
method depends on the chosen data association model and how well the associated
optimization problem can be solved. This section presents a literature overview of
published data association models in MOT. As there is a vast amount of literature
on this topic, only the most relevant works are briefly summarized which significantly
impacted subsequent publications in MOT.

Online Tracking. A straightforward way to simplify problem (1.1) is to perform
tracking online [58, 80–82, 87–95]. In this case, the task is to match the detections of
the current frame f with trajectories and unused detections of the past. Connections are
considered only if the time distance is at most some threshold 4past. Trajectories may
be matched if their last detection is within the defined time distance. Such a trajectory
is active, see Figure 1.16.
Some works perform data association heuristically or greedily [80, 81, 89, 90]. The
method of Zhu et al. [80] propagates each trajectory using an identity-specific tracker
until it becomes unreliable (according to a confidence score). A neural network with
attention mechanisms is used to identify similar image content between a candidate
detection and a detection of a considered trajectory. This information is integrated
into a neural network with an attention mechanism and bidirectional long short-term
memory (LSTM) components to measure consistency between a detection and an entire
trajectory. The assignment of a detection to a trajectory is done greedily, using the
best fitting detection (above a similarity threshold).
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f−4past f +4futuref

(a)

f′ −4past f′ +4futuref′

(b)

Figure 1.17: Data association graph for near-online tracking. (a) The associ-
ations within the range [f −4past, f +4future] are computed. Subsequently, all
connections between filled circles are reset. (b) Local errors are corrected in the
next iteration on frame f′ = f + 1.

Different approaches use probabilistic inference, e.g., Kalman Filter [68, 96, 97] or
Particle Filter [68, 98, 99] propagate the state of each active trajectory, given the
detection information at the current frame and a motion model, which typically includes
a constant velocity assumption. Alternatively, several works [58, 82, 91–94] model the
data association within a bipartite graph (see Figure 2.4), which can be computed in
O(n3) in the number of nodes n using the Hungarian method [100].
Such approaches allow for processing the tracking problem efficiently, as the currently
captured frame can immediately be used to assign new detections to already existing
trajectories or unassigned detections from previous frames. The tracking accuracy
heavily depends on discriminative pairwise features, as slightly wrong values in the
affinities cannot be compensated by the data association model, potentially leading to
error propagation. However, there might be information in some future frames that
would enable detecting and preventing such errors, e.g., in the case of an object that
is occluded in the current frame. Thus, even if decisions are optimal within the local
scope, they may lead to wrong assignments with respect to the tracking task.

Near-Online Tracking. This conceptual deficiency is corrected using so-called near-
online trackers [65, 101]. For the current frame f, the approach is to process the
information from the past and a limited number of future frames so that the data
association is performed within [f − 4past, f +4future], resulting in a short delay by
4future frames. While the entire interval is used to find the assignments, only the
connections up to frame f are updated. Connections to future detections within the
interval [f + 1, f +4future] are reset after the data association part. The process is then
repeated for the subsequent frames, as demonstrated in Figure 1.17. While an accuracy
improvement over online models can be expected, valuable information of a recording
is still ignored, as not all frames are exploited.
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Offline Tracking. The other extreme is to process an entire sequence at once, which
is called offline tracking, using the information from all frames for the data association.
Still, models vary in how they integrate the information into the tracking method. They
can be classified into Markovian MOT and HO-MOT.

Markovian MOT. A frequently used MOT approach assumes that the first-order
Markov chain assumption holds for the detections of a trajectory [23, 61, 67, 102–106].
Zhang et al. [61] show that the optimal MOT solution can then be computed in a
flow network with unit capacities by finding the flow of minimal costs. Decisions
are guaranteed to be optimal and can be computed efficiently using a min-cost flow
algorithm [107, 108] with polynomial runtime.
By assumption, pairwise affinities like distances, speeds, and visual similarities may
be incorporated into a Markovian MOT method but no long-term considerations like
accelerations. Therefore, it ensures consistencies only between consecutively linked
frames.

Higher-order MOT. Some methods directly tackle explicit HO-MOT, e.g., using
hyperedges [109–112] that jointly assign probabilities for grouping multiple detections.
Even more, multi-hypothesis trackers [53, 79, 113, 114] directly assign to each possible
trajectory γ a probability without factorizing P(γ) further (see Eq. (1.6)). This allows
to model spatial and temporal consistencies for the whole time span of a trajectory
and to incorporate higher-order correlations between the detections. As the underlying
multidimensional assignment problem is challenging to solve (see Section 1.3.3), heuristic
filtering steps are necessary to reduce the search space. Consequently, it leads to non-
optimal solutions that degenerate the tracking accuracy heavily.
In contrast, implicit higher-order models (see Section 1.2.2) that reason from pairwise
costs have turned out to be more effective [50, 52, 54, 55, 63, 70, 78, 101]. Some
trackers are based on the generalized minimum clique problem [115]: In the work of
Zamir et al. [70], the goal is to select a complete graph (also called clique) with minimal
costs such that exactly one node out of each cluster is selected (see Figure 1.18). Each
cluster comprises the set of detections of a particular frame. A clique represents the
trajectory of one object. The algorithm is performed greedily, object by object. By
simultaneously searching for K node-disjoint cliques of minimal costs (the parameter K
needs to be set in advance), further improvements can be achieved [52]. Virtual nodes
with pre-defined weights have to be created for objects not being detected in a frame.
Due to the computational challenges of the NP-hard problem, the method requires
already computed (short) trajectories as input. These have to be generated by another
MOT algorithm. False input trajectories cannot be compensated by the optimization
method, thus potentially leading to error propagation.
Several state-of-the-art works employ correlation clustering [54, 63, 116] to obtain the
trajectories, which is more general than the generalized minimum clique formulation.
The goal is to group detections into clusters such that the agreements within the clusters
(or disagreement between clusters) are maximized. Agreement and disagreement are
measured in terms of all costs within the clusters or between the clusters, respectively,
for which edges exist. Thus, correlation clustering allows exploiting higher-order
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Figure 1.18: Data association graph used in the work of Zamir et al. [70]. The
tracking problem is considered as a generalized minimum clique problem. The aim
is to create a clique for each object. Missing detections are represented by virtual
nodes. The costs of all clique edges are summed up in the objective function,
resulting in higher-order consistencies.

consistencies, as all pairwise consistencies within a trajectory are taken into account. In
contrast to the generalized minimum clique formulation, the number of clusters does not
need to be known or predicted in advance. The problem is NP-hard. Only heuristic
solvers are applicable in practice [54], leading to a deteriorated result.

Connectivity priors. Data association models based on correlation clustering have
been extended to include connectivity priors [64]. Corresponding solvers rely on
heuristics so that the resulting assignments are generally non-optimal.

1.5 Contributions

The goal of this thesis is to propose MOT methods that enable offline computation of
trajectories for all objects of a determined object class that appear in a video recording.
Presented contributions focus mainly on the data association part. Scenes to which the
tracking methods of this work are applied are expected to be low- to semi-crowded by
the objects to be tracked.
As outlined in Section 1.3, errors occur during the detection and the feature computation
step of a tracking-by-detection method. In addition, the computation of trajectories
is challenging when complex data association models are employed. For this reason,
existing methods rely on heuristics as briefly highlighted in Section 1.4. To overcome
these limitations, this work presents two directions:

1. The strong dependence on input detections is identified as a weakness of the
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tracking-by-detection paradigm. Therefore, MOT is formulated as a weighted
graph labeling problem where all equally labeled nodes correspond to the same
identity. This allows performing signal fusion, i.e., augmenting object detections
with additional complementary signals holistically, e.g., additional detectors or
sensors. Thus, advantages of two modalities are being combined. Consistency is
evaluated within each and across different signals. Moreover, the data association
corresponds to an implicit HO-MOT formulation. A novel solver, optimizing the
underlying problem on the continuous relaxation based on the Frank-Wolfe [117]
algorithm, is proposed. It produces near-optimal solutions in practice.

2. Data association can potentially compensate for errors produced by the pre-
ceding steps of a tracking-by-detection method if sufficient video information is
incorporated into the decision process. This can be achieved in principle by the
HO-MOT methods presented in Section 1.4. However, they commonly rely on
heuristic solvers. Consequently, tracking accuracy deteriorates. Instead, a novel
extension to flow networks with unary capacities is presented that incorporates
connectivity priors and implements implicit HO-MOT. The problem is expressed
as a Binary Linear Program (BLP). By studying the underlying polyhedral
structure, non-trivial LP-relaxations to the optimization problem are derived and
integrated into efficient separation algorithms. Finally, the BLP is solved via
a cutting-plane algorithm. The resulting method is the first to provably solve
the optimization problem of an HO-MOT model that incorporates long-range
temporal interactions. The method delivers global optimal solutions in practice
which complements existing works. Assignments are nearly optimal with respect
to given input detections.

Both concepts have led to significant improvements in tracking accuracy compared to
the state of the art. Details of the works are briefly elaborated in the following:

HO-MOT with Signal Fusion. The tracking-by-detection paradigm allows to sig-
nificantly reduce the information of a video to be processed during the data association
step, making the MOT problem tractable. However, due to errors of the detector,
potentially useful information might be mistakenly discarded or outputs might be
misleading in the case of false positive detections, see Section 1.3.
The first part of this work thus proposes a fusion approach to reduce the dependence
on the detector by augmenting additional complementary input signals. To this end,
MOT is formulated as a weighted graph labeling problem in which each input signal
is assigned to an object identity by its label. Nodes and edges have weights that
depend on the assigned labels. An optimal solution ensures consistent trajectories
among all equally labeled input signals, thereby implementing the HO-MOT principle
but extended to multiple signals. The solution is obtained from a challenging binary
quadratic problem that is NP-hard. A novel solver specifically designed for the problem
is proposed. It operates on the continuous relaxation using a modification of the
Frank-Wolfe algorithm [117]. A reprojection step then delivers a discrete solution. It
is shown that the matrix describing the polyhedron of the graph labeling problem is
totally unimodular. Consequently, each iteration step of the Frank-Wolfe algorithm
and the reprojection of the continuous solution to the nearest feasible binary vector
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can be performed efficiently by searching for the minimal entry of a vector instead of
solving a linear or binary linear program. The optimal step size within the Frank-Wolfe
algorithm is derived algebraically so that it can be calculated efficiently and accurately.
To further improve the solver, a regularization is proposed making the method less
susceptible to local minima. In addition, a hierarchical approach is presented that allows
correcting approximation errors of the solver and reducing the problem size. Eventually,
by iterating the process, the reduced problem can be solved globally optimal. The
benefits of augmenting input detections are demonstrated in two settings, as described
in the following:
(i) People detections are combined with head detections in Section 3.4. This often
enables to track heavily occluded persons if their heads are visible. Thus, fusion
helps to compensate for missing people detections. Also, fusion allows to reject false
positive people detections that cannot be plausibly matched to head detections. Con-
ducted experiments show quantitatively that the integration of head detections leads
to significantly improved tracking results. The method, which we call Frank-Wolfe
Tracker (FWT), won the CVPR 2017 Multi-Object Tracking Challenge against compet-
ing MOT approaches, thus demonstrating the benefit of the fusion concept. It is also
shown that the modifications to the Frank-Wolfe solver are crucial in order to obtain
results close to optimality.
(ii) In another setup described in Section 3.5, it is assumed that each person to be
tracked is wearing one Inertial Measurement Unit (IMU) attached to his or her back.
This minimally intrusive setting can be used, for example, in team sports when tracking
players during a soccer game. The recording is supposed to be filmed by a static and
calibrated camera. Conceptually, using the two input signals (video and IMU) allows
resolving ambiguities caused by misleading video information, e.g., in cases of similar
appearances of persons (for instance in team sports) or long-term occlusions. However,
incorporating the IMU signal creates new challenges, as it is highly ambiguous: The
signal from an IMU at a time-step (e.g., the derived orientation of a person) may fit to
different persons appearing in a video recording. We term the problem of tracking people
using a video signal and assigning each detection to the corresponding IMU device as
Video Inertial Multiple People Tracking (VIMPT). We recorded a challenging dataset
for VIMPT, called VIMPT2019 [75], with a focus on non-linear motions and similar
outward appearances, which are underrepresented cases in current MPT datasets.
To tackle the challenging VIMPT problem, features are presented that incorporate
device-specific signals. A neural network is proposed that, when applied to a video
recording, regresses a person’s orientation. These estimations are linked with the orien-
tation measurements from the IMU devices. The network utilizes a novel perspective
correction that takes position of a person relative to the camera into account. This step
has turned out to be crucial to obtain accurate orientation estimations. In addition,
IMU acceleration measurements are compared with video-based velocities to couple
motion cues. The fusion formulation ensures that computed trajectories are consistent
with both the video signal and local motion information.
The proposed VIMPT method Video Inertial Tracker (VIT) prevents most identity
switches even if the persons’ appearance is very similar since the orientation regression
depends only on the pose of a person and this is unrelated to outward appearance.
Moreover, VIT helps in connecting detections of a person in cases where he or she has
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been occluded for a long time-period, as the IMU signal is being transmitted independent
of any occlusion. A least-squares optimization problem is proposed that robustly recovers
the position of a person in cases of missing detections using both readings (video and
IMU), once detections have been assigned to IMU devices. Consequently, VIT is
significantly less dependent on the quality of the input detections. The coupling of
video with IMU information allows to automatically label each trajectory in terms of
the wearer of the IMU device, i.e., an assignment of trajectories to person identities is
provided, which is a valuable by-product.
Conducted experiments show significant improvements of VIT over purely video-based
MPT approaches, demonstrating the effectiveness of the proposed method. The iden-
tification of persons in a video works error-free. In particular, persons are correctly
identified across different sequences and when people have changed their clothing. The
VIMPT problem poses an interesting extension to the MPT task with several useful
advantages provided that the recording scenario at hand allows wearing minimally
intrusive sensors.
We note that the gain of the fusion approach has been successfully demonstrated by
the author of this dissertation in two other works that are not part of this thesis.
By combining people detections with joint detections instead of head detections, the
MOT method becomes even more robust to partial occlusions of persons, thus further
improving tracking accuracy [101]. In another application, video information is fused
with body-worn IMU sensors [118]. Here, the setup considers multiple persons (with up
to two persons in the experiments of the publication) filmed by a moving camera, each of
them wearing IMU devices attached to all limbs. The task is then to accurately compute
the 3D pose of each person wearing the IMU devices using the information given by the
camera and the IMU sensors. Solving the proposed graph labeling formulation provides
trajectories that are consistent with the video information and the IMU sensors. In
particular, all persons in a video wearing the IMU sensors are automatically identified
which makes it possible to estimate and correct heading drift and estimate the relative
positions between IMU-equipped persons. The combination of the two sensor modalities
thus results in very accurate human pose estimations. Most importantly, by using
body-worn IMUs and a single, non-static, hand-held camera, the method allows, for
the first time, to accurately capture poses of multiple humans during daily activities,
e.g., walking around a city.
Summary of contributions:

• Extension of the tracking-by-detection approach by signal fusion resulting in an
HO-MOT model that is less dependent on input detections.

• New solver for the underlying weighted graph labeling problem with nearly optimal
solutions.

• Fusing people detections with head detections via FWT. The fusion approach
won the CVPR 2017 Multi-Object Tracking Challenge.

• VIMPT2019, a dataset for VIMPT with a focus on scenes that are challenging
for commonly employed pairwise features.
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• An accurate VIMPT method (VIT) using perspective-aware orientation regression
and acceleration measurements. It provides (in the experiments error-free) labeling
of trajectories without additional computational costs. VIT is significantly less
dependent on the video signal, input detections, appearance and motion models
when compared with purely video-based methods.

• Missing detections are robustly reconstructed in VIT by fusing video signals with
IMU information within a non-linear optimization problem.

Lifted Disjoint Paths. The second part of this work focuses on integrating long-
range temporal interactions into the data association step without relying on heuristic
solvers. Conceptually, this allows for the compensation of errors generated by the
detector and to be less susceptible to misleading pairwise costs.
The min-cost network flow problem constraint to unary capacities, also called dis-
joint paths problem, serves as a natural formulation for trajectories within MOT [61].
However, long-term information can only be incorporated to a limited extent, see
Figure 1.8. This work proposes a novel extension, the Lifted Disjoint Paths (LDP)
problem, by augmenting the network flow graph with additional lifted edges to provide
path connectivity priors. Lifted edges facilitate the re-identification of persons, help to
prevent ID switches, and enable HO-MOT. Since the disjoint paths problem has many
applications in discrete optimization [119], the extension to LDP may be relevant to
other fields as well.
The new formulation is analyzed in terms of its complexity class. It is proven that the
problem is NP-hard by reduction7 from integer multi-commodity flow and 3-SAT. On
the one hand, this makes the problem interesting for further research in computational
complexity theory. On the other hand, the NP-hard property makes the problem
difficult.
A formulation of the LDP problem as a binary linear program is derived. By further
studying the polyhedral structure, improved LP-relaxations are proposed that are
tighter than using the linear constraints of the initial LDP formulation. To handle the
exponentially many linear constraints, efficient separation algorithms are proposed and
embedded into a cutting-plane procedure. The resulting solver enables global optimal
solutions in practice. Existing methods either employ heuristics on complex models or
global optimization on simplified models so that they do not take full advantage of the
provided information, especially long-range interactions. In contrast, this work presents,
to our knowledge, the first method to solve HO-MOT problems via global optimization.
Robust pairwise features combining visual and motion cues are presented, suitable
for relating detections over long time periods. The complete setup takes pairwise
interactions between detections into account that are at most 60 frames apart. It is
further limited to a temporal distance of 2sec. Experiments reveal that the proposed
method delivers nearly optimal assignments with respect to given input detections.
Extensive experiments also show that the method outperforms the state of the art in
MOT by a large margin.
Summary of contributions:

7The terminology is introduced in Section 2.5.
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• Novel extension of the disjoint paths problem such that it includes connectivity
priors. Proofs are provided that the new formulation is NP-hard.

• Improved linear inequalities with tighter LP-relaxations than a direct formulation
as a binary linear program.

• Efficient separation algorithms to obtain global optimal solutions in practice.

• First global optimal solver for implicit HO-MOT with long-range temporal inter-
actions.

• Robust features to take full advantage of long-term information.

1.6 List of Publications

During the course of this thesis, several peer-reviewed publications have been published
by the author of this dissertation at computer vision conferences and journals, which
are presented below. The first five listed publications cover the topic of HO-MOT
using signal fusion (Chapter 3) by incorporating additional detectors and sensors. The
subsequent sixth publication builds the basis for Chapter 4. The seventh and eighth
publications present an approximate solver for the LDP problem of Chapter 4. Finally,
two additional works cover MOT using a novel trajectory model based on a minimum
cost arborescene problem that leads to efficient computations and a robust method.
Two methods were awarded a prize. The fusion of head and people detections [55] won
the CVPR 2017 Multi-Object Tracking Challenge. The method using minimum cost
arborescene [120] won the second place on the WACV 2015 Challenge.

[55] Roberto Henschel, Laura Leal-Taixé, Daniel Cremers, Bodo Rosenhahn: “Fu-
sion of Head and Full-Body Detectors for Multi-Object Tracking”. In: CVPR
Workshop on Joint Detection, Tracking, and Prediction in the Wild (CVPRW),
2018.

Abstract: In order to track all persons in a scene, the tracking-by-detection
paradigm has proven to be a very effective approach. Yet, relying solely on a
single detector is also a major limitation, as useful image information might be
ignored. Consequently, this work demonstrates how to fuse two detectors for a
tracking method. To obtain the trajectories, we propose to formulate tracking
as a weighted graph labeling problem, resulting in a binary quadratic program.
As such problems are NP-hard, the solution can only be approximated. Based
on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle
such difficult problems. Evaluation on pedestrian tracking is provided for multiple
scenarios, showing superior results over single detector tracking and standard
QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on
the new MOT17 benchmark, outperforming over 90 trackers.

[101] Roberto Henschel, Yunzhe Zou, Bodo Rosenhahn: “Multiple People Tracking
using Body and Joint Detections”. In: IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2019.
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1.6 List of Publications

Abstract: Most multiple people tracking methods compute trajectories based on
the tracking-by-detection paradigm. Consequently, the performance depends to a
large extent on the quality of the employed input detections. However, despite
enormous progress in recent years, partially occluded people are still often not
recognized. Also, many correct detections are mistakenly discarded when the
non-maximum suppression is performed. Improving the tracking performance thus
requires augmenting the coarse input. Well-suited for this task are fine-graded
body joint detections, as they allow to locate even strongly occluded persons. Thus
in this work, we analyze the suitability of including joint detections for multiple
people tracking. We introduce different affinities between the two detection types
and evaluate their performances. Tracking is then performed within a near-online
framework based on a min-cost graph labeling formulation. As a result, our
framework can recover heavily occluded persons and solve the data association
efficiently. We evaluate our framework on the MOT17 benchmark. Experimental
results demonstrate that our framework achieves state-of-the-art results.

[121] Roberto Henschel, Timo von Marcard, Bodo Rosenhahn: “Simultaneous Iden-
tification and Tracking of Multiple People using Video and IMUs”. In: IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
2019.

Abstract: Most modern approaches for multiple people tracking rely on human
appearance to exploit similarity between person detections. In this work, we
propose an alternative tracking method that does not depend on visual appearance
and is still capable of dealing with very dynamic motions and long-term occlusions.
We make this feasible by: (i) incorporating additional information from body-
worn inertial sensors, (ii) designing a neural network to relate person detections
to orientation measurements, and (iii) formulating a graph labeling problem to
obtain a tracking solution that is globally consistent with the video and inertial
recordings. We evaluate our approach on several challenging tracking sequences
and achieve a very high IDF1 score of 91.2%. We outperform appearance-based
baselines in scenarios where appearance is less informative and are on-par in
situations with discriminative people appearance.

[122] Roberto Henschel, Timo von Marcard, Bodo Rosenhahn: “Accurate Long-Term
Multiple People Tracking using Video and Body-Worn IMUs”. In: Transactions
on Image Processing (TIP), 2020.

Abstract: Most modern approaches for video-based multiple people tracking rely
on human appearance to exploit similarities between person detections. Conse-
quently, tracking accuracy degrades if this kind of information is not discriminative
or if people change apparel. In contrast, we present a method to fuse video infor-
mation with additional motion signals from body-worn IMUs. In particular, we
propose a neural network to relate person detections with IMU orientations, and
formulate a graph labeling problem to obtain a tracking solution that is globally
consistent with the video and inertial recordings. The fusion of visual and inertial
cues provides several advantages. The association of detection boxes in the video
and IMU devices is based on motion, which is independent of a person’s outward
appearance. Furthermore, inertial sensors provide motion information irrespective
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1 Introduction

of visual occlusions. Hence, once detections in the video are associated with
an IMU device, intermediate positions can be reconstructed from corresponding
inertial sensor data, which would be unstable using video only. We release a
dataset of challenging tracking sequences containing video and IMU recordings
together with ground truth annotations. We evaluate our approach on our new
dataset, achieving an average IDF1 score of 91.2%. The proposed method is
applicable to any situation that allows one to equip people with inertial sensors.

[118] Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn,
Gerard Pons-Moll: “Recovering Accurate 3D Human Pose in The Wild Using
IMUs and a Moving Camera”. In: Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

Abstract: In this work, we propose a method that combines a single hand-held
camera and a set of IMUs attached at the body limbs to estimate accurate 3D
poses in the wild. This poses many new challenges: the moving camera, heading
drift, cluttered background, occlusions, and many people visible in the video. We
associate 2D pose detections in each image to the corresponding IMU-equipped
persons by solving a novel graph based optimization problem that forces 3D to 2D
coherency within a frame and across long range frames. Given associations, we
jointly optimize the pose of a statistical body model, the camera pose and heading
drift using a continuous optimization framework. We validated our method on the
TotalCapture dataset, which provides video and IMU synchronized with ground
truth. We obtain an accuracy of 26mm, which makes it accurate enough to serve
as a benchmark for image-based 3D pose estimation in the wild. Using our method,
we recorded 3D Poses in the Wild (3DPW), a new dataset consisting of more
than 51,000 frames with accurate 3D pose in challenging sequences, including
walking in the city, going up-stairs, having coffee or taking the bus. We make
the reconstructed 3D poses, video, IMU and 3D models available for research
purposes at http://virtualhumans.mpi-inf.mpg.de/3DPW.

[50] Andrea Hornakova8, Roberto Henschel8, Bodo Rosenhahn, Paul Swoboda:
“Lifted Disjoint Paths with Application in Multiple Object Tracking”. In: Inter-
national Conference on Machine Learning (ICML), 2020.

Abstract: We present an extension to the disjoint paths problem in which
additional lifted edges are introduced to provide path connectivity priors. We call
the resulting optimization problem the lifted disjoint paths problem. We show
that this problem is NP-hard by reduction from integer multi commodity flow
and 3-SAT. To enable practical global optimization, we propose several classes
of linear inequalities that produce a high-quality LP-relaxation. Additionally,
we propose efficient cutting plane algorithms for separating the proposed linear
inequalities. The lifted disjoint paths problem is a natural model for multiple
object tracking and allows an elegant mathematical formulation for long-range
temporal interactions. Lifted edges help to prevent ID switches and to re-identify
persons. Our lifted disjoint paths tracker leads on all three main benchmarks of
the MOT challenge, improving significantly over state of the art.

8 Shared first authorship.
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[123] Andrea Hornakova, Timo Kaiser, Bodo Rosenhahn, Paul Swoboda, Roberto
Henschel: “Higher Order Multiple Object Tracking for Crowded Scenes”. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPRW), 2021.

Abstract: The lifted disjoint paths formulation is a natural model for multiple
object tracking. This model is able to obtain state-of-the-art results but is NP-
hard. We present an efficient approximate message passing solver for LDP and
integrate it into a multiple object tracker, which scales to very large instances that
come from long and crowded scenes. We achieve comparable or better performance
than state-of-the-art methods on MOT15/16/17 benchmarks and comparable
results on the MOT20 benchmark. This has been out of reach up to now for
known LDP-solvers due to the problem size and complexity of MOT20.

[124] Andrea Hornakova, Timo Kaiser, Paul Swoboda, Michal Rolinek, Bodo Rosen-
hahn, Roberto Henschel: “Making Higher Order MOT Scalable: An Efficient
Approximate Solver for Lifted Disjoint Paths”. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2021.

Abstract: We present an efficient approximate message passing solver for the
lifted disjoint paths problem (LDP), a natural but NP-hard model for multiple
object tracking (MOT). Our tracker scales to very large instances that come from
long and crowded MOT sequences. Our approximate solver enables us to process
the MOT15/16/17 benchmarks without sacrificing solution quality and allows for
solving MOT20, which has been out of reach up to now for LDP solvers due to
its size and complexity. On all these four standard MOT benchmarks we achieve
performance comparable or better than current state-of-the-art methods including
a tracker based on an optimal LDP solver.

[120] Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn : “Solving Multiple
People Tracking In A Minimum Cost Arborescence”. In: Winter Conference on
Applications of Computer Vision Workshops (WACVW), 2015.

Abstract: For many applications of computer vision, it is necessary to localize
and track humans that appear in a video sequence. Multiple people tracking
has thus evolved as an ongoing research topic in the computer vision domain. A
commonly used approach to solve the data association problem within the tracking
task is to apply a hierarchical tracklet framework. Although there has been great
progress in such a model, mainly due to its good bootstrapping capabilities, so far
little attention has been drawn to improve the quality of the tracklets themselves.
A main issue of the hierarchical frameworks, as used in the common literature, is
that they make hard decisions at each iteration of the association step. Especially
in ambiguous situations, tracklets are still being merged or removed so that the
method is prone to error propagation. To avoid these problems, we propose a
new framework that prevents unreliable decisions. Instead, unclear aggregations
are being postponed to a later iteration when more information is available.
To maintain the possible associations of tracklets under challenging situations,
we propose a new trajectory model, which we call tree tracklets. While recent
multiple people trackers model the association problem mainly in a flow network,
we employ a rooted, directed and weighted graph, which is of a simpler structure,
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1 Introduction

in particular has fewer nodes and edges. Thereby, we obtain the global optimal
solution of each iteration in linear time in the number of nodes by computing a
minimum cost arborescence.

[106] Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn: “Efficient Multiple
People Tracking Using Minimum Cost Arborescences”. In: German Conference
on Pattern Recognition (GCPR), 2014.

Abstract: We present a new global optimization approach for multiple people
tracking based on a hierarchical tracklet framework. A new type of tracklets is
introduced, which we call tree tracklets. They contain bifurcations to naturally
deal with ambiguous tracking situations. Difficult decisions are postponed to a
later iteration of the hierarchical framework when more information is available.
We cast the optimization problem as a minimum cost arborescence problem in an
acyclic directed graph, where a tracking solution can be obtained in linear time.
Experiments on six publicly available datasets show that the method performs
well when compared to state-of-the art tracking algorithms.

In addition, a dataset has been recorded and published for research purposes.

[75] Roberto Henschel, Timo von Marcard, Bodo Rosenhahn. “VIMPT2019 - Video
Inertial Multiple People Tracking Dataset”. https://www.tnt.uni-hannover.
de/de/project/VIMPT2019/, 2019.

VIMPT2019 is a dataset for multiple people tracking that is recorded by a camera,
providing also the motion information from a body-worn IMU for each visible
person. The dataset consists of 6 soccer sequences that are challenging due to
frequent occlusions, appearance ambiguities (because of the worn uniforms), and
non-linear motions. In addition, an outdoor sequence filmed in a park environment,
which is similar to the typical multiple person tracking sequence, is provided. In
each sequence, 8 persons wear an IMU sensor that is synchronized to a calibrated
camera.

1.7 Outline

The structure of the thesis is presented, followed by a graphical overview in Figure 1.19.

Chapter 1 (Introduction): Introduces the reader to the problem statement of
multiple object tracking, summarizes the novelties of this work, and compares it to
related work.

Chapter 2 (Fundamentals): Defines the basic terminologies used throughout this
work and provides the fundamentals necessary to develop and assess the proposed
tracking methods. It covers graph theory, machine learning, complexity theory, and
optimization theory. Regarding MOT, employed object detectors, datasets, pairwise
features, and metrics are introduced.
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1.7 Outline

Chapter 3 (HO-MOT with Signal Fusion): Presents an MOT formulation to
augment tracking-by-detection by additional signals, resulting in an HO-MOT model
so that computed trajectories are consistent with respect to all provided data. A
novel approximate solver is proposed to solve the underlying optimization problem. It
leads to high-quality solutions and is considerably faster than an optimal solver. The
benefit of the entire framework is shown in different settings. For video-based multiple
people tracking, fusing two types of input detections (people detections together with
head detections) with the method leads to significantly improved tracking results. In
addition, the framework is used to fuse video information with signals from body-worn
IMUs. The experiments show that such a fusion leads to a tracking method that
is less dependent on the detection quality and on motion and appearance models of
persons. The method outperforms purely video-based MOT methods on sequences
with ambiguous appearance information by a large margin. The method tracks people
and simultaneously identifies them (even across sequences and when clothes have been
changed). The chapter is based on previously published work [55, 121, 122].

Chapter 4 (Lifted Disjoint Paths): Presents a novel tracking formulation to
perform video-based HO-MOT, enabling to incorporate connectivity priors for long-
range temporal interactions. The formulation is shown to be NP-hard, making it
challenging to solve. Yet, a global optimal solver is developed that delivers fast solutions
in practice. The method represents, to our knowledge, the first work to solve HO-MOT
incorporating long-range interactions without heuristics. Long-term connections up
to 60 frames apart are exploited during the decision process. Extensive experiments
on several multi-person tracking datasets show that the method leads to very high
tracking accuracies, outperforming the state of the art by a large margin. Assignments
are nearly optimal with respect to provided input detections. The chapter is based on
previously published work [50].

Chapter 5 (Conclusions): Summarizes contributions and results of the methods of
Chapter 3 and Chapter 4. In addition, their limitations are discussed and addressed in
an outlook for future work.
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Figure 1.19: Thesis overview.
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2 Fundamentals

The MOT methods presented in this work are based on different fields of mathematics
and computer vision, especially discrete optimization, machine learning, and object
detection. This chapter briefly introduces the necessary basics and defines notation and
terminology used throughout this work.

2.1 Sets, Maps, and Matrices

We settle the basic terminologies used for sets, maps, and matrices.

Sets. We denote by N,Z, and R the natural numbers (excluding zero), integer numbers,
and real numbers, respectively. By Z≥0 and R≥0, we denote the non-negative integers
and non-negative real numbers, respectively. For n1, n2 ∈ Z, we define

[n1 : n2] := {t ∈ Z | n1 ≤ t ≤ n2}, [n2] := [1 : n2] , [n2]0 := [0 : n2] . (2.1)
For set A, we define the set of two-element sets A(2) := {{x, y} | x, y ∈ A, x 6= y}. For
set A ⊆ Rn and x ∈ Rn, we define the Minkowski sum as A+ x := {a + x | a ∈ A}.
A set X 6= ∅ is partitioned by sets X1, . . . , Xn ⊆ X if X = ⋃n

k=1 Xi and Xi ∩Xj = ∅ for
all i 6= j. In this case, we write X = X1 t . . . tXn. For sets A,B, we set A ( B if and
only if A ⊂ B and A 6= B.

Maps. For a map f : X → Y , we may write f ∈ Y X . For a finite set X with n = |X|,
we identify a map f ∈ RX with the vector f := (f(x))x∈X ∈ Rn. For set X, n ∈ N,
and i ∈ [n], we define πi : Xn → X as the projection on the i-th component so that
πi(x) = xi for all x = (x1, . . . , xn) ∈ Xn.

Matrices. We frequently use the vector space identification Rn×m ∼= Rnm for n,m ∈ N
without additional notation. For a matrix X = (xr,c)r∈[n],c∈[m] ∈ Rn×m, j ∈ [n] and
k ∈ [m], we define the row vector X[j,:] and column vector X[:,k] by

X[j,:] := (xj,c)c∈[m] ∈ R1×m, X[:,k] := (xr,k)r∈[n] ∈ Rn×1 , (2.2)
respectively. For a tensor X ∈ Rn×m×p and u ∈ [p], we define X[:,:,u] ∈ Rn×m accordingly.
Throughout this work, we denote by 0 and 1 the zero matrix and matrix of ones,
respectively. If it is clear from the context, we omit the dimension for 0 and 1.
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2 Fundamentals

2.2 Probability Theory

In order to formulate the tracking task as obtaining the most likely trajectories and to
incorporate measurement uncertainties, probability theory is employed.
We provide the basic terminologies and refer to Georgii [69] for further details.
Definition 2.1. Let (Ω,A,P) be a probability space with sample space Ω, σ-algebra A
and probability measure P. Let (Ω′,A′) be a measurable space. A mapping X : Ω→ Ω′
is a random variable if X−1(A) ∈ A for all A ∈ A′. For random variable X and ω ∈ Ω,
x = X(ω) is a realization, which is an observed value of X.

In this work, we will only consider random variables X : Ω→ Ω′ with Ω′ ⊆ R and finite
X(Ω). Such a mapping is called a discrete random variable.
By abuse of notation, we may omit random variables if the statement remains clear
from the context. Thus for random variable X : Ω → R and x ∈ R, we may write
P(x) := P(X = x) := P({w ∈ Ω | X(ω) = x}).
Definition 2.2. The expected value of a discrete random variable X : Ω→ R is given
by

E[X] :=
∑

x∈X(Ω)
xP(X = x) . (2.3)

2.3 Graph Theory

The tracking methods of Chapter 3 and Chapter 4 formulate the MOT task in terms of
a graph, a mathematical construct to represent entities (e.g., detections) and to model
pairwise relations between them (e.g., associations of detections to a person).
A very brief introduction to the basic concepts of graph theory is presented, based on
Jungnickel [125].
Definition 2.3. A (simple) undirected graph is a pair G = (V , E) of sets with |V| <∞
and E ⊆ V(2). An element v ∈ V is a vertex or node. Each element e ∈ E is an edge.
Further definitions characterize nodes and their relations to edges:

• Vertices v, u ∈ V are adjacent if {v, u} ∈ E .

• A vertex v ∈ V is incident to an edge e ∈ E if v ∈ e.

• A labeling of a graph G is a map L : V → [n] for n ∈ N, which defines for each
node v ∈ V its associated label L(v). A graph is vertex-labeled if a bijection
L : V → [ |V| ] is given.

• The neighborhood NG(v) of a vertex v ∈ V is the set of vertices adjacent to v. The
value dG(v) := |NG(v)| is the degree of v.

For an edge e = {v, u}, we shall simply write e = vu (or e = uv). We may refer to the
set of nodes and edges of G as GV and GE , respectively. An example graph G = (V , E)
with V = {u, v} and E = {{v, u}} is drawn in Figure 2.1(a). Each node of G has degree
1.
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2.3 Graph Theory

u v

e

(a)

u v

e

(b)

Figure 2.1: (a) A graph consisting of two nodes (u and v) and one edge (e). We
represent a node by a circle and an edge by a line. Note that a graph does not
specify the positions of the nodes. (b) A directed path. Here, the edge e = uv is
drawn.

Remark 2.4. All graphs used in this work are assumed to be vertex-labeled without
explicitly stating it. In particular, this defines an ordering on the vertices so that we
can identify a map x ∈ RV with a vector x ∈ R|V|.

An important task studied in graph theory is to select edges of a given graph according
to an optimality criterion. This is used in the tracking methods proposed in Chapter 3
and Chapter 4 in which each edge represents an association of two detections to the
same object. Also, during the evaluation of a tracking method, edges are selected in
order to link detections with ground truth data (see Section 2.7.4). For the evaluation,
any node must be incident to at most one selected edge, which is formalized using
matchings as follows:

Definition 2.5. Let G = (V, E) be a graph and M ⊆ E .

• M ⊆ E is called matching if any two distinct edges are node-disjoint:

∀e, f ∈M : e 6= f =⇒ e ∩ f = ∅ . (2.4)

• For matching M and edge uv ∈M , the vertices u and v are matched.

• M is a maximum matching if (i) M is a matching and (ii) |M | ≥ |M ′| for all
matchings M ′ ⊆ E .

An example of a maximum matching is given in Figure 2.2. Matchings can be computed
efficiently using the Hungarian algorithm (see Section 2.3.2).

e1

e2

Figure 2.2: A maximum matching of the depicted graph is given byM = {e1, e2}.

A graph can describe the set of possible trajectories and their probabilities by assigning
values to nodes or edges.

Definition 2.6. Given a graph (V , E) and let w ∈ R|E| and c ∈ R|V| be given. The
tuple (V , E ,w) is an edge-weighted graph. Accordingly, (V , E , c) is a vertex-weighted
graph.
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2 Fundamentals

Remark 2.7. Edge weights may also be provided equivalently in terms of a symmetric
matrix Q ∈ R|V|×|V|. Consequently, all diagonal entries of Q must be zero.

Chapter 3 formulates the MOT task using a vertex-weighted graph with a matrix Q as
described in Remark 2.7. The tracking method presented in Chapter 4 uses a vertex-
and edge-weighted graph.
For each edge e = vu, a direction ((v, u) or (u, v)) can be defined, see also Figure 2.1(b).
This is used in Chapter 4 to formulate the MOT problem, as it enables to naturally
model the temporal information of a video recording.

Definition 2.8. A (simple) directed graph G = (V , E) consists of a set V of nodes and a
set E ⊆ (V ×V)\{(v, v) | v ∈ V} of edges. In a directed graph, an edge e = (v, u) =: vu
is an incoming edge for vertex u, while it is an outgoing edge for vertex v. The set of
incoming and outgoing vertices for node v is denoted as N−G (v) and N+

G (v), respectively.
Accordingly, d−G (v) := |N−G (v)| and d+

G (v) := |N+
G (v)| denote the number of incoming

and outgoing edges at node v ∈ V , respectively.

2.3.1 Important graph classes

Several graph classes are introduced that will be used throughout this work.

Definition 2.9. A (directed) subgraph G ′ of a (directed) graph G = (V , E), denoted
by G ′ ⊆ G, is defined to be a (directed) graph G ′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E .
As a special case, given a subset of nodes V ′ ⊆ V, we define the induced subgraph
G[V ′] := (V ′, E ′), where the edge set is given via E ′ := {vu ∈ E | v, u ∈ V ′}.

Induced subgraphs keep all edges that have both endpoints in the defined vertex set.
The hierarchical solver proposed in Section 3.3.2.4 uses induced subgraphs to select for
each computed trajectory the corresponding subgraph, which enables correcting wrong
assignments.

Definition 2.10. A (directed) path is a non-empty (directed) graph P = (V , E) with
vertices V = {v1, . . . , vk} and edges E = {vivi+1 | i ∈ [k − 1]}, while all vertices vi have
to be distinct. Two paths P1, P2 ⊆ G are disjoint if they do not share a common vertex.

The MOT formulation of Chapter 4 represents each trajectory by a path. Also, paths
allow characterizing graph connectivity.

Definition 2.11. Let G = (V, E) be a (directed) graph.

• Nodes v, u ∈ V are connected if a (directed) path P in G exists with v, u ∈ PV .

• An edge e = vu ∈ E is a bridge if v, u are not connected in (V , E \ {e}).

For instance, any edge of the graph depicted in Figure 2.3(a) is a bridge, while no edge
of the graph depicted in Figure 2.3(b) is a bridge.
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(a) (b)

Figure 2.3: (a) The graph is a path. The node coloring shows that the graph is
also bipartite. (b) The graph is a cycle and also a complete graph.

Definition 2.12. A (directed) cycle is a non-empty (directed) graph G = (V , E) with
vertices V = {v1, . . . , vk} and edges E = {vivi+1 | i ∈ [k− 1]}∪ {v1vk}, while all vertices
vi have to be distinct. A (directed) graph G is acyclic if no subgraph of G is a cycle.

Definition 2.13. In a complete graph G = (V , E), any two vertices of V are connected
by an edge.

Assignments of identities to detections are computed using complete graphs in Chapter 3
so that all connections of a trajectory γ, i.e., all edges of the subgraph induced by the
detections of γ, are taken into account.
A key role in computing matchings play bipartite graphs, which are defined in the
following.

Definition 2.14. An undirected graph G = (V1 t V2, E) is bipartite if {v, u} 6⊂ V1 ∧
{v, u} 6⊂ V2 for all {v, u} ∈ E . G is a complete bipartite graph if for all v ∈ V1 and for
all u ∈ V2, vu ∈ E . If |V1| = n = |V2|, we shall write G = Kn,n.

Examples of the above graph classes are shown in Figure 2.3.

2.3.2 Computations on graphs

Bridges. Given a graph G, the shortest distance d between two nodes v, u ∈ V
can be computed using a function Shortest-Distance(v, u,G) that returns d = ∞
if v and u are not connected in G. Otherwise, it returns the length of a shortest
path P that connects v with u, where the length of P is defined as the number of
edges |PE |. The Dijkstra algorithm [126] is a suitable and efficient shortest path
implementation with time-complexity O(|V|+ |E|). This allows detecting bridges in a
graph in O(|E|(|V|+ |E|)), which is used in Section 3.3.2.4 to improve the objective value
initially returned by the proposed solver. Pseudo-code of a bridge-detection algorithm
is presented in Algorithm 2.1.

Matchings. To compute matchings in a graph, we consider an edge-weighted bipartite
graph G = (V1 t V2, E ,w). The weight of a matching M ⊆ E is defined as w(M) :=∑
e∈M we. A matching M is a maximum-weight matching if w(M) ≥ w(M ′) for all

matchings M ′ ⊆ E of G. A matching M is perfect if each vertex v ∈ V is incident to a
matching edge e ∈M . A maximum and perfect matching of a complete bipartite graph
Kn,n is called optimal matching and can be computed using the Hungarian matching
algorithm.
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Algorithm 2.1: Bridge detection
Input : Graph G = (V, E).
Output : Bridge set Ebridge.
Ebridge = ∅
for e = vu ∈ E do
G′ ← (V, E \ {e})
d← Shortest-Distance(v, u,G′)
if d =∞ then
Ebridge ← Ebridge ∪ {e}

end if
end for

8

5

7

11

77

7 6

10

Figure 2.4: The optimal matching of the graph has weight 26, which is composed
of the thick edges.

Theorem 2.15 (Hungarian matching). For a complete bipartite graph Kn,n with non-
negative edge weights, an optimal matching can be obtained in O(n3).

Proof. See Kuhn [100].

An example of an optimal matching is shown in Figure 2.4. The Hungarian matching
algorithm is used to establish correspondences between computed and ground truth
trajectories to evaluate tracking results (see Section 2.7.4).
Remark 2.16. The problem of finding a maximum-weight matching can be performed
using a canonical form without loss of generality: We can assume that (i) w is non-
negative, (ii) |V1| = |V2|, and (iii) G is a complete graph. To ensure (i), a weight vector
w with negative components can be replaced by w− c with c = mine∈E we. To ensure
(ii), we can add nodes with only zero-weighted incident edges. To ensure (iii), we can
add missing edges with zero weight.

2.4 Machine Learning

Machine learning is a field of artificial intelligence that is frequently used in this thesis,
e.g., to detect persons within an image and to find meaningful pairwise features between
two detection boxes.
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A commonly accepted definition is that a computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E [127]. Machine
learning allows solving certain tasks without explicitly programming an algorithm that
directly solves the problem. Instead, the information contained in a dataset is used to
automatically infer the correct adjustment of an algorithm for the desired task.

2.4.1 Supervised learning

A subfield of machine learning is supervised learning, whose aim is to approximate or to
learn a map based on a given set of input-output pairs. A very brief introduction to
the topic is provided, following Mohri et al. [128].
Let f : X → Y be a mapping that is not explicitly given, i.e., it is not known how
to define a map that returns f(x) for all x ∈ X. Yet, for a finite subset S ( X the
input-output relation is provided, i.e., we are given the restriction f |S of f to S. The
set {(s, f(s)) | s ∈ S} ⊂ X × Y is a training set using labeled samples S.
For example, X could be a set of all possible images that can be taken from a camera
showing either a cat or a dog, Y = {0, 1}, and f(x) outputs 0 if x ∈ X shows a dog,
and 1 otherwise. In this case, S ( X is a finite collection of images of cats and dogs,
where the correct output is defined by human supervision for each input.
The set X contains all possible examples and the set Y comprises all feasible labels. To
learn f from f |S, a hypothesis set H of maps from X to Y is considered. Finally, the
task of supervised learning is to find the best hypothesis h ∈ H being as similar to f as
possible. Note that often, f 6∈ H. As only f |S is given and no further constraints on f
are imposed, statistical methods are used to infer an approximation of f .
Given a probability distribution P on X, the task of supervised learning is to minimize
the expected prediction error when using a map h ∈ H instead of f . To measure how
much a prediction deviates from the expected output, a loss function L : Y × Y → R≥0
is used. The prediction error using a map h for x ∈ X is then given as

Eh(x) := L(h(x), f(x)) , (2.5)

which is a random variable for fixed h ∈ H.
Accordingly, we obtain the generalization error E?(h) by

E?(h) := E[Eh] . (2.6)

As the distribution P on X is usually unknown, the generalization error cannot be
computed in practice. Therefore, an empirical error is used as a proxy on a labeled
sample set S ⊂ X. The empirical error for h ∈ H is then given as

ÊS(h) := 1
|S|

∑
x∈S

L(h(x), f(x)) . (2.7)

For fixed h ∈ H, the expected value of the empirical error equals the generalization
error if samples are drawn independently and identically distributed, which motivates
optimizing the empirical error.
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To see this, we fix a map h ∈ H and a number of samples r. Then, ÊS(h) is a random
variable defined on Xr: Let E(i)

h := Eh ◦ πi : Xr → R, where πi is the projection on the
ith component. Then, for S ∈ Xr drawn independently and identically distributed, we
have

ÊS(h) = 1
r

r∑
i=1

E
(i)
h (S) , (2.8)

considered as a random variable. By assumption on S, we conclude

E
[
ÊS(h)

]
= E

[
1
r

r∑
i=1

E
(i)
h

]
= 1
r

r∑
i=1

E
[
E

(i)
h

]
= E

[
E

(1)
h

]
= E[Eh]

= E?(h) ,

as the expected value is linear and E[Eh] = E
[
E

(i)
h

]
∀i ∈ [n].

A commonly used approach in supervised learning, which we follow in this work, is
trying to minimize the empirical error

h?S = arg min
h∈H

ÊS(h) , (2.9)

which is called empirical risk minimization. Several bounds are known [128] that relate
E?(h?S) with the minimal generalization error infh∈HE?(h), thus justifying the approach.
When the empirical risk is small but the generalization error is relatively big, it means
that a machine learning algorithm is not able to generalize, which is also called overfitting.
This happens if the hypothesis set contains overly complex maps, i.e., the degrees of
freedom of a map h ∈ H is too high, compared to the number of training data.
Supervised learning also enables modelling that there is uncertainty in the labels. In
this case, a probability distribution over X × Y is considered. In general, supervised
learning can also be understood as maximizing the conditional distribution P(y | x),
given x ∈ X.

2.4.2 Logistic regression

A supervised learning model that is frequently used in this work is logistic regression [129].
Consider a probability distribution over X × Y with X ⊆ Rn and binary label space
Y = {0, 1}. For x ∈ X, we define px = P(Y = 1 | X = x). Then, 1 − px = P(Y =
0 |X = x). Assuming px ∈ (0, 1), the odd for an event is given by

o(px) := px

1− px
∈ (0,∞) . (2.10)

The concept behind logistic regression is to describe probabilities in terms of linear
regression. The odd must thus be converted to be applicable. This is done using the
log-odd log(o(px)) ∈ (−∞,∞), as it allows computing weights w ∈ Rn and bias b ∈ R
such that

log(o(px)) = 〈w,x〉+ b . (2.11)
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Figure 2.5: Visualization of a neuron ov for an input vector (x1, . . . , xn).

The probability of x ∈ X having label 1 is then

px = 1
1 + exp(−〈w,x〉 − b) . (2.12)

The best-fitting parameters w and b can be obtained from a maximum likelihood
estimation applied to a training set. Usually, this is done via the log-likelihood which
can be computed using gradient descent or iteratively reweighted least squares. This
thesis uses the software implementation LIBLINEAR [74] in Chapter 3 to learn the
probabilities of two detections belonging to the same person.

2.4.3 Neural networks

Machine learning and computer vision have seen significant improvements in recent
years due to the latest advances in neural networks [130–133]. In this work, neural
networks are employed for supervised learning; to perform object detection, person
re-identification, and feature computation (see Chapter 3 and Chapter 4). We briefly
introduce the basic concepts of neural networks and refer the interested reader to
Goodfellow et al. [134] for a more comprehensive introduction to the topic.

Definition 2.17. Let G = (V , E) be an acyclic directed graph with edge weights
w = (wuv)uv∈E and vertex weights b = (bv)v∈V . For v ∈ V , let ρv : R→ R be a function.
For x ∈ Rn, we recursively define a mapping ov : Rn → R via

ov(x) :=

ρv
(
bv +∑

u∈N−
G (v) wuvou(x)

)
if d−G (v) > 0 ,

xv otherwise.
(2.13)

The map ov is called (artificial) neuron, bv is a bias and ρv an activation function.
Finally, (V , E , {ov | v ∈ V}) is called feedforward neural network.

Each neuron ov aggregates d−G (v) many weighted input signals. Before passing the
values to the activation function ρv, a bias bv is added. This computational process of a
neuron is illustrated in Figure 2.5.
A feedforward neural network consists of multiple interconnected neurons. In the
following, we shall denote such a network simply as a neural network.
Neural networks are divided into layers, where each layer consists of neurons with similar
structure: The neurons have a decomposition V = V1t. . .tVnL

with nL being the number
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of layers such that ∀l ∈ [2 : nL]∀v, u ∈ Vl : ρv ≡ ρu, i.e., neurons of the same layer have
the same activation function. Furthermore, ∀l ∈ [2 : nL]∀v ∈ Vl : N−G (v) ⊆ V1∪. . .∪Vl−1,
i.e., each node has incoming edges only from previous layers. Usually, regularity is
assumed per layer, i.e., ∀l ∈ [nL]∀v, u ∈ Vl : d−G (v) = d−G (u). We denote the number of
neurons in layer l ∈ [nL] as nl := |Vl|. Given a neural network with nL layers, using the
neural network of all layers up to layer l ≤ nL is called a backbone. In practice, neural
networks consisting of more than 150 layers [132, 135] have been successfully used for
computer vision tasks. Observations have shown [136] that earlier layers are typically
sensitive to low-level image features while later layers compose these features to form
more complex image features.
In the subsequent part of this section, it is assumed that edges exist only between
consecutive layers. Then, for fixed x ∈ Rn1, the output ov(x) at layer l ∈ [2 : nL]
depends entirely on the vector o(l−1) := o(l−1)(x) := (ov(x))v∈Vl−1 ∈ Rnl−1 of layer l − 1.
As a result, such neural networks are compositions of layer-wise functions.

2.4.3.1 Layers

This work focuses on a specific class of feedforward neural networks called Convolutional
Neural Networks (CNNs) [137, 138], which have turned out to be very effective, improving
the accuracy of many machine learning tasks considerably, especially in the field of
image analysis. In this work, CNNs are used to obtain accurate people detections as
a basis for the proposed tracking methods. Also, CNNs are employed to regress the
orientation of a person in Section 3.5. Finally, CNNs provide very reliable pairwise
features between detections (see Chapter 4).
CNNs use certain layers, termed fully connected, convolution, and pooling layers. We
present these layers subsequently, as they are used throughout this work. In the
following, let a layer l ∈ [2 : nL] be fixed.

Fully-connected layer. Layer l is called fully-connected if each node of layer l is
connected to all nodes of the previous layer l − 1 so that N−G (v) = Vl−1 for all v ∈ Vl.
Thus for each node v ∈ Vl, bias vector b ∈ Rnl, weight matrix W ∈ Rnl×nl−1, and
activation function ρ, we have

o(l) = ρρρ(Wo(l−1) + b) (2.14)

using the mapping ρρρ : Rnl → Rnl ,x 7→ (ρ(x1), . . . , ρ(xnl
)).

In theory, feedforward networks using only fully connected layers can represent most
functions used in computer vision, which is known as the universal approximation
theorem:

Theorem 2.18. Let Hn3
n1 be the set of all feedforward neural networks consisting of

3 layers and let each layer l ∈ [2 : 3] be fully connected. Let ρ(2) be a continuous
activation function used for all neurons of layer 2, and let the identity be the activation
function used for all neurons of layer 3. Let K ⊆ Rn1 be compact. Then, Hn3

n1 is dense
in {f : K → Rn3 | f continuous} with respect to the supremum norm if and only if ρ(2)

is non-polynomial.
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Proof. See Pinkus [139].

Several other variants of the universal approximation theorem have been established
(e.g., with an arbitrary number of layers [140]), showing that feedforward neural networks
have excellent theoretical approximation properties. Note however that (i) the proof of
Theorem 2.18 is non-constructive and (ii) the approximation property is guaranteed
only within a bounded set. Yet, the universal approximation theorem shows that in
theory, there is great flexibility in selecting an activation function. The sigmoid function
σ(x) := 1

1+exp(−x) , the hyperbolic tangent tanh(x), and the so-called Rectified Linear
Unit (ReLU) defined by relu(x) := max{0, x} are common choices. Note that using a
single neuron with the sigmoid activation function is nothing else but logistic regression.
A drawback of using fully connected layers is that the number of weights that need to
be determined and the number of computations that need to be performed can become
huge, resulting in overfitting as well as computational issues.

2D convolution layer. To reduce computational costs and avoid overfitting issues,
convolutional layers are used. Assuming that the nodes of layer l − 1 are arranged in a
2D grid structure, layer l − 1 is viewed as an image I ∈ Rw×h×nc of dimension w × h
with nc channels. A 2D convolution layer then applies to each channel of I a kernel via
2D convolution and sums up the results across the channels. Simultaneously performing
nout 2D convolutions results in an output that can be viewed as an image with nout
channels. For cin ∈ [nc], we reshape I[:,:,cin] as a vector o(l−1)

cin
∈ Rw·h. The output is

then given by

o(l) =
ρρρ( nc∑

cin=1
Wcin,couto(l−1)

cin
+ bcout1)


cout∈[nout]

. (2.15)

A Toeplitz matrix Wcin,cout ∈ Rw′h′×wh is used to perform the convolution. The bias
bcout1 ∈ Rw′h′ with bcout ∈ R is constant for each output channel.
By definition of a Toeplitz matrix (or equivalently a convolution), multiple edge weights
of the neural network are constrained to share the same value, which is called weight-
sharing. Consequently, the degrees of freedom of a neural network are heavily reduced
compared to using fully connected layers, making the network less prone to overfitting
issues. At the same time, convolutions are established methods to retrieve image features
in computer vision [141], mainly due to their translation equivariance properties. Hence,
learning kernel weights has become essential for the successful application of neural
networks in computer vision tasks [132, 133].

2D pooling layer. Assuming that layer l − 1 is arranged in a 2D grid structure, it
can be viewed as an image I ∈ Rw×h×nc of dimension w × h with nc channels. Pooling
layers reduce the spatial dimension of I so that the resulting output can be viewed as
an image I′ ∈ Rw′×h′×nc of spatial dimension w′ × h′ < w × h.
A neighborhood (e.g., 3 × 3) is fixed, which we denote as N . For an image position
p ∈ [w]× [h] and N(p) := p +N , a 2D pooling layer outputs for each channel c ∈ [nc]
the value op,c = f (I(N(p), c)), where f either computes the mean value or max value
of I(N(p), c), which is called average pooling and max pooling, respectively. To reduce
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the spatial dimension, pooling is computed on a proper subset P ( [w]× [h] of image
positions.
As the information within a neighborhood is aggregated in a pooling layer, a neural
network becomes robust to certain translations. Pooling can also be understood as
a form of noise suppression, e.g., when the important information is contained in a
local maximum. Most importantly, a pooling layer reduces computational costs and
mitigates overfitting.

2.4.3.2 Training of Neural Networks

In this work, neural networks are applied using the supervised learning setting (see
Section 2.4.1). Accordingly, given a training set S, the empirical error ÊS, according
to Eq. (2.7), needs to be minimized. The hypothesis set H(G) is specified by fixing
a neural network graph G with corresponding activation functions. Each h ∈ H(G)
corresponds to a specific assignment of weights w and biases b to G so that we may
denote a hypothesis, i.e., a neural network, as hw,b ∈ H(G). In order to train a neural
network, a loss L needs to be defined so that the empirical error can be minimized.

Loss. In the following, we consider a mapping f : X → Y that we want to learn using
supervised learning. Let S ⊂ X be a training set and let hw,b ∈ H(G) be a neural
network.
For binary classification, i.e., Y = {0, 1}, the Binary Cross-Entropy (BCE) loss LBCE
is often used, which for x ∈ X, y ∈ Y is given as

LBCE(hw,b(x), y) = −y log(hw,b(x)) + (1− y) log(1− hw,b(x)) . (2.16)

It is assumed that hw,b(x) ∈ (0, 1) for all x ∈ X. The binary cross-entropy loss is a
measure of dissimilarity between the distribution of the true labels and the distribution
given by the neural network hw,b. It is used in Section 4.7.3 to train a neural network
that classifies whether a pair of detections belongs to the same person.
In the case of multi-class classification with nC classes, i.e., Y = [nC ], a neural network
h ∈ H maps an input x to hw,b(x) = (h(1)

w,b(x), . . . , h(nC)
w,b (x)) ∈ (0, 1)nC . As loss, the

Cross Entropy (CE) can be used, which is given via

LCE(hw,b(x), y) = −
nC∑
c=1

[y = c] log(h(c)
w,b(x)) , (2.17)

where [y = c] denotes the Iverson bracket. It is applied in Section 2.7.2.2 to train robust
appearance features used to re-identify persons.
For regression problems, we consider Y ⊆ Rn. In this case, minimizing the Mean
Squared Error (MSE) loss LMSE given by

LMSE(hw,b(x),y) = ‖hw,b(x)− y‖2 (2.18)

results in minimizing the average distance between the predicted and ground truth
vector. Neural network based object detectors (see Section 2.7.1) are trained to
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regress coordinates of bounding boxes using the LMSE loss. Alternatively, the Cosine
Similarity (CS) can be maximized, which is given by

LCS(hw,b(x),y) = 〈hw,b(x),y〉
‖hw,b(x)‖ ‖y‖ . (2.19)

It then minimizes the average angle between predicted and ground truth vectors, which
is used in Section 3.5.2.2 to regress the orientation of a person.

Computing optimal weights. Finding the optimal solution h? ∈ H(G) typically
poses a non-linear and non-convex optimization problem (depending on the layers
and activation functions). Thus, we have to minimize the empirical error ÊS which
we consider as a map ÊS : Rn → R, ÊS(w,b) := ÊS(hw,b), where we assume that
each hw,b ∈ H(G) is parameterized by a vector (w,b) ∈ Rn and ÊS is assumed to be
continuously differentiable.
Variants of the gradient descent algorithm are usually applied to minimize the function.
Subsequently, we briefly introduce the main concepts of gradient descent.

Definition 2.19. Let d ∈ Rn and f : Rn → R. Then d is a descent direction at x ∈ Rn

if there exists a value Λ ∈ R>0 such that for all λ ∈ (0,Λ), f(x + λd) < f(x).

The value λ is called step-size or in the context of machine learning learning rate. The
following theorem gives a sufficient condition for a descent direction.

Theorem 2.20. If f : Rn → R is continuously differentiable and ∇f(x)d < 0, then d
is a descent direction for x ∈ Rn.

Proof. For F (λ) := f(x + λd), we have dF
dλ

(λ) = ∇f(x + λd)d. The statement then
follows from 0 > ∇f(x)d = dF

dλ
(0) = limu→0

u>0
F (u)−F (0)

u
.

Thus, if ŵ := (w,b) is not a stationary point, i.e., ∇ÊS(ŵ) 6= 0, then d := −(∇ÊS(ŵ))ᵀ
satisfies the conditions of Theorem 2.20, since

∇ÊS(ŵ)d = −||∇ÊS(ŵ)||2 < 0 . (2.20)

To find optimal weights and biases for ÊS, a current solution ŵ is thus moved towards
the negative gradient of ÊS at ŵ.
In order to apply gradient descent, the neural network and the loss function must be
differentiable with respect to the weights and biases. Different algorithms have been
developed to find the corresponding learning rate, like the Armijo-rule that performs an
additional 1D line search. It can be shown that gradient descent with the Armijo-rule
for a continuously differentiable function either terminates on a stationary point or
creates a strictly monotonic decreasing sequence such that each accumulation point is a
stationary point. More details about gradient descent can be found in any textbook
about non-linear optimization, e.g., Ulbrich et al. [142].
However, computing the gradient ∇ÊS becomes very expensive if the training set S is
large. It is therefore common to apply stochastic gradient descent [143]. The training
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set S is randomly partitioned into n sets B1, . . . , Bn of equal size, called mini-batches.
For each mini-batch, the parameters are updated according to the gradient. Stochastic
gradient descent thus employs an approximation of the true gradient ∇ÊS, using the
gradients ∇ÊBk

. The entire algorithm is sketched in Algorithm 2.2.

Algorithm 2.2: Stochastic gradient descent
Input : Training set S.
Output : Optimized weights (w,b).
Initialize weights (w,b)
while stopping criteria not true do

Set learning rate λ
Randomly partition S into mini-batches B1, . . . , Bn of equal size
for k ∈ [n] do

(w,b)← (w,b)− λ∇ÊBk
(w,b)

end for
end while

Note that the gradients are typically computed efficiently and automatically using the
automatic differentiation method [144] in reverse mode, which is also called backpropa-
gation [145] in the context of neural networks.
For stochastic gradient descent, it has been shown that convergence is almost sure
guaranteed to a critical point by choosing a fast-enough diminishing step-size [146,
147]. In addition, saddle points are avoided almost sure even if the objective function is
non-convex (but satisfies certain conditions) [148].

2.4.3.3 Regularization

A neural network can contain a huge1 number of variables that need to be determined
by the optimization algorithm. Therefore, neural networks are prone to overfitting.
Regularization techniques help to avoid these problems.

Batch normalization. A frequently used technique is to apply batch normaliza-
tion [150] on the output of a layer, which is used in the tracking method of Chapter 4.
Batch normalization enables faster convergence during training and helps mitigate
overfitting, thus having a regularizing effect that leads to higher accuracies. It performs
per coordinate a z-score normalization for each mini-batch during training. During
inference, population statistics are used for the normalization.
In more detail for a mini-batch B ⊂ Rd, the empirical mean µ(B) and variance σ2(B)
of B is given as

µµµ(B) = 1
|B|

∑
x∈B

x, and σσσ2(B) =
(

1
|B|

∑
x∈B

(xj − µ(B)j)2
)
j∈[d]

. (2.21)

1As an example, the GPT-3 network used in natural language processing has ≈ 175 · 109 parame-
ters [149].
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For ααα,βββ ∈ Rd and x ∈ B, normalization is performed per coordinate j ∈ [d], i.e.,

x̂j := αj
xj − µ(B)j√
σ2(B)j + ε

+ βj , (2.22)

where ε > 0 is a small number used to avoid numerical issues. The vectors ααα,βββ ∈ Rd

are viewed as variables that are optimized during training. The vector x̂ = (x̂j)j∈[d] is
passed to the next layer.
During inference given x ∈ Rd, the transformation is computed as

x̂j = αj
xj − µj√
σ2
j + ε

+ βj , (2.23)

where µj and σ2
j are determined by the empirical mean µµµ(B) and variance σσσ2(B) of all

batches B via moving average during training.

Dropout. Another regularization technique called Dropout [151] introduces artificial
noise during training. Applied to the output of layer l, the output of each neuron is
set to 0 with probability p ∈ (0, 1). Dropout effectively mitigates overfitting as the
neural network is trained to output the correct results based on a sparse signal flow and
to compensate for errors in the input. This technique is used in Section 3.5 to avoid
overfitting while regressing the orientation of a person.

2.5 Computational Complexity Theory

While HO-MOT is conceptually able to deliver very accurate results, solving the
underlying optimization poses a challenging problem that may prevent an HO-MOT
approach from being applicable in practice. To characterize the difficulty of such
optimization problems, this section briefly introduces computational complexity theory,
following the notation and statements presented by Bovet et al. [152].
Computational complexity theory is applicable to problems that are formalized in terms
of a formal language.

Definition 2.21. A finite set Σ 6= ∅ is called alphabet and L ⊆ Σ∗ a formal language.
Thereby, Σ∗ := ⋃∞

k=0 Σk and Σ0 := {ε} with ε being the empty word. An element
x = (x1, . . . , xk) ∈ Σ∗ is a word of length k. We shall write x = x1 . . . xk and |x| := k.
Note that |ε| = 0.

Words of a language encode problem instances and computational complexity theory
categorizes languages into difficulty classes. Of special interest are languages that
describe decision problems.

Definition 2.22. A decision problem is a tuple Π = (I, S, π), where I ⊆ Σ∗ is a set
of words representing problem instances. The map S assigns a word i ∈ I to a finite
set S(i) ⊆ Σ∗ representing candidate solutions. Finally, π : I × S → {true, false} is a
map so that π(i, y) is true if and only if y ∈ S(i) is a valid solution for i ∈ I. Further
definitions for i ∈ I are as follows:
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• The valid set is given by V (i) := {y | y ∈ S(i) ∧ π(i, y)}.

• Solving the decision problem is to decide if V (i) is non-empty.

Finally, the language of Π is defined as LΠ := {j ∈ I | V (j) 6= ∅}.

A decision problem can be understood as answering if at least one valid solution to a
given problem instance exists.

Example 2.23. Given a complete bipartite graph G = (V , E , w), the question of
whether an optimal matching E ′ ⊆ E exists with matching costs w(E ′) ≥ k poses a
decision problem: A word of the set I describes (in some encoding) a weighted complete
bipartite graph and k. For i ∈ I, the set S(i) encodes all subgraphs (V ′, E ′) ⊆ G and
π(i, y) is true if and only if y encodes a subgraph (V ′, E ′) ⊆ G with V = V ′ and E ′ is an
optimal matching with w(E ′) ≥ k.

In the following, we implicitly assume any decision problem Π to be transformed to the
language LΠ (see Definition 2.22).
Fundamental for assessing a language is the concept of a Turing machine, which is a
mathematical model of a computing machine.

Definition 2.24. A (deterministic) k-tape Turing machine (with k ∈ N) consists of

• a set of states Q,

• an alphabet Σ including a special symbol � called blank,

• a finite set I of tuples (q1, s1, s2,m, q2), where q1, q2 ∈ Q, s1 ∈ Σk, s2 ∈ (Σ\{�})k,
m ∈ {L,R, S}k,

• an initial state q ∈ Q,

• a set of final states F ⊆ Q.

For all i = (q(i)
1 , s(i)

1 , s
(i)
2 ,m(i), q

(i)
2 ), j = (q(j)

1 , s(j)
1 , s(j)

2 ,m(j), q
(j)
2 ) ∈ I it must hold that if

q
(i)
1 = q

(j)
1 and s(i)

1 = s(j)
1 , then i = j.

A k-tape Turing machine contains k memory tapes. A tape is a tuple (τ, h), where
τ : N→ Σ stores a character at each position (thus representing memory) and h ∈ N
is the current read/write position (called head position). L, R, and S shift the head
position h by one to the left, by one to the right, or keep the current position, respectively.
All tapes are initialized with the blank character and head position h = 1.
A Turing machine T is initialized with q as state and initialized tapes. To compute
T (x), the word x is written on one tape, starting at write position 1.

Definition 2.25. One step of a Turing machine reads the characters of the tapes at the
respective head positions h ∈ Nk, resulting in s ∈ Σk. Given the current state q ∈ Q, a
tuple (q, s, s′,m, q′) ∈ I is applied, which means that the tape information s is replaced
by s′ at h, the head positions are updated according to m, and q′ is set as the new
state.
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Thus, a Turing machine performs for a given input x ∈ Σ∗ a sequence of (possibly
infinitely many) steps. If T reaches a final state after finitely many steps, it halts.

Definition 2.26. A Turing machine T is an acceptor if, for all x ∈ Σ∗, whenever T (x)
results in a finite sequence of steps, the last state is a final state, which must be either
an accept or reject state. An acceptor Turing machine T accepts a language L if the set
of all inputs, where T halts in an accept state, equals L.

Definition 2.27. A Turing machine T is a transducer if, for all x ∈ Σ∗, whenever T (x)
results in a finite sequence of steps, the last state is a final state, called the terminate
state. In addition, it must return an output y ∈ Σ∗ written on one of its tapes.

Most importantly, an algorithm expressed in pseudo pascal code can be performed by a
Turing machine and vice versa. Essentially, computational complexity theory is about
categorizing how efficiently a Turing machine can accept a language.
For the decision problem of Example 2.23, a Turing machine that accepts the corre-
sponding language outputs for each complete bipartite graph G that has an optimal
matching with costs c ≥ k, the accept state.
Using a language and a Turing machine, we can define computable functions.

Definition 2.28. A function f defined on L ⊆ Σ∗ is computable if a transducer Turing
machine T exists such that, for all x ∈ L, T (x) reaches the terminate state and outputs
f(x).

In order to categorize decision problems according to their complexity, the following
definition is crucial:

Definition 2.29. A language L ⊆ Σ∗ has deterministic polynomial time complexity,
denoted by P, if there exists a Turing machine T that (i) accepts L, (ii) halts for
every input x ∈ Σ∗, and (iii) for all x ∈ Σ∗, the number of steps required2 to halt is
polynomial in the length |x|.

Decision problems belonging to the complexity class P are considered to be efficiently
solvable. An example of a decision problem belonging to P is Example 2.23, according
to Theorem 2.15. Efficiently computable functions are defined in terms of a transducer
Turing machine, accordingly.

Definition 2.30. The class FP is the class of all functions that are computable in
polynomial runtime by a deterministic transducer Turing machine.

This allows comparing the complexity of two languages L1, L2 ⊆ Σ∗ (and in particular
languages of decision problems).

Definition 2.31. Given two languages L1 and L2, the language L1 is polynomially
reducible to L2, denoted as L1 ≤r L2, if a function f ∈ FP exists such that x ∈ L1 ⇐⇒
f(x) ∈ L2.

2To be precise, the step counting function must be computable by a Turing machine.
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Assume that L1 ≤r L2 via a function f and let x ∈ Σ∗ be an input word. If L2 ∈ P,
then a Turing machine exists that terminates for each input f(x) in polynomial runtime
(with respect to f(x)) and accepts L2. As f(x) ∈ L2 can be decided in polynomial
runtime, it allows deciding in polynomial runtime if x ∈ L1, since L1 ≤r L2.
Thus given two decision problems L1, L2 with L1 ≤r L2, it follows that if L2 can be
solved efficiently, then the decision problem L1 can be solved efficiently too. Thus, if
L1 ≤r L2, then the decision problem L2 is at least as difficult as L1.
Besides the complexity class P , which categorizes languages in terms of their efficiency
in accepting a language, another characterization is how efficiently a solution can be
verified.

Definition 2.32. A language L ⊆ Σ∗ is in the non-deterministic polynomial time
complexity class NP if it is verifiable in polynomial time, i.e., if a language Lcheck ∈ P
exists and a polynomial p such that L = {x | ∃y : xy ∈ Lcheck ∧ |y| ≤ p(|x|)}.

The interpretation is as follows: A word x encodes a problem instance and the word y
a possible solution. Since Lcheck ∈ P, it is decidable in polynomial time if the solution
is valid, and the length of the solution word y depends polynomially on (and is upper
bounded by) the length of the word x.
The next example shows a decision problem that can easily be verified to be in NP .

Example 2.33 (3-SAT). Given a binary variable x, the expressions x and its negation
x are the literals that can be created from x. A clause is a formula f = f1 ∨ . . . ∨ fn,
where each fi is a literal. Let G = g1 ∧ . . . ∧ gm be a formula, where each gj is a clause
of at most 3 literals. The 3-SAT decision problem is to decide whether there exists an
assignment of the involved binary variables such that G holds.

Until today, no algorithm with polynomial runtime in the input length has been found
to solve the 3-SAT problem for arbitrary input.
Remark 2.34. A solution that can be constructed in polynomial time can also be verified
in polynomial time so that P ⊆ NP holds. Yet until today, whether P = NP or
P 6= NP holds is an open question3.

Using the formalization of reduction, we can characterize languages as being at least as
difficult as any language of NP .

Definition 2.35. A language L is NP-hard if for any language L′ ∈ NP , the reduction
L′ ≤r L holds.

The most difficult languages of NP are thus NP-hard.

Definition 2.36. A language L is NP-complete if L ∈ NP and L is NP-hard.

An example of an NP-complete decision problem is the 3-SAT problem defined in
Example 2.33 (see Karp [154]).

3The so-called P vs. NP problem is a millennium prize problem [153].
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Figure 2.6: Relation of complexity classes in case that P 6= NP holds (left)
and in the case of equality (right) [159]4. In the left case, the classes P and
NP-complete are disjoint. In the case of equality, the classes P, NP, and
NP-complete are not distinguishable.

Thus, if an efficient algorithm for an NP-hard problem was known, this would enable
solving any NP decision problem efficiently by reduction, including the challenging
3-SAT problem. The relations between the different complexity classes are illustrated
in Figure 2.6.
Finally, the difficulty of an optimization problem is measured in terms of a corresponding
decision problem. If the decision problem is already too difficult to decide, the opti-
mization will be even more challenging to solve. For example, let minx∈X f(x) denote
some optimization problem for some set X and function f . We obtain a corresponding
decision problem by deciding for c ∈ R whether an input x ∈ X exists such that
f(x) ≤ c. It is thus common to say that an optimization problem is in NP or NP-hard
if the corresponding decision problem is in NP or NP-hard.
The tracking method of Chapter 3 utilizes an optimization problem that is NP-hard,
as shown in Section 3.2.2.1 by reduction to a binary linear optimization problem.
Nevertheless, to obtain high-quality approximations, an efficient solver that provides
long-term consistent trajectories is presented in Chapter 3.
The tracking formulation presented in Chapter 4 results in an NP-hard problem as
well. To prove this, a special case of the formulation is considered that is shown to be
reducible to the 3-SAT problem in Section 4.6. Yet, this work presents an algorithm
that enables to obtain a global optimal solution in practice.

4The image has been adapted from the source [159].
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2.6 Optimization Theory

All MOT methods presented in the subsequent chapters obtain their trajectories by
solving a difficult optimization problem. The methods of Chapter 3 employ a binary
quadratic optimization problem, while a binary linear optimization problem is used in
Chapter 4. The underlying theory for these solvers is briefly introduced in this section.

2.6.1 Linear programming

Linear programming deals with optimization problems5 of the form minx∈P f(x), where
the objective function f is a linear functional over R and P describes the constraints in
terms of finitely many linear inequalities. A good understanding of the theory has led to
efficient solvers that can tackle huge6 problem instances. We give a short introduction
to the theory, following the notation of Grötschel [156], and refer the interested reader
to standard textbooks [156–158] for further information.
In linear programming, it is common to generalize the relations ’≤’,’≥’ and ’=’ to
vectors, e.g., given x,y ∈ Rn, we set

x ≥ y :⇐⇒ xi ≥ yi,∀i ∈ [n] . (2.24)

The other relations are defined accordingly.

Definition 2.37. For n ∈ N, g ∈ Rn and y ∈ R, the set H := {x ∈ Rn | 〈g,x〉 = y} is
called hyperplane and H≤ := {x ∈ Rn | 〈g,x〉 ≤ y} (closed) half-space.

The next definition introduces the central objects in linear programming.

Definition 2.38. A convex polyhedron P ⊆ Rn is a finite intersection of closed half-
spaces. P is in canonical H-representation, denoted as P(A,b) := P, if for a matrix
A ∈ Rm×n and vector b ∈ Rm, P = {x ∈ Rn |Ax ≥ b,x ≥ 0}.

We first note that a canonical form may encode upper bounded and equality constraints:
If a,x ∈ Rn and b ∈ R, we have

〈a,x〉 ≤ b⇐⇒ −〈a,x〉 ≥ −b, and 〈a,x〉 = b⇐⇒
(

aᵀ

−aᵀ

)
x ≥

(
b

−b

)
. (2.25)

Note that any set {x ∈ Rn | Ax ≥ b} can be transformed into canonical representation
by setting x = x1 − x2 for suitable x1,x2 ∈ Rn

≥0. We conclude that any polyhedron can
be written in canonical form, indeed.
The goal of linear programming is to solve linear optimization problems.

5We will focus on minimization problems. The statements are adapted for maximization problems
accordingly.

6On a state-of-the-art benchmark [155] for linear programming, problem instances have up to
1.6 · 106 many variables and up to 1.1 · 106 many constraints.
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Figure 2.7: Depicted is the cost vector c = (−1, 0)ᵀ and two polyhedrons.
Circles mark the vertices of the respective polyhedron. (a) The colored area shows
an unbounded polyhedron with no optimal (minimal) solution. (b) The bounded
polyhedron has a unique optimal (minimal) solution given by the position of the
blue circle.

Definition 2.39. Let P ⊆ Rn be a polyhedron and c ∈ Rn. A linear program (LP)
defined by (P, c) is the task to compute

η(P,c) := inf{〈c,x〉 | x ∈ P} . (2.26)

In this context, P is called the feasibility set. Each vector x ∈ P is a valid solution and
c is the objective function. Any vector x? ∈ P satisfying

〈c,x?〉 = min{〈c,x〉 | x ∈ P} = η(P,c) (2.27)

is an optimal solution and 〈c,x?〉 is the corresponding optimal value.

The question arises under which conditions a Linear Program (LP) has an optimal
solution and how to compute it. The following theorem addresses the first question:

Theorem 2.40. An LP defined by (P, c) contains an optimal solution if and only if P
contains a valid solution and 〈c, ·〉 is lower bounded in P.

Proof. See Grötschel [156].

Exemplary polyhedrons with no resp. one optimal solution are shown in Figure 2.7.
In order to characterize valid solutions, the vertices of a polyhedron play a key role.
Given a polyhedron P, a point p ∈ P is a vertex of P if and only if, for all p1,p2 ∈ P
and λ ∈ [0, 1] with p = λp1 + (1− λ)p2, either p = p1 or p = p2 holds.
The following theorem shows the relation between a valid solution, an optimal solution,
and the vertices of the corresponding polyhedron.

Theorem 2.41. Let (P, c) be an LP. Then the following holds:

(i) P has only finitely many (possibly zero) vertices.

(ii) If (P, c) contains an optimal solution, then its set of optimal solutions contains a
vertex of P.
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Proof. See Grötschel [156].

Thus, assuming that we already know that the objective function c is bounded in P, a
naïve algorithm to obtain an optimal solution is to evaluate 〈c,x〉 for all vertices x of P.
As a polyhedron can have exponentially many vertices with respect to the dimension of
P, such an approach is not tractable in practice, though.
The simplex algorithm [160] follows the same principle of checking vertices but uses
sophisticated rules to define a traversal order. The algorithm allows deciding whether
the current solution (vertex) is already optimal or whether no optimal solution exists
without looping over all vertices7.

2.6.2 Binary linear programming

A modification of a linear program is a BLP. It requires that the feasibility set of
a linear program contains only binary vectors. This allows the formulation of many
discrete optimization problems using BLPs and is used in particular in the tracking
formulation described in Chapter 4 to obtain the correct associations of detections to
consistent trajectories.

Definition 2.42. For a polyhedron P ⊆ Rn, let PB := P ∩ {0, 1}n. A binary linear
program (BLP) defined by (PB, c) is the task to compute

η(PB,c) = inf {〈c,x〉 | x ∈ PB} . (2.28)

For A ∈ Rm×n and b ∈ Rm, we set PB(A,b) := P(A,b) ∩ {0, 1}n.

Since PB ⊆ {0, 1}n, any BLP contains at most finitely many valid solutions. An
exhaustive search thus provides the optimal solution if there is any, but such an
approach is not tractable for all BLPs. Due to the following theorem, no algorithm
with a better time complexity is known, when applied to arbitrary BLPs:

Theorem 2.43. For an arbitrary BLP, computing an optimal solution is an NP-
complete problem.

Proof. See Grötschel [156].

Still, many BLP problem instances can be solved to optimality nowadays. The subse-
quent part of this section shows different approaches to tackle BLPs.

2.6.2.1 Relaxations.

Before discussing approaches to obtain optimal solutions, we note that it is sometimes
sufficient to approximate an optimal solution of a BLP using a relaxation: Given a BLP
defined by (PB, c) with PB ⊆ {0, 1}n, the optimization is performed on a feasibility set

7There are still problem instances with exponentially many vertices requiring the simplex algorithm
to loop over all vertices before terminating. Yet, the expected runtime is polynomial.
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P′ ⊇ PB by ignoring some constraints of PB. The set P′ ⊂ Rn is either a polyhedron
or the intersection of a polyhedron with {0, 1}n. Finally, a solution x of P′ must be
projected to a valid solution of PB. A commonly used relaxation is the LP-relaxation:

Definition 2.44. Let P ⊆ Rn be a polyhedron with corresponding set PB. The LP-
relaxation of PB is given by P◦B := P∩[0, 1]n. Thus, the LP-relaxation removes the binary
constraints, allowing each component to be within [0, 1]. In general, the continuous
relaxation of an optimization problem replaces each binary constraint with a [0, 1] box
constraint.

Since the LP-relaxation is an LP, standard linear programming can be applied to solve
the optimization problem on the relaxation efficiently. For certain types of polyhedrons,
any optimal solution of the LP-relaxation is an optimal solution of the corresponding
BLP. A sufficient condition is given by total unimodularity.

Definition 2.45. A matrix A ∈ Rm×n is called totally unimodular if, for all quadratic
submatrices A′ of A, we have det(A′) ∈ {0, 1,−1}.

The next theorem connects BLPs with the total unimodularity property.

Theorem 2.46. If A ∈ Rm×n is totally unimodular and b ∈ Zm, then all vertices of
P(A,b) are integral.

Proof. See Schrijver [157].

As a consequence of Theorem 2.46, applying the simplex algorithm on the LP-relaxation
of a BLP (PB(A,b), c) for a totally unimodular matrix A and b ∈ Zm returns the
solution to the BLP (PB(A,b), c). The solver presented in Chapter 3 takes advantage
of this theorem.

2.6.2.2 Optimal solutions.

Branch-and-bound. If A is not totally unimodular, an optimal solution can still be
obtained, if it exists, using multiple LP-relaxations according to the branch-and-bound
algorithm [158, 161].
Let (P̃B, c) be a BLP. At each iteration of the branch-and-bound algorithm, a set K of
polyhedrons is maintained. Solving the BLP (PB, c), for all P ∈ K, will result in an
optimal binary solution of the BLP (P̃B, c), if it exists. Let η?B denote the best-known
objective value for the binary optimization problem (P̃B, c) so far.
Initially, K = {P̃◦B}, where P̃◦B is the LP-relaxation of P̃B. Within a loop, a polyhedron
P ∈ K is extracted and the simplex algorithm is applied on P which results in three
cases:

1. If P = ∅ is returned, the polyhedron is ignored and the algorithm continues with
the next polyhedron P ∈ K if available.
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2. The simplex algorithm returns an optimal solution xopt that is not binary. Let η
be the corresponding optimal value. If η ≥ η?B, P can be ignored as a better bound
on the optimal value is already known. If η < η?B, the polyhedron P may contain
a valid binary solution of P̃B with a lower objective value than η?B. Therefore, P is
decomposed into P = P(1) t . . . t P(k) for polyhedrons P(1), . . . ,P(k). This step is
called branching. The relation between the optimal value of P and a polyhedron
P(i), for all i ∈ [k], is given by

η(P(i)
B ,c) ≥ η(P(i),c) ≥ η(P,c) . (2.29)

An exemplary branching step is to decompose P into P(1) = {x ∈ P | x1 ≤ 0.5}
and P(2) = {x ∈ P | x1 ≥ 0.5} which means that each binary solution x in P(1)

satisfies x1 = 0, while each binary solution in P(2) satisfies x1 = 1. Finally, the
polyhedrons P(1), . . . ,P(k) replace P in K.

3. The simplex algorithm returns an optimal binary solution xopt for P with optimal
value ηB. If ηB < η?B, a better binary solution has been found which creates a new
bound η?B. Accordingly, all polyhedrons P ∈ K with optimal value η(P,c) ≥ η?B are
removed. In particular, a polyhedron P′ can be removed from K if it stems from
the branching step of a polyhedron P with η(P,c) ≥ η?B, according to Eq. (2.29).

A pseudo-code of the algorithm is provided in Algorithm 2.3.

Branch-and-cut. Besides the branch-and-bound algorithm, an alternative procedure
is to iteratively remove non-binary vertices of the convex hull of a BLP. The following
theorem provides the basis for this algorithm.

Theorem 2.47. The optimal value of a BLP (PB, c) can be computed on its convex
hull, i.e.,

inf {〈c,x〉 | x ∈ PB} = inf {〈c,x〉 | x ∈ conv(PB)} . (2.30)

Furthermore, conv(PB) is a (bounded) polyhedron.

Proof. See Grötschel [156].

Therefore, a BLP (PB, c), i.e., the left side of Eq. (2.30), can be solved by formulating
it as an LP (right side of Eq. (2.30)). While Theorem 2.47 explains how to solve a BLP
in theory, it is very difficult in practice to obtain conv(PB). In the following, we fix an
objective function c and the LP-relaxation of PB. The cutting-plane algorithm (e.g., see
Bertsimas et al. [158]) leverages Theorem 2.47 to tackle BLPs effectively in practice.
The cutting-plane algorithm iteratively downsizes the feasibility set by introducing
additional constraints in the form of closed half-spaces. At iteration t, the feasibility
set is given by Pt := P ∩ ⋂t−1

i=1 H
≤
i , where each Hi is a hyperplane. If Pt results in an

optimal (vertex) solution xopt that is not binary, the solution is excluded in the next
polyhedron Pt+1. To this end, the cutting-plane algorithm uses a new hyperplane Ht

such that xopt 6∈ H≤t , while all binary valid solutions remain still valid in Pt+1, i.e.,
PB ⊂ Pt+1 := Pt ∩H≤t .
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Algorithm 2.3: Branch-and-bound
Input : BLP defined by (PB, c).
Output : Optimal binary solution x? with optimal value η?B.
K ← {P}
η?B ←∞
x? ← null
while K 6= ∅ do

Select polyhedron P ∈ K
K ← K \ {P}
if P 6= ∅ then

xopt ← arg minx∈P 〈c,x〉
η(P,c) ← 〈c,xopt〉
if η(P,c) < η?B then

if xopt binary then
x? ← xopt
η?B ← η(P,c)

Remove all P′ ∈ K from K with optimal value η(P′,c) ≥ η?B.
end if
if xopt not binary then

Branch P into P1, . . . ,Pk.
K ← K ∪ {P1, . . . ,Pk}

end if
end if

end if
end while

The half-space H≤t is called cutting hyperplane or cut constraint. The goal of the
cutting-plane algorithm is to shrink Pt such that for each iteration t the chain

conv(PB) ⊆ Pt ( Pt−1 ( . . . ( P1 ( P (2.31)

holds. Conceptually, the hope is that eventually at some iteration t, Pt is so close to
conv(PB) that its optimal solution is binary. The difficulty in using the cutting-plane
method thus lies in efficiently finding new cut constraints. Several cut constraints are
known that can be used for BLPs (e.g., Gomory cuts [162]).
Finally, if no new cut-constraint can be found, the branch-and-bound algorithm can be
applied to the remaining polyhedron. Combining branch-and-bound with the cutting-
plane algorithm is called branch-and-cut [163, 164]. A pseudo-code of the branch-and-cut
algorithm is provided in Algorithm 2.4 and an illustration of the cutting plane algorithm
in Figure 2.8.
The proposed solvers in this work build upon the software Gurobi [165], which is
an optimal BLP solver that implements the branch-and-bound and branch-and-cut
algorithms.

Separation algorithm on PB. The cutting-plane and branch-and-bound algorithms
start with the LP-relaxation of PB. However, this is not practicable if the problem has
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Algorithm 2.4: Branch-and-cut
Input : BLP defined by (PB, c).
Output : Optimal binary solution x? with optimal value η?B.

1 K ← {P}
2 η?B ←∞
3 x? ← null
4 while K 6= ∅ do
5 Select polyhedron P ∈ K
6 K ← K \ {P}
7 if P 6= ∅ then
8 xopt ← arg minx∈P 〈c,x〉
9 η(P,c) ← 〈c,xopt〉

10 if η(P,c) < η?B then
11 if xopt binary then
12 x? ← xopt
13 η?B ← η(P,c)

14 Remove all P′ ∈ K from K with optimal value η(P′,c) ≥ η?B.
15 Goto line 4
16 else
17 if cut constraint H available then
18 P← P ∩H≤
19 Goto line 7
20 end if
21 Branch P into polyhedrons P1, . . . ,Pk.
22 K ← K ∪ {P1, . . . ,Pk}
23 end if
24 end if
25 end if
26 end while

an exponential growth in the number of constraints.
An alternative approach is to start with a BLP-relaxation of PB. In an iterative process,
constraints of PB are added that are violated by the current solution and the resulting
BLP is solved again. It is thus a variant of the cutting-plane algorithm that is based
on the separation problem: Given a polyhedron P ⊆ Rn and x ∈ Rn, the separation
problem is to decide whether x satisfies all constraints of P (thus if x ∈ P) or if not,
output a cutting hyperplane that represents constraints violated by x. Such a function
is also called oracle8. An efficient oracle function within a separation algorithm is
used in Chapter 4 to handle the BLP of the presented HO-MOT formulation despite
the exponentially many constraints. Pseudo-code of the algorithm is provided in
Algorithm 2.5.

8An oracle with a polynomial runtime leads to an LP solver with polynomial runtime. The ellipsoid
method is such an oracle, leading to polynomial runtime for solving LPs [166].
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Figure 2.8: Illustration of the cutting-plane algorithm (for minimization), with
c = (−1, 0)ᵀ. (a) The polyhedron (green area) contains exactly one binary solution
(yellow circle). A cutting hyperplane H1 separates the optimal LP solution xopt
(blue circle) from the binary solution. The closed half-space is the gray area. (b)
In the next iteration, the LP is solved on the intersection with H1, and the next
separating hyperplane H2 is computed.

Algorithm 2.5: Separation algorithm
Input : BLP defined by (PB, c).
Output : Optimal solution x?.
/* Return a relaxation of PB. */
P′B ← Relaxation(PB)
do

x? ← arg minx∈P′
B
〈c,x〉

/* Return a cutting plane H≤ 6= ∅ if it exists, and ∅ otherwise. */
H≤ ← Oracle(PB,x?)
if H≤ 6= ∅ then

P′B ← P′B ∩H≤
end if

while H 6= ∅

2.6.3 Quadratic programming

The cost function c = (cj)j∈[n] ∈ Rn of a linear program assigns each component xi of a
valid solution x = (xj)j∈[n] ∈ Rn the value cixi. Yet, it is often desirable to have a cost
function that assigns in addition a value qi,j ∈ R depending on the variables xi and xj,
resulting in qi,jxixj + cixi + cjxj. This is formalized in a quadratic program:

Definition 2.48. Let P ⊆ Rn be a polyhedron, c ∈ Rn and Q ∈ Rn×n. A Quadratic
Program (QP) defines the optimization problem

η(P,Q,c) = inf
{1

2xᵀQx + cᵀx | x ∈ P
}
. (2.32)

If Q is positive-definite, problem (2.32) can be solved in polynomial time [167] using
convex optimization techniques [167] such as the Frank-Wolfe algorithm [117]. In fact,
the Frank-Wolfe algorithm can be applied to any convex and differentiable function
f : P → R on a convex set P. The algorithm considers at the k-th iteration the
best known valid solution for f , which we denote by x(k). Then, the function f is
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approximated by the first-order Taylor polynomial f̃ around x(k). Thus instead of
minimizing f , an optimal solution a(k) for function f̃ within P is computed. Finally,
the next iterate x(k+1) is chosen to be a vector on the line spanned by a(k) and x(k) that
minimizes f . A pseudo-code of the algorithm is provided in Algorithm 2.6. Yet, if Q is
indefinite or has at least one negative eigenvalue, the QP problem is NP-hard [168].

Algorithm 2.6: Frank-Wolfe
Input : Polyhedron P with feasible solution x0 and objective function f .
Output : Optimal solution x?.
k ← 0
while Stopping criteria not satisfied do

a(k) ← arg mina∈P∇f(x(k))a
η? ← arg min0≤η≤1 f(x(k) + η(a(k) − x(k)))
x(k+1) ← x(k) + η?(a(k) − x(k))
k ← k + 1

end while

2.6.4 Binary quadratic programming

Particularly important for this work are QP problems that require valid solutions to be
binary.
Definition 2.49. Let P be a polyhedron, c ∈ Rn and Q ∈ Rn×n. A Binary Quadratic
Program (BQP), denoted by (PB,Q, c), defines the optimization problem

η(PB,Q,c) := inf
{1

2xᵀQx + cᵀx | x ∈ PB
}
. (2.33)

Like for BLPs, solving a BQP poses an NP-hard problem, which follows immediately
from Theorem 2.43 by setting Q = 0. Note also that each BQP can be transformed
into an equivalent BLP by the following theorem:
Theorem 2.50. Each BQP can be transformed into a BLP without changing the set
of optimal solutions.

Proof. Let (PB,Q, c) be a BQP in Rn as in Definition 2.49. For x = (xi)i∈[n] ∈ PB, let

P̃(x) :=

Z = (zi,j)i,j∈[n] ∈ {0, 1}n×n
zi,j ≤ xi, ∀i, j ∈ [n],
zi,j ≤ xj, ∀i, j ∈ [n],
zi,j ≥ xi + xj − 1, ∀i, j ∈ [n]

 . (2.34)

Given A ∈ Rn×n, we define the column vector vec(A) ∈ Rn2 by stacking the columns of
A. For x ∈ PB and Z ∈ P̃(x), since zi,j = xixj for all i, j ∈ [n], it follows that |P̃(x)| = 1.
Hence, each x ∈ PB uniquely defines a vector z(x) such that (z(x))ᵀ = vec(Z) and
Z ∈ P̃(x). With q′ := vec(1

2Q) ∈ Rn2, P′B := {(z(x),xᵀ)ᵀ | x ∈ PB} ⊂ Rn2+n and
objective function c′ :=

(
q′ᵀ cᵀ

)ᵀ
∈ Rn2+n, the BLP (P′B, c′) preserves the optimal

solutions of PB, since 1
2xᵀQx + cᵀx = c′ᵀp(x) for p(x) = (z(x),xᵀ)ᵀ ∈ P′B.
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Chapter 3 formulates implicit HO-MOT as a binary quadratic problem such that the
consistency between all detections of a trajectory is ensured. In order to tackle the
corresponding BQP, an efficient approximate solver derived from the Frank-Wolfe
algorithm is presented in Section 3.3.

2.6.5 Non-linear optimization

Let F : Rm → Rn be differentiable and m < n. A problem that appears frequently in
computer vision is to compute

min
x∈Rm

1
2 ||F (x)||2. (2.35)

If x(0) ∈ Rm is an initial guess of the solution, we obtain an approximate solution using
the Levenberg-Marquardt algorithm by iterating via

x(k+1) := x(k) − αk
(
D(x(k))ᵀD(x(k)) + λkI

)−1
D(x(k))ᵀF (x(k)), (2.36)

where D(x(k)) is the differential of F at x(k), I ∈ Rm×m is the identity matrix, and
αk ∈ R≥0 is the step size. The value λk ∈ R≥0 is chosen such that

Mk :=
(
D(x(k))ᵀD(x(k)) + λkI

)−1
(2.37)

is positive-definite. For f(x) := 1
2 ||F (x)||2, we have ∇f(x) = D(x)ᵀF (x) so that

dk := −MkD(x(k))ᵀF (x(k)) is a descent direction, according to Theorem 2.20, which
motivates the iteration procedure (2.36). For large λk, Eq. (2.36) can be considered
as a gradient descent of F . For λk = 0, Eq. (2.36) corresponds to an iteration of the
Gauß-Newton algorithm. The Levenberg-Marquardt algorithm is used in Section 3.5.2.4
to reconstruct missing detections.

2.7 Multi-Object Tracking

While the mathematical fundamentals that have been introduced so far enable us
to understand challenges and derive solutions for the data association, this section
introduces the remaining aspects of a multiple object tracking method.
All MOT methods proposed in this work employ off-the-shelf object detectors that are
also used by compared tracking methods to enable meaningful comparisons. Section 2.7.1
briefly introduces the corresponding object detectors. Two types of pairwise features
are introduced in Section 2.7.2 as they build the basis for the MOT methods proposed
in this work. State-of-the-art MOT datasets are introduced in Section 2.7.3. They
are used to assess the proposed tracking methods. Finally, Section 2.7.4 introduces
state-of-the-art MOT metrics to measure the quality of a tracking result.

2.7.1 Object detectors

MOT methods based on the tracking-by-detection paradigm rely to a great extent
on the quality of the input detections. As this thesis focuses on improving the data
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Figure 2.9: A detection d is described by its width w, height h, and image
coordinates pd, as depicted in the figure.

association part, detections are retrieved using off-the-shelf object detectors. This allows
comparing among different trackers the improvement due to the data association. The
aim of an object detector is to locate any object of interest visible in a video in the
form of a corresponding detection defined as follows:

Definition 2.51. A detection d is an axis-aligned bounding box defining the location of
an object in a particular image. A detection can be represented as d = (x, y, w, h, f, p) ∈
R6. If not otherwise stated, pd := (x, y) corresponds to the center position of the lower
edge of the bounding box in image coordinates, which we call the lower central anchor
point of d. The values w and h measure the width and height of the bounding box in
image coordinates, respectively (see also Figure 2.9). The value f denotes the timestamp
(a frame number) of the corresponding image. Associated to each detection d is a
confidence p ∈ [0, 1] indicating the likelihood of d being a correct detection.

Object detections build the basis for all MOT methods of this work. Nevertheless, some
approaches (as the method of Section 3.5) operate on short but reliable trajectories,
so called tracklets, which are fragments of object trajectories. Thus, they assume that
detections have already been grouped to tracklets in an initial step.
Given two detections d1,d2, an operation that is frequently used throughout this work
is the Intersection over Union (IoU) defined as

IoU(d1,d2) := IA(d1,d2)
UA(d1,d2)

, (2.38)

where IA(d1,d2) and UA(d1,d2) denote the area of intersection and area of union
between the detections d1 and d2, respectively.

In the following, we introduce three state-of-the-art object detectors that have been
used throughout the experiments9.

Deformable Part Model (DPM). Among the hand-crafted image descriptors
employed to detect or classify objects, the Histogram of Oriented Gradients (HOG) [170]
has proven to be very powerful. To obtain the descriptor, the image is decomposed

9An additional, older detector is used only in one experiment (see Section 4.7.10). The interested
reader is referred to Dollár et al. [169] for details about that detector.
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into connected regions called cells (typically of size 8 × 8 pixels). Within each cell,
image gradients are computed (for color images, gradients are computed per image
channel) and aggregated using a histogram on unsigned gradient directions. Each cell
is thus assigned a vector x ∈ R9, representing the histogram using nine equally-sized
gradient orientation bins between 0◦ and 180◦. To compensate for local differences in
illumination and contrast, neighboring cells are grouped into blocks (typically of size
16× 16 pixels). By concatenating the vectors of the cells that comprise a block, each
block B obtains a vector representation xB. Now each such vector xB is normalized
(e.g., l2-normalized). By concatenating all vectors xB for each formed block B, an image
descriptor is obtained. By construction, HOG is robust to changes in illumination,
shadowing, and small geometric or photometric transformations. HOG descriptors
are typically used with a Support Vector Machine (SVM) [171] to classify images. A
computed SVM weight vector w can be considered as an image filter, which we call
HOG filter in the following. When applied to an HOG image, a high response of an
HOG filter indicates that an image probably contains an object of the desired class.
Yet, for objects that can perform non-rigid deformations, e.g., persons, it is challenging
to capture all plausible deformations using HOG descriptors, as they are not invariant
to these deformations. To tackle this issue, the Deformable Part Model (DPM) [47]
takes translations of object parts into account.
In DPM, an object model consists of a root filter together with several object part filters
and deformation costs. A root filter is an HOG filter at a coarse resolution that classifies
an entire object. It thus corresponds to a simple object detector based on HOG [170].
Object parts are described by additional HOG filters, each using the HOG image in a
higher resolution than the root filter. A root filter corresponding to a person and part
filters, e.g., for the head, are visualized in Figure 2.10. Each part filter has an expected
position relative to the root filter; deviations cause deformation costs. An object is
detected by finding the positions where the root and part filters locally maximize a
score. A dynamic programming approach using a generalized distance transform is
employed to find the optima efficiently. The training phase uses a latent-SVM, i.e., the
part locations are considered as latent variables. The approach thus learns the most
discriminative filters and the deformation cost model, given the (hidden) object part
locations. Finally, a mixture model using multiple object models is applied to an image
at multiple scales (using a so-called image pyramid), enabling the detection of objects
of different sizes. The image is processed in a sliding-window fashion, checking at all
possible positions the existence of an object.

Faster R-CNN (FRCNN). The rise of deep learning has improved object detection
substantially. Faster R-CNN (FRCNN) [73] is one of the earliest and most effective
object detectors based on CNNs.
FRCNN belongs to the class of so-called two-stage object detectors: In the first stage,
object proposals are created, which are rough estimates of the image position of an
a priori unspecified object. The second stage then verifies these proposals, thereby
rejecting false detections and assigning valid detections to the corresponding object
class while performing a regression on the localization to obtain more accurate detection
boxes (see Figure 2.11).
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2 Fundamentals

Figure 2.10: Learned filters in order to detect a person [47]. Left: Root filter.
Middle: Body part filters. Right: Expected translations of part filters.

Figure 2.11: The FRCNN architecture [73] consists of two stages: Creating
region proposals, followed by a classification and regression of each proposal.

FRCNN creates feature maps using a modification of the neural network VGG-16 [172]
(the fully connected layers of VGG-16 are removed). A set of k template bounding boxes
of different sizes and aspect ratios are pre-defined, called anchors. At each inspected
position p of the feature map, the k anchors are centered at p. Each anchor is assigned
a label indicating if there is a corresponding object in the image (positive label) or not
(negative label). Given a ground truth box b, the best fitting anchor according to the
intersection over union, given by ab := arg maxa IoU(a,b), is assigned a positive label.
Moreover, all anchors a with IoU(a,b) ≥ 0.7 for some ground truth box b are assigned
the positive label as well. Conversely, an anchor a with IoU(a,b) < 0.3 for all ground
truth boxes b is assigned a negative label. All the other remaining anchors are ignored
in the loss function during training. A CNN called Region Proposal Network (RPN)
is applied to the feature map. It is trained to classify all k anchors at an inspected
position p and to regresses for each anchor the geometry of the corresponding ground
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Figure 2.12: SDP architecture [173]. Depending on the object size, the classifi-
cation of a proposal is performed at a corresponding layer of the neural network.

truth box relative to the anchor. This enables the detection of multiple objects that
share common image areas, as each object may have a different anchor that fits best to
its shape.
At inference, RPN regresses for each anchor box a corresponding bounding box, called
object proposal, together with a classification score, called objectness score.
In the second phase, for each object proposal with an objectness score above a pre-
defined threshold, a pooling operation called RoI pooling is computed. It discretizes
the parts of a feature map of a proposal into a fixed number of equally sized bins and
then applies max pooling on each bin. This enables mapping any object proposal to a
vector representation of fixed length. Finally, a sub-network performing classification
and regression is applied to the pooled object proposal.
FRCNN achieves better accuracies than preceding works as proposal generation (first
stage) and verification (second stage) are both neural networks enabling to train both
tasks with a shared VGG-16 backbone. Also, FRCNN significantly reduces the required
runtime compared to preceding works, as it can handle multiple object scales and sizes
without applying the detector on multiple, differently scaled images (so-called image
pyramids) or applying multiple filters on the image. Instead, the feature map of RPN
is generated once from which the anchor predictions with different scales and sizes are
computed.

Scale-Dependent Pooling (SDP). The third object detector Scale-Dependent Pool-
ing (SDP) [173] that is used to evaluate the tracking methods of this work is related
to FRCNN. Object proposals are derived from existing detection systems with a high
recall rate [169, 174]. Again, VGG-16 [172] without the fully-connected layers is applied
to the input image, generating feature maps corresponding to the proposals.
Based on their height, object proposals are assigned into one of three possible scale
groups. For each scale group s, a layer ls of VGG-16 is defined (see Figure 2.12).
Associated to scale group s is a neural network SDPhead(s) which performs RoI pooling,
object classification, and bounding box regression on the output of layer ls. Each
network SDPhead(s) is trained and applied only to proposals of corresponding height
so that discriminative, scale-dependent features can be obtained. This tackles the
problem of objects having different scales and sizes efficiently. As a CNN downscales an
image after each pooling layer, small object proposals are processed at an early layer of
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VGG-16, while for large object proposals, later layers are used as more information is
available. Moreover, it allows to speed up the inference time for smaller objects, as not
all layers are needed for the computation. Further speedups are achieved by a cascaded
rejection classifier using Adaboost [175]. To this end, an object proposal belonging to
scale group s is classified at all layers ls′ < ls of VGG-16 using the corresponding feature
maps, where s′ goes over all smaller scale groups. If a classifier rejects the proposal, the
entire computation is stopped since the proposal corresponds to a false detection. It
thus addresses the problem of having many proposals.
Finally, Figure 2.13 shows the resulting detections of all three presented detectors when
applied to an image frame of the MOT17 dataset [44].

2.7.2 Appearance features

The performance of an MOT method relies to a great extent on the accuracy of
the employed pairwise features. Early MOT methods relied mainly on hand-crafted
spatio-temporal features [52, 61, 106, 176], while current research has shown that
utilizing appearance is key to obtain high-quality MOT results. In this work, we employ
appearance-based pairwise features based on two different approaches.
DeepMatching [177] is an algorithm that delivers very accurate, dense pixel correspon-
dences (called matches) between two images. The correspondences have many desired
properties, e.g., invariance or robustness to global illumination changes, translations,
rotations, scalings, and non-rigid deformations. By counting matches between two
detection boxes of different frames, DeepMatching poses a robust feature for MOT.
The matchings are obtained in an object-category agnostic manner so that the method
is stable across poses underrepresented in the training data and partial occlusions.
For the case of people tracking, we also utilize a person re-identification neural net-
work [178]. To this end, each image showing a person is transformed into a discriminative
vector representation. This enables an MOT method to decide if two images show the
same identity. The network is very robust to non-rigid deformations of persons as well
as viewpoint changes.
We briefly introduce both features and refer the interested reader to the literature [177,
178] for further details.

2.7.2.1 DeepMatching (DM)

DeepMatching10 [177] delivers correspondences between two images I1 and I2, both
divided into equally sized squared patches.
Correspondences are obtained by finding for each patch of I1 the most similar patch of
I2, while a patch of I2 can undergo certain transformations to compensate for non-rigid
deformations, scalings and rotations (see also Figure 2.14).
DeepMatching thus enables a class-agnostic linkage of detections of two images belonging

10The prefix "Deep" is used as the algorithm can be described using components of (deep) neural
networks. However, DeepMatching has no weights that are learned by a neural network optimizer.
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(a)

(b)

(c)

Figure 2.13: Detection results for (a) DPM, (b) FRCNN, and (c) SDP. Detec-
tions from SDP have the best trade-off between precision and recall.
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(a) (b)

Figure 2.14: DeepMatching computes the correspondences between the patches
of an image I1 (a) to the patches of an image I2 (b) [177]. Matches are found
taking non-rigid transformations into account.

to the same object. Consequently, associations can be performed accurately even in
cases of strong occlusions, non-rigid deformations, and between long time distances [63].
The similarity of two patches is determined using an image transformation related
to HOG [170], resulting in robustness against noise and global illumination changes.
To this end, let I1 and I2 be gray-scale images, each of size w × h. For each pixel
position p and I ∈ {I1, I2}, the image gradient ∇I of I at p is computed and then
non-negatively projected onto the 8 orientations defined by uk := (cos(k π4 ), sin(k π4 ))ᵀ
for k ∈ [8]. The non-negative projection onto Ruk is given by g̃Ik(p) := relu (∇I(p)uk) .
Finally, a Gaussian smoothing operation S, a parametrized sigmoid function σ, and a
l2-normalization are applied to g̃I(p) = (g̃Ik(p))k=1,...,8 to ensure robustness to noise and
varying illumination. Using the mapping I 7→ gI := (l2 ◦ σ ◦ S)(g̃I), I is identified with
gI ∈ Rw×h×8.
Correspondences between images are then computed hierarchically, using image patches
of gI1 and gI2 . For d ∈ N, a patch R ∈ Rd×d×8 of I1 centered at pixel position c1 is
denoted as I1,d,c1 := R. Likewise, I2,d,c2 ∈ Rd×d×8 denotes a patch of I2 centered at c2.
At the first level of the hierarchical approach, level l = 0, the images I1 and I2 are
decomposed into non-overlapping patches of size 4 × 4, called atomic patches. The
similarity of a patch R1 = I1,4,c1 to a patch R2 ∈ R4×4×8 of I2, centered at c2, is then
defined as

sim(R1,R2) := Rλ

(
(IF1,4,c1 ? I2)(c2)

)
, (2.39)

where Rλ is a non-linear rectification function, .F denotes the operation of flipping an
image horizontally and vertically, and ? denotes the image convolution.
For d ∈ N, the map Cd,c1 := Rλ ◦ (IF1,d,c1 ? I2) is called correlation map. It stores at each
position c2 of I2 the similarity of a patch R2 centered at c2 to R1 = I1,d,c1 . Note that
Cd,c can be computed by applying a convolutional layer with a pre-defined kernel on I2,
followed by a non-linear activation function.
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However, using atomic patches directly for similarity measurements is error-prone and
cannot disambiguate repetitive patterns. To overcome these limitations, a bottom-up
procedure is performed to build similarity measurements using larger patches in a
hierarchical manner, which shares similarities to the design of convolutional neural
networks.
In each hierarchical level l ≥ 1, the patch dimension parameter d is doubled, resulting
in patches R(1) ∈ Rd×d×8 of I1 with d = 2l · 4. Thereby, each patch R(1) is decomposed
into 4 equally-sized non-overlapping quadrants, resulting in squared patches of edge-size
d
2 , denoted by R(1)

1 , . . . ,R(1)
4 with corresponding centers c(1)

1 , . . . , c(1)
4 , respectively. Like-

wise, a quadratic patch R(2) of I2 of edge-length d is decomposed into squared patches
R(2)

1 , . . . ,R(2)
4 with corresponding centers c(2)

1 , . . . , c(2)
4 , respectively. The similarity

between patches R(1) and R(2) is then computed using their quadrants. To increase
the robustness of the matching, each patch R(2)

i has a corresponding neighborhood θi
around its center c(2)

i which defines admissible translations of R(2)
i . A patch R(2)

i around
center c(2)

i with translation vector τττ ∈ θi results in the patch R(2)
i ⊕ τττ := I2, d

2 ,c
(2)
i +τττ .

Given the features maps of the quadrants R(1)
1 , . . . ,R(1)

4 and R(2)
1 , . . . ,R(2)

4 which have
been computed at the previous level l− 1, the similarity between R(1) and R(2) is given
via

sim(R(1),R(2)) := 1
4

4∑
i=1

max
τττ∈θi

(IF1, d
2 ,c

(1)
i

? I2)(c(2)
i + τττ) . (2.40)

The maximization at the right-hand side of Eq. (2.40) finds for each patch R(1)
i := I1, d

2 ,c
(1)
i

the optimal translation τττ of R(2)
i such that the correlation between R(1)

i and R(2)
i ⊕ τττ

is maximized.
By allowing translations via θi, the similarity measurement is, up to a certain degree,
robust to non-rigid deformations, scalings, and rotations [177].
To ensure efficient computations, a slightly modified version of problem (2.40) is solved
in practice. The maximization at each level l is performed using a 3 × 3 max-pool
operation with stride 2. Thus, the correlation map is sub-sampled, allowing the use
of a level-independent, constant search domain while effectively increasing the size of
the patches that are being correlated. Finally, a non-linear rectification function Rλ is
applied. Therefore, the correlation map for a patch R(1) centered at c(1) is recursively
obtained via

Cd,c1 = Rλ(
1
4

4∑
i=1

(Ti ◦ S ◦ P )(C d
2 ,c

(1)
i

)) ,

where P and S denote the max-pooling and sub-sampling operation, respectively and
Ti is a translation operation that is necessary due to the sub-sampling.
After lmax iterations, the correlation maps for all patches up to size dmax = 2lmax · 4
have been computed. Starting from the largest patches, the matches between atomic
patches can be retrieved using a backtracking algorithm, applied on the correlation
maps. Finally, out of these atomic matches, the matches are kept that are local optima
with respect to a backtracking score. Thereby, the score between two atomic patches is
defined as the sum of all patch similarities along the backtracking path from the atomic
patches up to the patches of size dmax × dmax. Note that a correspondence between two
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Figure 2.15: A qualitative result of DeepMatching [177]. Despite geometric
transformations, DeepMatching delivers accurate dense correspondences.

patches can appear within different backtracking paths, resulting in different scores.
DeepMatching thus employs a filtering procedure, keeping only the correspondences
with the highest score. A qualitative result of DeepMatching is shown in Figure 2.15.
The feature is used in the proposed MOT methods of Chapter 3 and Chapter 4.

2.7.2.2 Person Re-Identification

The accuracy of an MPT method depends to a great extent on the ability to automati-
cally assess whether two detection boxes show the same person. Thus, this problem
is strongly related to person re-identification, an ongoing research topic of computer
vision. It has seen tremendous progress by utilizing deep neural networks [179].
Person re-identification is often applied in a setup where either the two images are
taken from different cameras or at different epochs. The temporal distance is usually in
the range of seconds to minutes. Accordingly, computed similarities need to be robust
against occurring intra-class variations due to changing human poses and background,
varying camera angles, and different kinds of noise. A person re-identification method
capable of dealing with these challenges is thus well suited as a basis for pairwise
features in MPT. Note that the similarities are computed without using any spatial or
temporal context. Instead, it is based solely on visual information.
The re-identification problem is commonly tackled by finding a similarity measure on a
suitable embedding space that reflects semantic similarity.
To this end, a neural network hw,b : Ri → Rf needs to be determined that maps
an i-dimensional image to an f -dimensional feature space such that any two images
x1,x2 ∈ Ri showing the same person have embedding vectors hw,b(x1), hw,b(x2) close
in the embedding space, measured in terms of a similarity function sim : Rf × Rf → R.
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Fixing a neural network architecture in terms of a graph G (see Definition 2.17), the goal
is to determine the best weights and biases (w,b), resulting in the map hw,b ∈ H(G).

Baseline. Chapter 4 uses a re-identification method [178] that builds upon a standard
procedure by training an identity classifier on a finite dataset T ⊂ Ri of labeled images
showing nP persons, where each sample x ∈ T has a corresponding label y ∈ [nP ].
For a neural network hw,b : Ri → Rf , we consider a matrix W′ ∈ RnP×f and vector
b′ ∈ RnP . The probability of a label l ∈ [nP ] for a given image x is computed as

pW′,b′,hw,b(ŷ = l | x) =
exp

(
W′

[l,:]hw,b(x) + b′l
)

∑nP

l̃=1 exp
(
W′

[l̃,:]hw,b(x) + b′
l̃

) . (2.41)

The multi-class classification task is then to predict for each given image x the correct
class. Optimal parameters W′,b′,w and b are obtained using cross-entropy loss. Finally,
the embedding vectors are l2-normalized, resulting in a neural network hw,b. To simplify
notation, we denote the trained network hw,b as hB. The similarity measure between
embedding vectors is then given as

sim(x1,x2) := 〈hB(x1), hB(x2)〉 . (2.42)

The embedding vectors hB use the ResNet-50 CNN [135], while the last layer is replaced
by a fully connected layer of dimension f = 512, followed by a batch normalization.

DG-Net. In order to improve robustness against intra-class variation, the dataset
T can be augmented by synthetic images during the training phase. The current
state of the art to create synthetic images such that its distribution is similar to
the distribution of the images of the dataset is to employ a generative adversarial
network [180]. However, assigning identity labels to synthetic images is often ambiguous
and might thus deteriorate the quality of the similarity function. Instead, the employed
re-identification system [178] called DG-Net jointly learns the discriminative task and
the creation of synthetic images with high intra-class variation while preserving the
identities of the dataset. The labeling issues are tackled by assigning synthetic images
soft labels.
A brief sketch of the coupled image generation and discriminative learning part is
presented in the following. The interested reader is referred to the work of Zhedong et
al. [178] for further details.
The system involves several neural networks that are jointly trained: an appearance
encoder Eapp : Ri → Ra, a structure encoder Estr : Ri → Rs, a decoder G : Ra×Rs → Ri,
and a discriminator D : Ri → [0, 1].
Conceptually, the idea is to disentangle an image of a person into an appearance code
(using Eapp) describing identity-related cues such as clothing colors and a structure
code (using Estr) describing geometric information such as positions and pose as well as
hair and body sizes (see Figure 2.16).
In order to focus on the structural information, the input image is converted to gray-
scale when passed through Estr. The disentanglement enables the generation of images

71

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


2 Fundamentals

Figure 2.16: Using a disentanglement of a person image into appearance code
and structure code enables to augment the training data by combining these
codes from different person images [178].

(using G) with much higher intra-class variation, e.g., by creating images of the same
person but with a varying pose. Accordingly, the trained system becomes robust to
pose variations, changing lighting conditions and more precise to the re-identification
task.
In order to couple image generation and the creation of embedding vectors that can
cope with intra-class variations, an embedding map hDG : Ri → Rf is used. hDG is a
neural network that shares its ResNet-50 backbone with the appearance encoder Eapp.
Several losses are employed to ensure correct disentanglement and identity preservation.
In the following, let xa := Eapp(x) and xs := Estr(x) denote the appearance code and
structure code for image x ∈ Ri, respectively. We denote by T ⊂ Ri a training set. For
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each x ∈ T , we denote by y(x) ∈ [nP ] the corresponding label. The appearance code
and structure code of an image x ∈ Ri must contain all information to reconstruct x,
which is enforced by the loss

L0 := 1
|T |

∑
x∈T
‖x−G(xa,xs)‖1 . (2.43)

The decoder should reconstruct an image x of a person y ∈ [nP ] if the structure code
xs and the appearance code xa

2 are used, where x2 is another image of person y. To
this end, we define the set of image pairs showing the same person Tsame := {(x1,x2) ∈
T 2 | y(x1) = y(x2)}. The reconstruction is then ensured using the following loss:

L1 := 1
|Tsame|

∑
(x1,x2)∈Tsame

‖x1 −G(xa
2,xs

1)‖1 . (2.44)

Given an image x′ decoded from structure code xs1 and appearance code xa2, computing
the disentangled encodings of x′ should recover the same codes, which is ensured by

L2 := 1
|T |2

∑
(x1,x2)∈T 2

‖xa
2 − Eapp(G(xa

2,xs
1))‖1 (2.45)

and
L3 := 1

|T |2
∑

(x1,x2)∈T 2

‖xs
1 − Estr(G(xa

2,xs
1))‖1. (2.46)

To obtain synthetic images looking similar to the images of the dataset, an adversarial
loss [180] is used that is maximized over D and minimized over G.

L4 := 1
|T |

∑
x∈T

log(D(x)) + 1
|T |2

∑
(x1,x2)∈T 2

log(1−D(G(xa
1,xs

2))). (2.47)

By swapping structure and appearance code between two images, O(|T |2) many different
synthetic images can be created. Still, it is not straightforward to assign a discrete
label to synthetic images. Therefore, the baseline re-identification system hB is used
to construct soft labels. The aim is then to train a neural network that mimics the
similarity function of Eq. (2.42). To this end, the KL-divergence between the posterior
class probabilities (see Eq. (2.41)) given by hB and hDG is minimized.
To simplify notation, we omit in the following weights and biases and denote for embed-
ding h by ph(c|x) the probability pW,b,h(ŷ = l|x) defined in Eq. (2.41). Additionally,
we define x2:s

1:a := G(xa
1,xs

2). The next loss then ensures that hDG mimics hB:

L5 := −1
nP |T |2

∑
(x1,x2)∈T 2

l∈[nP ]

phB(l | x2:s
1:a) log

(
phDG(l | x2:s

1:a)
phB(l | x2:s

1:a)

)
. (2.48)

Thereby, only the weights of hDG are allowed to be changed, while hB is kept fixed.
In order to improve the discriminative accuracy of the network hDG, three additional
losses are added. For images of the training set, the network should output the correct
identities, thus:

L6 := 1
|T |

∑
x∈T
− log(phDG(y(x) | x)) . (2.49)

73

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


2 Fundamentals

If the structure code and appearance code are mixed, the appearance should determine
the identity:

L7 :=
∑

(x1,x2)∈T 2

− log(phDG(y(x1) | x2:s
1:a)) . (2.50)

Another loss is added with a small weight that helps the network to identify a person
if the appearance is changed but the structure is kept. This helps to incorporate
fine-graded features such as a person’s hair or body size into embedding vectors.

L8 :=
∑

(x1,x2)∈T 2

− log(phDG(y(x2) | x2:s
1:a)) . (2.51)

The final loss used to train11 the neural networks is then given as

L =
8∑
i=0

λiLi , (2.52)

for hyperparameters λ0, . . . , λ8 ∈ R. The resulting embedding vector hDG is then used
as in Eq. (2.42) to calculate the similarity function. We refer to Zheng et al. [178]
for further details about the training procedure and the architecture of the employed
neural networks. The re-identification system is used in the tracking method proposed
in Chapter 4.

Person re-identification metrics. Finally, we present two state-of-the-art met-
rics [181] to evaluate the performance of a re-identification method. Given a detection
d, a re-identification method outputs a distance to any other detection d′ according to
the learned embedding vectors.
Hence given a query image of a person defined by a detection d and a gallery set G of
collected images, each defined by a detection, we obtain the best matching image via
d∗ = arg mind′∈G f(d,d′), where f is a suitable distance metric on the corresponding
embedding vectors. Now the relative number of correct best matchings for a query set
Q denotes the Rank-1 metric.
For the second metric, we assume that G = {d1, . . . ,dn} is ordered with increasing
distance to detection d. Let l be a label function such that for each i ∈ [n], l(d,di) = 1
if d and di depict the same person, and 0 otherwise. The precision at k given by

P@k(d) := 1
k

k∑
i=1

l(d,di) (2.53)

computes for the k best matchings the relative number of correct matchings. The
expected precision, called average precision is given as

AveP (d) :=
n∑
k=1

P@k(d)l(d,dk)
ad

, (2.54)

where ad counts the valid matches, i.e., the number of detections d′ with l(d,d′) = 1.
Finally, the mean Average Precision (mAP) metric is obtained via

mAP := 1
|Q|

∑
d∈Q

AveP (d) . (2.55)

11To simplify notation, we omitted the dependence of loss L on the weights that are optimized
during training for hDG, Ea, Es, G and D.
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Table 2.1: Characteristics of the datasets used in this work. Density is mea-
sured in average number of pedestrians per frame. The MOT15 dataset has on
average fewer frames per sequence and fewer pedestrians per frame, compared
to MOT16/MOT17. Note that MOT17 uses the same sequences as MOT16 but
three different detectors.

Dataset Mean length [frames] Density Detector

MOT15 512.9 9 ACF
MOT16 802.5 26.1 DPM
MOT17 802.5 26.1 DPM/FRCNN/SDP

2.7.3 Datasets

To assess the quality of an MOT method, several datasets have been published [2, 43,
44, 182–184]. However, for some of the older datasets, detections were not provided
so that researchers created their own set of detections, making it difficult to tell apart
the improvement coming from the detector and the MOT method. Also, some works
assess their MOT methods on self-created ground truth labels, hindering meaningful
insights from quantitative metrics, as it is crucial to create ground truth labels using
the same protocol. The impact of these issues has been analyzed and quantified by
Milan et al. [185].
Several benchmarks have been created [2, 43, 44] to tackle these issues. They ensure a
standardized evaluation, as they provide detections for all sequences that competing
MOT methods have to take as input. Ground-truth labels are publicly available only
for the training set. The evaluation on the test set is calculated on a public server.
This ensures that only a few evaluations per tracking method can be performed so that
parameters of an MOT method cannot be optimized on the test set.
One of the most recent datasets following this principle are the datasets MOT15 [43],
MOT16 [44], and MOT17 [44]. They are used in this work to assess the performance of
the proposed methods. The datasets comprise mainly outdoor recordings of persons
walking in natural street scenes. In more detail, MOT15, MOT16, and MOT17 comprise
11, 7, and 7 sequences in the training set as well as in the test, respectively. MOT15
uses the Aggregate Channel Features (ACF) detector [169], while MOT16 employs
DPM [170] detections. MOT17 shares the same set of sequences as MOT16, but the
detectors DPM, FRCNN, and SDP are applied for each sequence, resulting in three
different inputs for a tracking method per sequence. This setup makes it possible to
analyze the influence of the input quality on the tracking result.
The recordings of the datasets differ in the frame rate, from 7 up to 30 frames per
second (fps). The resolution ranges from 640 × 480 up to Full HD. Sequences are
recorded by a static or moving camera (the camera has been placed either on a stroller,
mounted on a moving car, or held by a person). Table 2.1 shows that sequences of
MOT16 and MOT17 are more crowded and contain on average more image frames.
Further analyses of the datasets are provided by Milan et al. [44] and Leal-Taixe et
al. [43]. Exemplary images of the datasets are shown in Figure 2.17.
To ensure meaningful comparisons, parameters of a tracking method are optimized

75

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


2 Fundamentals

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.17: Scenes from the seven test sequences of the MOT16 and MOT17
datasets. Only the sequences shown in (a), (b), and (e) are recorded by a static
camera. The sequences differ a lot in complexity. The sequence of (b) depicts
around 70 persons per frame. The distance of people to the camera varies from
close-by (c) & (e), to far-away (g), making it difficult to define a stable distance
measurement as only 2D information is provided. Due to the different camera
angles, also the degree of occlusion is very different for the sequences. Note that
also the lighting differs a lot between the different sequences.

using the entire training data and held fixed when applied to a sequence of the test set.

2.7.4 MOT metrics

In order to assess the quality of the trajectories created by an MOT method, several
metrics12 have been proposed. Following Ristani et al. [186], they are categorized into
two different types of metrics:

• Event-based metrics: They are based on the frequency of certain error types
produced by an MOT method, which is useful to analyze and detect weaknesses.

• Identity-based metrics: They assess how well each ground truth trajectory is
described by a corresponding computed trajectory. This is particularly important
for applications in which each trajectory must follow exactly one identity, e.g.,
when analyzing the performance of individual athletes.

12The terminology metric is commonly used in the context of computer vision and tracking to
denote a function mapping to R.
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The essential difference between the two categories is how computed trajectories are
assigned to ground truth trajectories.

Event-based metrics. In the following, we introduce the definitions of event-based
metrics termed CLEAR MOT [187] and its extensions [188], based on the implementation
provided by the datasets MOT15 [43] and MOT16/MOT17 [44].
Let Γ = {γ1, . . . , γn} be the tracking result of an MOT method applied to a sequence
and let Df denote the corresponding set of detections at frame f ∈ [nR] so that input
detections not contained in any trajectory are discarded. Additionally, let D?

f be the set
of ground truth detections at frame f ∈ [nR]. A pairing of detections (d1,d2) is defined
to be compatible if IoU(d1,d2) ≥ 0.5.
Event-based metrics utilize a frame-wise correspondence (matching) between computed
and ground truth trajectories, using a bipartite graph Gf = (Df tD?

f , Ef, wf) for each
frame f ∈ [nR]. Thereby, Ef := {ddetdgt | ddet ∈ Df,dgt ∈ D?

f , (ddet,dgt) compatible}.
The weight of an edge e = ddetdgt ∈ Ef is defined as wf(e) = IoU(ddet,dgt).
For each frame f ∈ [nR], a matching Mf is constructed. Initially, Mf = ∅. Each
edge e = ddetdgt ∈ Ef connects ddet of a computed trajectory γ with dgt of a ground
truth trajectory γ?. If γ has been linked to γ? in frame f− 1, this correspondence is
maintained in frame f. Thus if γ(f− 1)γ?(f− 1) ∈Mf−1, the matching set is updated to
Mf := Mf ∪ {e}. This is done even if there is a better fitting matching to dgt, as this
procedure ensures temporal consistency within the evaluation. For the remaining set
of edges E ′ = Ef \Mf, an optimal matching is computed on Gf[E ′] using the Hungarian
algorithm, resulting in the final matching set Mf. The matching procedure is illustrated
in Figure 2.18.
Definition 2.52. For a sequence with nR frames, we define several metrics with respect
to the correspondences M = ∪nR

f=1Mf.

• False Positives (FP) denotes the number of detections of computed trajectories
that have not been matched to a ground truth trajectory. The lower the score,
the better.

• False Negatives (FN) denotes the number of ground truth detections that do not
have a corresponding detection from a computed trajectory. The lower the score,
the better.

• Consider a matched detection of a computed trajectory γ at frame f. Let 4f ∈ N
be minimal such that γ(f−4f) is matched, too. If the ground truth trajectory
matched to γ(f) differs from the ground truth trajectory matched to γ(f−4f),
the error is counted as an Identity (ID) switch. The number of ID switches for the
entire sequence is denoted as ID Switches (IDS). The lower the score, the better.

• The metrics are combined to the Multiple Object Tracking Accuracy (MOTA):

MOTA = 1− FP + FN + IDS
|D∗|

.

Thus, MOTA is a value in the interval (−∞, 1]. The maximal value indicates the
optimal MOT result.
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γ

γ∗1

γ∗2

e1 e2

e3

f f + 1 f + 2

Figure 2.18: Illustration of the matching procedure for the event-based metrics
with a computed trajectory γ (blue) and two ground truth trajectories γ∗1 and
γ∗2 . All nodes within the gray area at a respective frame are compatible with
the computed trajectory. The green and blue trajectories are matched at frame
f. Consequently, they are also matched in frame f + 1, even though the purple
trajectory is much closer. In frame f + 2, the detection of the green trajectory is
not compatible. Hence, the detection of the purple trajectory is matched to the
blue trajectory. The resulting matching M = {e1, e2, e3} implies one ID switch
and three false negatives.

• The metrics Mostly Tracked (MT), Partially Tracked (PT), and Mostly Lost (ML)
assess the relative coverage of ground truth trajectories by computed trajectories.
That is, MT, PT, and ML count the relative number of ground truth trajectories
that have corresponding matches for more than 80%, between 20% and 80%, and
less than 20% of its length, respectively. Accordingly, the aim is to design an
MOT method with a low ML and PT value and a high MT value.

Identity-based metrics. Identity-based metrics differ essentially from event-based
metrics by establishing a correspondence between entire trajectories instead of matching
detections to ground truth on a frame-by-frame basis. Conceptually, the IDF1 score [186]
assesses the reliability of tracking a particular object and is evaluated for all objects of
a sequence.
To this end, a bipartite graph (VC t VGT , E) is constructed such that VC contains one
node for each computed trajectory and for each ground truth trajectory γ∗ an additional
node f−γ∗ that represents false negative trajectories. Likewise, VGT contains one node for
each ground truth trajectory and for each computed trajectory γ an additional node f+

γ

that represents false positive trajectories. We denote the set of all additional nodes f+
γ

and f−γ∗ by VFP and VFN , respectively. Trajectories γ ∈ VC \ VFP and γ∗ ∈ VGT \ VFN
are connected by an edge e = (γ, γ∗) if γ and γ∗ have some temporal overlap. Each
trajectory γ ∈ VC \ VFP is connected with f+

γ . Likewise, γ∗ ∈ VGT \ VFN is connected
with f−γ∗ .
For a sequence of length nR, the set of frames for which a trajectory γ contains detections,
denoted as supp(γ) := {f ∈ [nR] | γ(f) 6= ∅}, is the support of γ. For each computed
trajectory γ and ground truth trajectory γ∗, we define

supp(f+
γ ) := ∅ and supp(f−γ∗) := ∅. (2.56)

Now given an edge e = (γ, γ∗) ∈ E with γ ∈ VC and γ∗ ∈ VGT and assume that
γ /∈ VFP ∨ γ∗ 6∈ VFN holds. Then for frame f ∈ [nR], we compute if detection γ∗(f) and
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detection γ(f) cannot be matched:

m(γ, γ∗, f) :=

0, (f ∈ supp(γ) ∩ supp(γ∗)) and ((γ(f), γ∗(f)) compatible),
1, otherwise.

(2.57)

For γ ∈ VFP ∧ γ∗ ∈ VFN , we set m(γ, γ∗, f) :=∞.
Thus given an edge e = (γ, γ∗) ∈ E , we obtain the number of false positives, denoted as
IDFP(γ) and false negatives, denoted as IDFN(γ∗) using the match e, i.e.,

IDFP(e) :=
∑

f∈supp(γ)
m(γ, γ∗, f) , IDFN(e) :=

∑
f∈supp(γ∗)

m(γ, γ∗, f) . (2.58)

We define for each potential match e = (γ, γ∗) ∈ E the weight w(e) := IDFP(γ) +
IDFN(γ∗). A minimum cost optimal matching M then provides the basis for the
assessment of the tracking result. To this end, we compute the number of false negative
ID matches (IDFN) and false positive ID matches (IDFP) according to M as

IDFP :=
∑
e∈M

IDFP(e), IDFN :=
∑
e∈M

IDFN(e) . (2.59)

In addition, we obtain the number true positive ID matches (IDTP) via

IDTP :=
∑

(γ,γ∗)∈M
|supp(γ)| − IDFP =

∑
(γ,γ∗)∈M

|supp(γ∗)| − IDFN . (2.60)

Finally, we establish the ID Precision (IDP) metric, ID Recall (IDR) metric, and the
ID F1 (IDF1) metric:

IDP := IDTP
IDTP + IDFP , IDR := IDTP

IDTP + IDFN , IDF1 := 2IDTP
2IDTP + IDFN + IDFP .

(2.61)
The metrics can be interpreted as follows:

• IDP represents the relative number of detections from computed trajectories that
are matched to detections from ground truth trajectories (according to M).

• IDR represents the relative number of ground truth detections that are matched
to detections of computed trajectories (according to M).

• The IDF1 metric is the F1 score between IDP and IDR.

The higher the IDP, IDR, and IDF1 metrics, the better. We refer to Ristani et al. for
further details [186].
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3 HO-MOT with Signal Fusion1
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Figure 3.1: Illustration of connections between input signals in three consecutive
video frames together with an optimal labeling according to a weighted graph
labeling problem. Each node is assigned a label, indicated by the colored nodes.
Node and edge weights between equally labeled nodes are summed up using
label-dependent weights (indicated by colored node and edge values) to evaluate
an assignment. This allows fusing multiple signals, e.g., signals that stem from
different sensors. Solid edges represent active connections, dashed edges represent
inactive connections between the input signals. All weights framed in black
contribute to the objective value of the depicted graph labeling.

This chapter proposes a method for HO-MOT using signal fusion. The performance
of tracking-by-detection approaches heavily relies on the quality of the computed
object detections. However, detectors are still error-prone (see Section 1.3.1) and
pairwise costs between object detections are often misleading in challenging situations
(see Section 1.3.2). Correctly interpreting and compensating these errors in the data
association part is difficult.
By reducing the dependence on input detections, this chapter addresses the drawback
of the tracking-by-detection paradigm. To this end, a fusion approach for implicit

1This chapter contains text, images, and results of previously published work [55, 121, 122].
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3.1 Introduction

HO-MOT is proposed based on a weighted graph labeling problem. It enables to
augment object detections with additional complementary signals. Solving the graph
labeling problem delivers globally optimal input-to-identity assignments across all
signals. The underlying optimization problem is an NP-hard BQP. An approximate
solver adapted to the problem formulation is proposed that delivers solutions close to
the optimum in practice.
The advantage of the fusion formulation is demonstrated in two settings: (i) By
combining people detections with head detections, partially occluded persons can be
tracked more reliably, as in such a situation a person’s head is often still visible. Also,
trajectories that do not have assigned head detections are likely to collect false positive
detections. Consequently, the fusion helps to increase tracking precision and recall.
Compared to the accuracy when using only person detections as input, the fusion
approach significantly improves tracking results. (ii) The second setup demonstrates
that the fusion formulation can also be applied across different modalities by using video
data and an Inertial Measurement Unit (IMU) attached to the back of each person to
be tracked. This minimally intrusive setting could be used for example in team sports.
The method presented in this chapter shows that the fusion approach significantly
improves the tracking performance compared to video-based MPT if video information
is missing (e.g., due to occlusions) or ambiguous (e.g., due to similar appearance caused
by uniforms).

3.1 Introduction

The tracking-by-detection paradigm is an effective approach for MOT. Instead of
directly linking the vast amount of pixels contained in a recording to object identities,
the initial detection step drastically reduces the computational effort by grouping the
image content to corresponding detections. Yet, relying solely on the output of an
object detector is also a major limitation of the paradigm. On the one hand, errors
of the detector (see Section 1.3.1) are difficult to compensate for. Frequently missed
objects cannot be tracked reliably and misleading false positive detections are difficult to
identify and remove. On the other hand, even with perfect detections, it is challenging
to create accurate pairwise costs between detections (see Section 1.3.2). When features
misinterpret image information misleading signals are produced that potentially lead to
wrong tracking results.
To overcome these issues, this chapter presents an HO-MOT formulation that reduces
the dependency on the input detections by fusing two signals. To this end, MOT is
formulated as a weighted graph labeling problem in Section 3.2. Signals that are assigned
the same label correspond to the same object and the corresponding optimization
problem is to find the best labeling (see Figure 3.1). A probabilistic model is provided
showing that an optimal label solution corresponds to the most likely trajectories.
The formulation fuses signals holistically using identity-dependent pairwise costs which
allows taking into account co-occurrences of different objects at the same point of
time. The resulting trajectories must be consistent to all input signals, i.e., spatially
consistent between different signals and temporally consistent with respect to each
signal and across different signals. As all equally labeled measurements contribute to
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the evaluation of a trajectory, this results in an implicit HO-MOT model.
Finding a global optimal assignment of input signals to labels is difficult as it corresponds
to solving an NP-hard binary quadratic problem. A straightforward approach to solve
this BQP would be to optimize an equivalent BLP using Theorem 2.50. Yet, in the
case of many identities and long sequences, the problem becomes high dimensional so
that the corresponding BLP is computationally too expensive and memory demanding
to be used.
Instead, a solver is proposed in Section 3.3 that approximates the weighted graph
labeling problem. Based on the Frank-Wolfe (FW) algorithm, it operates on the
continuous relaxation of the BQP. However, using a standard implementation of FW is
not sufficient, as the result is often far away from a binary optimal solution. Several
crucial modifications are proposed that lead in practice to a much better solution.
Consequently, tracking results are substantially improved, as reported in Section 3.4.2.
At the same time, the proposed algorithm is much faster than a generic and optimal
BQP or BLP solver.
The subsequent sections of this chapter then demonstrate advantages of signal fusion
over traditional approaches in two settings:
(i) Section 3.4 proposes to perform MPT by fusing detections that stem from two
detectors, namely head and person detections. Even if a person is partially occluded, his
or her head is often still visible and can thus be detected (see Figure 1.13) which helps
to localize and track persons. At the same time, the fusion facilitates the identification
of false positive person detections so that the precision of tracking results can be
increased. Consequently, the combination of the complementary inputs signals leads to
substantial improvements over the traditional tracking-by-detection approach. Moreover,
the resulting tracking method, which we call Frank-Wolfe Tracker (FWT), won2 the
MOT 2017 Tracking challenge at the CVPR 2017 against competing approaches.
(ii) Section 3.5 proposes to perform MPT by combining different modalities: a video
recording with body-worn Inertial Measurement Units (IMUs). The fusion reduces the
dependence on detection boxes, as motion cues are provided by the IMUs at all times,
even if a person is not localized in an image. This allows robust handling of issues
such as misleading pairwise costs, or missing and false positive detections. Relating
both modalities is challenging, though, as persons walking similarly within a small
time window cause similar IMU signals. We term the task of simultaneously assigning
detections in a video to IMU devices and object trajectories Video Inertial Multiple
People Tracking (VIMPT). To tackle VIMPT, we propose IMU device-specific unary
costs that link derived orientations of an IMU with regressed orientations of a person
using a neural network with a perspective correction method, and pairwise costs that
connect accelerations from an IMU with displacements of detection boxes. The fusion
formulation together with the device-specific costs, which are essentially independent of
the outward appearance of a person, enable to resolve ambiguities in a video signal as
well as in the IMU signals.
Once detections in a video are associated with an IMU device, intermediate positions are
reconstructed in a post-processing step using a proposed method that jointly optimizes

2https://motchallenge.net/MOT17_results_2017_07_26.html
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the agreements to both readings. We recorded a challenging VIMPT dataset [121,
122] containing video and IMU recordings together with ground truth annotations.
Compared to video-based MOT methods, the proposed VIMPT tracker, which we call
Video Inertial Tracker (VIT), improves the IDF1 score by a large margin if the video
information is ambiguous. In addition, the setup allows to automatically and accurately
recover the identity corresponding to a computed trajectory in terms of the IMU device
ID.
In summary, this chapter presents methods to improve the tracking accuracy by reducing
the dependence on potentially erroneous input detections. This is achieved by:

• A formulation to fuse multiple signals for HO-MOT together with a novel solver
for the underlying NP-hard binary linear optimization problem that achieves
near-optimal results in practice.

• An MPT method (FWT) that combines people detections with head detections,
which enables to identify false positive people detections and track heavily occluded
persons.

• Fusing video data with readings from IMUs holistically and globally optimal. The
corresponding tracker VIT uses novel device-specific unary and pairwise costs
that link orientation and motion information from both modalities. VIT simulta-
neously tracks and identifies persons in a video. Missing detections are robustly
reconstructed using a novel fusion procedure that combines video information
from computed trajectories with corresponding IMU signals.

Overall, both fusion approaches lead to substantial improvements over the traditional
tracking-by-detection approach. We note that the proposed fusion approach has been
successfully applied in further settings, e.g., by augmenting joint detections [101] or for
3D human pose reconstruction [118].

3.2 Signal Fusion as Weighted Graph Labeling Problem

By formulating MOT as a weighted graph labeling problem, two signals can be fused
holistically. All connections between equally labeled detections are taken into account
so that it corresponds to an implicit HO-MOT method. While it shares similarities to
correlation clustering [52, 54, 63, 70], the proposed method uses an efficient labeling
formulation that avoids exponential growth of the constraints.
This section presents the weighted graph labeling formulation in terms of a BQP and
analyzes its properties. A proof is presented showing that the problem is NP-hard.
A probabilistic model for the label weights is provided such that minimal label costs
correspond to most likely trajectories. In the case of few identities in a recording, the
problem can be solved using an optimal BQP solver [165]. For larger instances, an
approximate solver is proposed in Section 3.3.
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3.2.1 Related work

Limiting the input of a tracker to a single detector has clearly several drawbacks since
much of the information of the image is not considered, thereby potentially ignoring semi-
occluded objects. In recent literature, several works have started incorporating different
image features for the task of MPT. Some works use supervoxels as input for tracking,
obtaining a silhouette of the pedestrian as a byproduct. Chen et al. [189] perform
optimization via greedy propagation, while Milan et al. [190] formulate supervoxel
labeling as a conditional random field.
Several works use dense point tracks [77, 191, 192] or the Kanade–Lucas–Tomasi feature
tracker (KLT) [193, 194] together with detections to improve tracking performance.
Benfold et al. [183] propose to track corner features using KLT to obtain a motion
model between detections. Fragkiadaki et al. [195] tackle MPT by clustering dense
feature tracks, and further combine it with detection-based tracklets in a two-step
approach [196].
Chari et al. [103] track pedestrians using a BQP to fuse head and body detections by
modeling non-maxima suppression as well as overlap consistency between features. In
contrast to our proposed model, only co-occurrences of active features are considered,
while we directly model the grouping of features to different persons; this ensures
consistency within each cluster over long time periods. Also, in the extension [197] to
motion segmentation using superpixels, the per-person consistency is not considered.

3.2.2 Data association model for signal fusion

The data association between two signals is modeled as a weighted graph labeling
problem. To this end, let (V , E) be the undirected complete graph on the vertex set V
which is composed of all input signals. Given an upper bound on the number of objects
to be tracked, denoted as nobj, we consider labelings of the vertices with associated
weights (or costs): A map c ∈ RV×[nobj] defines for each node a cost value depending on
the assigned label. Between any pair of nodes, Q ∈ RV×[nobj]×V×[nobj] defines a cost value
depending on the assigned labels to both nodes. To consider the functions c and Q
as vectors, we denote by [v ⇀ k] an index in the corresponding vector representation
that represents the assignment of node v to label k. The graph comprising all weighted
labels is denoted as G = (V , E , c,Q, nobj). For each node v ∈ V, the label weight
c[v⇀k] = c(v, k) ∈ R reflects the likelihood of v belonging to object k. Node label
weights are also called unary costs. Likewise, the label weight for an edge e = {v, u} ∈ E
given by q[v⇀k],[u⇀k′] = Q(v, k, u, k′) ∈ R measures the consistency for simultaneously
assigning node v to label k and node u to label k′. Edge label weights are also called
pairwise costs. As the graph is undirected, we set q[v⇀k],[u⇀k′] = q[u⇀k′],[v⇀k] for all
{u, v} ∈ E and for all k, k′ ∈ [nobj]. In the case of k = k′, the cost value q[v⇀k],[u⇀k]
reflects how likely v and u belong to the same trajectory. For k 6= k′, q[v⇀k],[u⇀k′]
reflects consistencies for co-occurrences of different objects.
We introduce indicator variables x[v⇀k] which take value 1 if signal v ∈ V is assigned
to label k ∈ [nobj], and 0 otherwise. The indicator variables are stacked in a vector
x ∈ {0, 1}nnodnobj . Then, the basic idea is to assign a cost value to each hypothesis and
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3.2 Signal Fusion as Weighted Graph Labeling Problem

select for a sequence the assignments that minimize the total costs, corresponding to
the most likely trajectories. For arbitrary x ∈ [0, 1]nnodnobj , we associate with x unary
costs given by

unG(x) :=
∑
v∈V

k∈[nobj]

c[v⇀k]x[v⇀k] , (3.1)

and pairwise costs given by

paG(x) :=
∑
{v,u}∈E
k,k′∈[nobj]

q[v⇀k],[u⇀k′]x[v⇀k]x[u⇀k′] . (3.2)

These costs are combined to the cost function

fG(x) := unG(x) + paG(x) . (3.3)

We define for a video sequence of length nR by Vf the set of nodes v ∈ V captured at
frame f ∈ [nR] and fv := f if v ∈ Vf. Finally, nnod = |V| denotes the number of nodes in
G.

Signal fusion via global optimization. For a graph G as defined above, the data
association problem, which fuses multiple input signals, is then given in terms of the
following optimization problem.

min
x∈[0,1]nnodnobj

fG(x) (3.4)

s. t. x[v⇀k] ∈ {0, 1}, ∀v ∈ V , ∀k ∈ [nobj] , (3.5)∑
k∈[nobj]

x[v⇀k] ≤ 1, ∀v ∈ V . (3.6)

Constraints (3.5) guarantee indicator variables, and constraints (3.6) ensure that each
node is assigned to at most one object. We denote the feasibility set of problem (3.4)
by PB(G) and the polyhedron of the continuous relaxation, i.e., using only constraints
(3.6), by P(G).
Conceptually, x ∈ PB(G) encodes a clustering such that grouped nodes belong to the
same object. In particular, this enables having multiple signals describing an object
at the same time, which can be used as a fusion mechanism. The benefits of such an
approach are demonstrated in Section 3.4 by fusing multiple detectors. Note also that
PB(G) has only nnod linear constraints. In contrast to that, commonly used correlation
clustering formulations [52, 54, 63, 70] require exponentially many constraints (O(2nnod))
in order to ensure that all edge costs within a trajectory are taken into account.

Integrating non-maxima suppression. A more constrained setting is to require
that at each time step, at most one signal (e.g., one detection box) may be assigned to
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3 HO-MOT with Signal Fusion

each object, which is ensured by the optimization problem

min
x∈[0,1]nnodnobj

fG(x) (3.7)

s. t. x[v⇀k] ∈ {0, 1}, ∀v ∈ V , ∀k ∈ [nobj] , (3.8)∑
k∈[nobj]

x[v⇀k] ≤ 1, ∀v ∈ V , (3.9)

∑
v∈Vf

x[v⇀k] ≤ 1, ∀f ∈ [nR], ∀k ∈ [nobj] , (3.10)

where the constraints (3.10) enforce non-maxima suppression. We denote the feasibility
set of problem (3.7) by PNMS

B (G) and the polyhedron of the continuous relaxation, i.e.,
without constraints (3.8), by PNMS(G).
The feasibility set PNMS

B (G) is suitable to fuse two modalities. This is demonstrated in
Section 3.5, where the recordings from body-worn IMU devices are fused with video
information. Each label corresponds to a unique IMU device, resulting in person-
dependent unary and pairwise costs.

Defining the weighted graph labeling problem. We unify both proposed opti-
mization problems, whereby each corresponds to a data association problem:

Definition 3.1. Let G be a graph defined as above. For P̃B ∈ {PB(G),PNMS
B (G)}, the

binary quadratic program

WGL(G, P̃B) := arg min
x∈P̃B

fG(x) (3.11)

is a weighted graph labeling problem. We shall write WGL(G) instead of WGL(G,PB(G)),
and WGLNMS(G) instead of WGL(G,PNMS

B (G)). The relaxed weighted graph labeling
(RWGL) for P̃B ∈ {PB(G),PNMS

B (G)} is given via the corresponding continuous relaxation
P̃◦B (see Definition 2.44), according to

RWGL(G, P̃B) := arg min
x∈P̃◦

B

fG(x) . (3.12)

We shall write RWGL(G) instead of RWGL(G,PB(G)).

3.2.2.1 Properties of the weighted graph labeling problem

Optimal solutions for linear objectives over PB(G). As the next theorem shows,
optimizing a linear functional over the LP-relaxation P(G) results in a binary solution.
Consequently, any optimal solution for P(G) is also an optimal solution for PB(G). This
fact is exploited in our implementation of the Frank-Wolfe solver, leading to faster
computations.

Theorem 3.2. Given a complete graph G, and let the parameters nnod and nobj be
defined as above with respect to G, then the optimal solution of min

x∈P(G)
〈c,x〉 is binary

for any cost vector c ∈ Rnnodnobj.
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3.2 Signal Fusion as Weighted Graph Labeling Problem

Proof. To express the constraints (3.6) using a matrix, we assume without loss of
generality the variables x ∈ [0, 1]nnodnobj for V = {v1, . . . , vnnod} to be ordered as

x =
(
x[v1 ⇀ 1], . . . , x[v1 ⇀nobj], . . . , x[vnnod ⇀ 1], . . . , x[vnnod ⇀nobj]

)ᵀ
. (3.13)

For index s ∈ [nnodnobj], let slabel ∈ [nobj] denote the label such that xs = x[v⇀slabel]
holds3, using a corresponding node v ∈ V .
Let b := 1 ∈ {0, 1}nnod and A = (ars)r∈[nnod],s∈[nnodnobj] such that

ars =

1 if s = [vr ⇀ slabel],
0 otherwise.

(3.14)

By definition, we have P(G) = {x ∈ [0, 1]nnodnobj | Ax ≤ b}. Since A ∈ {0, 1}nnod×nnodnobj ,
all 1× 1 sub-matrices of A have either their determinant equal to one or to zero. Now
let A′ ∈ {0, 1}n′×n′ be a square sub-matrix of A. Let a′ = A′[:,1] denote the first column
vector of A′. If a′ = 0, then det(A′) = 0. Otherwise, since A has exactly one non-zero
entry per column, there exists a row index r ∈ [n′] such that

a′i =

1 if i = r,

0 otherwise.
(3.15)

We conclude by induction that A is totally unimodular, using Laplace’s expansion
formula.
Finally, Theorem 2.46 shows that optimal solutions for linear functionals over P(G)
must be binary.

Complexity. Solving WGL(G,PB) for PB ∈ {PB(G),PNMS
B (G)} is very challenging as

both problems are NP-hard, which is proven in the following.
For PB(G), we consider the case q[v⇀k],[u⇀k′] = 0 and c[v⇀k] = c[v⇀k′] for all v, u ∈ V
and for all k, k′ ∈ [nobj]. We can thus write cv := c[v⇀k] for all v ∈ V and for all
k ∈ [nobj]. We define yv := ∑

k∈[nobj] x[v⇀k] for all v ∈ V . The constraints (3.6) and (3.5)
then ensure that yv ∈ {0, 1} for all v ∈ V . The objective function then simplifies to

fG(x) =
∑
v∈V

cv

 ∑
k∈[nobj]

x[v⇀k]

 =
∑
v∈V

cvyv , (3.16)

which poses an unconstrained binary linear program and is thus NP-hard, according
to Theorem 2.43. It follows that WGL(G,PB(G)) is NP-hard as well.
For PNMS

B (G) and the special case |Vf | = 1 for all f ∈ [nR], we have PNMS
B (G) = PB(G).

Again, the problem can be transformed into an unconstrained binary linear program.
Accordingly, the more general problem WGL(G,PNMS

B (G)) is also NP-hard.
Note also that the solution space grows exponentially with the upper bound on the
number of objects (nobj) and the number of detections (nnod).

3The label is computed as slabel = s−
⌊

s−1
nobj

⌋
nobj.
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3 HO-MOT with Signal Fusion

Probabilistic model. To ensure that an optimal labeling corresponds to the most
likely trajectories, a probabilistic model on the selection of nodes and edges on a graph
can be defined in terms of a Bayesian network, which is introduced as in Tang et al. [54]:
Let G = (V , E) be a graph. Consider random variables X and Y , whose realizations
x ∈ {0, 1}V and y ∈ {0, 1}E correspond to indicator variables. Given a finite index set J
and node v ∈ V , consider a random variable Φv, whose realization φv ∈ RJ is a vector of
features for node v. Accordingly, given a finite index set I and edge e ∈ E , we consider
a random variable Ψe with realization ψe ∈ RI of features for edge e. Furthermore,
we consider the random variables Θ and Θ′ with realizations θ ∈ RJ and θ′ ∈ RI of
model parameters, respectively. To model the constraint set, a random variable Z is
considered with realization Z ⊂ {0, 1}V∪E .
Then, according to a Bayesian model, the probability of the indicator variables x,y,
and model parameters θ, θ′ given the features φ, ψ and constraint set Z factorizes to

P(x,y, θ, θ′ | φ, ψ, Z) ∝ P(Z | x,y)
∏
v∈V

P(xv | φv, θ)
∏
j∈J

P(θj) ·

·
∏
e∈E

P(ye | ψe, θ′)
∏
i∈I

P(θ′i) . (3.17)

The first product constrains x and y according to the feasibility set Z:

P(Z | x,y) ∝

1, (x,y) ∈ Z,
0, otherwise.

(3.18)

The second and third term model the classification of each node using a logistic model
and a Gaussian prior:

P(xv = 1 | φv, θ) = 1
1 + exp(−〈φv, θ〉)

, (3.19)

P(θj) = N (0, σ2) , (3.20)

where σ ∈ R>0. The edge classification using the remaining two factors is defined
accordingly.
Now using the described probabilistic model, Tang et al. [54] derive the cost function
such that minimizing that cost function corresponds to maximizing the probability
measure:

Theorem 3.3. Let G = (V , E) be a graph. Moreover, let Z be a feasibility set, let φ, ψ
be feature vectors, and let θ, θ′ be model parameters as defined above with respect to the
graph G. Then, a pair (x,y) with x ∈ {0, 1}V and y ∈ {0, 1}E is maximally probable
with respect to the measure defined above if and only if it is the solution of the BLP
written below with cv = −〈φv, θ〉 and qe = −〈ψe, θ′〉.

min
x∈{0,1}V

y∈{0,1}E

∑
v∈V

cvxv +
∑
e∈E

qeye , (3.21)

s. t. (x,y) ∈ Z . (3.22)
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3.3 Frank-Wolfe Optimizer for Weighted Graph Labeling Problems

Proof. See Tang et al. [54].

In particular, Theorem 3.3 is applicable to our weighted graph labeling formulation. To
see this, we transform graph G = (V , E , c,Q, nobj) to a graph G̃. The vertices of G̃ are
denoted as v(i) for v ∈ V and i ∈ [nobj]. For v, u ∈ V, it must hold that v(i) 6= u(j) iff
v 6= u∨i 6= j. The edge set Ẽ of G̃ connects any two distinct nodes of G̃. Setting x[v⇀k] to
1 corresponds to the selection of node v(k). For each product of variables x[v⇀k]x[u⇀k′],
a new variable y[v⇀k],[u⇀k′] is introduced such that y[v⇀k],[u⇀k′] = x[v⇀k]x[u⇀k′]. If
y[v⇀k],[u⇀k′] = 1 holds, it corresponds to the selection of a corresponding edge in G̃.
The equality y[v⇀k],[u⇀k′] = x[v⇀k]x[u⇀k′] can be enforced by linear constraints (see
Eq. (2.34)). Costs for the selection of a node and an edge in G̃ are given by the respective
costs defined by G. It follows that Theorem 3.3 is applicable to the weighted graph
labeling problem, using a corresponding constraint set Z.
Thus, we employ logistic regression to learn model parameters θ ∈ RJ and θ′ ∈ RI for
the nodes and edges, respectively. In particular, the likelihood that node v corresponds
to label k, given the features φ[v⇀k] and model parameters θ is given via

p[v⇀k] := P(x[v⇀k] = 1 | φ[v⇀k], θ) . (3.23)

Accordingly, the costs are computed as

c[v⇀k] = −〈φv(k) , θ〉 = log(1− p[v⇀k]

p[v⇀k]
) . (3.24)

Likewise,

p[v⇀k],[u⇀k′] := P(x[v⇀k] = 1 ∧ x[u⇀k′] = 1 | ψ[v⇀k],[u⇀k′], θ
′) (3.25)

is the likelihood that node v correspond to label k and node u correspond to label
k′, given the features ψ[v⇀k],[u⇀k′] and model parameters θ′. The probabilities are
transformed to costs, similar to Eq. (3.24).
Nodes that are too far apart in time cannot be compared reliably nor meaningfully.
For such edges {v, u}, we set their corresponding weight to q[v⇀k],[u⇀k′] := 0 for all
k, k′ ∈ [nobj] which enables incorporating prior knowledge. This strategy effectively
sparsifies the graph G and keeps the proposed approach memory and computationally
efficient.

3.3 Frank-Wolfe Optimizer for Weighted Graph Labeling Prob-
lems

The proposed weighted graph labeling of Section 3.2 allows fusing two signals holistically
using a global HO-MOT formulation. For each signal, all pairwise consistencies within
each trajectory are taken into account. Even more, co-occurrences of different objects
can be modeled. However, with many objects present in a recording, the corresponding
optimization problem is very difficult to solve as it is NP-hard. Consequently, the
proposed tracking method relies on finding a good approximation to the solution. To
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3 HO-MOT with Signal Fusion

this end, a novel solver based on the Frank-Wolfe algorithm [117] is proposed that
approximates the optimal solution well in practice. In particular, a relaxed solution
in RWGL(G) is computed first, followed by a rounding step4. FW is well suited for
continuous quadratic problems with linear constraints, as each iteration step involves
solving a computationally efficient linear optimization problem. Even more, when the
underlying constraints of PB(G) are employed, the linear optimization part of Frank-
Wolfe can be replaced by an efficient search for the minimal entry in a cost vector.
The same principle enables to perform the rounding procedure inside the Frank-Wolfe
algorithm efficiently.
When applied to a non-convex problem, as the proposed model fG, the Frank-Wolfe
algorithm delivers usually only a local optimum [198]. Hence, simply applying the
standard algorithm will result in a solution that is far away from the global optimum.
This work focuses on enhancing the solution of Frank-Wolfe by proposing (i) a regu-
larization of the cost function, (ii) an algebraic and optimal computation of the step
size within the solver’s algorithm, and (iii) a hierarchical solving scheme that enhances
the solution produced by the Frank-Wolfe algorithm. The regularizer prevents the
Frank-Wolfe algorithm from falling too quickly into a local optimum. The hierarchical
solving scheme gains the improvement by revoking or connecting clusters of the dis-
cretized solution. Each iteration results in a smaller problem instance. The procedure is
constructed such that subsequent iterations still solve the initial optimization problem.
The proposed hierarchical approach is solver agnostic. It can be applied after any
approximating algorithm and allows for correcting severe errors introduced by the initial
solver.
Experiments in Section 3.4.2 show that the proposed solver provides good solutions close
to the estimated bound. As a consequence, the proposed solver achieves state-of-the-art
performance on standard MOT datasets, thereby showing the merits of the developed
solver and problem formulation. Most importantly, the proposed solver is considerably
faster than state-of-the-art BLP and BQP solvers [165] which find in theory a global
optimal solution but are not applicable due to memory and computational limitations.
The proposed solver enables to perform optimization directly on the input detections,
in contrast to several previous methods [52, 54, 199] which need potentially error-prone
initial tracklets.

3.3.1 Related work

Tracking methods that need to solve a BQP have been rare so far due to resulting
computational challenges, although many advanced tracking models are naturally
expressed as a BQP. For instance, the Markov model [61] can be augmented by an
additional detector [103], resulting in a BQP. While this problem can be solved by
rewriting the BQP as an equivalent BLP, the experiments in Section 3.4.2 show that
this simple trick is not suitable for the more demanding correlation clustering based
model we propose, due to the problem size of the BQP. Dehghan et al. [200] formulate
online tracking via a BQP and solve it using the Frank-Wolfe algorithm, which is also

4In the context of BLP and BQP, a rounding procedure binarizes a solution from a continuous
relaxation such that the result is feasible.

90

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105


3.3 Frank-Wolfe Optimizer for Weighted Graph Labeling Problems

the basis for the developed solver. While the method of Dehghan et al. shows good
performance, this section presents a hierarchical solving scheme that can be easily
integrated into their formulation, thereby potentially further improving their results.
Moreover, during the Frank-Wolfe algorithm, the step size for an iterate update has to
be computed. An algebraic expression of the optimal step size is presented which is
cheap to compute and improves over existing methods [200–202]. Note that the solver
may be applied to methods of other fields in computer vision as well, such as person
re-identification [201], co-localization [203], or object segmentation [197].

3.3.2 Frank-Wolfe Optimizer for Binary Solutions

We present pseudo-code of the Frank-Wolfe algorithm for the weighted graph labeling
problem5 WGL(G) in Algorithm 3.1, which integrates a rounding procedure to obtain
feasible binary solutions of PB(G).

Algorithm 3.1: Frank-Wolfe algorithm and binarization
Input : Graph G, feasible point x(0) ∈WGL(G), IMAX, ε
Output : Solution vector xFW, number of iterations j

1 fmin ←∞
2 j ← −1
3 repeat
4 j ← j + 1
5 a∗ ← arg mina∈P(G)∇fG

(
x(j))a

6 η? ← arg minη∈[0,1] fG
(
x(j) + η(a∗ − x(j))

)
7 if fG(a∗) < fmin then
8 fmin ← fG(a∗)
9 xFW ← a∗

10 end if
11 x(j)

B ← Binarize(x(j))

12 if fG(x(j)
B ) < fmin then

13 fmin ← fG(x(j)
B )

14 xFW ← x(j)
B

15 end if
16 x(j+1) ← x(j) + η?(a∗ − x(j))
17 until [−∇fG(x(j))(a∗ − x(j)) < ε] ∨ [j > IMAX]

This is achieved by adding Lines 7-15 to the standard Frank-Wolfe algorithm (compare
Algorithm 2.6). The algorithm terminates in case of a small duality gap [204]

−∇fG(x(j))(a∗ − x(j)) , (3.26)

or if a maximal number of iterations IMAX is exceeded. It produces a binary solution
xFW that equals either a binarized iterate x(j) (Lines 11-15) or a∗ (Lines 7-10) as the

5This section focuses on WGL(G). Most results can be adapted for WGLNMS(G), e.g., using soft
constraints for non-maxima suppression. In Section 3.5 a BLP reformulation of WGLNMS(G) is solved
globally with acceptable calculation costs as a limited number of persons appear in the recordings.
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constraint matrix corresponding to P(G) is totally unimodular (see Section 3.2.2.1)
so that a∗ is already binary and thus feasible. We refer the interested reader to the
literature [203–205] for further details.

Optimizing the first-order Taylor polynomial. As P(G) is described by a totally
unimodular matrix, the optimal solution a∗ in Line 5 of Algorithm 3.1 can be computed
efficiently. Since a∗ must be binary, the constraints ∑k∈[nobj] a

∗
[v⇀k] ≤ 1 for each v ∈ V

imply for w := ∇fG
(
x(j)

)
and kv := arg mink∈[nobj] w[v⇀k] the optimal solution

a∗[v⇀k] =

1, kv = k and w[v⇀k] < 0,
0, otherwise.

(3.27)

Function Binarize. In order to transform a solution x(j) ∈ P(G) into a feasible,
binary solution x(j)

B ∈ PB(G), the function Binarize in Line 11 of Algorithm 3.1
discretizes an iterate x(j) by selecting the closest feasible point x(j)

B in P(G) w.r.t. the
squared Euclidean distance. It is straightforward to show that

x(j)
B = arg min

x∈PB(G)
||x(j) − x||22 (3.28)

= arg min
x∈PB(G)

〈
−2x(j) + 1,x

〉
. (3.29)

Note that problem (3.29) is linear in x. Thus again, due to the totally unimodular
matrix used to describe P(G), the binarization can be solved efficiently by searching for
minimal entries in the cost vector −2x(j) + 1, similar to Eq. (3.27).

3.3.2.1 Memory efficiency

Assuming that the weights are label-independent and no co-occurrences are modeled,
we show that the formulation is memory efficient. We thus assume c[v⇀k] = c[v⇀k′],
q[v⇀k],[u⇀k] = q[v⇀k′],[u⇀k′], and q[v⇀k],[u⇀k′] = 0 for all v, u ∈ V and for all k, k′ ∈ [nobj]
with k 6= k′. In this case, we shall write cv instead of c[v⇀k] and qv,u instead of
q[v⇀k],[u⇀k]. Moreover, we assume qv,u = qu,v for all v, u ∈ V. Thus, let Qpa =
(qv,u)v,u∈V ∈ Rnnod×nnod and cun = (cv)v∈V ∈ Rnnod be all pairwise and unary costs,
respectively. By concatenating nobj times the vector cᵀ

un, we obtain

Q̃ = diag(nobj,Qpa) , c̃ = (cᵀ
un, . . . , cᵀ

un︸ ︷︷ ︸
nobj times

)ᵀ , (3.30)

where diag(nobj,Qpa) is a block diagonal matrix, consisting of exactly nobj identical
main diagonal blocks, each given by Qpa. Note that by construction, Q̃ is symmetric.
Let x ∈ [0, 1]nnodnobj and xk := x[nnod(k−1)+1 :nnodk] ∈ [0, 1]nnod for all k ∈ [nobj]. The
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3.3 Frank-Wolfe Optimizer for Weighted Graph Labeling Problems

objective function fG(x) can then be computed as

fG(x) = 1
2xᵀQ̃x + 〈c̃,x〉 (3.31)

=
∑

k∈[nobj]

1
2xᵀ

kQ̃paxk + 〈cun,xk〉 . (3.32)

By slight abuse of notation, we shall write Q for matrix Q̃ and c for vector c̃. Conse-
quently, the potentially huge matrix Q ∈ Rnnodnobj×nnodnobj and vector c ∈ Rnnodnobj can
be accessed implicitly, using the much smaller matrix Qpa and vector cun. Since Q is
symmetric, the gradient ∇fG

(
x(j)

)
is computed as

∇fG
(
x(j)

)
= (c + Qx(j))ᵀ . (3.33)

Thus, the gradient ∇fG
(
x(j)

)
and the computation of Line 6 of Algorithm 3.1 can be

deduced from Qpa and cun, making the application of label-independent costs memory
efficient6.

3.3.2.2 Computing the optimal step size η

The step size η? in Line 6 of Algorithm 3.1 can be computed via line search [206].
However, we derive a new algebraic computation which is faster and global optimal.
Let d(j) := a∗ − x(j), δ :=

〈
d(j),Qd(j)

〉
, and Ω(η) := fG(x(j) + ηd(j)) be given. If δ 6= 0,

the only root of the derivative dΩ
dη

is given by η̄ := −δ−1∇fG(x(j))d(j). As for the second
derivative d2Ω

dη2 (η̄) = δ holds, the optimal step size η? = arg minη∈[0,1] Ω(η) is obtained
via

η? =



η̄ if δ > 0 and η̄ ∈ [0, 1],
0 if (δ > 0 and η̄ < 0) or (δ < 0 and η̄ > 1),
1 if (δ > 0 and η̄ > 1) or (δ < 0 and η̄ < 0),
arg min
η∈{0,1}

Ω(η) if δ < 0 and η̄ ∈ (0, 1).

A line search is needed only in the remaining case δ = 0, making the execution of Line 6
of Algorithm 3.1 very efficient. In contrast to previous works [200, 202], our solution to
Line 6 contains all cases that may occur.

3.3.2.3 Regularization of the objective function

Due to the cost function fG being non-convex, Frank-Wolfe delivers only a local
optimum [198]. Consequently, one strategy is to modify fG, enforcing convexity. Given
r ∈ R, we replace the objective function fG by

fG,r(x) = fG(x) + r
∑
i

(x2
i − xi) . (3.34)

6Since Qpa is symmetric, storing the upper triangle matrix of Qpa is already sufficient.
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3 HO-MOT with Signal Fusion

For x ∈ {0, 1}nnodnobj , we have fG,r(x) = fG(x). Within (0, 1), using r < 0 has the
effect of pushing the FW algorithm towards discrete solutions, as −(x2

i − xi) has its
minimum at 0 and 1. For r > 0, we observed better behavior in staying out of local
optima, as for a value r sufficiently large, fG,r becomes convex [207–209]. Yet, a too
strong convexification leads to degenerated solutions, as also noted by Seguin et al. [197].
Replacing each diagonal entry of Q with the absolute sum of each row makes Q positive
semi-definite and fG,r convex. Therefore, we define ω := max{∑b |qa,b| | a ∈ [nnodnobj]},
set r0 =

√
ω and rj = 2−jr0. Starting with r = r0, we compute RWGL(G) according to

fG,r in Algorithm 3.1. Empirically, we observed that the termination of Algorithm 3.1
after a short number of iterations correlates to a bad local optimum caused by a too
strong convexification term. Thus, if Algorithm 3.1 terminates in too few iterations (we
use 10 as threshold), we reduce the regularization weight by setting j = j + 1, r = rj
and re-run Algorithm 3.1 with the updated function fG,r. In all our experiments, an
appropriate value r was found in at most two function calls of Algorithm 3.1. The
entire algorithm is summarized in Algorithm 3.2. In Section 3.4.2, we demonstrate the
impact of using the modified cost function with the solver denoted as FW+R.

Algorithm 3.2: Regularized Frank-Wolfe algorithm
Input : Graph G, feasible point x(0) ∈WGL(G), IMAX, ε
Output : Solution vector xFW

ω ← max{
∑
b∈[nnodnobj] |qa,b| | a ∈ [nnodnobj]}

r0 ←
√
ω

j ← −1
repeat

j ← j + 1
r ← 2−jr0
(xFW, niter)← Call Algorithm 3.1 using objective function fG,r

until niter > 10

3.3.2.4 Hierarchical Solving Scheme

Since FW+R delivers only a local optimum, we propose a new hierarchical solving
scheme that enhances the solution of FW+R in each iteration by removing, correcting,
and connecting clusters. At the same time, the problem instances become smaller
from iteration to iteration so that eventually, the remaining problem instance can be
solved to global optimality using an optimal BQP solver. The hierarchical approach is
computationally efficient and improves the binary solution w.r.t. the original objective
WGL(G) in each step.
Compared to other hierarchical approaches [176] that define specific parameter changes
in each iteration, the proposed formulation is generic and can be applied to many
clustering problems without the need for heuristically set parameter update rules.
Pseudo-code of the proposed solving scheme is provided in Algorithm 3.3 and further
explained in the following. Note that the algorithm assumes that no co-occurrences are
modeled.
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Figure 3.2: (a) A label result of Algorithm 3.2. Equally colored nodes are
grouped, resulting in two clusters. Dotted and dashed edges indicate removed, and
selected but wrong connections, respectively. (b) After LabelCorrection, node
v has been separated, as it has costs 4 to its cluster. Each cluster is represented
by a new node. The weighted graph labeling problem is then performed on
the contracted graph with updated weights. This allows to further improve the
solution. Once the contracted graph is small enough, Gurobi delivers a global
optimum. Some parts of the image are taken from the MOT16 dataset [44].

Function LabelCorrection: We apply a relabeling strategy that enables correcting
errors within the clusters. Those errors may have been introduced due to the rounding
or local optimality. Yet, instead of directly resolving wrong assignments, the strategy
of the proposed hierarchical solution scheme is to postpone such decisions to a later
iteration when more information is available (due to already computed clusters) and
when the problem instances are smaller, thus being less prone to approximation errors.
The input for the function at iteration j is the current best labeling x(j) ∈ Rnnodnobj of
G. Initially, we obtain x(0) using FW+R. Two non-optimal cases are detected:
(i) If a node has positive costs to all of its connected nodes within the same trajectory,
separating the node from its trajectory improves the objective value. In more detail, let

N(v,x(j)) :=
{
u ∈ NG(v)

∣∣∣ x(j)
[v⇀k] = x

(j)
[u⇀k] ∀k ∈ [nobj]

}
(3.35)

be the set of all adjacent nodes that have the same label as node v ∈ V . Now any node
v ∈ V labeled k ∈ [nobj] with

x[v⇀k]
∑

u∈N(v,x(j))
q[v⇀k],[u⇀k] > 0 (3.36)

is separated from its trajectory by assigning it to a unique and so-far unused label (see
node v in Figure 3.2).
(ii) Bridges within trajectories are verified. To this end, let e = vu ∈ E be an edge
of equally labeled nodes, i.e., x(j)

[v⇀k] = x
(j)
[u⇀k] = 1 for some k ∈ [nobj]. Assume that
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3 HO-MOT with Signal Fusion

G[Ve(G,x(j), k)]

v u
1 −2 −1−3

−1

Figure 3.3: A label result with a non-optimal assignment at a bridge. For the
edge e = vu, the induced graph G[Ve(G,x(j), k)] is the subgraph within the gray
ellipse. Since e is a bridge, assigning node v to a new label improves the objective
value.

fv < fu holds. We consider the set

V≤e(G,x(j), k) := {w ∈ V | fw ≤ fv, x
(j)
[w⇀k] = x

(j)
[v⇀k] = 1} (3.37)

of all nodes labeled k up to frame fv and the set

Ve(G,x(j), k) := {u′ ∈ V | x(j)
[u′ ⇀k] = x

(j)
[u⇀k] = 1} (3.38)

of all nodes labeled k. Thus G[Ve(G,x(j), k)] contains all nodes and edges corresponding
to the trajectory of the object labeled k. Now if e is a bridge in G[Ve(G,x(j), k)] and
q[v⇀k],[u⇀k] > 0 holds, the objective value improves if all nodes v ∈ V≤e(G,x(j), k) are
assigned a so-far unused label k′. An example of this case is shown in Figure 3.3.
Finally, a node v ∈ V not selected by the current solution x(j) is assigned a new and
so-far unused label so that node v might be connected to other nodes in a later iteration.
Thus if x(j)

[v⇀k] = 0 for all k ∈ [nobj], then we set x(j)
[v⇀k′] = 1 for a new label k′.

LabelCorrection thus results in n′obj used labels and returns corresponding indicator
variables as xcorrected ∈ {0, 1}nnodn

′
obj .

Function GraphContraction: A graph contraction is performed to group all equally
labeled nodes and to compute the weighted graph labeling problem on the contracted
graph, which is simpler to solve.
To this end, let v(k) be the set comprising all nodes labeled k, according to xcorrected.
A contracted graph G is build by using these sets as nodes: The vertices are given by
V := {v(k) | k ∈ [nobj]}, and the edge set E is formed by connecting any two different
vertices of V . The number of nodes is reduced to nnod := |V| ≤ |V|.
The label costs of G are derived from corresponding costs of G: Given node v(k) ∈ V,
which groups all nodes of G labeled k, we define the unary costs for assigning node v(k)
the label k′ as

c[v(k)⇀k′] :=
∑

u∈v(k)
c[u⇀k′] +

∑
{u,w}∈E
u,w∈v(k)

q[u⇀k′],[w⇀k′] (3.39)

and pairwise costs for v1 := v(k1) and v2 := v(k2) labeled k and k′, respectively, as

q[v1 ⇀k],[v2 ⇀k′] :=
∑

{w1,w2}∈E
w1∈v1,w2∈v2

q[w1 ⇀k],[w2 ⇀k′] . (3.40)
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3.3 Frank-Wolfe Optimizer for Weighted Graph Labeling Problems

The corresponding weighted graph labeling problem on the contracted graph is then
defined by G = (V, E , c,Q, nnod).

Function GraphLabeling: The weighted graph labeling problem is solved on the
contracted graph G, which is usually much smaller than the initial graph G so that
solving the problem becomes easier. It needs to be assured that (i) the computed
solution on the contracted graph is not worse than the current best solution x(j) on the
initial graph G and (ii) that any solution on the contracted graph can be translated
back to a labeling of the initial graph (which is performed by the subsequent function
ExpandGraph).
By assigning each selected node of G a unique label, i.e., each node v(k) of G with
∃k′ ∈ [nobj] : x[v(k)⇀k′] = 1, we obtain a label vector xdisjoint ∈ {0, 1}nnod nnod such
that fG(xdisjoint) sums up only the unary costs (3.39) defined on G. Due to the error
correction by the function LabelCorrection, it follows that

fG(xdisjoint) ≤ fG(x(j)) . (3.41)

Thus, the function GraphLabeling returns a labeling that is not worse than x(j).
Consequently, solving WGL(G) results in a solution x? ∈ PB(G) with

fG(x?) ≤ fG(xdisjoint) ≤ fG(x(j)) . (3.42)

Note that the graph contraction usually reduces the dimensionality significantly: There
are nnod nodes to be labeled using at most nnod labels and usually nnod � nnod. If
nnod is small enough, we can solve WGL(G) quickly to optimality using Gurobi [165].
Otherwise we use the FW+R solver with xdisjoint as initial solution.

Function ExpandGraph: The label solution x? of WGL(G) is translated back to a
feasible solution of PB(G): Given a node v ∈ V and let v be assigned the label k,
according to x?. Then all nodes u ∈ v contained in v are assigned the same label k.
The resulting vector of decision variables is the next iterate x(j+1) of Algorithm 3.3 (see
also Figure 3.2). We conclude that

fG(x(j+1)) = fG(x?) ≤ fG(x(j)) , (3.43)

so that the hierarchical solving scheme can improve the last available iterate. This
makes postponing of unclear decisions reasonable.
The loop of the hierarchical solving scheme is stopped, once the objective value does
not further improve.

Function RejectIsolatedNodes: Finally, isolated nodes with positive unary costs
are removed. Hence, if v ∈ V is a node labeled k such that c[v⇀k] > 0 and x(j)

[v⇀k′] = 0 for
all k′ 6= k, the objective value improves by not assigning v to any identity. Accordingly,
the decision variable is updated by setting x(j)

[v⇀k] = 0.

The effectiveness of the hierarchical solving scheme, which we shall denote by FW+R+H,
is demonstrated in Section 3.4.2.
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3 HO-MOT with Signal Fusion

Algorithm 3.3: Hierarchical solving scheme
Input : Graph G, feasible graph labeling x(0)

Output : Solution vector x(j)

j ← 0
repeat

fmin ← fG(x(j))
xcorrected ← LabelCorrection(x(j),G)
G ← GraphContraction(xcorrected,G)
x? ← GraphLabeling(WGL(G))
x(j+1) ← ExpandGraph(x?)
j ← j + 1

until fG(x(j)) = fmin
x(j) ← RejectIsolatedNodes(x(j))

false
negative

false
negative

false
positive

first
detection

Figure 3.4: MOT16-09 sequence (from left to right: frame 10,12,15). Top row:
Body detections (orange) and head detections (red). The people detector misses
the person depicted by the arrow until frame 15. Bottom row: The tracking
result from the weighted graph labeling formulation by fusing head and people
detections. The false positive is removed as it does not have a corresponding
head detection. The tracker recovers the heavily occluded pedestrian due to the
presence of head detections.

3.4 Multiple People Tracking by Fusing Head and People Detec-
tions

Having established the weighted graph labeling formulation in Section 3.2 and a
corresponding solver in Section 3.3, this section demonstrates the benefits of the proposed
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3.4 Multiple People Tracking by Fusing Head and People Detections

fusion formulation by incorporating two detector types, namely head and people
detections. Since heads have few degrees of freedom (e.g., less non-rigid deformations),
training a head detector with high accuracy is feasible. Figure 3.4 illustrates the
advantage. While the full-body detector misses the highlighted person (due to the
occlusion), the person’s head is still visible so that the MOT system localizes and
tracks that pedestrian correctly. An analysis of the fusion of head detections with
people detections reveals that the best tracking accuracy is achieved using both input
sources. The fusion helps especially to remove false positive full-body detections that
are not consistent with the head detections and to recover heavily occluded persons.
The proposed MOT method is used to evaluate the novel solver of Section 3.3. As the
experiments show, the proposed improvements to the Frank-Wolfe algorithm are crucial
to obtain solutions very close to the optimum. The new solver significantly improves
over standard BQP solvers when applied to the weighted graph labeling problem.
Accordingly, the MOT method produces very accurate tracking results. When the
work was published, the tracker ranked 2nd on the MOT16 benchmark and 1st on the
MOT17 benchmark, outperforming over 90 trackers.

3.4.1 Data association model

Let V := VP ∪ VH be the node set comprising all people detections VP and head
detections VH retrieved from a video. The edge set E = V(2) connects any two distinct
vertices of V. Each node (corresponding to a head or people detection) has assigned
label cost values that reflect the probability of the node belonging to a specific person.
Similarly, pairwise costs for each edge reflect the probability of the corresponding nodes
belonging to a specific person. Co-occurrences between differently labeled nodes are not
considered in this setup. Since the persons appearing in a video are not known a priori,
label-independent costs c ∈ RV×[nobj] for nodes and Q ∈ RV×[nobj]×V×[nobj] for the edges
are employed, where nobj denotes a plausible upper bound on the number of persons.
The weighted graph labeling formulation WGL(G) for G = (V , E , c,Q, nobj) then allows
fusing holistically head detections with people detections for the tracking task, resulting
in an implicit HO-MOT model. Logistic regression models (see Section 2.4.2) are trained
to form the unary and pairwise costs so that Theorem 3.3 is applicable, ensuring that
the most likely trajectories are obtained when solving WGL(G). Unary costs are based
on the score of each detection. Between nodes, we distinguish spatial and temporal
costs, which reflect how likely two detections within the same and between different
frames belong to the same person, respectively. Details about the utilized detections
and the cost definitions are provided in the following.

Head detections. To obtain accurate head detections, we employ a neural network
[210] fine-tuned on the MOT16 training set [44]. Qualitative results are shown in
Figure 3.5.

People detections. During training, we use the DPM people detections provided by
the MOT16 challenge [44]. For the evaluation, we use the official detections from the
MOT16 and MOT17 test set.
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3 HO-MOT with Signal Fusion

(a)

(b)

Figure 3.5: Qualitative results of the employed head detector on two sequences
of the MOT17 dataset [44].

Relative positioning. In order to obtain meaningful features between differently
sized boxes, features have to be formulated respecting the different scales.
To this end, consider a person detection box d with its corners at the lower left, upper
left, and upper right denoted as c

(d)
1 , c

(d)
2 , c

(d)
3 ∈ R2, respectively. For a pixel p ∈ R2,

we obtain barycentric coordinates λ(d,p) ∈ R3
≥0 of p w.r.t. the corners of d such that

p = ∑3
i=1 λ

(d,p)
i c

(d)
i and ∑3

i=1 λ
(d,p)
i = 1. For fixed template box dtmp, each pixel p is

mapped using its barycentric coordinates to dtmp:

p 7→
3∑
i=1

λ
(d,p)
i c

dtmp
i , (3.44)

keeping the relative position as in d, see also Figure 3.6. Now, all subsequent distance
measurements are computed using the mapped position w.r.t. dtmp.
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c
(dtmp)
1

c
(dtmp)
2 c

(dtmp)
3

d

c
(dtmp)
1

c
(dtmp)
2 c

(dtmp)
3

p(m)
tmp

mh

dtmp

feature computation

Figure 3.6: Left: Center of head detection (orange) is mirrored to the left half
side. Right: Distance and angle computation between expected head position
(blue) and observed (mirrored) head position (orange), w.r.t. the template box
dtmp. Some parts of the image are taken from the MOT16 dataset [44].

Spatial costs. We introduce two features that set the position of a head in relation
to a person detection.
For a pair of a head and person detection, we mirror the head detection to the left
half side of the detection box d, resulting in a position p(m). This makes the feature
robust against different orientations of a person. From the MOT16 training data, the
mean relative position mh of a head w.r.t. a detection of the same person is learned
in terms of the template detection dtmp. The mean head position is used to compute
the feature

∥∥∥p(m)
tmp −mh

∥∥∥, measuring the distance between the detected and expected
position, where p(m)

tmp denotes the mirrored head position w.r.t. dtmp. As second feature,
the angle between the expected and detected position of a head is computed with the
anchor at the center of the box (see Figure 3.6).
Finally, spatial costs between detections from the same detector type are set to a
constant high value.

Temporal costs. Temporal costs are defined via correspondences of pixels between
two different frames. DeepMatching (DM) provides such assignments with high accuracy
(see Section 2.7.2.1). Given detection boxes v and u, DM samples dmv and dmu many
pixels in v and u, respectively. Let cov,u denote the number of correspondences found
by DM. (i) To compare two head or people detections, the DM Intersection over union
features cov,u

dmv
, cov,u

dmu
, and cov,u

0.5(dmv+dmu) are used, similar to Tang et al. [63]. (ii) As head
detections are significantly smaller than people detections, only the temporal head to
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person feature cov,u

dmv
is used, where v denotes a head detection and u a people detection.

(iii) From the MOT16 training data, the mean ratios ξwm and ξhm between a head and
person detection w.r.t. width and height, respectively, are computed if both belong
to the same person. Finally, the features

∥∥∥ξwm − ξw(d,d′)

∥∥∥ and
∥∥∥ξhm − ξh(d,d′)

∥∥∥ measure the
deviation from the expected ratios, using the observed ratios ξw(d,d′) and ξh(d,d′) w.r.t.
width and height, respectively, given a pair of a people and a head detection (d,d′).

3.4.2 Experimental results

Finally, the proposed solver of Section 3.3 is analyzed in several experiments using
the data association model of the last subsection. We call the resulting tracking
method Frank-Wolfe Tracker (FWT). For the assessment, we report the gain both in
speed as well as in tracking performance by the proposed solver. Next, the impact
of fusing different detectors on the tracking performance is investigated using the
training sequences of the challenging MOT16 benchmark. In the last experiment,
the performance of FWT on the test set of the benchmarks MOT16 and MOT17 is
presented, showing that the approach achieves state-of-the-art performance compared
to competing methods at the time the work was published [55].

3.4.2.1 Implementation Details

In our implementation, we set the temporal costs of two nodes being more than 9 frames
apart to zero. The maximal number of labels nobj is fixed to 70. We process a sequence
in batches containing no more than 1800 nodes. We stop the Frank-Wolfe iterations of
Algorithm 3.1 in case the duality gap is below 10−4 or 750 iterations are reached.

Post-Processing The fusion approach enables the reconstruction of the positions
of a person missed by the person detector. Given a pair (dperson,dhead) consisting of
assigned person and head detections, the displacement vector from the center of dhead
to the center of dperson and the ratios whead

wperson
and hhead

hperson
of the widths and heads of both

detections are computed. If a trajectory is missing a person detection at frame f but
has assigned head and person detections for frame f′ with |f− f′| ≤ 4 and f′ is closest to
f with this property, the detection box is reconstructed using the displacement vector,
width and height ratios from frame f′. To avoid error propagation, FWT uses 4 = 2,
which was optimized on the MOT16 training set.
A trajectory γ that does not contain any assigned head detection often collects false
positive detections, e.g., because the people detector consistently signals the presence
of a person at the same background object (e.g., a traffic light). Such a case cannot be
recognized using pairwise features as the grouping results in a spatio-temporal consistent
trajectory.
Thus, we remove a trajectory γ containing no head detection if the length of γ is at least
4FP and all people detections have at least the box height hmin. In the experiments,
4FP is set to 5 and hmin is set to 110 pixels, which was optimized on the training data.
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3.4 Multiple People Tracking by Fusing Head and People Detections

Table 3.1: Solver comparison: While the proposed solver quickly terminates,
Gurobi is not able to finish after 1000 seconds. Entries in brackets denote the
results of Gurobi after 1000 seconds.

Method Iters ↓ Time[sec] ↓ Obj Value ↓ MOTA [%] ↑

FW 16 0.7 -3060 14.2
FW+R 676 27 -5481 26.8
FW+R+H - 27+0.5 -5925 27.5
Gurobi - 1000 (-5531) 24.9
Gurobi bound - 1000 (-5973) -

3.4.2.2 Frank-Wolfe Optimization

The first experiment analyzes the impact of the proposed modifications on the Frank-
Wolfe solver. To this end, we choose a representative batch of 41 frames from the
most challenging MOT16-13 training sequence and perform tracking using people
detections only. It consists of 403 detections so that there are 28210 decision variables.
Table 3.1 shows the number of iterations performed by the solver until the duality gap
is below the defined threshold, the runtime, the final objective value of fG as well as
the corresponding MOTA score.
The proposed modification FW+R+H (Algorithm 3.3) improves the objective value
considerably compared to the standard Frank-Wolfe algorithm FW (Algorithm 3.1).
This naturally translates to almost double MOTA accuracy, 14.2% vs. 27.5%. Note also
that the objective value comes very close to the global optimum. The optimal solver
Gurobi [165] is still far away from the global optimum after 1000 seconds, while the
proposed solver obtains a much better objective value after only 27.5 seconds. Although
Gurobi was not able to compute the global optimum in the given time span, it delivers
at each time step a lower bound (Gurobi bound) on the optimal value, showing that
the optimal solution to the BQP has an objective value ≥ −5973.
The evolution of the objective value for different solvers is plotted in Figure 3.7. We
clearly see when FW stops (blue line), how the regularization FW+R (Algorithm 3.2)
improves the objective value by a large margin (green line) and how finally the hierar-
chical approach FW+R+H (gray line) comes even closer to the estimated lower bound
(yellow line), as provided by Gurobi. In contrast, Gurobi (purple line) has a much
slower convergence.
To separate the quality of the proposed solver from the detections, we further evaluate
the performance on ground truth person detections7 for 40 frames of each MOT16
training sequence in Table 3.2, where we also report the (relative) duality gap to the
optimal solution (GAP). The results show a consistent and huge improvement by the
hierarchical concept over FW+R. At the same time, the solutions are close to optimality
w.r.t. the objective value and tracking performance. The sequences MOT16-05 and
MOT16-11 contain many partial occlusions that make it difficult for the DM features
to be correct in any situation, thus resulting in lower tracking scores. However, this

7To assess only the assignment accuracy, we filter out detections that have less than 15% visibilty.
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Figure 3.7: Minimization performance of each BQP solver. In addition, a lower
bound, as provided by Gurobi, is plotted.

shows that a second type of detections (head detections) is necessary for high-quality
tracking results. On the other hand, the solver reaches the perfect result on MOT16-09
(which has far fewer occlusions), thereby justifying the proposed solver.

Table 3.2: FW+R vs. FW+R+H, compared on ground truth person detections.
Seq FW+R FW+R+H

IDF1[%] ↑ IDs ↓ FM ↓ MOTA[%] ↑ GAP[%] ↓ IDF1[%] ↑ IDs ↓ FM ↓ MOTA[%] ↑ GAP[%] ↓

02 87.4 5 1 84.0 6.424 90.9 3 0 90.8 0.428
04 85.0 5 0 73.2 7.506 92.4 0 0 85.8 0.120
05 57.4 10 8 74.2 9.130 70.1 8 7 75.1 0.071
09 80.6 3 0 98.9 5.353 100.0 0 0 100.0 0.000
10 82.0 10 6 80.4 7.410 87.0 7 6 89.4 0.638
11 76.8 13 2 78.2 12.846 89.4 5 3 96.3 0.084
13 87.2 10 2 85.3 10.332 96.3 2 3 96.9 0.434

3.4.2.3 Ablation studies on head and people detections

Next, it is analyzed how the fusion exploits the information provided by the two
detectors. Recall that VH and VP denote head and person detections, respectively. In
the experiment, people detections are used as provided by the benchmark, while the
head detector and the regression models are trained on MOT16 training sequences in a
leave-one-out fashion.
Table 3.3 presents the performance of different tracker configurations on the MOT16
training set, depending on different fusion strategies, inputs, and solvers. In order to
assess the advantage of a holistic fusion via the weighted graph labeling formulation,
we compare against late-fusion, i.e., independently created head and person trajectories
that are fused using the proposed solver. The input trajectories are computed by the
proposed method (Ours-fusion) and from LP2D [23] (LP2D-fusion) which compares
spatial compatibility between detections. We denote the features of LP2D as 2D dist.
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3.4 Multiple People Tracking by Fusing Head and People Detections

During late-fusion, we use the affinities as defined in Section 3.4.1 but set the spatial
and temporal costs between two trajectories originating from the same detector to a
constant high value, as the trajectories are already separating the persons (Ours*).
Tracker 6 and 7 use the proposed solver and precomputed trajectories from Tracker 3
and 4, showing that the gain using late-fusion is no more than 1.3 percentage points in
terms of MOTA. Also, the proposed method (Tracker 4) performs comparably well to
Tracker 5 when using people detections and their defined affinities.
We compare the tracking performance to the proposed solver FW+R+H with people
detections and head detections (Tracker 10), which is the proposed method FWT. By
using the two detectors, FWT significantly improves almost all relevant tracking metrics,
justifying the framework and fusion concept. Due to the coupling of head detections with
people detections, the number of false positives (FP) is halved. Moreover, persons are
tracked more often correctly which results in an increase in the number of mostly tracked
(MT) trajectories. Overall, the MOTA score increases by more than 5 percentage points.
The quality of the head trajectories (evaluated on self-created head ground truth boxes)
is provided by Tracker 2.
We also compare different solver variants. Using another heuristic solver [51] (Tracker
11) performed worse on the fusion than FW+R+H, using exactly the same graph. The
comparison Tracker 8 vs. Tracker 10 shows a significant improvement on MOT16 train
due to the regularizer and the hierarchical step (up to 7.1 percentage points on the
MOTA score).

Table 3.3: Ablation experiments on the MOT16 training set.

Detections Features Solver Tracker MOTA[%] ↑ MT[%] ↑ FP ↓ FN ↓ IDS ↓

VH 2D dist LP2D 1 14.9 13.5 14829 50991 472
VH Ours Ours 2 16 13.5 14168 50959 331

VP 2D dist LP2D 3 31.7 8.5 3557 71332 467
VP Ours Ours 4 33.0 14.7 11949 61603 378
VP [52] GMMCP [52] 5 33.7 8.9 4053 68675 499

VP ∪ VH Ours* LP2D-fusion 6 33.0 10.4 3501 70163 358
VP ∪ VH Ours* Ours-fusion 7 34.2 16.8 11852 60401 376
VP ∪ VH Ours FW 8 31.1 14.5 5315 69563 1207
VP ∪ VH Ours FW+R 9 33.4 15.9 6497 66238 807
VP ∪ VH Ours Ours 10 38.2 16.6 4972 62935 372
VP ∪ VH Ours NLLMPa [51] 11 37.4 16.6 4954 63831 336

3.4.2.4 Benchmark Evaluation

Finally, the tracking performance of FWT with people and head detections is evaluated
on the MOT16 and MOT17 test set, using the people detections as provided by the
respective benchmarks. Table 3.4 shows some of the best performing published trackers
as well as the worst performing tracker at the time the method was published [55].
The proposed method FWT creates slightly higher identity switches. We have identified
DeepMatching as the main source of the errors. The local image features are prone
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Table 3.4: Tracking results on the test set of MOT16 and MOT17. Result table
retrieved when the work [55] was submitted (04.05.2018).

Method Rank↑ MOTA[%]↑ IDF1[%]↑ MT[%]↑ ML[%]↓ FP↓ FN↓ IDS↓

M
O

T
16

LMP [64] 1 48.8 51.3 18.2 40.1 6654 86245 481
Ours 2 47.8 47.8 19.1 38.2 8886 85487 852
NLLMPa [51] 3 47.6 47.3 17.0 40.4 5844 89093 629
AMIR [91] 4 47.2 46.3 14.0 41.6 2681 92856 774
NOMT [65] 5 46.4 53.3 18.3 41.4 9753 87565 359
GMMCP [52] 15 38.1 35.5 8.6 50.9 6607 105315 937
DP_NMS [102] 23 26.6 31.2 4.1 67.5 3689 130557 365

M
O

T
17

Ours 1 51.3 47.6 21.4 35.2 24101 247921 2648
MHT_DAM[211] 2 50.7 47.2 20.8 36.9 22875 252889 2314
EDMT17[212] 3 50.0 51.3 21.6 36.3 32279 247297 2264
GMPHD_KCF[213] 6 30.5 35.7 9.6 41.8 107802 277542 6774

to ID switches if the detections of two persons (people or head detection) share a
common image region. When using ground truth detections, much fewer ID changes
are generated, compare Table 3.2. This can be explained by the fact that there is much
less overlap between ground truth detections belonging to different persons.
However, FWT performs on par with state of the art in terms of tracking accuracy on
MOT16 and sets a new state of the art on MOT17. Moreover, the tracker won8 the
MOT 2017 Tracking challenge at the CVPR 2017. The proposed formulation achieves
the lowest ML (mostly lost) score within all trackers in both benchmarks, the lowest
FN (false negative) score in MOT16, and second lowest FN score in MOT17, showing
that the fusion helps to recover more trajectories. Also, the MT score is highest on the
MOT16 benchmark and ranks second on the MOT17 benchmark, demonstrating that
the method recovers very long trajectories. In contrast, the GMMCP model approach
is not able to produce long-term consistent trajectories, possibly due to erroneous
initial tracklets that could not be connected9. We note that the LMP tracker uses very
sophisticated and stable convolutional neural network image features that can reliably
link boxes over 200 image frames, thus resulting in a better MOTA and IDF1 score.
Finally, visual results on the test set are shown in Figure 3.8.

3.5 Simultaneous Identification and Tracking of Multiple People
using Video and IMUs

Vision-based MPT methods rely on certain assumptions about the motion and the
appearance of the persons to be tracked. A motion model attempts to assign likelihoods
to observed person movements. This is very generic and only depends on the corner
coordinates of detection boxes. However, as soon as the motion becomes more dynamic,
simple motion models [23] are insufficient so that the tracking accuracy degrades. In

8https://motchallenge.net/MOT17_results_2017_07_26.html
9We used the official code [52] to produce the results.
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(a)

(b)

Figure 3.8: (a) Visual comparison on MOT17-12-SDP between the proposed
tracker (top row) against the best performing competing method [211] of MOT17
(bottom row). By integration of head detections, heavily occluded persons can be
recovered, as highlighted by the arrows. (b) Visual results of FWT on MOT17-
03-SDP.

particular, most motion models assume low and constant velocities which holds for
pedestrians only within a short temporal window [63]. Also, motion is often measured
in 2D, which is ambiguous. Misinterpreting the information thus leads to erroneous
trajectories. Another complementary strategy is to model relations between detections
based on appearance information. Here, CNN-based feature representations are used
to evaluate if two detections show the same person. Recent works have shown very
impressive tracking results using only this information [55, 63] or in combination with
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3 HO-MOT with Signal Fusion

Figure 3.9: Qualitative results obtained by fusing person detections and local
motion measurements of body-worn IMUs. Instead of relying on appearance
information, the proposed approach enables accurate long-term tracking by finding
a globally optimal assignment of detection boxes to IMU devices such that resultant
trajectories in the video are consistent with the IMU measurements. This enables
to track persons even if they leave and re-enter a scene (see the disconnected
trajectories at the lower image border). Since the proposed method automatically
assigns each trajectory to an IMU device, ID assignments are consistent across
sequences, even if the appearance changes.

motion models [64, 78]. A major advantage of utilizing appearance information over
motion models is that it allows relating detections that are temporally far apart. This
facilitates the re-identification of people even after long-term occlusions or if they
temporarily fall out of the camera view. Despite the enormous progress in obtaining
discriminative appearance features, it remains challenging to re-identify persons wearing
similar or identical clothing. A prototypical example of such a situation is athlete
tracking when team members wear almost identical jerseys. Further challenges arise if
low-resolution images are used, when the viewpoint [214] or lighting conditions [215]
change, or if people modify their outward appearance. This happens for instance if a
person puts on a jacket or opens an umbrella during a recording, but also if people
shall be tracked across different recordings, e.g., in a long-term motion study. Then,
the assumption of appearance constancy is violated, which degrades tracking accuracy.
In summary, computing reliable features between detections is very challenging and
error-prone, as also elaborated in Section 1.3.2. Consequently, the task of tracking and
re-identifying people from visual inputs only is still far from being solved.
To approach this difficult task, we propose to complement visual information from video
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with motion information using data from body-worn Inertial Measurement Units (IMUs).
IMUs are small motion sensors measuring10 local orientation and acceleration.
In particular, we consider a monocular camera view and a single IMU attached to each
person to be tracked. Conceptually, the idea is to incorporate local IMU motion mea-
surements in order to disambiguate the assignments of detections to person trajectories.
Since IMUs are body-worn, the corresponding motion measurements are unique for
each person. Similar to appearance, this property facilitates the re-identification and
tracking of persons even after long-term occlusions. Hence, such a tracking approach
is predestinated for scenarios where it is possible to equip people with an IMU and
appearance is less informative. This could be the case if people wear team jerseys
or uniforms or if night-vision is used. Furthermore, the tracking solution provides a
unique ID for each trajectory, which corresponds to the associated IMU device. Hence,
once the wearer of an IMU device is known, this enables a fully automatic labeling of
trajectories to person identities. In contrast, vision-based approaches require manual
labeling at this point. Another advantage of combining IMUs and vision for the task
of MPT is that inertial sensors enable the reconstruction of people trajectories even if
they are occluded or fall out of the camera view. The fusion thus allows to combine
the strength of two complementary input sources, and is a promising concept to obtain
highly accurate trajectories and tackle tracking and identification holistically, see also
Figure 3.9.
The setting allows one (i) to reduce the dependency on artificial motion models (velocities
in a video can be related to actual IMU measurements), (ii) to identify persons inde-
pendent of their outward appearance, and (iii) to automatically assign each trajectory
to a person identity.
Incorporating additional sensory input for the task of MPT creates a very different
problem setup compared to vision-only tracking methods. In particular, this involves
(i) solving the data association problem of detections to trajectories in a video and (ii)
simultaneously identifying the corresponding IMU device for each trajectory. Hence,
solving this problem requires ensuring consistency within all detections of a trajectory,
and at the same time, consistency between each trajectory and the corresponding IMU
data. We denote this task as Video Inertial Multiple People Tracking (VIMPT).
Even though in VIMPT, motion information is available through IMU measurements,
associating these measurements to person detections still poses a very challenging
problem. From IMU data alone, it is not possible to generate stable 3D trajectories
due to unknown initial states and accumulating drift caused by double integration of
acceleration signals [217, 218]. If this was possible, one could easily associate each
detection box to the closest IMU trajectory projected to the image. Hence, instead of
working on pre-computed IMU trajectories, we have to associate 3D orientation and
acceleration measurements to 2D motion information observed in a video. Relating
3D to 2D information under perspective projection is a difficult task on its own. In
particular, this requires to relate IMU orientations, which are elements of the 3D rotation
group SO(3) [219], to image data being a two-dimensional pixel array. Furthermore,
IMU measurements often fit to several people at a time step, and a person wearing an

10We refer the interested reader to Kok et al. [216] for more information on IMUs and corresponding
orientation and acceleration signals.
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IMU might be occluded or out of the camera view.
We perform the holistic fusion of video with IMU data by utilizing the proposed weighted
graph labeling problem WGLNMS(G). The underlying idea is that a global assignment
of detection boxes in a video to specific labels representing person identities must be
consistent with the measured IMU data. However, this requires a way to measure
consistency between video observations and body-worn IMU data. In order to relate
IMU orientations to video information, we design a neural network that estimates
the orientation of a person within a detection box. Motion cues are incorporated by
comparing IMU acceleration measurements to video-based velocities.
To evaluate our proposed tracking approach, we recorded a VIMPT dataset. A special
emphasis was put on similar person appearance, heavy occlusions, and non-linear
motions. These are situations in which model assumptions implicitly used in vision-
based approaches are violated. Since such tracking scenarios are currently missing in
standard benchmarks such as DukeMTMC [186] and MOT16 [44], the new dataset
could also be valuable for analyzing and improving vision-only approaches.
Evaluations on the recorded dataset reveal that it is possible to achieve reliable tracking
results without any motion or appearance model. Moreover, the full system significantly
outperforms video-based MOT methods, justifying the VIMPT setup and the tracking
method. The resulting VIMPT tracker, which we call Video Inertial Tracker (VIT),
evaluated on challenging soccer sequences, reduces the number of ID switches (IDS) by
more than 70% and doubles the IDF1 score compared to the best performing video-based
MPT method. Finally, VIT assigns trajectories to persons on VIMPT without any
error.

3.5.1 Related work

Association Weights. The performance of a graph-based tracking approach relies to
a great extent on the association weights between detections (or tracklets) that indicate
how likely they belong to the same person. As explained in Section 1.3.2, creating
discriminative features is challenging, though, as most trackers either employ motion
models [22, 23, 89, 95, 97, 220] or appearance models [55, 63, 64, 76–82].
Common to all appearance-based approaches is the assumption of constant and discrim-
inative appearance information. However, these assumptions are violated if persons
look identical or change their appearance. Similarly, viewpoint and lighting variations
can change the perceived appearance of a person. Motion assumptions are violated
for people that are accelerating or moving fast. In contrast, the method presented in
this section reduces the dependence on these model assumptions: The orientation of a
person is linked with IMU measurements independent of a person’s outward appearance
and measured accelerations are incorporated into the employed motion model.

Vision and Inertial Sensors. Body-worn inertial sensors provide motion informa-
tion independent of the visibility of persons. However, it is not possible to recover the
3D person trajectory from IMU information alone [217, 218]. In contrast, using a video
signal allows extracting positional information which is complementary to IMU motion
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information.
Consequently, IMUs have been combined with visual information in many applications,
e.g., fusing video and inertial data to stabilize simultaneous localization and mapping
(SLAM) [221, 222]. The same modalities have been used to recover human poses [118,
223].
There exist only very few and old works that incorporate IMUs for people tracking
in videos. The methods of Jiang et al. [224, 225] tackle single person tracking. It
requires that a person equipped with an IMU is manually located in the first image in
which the person is visible. Then, IMU information is used to recover the trajectory
in those situations in which the visual tracker fails. The work of Teixeira et al. [226]
alternates between multiple people tracking using video information and filtering using
IMU information. Some works [227, 228] perform the assignment of trajectories to
IMUs once all trajectories have been established.
Instead, the method proposed in this section simultaneously solves the assignment of
detections to consistent trajectories and to IMUs, thereby combining the advantages of
both sensors. The solutions are obtained from a higher-order data association model
using a global optimal solver. We thus argue that the full potential of the two modalities
has not been satisfactorily exploited so far.

Other Sensor Modalities. There exist works that incorporate other sensor modali-
ties for MOT, e.g., Camplani et al. [229] provide a survey of tracking approaches using
RGB-D cameras. However, depth cameras work only indoors and have a limited depth
range. Another work [230] integrates video and wireless signals emitted from cell phones.
In this setup, the signal quality is used for localization. This is problematic since signal
strength heavily depends on unpredictable reflections and absorptions. The proposed
VIMPT method does not suffer from these limitations.

Person Identification. Once trajectories are computed, they are used to analyze
certain patterns in the motion, e.g., for the purpose of motion segmentation, when point
trajectories are used [77, 191], for understanding social behavior of humans [14, 25, 26],
or in order to assess the performance of athletes [16–19]. In many of these applications,
it is crucial that a particular person is associated with a unique trajectory ID. Ideally,
the associated ID is consistent not only throughout a recording but also across different
recordings.
Manual labeling of trajectories is a tedious task. Hence, several works focus on au-
tomatically obtaining the true identities but consider this as a post-processing step.
For instance, determining the labels of computed trajectories can be formulated as a
Bayesian network inference problem [231]. By grouping trajectories of the same person
together, it allows to improve the ID consistency within a sequence but is not sufficient
to re-identify persons across different recordings. By maintaining a database of visual
features for each person to be expected in a recording, both tasks (identification within
a sequence and across sequences) can be tackled [17]. Trajectories are labeled by employ-
ing a conditional random field using the visual features from the database. In contrast
to these visual approaches, the proposed VIMPT method allows to simultaneously seek
for a solution that is consistent with the video signal and IMU labels so that labeling all
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...

... ... ... ...

n n+ 1 m m+ 1

Figure 3.10: Every tracklet is represented by a node in the data association
graph of VIT. Each node can be assigned to an IMU device (indicated by
color) and is linked to other nodes by short-term edges (solid) and long-term
edges (dashed). An edge is activated if the corresponding nodes share the same
color. The idea is that every graph color configuration is associated with costs
representing the consistency of video information and IMU data. The goal is to
find the assignment with minimal costs.

detections is not only a desired task but also helps to obtain accurate tracking results.

3.5.2 Method

The proposed VIMPT method groups detections to short and reliable trajectories (called
tracklets) in the first step. Then, the goal is to find an optimal assignment of IMU IDs
to tracklets such that the resultant trajectories are visually smooth in the video and
consistent with measured IMU orientations and accelerations, which is illustrated in
Figure 3.10.
IMU signals are coupled with video information at different conceptual levels: For each
potential tracklet to IMU assignment, the person orientation, as seen by the camera,
must be consistent with the corresponding IMU orientation. However, orientation
consistency alone is very ambiguous. Hence, we also enforce spatio-temporal consistency
if two detections are associated with the same ID. Here, we exploit the complemen-
tary characteristics of short-term detection box motion features and long-term IMU
acceleration features.

3.5.2.1 Data association model

The fusion of video information with the IMU signals is performed in an undirected
weighted graph G = (V, E , c,Q, nobj), as introduced in Section 3.2.2. The vertex set V
comprises all tracklets of the entire sequence, and E is the edge set containing all edges
that connect a pair of tracklets. Vertices and edges may obtain a label k ∈ [nobj], where
nobj denotes the number of persons wearing an IMU.
Solving WGLNMS(G) then provides consistent trajectories in the video using tracklets
and simultaneously assigns each tracklet to an IMU. By definition, each tracklet is
assigned to at most one IMU. Conversely, at any point of time given an IMU, at most
one tracklet can be assigned to it.
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3.5 Simultaneous Identification and Tracking of Multiple People using Video and IMUs

(a)

n1 n2 n3

α1 α3

(b)

Figure 3.11: (a) We define person orientation in terms of the normal vector of
the torso’s coronal plane (black arrow) projected to the ground plane (blue arrow).
(b) Consider a top view of a person walking on a straight line parallel to the image
plane. Even though the person’s torso orientation n is constant (depicted as blue
arrows for three distinct positions), the perceived orientation, as seen from the
camera, varies. In particular, the perceived orientation differs from the global
orientation by an angle α which describes the angle between the depth axis of the
camera (straight line) and a vector pointing from the camera center to the person
position (dashed line). We use this angle to correct person orientation estimates
from the camera in order to relate them to global orientation measurements from
body-worn IMUs.

Using short but reliable tracklets has the advantage that more meaningful and more
accurate unary and pairwise features can be used. Furthermore, using tracklets signif-
icantly reduces the problem size. This enables to solve the weighted graph labeling
problem WGLNMS(G) to optimality by applying Gurobi [165] on a BLP transformation
of WGLNMS(G).
Next, the unary and pairwise label costs are described in detail. Specifically, consistency
features are introduced that are mapped to costs, as described later in Section 3.5.3.3.

3.5.2.2 Unary Features

In order to measure the likelihood of an assignment hypothesis x[v⇀k], the orientation
of a person in each detection box of a tracklet v is estimated and compared to the
temporally aligned orientation measurements by an IMU k.
In this work, the person orientation n ∈ R2 is defined as the normal vector of the torso’s
coronal plane projected to the ground plane, as illustrated in Figure 3.11(a). We use
the projected normal (instead of the 3D normal) as this comprises fewer degrees of
freedom and people usually move in a rather upright pose.
Hence, given the image data Id of a detection d, the heading n̂d of the corresponding
person needs to be estimated. However, the observed heading in Id is affected by the
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FC1 FC2
FC3

n̂d
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Visual Heading Network
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Figure 3.12: The Visual Heading Network predicts the heading n̂d of a person
using the image data Id of detection d. Based on the box position pd, the network
performs a Perspective Correction (PC) in the last layer. Hyperbolic tangent
activation functions are used after each fully-connected layer subsequent to the
VGG-16 backbone.

position of the person in the image. To see this, consider a person walking on a straight
line parallel to the image plane of a non-moving camera. In a global context, this
person has a constant orientation. However, due to perspective effects, the perceived
orientation of that person with respect to the viewpoint of the camera is different at
every point in the image, see also Figure 3.11(b). We compensate for this using a
correction angle derived from the detection box within the image. Let αd be the angle
between the vector defined by the camera center and lower central anchor point pd,
and the depth-axis of the camera. In order to compensate for the perspective influences,
the perceived orientation is rotated by −αd, resulting in the prediction n̂d, compare
Figure 3.11(b).
In order to obtain the person heading from image data, we propose to utilize a neural
network that provides the mapping Id 7→ n̂d. To this end, VGG-16 [172] pre-trained
on ImageNet [130] is extended to regress the heading, which also incorporates the
aforementioned Perspective Correction (PC) in the last layer. The resulting network
is referred to as the Visual Heading Network (VHN) in the following. A graphical
illustration of the network architecture is depicted in Figure 3.12. In the VIMPT
setting, IMUs are consistently placed on the back of each person such that the local
sensor’s z-axis corresponds to the normal vector of the torso’s coronal plane. Hence,
the measured torso orientation vector nk,f of IMU k at frame f is obtained according to

nk,f = π(Rk,fz) , (3.45)

where z = ( 0 0 1 )ᵀ is the local z-axis vector, Rk,f ∈ SO(3) is the measured orientation of
IMU k at frame f mapping the local sensor coordinate frame to the global coordinate
frame, and π : R3 → R2 projects the normal vector to the ground plane. Finally, we
measure the deviation of the predicted orientation from the IMU heading vector in
terms of the cosine similarity.
In detail, we define the unary orientation feature representing the likelihood of assigning
node v to label k as

φ
(ori)
[v⇀k] = 1

Nv

∑
d∈v

LCS(n̂d,nk,fd) , (3.46)
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3.5 Simultaneous Identification and Tracking of Multiple People using Video and IMUs

where LCS denotes the cosine similarity defined in Eq. (2.19) and Nv denotes the
number of detections contained in tracklet v. The orientation feature φ(ori)

[v⇀k] measures
the average orientation consistency of the tracklet v to the IMU with ID k.

3.5.2.3 Pairwise Features

We define pairwise features that represent the compatibility of two assignment hypotheses
x[v⇀k] and x[u⇀k] with k ∈ [nobj]. Two nodes v, u are compatible if jointly labeling v
and u with the same label is reasonable with respect to spatio-temporal aspects.

Spatio-Temporal Features. Within a short temporal window, a person cannot
move arbitrarily fast. Hence, compatible tracklet pairs should be spatially close and
corresponding detection boxes should be similar in size. We derive corresponding
features in the following.
The lower central anchor point pd of a detection d can be projected to the ground
plane, resulting in a position dplane ∈ R2 in world coordinates. A person detected by d
is thus located near dplane. For detections d of v and d′ of v′, let v3D(d,d′) denote the
velocity in 3D from d to d′ (using the projection) and let N(v, u) be the set of all pairs
of detections between v and u. We define a mean velocity feature between nodes via

ψ
(vel)
[v⇀k],[u⇀k] = 1

|N(v, u)|
∑

(d,d′)∈N(v,u)
‖v3D(d,d′)‖2 . (3.47)

Additionally, the heights of detections contained in both tracklets are compared: Let
hd denote the height of detection box d in pixels. We define a compatibility measure
ψ̃(height)(d,d′) based on the heights of detections d and d′ according to

ψ̃(height)(d,d′) = ψ̃(time)(d,d′) |hd − hd′|
min{hd, hd′}

, (3.48)

where the factor in front of the fraction compensates for the temporal distance between
d and d′, reducing the weight of this comparison with higher temporal distances. In
detail, if d and d′ are s frames apart, we set

ψ̃(time)(d,d′) = 1
log(c+ s) , (3.49)

where c is chosen such that log(c+ 1) = 1. Then, ψ̃(time)(d,d′) = 1 holds if the frame
distance between d and d′ is 1, and it increases slowly with bigger frame distances s.
Finally, we define our box height feature as

ψ
(height)
[v⇀k],[u⇀k] = 1

|N(v, u)|
∑

(d,d′)∈N(v,u)
ψ̃(height)(d,d′) . (3.50)

Both ψ(vel) and ψ(height) are features that are meaningful within short temporal windows.
However, this section focuses on sequences in which people get occluded or fall out
of the camera view quite often and for longer time periods. Hence, in the following,
we utilize acceleration measurements to link hypotheses that cover larger temporal
horizons.
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Acceleration Feature. Ideally, the ground position pk,t1 ∈ R2 of an IMU k at time
t1 can be recovered by double integration of the corresponding acceleration signal ak
according to

pk,t1 = pk,t0 + vk,t0(t1 − t0) +
∫ t1

t0

∫ u

t0
ak(s)ds du , (3.51)

where t0, pk,t0 , and vk.t0 denote initial time, initial position, and initial velocity, respec-
tively. Please note that ak in this case represents the gravity-free acceleration in global
coordinates.
Now let pt0 and pt1 denote the 2D ground positions of detections d and d′, respectively.
After double integration of the acceleration signal, we can solve Eq. (3.51) for the initial
velocity, which we denote as vIMU. Thus,

vIMU(d,d′, k) =
pt1 − pt0 −

∫ t1
t0

∫ u
t0

ak(s)ds du
t1 − t0

. (3.52)

For d ∈ v, the velocity vd of a person at initial time t0 can be approximated in terms
of finite differences, using detections d′ ∈ v of the same tracklet that are temporally
close to d. Hence, for a compatible hypotheses pair of tracklets v and u, the velocity
differences

ψ̃v-diff
k (d,d′) = ‖vIMU(d,d′, k)− vd‖2 (3.53)

should be small for all possible detection pairs d ∈ v and d′ ∈ u. We define the
acceleration feature as the set of all such differences according to

ψ
(acc)
[v⇀k],[u⇀k] =

{
ψ̃v-diff
k (d,d′) | (d,d′) ∈ N(v, u)

}
. (3.54)

3.5.2.4 Trajectory reconstruction based on signal fusion

The solution to problem WGLNMS(G) assigns each detection box to at most one IMU
device. Given these associations, it becomes feasible to reconstruct the trajectory of a
person using IMU accelerations accurately. In particular, the positions of a person can
be recovered in all frames, even if the person is temporarily occluded or falls out of the
camera view. This is a unique advantage of the VIMPT setting.
In the following, we consider a trajectory γ tracking a person with label k and define γ
to be the lower central anchor points of the trajectory projected to the ground plane,
described in world coordinates. Moreover, let fF and fL denote the timestamps of the
first and last detection assigned to trajectory γ, respectively. Then, the reconstruction
method has to recover the locations for all image frames [fF : fL].
Given the correspondences between visual information and an IMU device k, the
trajectory γ is improved by seeking for a trajectory that is spatially close to γ while
being consistent with the motion information given by IMU sensor k (in terms of
acceleration).
Let Γ(fF, fL) denote the set of all feasible trajectories on the ground plane within the
time window [fF : fL]. Given the acceleration measurements ak from the IMU device k,
we seek for a trajectory γ̂ ∈ Γ(fF, fL) that minimizes the following optimization problem:

min
γ̂∈Γ(fF,fL)

w epos(γ̂, γ) + (1− w) eacc(γ̂, ak) , (3.55)

116

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105
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where the residual

epos(γ̂, γ) =
∑

f∈supp(γ)

∥∥∥γ̂(f)− γ(f)
∥∥∥2

2
|supp(γ)| (3.56)

measures the mean squared distance between the estimated trajectory γ̂ and the
detections of trajectory γ. The support of a trajectory γ, denoted as supp(γ), is the set
of frames for which γ contains a detection. The residual

eacc(γ̂, a) =
∑

t∈TIMU(fF ,fT )

‖a(t)− âγ̂(t)‖2
2

|TIMU(fF , fT )| (3.57)

measures the mean squared distance between the acceleration signal a given by the
IMU signal and the approximated acceleration in the video described by the estimated
trajectory γ̂. Here, the acceleration âγ̂(t) of a trajectory γ̂ at time t is approximated
via finite differences:

âγ̂(t) := γ̂(t−4tIMU)− 2γ̂(t) + γ̂(t+4tIMU)
(4tIMU)2 , (3.58)

where 4tIMU is the time distance between consecutive IMU signals. The set TIMU(fF , fT )
denotes the set of timestamps11 within the first and last detection of γ at which IMU
signals exist.
The parameter w can be used to balance the importance of each input channel. The
optimization problem (3.55) has a non-linear least squares form. We apply the Levenberg-
Marquardt algorithm [232, 233] (see also Section 2.6.5) to obtain the estimated trajectory.
The balancing weight is optimized on the training data.

3.5.3 Evaluation

Finally, the tracking approach for the VIMPT setup is evaluated, which we call Video
Inertial Tracker (VIT). Technical details are provided and the performance is as-
sessed. We evaluate tracking accuracy with respect to several relevant tracking and
re-identification metrics and examine the influence of IMU features. In order to demon-
strate the advantages of incorporating IMU data, we also compare to vision-based MPT
baselines.

3.5.3.1 VIMPT2019 dataset

We created a dataset, called VIMPT2019, to assess the proposed VIMPT method.
Our recordings contain challenging sequences captured with a calibrated camera and
body-worn IMUs. In the following, an introduction of the dataset and details about
the recording procedure are provided, followed by a discussion about challenges of the
dataset.

Sequences. The dataset comprises 7 challenging soccer and outdoor recordings. In
total, it contains nearly 6500 frames captured with a static camera and 8 IMU-equipped
actors in varying clothing styles.

11Given the framerates of the video and IMU signal, we can evaluate γ̂ at time t and frame f.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3.13: First row: Different scenes in the VIMPT dataset. (b) shows very
similar person appearances. Second row: Different camera views in the soccer
sequences. Third row: Challenges in the VIMPT dataset. (e) Rapid motions and
motion blur. (f) Heavy occlusions. (g) Outdoor scene with frequent occlusions.

During soccer recordings, two four-person teams in team jerseys (see Figure 3.13(b))
play soccer in a competitive manner. Consequently, these recordings contain a lot of
motion, motion blur, abrupt changes in direction, and occlusions, see Figure 3.13(e)-(f).
Hence, tracking challenges arise from non-linear motion and ambiguous appearance
information. Moreover, the soccer sequences are captured from two different viewpoints
and differ in recorded game situations.
In addition to the soccer recordings, the VIMPT2019 dataset contains an outdoor
sequence recorded at a pedestrian crosswalk in a public park (see Figure 3.13(a,g)).
Actors walk around in natural apparel and meet regularly for short conversations. This
sequence serves as a reference to standard benchmarks such as MOT16/17 [44] and
DukeMTMC [186], since it is comparable in terms of motions and scenery. Throughout
all sequences, actors regularly leave the field of view and are heavily occluded by other
actors.
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Figure 3.14: Time synchronization using a clapper board.

Camera setup. For all sequences, a calibrated camera has been mounted to a tripod
at a height of approximately 1.8m. The videos were captured in landscape mode at 30Hz
with 1920× 1080 spatial resolution, and the camera’s extrinsic matrix was calibrated
to a fixed reference point in the scene.

Time Synchronization. All wireless IMU devices are automatically synchronized
using the recording system of the IMU manufacturer Xsens [234]. For the time synchro-
nization between the IMU devices and a video recording, an additional IMU has been
attached on a clapperboard. The clapperboard allows detecting the shut of the clap
within the video and the IMU signal (see Figure 3.14).

Detections. The detector FRCNN [73] is trained on MS COCO [235] to generate
person detections within all frames of the dataset. For all detections, we compute the
corresponding 3D positions using the homography between ground and image plane.
In addition, we manually created ground truth detection boxes and labeled them with
the corresponding person IDs. Similar to MOT16 [44], we interpolated ground truth
detections for occluded persons.

IMU setup. Throughout all sequences, eight persons were equipped with an IMU.
Each sensor was attached to a person at hip height. IMU orientation and acceleration
were captured at a frame rate of 60Hz. We calibrated the inertial reference coordinate
frame to the same reference point as used for the extrinsic camera parameters.

Training, validation and test split. The VIMPT dataset is split into disjoint
subsets. One soccer sequence is selected for training and validation of tracker parameters
while the residual six sequences are used for testing and evaluation.
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Table 3.5: Characterization of the VIMPT2019 dataset.

Name Length Boxes µ(vis) σ2(vis) Activity Density

Rec01 1189 7496 0.84 0.10 Football 7.48
Rec02 1148 7428 0.83 0.11 Football 7.90
Rec03 1067 6677 0.77 0.15 Football 7.34
Rec04 653 4384 0.77 0.19 Football 7.65
Rec05 726 4848 0.81 0.11 Football 7.42
Rec06 542 3653 0.79 0.15 Football 7.72
Rec07 1036 6358 0.83 0.11 Walking 6.74

3.5.3.2 Characteristics of the VIMPT2019 dataset

Many different state-of-the-art MPT datasets exist (see Section 2.7.3), each focusing on
certain challenges of multiple people tracking. Some concentrate on a wide variety of
camera views [44], containing low- to semi-crowded scenes while others focus on long-
term tracking [186] with sometimes very crowded scenes and filmed by multiple static
cameras. The recordings of VIMPT2019 focus on ambiguous appearance information
and non-linear motions.

Quantitative analysis. Table 3.5 lists several characteristics for each sequence of
the dataset. The lengths of the sequences range from 540 to nearly 1200 frames, similar
to the MOT16/17 sequences. The third column of Table 3.5 shows the number of
detections per sequence. Density denotes the average number of ground truth detections
per frame, indicating the number of people present in the scenes. We further provide a
visibility distribution of the dataset. To this end, we compute for each ground truth
box d a visibility score vis(d). We define a box d′ to partially occlude a box d with
respect to the image coordinates from a camera C, denoted as d /C d′, if the boxes
d and d′ have a non-empty intersection and if the lower central anchor point of d′ is
lower than the lower central anchor point of d. Then, we compute the relative number
of pixels within d that are not occluded by other ground truth boxes:

vis(d) = 1−

∣∣∣⋃d/Cd′ I(d′) ∩ I(d)
∣∣∣

|I(d)| , (3.59)

where I(d) is the set of image pixels contained in box d. The mean visibility score µ(vis)
is provided in Table 3.5 and ranges between 0.79 and 0.84 with a standard deviation
σ2(vis) between 0.10 and 0.19.

Characterization of the visual information. We measure the difficulty of distin-
guishing individuals using visual information. In particular, we compute the Rank-1
and the mAP scores for the MOT16 dataset and the VIMPT2019 dataset using a state-
of-the-art re-identification method [236] fine-tuned on DukeMTMC [186]. Additionally,
we restrict the gallery and query set to contain the same number of identities, making
the evaluations between the different datasets comparable. In particular, we randomly
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Table 3.6: Comparison between MOT16, VIMPT2019, and its subset
(VIMPT2019*) consisting of all football sequences. We compare the difficulty
of re-identifying persons using the Rank-1 and mAP metrics. For a motion
characterization, we compare the speed distribution of ground-truth trajectories
in different datasets: 2D velocities are converted into normalized speed values
and aggregated by computing the mean v and the variance σ2(v).

Dataset Rank-1[%] ↑ mAP[%] ↑ v [1/s] σ2(v) [1/s2]

MOT16 90.3 88.0 0.19 0.06
VIMPT2019 67.4 81.1 0.60 0.34
VIMPT2019* 63.4 78.3 0.63 0.36

sample query and gallery images from the ground truth detections of a randomly
selected sequence, obtaining two disjoints sets, and evaluate the metrics. The results
shown in Table 3.6, which have been averaged over 100 repetitions, indicate that it is
much harder to track people correctly in the VIMPT2019 dataset, as the appearance
information is ambiguous due to the worn soccer jerseys.

Characterization of the motions. We characterize the speed distribution of the
VIMPT2019 dataset. To this end, we use the ground truth trajectories and compute
the average image speed between any two detections d1 and d2 belonging to the
same trajectory, normalized by the mean box height between d1 and d2, in order to
compensate for perspective effects. To put the values into perspective, we compare
to the MOT16 dataset12 and present the results in Table 3.6. The evaluations show
that VIMPT2019 contains much higher speeds and most importantly, the speeds have
a variance, which is more than 5 times higher compared with the MOT16 dataset.
Accordingly, it is much more difficult to define a discriminative motion affinity that
covers the whole range of plausible movements for the VIMPT2019 dataset.

3.5.3.3 Tracker Parameters

Tracklet generation. The proposed VIMPT method VIT is based on reliable track-
lets, which are generated by grouping detections using the method of Pirsiavash et
al. [102]. In order to avoid error propagation, temporally subsequent detections can
only be connected if their intersection over union is above 0.7. The maximal tracklet
length is set to 0.5 seconds.

Visual Heading Network. The overall network architecture is depicted in Fig-
ure 3.12. It contains the VGG-16 architecture, which is truncated after its last pooling
layer. The layers FC1, FC2, and FC3 are fully connected layers with 16, 16, and 2
neurons, respectively. To output an orientation vector n that is within the unit sphere
S1, we use hyperbolic tangent activation functions. Note that VGG-16 has been trained
on ImageNet with an invariance for horizontal flipping [172]. To undo this, we train

12We use all training sequences filmed by a static camera.
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the layers FC1, FC2, and FC3 together with the last convolutional layer of VGG-16
while keeping the weights of all other layers fixed. During training, we add dropout
layers [151] with p = 0.3 between the fully connected layers to avoid overfitting. Using
dropout makes the prediction more robust against clutter within a detection box (e.g.,
other objects or body parts of other people) so that the neural network is forced to
predict the orientation given any arbitrary body part. The network was trained using
RMSprop [237] for 250 epochs with a learning rate of 10−4 and a batch size of 16. Input
images of detection boxes were scaled to 250× 675.
Finally, the network weights W of VHN are learned by maximizing the average cosine
similarity between predicted and ground truth heading vector

1
|D|

∑
d∈D

LCS(n̂d(W),nd) , (3.60)

given all ground truth detections d ∈ D and corresponding IMU heading vectors nd of
the VIMPT training sequence.

Graph edge settings. A weighted edge e ∈ E between two nodes v, u ∈ V is created
in the following cases. If the smallest frame distance between all detections of v and u is
within {1, . . . , 12}, a short-term edge with costs derived from box features is established.
If the smallest frame distance is between {13, . . . , 150}, long-term edges associated with
costs derived from acceleration features are established.

Feature to cost mapping. In order to transform unary and pairwise features to
costs, two concepts are used. For orientation and box features, we apply a logistic
regression model, which is trained using the ground truth trajectories of the VIMPT
training sequence.
We observed that this does not work satisfactorily for the acceleration feature as noise in
the 3D position estimates destroys much of the expressiveness of this feature. Instead, we
use a threshold δ to indicate if two hypotheses are highly incompatible. Hence, we assign
a high constant cost to an edge between nodes v and u labeled k if minψ(acc)

[v⇀k],[u⇀k] > δ.

3.5.3.4 Tracking Evaluation

The goal of the proposed VIMPT method is to track IMU-equipped persons in a video
accurately. A perfect tracking result is achieved if the assignment of person-specific IDs
to corresponding tracklets is consistent throughout the whole tracking sequence.
We evaluate tracking performance by assessing assignment consistency in terms of
ID metrics IDP, IDR, and IDF1 but also report the event-based metric MOTA, see
Section 2.7.4. Note that the computations of false positives and false negatives within
MOTA are based solely on detection existence for each frame independently. Moreover,
ID switches have a low weight in MOTA since the number of false positives and false
negatives are usually several orders of magnitude higher. In contrast to that, IDF1
evaluates false positives (resp. negatives) and also verifies that the person IDs are
correct. In particular, the IDF1 score incorporates the longest coverage of each ground
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Table 3.7: Tracking accuracy on the soccer sequences.

Tracker IDP[%] ↑ IDR[%] ↑ IDS ↓ MOTA[%] ↑ IDF1[%] ↑

DeepCC [78] 26.3 27.9 395 11.8 27.1
DeepSORT [97] 49.6 42.4 193 77.1 45.8
FWT [55] 29.7 26.7 489 71.6 28.1

VIT 93.6 90.1 44 86.1 91.8

Table 3.8: Tracking accuracy on the outdoor recording.

Tracker IDP[%] ↑ IDR[%] ↑ IDS ↓ MOTA[%] ↑ IDF1[%] ↑

DeepCC [78] 55.4 57.0 47 67.3 56.2
DeepSORT [97] 53.4 48.0 28 83.5 50.5
FWT [55] 39.1 36.3 66 82.4 37.6

VIT 89.5 78.5 22 81.8 88.5

truth trajectory by exactly one computed trajectory. Thus we consider IDF1 as the
more meaningful metric for the VIMPT task. Yet, MOTA is a well-known metric for
MPT and it enables to put the tracking results into the context of other works.

Tracking accuracy. We report tracking accuracy of our approach, denoted as Video
Inertial Tracker (VIT), on the VIMPT dataset in the bottom row of Table 3.7 and
3.8. For the challenging soccer sequences, VIT achieves a very high IDF1 score of
91.8%. Hence, for all IMU-equipped persons, we find and correctly assign almost
all corresponding tracklets in a video. This works even though the motions are very
dynamic and people get occluded or temporarily leave the field of view. The overall good
tracking performance is also supported by the other metrics. Additionally, we obtain
almost identical scores for the park sequence, which contains less dynamic motions but
is comparable in terms of people visibility. This proves that our approach is not limited
to sports tracking but generalizes to other scenarios too. Note that the FRCNN input
detections perform very well on the VIMPT sequences so that there are very few false
positives or false negatives, which is why the margin on the MOTA score is very small
between the different trackers.

Comparison to vision-based methods. We apply three vision-based MPT meth-
ods13 to the VIMPT dataset, namely the MPT method FWT of Section 3.4, Deep-
SORT [97], and DeepCC [78]. DeepSORT is an online tracker using a sophisticated
motion model, and DeepCC focuses on re-identifying persons across different cameras.
These approaches have in common that they rely on appearance to establish affinities
between detection boxes. The parameters of these trackers were used as provided by
the respective authors.
Within the soccer sequences, all team players wear identical jerseys; hence, the appear-

13The methods represented the state of the art when the VIMPT method was published [121].
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3 HO-MOT with Signal Fusion

ance information is very ambiguous. The tracking results shown in Table 3.7 validate
that this is very challenging for all considered trackers. Respective IDF1 scores vary
between 27.1% and 45.8%. In contrast, by using IMU information, VIT can double
the IDF1 score to 91.8%. The other metrics show the same trend, and also the MOTA
score of VIT is approximately 9 percentage points higher compared to appearance-
based approaches. However, a comparison of VIT to the vision-only14 trackers is not
completely fair. They use different sensor modalities and also, the number of tracked
people is not fixed for the vision-only approaches. However, the results demonstrate
the advantages of incorporating IMU data if appearance is ambiguous and also validate
that the proposed fusion algorithm works accurately.
Interestingly, for the park sequence, where people have discriminative appearance, our
proposed tracker is on par with the other trackers when MOTA is considered. In
contrast, the IDF1 score of VIT is still higher, indicating that people specific trajectories
are recovered more accurately by VIT. Finally, comparing Table 3.7 with Table 3.8
indicates that the biggest gain over vision-based tracking systems is achieved when
the appearance information is not discriminative. In those cases, the IMU devices
compensate for the misleading information.

Reconstruction effectiveness. We analyze the benefit of having IMU information
available when recovering missing detections. To this end, we compute the tracking
performance using the reconstruction method introduced in Section 3.5.2.4 and analyze
its robustness on the VIMPT2019 dataset. Moreover, we compare the results against
vision-only based linear interpolation.
To this end, we remove randomly selected input detections and compute the reconstruc-
tion accuracy in terms of tracking metrics. We repeat the computations 10 times and
plot the mean value of each metric in Figure 3.15. The experiment shows a significantly
better performance when the reconstruction method using IMU information is used,
with a difference of more than 10 percentage points in terms of IDF1 and more than 20
percentage points of MOTA when all input detections are used. With more detections
removed, the improvement over video-based interpolation increases significantly.
Accordingly, using a fusion of video and IMU, the tracking approach becomes more
robust against occlusions and less dependent on appearance information. When 10%
of the input detections are removed, the performance is almost the same as using the
entire detection set. Even when 30% of the detections are artificially suppressed, the
performance drop is still acceptable and clearly better than using the vision-only based
linear interpolation, e.g., the IDF1 score drops from 91% to 75% for the method of
Section 3.5.2.4 while it drops from 78% to about 28% using linear interpolation. Even
more dramatically, the MOTA score drops from 60% to -26% using linear interpolation,
while the fusion method yields a drop from 86% to 65%. This experiment clearly
demonstrates the benefits of VIT over vision-based approaches. Objects may be
occluded or even out of view and can still be tracked reliably.

14Previous works [226, 227] on multiple people tracking combining video with IMUs essentially
perform trajectory filtering using IMU data, employ inaccurate detectors, and simple data association
models with only local considerations. A comparison to them is therefore neither far nor meaningful.
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3.5 Simultaneous Identification and Tracking of Multiple People using Video and IMUs

Influence of IMU features. In order to investigate the influence of orientation and
acceleration measurements on the tracking result, we report tracking accuracy of five
tracker variants: Ori, Acc+Ori, VT, VT+Acc, and VT+Ori. We evaluate all trackers
on the VIMPT dataset and show the results in Table 3.9.
Ori incorporates only the heading information from the VHN network, setting all other
costs to zero. It reaches an IDF1 score of 48.7% and a MOTA score of 45.1%, which
is already 53% of the overall MOTA and IDF1 performance of VIT. Given that no
temporal information has been used for this tracker, the results show the effectiveness
of using orientation predictions. However, note that distinguishing people by means
of their heading vectors poses a very challenging problem. Especially for the VIMPT
dataset, heading predictions have to be very accurate in order to differentiate people
successfully. This is due to the soccer sequences, where soccer players are often oriented
similarly to follow the game ball. Consequently, these sequences provoke a high number
of IDS. In this sense, the soccer recordings can be seen as a worst-case test setup for
IMU-based tracking.
The tracker VT uses only box features with all costs related to IMU data set to zero.
It obtains an IDF1 score of 38.1%, which is approximately 58% worse compared to
VIT. VT+Acc extends VT by taking the acceleration feature into account and applying
the reconstruction method of Section 3.5.2.4 based on the IMU’s acceleration signal.
This helps to recover more detections and to form consistent trajectories. Accordingly,
the MOTA score increases by 25% and the IDF1 score by about 20% compared to
VT. However, recall that due to measurement noise, the impact of the acceleration
feature on the data association had to be weakened to a simple thresholding rule. In
contrast, incorporating orientation information to VT, denoted as VT+Ori, leads to
a significant increase in tracking accuracy, yielding an IDF1 score of 76.4%. Hence,
the orientation consistency in combination with the simple motion model is key to
disambiguate tracklet assignments and helps to correctly reject most of the implausible
hypotheses. The tracker Acc+Ori is leveraging the IMU signals for the features and
the reconstruction method of Section 3.5.2.4. The video information is used only to
compare orientations between a video and the IMU signals. Except for the full VIT
tracker, the variant Ori+Acc performs best among all other tracker variants. Its MOTA
score is only about 20% worse than VIT. It achieves a very high IDF1 score of 76.7%,
being about 16% worse than VIT. Note that Acc+Ori is independent of any artificial
motion model or of the constancy assumptions on the appearance, as it just compares
measurements. This shows the potential of the VIMPT setting.
By considering all features, which corresponds to our proposed VIT approach, we obtain
the highest IDF1 score of 91.2%. In this case, the rejection of implausible hypotheses
pairs based on acceleration is more meaningful.

Visual Heading Network accuracy. We evaluate the accuracy of the Visual Head-
ing Network by computing the relative number of predicted heading vectors n̂d that
deviate no more than ε degrees from ground truth. The network is trained on the
VIMPT2019 training sequence and tested on all other sequences of the dataset. Ac-
cording to Table 3.10, the network predicts orientations with high accuracy and is able
to generalize to unseen images using the proposed perspective correction (Train[PC]
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Figure 3.15: Impact of different reconstruction methods when detections are
missing.

Table 3.9: Tracking accuracy for different variants of our proposed tracker (VIT),
evaluated on the VIMPT2019 test set.

Tracker IDP[%] ↑ IDR[%] ↑ IDS ↓ MOTA[%] ↑ IDF1[%] ↑

VT 38.0 38.1 267 52.0 38.1
VT+Acc 44.9 45.1 256 65.0 45.0
Ori 48.1 49.3 1083 45.1 48.7
VT+Ori 77.0 75.8 146 58.9 76.4
Acc+Ori 76.5 77.0 322 71.6 76.7
VIT 92.9 89.6 66 85.3 91.2

and Test[PC]). In addition, the evaluations show that the perspective correction (PC)
is crucial to obtain accurate results on the test set. Without the perspective correction
(Train[w/o PC] and Test[w/o PC]), the neural network is unable to generalize the
observed perspectives of the training data, thus being heavily prone to overfitting.
Since the orientation feature has shown to be very discriminative, the VHN is key to
our proposed tracking approach.

Runtime. In general, solving binary quadratic problems such as the weighted graph
labeling problem WGLNMS(G) is very challenging. However, in our experiments we
observed very fast solutions. On an Intel i9 CPU with 8 cores and 3.60GHz, the runtime
of the solver15 for the entire dataset was 28 seconds. We attribute this to the IMU
features being very discriminative, resulting in a very constrained optimization problem.
Note that the complexity of WGLNMS(G) increases with the number of people to be
tracked. If runtime becomes critical, an approximate solver (see Section 3.3 for a
discussion and alternatives) can be applied to accelerate the computations.

15We used Gurobi in version 9.02.
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Table 3.10: Training and test accuracy of the Visual Heading Network. We
provide the relative number of heading errors within a threshold of ε ∈ {30◦, 45◦}.

≤ 30◦ ↑ ≤ 45◦ ↑

Train[PC] 88.8% 97.2%
Train[w/o PC] 87.5% 96.7%

Test[PC] 88.1% 96.2%
Test[w/o PC] 70.4% 86.3%

Identification accuracy. While the ID metrics IDP, IDR, and IDF1 assess the
consistency of assigning detections to person IDs, this does not necessarily mean that
a person’s trajectory is assigned the label of the corresponding IMU device of that
person. To evaluate this, we utilize the matching established by the ID metrics (see
Section 2.7.4). The assigned label of a computed trajectory is compared to the label
corresponding to the IMU device of the person generating the matched ground truth
trajectory. The VIT method produces 100% identification accuracy on the VIMPT
dataset, i.e., each computed trajectory is correctly assigned to the person generating
the trajectory in terms of the IMU ID.
The proposed method thus simultaneously tracks and identifies IMU-equipped people
recorded in a video.

Qualitative results. Tracking results are presented in Figure 3.9 and Figure 1.1.
They show that despite heavy occlusions, motion blur, and similar appearance in the
football sequences, VIT accurately tracks all persons, producing long-term consistent
trajectories. In addition, the method is very robust to occlusions and can handle
situations of people leaving and re-entering the scene. For instance in the park sequence
depicted in the bottom row of Figure 3.9, the persons with assigned ID 4 and 7 are
correctly re-identified after leaving the scene for about 10 seconds. As VIT performs
person identification independent of the outward appearance, all depicted persons
in Figure 3.9 are automatically and correctly assigned the same IDs in both shown
sequences despite heavy changes in their visual appearances.

3.6 Conclusion

The holistic fusion of two complementary signals within an HO-MOT formulation allows
overcoming weaknesses of individual signals, which is demonstrated in this chapter.
For video-based MPT, two types of image features, namely head detections and people
detections, are combined in a weighted graph labeling formulation. The underlying
binary quadratic optimization problem is shown to be NP-hard. To approximate an
optimal solution, the Frank-Wolfe algorithm can be used. Yet, a simple application
on the continuous relaxation is not sufficient to ensure good tracking results. The
approximation quality is improved in three ways: (i) an algebraically exact and optimal
step size is presented that is efficient to compute and (ii) a regularization is proposed
that results in better discrete solutions. Finally, (iii) a novel hierarchical solving scheme
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improves a feasible solution by correcting approximation errors. It is easy to integrate,
fast to compute, and delivers solutions close to optimality. The resulting tracking
method Frank-Wolfe Tracker (FWT) demonstrates the impact of these contributions.
Experiments show that the proposed solver modifications lead almost to a doubling
of the MOTA metric as well as the objective value. Provided solutions are close to
the optimum, having an approximation error of less than 1% in the experiments. At
the same time, the proposed solver is considerably faster than an optimal BQP solver,
which even after 35 times the calculation time of the approximate solver still has a
worse solution. Even more, the experiment was performed on a reduced instance size
using only people detections to enable the usage of the optimal solver.
Most importantly, conducted experiments show the advantage of incorporating two
signals for MOT compared to the traditional tracking-by-detection approach. By using
complementary signals, people detections that are not consistent with the heads can be
recognized and removed, leading to a reduction of false positive detections by more than
50%. The overall tracking quality is significantly improved by about 15% in terms of
MOTA. Consequently, FWT shows state-of-the-art results on two challenging tracking
benchmarks compared to competing MOT methods at the time the work was published.
In addition, the method won the MOT 2017 Tracking challenge at the CVPR 2017.
Despite the good performance, the FWT method is subject to some limitations. The
experiments revealed an increased number of ID switches (IDS). We have identified the
employed pairwise features, especially DeepMatching as the main error source. This
can be tackled in future work with more advanced image features that better exploit
the available image information, e.g., by using a more global view.
Also, FWT needs an upper bound on the number of objects to be tracked. However, it
can be viewed as an initialization that does not need to be exact, since the hierarchical
solving scheme can compensate for a number that is chosen too small. If only detections
shall be tracked without signal fusion, the next chapter of this thesis presents an
HO-MOT method that bypasses the problem of estimating the number of objects in
advance, using node-disjoint paths to represent trajectories.
Yet, some setups allow setting the upper bound exactly in advance. This is studied in
the second application of signal fusion for MPT in this chapter. Here, video information
is combined with measurements from body-worn IMUs for the purpose of multiple
people tracking, which we term Video Inertial Multiple People Tracking (VIMPT).
Conceptually, the setup enables accurate long-term tracking of multiple people even
under dynamic motions and heavy occlusions. An interesting characteristic of VIMPT is
that video-based trajectories of objects equipped with an IMU have to be assigned to the
respective IMU devices. Hence, given that the correspondences between objects and IMU
devices are known, a tracking solution automatically provides object identities within
a video. To tackle the challenging VIMPT problem, the graph labeling formulation
WGLNMS(G) is used to assign tracklets in a video to corresponding IMU devices such
that the assignments are consistent with both the video information and the IMU
signals.
The resulting tracking method Video Inertial Tracker (VIT) links IMU orientations
with regressed orientations of persons in a video. For this purpose, a neural network
with a novel perspective correction procedure is proposed that takes into account the
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position of a person relative to the camera. The perspective correction significantly
increases the accuracy of the orientation prediction. If an error tolerance of 45◦ is
allowed, the improvement is about 12% compared to the neural network that ignores
these perspective effects. In addition, VIT correlates accelerations measured from the
IMU sensors with initial velocities, as measured in the corresponding video.
Besides the proposed tracking approach VIT, we released a VIMPT dataset, called
VIMPT2019, which is used to evaluate the effectiveness of the VIMPT setting and to
benchmark the proposed tracker. Conducted experiments on the recorded dataset show
that the integration of orientation and acceleration information substantially improves
tracking results, as the ID consistency (IDF1) increases by nearly 140% when IMU
information is exploited. With a score of 91.2% IDF1, very reliable tracking results
are achieved. The automated labeling of video trajectories (in terms of IMU devices)
works without any error. Current state-of-the-art video-based trackers mainly rely on
appearance information to establish a similarity measure between person detections.
However, there are situations in which people wear similar or even identical apparel,
and appearance is less informative. This observation was the main motivation to record
VIMPT2019 and to propose an IMU enhanced tracking solution that is independent of
person appearance and still able to track fast and dynamic motions. The experiments
reveal that VIT performs significantly better than purely video-based tracking methods.
In particular, the IDF1 score is improved by more than 100% compared to the best
competing purely video-based MPT method on the challenging soccer sequences of the
VIMPT2019 dataset.
Also, the combination of video and IMU data makes tracking less susceptible to impaired
visual information. This is quantified by synthetically removing input detections and
then recovering missing detections based on tracking results. Here, video-based linear
interpolation is compared against the proposed fusion-based reconstruction method of
VIT. The evaluations on the VIMPT2019 test set reveal that VIT is significantly more
robust when both input signals are exploited. For example, removing only 20% of the
input detections results already in a dramatic drop in tracking accuracy when using
video-based linear interpolation. The MOTA value drops from 60% to −1% and the
metric IDF1 drops from 78% to 43%. In contrast, VIT shows much better robustness:
the IDF1 value drops from 91% to 81% and the MOTA value from 86% to 77%. The
conducted experiments thus demonstrate the potential of the VIMPT setting and the
proposed VIT method.
Yet, VIT shows some limitations with respect to practicability. Every object or person
has to be equipped with an IMU which is impractical in certain situations. Also, the
intrinsics and extrinsics of the camera have to be calibrated.
Overall, this chapter demonstrates that the fusion of object detections with additional
signals is beneficial. Significant improvements were measured for video-based tracking
by incorporating additional information retrieved from the images as well as for the
fusion of two modalities. The proposed solver is essential to guarantee good tracking
results. The presented VIT method integrates IMUs into an MPT framework in order
to improve accuracy and to simultaneously obtain person assignments, which worked
error-free.
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4 Lifted Disjoint Paths1
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Figure 4.1: Illustration of connections between detections in three consecutive
video frames together with a feasible labeling. We enhance the network flow
model (black) with lifted edges (blue) representing whether two detections belong
to the same track or not. Solid edges labeled by 1 represent active connections,
dashed edges labeled by zero represent inactive connections between detections.
Equally colored nodes represent detections of the same object.

This chapter presents an HO-MOT method that incorporates long-range temporal
interactions and higher-order consistencies while avoiding suboptimal choices during
optimization. To this end, an extension to the disjoint paths problem is proposed in
which additional lifted edges are introduced to provide path connectivity priors. We
call the resulting optimization problem the lifted disjoint paths problem. It is shown
that this problem is NP-hard by reduction from integer multicommodity flow and
3-SAT. To enable practical global optimization, several classes of linear inequalities
are proposed that produce a high-quality LP-relaxation. Additionally, efficient cutting
plane algorithms for separating the proposed linear inequalities are presented. The
lifted disjoint paths problem is a natural model for multiple object tracking and allows
an elegant mathematical formulation for long-range temporal interactions. Lifted edges

1This chapter contains text, images and results of previously published work [50].

130

https://doi.org/10.51202/9783186875105 - Generiert durch IP 216.73.216.60, am 24.01.2026, 03:56:38. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186875105
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help to prevent ID switches and to re-identify persons. Previous methods either employ
heuristics on similarly expressive models or use global optimization on simple models
that do not incorporate long-range interactions. Compared with the method introduced
in Chapter 3, no upper bound on the number of expected objects needs to be determined
and the solver proposed in this chapter delivers provable global optimal solutions.
The proposed tracker achieves nearly optimal assignments with respect to given input
detections. As a consequence, the method achieved significant improvements over the
state of the art on all considered MOT datasets when the work was published [50].

4.1 Introduction

A prerequisite to obtain accurate MOT results is to employ a data association that is as
robust as possible to detection errors (see Section 1.3.1) as well as to misleading weights
caused by non-discriminative features (see Section 1.3.2). The approach of Chapter 3
tackles these challenges by extending the traditional tracking-by-detection paradigm to
include additional signals holistically. This chapter addresses the problem from another
perspective by trying to leverage the information of the provided detections as well as
possible.
The proposed method builds upon the Disjoint Paths (DP) problem, i.e., a special case of
the network flow problem with flows constrained to be binary. DP applied to MOT [61]
allows solving even very large data association instances to global optimality, see also
Figure 1.5. Yet, tracking accuracies are limited as costs only indicate whether two
detections directly follow each other in a track. To overcome the limited expressiveness
of disjoint paths, we propose to augment it with lifted edges, which take into account
long-range interactions, see Figure 4.1. We call the resulting problem the lifted disjoint
paths (LDP) problem, which is presented in Section 4.3.
The LDP formulation has advantages from the modeling and optimization point of view.
From the modeling standpoint, the lifted disjoint paths problem does not change the set
of feasible solutions but adds more expressive power to it. For MOT, this means that the
set of feasible solutions, which naturally represent trajectories of objects, is preserved.
The additional lifted edges represent connectivity priors, see also Section 1.2.2. A
lifted edge is active if and only if there is an active trajectory between its endpoints in
the flow graph. For MOT, lifted edges take (dis-)similarity of object detection pairs
represented by its endpoints into account. This allows to encourage or penalize an
active path between the detections with possibly larger temporal distance. This helps to
re-identify the same object and to prevent ID-switches between distinct objects within
long trajectories.
From the optimization point of view, we show that LDP allows solving implicit HO-
MOT problems via a global approach, in contrast to established approaches, which
either use heuristics on complex models or global optimization on simpler models that
do not exploit long-range interactions. To our knowledge, the presented LDP solver
is the first global optimization approach that incorporates long-range interactions for
MOT. This has several advantages: First, the optimization is not trapped in poor
local optima or affected by initialization choices and is hence potentially more robust.
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Second, improvements in the discriminative power of features used to compute costs for
the lifted disjoint paths problem directly correlate to better tracking performance, since
no errors are introduced by suboptimal choices during optimization.
To obtain a global optimal solver for LDP, several non-trivial classes of linear inequalities
are studied that result in a high-quality relaxation. The proposed inequalities depend
non-trivially on the constraint structure of the underlying disjoint paths problem, see
Section 4.4. It is shown that the proposed polyhedral relaxation is tighter than naively
applying known inequalities. These constraints are integrated into separation routines,
see Section 4.5. At the same time, it is proven that LDP is NP-hard in Section 4.6.
Note also that the proposed lifted disjoint paths formulation is not inherently tied to
MOT and can potentially be applied to further problems not related to MOT.
Finally, LDP is applied to MOT in Section 4.7. Spatio-temporal and appearance cues
are combined in a neural network producing accurate pairwise costs for detections
being up to 2 seconds apart. By incorporating long-range interactions using these
long-term connections, the consistency (IDF1) of the result produced by the LDP
method is substantially improved. Consequently, the method significantly outperformed
state-of-the-art trackers on the MOT15/16/17 datasets at the time the work was
published [50].
In summary, this chapter presents a method to improve the tracking accuracy by
incorporating long-range temporal interactions, higher-order consistencies, and avoiding
suboptimal decisions during the optimization. This is achieved by:

• Extending the disjoint paths problem by lifted edges to incorporate path connec-
tivity priors, which we call the lifted disjoint paths problem. While the natural
trajectory representation of disjoint paths is maintained, the proposed model is
more expressive.

• Proposing accurate pairwise features that are stable across long temporal distances.

• The first global optimal solver for implicit HO-MOT taking long-range interactions
into account. It is based on efficient cutting-plane algorithms and produces high-
quality solutions. The tracker takes connections between detections being up to
60 frames apart into account.

4.2 Related Work

Disjoint paths problem. The disjoint paths problem can be solved with fast com-
binatorial solvers [238]. The shortest paths method for network flow specialized for the
disjoint paths problem [108] performs extremely well in practice. For the case of the
two disjoint paths problem, the specialized combinatorial algorithm by Suurballe’s [239]
can be used.
There exist several NP-complete extensions to the disjoint paths problem. The shortest
disjoint paths problem with multiple source-sink pairs [240] is NP-complete, as is
the more general integer multicommodity flow problem [241]. The special case of the
disjoint paths problem with two distinct source/sink pairs, however, can be solved in
polynomial time [242].
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Connectivity priors & lifted edges. For several combinatorial problems, special
connectivity-inducing edges, which we will call lifted edges for our problem, have been
introduced to improve expressiveness of the base problem, see also Figure 1.10.
In the Markov Random Field literature, special connectivity inducing edges were studied
from a polyhedral point of view [243]. They were used in image analysis to indicate
that two non-adjacent pixels belong to the same object, and hence they must be part
of a contiguously labeled component of the underlying graph.
For multicut (a.k.a. correlation clustering), a classical graph decomposition problem,
lifted edges have been introduced by Keuper et al. [244] to model connectivity priors and
analyzed in terms of its polyhedral properties [245]. A lifted edge expresses affinity of two
nodes to be in the same/different connected component of the graph partition. Lifted
multicut has been used for image and mesh segmentation [244], connectomics [246],
and cell tracking [40]. A combination of the lifted multicut problem and Markov
Random Fields has been proposed [51] with applications in instance-separating semantic
segmentation [247].
Yet, for the above problems, global optimization has only been reported for small
instances.

Disjoint paths for MOT. The data association step of MOT has been approached
using the disjoint paths setup [61, 67], since disjoint paths through a graph naturally
model trajectories of multiple objects (see Figure 1.5 and Section 1.2.2). Extensions
of the plain disjoint paths problem that disallow certain pairs of detections to occur
simultaneously have been used to fuse different object detectors [103] and for multi-
camera MOT [110, 248]. The drawback of these approaches is that they cannot integrate
long-term information, in contrast to our proposed formulation.

Other combinatorial approaches to MOT. The minimum cost arborescence
problem, an extension of minimum spanning tree to directed graphs, has been used [106]
for MOT. Several works [54, 63, 77, 249–251] employ the multicut problem for MOT.
Additionally, lifted edges have been used [64, 252] to better model long-range temporal
interactions. The maximum clique problem [52, 70], which corresponds to multicut
with complete graphs, has been applied for MOT, see also Figure 1.18. Maximum
independent set, which corresponds to maximum clique on the complement graph,
has been used by Brendel et al. [53] for MOT. The multigraph-matching problem, a
generalization of the graph matching problem, has been applied to MOT by Hu et
al. [253]. Consistency of individually matched detections is ensured by cycle-consistency
constraints coming from multi-graph matching. Section 3 reformulates tracking multiple
objects with long temporal interactions as a binary quadratic program and solves it with
a specialized non-convex Frank-Wolfe method. Common to the above state-of-the-art
trackers is that they either employ heuristic solvers or are limited in the integration of
long-range information, in contrast to the method of this chapter.

Contribution w.r.t. existing combinatorial approaches. It is widely acknowl-
edged that one crucial ingredient for obtaining high-quality MOT results is to incorporate
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long-term temporal information to re-identify detections and prevent ID-switches. How-
ever, from a theoretical perspective, we believe that long-range information has not yet
been incorporated satisfactorily in optimization formulations for the data association
step in MOT.
In comparison to lifted multicut for MOT, we argue that from the modeling point of
view, network flow has advantages. In multicut, clusters can be arbitrary, while in MOT,
tracks are clusters that may not contain multiple detection hypotheses of distinct objects
at the same point in time. This exclusion constraint must be enforced in multicut
explicitly via soft constraints, while the disjoint paths substructure automatically takes
care of it. On the other hand, the lifted multicut approach [64] has used the possibility
to cluster multiple detections in one time frame. This directly incorporates non-maxima
suppression in the optimization, which however increases computational complexity.
From a mathematical perspective, naively using polyhedral results from multicut is
also not satisfactory. Specifically, one could naively obtain a polyhedral relaxation for
the lifted disjoint paths problem by reusing the known polyhedral structure of lifted
multicut [245] and additionally adding network flow constraints for the disjoint paths
substructure. However, this would give a suboptimal polyhedral relaxation. We show
in Section 4.4 that the underlying structure of the disjoint paths problem can be used
to derive new and tighter constraints for lifted edges. This enables us to use a global
optimization approach for MOT. To our knowledge, our work is the first to combine
global optimization with long-range interactions for MOT.
In comparison to works that propose non-convex algorithms or other heuristics for
incorporating long-range temporal edges [52, 70, 253], but also compared to the proposed
solver of Chapter 3, the approach of this chapter yields a more principled approach and
globally optimal optimization solutions via LP-based branch-and-bound algorithms.

4.3 Problem Formulation

Below we recapitulate the disjoint paths problem and extend it by defining lifted edges.
We discuss how the lifted disjoint paths problem can naturally model MOT.

Flow network and lifted graph. Consider two directed acyclic graphs G = (V , E)
and Ğ = (V̆ , Ĕ), where V̆ = V\{s, t}. The graph G = (V , E) represents the flow network
and we denote by Ğ the lifted graph. The two special nodes s and t of G denote the
source and sink node, respectively. We further assume that every node in V is reachable
from s, and t can be reached from it.
We define the set of paths starting at v and ending in w as

vw-paths(G) =
{

(v1v2, . . . , vl−1vl) : vivi+1 ∈ E ,
v1 = v, vl = w

}
. (4.1)

For a vw-path P we denote its edge set as PE and its node set as PV .
The flow variables in G are denoted by y ∈ {0, 1}E for edges and x ∈ {0, 1}V for nodes.
Allowing only 0/1 values of vertex variables reflects the requirement of vertex disjoint
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4.4 Constraints

paths. Variables on the lifted edges Ĕ are denoted by y̆ ∈ {0, 1}Ĕ . Here, y̆vw = 1 means
that nodes v and w are connected via the flow y in G. Formally,

y̆vw = 1⇔ ∃P ∈ vw-paths(G) s.t. ∀ij ∈ PE : yij = 1 . (4.2)

Optimization problem. Given edge costs q ∈ RE , node costs c ∈ RV in flow network
G, and edge costs q̆ ∈ RĔ for the lifted graph Ğ, we define the (minimum cost) lifted
disjoint paths problem as

min
y∈{0,1}E ,y̆∈{0,1}Ĕ ,

x∈{0,1}V

〈q,y〉+ 〈q̆, y̆〉+ 〈c,x〉

s.t. y node-disjoint s, t-flow in G ,
x flow through nodes of G ,
y, y̆ feasible according to (4.2) .

(4.3)

In Section 4.4, we present a BLP formulation of (4.3) by proposing several linear
inequalities that lead to a high-quality linear relaxation.

Graph construction for multiple object tracking. We argue that the lifted
disjoint paths problem is an appropriate way of modeling the data association problem
for MOT. In MOT, an unknown number of objects needs to be tracked across a video
sequence. This problem can be naturally formalized by a graph G = (V , E) where its
node set V represents either object detections or tracklets of objects. If V represents
object detections, we can express it as follows: V = {s} ∪ V1 ∪ . . . ∪ VnR ∪ {t}, where
nR is the number of frames and Vf denotes the object detections in frame f. We
introduce edges between adjacent time frames. An active flow on such an edge denotes
correspondences of the same object. We also introduce skip edges between time frames
that are farther apart. An active flow on a skip edge also denotes correspondences
between the same object that, in contrast, may have been occluded or not detected in
intermediate time frames. This classical network flow formulation has been commonly
used for MOT [61].
On top of the underlying flow formulation for MOT, we usually want to express that
two detections belong to the same object connected by a possibly longer track with
multiple detections in between. For that purpose, lifted edges with negative costs can
be used. We say in such a case that an active lifted edge re-identifies two detections [64].
If two detections with larger temporal distance should not be part of the same track, a
positive valued lifted edge can be used. In this case, the lifted edge is used to prevent
ID-switches.

4.4 Constraints

Below, we will first introduce constraints that give a binary linear program (BLP) of
the lifted disjoint paths problem (4.3). The corresponding linear programming (LP)
relaxation can be strengthened by additional constraints that we present subsequently.
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4 Lifted Disjoint Paths

Many constraints considered below will rely on whether a node w is reachable from
another node v in the flow network. We define to this end the reachability relation
R ⊂ V(2) via

vw ∈ R ⇔ vw-paths(G) 6= ∅ . (4.4)

In the special case of v = w, we also allow empty paths, which means ∀v ∈ V : vv ∈ R.
This makes relation R reflexive.

Flow conservation constraints. The flow variables y obey, as in classical network
flow problems [107], the flow conservation constraints

∀v ∈ V \ {s, t} :
∑

u:uv∈E
yuv =

∑
w:vw∈E

yvw = xv . (4.5)

Constraining lifted edges. All the following constraints restrict values of lifted
edge variables y̆vw in order to ensure that they satisfy (4.2). Despite their sometimes
complex form, they always obey the two basic principles:

• If there is flow in G going from vertex v to vertex w, then y̆vw = 1. The constraints
of this form are (4.9) and (4.12).

• If there is a vw-cut in G with all edges labeled by zero (i.e., no flow passes through
this cut), then y̆vw = 0. We will mainly look at cuts that are induced by paths,
i.e., edges that separate a path from the rest of the graph. The paths of interest
will either originate at v or end at w. The constraints of this form are (4.6), (4.7),
(4.8), (4.13), and (4.14), see below.

Single node cut inequalities. Given a lifted edge vw ∈ Ĕ , if there is no flow going
from vertex v which can potentially go to vertex w, then y̆vw = 0. Formally,

y̆vw ≤
∑

u: vu∈E,
uw∈R

yvu . (4.6)

Similarly, if there is no flow going to w that can originate from vertex v, then y̆vw = 0.
Formally,

y̆vw ≤
∑

u:uw∈E,
vu∈R

yuw . (4.7)

The number of constraints of the above type (4.5) is linear in the number of vertices,
while (4.6) and (4.7) are linear in the number of lifted edges. Hence we add them into
our initial constraint set during optimization.

Path-induced cut inequalities. The path-induced cut inequalities generalize the
single node cut inequalities (4.6) and (4.7) by allowing cuts induced by paths.
Let a lifted edge vw ∈ Ĕ , a node u from which w is reachable, and a vu-path P be
given. Consider the cut given by edges ik with i ∈ PV and k /∈ PV but such that w is
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reachable from k. If the flow does not take any edge of this cut, then y̆vw = 0. Formally,

∀vw ∈ Ĕ ∀P ∈ vu-paths(G) s.t. uw ∈ R ∧ u 6= w :
y̆vw ≤

∑
i∈PV

∑
k/∈PV ,
kw∈R

yik . (4.8)

Path inequalities. For lifted edge y̆vw, it holds that if there is a flow in G going from
v to w along a path P , then y̆vw = 1. This constraint can be expressed by the following
set of inequalities:

∀vw ∈ Ĕ ∀P ∈ vw-paths(G) :
y̆vw ≥

∑
vj∈E,
j∈PV

yvj −
∑

i∈PV\{v,w}

∑
k/∈PV

yik . (4.9)

Here the first sum expresses the flow going from v to any vertex of path P . The second
sum is the flow leaving path vertices PV before reaching w. In other words, if flow does
not leave PV , edge y̆vw must be active.
Remark 4.1. Inequality (4.9) implicitly enforces y̆vw to be active if any vw-path P̃ with
P̃V ⊂ PV is active and no flow goes through a skipped node u ∈ PV \ P̃V .

Lifted Disjoint Paths as a BLP. Using the cut inequalities (4.6), (4.8), and the
path inequalities (4.9), Theorem 4.2 proves that the lifted disjoint paths problem is
a BLP. The remainder of this section then presents additional inequalities such that
the feasibility set of the lifted disjoint paths problem remains unchanged while the
corresponding linear relaxations become tighter.

Theorem 4.2. The lifted disjoint paths problem (4.3) is a BLP.

Proof. We show that we can replace (4.2) by the linear constraints (4.6), (4.8), and
(4.9) without changing the feasibility set. Let us assume that (4.6), (4.8), (4.9), and
the flow conservation (4.5) hold.

• Let us prove y̆vw = 1 =⇒ ∃P ∈ vw-paths(G) s.t. ∀ij ∈ PE : yij = 1 .
According to the single node cut constraints (4.6), a node u ∈ V exists with
vu ∈ E , yvu = 1, and uw ∈ R.
If u = w holds, P = (vu) satisfies the statement to be shown.
Now assume u 6= w. Let u0 = v, u1 = u, and P̃ = (u0u1, . . . , un−1un) ∈
vun-paths(G) be the path of maximal length such that (i) yui−1ui

= 1 for all
i ∈ [n], (ii) un 6= w, and (iii) unw ∈ R. Note that there exists a unique path P̃
with the desired property by the flow conservation constraints (4.5) and the single
node cut constraints (4.6). For each i ∈ [n− 1]0, the flow conservation constraints
(4.5) imply

0 =
∑
k/∈P̃V ,
kw∈R

yuik . (4.10)
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The path induced cut inequality constraints (4.8) thus ensure that

y̆vw = 1 ≤
∑
k/∈P̃V ,
kw∈R

yunk . (4.11)

It follows that there exists a node k ∈ V \ P̃V with kw ∈ R and yunk = 1. Since P̃
was chosen with maximal length, k = w must hold. The required path properties
are thus satisfied by P = (u0u1, . . . , un−1un, unw) ∈ vw-paths(G).

• Let us prove ∃P ∈ vw-paths(G) s.t. ∀ij ∈ PE : yij = 1 =⇒ y̆vw = 1.
Let P ∈ vw-paths(G) be a path with yij = 1 for all ij ∈ PE . By the flow
conservation constraints (4.5), ∃!j ∈ PV : yvj = 1. By assumption, ∀i ∈ PV \
{v, w} : ∃j ∈ PV : yij = 1. Consequently, the flow conservation constraints (4.5)
imply ∀i ∈ PV \ {v, w} : ∀k ∈ V \ PV : yik = 0. The assertion thus follows by the
path inequalities (4.9).

Lifted inequalities. The path inequalities (4.9) and the path-induced cut inequali-
ties (4.8) only consider base edges on their right-hand sides. We can generalize both (4.9)
and (4.8) by including lifted edges in the paths as well. Conceptually, using lifted
edges allows representing all possible paths between their endpoints, which enables to
formulate tighter inequalities, see Propositions 4.3 and 4.4.
To that end, consider the multigraph G ∪ Ğ := (V , E ∪ Ĕ). For any edge ij ∈ E ∩ Ĕ , we
always distinguish whether ij ∈ E or ij ∈ Ĕ . For P ∈ vw-paths(G ∪ Ğ), we denote by
PE and PĔ edges of the path P in E and Ĕ respectively. We require PE ∩ PĔ = ∅.

Lifted path inequalities. We generalize the path inequalities (4.9). Now the vw-
path P may contain both edges in E and Ĕ . Whenever a lifted edge y̆ij in the third sum
in (4.12) is one, two cases can occur: (i) Flow goes out of P (uses vertices not in PV)
but reenters it again later. Then a base edge variable yik will be one in the second sum
in (4.12) and the values of y̆ij and yik cancel out. (ii) A base edge ij ∈ E ∩ Ĕ parallel
to the lifted edge is active. Then the variable yij in the fourth sum in (4.12) cancels
out y̆ij. The lifted path inequality becomes

∀vw ∈ Ĕ ∀P ∈ vw-paths(G ∪ Ğ) :
y̆vw ≥

∑
j∈PV

yvj −
∑

i∈PV\{v,w}

∑
k/∈PV

yik

+
∑
ij∈PĔ

y̆ij −
∑

ij∈PĔ∩E
yij . (4.12)

Whenever the path in (4.12) consists only of base edges PE , the resulting inequality
becomes a path inequality (4.9).

Proposition 4.3. The lifted path inequalities (4.12) provide a strictly better relaxation
than the path inequalities (4.9).
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Proof. Let us define the following sets

SB = {(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ | (y, y̆) satisfy (4.9)} ,
SL = {(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ | (y, y̆) satisfy (4.12)} .

• Let us prove that SL ⊂ SB:
Note that every path P ∈ vw-paths(G) belongs to the set of vw-paths(G ∪ Ğ) too.
It just holds that PĔ = ∅. Let us rewrite the right-hand side of the inequality
from (4.12) for such P ∈ vw-path(G ∪ Ğ) where PĔ = ∅.

y̆vw ≥
∑
vj∈E,
j∈PV

yvj −
∑

i∈PV\{v,w}

∑
k/∈PV

yik

+
∑
ij∈PĔ

y̆ij −
∑

ij∈PĔ∩E
yij

=
∑
vj∈E,
j∈PV

yvj −
∑

i∈PV\{v,w}

∑
k/∈PV

yik .

This is exactly the right hand side of (4.9). Therefore, any pair of real vectors
(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ that satisfies (4.12) must satisfy (4.9) as well.

• Let us prove that SL ( SB:
We prove that there exists (y, y̆) ∈ [0, 1]E × [0, 1]Ĕ such that (y, y̆) satisfies (4.9)
and does not satisfy (4.12). See the graph in Figure 4.2. There are four possible
paths from v to w in G. If we use Constraints (4.9), all the paths give us the same
lower bound on y̆vw

y̆vw ≥ 1− 0.5− 0.5 = 0 .

If we use Constraints (4.12) with path P = (vv1, v1v4, v4w) where PĔ = {v1v4, v4w},
we obtain

y̆vw ≥ 1− 0.5− 0.5− 0.5− 0.5 + 1 + 1 = 1 .

Lifted path-induced cut inequalities. We generalize the path-induced cut inequal-
ities (4.8). Let a lifted edge vw ∈ Ĕ and a vu-path P in G ∪ Ğ be given. In contrast to
the basic version (4.8), a lifted edge ij ∈ PĔ can be taken. This can occur in two cases:
Either the flow leaves PV via a base edge ik, k /∈ PV or a base edge ij ∈ E ∩ Ĕ parallel
to the lifted edge is taken. Both cases are accounted for by terms in the first and the
third sum in (4.13) below.

∀vw ∈ Ĕ ∀P ∈ vu-paths(G ∪ Ğ) s.t. uw ∈ R ∧ u 6= w :
y̆vw ≤

∑
i∈PV

∑
k/∈PV ,
kw∈R

yik −
∑
ij∈PĔ

y̆ij +
∑

ij∈PĔ∩E
yij . (4.13)
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4 Lifted Disjoint Paths
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Figure 4.2: Exemplary case where the path inequalities (4.9) give a trivial lower
bound on the lifted edge y̆vw. The lifted path inequality (4.12) gives the correct
lower bound. Example for Proposition 4.3.

Assume that the last node u of path P is connected via a lifted edge with w. Then we
can strengthen (4.13) by replacing the sum of base edges outgoing from u by y̆uw.

∀vw ∈ Ĕ ∀P ∈ vu-paths (G ∪ Ğ) s.t. uw ∈ Ĕ :
y̆vw ≤

∑
i∈PV\u

∑
k/∈PV ,
kw∈R

yik −
∑
ij∈PĔ

y̆ij

+
∑

ij∈PĔ∩E
yij + y̆uw . (4.14)

Proposition 4.4. The lifted path-induced cut inequalities (4.13) define a strictly tighter
relaxation than the path-induced cut inequalities (4.8).
Furthermore, the lifted path-induced cut inequalities (4.13) and (4.14) define a strictly
better relaxation than (4.13) alone.

Proof. Let us define the following sets

SB = {(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ | (y, y̆) satisfy (4.8)} ,
SL1 = {(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ | (y, y̆) satisfy (4.13)} ,
SL2 = {(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ | (y, y̆) satisfy (4.14)} .

• First, we prove SL1 ⊂ SB:
We use the same argument as in the proof of Proposition 4.3. Every path
P ∈ vw-paths(G) belongs to the set of vw-paths(G ∪ Ğ) and it holds that PĔ = ∅.
Let us rewrite the right hands side of the inequality from (4.13) for such P ∈
vw-path(G ∪ Ğ) where PĔ = ∅.

y̆vw ≤
∑
i∈PV

∑
k/∈PV
kw∈R

yik −
∑
ij∈PĔ

y̆ij +
∑

ij∈PĔ∩E
yij

=
∑
i∈PV

∑
k/∈PV
kw∈R

yik .

Which is exactly the right hand side of (4.8). Therefore, any pair of real vectors
(y, y̆) ∈ [0, 1]E × [0, 1]Ĕ that satisfies (4.13) must satisfy (4.8).
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4.4 Constraints
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Figure 4.3: Exemplary case where the path-induced cut inequalities (4.8) fail
to give non-trivial upper bounds for lifted edge y̆vw. The lifted path-induced
cut-inequalities (4.13) give the correct upper bound in this case. Example for
Proposition 4.4.

• Let us prove SL1 ( SB:
We prove that there exists (y, y̆) ∈ [0, 1]E × [0, 1]Ĕ such that (y, y̆) satisfies (4.8)
and does not satisfy (4.13).
See the example in Figure 4.3. There are four possible paths in G from v to
either u1 or u2. They are P1 = (vv3, v3u1), P2 = (vv2, v2u1), P3 = (vv3, v3u2),
P4 = (vv2, v2u2). Using (4.13), all of them give us the same threshold on y̆vw:

y̆vw ≤ 0.5 + 0.5 + 0 = 1 .

If we use Constraint (4.13) with path P = (vu1), we obtain the following threshold:

y̆vw ≤ 0.5 + 0.5 + 0− 1 = 0 .

• Let us prove that SL1 ∩ SL2 ( SL1
It holds trivially that SL1 ∩ SL2 ⊂ SL1. Let us prove that there exists (y, y̆) ∈
[0, 1]E × [0, 1]Ĕ such that (y, y̆) ∈ SL1 and (y, y̆) /∈ SL1 ∩ SL2.
See the example graph in Figure 4.4. Similarly as in Figure 4.3, there are four
possible paths from v to either u1 or u2 in G. There are no active lifted edges
that would enable us to obtain a better upper bound on y̆vw using (4.13) than
the following:

y̆vw ≤ 1 .

However, if we use Constraints (4.14) with path P = (vv3) and y̆v3w = 0, we
obtain

y̆vw ≤ 0 .
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4 Lifted Disjoint Paths
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Figure 4.4: Exemplary failure case for the lifted path-induced cut inequali-
ties (4.13). The lifted path-induced cut inequalities (4.14) give the correct upper
bound for lifted edge y̆vw. Example for Proposition 4.4.

Symmetric cut inequalities. Inequalities (4.7) provide a symmetric counterpart to
inequalities (4.6). We can also formulate symmetric counterparts to inequalities (4.8),
(4.13), and (4.14) by swapping the role of v and w. All constraints (4.8), (4.13), and
(4.14) concentrate on paths originating in v. The symmetric inequalities are obtained by
studying all paths ending in w. Relations analogous to those described in Proposition 4.4
hold for the symmetric counterparts as well. The symmetric inequalities also strengthen
the relaxation strictly.
Inequalities symmetric to (4.8):

∀vw ∈ Ĕ ∀P ∈ uw-paths(G) s.t. vu ∈ R ∧ u 6= v :
y̆vw ≤

∑
i∈PV

∑
k/∈PV ,
vk∈R

yki . (4.15)

Inequalities symmetric to (4.13):

∀vw ∈ Ĕ ∀P ∈ uw-paths(G ∪ Ğ) s.t. vu ∈ R ∧ u 6= v :
y̆vw ≤

∑
i∈PV

∑
k/∈PV ,
vk∈R

yki −
∑
ij∈PĔ

y̆ij

+
∑

ij∈PĔ∩E
yij . (4.16)

Inequalities symmetric to (4.14):

∀vw ∈ Ĕ ∀P ∈ uw-paths (G ∪ Ğ) s.t. vu ∈ Ĕ :
y̆vw ≤

∑
i∈PV\u

∑
k/∈PV ,
vk∈R

yki −
∑
ij∈PĔ

y̆ij

+
∑

ij∈PĔ∩E
yij + y̆vu . (4.17)

Proposition 4.5. The lifted path-induced cut inequalities (4.16) define a strictly tighter
relaxation than the path-induced cut inequalities (4.15).
The lifted path-induced cut inequalities (4.16) and (4.17) define a strictly better relaxation
than (4.16) alone.

Proof. Analogical to the proof of Proposition 4.4. See Figure 4.6 for example analogical
to the one in Figure 4.3 and Figure 4.7 for example analogical to the one in Figure 4.4.
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4.4 Constraints

Proposition 4.6. 1. The path-induced cut inequalities (4.8) together with their sym-
metric counterpart (4.15) define a strictly tighter relaxation than inequalities (4.8)
alone.

2. The path-induced cut inequalities (4.13) together with their symmetric counterpart
(4.16) define a strictly tighter relaxation than inequalities (4.13) alone.

3. Using path-induced cut inequalities (4.17) together with (4.13), (4.14), and (4.16)
strictly improves the relaxation.

Proof. 1. See the example in Figure 4.5.
Upper bound on y̆vw by (4.8): y̆vw ≤ 0.5 + 0.5 = 1.
Upper bound on y̆vw by (4.15): y̆vw ≤ 0.

2. See the example in Figure 4.6.
Upper bound on y̆vw by (4.13): y̆vw ≤ 0.5 + 0.5 = 1.
Upper bound on y̆vw by (4.16) using path P = (u2w): y̆vw ≤ 0 + 0.5 + 0.5− 1 = 0.

3. See the example in Figure 4.7.
Upper bounds on y̆vw by (4.13), (4.14), (4.16): y̆vw ≤ 1.
Upper bound on y̆vw by (4.17) using path P = (uw) and y̆vu = 0: y̆vw ≤ 0.
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Figure 4.5: The best upper bound on y̆vw is provided by inequalities (4.15).
Example for Proposition 4.6.
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Figure 4.6: The best upper bound on y̆vw is provided by inequalities (4.16).
Example for Proposition 4.5 and Proposition 4.6.
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4 Lifted Disjoint Paths
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Figure 4.7: The best upper bound on y̆vw is provided by inequalities (4.17).
Example for Proposition 4.5 and Proposition 4.6.

Other Valid Inequalities. Basic flow constraints (4.5) together with the advanced
constraints on lifted edges (4.6)-(4.14) are sufficient for defining the set of feasible
solutions of the lifted disjoint paths problem (4.3). Below, we present lifted flow
inequalities specific to the lifted disjoint paths problem applied to MOT that help to
improve the speed of our BLP solver. The inequalities depend on the fact that every
node can be connected to maximally one node in each time frame. Therefore the number
of lifted edges originating (or ending) in a given point and ending (resp. originating) in
a specific time frame is at most one.

∀k, l ∈ [nR] s.t. k > l, ∀v ∈ Vl :∑
vu∈Ĕ:u∈Vk

y̆vu ≤ xv , (4.18)

∀k, l ∈ [nR] s.t. k < l, ∀w ∈ Vl :∑
uw∈Ĕ:u∈Vk

y̆uw ≤ xw . (4.19)

The number of constraints (4.18) and (4.19) is linear in the number of vertices. Therefore,
we add them to our initial constraint set. This enables to reduce the search space for
the branch-and-bound method in the early solver stages when only few constraints of
type (4.9)-(4.14) have been added.

4.5 Separation

We solve the lifted disjoint paths problem (4.3) with the state-of-the-art integer linear
program solver Gurobi [165]. Since there are exponentially many constraints of the
form (4.9), (4.8), (4.12), (4.13), and (4.14), we do not add them initially. Instead, we
start with constraints (4.5), (4.6), and (4.7) and find the optimal integer solution. If
applied to MOT, we use in addition the constraints (4.18) and (4.19) to speed up the
computation. In the separation procedures described below, we check if any of the
advanced constraints are violated and add those that are to the active constraint set.
We resolve the tightened problem and iterate until we have found a feasible solution to
the overall problem (4.3).
Algorithms 4.1 and 4.2 describe the separation procedures for adding lifted path
constraints (4.12), and lifted path-induced cut constraints (4.13) and (4.14). Since path
constraints (4.9) and path-induced cut inequalities (4.8) are special cases of those above,
they are also accounted for.
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4.5 Separation

Separation for path inequalities. Algorithm 4.1 iterates over all active st-paths.
For every path P 1, labels of all lifted edges connecting two vertices in P 1

V are inspected.
If the lifted edge variable is zero, Algorithm 4.1 will extract a path in G ∪ Ğ connecting
the endpoints and add the resulting lifted path inequality (4.12) to the active constraint
set.

Algorithm 4.1: Separation for lifted path inequalities (4.12)

Define E1 = {e ∈ E : ye = 1}, G1 = (V, E1)
for all P 1 ∈ st-paths (G1) do

for all y̆vw = 0 : v ∈ P 1
V ∧ w ∈ P 1

V do
P ← Extract_Path(P 1, v, w)
Add constr. (4.12) for y̆vw with P .

end for
end for

Separation for path-induced cut inequalities. Algorithm 4.2 iterates over all
active st-paths. For every path P 1, lifted edges that start in P 1

V but do not end in
P 1
V are inspected. If their label is one, Algorithm 4.2 will extract a subpath of P 1 for

either (4.14) or (4.13) and add the respective inequality to the active constraint set.

Algorithm 4.2: Separation for lifted path-induced cut inequalities (4.13) and (4.14)
Define E1 = {e ∈ E : ye = 1}, G1 = (V, E1)
for all P 1 ∈ st-paths (G1) do

for all y̆vw = 1 : v ∈ P 1
V ∧ w /∈ P 1

V do
if ∃u ∈ P 1

V : y̆uw = 0 ∧ vu ∈ R then
P ← Extract_Path(P 1, v, u)
Add constr. (4.14) for y̆vw with P .

else
u← last vertex of P 1 such that uw ∈ R
P ← Extract_Path(P 1, v, u)
Add constr. (4.13) for y̆vw with P .

end if
end for

end for

Complexity of separation. Both Algorithms 4.1 and 4.2 can be implemented
efficiently such that they are linear2 in |E1| (i.e., in the number of active edges of graph
G). In our implementation, we traverse all active st-paths from the end to the beginning
and directly store correctly labeled lifted edges that originate on the already processed
subpaths. These lifted edges can be used later as edges in PĔ in (4.12)-(4.14) or as
y̆uw = 0 in (4.14).

2Assuming that the degree of each node can be upper bounded by a value δ independent of |V|.
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4 Lifted Disjoint Paths

Algorithm 4.3: Extract_path(P 1, v, w)
Ṗ ← vw-subpath of P 1

PE ← ∅
PĔ ← ∅
for j ∈ ṖV from end of path to beginning do

if ∃ edge ij ∈ Ĕ, i ∈ ṖV , y̆ij = 1 then
Add ij to PĔ
Skip to node i ∈ ṖV

else
Add ij from Ṗ to PE

end if
end for
output :P = PE ∪ PĔ

4.6 Complexity

Below, we show that the lifted disjoint paths problem (4.3) is NP-hard. The following
theorems state that even its restricted versions using only negative or only positive
lifted edges are NP-hard. The proofs use reductions from two known NP-complete
problems. Theorem 4.8 is proven by reduction from integer multicommodity flow [241],
and Theorem 4.9 by reduction from 3-SAT [254].

We define YGĞ to be the set of all (y, y̆) ∈ {0, 1}E × {0, 1}Ĕ such that (y, y̆) are feasible
solutions of the lifted disjoint paths problem (4.3).

Integer multicommodity flow. The integer multicommodity flow problem is defined
on a directed graph G̃ = (Ṽ , Ẽ) with edge capacities c ∈ NẼ , and for all i ∈ [k],
source/sink pairs siti, edge flows f (i) ∈ NẼ , and demands Ri.
The aim is to send k flows from their sources to their sinks such that the flows obey
the edge capacities. Formally,

k∑
i=1

f (i)
e ≤ ce ∀e ∈ Ẽ , (4.20)∑

u:uv∈Ẽ

f (i)
uv =

∑
w:vw∈Ẽ

f (i)
vw ∀i ∈ [k] ∀v /∈ {si, ti} , (4.21)

∑
v:siv∈Ẽ

f (i)
siv
≥ Ri ∀i ∈ [k] . (4.22)

Even et al. have shown [241] that the integer multicommodity flow problem is NP-
complete also in the case of unit capacity edges and two source sink pairs. Below we
detail a construction that gives us a correspondence between edge-disjoint paths in G̃
and node-disjoint paths in a transformed graph G. The lifted edges in the transformed
graph will count how many units of flow go from sources to sinks.

Lemma 4.7. There exists a polynomial transformation from any graph G̃ with source/sink
pairs si, ti, i = 1, . . . , k with demands Ri and unit capacity edges to a pair of graphs
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Figure 4.8: Integer multicommodity flow network transformation: Original
graph.
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Figure 4.9: Integer multicommodity flow network transformation. Transformed
graph from Figure 4.8 for flow demands R1 = 2, R2 = 2. Edges without label
have cost 0.

G and Ğ with edge costs q and q̆, respectively such that there exists a feasible integer
multicommodity flow in G̃ if and only if the lifted disjoint paths problem for G, Ğ has
objective

min
(y,y̆)∈YG,Ğ

〈q,y〉+ 〈q̆, y̆〉 ≤ −
k∑
i=1

Ri . (4.23)

Proof. Without loss of generality, we consider these feasible flow sets f1, . . . , fk where it
holds ∀i ∈ [k] : ∑

siv∈Ẽ
f (i)
siv

= Ri. Note that if the flow of commodity i is higher than its
demand Ri, we can reduce it to Ri by removing the flow across one or more siti-paths
in G̃ without violating other constraints.
We first detail the graph transformation (see Figures 4.8 and 4.9).

• For all edges ij ∈ Ẽ , add a vertex vij to V .

• For each pair of vertices vij, vjp ∈ V , add an edge (vij, vjp) to E .

• Add vertices s and t to V .

• Add to V vertices s1
i , s

2
i , . . . , s

Ri
i representing requirements of each commodity i.
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4 Lifted Disjoint Paths

• For each vertex sri , add an edge (s, sri ) to E .

• For each pair of vertices sri , vsij, add edge (sri , vsij) to E .

• For all vpti ∈ V (representing an edge from p to ti in G̃), add an edge (vpti , t) to E .

• For all pairs of vertices vsij vpti ∈ V, add an edge (vsij, vpti) to Ĕ . That is, the
lifted edges connect all vertices representing edges from si in G̃ with vertices
representing the edges to ti in G̃.

• Cost function on base edges ∀e ∈ E : qe = 0.

• Cost function on lifted edges ∀ĕ ∈ Ĕ : q̆ĕ = −1.

An illustration of this construction can be seen in Figures 4.8 and 4.9. Note that the
construction of G̃ in [241] allows si = sj for i 6= j. In this case, we still construct
separate vertices for their incident edges in G.
For arbitrarily chosen r ∈ [Ri], every path P̃ = (sik1, k1k2, . . . , knti) in G̃ can be assigned
to a path P = (ssri , srivsik1 , vsik1vk1k2 , . . . , vkntit) in G and vice versa. Note that such a
path P saturates exactly one lifted edge (vsik1 , vknti). As we assume unit edge capacities,
every feasible set of flow functions f1, . . . , fk satisfying for all i ∈ [k] : ∑

siv∈Ẽ
f isiv

= Ri

defines a set of edge-disjoint paths from s1, . . . , sk to t1, . . . , tk in G̃. This set corresponds
to a set of ∑k

i=1 Ri st-paths in G whose edges and vertices are disjoint and where every
path saturates exactly one lifted edge vsijvkti . Every lifted edge contributes with −1 to
the total cost. So, this set of disjoint st-paths has total cost −∑k

i=1 Ri.
Reversely, let us have a set of vertex- and edge-disjoint st-paths in G of size ∑k

i=1 Ri

where every path contains some vsijvkti-path as its subpath and therefore its cost is
−∑k

i=1 Ri. This set defines uniquely a set of feasible flow functions f1, . . . , fk.
So, there exist feasible functions f1, . . . , fk satisfying fi = Ri for all i ∈ [k] if and only if

min
(y,y̆)∈YGĞ

κ(y, y̆) ≤ −
k∑
i=1

Ri . (4.24)

Theorem 4.8. Lifted disjoint paths problem (4.3) with negative lifted edges only is
NP-hard.

Proof. The NP-complete integer multicommodity flow problem with unit edge capaci-
ties (finding a feasible solution) can be reduced in polynomial time to the lifted disjoint
paths problem (4.3) with negative lifted edges only. The transformation is described in
Lemma 4.7.

3-SAT. The boolean satisfiability problem (SAT) is a classical NP-complete prob-
lem [254]. A transformation from its NP-complete special version 3-SAT is commonly
used for proving that a problem is NP-hard or NP-complete.
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Figure 4.10: Reduction to lifted disjoint paths problem for 3-SAT formula
(a ∨ b ∨ c̄) ∧ (a ∨ c ∨ d̄) ∧ (ā ∨ c ∨ e) ∧ (ā ∨ c ∨ ē).

Theorem 4.9. Lifted disjoint paths problem (4.3) with positive lifted edges only is
NP-hard.

Proof. Below, we detail a transformation from 3-SAT (see also Example 2.33) to the lifted
disjoint paths problem with positive lifted edges only. For the transformation, it holds
that a 3-SAT formula consisting of k clauses has a true assignment iff min

(y,y̆)∈YGĞ

γ(y, y̆) ≤

−(k − 1).
Let a 3-SAT problem containing k ordered clauses C1 . . . Ck be given. Each clause Ci
consists of a conjunction of literals, which is either a variable a or its complement a.
We construct graphs G = (V, E) and Ğ = (V̆ , Ĕ) as follows.

• The graph G has k layers. Every layer corresponds to one clause. Each layer
contains 3 vertices labeled with the literals in the corresponding clause. Specifically,
for a variable a in clause Ci we associate node via, analogously for a complemented
variable b in clause Ci we associate node vib̄.

• For every pair of vertices vil1 ∈ V and v(i+1)l2 ∈ V where l1 6= l̄2 add an edge
(vil1 , v(i+1)l2) to E and set q(vil1 ,v(i+1)l2 ) = −1.

• For every variable a and every pair of vertices via, vjā ∈ V where j > i + 1 add
an edge (via, vjā) to Ĕ and set q̆(via,vjā) = k. Do so analogously for every pair of
nodes viā and vja.

• Add an edge from s to all vertices corresponding to the first clause. And an edge
to t from all vertices corresponding to the last clause.

An illustration of this construction can be found in Figure 4.10.
Every path P ∈ st-paths(G) that has cost −(k − 1) saturates vertices labeled by non-
contradicting literals. We can obtain a 3-SAT solution from P as follows. If via ∈ PV ,
set variable a := true. If vjb̄ ∈ P , set variable b := false. Variables not contained as
labels of vertices in PV can have arbitrary values.
Similarly, every solution of 3-SAT problem defines at least one path P ∈ st-paths(G)
that has cost −(k − 1).
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4.7 Experiments

We conduct several experiments on MOT showing the merit of using lifted disjoint
paths for the tracking problem. Below, we describe the problem construction, cost
learning for base and lifted edges, pre-processing and post-processing steps, and report
resulting performance.

4.7.1 Graph construction.

Two-step procedure. Due to the computational complexity of the problem, entire
video sequences cannot be solved in a straightforward manner. In order to make the
problem tractable, the following two-step procedure is used. In the first step, the solver
is applied on graphs over person detections but only for small time intervals consisting
of a few dozen video frames. The tracks resulting from the first step are used for
extracting tracklets. In the second step, the solver is applied on newly created graphs
G and Ğ where vertices correspond to the obtained tracklets. Edges and edge costs
between tracklets are obtained by aggregating original edges resp. edge costs between
person detections. The tracks resulting from the second step may be suboptimal with
respect to the original objective function defined over person detections. Therefore, we
identify points where splitting a track leads to an improvement of the original objective
value and extract new tracklets from the divided tracks, similar to Section 3.3.2.4.
Multiple iterations of the second step are performed until no improving split points are
found in the output tracks. This two-step procedure improves the objective w.r.t. the
original objective (4.3) in every iteration. Since there are only finitely many trackings,
the procedure terminates finitely. In practice, only a few iterations are necessary.

Graph sparsification. For our experiments, we use edges between detections up to
2sec temporal distance (60 frames for sequences recorded at 30 fps). These long-range
edges cause high computational complexity for the first step. In order to reduce it, we
apply sparsification on both base and lifted graphs. For the base edges, we select for
every v ∈ V̆ its K nearest (lowest-cost) neighbors from every subsequent time frame
within an allowed time gap. Lifted edges with costs close to zero are not included, since
they are not discriminative. Lifted edges connecting detections with high time gap are
included more sparsely than lifted edges having lower time gaps. We use dense graphs
in the second step.

Costs. Initially, in the first step, we set cv = 0 for all vertices v ∈ V . For the second
step, where V represents tracklets, cv is set to the cost of outputting tracklet v as a
final trajectory. Specifically, cv is the sum of costs of base edges between consecutive
detections in the tracklet and the cost of lifted edges between all pairs of detections
contained in the tracklet. The cost of a base edge between two tracklets is given by
the cost of the original base edge connecting the last detection in the first tracklet
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with the first detection in the subsequent tracklet. The cost of a lifted edge between
two tracklets is obtained by summing up the costs of original lifted edges between
detections contained in the tracklets. This ensures that the costs of the tracklet solution
correspond to the costs of the original problem. We set the costs of all edges from the
source node s and to the sink node t to zero. Setting of detection costs and in/out costs
to zero reduces the number of hyperparameters that usually needs to be incorporated
by other methods. Moreover, our method does not include temporal decay of edge costs
since the formulation directly prefers short range base edges over the long-range ones.
Cost definitions are provided in Section 4.7.3.

4.7.2 Pre-processing and post-processing

As is common for tracking-by-detection, we perform pre-processing and post-processing
to compensate for detector inaccuracies.

Input filtering. Given a set of input detections derived from a detector, we follow
the approach called Tracktor [58], a leading tracker for the MOT challenge, to reject
false positive detections and to correct misaligned ones. For this, each input detection
is sent through the regression and classification part of Tracktor’s detector. In more
detail, all tracking parts involved in the tracker Tracktor [58] are deactivated such that
it only reshapes and eventually rejects input detections without assigning labels to
them. Input detections are rejected if Tracktor’s detector outputs a confidence score
σactive ≤ 0.5.
Tracktor also applies a non-maxima-suppression on the reshaped input detections. We
use the threshold λnew = 0.6 (as defined by Bergmann et al. [58])

Inter- and extrapolation. Even if all input detections have been assigned to the
correct identities by our solver, there might still be missing detections in case that a
person has not been detected in some frames. We recover missing detections within the
time range of a trajectory, which we denote as interpolation. Furthermore, we extend a
trajectory in forward and backward direction, which we denote as extrapolation. To this
end, we follow the approach of Tracktor [58] and apply their object detector to recover
missing positions based on the visual information at the last known position. Finally, for
sequences filmed by a static camera, we perform linear interpolation on the remaining
gaps. Such sequences can be automatically detected using DeepMatching [177] on the
regions outside detection boxes, see also Section 2.7.2.
To demonstrate the performance using traditional post-processing, we also evaluate our
tracker using only linear interpolation as post-processing in all sequences in Section 4.7.7.
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4.7.3 Cost learning

Costs for base edges E and lifted edges Ĕ are computed equally3, since they both indicate
whether two detections are from the same object or not. For an edge e = vw, we denote
with dwi(v) the detection width corresponding to node v.

Visual cues. Two different appearance features are exploited: Given two detections,
the re-identification descriptor utilizes global appearance statistics, while the deep-
matching descriptor relies on fine-grained pixel-wise correspondences.
To exploit global appearance statistics, the re-identification network [178] introduced
in Section 2.7.2.2 is employed, which we train on the MOT17 training set [44] and
additional re-identification datasets [181, 186, 255]. We extract from the network for
each edge e = vw a similarity value ψre-id(e) ∈ [0, 1] such that the higher the value, the
more likely v and w correspond to the same person.
Given a valid match, i.e., an edge e = vw connecting detections of the same person and
an invalid match, i.e., an edge e′ = vw′ connecting v with a detection w′ of another
person, the network usually creates similarity scores such that ψre-id(e) > ψre-id(e′).
However, we observed that the range of similarity scores {ψre-id(e) | e valid match} on
the MOT17 dataset is rather large. To increase precision and better reflect uncertainty
of a connection, a novel feature transformation is proposed: Each value is normalized
by the similarity scores appearing within the involved time frames. To this end, we
define for an edge e = vw with v ∈ Vf1 and w ∈ Vf2 the normalization values ψ→norm and
ψ←norm in temporal forward and backward direction, respectively:

ψ→norm(e) := ψre-id(vw)
maxv′∈Vf1 ψre-id(v′w) ∈ [0, 1], ψ←norm(e) := ψre-id(vw)

maxw′∈Vf2 ψre-id(vw′) ∈ [0, 1] .

(4.25)
The features ψ→norm(e) and ψ←norm(e) thus indicate if an edge e is the best selection for
the involved detections among the respective frames. Since the normalization exploits
information from entire frames instead of just two detections, we call them global context
normalization features. Finally, for each edge e, the following features are used:

(ψ→norm(e), ψ←norm(e), ψ→norm(e)ψre-id(e), ψ←norm(e)ψre-id(e)) ∈ [0, 1]4 . (4.26)

The global context normalization features are visualized in Figure 4.11.
Our second visual cue utilizes DeepMatching (DM) [256], introduced in Section 2.7.2.1, to
establishes pixelwise correspondences between two images. We apply DM between boxes
in two images and compute the DM intersection over union [55, 63] (see Section 3.4.1)
w.r.t. the whole detection boxes and on five sub boxes (left/right, upper/middle/lower
part), which creates six features per box pair as illustrated in Figure 4.12. In addition,
we measure for all DM points in a given sub box whether their matched endpoints are
in the corresponding sub box again or not, represented by an indicator value. By using
the left/right and the upper/middle/lower part subdivision, this gives two additional
error measures for deviation in x and y-directions. Thus, in total, we obtain a feature

3By using the same costs for base and lifted edges, more weight is given to the base graph, compare
also Figure 1.11.
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Figure 4.11: Illustration of global context normalization on the MOT17 dataset.
(a) Depicted are the similarities ψre-id(e) between all detections of two frames. The
similarity score of the valid match (d0,d2) is highest among all similarities from
d0 to a detection of Vj. Due to a change in the pose and background, the value
is slightly low. Most importantly, the wrong match (d0,d1) yields a similarly
high value. (b) The global context normalization ψ→norm(e)ψre-id(e) is much more
discriminative. Some parts of the image are taken from the MOT16 dataset [44].

vector ψψψDM(e) ∈ [0, 1]8. In order to assess the reliability of DM features, the coverage
of each box and its sub boxes by matching points is computed. Now for each pairing
(detection boxes or sub boxes), the smaller of the two coverage values is chosen, which
creates feature ρρρ ∈ [0, 1]6.

Motion constraints. We penalize for improbable motions by comparing the maximal
displacement of DM endpoints within a considered sequence with the displacements
of detection boxes. Assignment hypotheses of pairs of boxes representing improbable
motions are penalized with a large cost.

Spatio-temporal cues. Our spatio-temporal cues utilize a simple motion compen-
sation by computing the median DM displacement between correspondences of the
background.
We assume a linear motion model, similar to Ristani et al. [78] and penalize deviations
of detections from the estimated motion trajectory. This enforces spatio-temporal
consistency of detections within one trajectory. Furthermore, we penalize improbable
large person movements by relating velocities (in pixels per seconds) in horizontal
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(a) (b)

(c)

Figure 4.12: Pairwise features derived from DeepMatching. (a) DM intersection
over union is computed between detection boxes. In addition, detection boxes are
subdivided vertically (b) and horizontally (c) so that DM intersection over union
is also computed between equally colored sub boxes. This considers not only the
presence of DM endpoints in corresponding detection boxes but also that they are
spatially consistent. Some parts of the image are taken from the MOT16 dataset
[44].

direction (νx) to box width wiv and wiu of nodes v and u, respectively: ψtrans(e) =
log(νx(e)/min{wiv,wiu}).

Fusion of input features. We construct a neural network consisting of fully-
connected layers, batch normalization, and relu units, taking the above described
features and time differences as input. The final layer uses a sigmoid activation function
for producing a score in [0, 1]. The output of the network represents the likelihood for
an assignment hypothesis of two detection boxes. It is converted to costs using the
log-odd-function, see Eq. (2.11).
In more detail, considering one assignment hypothesis represented by an edge e = vw,
the DeepMatching densities ρρρ ∈ [0, 1]6 as well as the temporal distance t between the
corresponding detections v and w serve as a confidence score for the remaining input
features. They describe which of the input features are reliable metrics for a given
assignment hypothesis, but they do not provide any information that can be used to
decide the validity of a considered assignment hypothesis. We transform the density
features non-linearly and denote them together with the temporal distance (of maximal
2 seconds) as control features C(e) := (log(ρρρ), t) ∈ R6 × [0, 2]. The remaining described
features of this section are denoted as ψψψ(e) ∈ [0, 1]n.
One plausible architecture is to use a convex combination of the input features such
that the coefficients depend on the control features. To this end, let αi(C(e),Wαi

) for
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Figure 4.13: The architecture of the employed edge classifier. FC-i denotes a
fully-connected layer with i output nodes. Using a concatenation with subsequent
fully connected layers, m control features and n input features are fused.

i ∈ [n] denote a neural network with the control features as input and Wαi
as learnable

weights. Furthermore, let βi(ψ(e)i,Wβi
) for i ∈ [n] be a neural network applied to i-th

feature of ψψψ(e) with learnable weights Wβi
.

The input features and control features can then be fused via

n∑
i=1

αi(C(e),Wαi
)βi(ψ(e)i,Wβi

) (4.27)

such that
n∑
i=1

αi(C(e),Wαi
) = 1 . (4.28)

To ensure stable training, (4.27) should be applied to a sigmoid function and trained
using binary cross-entropy loss.
Nonetheless, our tracker implementation employs a neural network based mainly on a
combination of relu units and fully connected layers, which performed slightly better,
still sharing the idea of separating the input into control features and input features.
The detailed architecture is depicted in Figure 4.13.

Training details. Training of the neural network is performed directly on the (pre-
processed) input detections. Labels are retrieved by assigning each detection to the
best fitting ground truth bounding box. Detections with ambiguous assignments are
ignored within the training phase.
In order to train the edge classifier, special care has to be taken as the training set is
highly imbalanced. The number true negative edges (pairs of detections that do not
belong to the same person) clearly dominates the number of true positive edges (pairs of
detections belonging to the same person). To address this issue, the network is trained
on a randomly sampled subset of all possible edges such that the ratio of true positive
edges and true negative edges per time distance between the end nodes of the edges
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remains fixed. The maximal temporal distance of an edge is set to 2 seconds, allowing
to recover persons even after long occlusions.
The weights of the fusion network are optimized according to the binary cross-entropy
loss. We employ stochastic gradient descent with the learning rate set to 10−2 and
Nesterov momentum set to 0.9, for a total of 10 epochs. Training and inference are
performed using Pytorch 1.3 on an Nvidia RTX 2080 Ti.

4.7.4 Implementation details on the lifted disjoint paths solver

The solver for the lifted disjoint paths problem is implemented in C++ and builds upon
Gurobi 7.5. All subsequent experiments were conducted on a machine with a 6-Core
Intel 2.00GHz CPU and 128 GB RAM.

4.7.5 Experiment setup

In order to assess the suitability of the proposed lifted disjoint paths formulation
for MOT, extensive experiments are conducted on the datasets MOT15/16/17 [43,
44]. We perform analysis and parameter tuning for our tracker on the MOT17 train
set, even when the tracker is applied to the MOT15 sequences, to ensure that the
tracker is not prone to overfitting. We follow the MOT challenge protocol and use the
detections provided by the respective benchmarks. All experiments on the training set
are evaluated using a leave-one-out cross-validation. This includes all of the training
procedures, in particular also the training of the re-identification network. The tracking
quality produced by the proposed method is measured in terms of the event-based and
identity-based metrics of Section 2.7.4. In the following, we denote by Lifted Disjoint
Paths Tracker (Lif_T) the proposed tracker of this chapter.

Table 4.1: Assignment quality of our solver without interpolation or extrapolation
on the MOT17 train set with different maximal time gaps in seconds. Rows 1, 3,
5, and 7 show the results by our solver, rows 2, 4, 6, and 8 show the maximally
achievable bounds with admissible assignment hypotheses up to the specified time
gap. Bold numbers represent the best values per row.

0.3s 0.5s 1s 1.5s 2s ∞
MOTA[%] (ours) ↑ 52.6 52.7 52.8 52.8 52.8 -
MOTA[%] (optimal) ↑ 53.0 53.1 53.3 53.3 53.4 53.4
IDF1[%] (ours) ↑ 55.7 57.8 61.8 63.8 64.3 -
IDF1[%] (optimal) ↑ 56.0 58.6 63.2 65.7 66.8 69.9
IDP[%] (ours) ↑ 79.8 82.9 88.5 91.4 92.1 -
IDP[%] (optimal) ↑ 80.4 84.2 90.8 94.3 95.9 100.0
IDR[%] (ours) ↑ 42.7 44.5 47.4 49.0 49.4 -
IDR[%] (optimal) ↑ 42.9 45.0 48.5 50.4 51.3 53.4
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4.7.6 Benefit of long-range edges

We investigate the importance of using long-range information for MOT. To this end,
we apply our proposed tracker Lif_T on the MOT17 training sequence with varying
maximal time gap, for which base and lifted edges are created between nodes. In
order to assess the influence of the time gap on the tracking quality, we measure the
assignment quality in terms of the MOTA and IDF1 metrics without performing any
interpolation or extrapolation. To assess how well the assignment part is solved by
our tracker, we compute the maximum achievable metrics given the filtered input
detections and admissible assignment hypotheses within maximal time gaps. A detailed
description of how we obtain the optimal assignments is given below. From the result in
Table 4.1 we see essentially constant MOTA scores. This is due to the fact that selecting
correct connections does not change MOTA significantly except after interpolation and
extrapolation (which we have excluded in Table 4.1). However, we see a significant
improvement in the IDF1 score, which directly penalizes wrong connections. Here,
long-range edges help greatly. Moreover, both metrics, ID precision and ID recall, clearly
increase with increasing time gap. This shows that improvements by incorporating
more temporal information come from using longer skip edges (impact on IDR) but
most importantly, precision increases greatly. This means that ID switches are avoided
thanks to lifted edges. Furthermore, the experiment shows that our designed features
together with the lifted disjoint paths formulation (4.3) are well-suited for the MOT
problem delivering nearly optimal assignments.

Optimal assignment of detections. We elaborate on the details to obtain the
optimal assignments. We start with the pre-processed input detections, according to
Section 4.7.2. For each frame, we compute the intersection over union between the
detections and ground truth boxes of the respective frame, which forms a weighted
bipartite graph. Edges with a corresponding intersection over union below 0.5 are
removed. Then, we use Hungarian matching to find a maximum-weighted matching.
Unmatched detections are considered as false positives, while matched detections are
assigned the corresponding ground truth label. Thus, we obtain the trajectories on
the input detections using the optimal assignment. Finally, depending on the time
threshold of Table 4.1, trajectories are synthetically splitted at skip-edges longer than
the specified threshold such that each segment obtains a unique ID.

4.7.7 Ablation study on post-processing methods.

Solving the proposed lifted disjoint paths problem establishes the assignment of input
detections to object identities very close to the best possible assignment (Section 4.7.6).
To localize tracked objects also in those frames in which the object detector failed
to detect them, some trackers apply an additional object detector on these frames
based on the available input detections. This can be seen as performing interpolation
and extrapolation if viewed from the perspective of data association in a tracking-by-
detection framework, e.g., see Bergmann et al. [58]. As a result, improvements can
be achieved from extending trajectories to image areas without input detections by
applying a very accurate object detector.
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Table 4.2: Ablation study on interpolation and extrapolation, evaluated on the
MOT17 train set. SI = spatial interpolation only on sequences filmed by a static
camera, SI∗ = spatial interpolation on all sequences, VI = visual interpolation, VE
= visual extrapolation. Assignment and Assignment (optimal) denote the results
of the lifted disjoint paths problem and the optimal assignment, as reported in
Section 4.7.6 given 2sec time gap. Note that Tracktor’s object detector is fine-
tuned on MOT17Det. In our experiments, this resulted in bigger improvements
on the MOT17 training set than on the test set, compare Table 4.3.

Method MOTA[%] ↑ IDF1[%] ↑
Assignment 52.8 64.3
Assignment (optimal) 53.4 66.8
Assignment+SI 57.8 67.6
Assignment+SI∗ 59.5 68.9
Assignment+VI 59.6 68.5
Assignment+VI+VE 65.7 71.5
Assignment+VI+VE+SI 67.0 72.4

To make our tracking performance comparable to the results of other trackers, we follow
this strategy and employ interpolation and extrapolation, based on the method Tracktor
by Bergmann et al. [58]. During the interpolation and extrapolation, detections coming
from the lifted disjoint paths solver are preserved. In particular, the detections are
not rejected, reshaped, neither are their labels changed by Tracktor. Instead, we apply
Tracktor to recover further locations of an object in those frames in which detections of
the object were missing. The procedure is based on the trajectories obtained from the
lifted disjoint paths solver. Note that our adaption ignores additional, unassigned input
detections, whereas the original implementation [58] of Tracktor fuses the detections
coming from Tracktor’s detector with detections provided by the dataset.
Table 4.2 reports the influence of employing interpolation and extrapolation. The first
two rows repeat values from Table 4.1 given the maximal 2s time gap. Since our solver
produces nearly optimal data assignment with respect to the used input detections,
further improvements can only be achieved by applying interpolation and extrapolation
on the tracks obtained from the solver.
We compare visual interpolation (VI), visual extrapolation (VE), both using the method
of [58], and spatial interpolation (SI). For SI, we employ linear interpolation based
solely on the geometric bounding box information. The interpolation SI is applied
only to sequences with a fixed camera in order to guarantee robust approximations.
Still, the improvements by Assignment+SI over the baseline is evident. Especially the
MOTA metric, which measures mainly the coverage of objects by detections, improves
by about 10%. We also evaluate spatial interpolation for all sequences (SI∗), which
improves the tracker further to 59.5% MOTA and 68.9% IDF1. However, performing
spatial interpolation on sequences with moving cameras can lead to error propagation.
Conversely, the visual interpolation based on Bergmann et al. [58] can be applied
robustly to all sequences, but only in those situations in which an object is visible.
Accordingly, the method Assignment+VI further improves over the baseline.
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4.7 Experiments

Recovering the position of tracked objects also outside of the time range of its computed
trajectory (Assignment+VI+VE) further helps to improve the tracking accuracy, en-
hancing MOTA by about 20% and IDF1 by about 10% IDF1, as VE extends computed
trajectories, thereby achieving longer identity consistencies.
Finally, we employ spatial interpolation on the remaining cases where detections are
missing and the objects are fully occluded (Assignment+VI+VE+SI), resulting in a
slight improvement over Assignment+VI+VE. The best-performing method according
to Table 4.2, Assignment+VI+VE+SI, is thus used to evaluate the proposed tracker on
the MOT15, MOT16, and MOT17 test set (see Section 4.7.10).
According to Table 4.2, the impact of the post-processing using Tracktor seems to be
very high. We conjecture this might be due to the fact that Tracktor’s object detector is
trained on the MOT17Det train set (which are the detections of the MOT17 train set),
leading to some degree of overfitting on the MOT17 training set. Note that Tracktor
is not trained on the MOT17 tracking ground truth, so that it is still regarded as a
meaningful validation procedure [58]. Our conjecture is supported by the conducted
experiments presented in Section 4.7.10 which show that the post-processing method
applied to the test set only slightly improves the results of the proposed lifted disjoint
paths approach.

4.7.8 Accuracy of the fusion network

The performance of a tracking method depends highly on the accuracy of the edge
classifier. Therefore, we report the evaluation of the edge classifier on all training
sequences of the filtered MOT17 train set used for Table 4.4. Together with Table 4.5
and Table 4.3, it shows that improvements in tracking features directly correlate to
high-quality tracking results thanks to the proposed solver. While Table 4.4 shows
very good performance of the edge classifier, a powerful graph model and solver is
still crucial to obtain high-quality tracking results. Even small errors (we observed 5%
maximal error) in the edge classifier can cause many errors in the tracking results if an
unsuitable procedure is used. Also, note that for training the edge classifier, detections
with ambiguous assignments to the ground truth boxes were ignored. Thus, these
potentially difficult cases are excluded in the evaluation of the edge classifier. Especially
the interpolation and extrapolation are prone to error propagation once a single identity
switch has been created, which heavily affects, among others, the IDF1 score. Our lifted
disjoint paths formulation can be advantageous since lifted edges aggregate multiple
edge classifiers, which can correct individual wrong classifications of single edges.

4.7.9 Qualitative evaluations

We provide a qualitative comparison of Lif_T with the best performing competing
method Tracktor [58] in Figure 4.14. It shows that Lif_T successfully incorporates
long-range information to produce long-term consistent trajectories. In contrast, object
occlusions cause Tracktor to create new trajectories. Additional visual results depicted
in Figure 4.15 show that Lif_T produces long-term consistent trajectories.
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4 Lifted Disjoint Paths

Figure 4.14: Comparison of Lif_T (top row) with Tracktor [58] (bottom row) on
MOT17-08-SDP. Tracktor is not able to exploit long-term temporal interactions
leading to ID switches and missing detections, as highlighted in the image. In
contrast, Lif_T produces correct trajectories despite heavy occlusions.

4.7.10 Benchmark evaluations

We compare the tracking performance of Lif_T on the MOT15, MOT16, and MOT17
benchmarks with all trackers listed on the MOTChallenge which have been peer-
reviewed and correspond to published work. Table 4.3 shows the tracking performance
of the proposed tracker together with the best 5 performing trackers at the time this
work was published [50], accumulated over all sequences of the respective benchmarks.
The evaluations show that the proposed method outperforms all competing tracking
methods by a large margin on all considered benchmarks. On MOT17, the MOTA
score is improved from 53.5% to 60.5% and the IDF1 score from 52.3% to 65.6%, which
corresponds to an improvement of 13% in terms of MOTA and almost 25% in terms
of the IDF1 score, indicating the effectiveness of the lifted edges. We observe similar
improvements across all three benchmarks. These results reflect the near-optimal
assignment performance observed on the MOT17 train set in Section 4.7.6. On average,
the BLP solver needs 26.6 min. per sequence. Detailed runtimes are available in
Table 4.5. In addition, the evaluations on the MOT15, MOT16, MOT17 test sets as
well as the MOT17 train set per sequence are provided in Table 4.5.
Finally, to analyze the impact of the post-processing on the test set, an additional
tracker, Lifted Disjoint Paths Tracker using simple linear interpolation (Lif_TsimInt),
is evaluated on all test sequences of the MOT15, MOT16, and MOT17 benchmarks.
This tracker uses linear interpolation between detections of a trajectory for all sequences,
which corresponds to Assignment+SI∗ in Table 4.2. Comparing the performance gain
on the test set using Lif_T instead of Lif_TsimInt with the performance gain on the
training set (Table 4.2), we see that indeed, the impact of the post-processing on the
test set is significantly lower. We conclude that while the post-processing improves
the tracking performance, the main performance of Lif_T is due to the proposed
contributions. Lif_T is able to achieve near-optimal results with respect to the input
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4.8 Conclusion

Figure 4.15: Tracking results of Lif_T on MOT17-06-SDP (first row), MOT17-
08-SDP (second row), and MOT-03-SDP (third row).

detections. Applying interpolation and extrapolation according to the post-processing
method further improves the results and makes it conceptually comparable to Tracktor.
With post-processing on our computed data association, we improve over Tracktor by
25%. We argue that solving the data association accurately is important to obtain a
final high-quality result after post-processing.

4.8 Conclusion

The method presented in this chapter demonstrates that a powerful data association
model with a global optimal solver helps to compensate for erroneous inputs (Section 1.3).
The novel LDP formulation extends the well-established disjoint paths problem, which
is a natural model for MOT as trajectories are represented by vertex-disjoint paths. By
the integration of lifted edges, path connectivity priors can be modeled so that the model
becomes more expressive. The evaluations have shown that incorporating long-range
connections using the LDP formulation improves tracking results considerably. Using
edges connecting nodes over maximal 2 seconds instead of 0.3 seconds improves the
precision by more than 15% in terms of IDP. This is in accordance with the concept of
lifted edges that help to avoid ID switches. In the same setup, the recall is also improved
by more than 15% in terms of IDR. Here, lifted edges help to re-identify persons that
have been occluded. Consequently, the IDF1 score is improved substantially by more
than 15% in the conducted experiment on the MOT17 train set.
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4 Lifted Disjoint Paths

Table 4.3: We compare our tracker Lif_T with the five best performing compet-
ing solvers w.r.t. MOTA from the MOT challenge. Tracktor [58], JBNOT [101],
FAMNet [88], eTC [257], eHAF [258], NOTA [259], HCC [260], KCF [261],
AP_HWDPL_p [262], STRN [82] and AMIR15 [91]. In addition, we compare the
results to our tracker Lif_TsimInt that uses only a simple interpolation method
(linear interpolation) as post-processing in all sequences. We outperform com-
peting solvers on most metrics on all three MOT Challenge benchmarks, using
Lif_T and Lif_TsimInt. The result table was retrieved when the work [50] was
submitted (07.01.2020). Arrows indicate whether low or high metric values are
better.

Method MOTA[%] ↑ IDF1[%] ↑ MT[%] ↑ ML[%] ↓ FP ↓ FN ↓ IDS ↓

M
O

T
17

Lif_T (ours) 60.5 65.6 27.0 33.6 14966 206619 1189
Lif_TsimInt (ours) 58.2 65.2 28.6 33.6 16850 217944 1022
Tracktor17 53.5 52.3 19.5 36.6 12201 248047 2072
JBNOT 52.6 50.8 19.7 35.8 31572 232659 3050
FAMNet 52.0 48.7 19.1 33.4 14138 253616 3072
eTC17 51.9 58.1 23.1 35.5 36164 232783 2288
eHAF17 51.8 54.7 23.4 37.9 33212 236772 1834

M
O

T
16

Lif_T (ours) 61.3 64.7 27.0 34.0 4844 65401 389
Lif_TsimInt (ours) 57.5 64.1 25.4 34.7 4249 72868 335
Tracktor16 54.4 52.5 19.0 36.9 3280 79149 682
NOTA 49.8 55.3 17.9 37.7 7248 83614 614
HCC 49.3 50.7 17.8 39.9 5333 86795 391
eTC 49.2 56.1 17.3 40.3 8400 83702 606
KCF16 48.8 47.2 15.8 38.1 5875 86567 906

2D
M

O
T

15

Lif_T (ours) 52.5 60.0 33.8 25.8 6837 21610 730
Lif_TsimInt (ours) 47.2 57.6 27.0 29.8 7635 24277 554
Tracktor15 44.1 46.7 18.0 26.2 6477 26577 1318
KCF 38.9 44.5 16.6 31.5 7321 29501 720
AP_HWDPL_p 38.5 47.1 8.7 37.4 4005 33203 586
STRN 38.1 46.6 11.5 33.4 5451 31571 1033
AMIR15 37.6 46.0 15.8 26.8 7933 29397 1026

The proposed tracker of this chapter outperforms the state of the art on all considered
datasets, i.e., MOT15, MOT16, and MOT17, by a large margin when the work was
published [50]. For instance on MOT17, the MOTA score is improved by about 12%
and the IDF1 score by about 25%.
While the proposed method is able to compute trajectories for all sequences of MOT15,
MOT16, and MOT17, the necessary runtime as provided in Table 4.5 shows that the
instance size is a limiting factor. Long sequences containing many detections (e.g.,
MOT16-03 and MOT16-04) already require considerable runtime.
Overall, the novel LDP formulation is an expressive model for MOT. Presented features
are accurate and robust also for long-term temporal connections. The proposed solver
is, to our knowledge, the first to solve an implicit HO-MOT model using global
optimization in practice. It allows to accurately exploit the information provided by the
input detections, in particular long-range interactions without introducing errors by the
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4.8 Conclusion

Table 4.4: Performance metrics on the edge classifier. The performance is
measured in terms of the Accuracy (Acc), Precision (Prec), True Positive Rate
(TPR), and True Negative Rate (TNR). The arrows indicate that higher metric
values are better.

Sequence Acc[%] ↑ Prec[%] ↑ TPR[%] ↑ TNR[%] ↑

MOT17-02-DPM 100 99 100 100
MOT17-04-DPM 100 98 99 100
MOT17-05-DPM 95 95 100 99
MOT17-09-DPM 100 98 98 100
MOT17-10-DPM 100 99 99 100
MOT17-11-DPM 100 100 99 100
MOT17-13-DPM 99 97 96 100
MOT17-02-SDP 100 96 100 100
MOT17-04-SDP 100 98 98 100
MOT17-05-SDP 99 92 100 98
MOT17-09-SDP 97 81 99 97
MOT17-10-SDP 99 94 97 100
MOT17-11-SDP 100 99 99 100
MOT17-13-SDP 99 90 96 99
MOT17-02-FRCNN 100 98 100 100
MOT17-04-FRCNN 100 97 99 100
MOT17-05-FRCNN 99 94 100 100
MOT17-09-FRCNN 99 97 98 100
MOT17-10-FRCNN 99 95 98 100
MOT17-11-FRCNN 100 99 99 100
MOT17-13-FRCNN 99 90 95 99

solver. As a consequence, the method significantly improves over competing methods.
Furthermore, the experiments show that for the MOT challenge datasets, nearly optimal
data association performances are reached. We conjecture that further improvements
would have to come from better detectors, better interpolation and extrapolation, and
more powerful solvers for our formulation to take into account even longer time-gaps.
Our polyhedral work offers the basis for writing such more powerful solvers.
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4 Lifted Disjoint Paths

Table 4.5: Per sequence evaluation of our tracker Lif_T. We also provide the
solver time spent to solve the corresponding lifted disjoint paths problem instance
(STime) in seconds. Arrows indicate whether low or high metric values are better.
Tracking results on the test sets were evaluated by the MOTChallenge server
https://www.motchallenge.net .

Sequence MOTA[%]↑ IDF1[%]↑ MT[%]↑ ML[%]↓ FP↓ FN↓ IDS↓ STime↓
M

O
T

17
-T

ra
in

MOT17-02-DPM 40.5 50.3 21 47 19 11017 26 127
MOT17-04-DPM 69.9 73.9 49 27 298 13986 38 1521
MOT17-05-DPM 58.2 67.0 23 30 40 2824 27 36
MOT17-09-DPM 72.9 71.6 54 4 58 1370 15 59
MOT17-10-DPM 67.4 70.2 46 14 106 4043 39 173
MOT17-11-DPM 67.3 73.9 32 35 55 3017 11 115
MOT17-13-DPM 63.6 67.2 41 33 64 4127 43 59
MOT17-02-FRCNN 47.4 57.2 24 36 89 9656 26 229
MOT17-04-FRCNN 67.5 74.1 46 25 98 15310 29 1535
MOT17-05-FRCNN 60.2 68.9 26 27 73 2651 30 92
MOT17-09-FRCNN 71.5 72.9 54 4 54 1451 10 51
MOT17-10-FRCNN 73.2 76.2 58 4 270 3096 73 398
MOT17-11-FRCNN 73.1 78.8 43 24 82 2436 18 133
MOT17-13-FRCNN 77.1 75.8 62 10 203 2394 73 388
MOT17-02-SDP 55.0 61.3 26 26 65 8236 52 586
MOT17-04-SDP 77.7 81.8 56 16 243 10296 49 4133
MOT17-05-SDP 64.0 69.5 31 17 105 2351 33 80
MOT17-09-SDP 73.0 73.0 54 4 69 1356 12 127
MOT17-10-SDP 75.0 78.6 61 4 349 2759 105 756
MOT17-11-SDP 74.4 78.4 48 19 115 2277 27 198
MOT17-13-SDP 70.8 71.4 56 21 200 3150 55 364
MOT17-Train 67.0 72.4 41 22 2655 107803 791 11430

M
O

T
17

-T
es

t

MOT17-01-DPM 48.3 58.1 33 46 68 3258 10 38
MOT17-03-DPM 73.3 70.1 55 11 3560 24276 160 24311
MOT17-06-DPM 58.1 64.7 27 35 178 4728 28 113
MOT17-07-DPM 44.4 52.3 12 35 155 9176 60 297
MOT17-08-DPM 34.7 47.4 24 49 254 13507 32 146
MOT17-12-DPM 48.3 62.3 20 45 35 4437 11 68
MOT17-14-DPM 36.1 48.8 7 47 268 11449 91 323
MOT17-01-FRCNN 47.7 58.1 33 42 246 3119 7 79
MOT17-03-FRCNN 72.2 71.8 48 11 2664 26277 124 11678
MOT17-06-FRCNN 60.4 63.7 31 27 279 4358 32 203
MOT17-07-FRCNN 44.0 54.9 13 33 279 9110 63 281
MOT17-08-FRCNN 31.9 43.3 23 49 383 13973 35 130
MOT17-12-FRCNN 47.3 58.0 18 47 37 4521 11 84
MOT17-14-FRCNN 36.2 49.0 10 44 629 11061 108 359
MOT17-01-SDP 47.8 57.8 38 42 346 3008 10 95
MOT17-03-SDP 78.2 77.3 62 9 3778 18879 132 16219
MOT17-06-SDP 60.3 65.1 30 29 305 4345 33 144
MOT17-07-SDP 45.8 55.0 13 30 285 8793 71 483
MOT17-08-SDP 34.8 47.7 24 45 429 13288 48 202
MOT17-12-SDP 47.3 60.7 20 46 158 4394 14 85
MOT17-14-SDP 38.3 51.4 9 42 630 10662 109 376

M
O

T
16

MOT16-01 48.3 58.2 35 43 78 3217 10 38
MOT16-03 73.0 69.9 54 11 3732 24329 159 24311
MOT16-06 58.2 64.7 28 35 249 4548 29 113
MOT16-07 45.6 53.4 13 30 189 8637 57 297
MOT16-08 43.4 55.7 29 38 284 9149 32 146
MOT16-12 50.2 64.0 21 43 44 4072 11 68
MOT16-14 36.1 48.8 7 47 268 11449 91 323

2D
M

O
T

15

ADL-Rundle-1 39.6 60.8 41 6 2277 3303 44 325
ADL-Rundle-3 59.2 69.9 52 16 902 3217 29 153
AVG-TownCentre 61.8 67.3 43 15 417 2217 99 20
ETH-Crossing 57.6 69.3 27 35 35 387 3 2
ETH-Jelmoli 51.4 67.1 40 31 520 701 12 20
ETH-Linthescher 53.7 32 21 98 318 3795 21 11
KITTI-16 36.2 32.7 29 6 456 521 108 57
KITTI-19 43.3 49.4 18 27 467 2315 249 135
PETS09-S2L2 56.9 43.6 21 5 476 3531 152 180
TUD-Crossing 88.0 90.9 85 0 64 62 6 13
Venice-1 45.8 62.1 53 18 905 1561 7 30
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5 Conclusions

This work addresses the multiple object tracking problem (MOT): Using sensor data,
all objects of a common object class are to be localized and, additionally, their motion
history is to be captured in the form of trajectories. The automated acquisition of move-
ments as a numerical representation has numerous applications, such as in autonomous
driving, monitoring of safety-relevant areas, and behavior analysis. Therefore, multiple
object tracking has been a focus of research for a long time and numerous methods to
tackle the problem have been developed. This work focuses on MOT based on video
data since video sensors are cheap, widely available, and captured images contain rich
information that helps to tackle the difficulties of MOT.
The commonly used approach of computing object detections in each frame of a video
recording leads to a considerable reduction of the computational costs during the
assignment of objects to the image content. It thus simplifies the computation of
trajectories. However, this implies that the accuracy of such tracking methods depends
substantially on the input detections which is disadvantageous for several reasons: (i)
Errors generated by a detector significantly affect the tracking result. (ii) Using image
features only between detections can be unstable as these pairwise features commonly
rely on certain appearance and motion assumptions between detections that are not
always satisfied. (iii) Ensuring temporal consistency within the data association is
difficult due to the limited remaining information.
In this thesis we demonstrate that by addressing the aforementioned limitations of
current tracking-by-detection methods, significant improvements can be achieved. To
this end, in the first approach of this thesis, a global fusion formulation is presented that
allows object detections to be combined with additional signals so that the dependence
on object detections and on the accuracy of features extracted from the object detections
is reduced. A novel approximate solver adapted to the corresponding optimization
problem is presented that is crucial to obtain near-optimal solutions. The second
main approach presented in this thesis addresses a comprehensive integration of the
spatio-temporal information provided by object detections. A novel MOT formulation
is presented that integrates path connectivity priors and higher-order consistencies. A
global optimal solver for the problem is proposed, making it possible, to our knowledge
for the first time, to compute trajectories from a tracking model with path connectivity
priors and higher-order consistencies without relying on a heuristic solver. We thus argue
that all existing MOT methods do not satisfactorily exploit the available information.
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5 Conclusions

HO-MOT with Signal Fusion

The first part of this thesis addresses the severe dependence of the tracking-by-detection
paradigm on computed detections. To this end, object detections are fused with
additional signals using a global optimization formulation. The fusion result is obtained
from a weighted graph labeling problem in which each input signal is assigned the
corresponding object. Consistency is ensured within each signal and between different
signal types. This allows compensating errors occurring in an individual signal, e.g.,
missing object detections, in contrast to tracking-by-detection based approaches.
In the proposed formulation, all pairwise connections assigned to an object contribute
to the evaluation of a trajectory. Accordingly, it corresponds to an implicit HO-MOT
method. The underlying optimization problem is formulated as a BQP. Since it is
NP-hard, the computation of a solution is difficult. A solver is presented that operates
in the continuous domain by applying the Frank-Wolfe method to the continuous
relaxation. However, a direct application of this solver does not provide a sufficiently
good approximation. Several improvements are proposed that result in the solver
converging faster on the one hand and providing better approximations on the other
hand. In the evaluations of the most difficult sequence of the MOT16 dataset, the
solver provides almost optimal solutions. Moreover, conducted comparisons with a
global optimal BQP solver reveal that the optimal solver delivers a result after 1000
seconds that is considerably worse in terms of objective value and tracking accuracy
than the result of the proposed approximate solver which terminates after 28 seconds. A
vanilla Frank-Wolfe implementation yields a MOTA score of 14.2%. The optimal solver
produces a MOTA score of 24.9% in the given time. The proposed solver improves
considerably upon these results, achieving 27.5% MOTA. In order to separate the
influence of erroneous detections from the quality of the solver, the graph labeling
problem is also evaluated on all sequences of the MOT16 training set using ground truth
people detections. Conducted experiments show that the proposed solver improvements
lead to significantly better solutions on all sequences with respect to the objective value
as well as tracking metrics. For instance, the proposed solver achieves 100% IDF1 on the
MOT16-09 sequence. Without using all proposed solver improvements, a significantly
worse solution with an IDF1 value of 80.6% is achieved. Thus, the proposed solver is
crucial for the application of the fusion formulation in practice. The benefits of fusion
are demonstrated by combining head detections and people detections. Heads can often
be detected even if persons are partially occluded. They also facilitate the detection of
false positive detections that do not go with head detections. Accordingly, the fusion
leads to significantly better tracking results. The method, which we call Frank-Wolfe
Tracker (FWT), evaluated on the MOT16 training data, achieves a reduction of false
positives by more than 50% and an improvement of the MOTA value by 15%. On the
MOT16 and MOT17 test data, FWT delivered state-of-the-art results at the time the
work was published and was able to win the MOT 2017 tracking challenge of the CVPR
2017.
The advantage of signal fusion is also demonstrated by a second method in which video
data is combined with IMU data. Here, it is assumed that each person to be tracked
wears an IMU sensor on his or her back and that the camera is static and calibrated. We
refer to the task of tracking multiple people in a video and simultaneously assigning them
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to IMU sensors as Video Inertial Multiple People Tracking (VIMPT). This task poses a
challenging problem. It is not sufficient to generate trajectories from IMU data and
then map them to image data since the necessary double integration of the acceleration
signal is numerically unstable and initial states are unknown. Instead, 3D orientations
as well as accelerations must be assigned to the 2D image information, which is again a
difficult task on its own since a 2D projection creates ambiguities. In addition, there
are often several persons for whom the orientations as well as accelerations measured at
one point in time are similar.
To resolve these ambiguities, the problem is considered as a weighted graph labeling
problem in which detections are assigned to IMU devices. Therefore, image data must
be linked with the IMU signals, which is mainly performed using two features. First,
the orientation of a person is estimated from the image data of a detection box and
compared to the measurements of the IMUs. For this purpose, a neural network is
presented which corrects perspective effects that depend on the relative position of a
person to the camera. On the test data of the new recorded VIMPT2019 dataset, the
orientation estimation is within an error tolerance of 45◦ and 30◦ in 96.2% and 88.1% of
the estimated cases, respectively. Second, measured accelerations and initial velocities
approximated in the image are used to ensure consistency between assignments of
video content and IMU signals. By embedding these features into the global fusion
formulation, robust trajectories are generated.
The resulting method Video Inertial Tracker (VIT) addresses the aforementioned
problems of the tracking-by-detection paradigm: By integrating actual measured motion
information, VIT is less dependent on predefined motion and appearance models. The
problem of error-prone features extracted from object detections is thus reduced.
This becomes evident in the soccer sequences of the VIMPT2019 dataset. Due to the
characteristics of the recordings (especially abrupt movements and similar appearance
due to soccer jerseys), the implicit assumptions of video-based tracking methods are
violated, reducing the tracking accuracy significantly, so that the compared video-
based MOT methods reach no more than 45.8% IDF1 in the experiments. In contrast,
VIT yields a very high IDF1 value of 91.8%. In addition, VIT significantly reduces
the dependence on object detections through a proposed reconstruction method that
recovers missing detections using the computed trajectories in the video together with
the corresponding IMU data. For example, the IDF1 metric on the VIMPT2019
test data decreases from 91% to 81% when 20% of the detections are (synthetically)
removed. In contrast, the IDF1 value drops dramatically from 78% to 43% when
video-based linear interpolation is employed. Thus, VIT addresses the problems of
the tracking-by-detection paradigm, which exhibits a high dependence on the input
detections. Furthermore, VIT allows identifying for each IMU signal the corresponding
person in the image independent of the outward appearance and across sequences. The
experiments show that the trajectory-to-person assignment accuracy of VIT on the
VIMPT2019 test data is 100%.
Thus, VIT allows identifying persons in a video and tracking them robustly at the
same time. Weaknesses of the tracking-by-detection paradigm (in particular, missing
detections and erroneous edge weights) are effectively addressed by the fusion with
IMU data. We consider the VIMPT task as a useful complement to the MOT problem
provided that the setup is applicable. VIT automatically identifies people in videos,
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maps them to IMU signals, and simultaneously computes all people trajectories using
an MOT formulation.
In summary, the fusion of object detections with additional signals, both additional image
content and additional sensors, effectively addresses disadvantages of the tracking-by-
detection paradigm. By using complementary signals, weaknesses of individual signals
can be compensated and advantages combined. The proposed global fusion formulation
using the novel solver achieves significant improvements over the traditional approach of
using only object detections. By exploiting more of the available information, robustness
to erroneous input is greatly improved.

Lifted Disjoint Paths

The second part of this thesis addresses the limited exploitation of provided information
by tracking-by-detection methods. To this end, a novel data association model, called
Lifted Disjoint Paths (LDP), is introduced which extends the disjoint paths problem by
lifted edges. The model becomes more expressive but retains the natural representation
of trajectories of the disjoint paths formulation.
Ensuring temporal consistency by extracting image features only from object detections
is a strong limitation, challenging, and error-prone. This is particularly severe as existing
MOT methods do not fully exploit the information provided by the object detections.
Some of the previous works use a simple assignment model, which can be solved to
global optimality, but do not exploit long-range interactions. Other works use complex
HO-MOT models but then rely on heuristic solvers. This has decisive disadvantages:
Many such methods depend on an initial solution, which can have a negative impact on
the robustness if not chosen properly for each problem instance. Most importantly, a
heuristic solver usually does not provide an optimal solution. Therefore, despite many
decades of research in MOT, input information for existing methods is exploited only
to a limited extent. As a result, misleading weight costs, false positive as well as false
negative detections cannot be properly recognized and corrected which deteriorates the
accuracy of trajectories.
In contrast, the proposed LDP tracker incorporates, to our knowledge, the first global
optimization method that integrates long-range interactions. Since no errors are gener-
ated in the process, improvements in the input data (better detection quality and more
accurate features) lead directly to improvements in tracking accuracy. The proposed
optimal solver operates on a BLP formulation of the LDP problem. Several linear
relaxations of the BLP are derived and integrated into efficient separation algorithms.
Optimal solutions are obtained from a cutting-plane algorithm. The integration of lifted
edges in LDP allows integrating path connectivity priors. Consequently, long-term
temporal information is robustly integrated and long-range interactions are exploited.
To demonstrate the advantage of LDP, we propose to fuse different features in a neural
network producing weight costs for the data association problem. Employed features
can be categorized into (i) spatio-temporal cues, (ii) appearance cues (based on Deep-
Matching and a re-identification method), and (iii) novel global context normalization
features that evaluate the discriminative power of pairwise costs within a global context
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between frames. The fusion of all these cues results in accurate and robust estimates of
whether two detections belong to the same person up to a time interval of 2 seconds.
Conducted experiments show the advantage of LDP. The assignment quality is analyzed
on the MOT17 training dataset. When using edges that connect detections with
a maximum time difference of 0.3 seconds, the IDF1 metric yields 55.7%. Using
all edges up to a time interval of 2 seconds, the metric is significantly improved to
64.3%, demonstrating that LDP can effectively exploit long-term temporal information
and long-range interactions. Furthermore, the data association is near-optimal, as a
maximum IDF1 of 66.8% is possible in the experiment with the given detections.
Finally, the evaluations on the test data of MOT15/16/17 show that LDP has sig-
nificantly improved the state of the art, when the work was published. On MOT15,
MOT16, and MOT17, the improvement in IDF1 relative to the best competing method
is 13.3, 12.2, and 13.3 percentage points, respectively.
Overall, LDP produces significantly more consistent trajectories than competing methods
thanks to the integration of long-range interactions. Crucial for LDP is the novel global
solver that, to our knowledge, is the first to provide assignments for an implicit HO-
MOT model with long-range interactions without a heuristic solver. Analyses also
show that LDP leads to near-optimal data association results. Major improvements
for tracking-by-detection methods on the used benchmarks can therefore no longer be
expected from an improved data association but from the use of better detections as
well as improved methods that reconstruct missing detections within a trajectory.

Future Work

In this work, we present higher-order MOT methods that improve the tracking accuracy
of existing approaches by better exploiting available information. Nevertheless, the
proposed methods are subject to some limitations that can be addressed in future work.
We recall that the number of objects that appear in a recording must be upper bounded
in the graph labeling formulation of Chapter 3. For the tracker FWT, finding a
sufficiently large bound could be automated, e.g., by checking whether increasing the
bound leads to an improved objective value. Note, however, that due to the hierarchical
solving scheme, the upper bound only needs to be roughly estimated. Alternatively,
the LDP method of Chapter 4 performs MOT without the need of knowing a priori
the number of objects to be tracked. In contrast, the VIMPT setup assumes that each
person to be tracked wears an IMU sensor. Thus, VIMPT provides by its setup the
upper bound and the number of persons to be tracked. Furthermore, VIT could be
extended to additionally track people in a video that are not equipped with an IMU
sensor. Since VIT allows for the identification of a trajectory that matches an IMU
sensor, these trajectories could be removed so that a purely video-based MOT method
could be applied on the remaining detections.
The combination of head detections with person detections in FWT allows compensating
errors caused by the object detector or weight costs. However, conducted evaluations
reveal that relying essentially on DeepMatching is subject to identity switches, as
DeepMatching does not differentiate if the image content within a detection belongs
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to the background or another object. Accordingly, the fusion framework benefits from
more advanced image features around a head to make re-identification more stable.
Also, improvements could be achieved by extracting a foreground/background mask for
each person detection [263] or in a post-processing step where tracklet consistency is
checked. In addition, for recordings taken from low altitude, the head of a partially
occluded person is more likely to be missed by the head detector so that the advantage
of the fusion diminishes. This limitation could be compensated by augmenting people
detections with other signals, e.g., joint detections [101] or segmentation masks [190].
Moreover, since the global fusion formulation is independent of the number of signals
to be fused, the method could be further improved by fusing even more input signals at
once.
The accuracy of the proposed MOT methods of this thesis can be further improved
by incorporating edges connecting detections over even longer temporal distances
or using multiple signal types. However, constructing corresponding edges weights
is complicated. This could be addressed by transforming the proposed approaches
into end-to-end learnable MOT methods that are directly trained on tracking metrics,
inspired by the current progress in this direction [104, 264] for other tracking approaches.
To this end, a differentiable Frank-Wolfe solver [265] could be used for the methods of
Chapter 3, and a method to perform differentiation of combinatorial solvers [266] for
the LDP method of Chapter 4.
VIT shows some limitations with respect to practicability as cameras need to be
calibrated. This could be avoided if the comparisons between IMU measurements and
corresponding estimations from image data were not made independently frame by
frame but directly on entire tracklets. This avoids the registration of coordinate systems
as it allows to reason from relative motions, similar to Sun et al. [267]. Also, attention
mechanisms, e.g., in the spirit of Xu et al. [82], could be used to perform orientation
estimation only for those detections of a tracklet that do not contain impaired visual
information, such as partial occlusions or motion blur.
Evaluations of VIT show that a fusion of video data with IMU signals improves MPT
methods considerably. We note that the same concept could be applied to track
other objects which would extend the setup to Video Inertial Multiple Object Tracking
(VIMOT). This is especially interesting for cases in which it is very hard to distinguish
individual objects. One application in mind is tracking and identifying individual
animals in a herd.
The extension of the disjoint paths problem by lifted edges in Chapter 4 leads to an
accurate HO-MOT method. Base and lifted edges are constructed in the same way
(with respect to costs and temporal distances). However, the formulation also allows
treating the two edge types differently, for example, by distinguishing between short
edges in the base graph and long edges with uncertain costs in the lifted graph. Future
research can therefore look more closely at the interaction between the two edge types,
which could lead to even better tracking results.
The LDP method is the first to solve HO-MOT problem instances globally. Yet, it is
limited by size of the problem instances. To make HO-MOT scalable to even larger
instances, finding tighter relaxations for the LDP problem could decrease runtime as
well as an approximate LDP solver, e.g., based on dual decomposition [123, 124, 268],
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to quickly generate upper bounds.
Regarding the optimization problems proposed in this thesis, it should be noted that
the corresponding solver from Chapter 3 for the weighted graph labeling problem and
the solver from Chapter 4 for the lifted disjoint paths problem are not inherently tied to
MOT. For instance, the Frank-Wolfe solver could potentially be used for multi-camera
MOT [269] or to compute superpixels [270]. Additionally, the LDP problem poses a
new NP-hard decision problem that could get attention in computational complexity
theory. We anticipate that these solvers will stimulate new research in various areas of
computer vision and beyond.
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