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Abstract

This thesis deals with the development and improvement of maximum a posteri-
ori (MAP) inference approaches in probabilistic graphical models (PGMs) and their
application on challenging computer vision problems.

Many challenging computer vision tasks are modeled as MAP inference problems
in PGMs. MAP inference is the problem of finding the most probable configuration
of random variables for a given target problem in the exponentially large space of
possible outcomes. PGMs are a family of powerful modeling languages which unify
two fundamental concepts: uncertainty and graphical models. Many real-world
phenomena can be modeled in form of probability distributions over continuous-
valued random variables. A PGM is a language to model these distributions which
typically involve a very large number of random variables. Conditional independence
assumptions of the random variables play a key role in retrieving tractable models.

In the first part of this thesis, a general purpose framework for MAP inference in
PGMs over continuous-valued random variables based on stochastic inference meth-
ods is developed. A novel approach, the slice-sampling particle belief propagation
(S-PBP) algorithm, is developed which achieves more accurate and faster MAP es-
timates than heuristic sampling or Metropolis-Hastings sampling approaches. The
proposed approach generates sample proposals from the max-marginal distributions
using the slice sampling algorithm. By exploiting the message-passing nature of the
applied MAP inference approach, the dependence on hyper-parameters is reduced
and a significant speedup is achieved.

The second part of this thesis is dedicated to the application of the developed
inference approaches to computer vision applications. Hereby, the main focus is
in online tracking of articulated objects. The visual tracking of previously unseen
objects in videos or video streams is a fundamental task in computer vision. A novel
framework is proposed for part-based object tracking. The problem of automatic
model initialization and the reduction of tracker drift by incorporating higher-order
constraints and image segmentation cues to the tracker is addressed. A global
consistency prior is proposed which enables inference of both part-based tracking
and image segmentation in a joint probabilistic model. Experiments show that the
joint formulation leads to improved image segmentation results as well as reduced
drift in online object tracking.

Keywords: computer vision, probabilistic graphical models, MAP inference, Mar-
kov-chain Monte-Carlo, slice sampling, product slice sampling, articulated online
tracking, visual object tracking, pose estimation
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X1V Symbols and Notation

Kurzfassung

Das Ziel dieser Arbeit ist die Erstellung und Verbesserung von Optimierungsver-
fahren zur Inferenz in probabilistischen graphischen Modellen (PGMs) und deren
Anwendung auf Probleme im Bereich Computer-Vision.

Viele Computer-Vision Probleme werden heutzutage als MAP-Inferenz Probleme
in PGMs behandelt. MAP-Inferenz beschreibt hierbei das Finden der wahrscheinlich-
sten Kombination von Werten im exponentiell wachsenden Raum méglicher Losun-
gen eines Problems. Probabilistische graphische Modelle sind eine Familie von Mod-
ellierungssprachen zur Beschreibung von Verbundwahrscheinlichkei-ten iiber einer
Menge von Zufallsvariablen. Hierbei werden zwei grundlegende Prinzipien miteinan-
der vereint: Die Modellierung von Unsicherheiten und die Modellierung (bedingter)
Unabhéngigkeit von Zufallsvariablen mittels Knoten und Kanten in einem Graph.

Der erste Teil dieser Arbeit behandelt das Problem der MAP-Inferenz bei reell-
wertigen Zufallsvariablen mit Hilfe stochastischer Inferenzverfahren. Slice-sampling
particle belief propagation (S-PBP) ist ein neu entwickelter Ansatz, welcher eine
genauere MAP-Schétzung in kiirzerer Zeit erlaubt als andere stochastische Ver-
fahren. Eine Kernkomponente stochastischer Suchverfahren ist die Erzeugung von
Stichproben im Losungsraum. Bisherige Verfahren sind entweder heuristisch mo-
tiviert oder verwenden Vorschlagsverteilungen deren Parameter Problem-abhéngig
eingestellt werden miissen. Der in dieser Arbeit vorgestellte Ansatz erzeugt Stich-
proben direkt aus den Max-Marginal-Verteilungen des graphischen Modells mit Hilfe
des Slice-Sampling Verfahrens. Durch Ausnutzung des Message-Passing Mechanis-
mus der verwendeten Optimierungsverfahren wird die Parameter-Abhéangigkeit ver-
ringert und eine Beschleunigung des Verfahrens erreicht.

Im zweiten Teil der Arbeit werden die zuvor entwickelten Inferenzverfahren auf
Probleme im Bereich Computer-Vision angewandt. Das Hauptaugenmerk liegt hier-
bei auf der Online-Verfolgung artikulierter Objekte in Videosequenzen. Die visuelle
Verfolgung zuvor unbekannter Objekte in Videos ist ein fundamentales Problem
des maschinellen Sehens. Es wird ein neuer Ansatz zur Teile-basierten Objektver-
folgung entwickelt. Das Problem der automatischen Modellinitialisierung und der
Reduktion des Driftens in Teile-basierten Modellen wird durch die Integration von
Bildsegmentierung und zusétzlicher Bedingungen hoherer Ordnung behandelt. Es
wird ein globaler Konsistenzterm vorgeschlagen, der die Teile-basierte Poseschitzung
und die Bildsegmentierung in einem gemeinsamen probabilistischen Modell vereint.
Experimente zeigen das die gemeinsame Schatzung von Pose und Segmentierung
zum einen die Bildsegmentierung verbessert, als auch das Driften der geschatzten
Pose effektiv verringert.

Stichworte: maschinelles Sehen, Probabilistische graphische Modelle, MAP-In-
ferenz, Markov-chain Monte-Carlo, Slice-Sampling, Produkt-Slice-Sampling, Artiku-
lierte Objektverfolgung, Visuelle Objektverfolgung, Poseschétzung
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2 Chapter 1 Introduction

Coarse |

Fine

Figure 1.1: Object tracking with varying level of detail. Top: Tracking of the coarse
extents of an object (the bounding box, visualized as a red rectangle). Middle:
Tracking of an object which is decomposed into smaller parts (green rectangles)
which are related to each other (blue lines). Bottom: Fine-scale part-based tracking
of articulated objects (parts are color-coded from the head to tail fading from red
over blue to green).

1.1 Motivation

The field of computer vision deals with constructing theories and algorithms towards
automatic processing and interpretation of visual data. The amount of generated
video data has steadily grown over the last decades due to the availability of cheap
sensors and the presence of fast networks. For example, three hundred hours of
video was uploaded per minute on the popular online video platform YouTube in
2016 [20]. Comparing to four years ago, the upload rate increased by 400% [21].

One of the most fundamental problems in computer vision is the problem of
following a single object in a video, also known as visual object tracking. As shown in
Fig. 1.1, object tracking can be handled in different granularities. From coarse single
bounding-box estimates, over semantic parts decomposition, up to fine-grained pixel-
wise tracking.

Using special sensor systems such as the Kinect [103] which fuse visual cameras
with depth sensors, it is already possible to robustly extract human pose estimates
with precise positions of the limbs in real time [43]. These systems have a limited
sensor range and do not work outdoors with direct sunlight due to its infra-red
pattern projection technique. Furthermore, these systems require a large database

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
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of training images with manually annotated poses. The construction of a training
database is expensive and already existing datasets may not contain the target
object types or have incompatible groundtruth annotations (such as bounding-box
annotations instead of part annotations).

The problem of tracking arbitrary objects with fine-detailed position estimates
of all parts without relying on restrictive offline training is widely unsolved. Prior
methods are either detector-based and hence require as large as possible training
database with manually annotated part poses [35], are restricted to coarse bounding-
box estimates only [70], or use registration-based methods to track the object surface
[100]. The latter approach is limited to (in-)extensible surfaces. The handling of
occlusions or the expression of articulated motion is a major problem in registration-
based approaches.

In this thesis, part-based approaches are developed for tracking of articulated
objects under the regime of PGMs. The focus here is on online-tracking based ap-
proaches. That is, the object appearance is unknown a priori and has to be learnt
from a manual initialization in the first video frame.

The contribution of this thesis is two-fold. First, efficient algorithms are presented
to perform inference in PGMs. PGMs are a family of powerful languages for modeling
complex systems over a large number of variables using the notion of probabilis-
tic uncertainty and (conditional) independence assumptions. Hereby, the focus in
this thesis is on retrieving the most likely configuration of unobserved (or hidden)
variables depending on the observed variables (the input data). This is also known
as MAP inference. The second contribution of this thesis is to apply the developed
methods for inference in PGMs to computer vision problems.

The object tracking problem is an instance of the class of inverse problems. Given

an observation d = (di,...,dy) (for instance, a video sequence) and a model of
the underlying problem f (the object tracking model) one wants to infer the model
parameter values x = (z1,...,2y) (the object part poses) which describe the obser-

vation most likely:
x = f(d). (1.1)

This is in contrast to forward problems which map model parameters to (possibly
perturbed) observations:
d=f(x)+v (1.2)

with noise v. Many inverse problems of interest (especially in computer vision) are
ill-posed [42]. That is, a solution x of Eq. (1.1) might not be unique and may jump
with slightly perturbed input d. This is an undesired property since, for example,
one might not expect a completely different pose estimate when only changing a
single pixel in the image. Ill-posed problems can be (approximately) transformed
into well-posed problems by introducing the concept of regularization [110].

A related issue is that observations d are often noisy and corrupted (for example,
thermal noise of the image sensors and compression artifacts). Furthermore due to

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
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Graphical Model

p(d| fu-:ye) p(d | 1:Eye)

%z
“,

%
P(d | Tmoutn)

P(d | Zmoutn)

Likelihood
Posterior

/\ P(Zmoutn | d)

x-Position x-Position

Figure 1.2: Left: probabilistic graphical model of a part-based face localization ap-
plication. Middle: the part likelihood (bottom) of the mouth location (red box).
Right: the posterior (bottom) of the mouth location (red box) under consideration
of all part locations (green and yellow box) and prior information about the relative
part locations (blue lines).

computational considerations, the model under consideration can only be a simplis-
tic approximation of the underlying true creation process. All these factors induce
uncertainty to the inference process. Uncertainty can be modeled via the intro-
duction of probabilities. The probabilistic counterpart to Eq. (1.1) is the maximum
likelihood estimator:

Jax (dvy.. ydy | @1, TN)- (1.3)

Regularization then corresponds to introducing a prior p(z1, ..., zy), leading to the
MAP estimator:

I{I}%{Np(dl, coodayr | @y en)p(T, . TN, (1.4)

In PGMs [61], complex global relationships between the latent variables are mod-
eled via simpler local variable interactions. Graph notations such as nodes and edges
are used to model independence assumptions which correspond to a factorization of
the joint distribution into a set of local functions p(x | d) = [, ¢.(x. | d). Figure 1.2
shows an example graphical model for part-based face localization in a single frame.
The posterior is proportional to the product of a likelihood term p(d | x) consisting
of independent part-wise appearance terms and a prior p(x) consisting of pairwise
functions encoding the spatial relationships of the parts.

3 am 24012026, 01:49:56.
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The part likelihoods can have a complex, multi-modal shape, for instance due
to miss-detections, occlusions, or image noise. A parametrization via uni-modal
Gaussian distributions is hence inappropriate. Furthermore, a naive discretization
of the search space suffers from low-quality approximation of the original continuous
objective function with respect to the number of discretization steps. A large number
of discretization steps are required to cover the regions of high probability. On
the other hand, many steps are wasted in the (often much larger) regions of low
probability.

In this thesis, stochastic inference methods based on Markov chain Monte-Carlo
(MCMC) simulation [3, 88] are applied for MAP inference in PGMs with continuous
state space. For MCMC, the generation of sample proposals is of fundamental impor-
tance for efficient state space exploration. We show that the structure of the MAP
inference method can be exploited for generating high-informative sample proposals
and hence to accelerate MAP inference in continuous state space.

1.2 Contributions

The main contributions of this thesis are grouped in two parts:
o Stochastic inference in graphical models with continuous variables, and
« online part-based object tracking.

In the first part, the particle max-product belief propagation framework is studied
and methods for faster state space exploration are developed. An alternative, more
efficient particle sampling method based on product slice-sampling is proposed. In
the second part, the proposed inference methods are applied to the task of part-based
object tracking. A framework for object tracking based on probabilistic graphical
models is developed and extended by (semi-) automatic model initialization and
occlusion reasoning towards long-term object tracking. The two contributions are
summarized in the following.

Stochastic Inference in Graphical Models with Continuous Variables.
Message passing mechanisms are at the heart of many variational inference ap-
proaches in probabilistic graphical models. Hereby, messages are iteratively sent
between nodes and edges of a graph until an equilibrium is reached. Since the mes-
sages themself are functions and can be of arbitrary shape, a compact (approximate)
representation is required. In this work, particle sampling is used to approximate
the messages. The approximation quality highly depends on the particle sampling
procedure. Usually, heuristic sampling or Metropolis-Hastings based Markov chain
Monte Carlo simulation is used to generate particle proposals. Hereby, new particles
are sampled from a conditional distribution, which is not the target distribution.
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This sampling process needs to be repeated several times in order to retrieve sam-
ples from the desired target distribution. The number of required iterations is called
burn-in period and highly depends on the correlation of the sampled particles. Re-
ducing this correlation is at the heart of effective particle sampling.

We propose to use an alternative approach for particle sampling, called slice
sampling. This method is more robust towards hyper-parameter selection than
Metropolis-Hastings sampling. Additionally to that, we show how to exploit the
structure of the message passing scheme and apply product slice sampling instead
of black-box sampling. This eliminates the dependence on hyper-parameters com-
pletely. The resulting approach, referred to as slice-sampling particle belief propaga-
tion (S-PBP), leads to faster convergence with a shorter burn-in period. We further
show increased empirical performance on an image denoising problem.

As a second contribution, a diverse particle selection method is integrated in
the S-PBP framework. We show that diverse particle selection with S-PBP proposals
leads to higher-probable MAP estimates in less iterations than other heuristic sample
proposal methods.

Summary of contributions:

o The slice-sampling particle belief propagation (S-PBP) approach is developed
and compared to Metropolis-Hastings sampling.

e S-PBP is combined with a diverse particle selection approach. This method
performs favorably towards heuristic sample proposals.

Part-Based Object Tracking. The following challenges in online multi-part ob-
ject tracking are addressed: (i) Tracking of previously unseen objects without re-
sorting to costly offline-training, (ii) automatic model initialization from a single
reference image, and (iii) occlusion reasoning for each object part.

The first part is addressed by using a deformable parts model (DPM) with HOG
features and template matching. By using the S-PBP approach for MAP inference,
we obtain highly accurate tracking results.

Based on this approach, a real-time tracking system is developed and integrated
in a demonstrator application. Hereby, a simple game is controlled only by visual
input from a consumer webcam.

The second part deals with automatic model initialization. Hereby, a foreground/
background mask is used to automatically construct a (multi-scale) graphical model.

Occlusion reasoning is handled by proposing a novel global visibility prior. The
standard deformable parts model is extended by auxiliary variables encoding the
visibility of each part. Tree-structured deformable parts models suffer from the
well-known double-counting problem. Due to the decoupling of the model parts, it
often happens that certain image areas are actually explained twice by two parts,
whereby other image areas are completely ignored. The global visibility prior can
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prevent such double-counting by enforcing that an image area can be fully covered
by at most one part. Furthermore, the global visibility prior allows the incorporation
of foreground/background segmentation cues.

The proposed method is applied on challenging self-recorded sequences to perform
articulated object tracking of highly deformable objects. Furthermore, we evaluate
our method on a state-of-the-art online object tracking benchmark showing compa-
rable performance to state-of-the-art discriminative trackers.

Summary of contributions:

o Fine-grained, multi-part object tracking of previously unseen objects.
o Automatic model initialization from foreground mask.

» Joint pose estimation, image segmentation, and visibility reasoning using a
global shape prior.

1.3 Structure of the thesis

In the following, the structure of this thesis is summarized. A graphical overview is
given in Fig. 1.3.

Chapter 2 The related work in (multi-part) object tracking is summarized. In
a second part, the state-of-the-art of inference in probabilistic graphical models
is shortly reviewed and the various concepts of exploring large state spaces are
discussed.

Chapter 3 Relevant basics for this thesis is introduced in this chapter. This
includes a condensed introduction to probabilistic graphical models and relevant
techniques for marginal and MAP inference. Furthermore, an introduction to particle
sampling strategies in graphical models is given.

Chapter 4 This chapter contains the first part of main contributions of this thesis.
A novel inference algorithm called slice-sampling particle belief propagation (S-PBP)
is introduced. It is shown that the structure of max-product messages in the belief
propagation framework enables efficient particle sampling using the product slice
sampler which is introduced in the previous chapter. The performance of the pro-
posed methods is evaluated empirically on synthetic datasets. The MCMC random
walk behavior of S-PBP and MH-PBP proposals is compared. Furthermore, S-PBP
and heuristic proposals are compared in a diverse particle selection framework.
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Chapter 5 This chapter introduces a multi-part object tracking framework. The
inference techniques of the previous chapter are applied. First, it is shown how
graphical models can be used for object tracking with manual initialization. The sec-
ond contribution of this chapter is an approach based on a foreground/background
segmentation mask which allows semi-automatic initialization of the object tracking
framework. We propose a global visibility prior for joint image segmentation, track-
ing, and part visibility estimation. Graph decomposition methods are combined with
S-PBP which allows efficient inference in the high-order graphical models. Our pro-
posed multi-part object tracker framework is evaluated on a state-of-the-art online
tracking benchmark dataset as well as on self-recorded, challenging video sequences
of highly articulated objects.

Chapter 6 Contributions and discussions of the previous chapters are summarized
and concluded. Interesting directions for future research are given.

Appendix A A use case for medical image processing is presented in the appendix
on the topic of motion compensation and image undistortion of 3D optical coherence
tomography (OCT) images. The motion compensation and image undistortion prob-
lems are formulated as MAP inference problems in continuous space PGMs. Motion
compensation is solved via approximation as a Gaussian MRF. Image undistortion
is obtained by skin surface segmentation (using a MRF) and fitting of an a priori
known percutaneous implant model.
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1.4 List of Publications

The following papers have been published by the author during the time of the
dissertation. The first two papers cover the topic of non-rigid online object tracking.
The focus is set on developing efficient inference algorithms in continuous state PGMs.
Chapters 4 and 5 is based on these publications. The last three publications are
in cooperation with the Laser Zentrum Hannover (LZH) and handle the topic of
image undistortion and motion compensation of in-vivo OCT scans. These papers
concentrate on the modeling aspect rather than the development of sophisticated
inference techniques. This work is summarized in Appendix A.1.

[87] Oliver Miiller, Michael Y. Yang, Bodo Rosenhahn. Slice Sampling Parti-
cle Belief Propagation. In: Proc. of the IEEE International Conference on
Computer Vision (ICCV), December 2013.

Inference in continuous label Markov random fields is a challenging task. We
use particle belief propagation (PBP) for solving the inference problem in con-
tinuous label space. Sampling particles from the belief distribution is typically
done by using Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC)
methods which involves sampling from a proposal distribution. This proposal
distribution has to be carefully designed depending on the particular model
and input data to achieve fast convergence. We propose to avoid dependence
on a proposal distribution by introducing a slice sampling based PBP algo-
rithm. The proposed approach shows superior convergence performance on
an image denoising toy example. Our findings are validated on a challenging
relational 2D feature tracking application.

[86] Oliver Miiller, Bodo Rosenhahn. Global Consistency Priors for Joint Part-
based Object Tracking and Image Segmentation (Accepted). Winter Confer-
ence on Applications of Computer Vision (WACV), 2017.

Tracking of previously unseen, articulated objects is an active research area.
Recently, deformable parts model (DPM) have been used to improve the online
tracking performance for bounding-box trackers. We extend the DPM with
global priors which enforce consistency with foreground/background segmen-
tation cues. We propose a Dual Decomposition approach and show how to
efficiently solve the high-order coupling constraints as a feasible sub-problem.
The proposed approach is evaluated on the VOT online tracking benchmark,
outperforming the baseline in both tracking accuracy and robustness. We fur-
ther show that in presence of stable image segmentation cues, the flexibility
of a generic DPM generated from a single reference frame can be improved by
introducing the concept of part visibility, the visibility-aware DPM (VDPM).
This allows for fine-grained articulated object tracking using an automatically
generated DPM from a single template image.
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(84]

(85]

(29]

Oliver Miiller, Sabine Donner, Tobias Klinder, Ralf Dragon, Ivonne Bartsch,
Frank Witte, Alexander Kriiger, Alexander Heisterkamp, Bodo Rosenhahn.
Model Based 3D Segmentation and OCT Image Undistortion of Percutaneous
Implants. In: Proc. of Medical Image Computing and Computer-Assisted In-
tervention, 14th International Conference (MICCAI), Lecture Notes in Com-
puter Science (LNCS), September 2011.

Optical Coherence Tomography (OCT) is a noninvasive imaging technique
which is used here for in vivo biocompatibility studies of percutaneous im-
plants. A prerequisite for a morphometric analysis of the OCT images is
the correction of optical distortions caused by the index of refraction in the
tissue. We propose a fully automatic approach for 3D segmentation of per-
cutaneous implants using Markov random fields with application to refractive
image undistortion. Refraction correction is done by using the subcutaneous
implant base as a prior for model based estimation of the refractive index using
a generalized Hough transform. Experiments show the competitiveness of our
algorithm towards manual segmentations done by experts.

Oliver Miiller, Sabine Donner, Tobias Klinder, Ivonne Bartsch, Alexander
Kriiger, Alexander Heisterkamp, Bodo Rosenhahn. Compensating motion ar-
tifacts of 3D in vivo SD-OCT scans. In: Proc. of Medical Image Comput-
ing and Computer-Assisted Intervention, 15th International Conference (MIC-
CAI), Lecture Notes in Computer Science (LNCS), October 2012.

‘We propose a probabilistic approach for compensating motion artifacts in 3D
in vivo SD-OCT (spectral-domain optical coherence tomography) tomographs.
Subject movement causing axial image shifting is a major problem for in vivo
imaging. Our technique is applied to analyze the tissue at percutaneous im-
plants recorded with SD-OCT in 3D. The key challenge is to distinguish be-
tween motion and the natural 3D spatial structure of the scanned subject.
To achieve this, the motion estimation problem is formulated as a conditional
random field (CRF). For efficient inference, the CRF is approximated by a
Gaussian Markov random field. The method is verified on synthetic datasets
and applied on noisy in vivo recordings showing significant reduction of motion
artifacts while preserving the tissue geometry.

Sabine Donner, Oliver Miiller, Frank Witte, Ivonne Bartsch, Elmar Will-
bold, Tammo Ripken, Alexander Heisterkamp, Bodo Rosenhahn, Alexander
Kriiger. In situ optical coherence tomography of percutaneous implant-tissue
interfaces in a murine model. Biomedical Engineering, De Gruyter, Karlsruhe,
May 2013.

Novel surface coatings of percutaneous implants need to be tested in bio-
compatibility studies. The use of animal models for testing usually involves
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numerous lethal biopsies for the analysis of the implant-tissue interface. In
this study, optical coherence tomography (OCT) was used to monitor the re-
action of the skin to a percutaneous implant in an animal model of hairless
but immunocompetent mice. In vivo optical biopsies with OCT were taken at
days 7 and 21 after implantation and post mortem on the day of noticeable
inflammation. A Fourier-domain OCT was programmed for spoke pattern
scanning schemes centered at the implant midpoint to reduce motion artifacts
during in vivo imaging. Image segmentation allowed the automatic detection
and morphometric analysis of the skin contour and the subcutaneous implant
anchor. On the basis of the segmentation, the overall refractive index of the
tissue within one OCT data set was estimated as a free parameter of a fitting
algorithm, which corrects for the curved distortion of the planar implant base
in the OCT images. OCT in combination with the spoke scanning scheme
and image processing provided time-resolved three-dimensional optical biop-
sies around the implants to assess tissue morphology.

Additional papers from collaborations with group members.

[114]

[23]

Karsten Vogt, Oliver Miiller, Jorn Ostermann. Facial Landmark Localiza-
tion using Robust Relationship Priors and Approximative Gibbs Sampling.
In: Proc. of Advances in Visual Computing, December 2015.

We tackle the facial landmark localization problem as an inference problem
over a Markov Random Field. Efficient inference is implemented using Gibbs
sampling with approximated full conditional distributions in a latent variable
model. This approximation allows us to improve the runtime performance
1000-fold over classical formulations with no perceptible loss in accuracy. The
exceptional robustness of our method is realized by utilizing a L1 -loss function
and via our new robust shape model based on pairwise topological constraints.
Compared with competing methods, our algorithm does not require any prior
knowledge or initial guess about the location, scale or pose of the face.

Kai Cordes, Oliver Miiller, Bodo Rosenhahn, Jérn Ostermann. HALF-SIFT:
High-Accurate Localized Features for SIFT. In: Proc. of the 22nd IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Workshop on
Feature Detectors and Descriptors: The State Of The Art and Beyond, June
2009.

In this paper, the accuracy of feature points in images detected by the Scale
Invariant Featuer Transform (SIFT) is analyzed. It is shown that there is
a systematic error in the feature point localization. The systematic error is
caused by the improper subpel and subscale estimation, an interpolation with
a parabolic function. To avoid the systematic error, the detection of High-
Accurate Localized Features (HALF) is proposed. We present two models
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(24]

for the localization of a feature point in the scale-space, a Gaussian and a
Difference of Gaussians based model function. For evaluation, ground truth
image data is synthesized to experimentally prove the systematic error of SIFT
and to show that the error is eliminated using HALF. Experiments with natural
image data show that the proposed methods increase the accuracy of the
feature point positions by 13.9 % using the Gaussian and by 15.6 % using the
Difference of Gaussians model.

Kai Cordes, Oliver Miiller, Bodo Rosenhahn, Jérn Ostermann. Bivariate
Feature Localization for SIFT Assuming a Gaussian Feature Shape. In: Proc.
of Advances in Visual Computing, 7th International Symposium (ISVC), Lec-
ture Notes in Computer Science (LNCS), November 2010.

In this paper, the well-known SIFT detector is extended with a bivariate fea-
ture localization. This is done by using function models that assume a Gaus-
sian feature shape for the detected features. As function models we propose (a)
a bivariate Gaussian and (b) a Difference of Gaussians. The proposed detector
has all properties of SIFT, but provides invariance to affine transformations
and blurring. It shows superior performance for strong viewpoint changes com-
pared to the original SIFT. Compared to the most accurate affine invariant
detectors, it provides competitive results for the standard test scenarios while
performing superior in case of motion blur in video sequences.

Kai Cordes, Oliver Miiller, Bodo Rosenhahn, Jérn Ostermann. Feature Tra-
jectory Retrieval with Application to Accurate Structure and Motion Recov-
ery. In: Proc. of Advances in Visual Computing, 7th International Symposium
(ISVC), Lecture Notes in Computer Science (LNCS), September 2011.

Common techniques in structure from motion do not explicitly handle fore-
ground occlusions and disocclusions, leading to several trajectories of a single
3D point. Hence, different discontinued trajectories induce a set of (more in-
accurate) 3D points instead of a single 3D point, so that it is highly desirable
to enforce long continuous trajectories which automatically bridge occlusions
after a re-identification step. The solution proposed in this paper is to connect
features in the current image to trajectories which discontinued earlier during
the tracking. This is done using a correspondence analysis which is designed
for wide baselines and an outlier elimination strategy using the epipolar geom-
etry. The reference to the 3D object points can be used as a new constraint in
the bundle adjustment. The feature localization is done using the SIF'T detec-
tor extended by a Gaussian approximation of the gradient image signal. This
technique provides the robustness of SIFT coupled with increased localization
accuracy.

Our results show that the reconstruction can be drastically improved and
the drift is reduced, especially in sequences with occlusions resulting from
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foreground objects. In scenarios with large occlusions, the new approach leads
to reliable and accurate results while a standard reference method fails.
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Figure 2.1: Workflow of (a) discriminative pose estimation methods and (b) online
tracking methods.

The overview of related work starts with the state-of-the-art in part-based object
tracking and pose estimation in section 2.1. Following that, the related work in
discrete and continuous MAP inference in probabilistic graphical models is summa-
rized in section 2.2. These approaches are finally set into context with the proposed
methods in this thesis.

2.1 Object Tracking

Visual object tracking is a fundamental problem in computer vision. The goal is
to estimate the state of a target in each frame of a given video or image sequence.
Hereby, the target can be either manually selected in the first frame of the sequence
[124, 69], or can be automatically detected using previously trained object detectors.

Object tracking and pose estimation are highly related computer vision tasks.
Pose estimation is the problem of retrieving the location and orientation (i.e., the
pose) of each body part of a target object from a single image. Object trackers work
on image sequences or videos, where the same (previously annotated or automati-
cally detected) target is to be followed. We start by examining relevant literature
in the field of single frame pose estimation. Following this, the literature in ob-
ject tracking is summarized and grouped in three categories: Multi-object tracking,
online tracking, and articulated tracking.

Deformable part-based models for pose estimation. The literature in de-
formable parts models (DPMs) is vast [37, 95, 104, 60, 120, 4, 39, 119, 125, 31, 34,
102, 74, 93, 126, 135, 94, 32] and an extensive discussion of the progress this topic
has made over the last decades is out of scope. A survey of part-based pose esti-
mation methods specialized to human poses can be found in [78]. The majority of
approaches are based on pictorial structures [37]. Here, a target object is decom-
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Figure 2.2: Pose estimation models of varying granularity.

posed in semantically meaningful object parts which are connected by spring-like
forces [37, 104, 120, 4, 39, 119, 34, 93, 78] (cf. Fig. 2.2, the leftmost picture). The
flexible mixtures of parts model [125, 31, 102, 74, 126, 32| relaxes the semantic cor-
respondence to body parts by approximating a body limb by a mixture model of
smaller part patches (Fig. 2.2, the two rightmost pictures).

DPMs are driven by local appearance models which provide a score specifying
how likely a particular part (for instance a body limb) is in a certain pose in the
target image (likelihood). The part pose can be parametrized for instance by an
(z,y) center position, orientation, scale, foreshortening and so on. Furthermore,
contextual information in form of a prior is used to constrain the relative part
positions to each other. The priors often include kinematic constraints (the left
lower arm should be connected to the left upper arm). The various implementations
vary in the model parts semantics, the part appearance features, as well as the part
pose priors.

DPMs usually require a carefully designed supervised training on a huge set of
manually annotated images (cf. the pose estimation workflow in Fig. 2.1a). This
limits their application to pre-trained object classes only.

The following three paragraphs summarize relevant literature in visual object
tracking. An overview is given in Fig. 2.3.

Multi-object tracking. Multi-object tracking is the process of tracking multiple
instances of an object class (for instance, tracking humans on a street which is under
video surveillance). Multi-object tracking is usually tackled using the tracking-by-
detection paradigm, whereby the object tracking problem is decomposed into two
separate steps: detection and association [10]. The detection step is applied on each
video frame independently. The result is a list of object candidates. The association
step associates each detection candidate to a single individual, leading to temporally
consistent object trajectories over all video frames. The object pose is encoded as
a bounding box. The use of part-based detectors, as introduced in the previous
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Figure 2.3: Object tracking models of varying granularity and with different parts
semantics.

paragraph, can significantly improve object tracking [108].

Online tracking. Online tracking is the discipline of tracking arbitrary objects
agnostic of its class while learning the object appearance during tracking. A tracker
is usually initialized on the first frame by manually providing a bounding box an-
notation of the target object. Online trackers are based on the causality principle.
The input video sequence is processed only in a single pass (cf. Fig. 2.1b). Pose esti-
mates are based on previous frames only without considering future frames. Unlike
online tracking, batch-processing methods (as introduced in the previous paragraph)
assume that the video data is already completely recorded and all time steps are
available per random access. Online trackers process data from streaming devices
such as consumer webcams. Hence, they are often designed with real-time con-
straints in mind.

Most online tracking frameworks up to date are bounding-box based, i.e. the
object location is encoded as a (possibly rotated and scaled) bounding box [5, 44, 56,
129, 133, 127, 48, 132, 11]. Consequently, state-of-the-art benchmarks are restricted
to bounding-box annotations [124, 71, 70]. Going beyond bounding-boxes, the recent
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works of [127, 132, 30] are part-based approaches. They combine part-based models
(see paragraph above) with online tracking. The number of parts is quite limited and
the objective of interest is still in predicting bounding-boxes (cf. Fig. 2.3, bottom
row, middle).

Figure 2.4 shows sequences and corresponding bounding-box annotations of the
visual object tracking (VOT) 2016 benchmark from Kristan et al. [70]. The bench-
mark consists of 60 manually annotated video sequences. The benchmark is open
source and written in MATLAB® and C. In contrast to the online tracking bench-
mark (OTB) benchmark [124], the sequences in VOT are selected from a broad set
of sources with a focus on diversity of visual attributes such as occlusions, cam-
era motion, illumination changes and many more. The VOT metrics handle loss of
track in a more robust way than OTB by re-initializing the tracker when the esti-
mated bounding-box has zero overlap with the groundtruth. The VOT benchmark
is updated on a yearly basis since 2013 in conjunction with the VOT challenge [69].

Articulated tracking. For complex-shaped objects, bounding-box estimates are
not adequate. One often is interested in estimating finer-grained articulations of
these objects. Typical examples are human pose tracking [104] and hand pose track-
ing [107]. Another instance is tracking of (smooth) deformable surfaces [99, 98]. All
these approaches have in common that they are limited to a single object class. In
Chapt. 5 we propose approaches which are agnostic of the object class. We use
part-based models with a a large set of parts. Inference in those models is chal-
lenging and requires sophisticated optimization techniques. This is the topic of the
following section.

2.2 Approximate MAP Inference in Probabilistic
Graphical Models

The models described in the previous section can be encoded as probabilistic graph-
ical models (PGMs) with a continuous state space. Retrieving the most probable
pose or object trajectory can then be formulated as maximum a posteriori (MAP)
estimation in the PGM.

Exact inference in continuous PGMs is a rather rare case. One such case is when
the posterior distribution is a (multi-variate) Gaussian and can be represented as a
Gaussian Markov random field [97]. Here, tractable exact inference can be achieved
using the Gaussian belief propagation algorithm [15]. In some cases, such a strict
model assumption can work quite well, as shown in a medical imaging application
dealing with motion compensation of 3D OCT scans as summarized in Appendix A.
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Figure 2.4: Video sequences and corresponding groundtruth annotations of the
bounding box based visual object tracking benchmark in [70].
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Figure 2.5: [llustration of approximation approaches, where the solid curve is the true
objective function and dashed lines represent the respective function approximations.
From left to right: state space discretization, variational methods, and particle
sampling.

Message-passing methods. A huge class for discrete, as well as continuous in-
ference methods in PGMs are based on message passing. Messages are iteratively
sent between neighboring nodes in order to propagate information throughout the
whole graph. This can be illustrated as every node having its own preference of be-
ing in a certain state (the marginal belief). The nodes propagate their preference by
sending out messages to neighboring nodes. Simultaneously, they receive messages
from its neighboring nodes and update their belief. If the update does not change
the belief anymore, an equilibrium is reached. One can show that in certain cases,
this belief then corresponds to the (max-)marginal distribution.

This approach has gained high popularity in the machine learning community
since the global inference task is split into local operations. This has several advan-
tages. It enables, e.g., distributed reasoning [107], parallelization and distributed
computing [101] of large scale data.

Convergent message-passing approaches have strong connections to linear program
relaxations and dual decomposition methods (cf. Fig. 4 in [57], Fig. 2.6). This gives
them a strong theoretical foundation.

Approximate inference approaches for continuous state models can be roughly
divided into three types as illustrated in Fig. 2.5: State space discretization and
pruning, variational inference, and particle sampling. These three groups are shortly
reviewed in the following.

Discretization and pruning. Many computer vision problems are formulated
as discrete inference problems, although the underlying quantities of interest may
live in a continuous space. Some typical examples are: human pose estimation and
object tracking (searching for the limb’s or object’s position, orientation, and scale),
image reconstruction (where the pixel intensities are reconstructed from noisy or
blurred pixel observations).
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Reasons for choosing discrete inference algorithms in favor of continuous methods
are that the former have become computationally highly efficient. There exist cer-
tain optimality guarantees (at least for suitable relaxations of the original problem).
They can handle a huge amount (in the order of 10°~10°) of discrete variables [57].
Often, effective heuristics can be applied for label pruning, significantly reducing the
search space. E.g. the pictorial structures framework [37, 4] exploits some assump-
tions of the model such as limitation to tree-structured graphs, Gaussian pairwise
potentials, and grid-structured search space discretization. Straightforward exten-
sion to the 3D search space is either on the border of tractability due to huge memory
consumption [22], or uses sampling to reduce the search space [2, 8]. The higher-
order graph matching method from [131] uses pre-filtering of matching candidates
for state space pruning.

Fig. 2.6 shows an overview of recent discrete MAP inference methods in proba-
bilistic graphical models.

Variational methods. Approaches working directly in the continuous domain
are often better suited for exploiting the state space while limiting the computa-
tional load. There are two main branches: variational approximation methods, and
particle sampling methods. Variational approaches (see, e.g. [117]) aim at locally
approximating the objective function with a function from a much easier to handle
function space. Often, the Kullback-Leibler (KL) divergence is used as a similarity
measure for quantifying the similarity of the target function to its approximation.
Instances of this approach are the variational message passing method of [123] and
the expectation propagation framework [82].

While being computationally efficient with a low memory footprint, expectation
propagation and variational methods often oversimplify the target objective function
and perform local optimization. Hence, they tend to get trapped at suboptimal local
modes.

A recent approach guides the variational message-passing method of [123] using
pre-trained random regression forests [54]. This approach overcomes the problem of
getting trapped in poor local optima and accelerates convergence, although at the
expense of requiring computationally expensive training.

Particle sampling. Particle sampling based inference methods evaluate the tar-
get objective function at a finite number of points. These approaches are better
suited for distributions with multiple strong modes.

The inference quality crucially depends on the generated particles in terms of di-
versity and accuracy. Diversity refers to the intuition that particles should ideally be
spread over the whole state space in order to capture all areas with high probability.
Furthermore, the particles should be positioned as close as possible to the modes of
the objective function. This is referred to as accuracy in this thesis.
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Figure 2.6: Grouping of various discrete inference algorithms (from Kappes et al.
[57], Fig. 4).

In the literature, there exist many approaches for generating particle proposals.

Early methods perform particle sampling over the joint state space [28]. This
has the drawback that a huge amount of particles is typically needed to capture
all modes in the very high-dimensional space. Recent approaches perform particle
sampling on a local, rather than global scale. An independent set of particles is
generated for each random variable. Since the state space for each random variable
is much lower than the joint state space, a significantly smaller number of particles
per random variable is required.

Recent sampling approaches in graphical models exploit message passing. Here,
particle sampling is used in order to approximate the messages sent between edges
and nodes [62, 53, 50, 106, 67, 92, 90]. Sampling particles from belief estimates
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using Monte-Carlo simulation was firstly proposed by Koller et al. [62]. Later on,
Isard et al. [53] and Sudderth et al. [105, 107, 106] independently of each other
developed approaches which approximate the messages by Gaussian mixtures and
use Monte-Carlo integration to perform approximate sum-product message passing.
The drawback of these approaches is that they can produce inconsistent estimates.
That is, the estimated belief does not asymptotically converge to the true belief with
increased number of particles. In contrast, the particle belief propagation algorithm
[50, 111] produces consistent estimates. Hereby, particles are directly sampled from
the (estimated) belief using Metropolis-Hastings sampling. Later on, the particle
belief propagation method was adapted to max-product message passing, which is
better suited for producing MAP estimates [67]. A greedy-like approach for pro-
ducing MAP estimates was proposed by [112]. Here, new particles are generated by
adding random noise on the current MAP estimate. A similar procedure is used by
[92]. The expectation particle belief propagation method from [77] combines expec-
tation propagation with particle belief propagation. Hereby, samples are generated
from Gaussian proposal distributions as in [50]. The difference is that the proposal
is dynamically adapted using expectation propagation such as to approximate the
current belief estimate. A recently developed approach builds on the max-product
message passing method and aims for generating a diverse set of particles in or-
der to improve MAP estimates [91, 90]. They iteratively enrich the current set of
particles by new (as much as possible diversely sampled) particle candidates and
afterwards filter out redundant particles by considering the approximation error of
the messages generated by the remaining particle set with respect to the full particle
set. Their approach is highly effective in producing diverse particles but they rely
on high-quality sample proposals which are generated from a combination of dif-
ferent heuristics. These heuristics are application dependent and require parameter
tuning.

We build upon the max-product belief propagation (MP-BP) framework of [67]
in Sect. 4.1 and propose a novel MCMC sampling method based on product slice
sampling, called S-PBP. Our approach is more robust against hyper-parameter se-
lection than competing methods. Furthermore, in Sect. 4.2.1 we extend the diverse
sampling framework of [90] with S-PBP which replaces the heuristic proposal gener-
ators. We show that S-PBP leads to lower energy estimates while achieving faster
convergence.
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This chapter introduces concepts, notations, and algorithms relevant for this the-
sis. The survey starts with a brief summary of basic notations and concepts in
probability theory in Section 3.1. In Section 3.2, a compact introduction of proba-
bilistic graphical models is given. For a broader introduction with lots of explaining
examples and exercises, the reader is kindly referred to the book of Koller and
Friedman [61]. Relevant discrete inference methods are introduced in Section 3.3.
The last two parts of this chapter are dedicated to an introduction to stochastic
methods for inference with continuous variables in Section 3.4 and its application
on probabilistic graphical models with a widely used approach named particle belief
propagation in Section 3.5.

3.1 Notations

Let capital letters (for instance X) denote random variables over probability distri-
butions P(X). A random variable associates each outcome of a random process to
a value (or configuration), denoted with small letters (e.g. x), from a (measurable)
state space x € X. Let p(x) denote either a probability mass function when X is
discrete, or a probability density function when X is continuous, respectively.

Let X = (X4,..Xy) be a multivariate random variable, where X,, are (scalar)
random variables. Then, P(X1,...Xy) is called the joint probability distribution.
The distribution P(X,,) over a single element (or a subset) of X is called a marginal
distribution over X,, and is defined as

P(X,)=P( ..., %1, X0, Qnt1, .-, Q) (3.1)

where €, is the certain event (i.e. P(Q,) = 1) for the n-th random variable. The
corresponding probability mass function for a discrete random variable is

plan) = 3. pler...2n). (3:2)

MFAN, T €X' m

For continuous random variables, the sum is replaced with an integral. To highlight
the use of a marginal distribution (with respect to a joint distribution), the symbol
v is used instead of p for marginal functions.

Another important type of distributions are conditional probability distributions.
The conditional probability of X given Y, denoted by p(z | y) is the probability of
X when the value of Y is known. Conditional and joint probabilities are related to
each other via the chain rule:

p(r,y) = p(x | y)p(y)- (3.3)

The final and most important concept in context of the following chapters is
conditional independence of random variables. This is the main attribute of joint
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probabilities which will be exploited to build a powerful modeling language and to
construct efficient inference and learning algorithms.

A random variable X is independent of another random variable Y, if the condi-
tional probability p(x | y) does not depend on Y, that is p(z | y) = p(x) (assuming
that y can occur, i.e. p(y) > 0; otherwise, independence is trivially fulfilled). So,
independently of which y is chosen, the probability p(z | y) does not change. Equiv-
alent to that is the following definition. Two (sets of) random variables X and Y
are said to be independent, if and only if

p(xy) = p(x)p(y) VreX,ye). (3.4)

We write X 1L Y as shorthand for X is independent of Y. This definition can be
further extended through conditioning on a third (set of) random variable(s). Two
(sets of) random variables X and Y are said to be conditional independent of Z, if
and only if

p(xy | 2) =pl | 2)ply | 2) VieX,yeV,z€ 2. (3.5)

We write X 1L Y | Z as shorthand for X is conditionally independent of Y given
Z.

3.2 Probabilistic Graphical Models

First, an intuitive introduction to probabilistic graphical models (PGMs) is given and
advantages in using PGMs are illustrated. This is followed by a formal definition of
different PGM representations with its corresponding advantages and weaknesses.
Intuitively said, a PGM is the marriage between probability theory and graph the-
ory. The goal is to visualize certain properties of a probability distribution over a
large set of random variables with entities known from graph theory such as nodes
and edges. This approach can be used to analyze a given family of probability dis-
tributions simply by taking a look on its corresponding graph representation. On
the other hand, PGMs provide a very powerful modeling framework to define certain
assumptions on the underlying probability distribution. Furthermore, PGMs provide
a conceptional framework to define appropriate data structures for constructing effi-
cient inference and learning algorithms. A basic tool to put structure on probability
distributions are (conditonal) independence assumptions, as introduced in Sect. 3.1.
In the literature, there exist a variety of PGM representations for characterization
and visualization of probability distributions with an underlying structure. Each
representation has its strengths and weaknesses in visualizing various properties of
the distributions. The most common used representations for PGMs include Bayesian
networks, Markov networks (or Markov random fields) and factor graphs. Bayes
networks and Markov networks represent different families of independence assump-
tions. Bayes networks are the tool of choice for modeling natural directionality (e.g.
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derived from causality considerations). Symmetrical interactions cannot be ade-
quately modeled in Bayes networks. This is the domain of Markov networks. Factor
graphs provide a unified and finer-grained view on the factorization of probability
distributions than Markov networks and Bayes networks. They are preferably used
in construction of algorithms for inference and parameter learning.

For a detailed discussion on various modeling aspects and theoretical properties of
various PGMs and its relations to each other, the interested reader is kindly referred
to [61].

3.2.1 Bayes Network

A Bayes network is a probabilistic graphical model where the underlying structure
is a directed acyclic graph (DAG) G = (V, £) with nodes (or vertices) V and directed
edges £ C V x V. A directed edge from node s to node ¢ is denoted as (s,t) € € or
equivalently (s — t) € £&. A DAG must not contain cycles. This property suggests
the use of parent-child relationships. That is, the set of parents Pa(s) of a vertex s
is defined as Pa(s) ={t e V| (t = s) € £}.

A Bayes network is defined as the pair (G, P), where G is a DAG and P a joint
probability distribution over |V| random variables. Each vertex s € V is associated
to a random variable X, and P factorizes into

P(X1, s Xpp) = [T P(Xs | Xpags))- (3.6)

s€V

3.2.2 Markov Random Field

A Markov network, or Markov random field (MRF), is defined over a graph G = (V,€)
with a set of vertices V and a set of undirected edges € C V x V associated with
a (strictly positive) probability distribution P. The vertex s € V is connected by
an edge with vertex ¢t € V if, and only if (s,t) € £. Edges are undirected, such
that (s,t) € € < (t,s) € €. The definition of a neighborhood system N on graph
G is useful, where Ny = {t € V| (s,t) € £} is the set of neighbors to node s and
N = {N}sey. A fully connected (unordered) subset ¢ C V is called a clique. The
set C is the set of all cliques in graph G. Figure 3.1a shows an MRF over five vertices.
Vertex 1 is connected with 2 and 5 and thus Ny = {2,5}. Figure 3.1c shows some
cliques of the MRF in Figure 3.1a.

Each vertex s € V is associated with a random variable X ;. The realization of a
random variable X is denoted with zs and Xy is its state space such that z, € X.
The joint realization, or configuration, of G is x = (x4, ...,IW‘)T, and the joint state
space is the cartesian product X = H Xs.

The distribution P is called a Markov random field with respect to graph G if for
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__
—Y

(a) (b) ()

Figure 3.1: (a) An example Markov network with vertices V = {1,2,3,4,5} and edges
& = {(1,2),(1,5),(2,3),(2,4),(3,4),(4,5)}. (b) Ilustration of Markov property and
conditional independence in Eq. (3.8) with s =1, Ny = {2,5}, and V\ N U {s} =
{3,4}. (c) Some (not exhaustive) 1-cliques (blue), 2-cliques (cyan), and 3-cliques
(red) of the Markov network from (a). The set {1,2,4,5} does not form a 4-clique,
since (1,4) ¢ € and (2,5) ¢ £.

all s € V and for all x € X:

(s | X)) = plos | X)) (3.7)

The conditional probability of any random variable given all other random variables
is the same as conditioning that random variable only on its direct neighbors. That
is, conditional probabilities can be fully specified by only considering directly neigh-
bored variables. All other variables do not have an influence on the conditional
probability. This locality principle or Markov property is what makes MRFs a very
powerful tool. Figure 3.1b illustrates this on the example network of Figure 3.1a.
Here, the conditional probability of z; given the rest is considered. Variables x3 and
x4 have no influence and can thus take any value since they are “blocked” from
through z9 and x5 (dark-gray vertices).
If p(x) > 0 Vx € X, then the following equivalence holds:

p(zs | xngsy) =p(@s | %) & Xo AL X | X (3.8)

The property X, AL Xy\w,ugst | X, is called the local Markov property. That is,
a MRF can be specified via conditional independence assumptions (cf. Sect. 3.1). In
the example of Fig. 3.1b it holds Xy AL X3,X, | X5, X5. The set X, is also known
as the Markov blanket.

Intuitively said, a direct dependence of random variables is visualized by connect-
ing them via edges. The absence of an edge hence indicates conditional independence
as already illustrated in Figure 3.1b. Note that this does not exclude long-range de-
pendencies. For example, in Figure 3.1a variable X; can influence variable X3
although they are not connected through a direct edge but through at least one
path (for example the path 1-2-3). On the other hand, when the variables X, and
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X5 are observed, the dependence disappears since there is no path which does not
contain the observed variables.

The definition in Eq. 3.7 already suggests that the joint probability function of
an MRF can be decomposed into a set of local functions. Now the question arises
how this decomposition looks like? The answer is given by taking a look on Gibbs
distributions.

Gibbs Distribution A probability distribution is called a Gibbs distribution over
a graph @ if it is a normalized factorization over the cliques of G:

])(X) = % H ¢c(37c) (39)

ceC
with the normalizer or partition function Z = 3 1 ¢c(x.). The functions ¢.(x.)
X ceC

must be positive and are called clique potential functions (or short clique poten-
tials). Note that the ordering of vertices within a clique ¢ is irrelevant, such that
Bereayme (%nffcz«,m«,hw) = Perser,ney (qu,l‘cl7...7xc‘c) = ... is required. Further-
more, the potential functions are not required to be valid probabilities (i.e. they are
not normalized). It is convenient to rewrite a Gibbs distribution in log-linear form

p(x) o exp[—E(x)] BE(x) =) tc(z.) (3.10)

ceC

where E(x) is called an energy function and the clique energies are defined through
the clique potentials via t.(z.) = —log ¢.(x.). This representation is convenient
as the positivity constraint ¢.(z.) > 0 is fulfilled for all real valued (and finite)
Pe(z) € (—00,00).

MRFs and Gibbs distributions are related to each other by the Hammersley-Clifford
theorem which states that each MRF with strictly positive P can be expressed by
a Gibbs distribution and vice versa. Recall that MRFs are characterized by condi-
tional independence (cf. Eq. (3.7)) and a Gibbs distribution is characterized by
its function factorization (cf. Eq. (3.9)). Hence, the Hammersley-Clifford theorem
guarantees (for strictly positive P) a factorization of an MRF into local factors and
each factorization of a probability distribution can be expressed as an MRF.

Pairwise Markov Random Field An important special case of MRFs are pair-
wise MRFs. If the graph G only consists of singleton and pairwise cliques, i.e. |c| < 2,
then the factorization can be rearranged to the following special form

p(x) o H bs(ws) H Gs,1(5, 74) (3.11)

s€V (s,t)eE

with singleton (or unary) potentials ¢s(zs) and pairwise (or binary) potentials

¢s,t (Is., It)‘
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(b) (c)
Figure 3.2: (a) Factor graph of distribution p(x1, xe, x3) o ¢1(21, 22)de(T2,23) 1 (3,

x1). (b) Factor graph of distribution p(z1, 2, x3) o< ¢1(x1, 22, 23). (c) Same Markov
network representation for both factor graphs in (a) and (b).

(a)

Consider again the example Markov network in Figure 3.1a. Assume that this
network is a pairwise MRF. Then the vertices of the graph correspond exactly to
the unary potentials and the edges of the graph correspond exactly to the pairwise
potentials. This one-to-one correspondence of the graph entities to the MRF fac-
torization makes the Markov network notation a very attractive tool for visualizing
pairwise MRFs.

Note that when dealing with higher-order graphical models, the Markov network
notation is no longer expressive enough to conclude about the (intended) factoriza-
tion of the underlying probability distribution. The factor graph notation introduced
in the following Section provides a finer-grained representation.

3.2.3 Factor Graph

Factor graphs are a convenient way for representing the factorization of functions
such as Gibbs distributions (c¢f. Eq. (3.9)). Furthermore, factor graphs allow a
unified encoding of the diverse PGM representations such as Markov networks or
Bayes networks. This allows, e.g., for a very generic implementation of diverse
inference and learning algorithms [57].

A factor graph (cf. [72]) is a graph G = (V U F,&) with two disjoint sets of
vertices — random variable vertices V and factor vertices F with VN F = @ — and
a set of edges £ C V x F connecting random variable vertices with factor vertices.
Random variable vertices are analogously to Markov networks drawn as circles.
Factor vertices are drawn as dark-gray filled rectangles. Note that edges connecting
random variables with random variables or factors with factors are not allowed and
thus a factor graph is always a bipartite graph.

As already mentioned before, Markov networks have some inherent ambiguity
in defining the clique factorization. Factor graphs are finer-grained. Figure 3.2
illustrates this (dis-)ambiguity on a minimal example.

For efficient inference in probabilistic graphical models as will be discussed in
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the following sections of this chapter, an appropriate representation of factors is
of fundamental importance. Therefore, before introducing the inference methods,
some common representations for factors over discrete random variables and over
continuous random variables will be discussed.

Discrete Factor Representation If the state space is finite and discrete, a
typical representation for factors is a lookup table. Let the state space be Xy =
{zt, ..., 2L}, where Ly < L is the number of states for vertex s (with at most
L states per vertex). Then a factor ¢.(x.), with associated variables s € ¢ =

{c1,...,¢¢} can be implemented as a multi-dimensional array

Be(Xe) = BelTers o Teye] (3.12)

with K = |c|. Tt is clear that the memory consumption per factor is O(L¥), i.e.
exponential in the clique size. For pairwise MRFs, the memory consumption for the
complete graph then is O(L|V| + L2|€]).

Often, more memory (and thus computationally) efficient parametrizations can
be found by exploiting some knowledge about the factor potentials. One prominent
example is the Potts model:

Ooq ifaxg=um

¢s¢(xs,xt):{ O if 70 # 21, (3.13)

Here, the parameter set contains only two elements 6 = (feq, fineq), regardless of the
number of labels.
An important class, especially for parameter learning, are log-linear models:

k
wc("l"c} = Zwi : fc,i('/lfc) = 92f0(7c) (3.14)

where 6, = (wy, ..., wy) and f. is a feature function. It is important to note that the
linearity is with respect to the parameters and not to the random variables, as the
feature function f. can introduce arbitrary non-linearity. The linearity with respect
to 0 is very advantageous when it comes to parameter learning, since the (features of
the) training samples can be summarized into sufficient statistics, which are linearly
weighted by the parameters.

Continuous Factor Representation One can divide the factor representations
for continuous state spaces in two groups. The parametrized and the non-para-
metrized representations. While there exists a great variety of parametrized function
families, only a very limited subset is suitable for enabling efficient inference in
factor graphs. When performing inference, it is often necessary to summarize the
influence of a whole group of factors into a single (virtual) factor. Therefore, the
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factor parametrization should be invariant with respect to such operations. One of
such very rare families is the Gaussian distribution:

Ge(wc) ox exp[—()f)(xc - MC)ngl(xrz - I’l/c)} (3.15)

with parameters 6. = (p,2.), where g, is the mean vector and X, is the (symmetric
positive definite) covariance matrix. If all factors are Gaussian distributed, then the
joint distribution is also Gaussian. Consider, for example, the computation of the
marginal distribution P(X,) in Eq. 3.1 from the joint distribution P(X7y,..., Xy).
One can show that the marginal distribution of a Gaussian joint distribution is again
a Gaussian distribution [15].

In general, complex or multi-modal distributions cannot be approximated well
by (uni-modal) Gaussian distributions. One way to increase the expressiveness is
to resort to hybrid models. Here, the joint distribution uses both continuous and
discrete random variables. The factor potentials can then be modeled as mixtures
of Gaussians or logistic functions [61]. In Gaussian mixture models, the discrete
variables can be interpreted as acting like switches; that is, there is an own parameter
set for each discrete state:

e (Xey yo) o exp[=0.5(xc — p)T(ZL) 7 (xe — p)]. (3.16)

Non-parametrized representations can be applied to a much broader set of distri-
butions. Here, the factor potentials can take any form. The summary operations
are approximated using non-parametric representations such as Gaussian mixture
models [107, 106] or Monte Carlo simulation [50, 67].

In this thesis, the latter approach is followed. Here, the continuous state space is
represented using a finite set of particles {z("}!_| = P C X. The factors are only
evaluated at the position of the particles. Thus, only the values at these positions
have to be stored. This can be handled analogously to the discrete case using lookup
tables (cf. Eq. (3.12)).

3.3 Inference in Probabilistic Graphical Models

The goal of this thesis is to apply graphical models in various computer vision ap-
plications. Inference or reasoning in probabilistic graphical models is the process
of answering queries of interest using joint probability distributions [61]. One of
the most important inference tasks to the computer vision and machine learning
community is maximum a posteriori (MAP) inference. MAP inference is the task of
inferring the most probable joint configuration x* from the joint posterior distribu-
tion p(x | d) conditioned on observed data d as

x* = arg I)I(lea(%cp(x | d). (3.17)
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According to the chain rule, the posterior can be rewritten as p(x | d) = p(x,d)/p(d).
Note that the evidence p(d) is a constant and thus can be omitted:

x* = arg max px.d)
xXEX p(d)

= arg r}l{lea}(p(x,d). (3.18)

Hence, the posterior needs only be available up to a scaling factor. This considerably
reduces computational complexity since the normalization factor p(d) is in general
very hard to compute.

In computer vision, many tasks can be reformulated as MAP inference problems,
since one often seeks only for the most probable solution.

A large class of MAP inference algorithms based on the so called message passing
principle works in two steps: First, so-called maz-marginals are computed:

s(rs) = a ] . 3.19
s (Ts) ygg‘ly}:%p(Y) (3.19)

It can be interpreted as the unnormalized probability of the most likely joint assign-
ment consistent with s [61]. It has a close relationship to the marginal distribution
as introduced in Section 3.1, Eq. (3.1). Its formal connection to the marginal func-
tion is obvious: the summation operator is simply replaced by a max-operator. In a
second step, the max-marginals are used to construct the MAP configuration. This
step is known as decoding.

The detour over max-marginals has some advantages compared to direct MAP in-
ference approaches. In case of tree structured graphical models, the max-marginals
can be efficiently calculated with methods based on dynamic programming known
as max-product belief propagation which is introduced in the following Section. For
non-tree structured graphs (loopy graphs), the same dynamic programming ap-
proach leads to a method called maz-product loopy belief propagation. Although this
method is not exact for loopy graphs, it often yields reasonably well approximates
but with very weak convergence guarantees. Methods based on dual formulations
have better convergence guarantees and additionally provide upper bounds. These
are introduced in Section 3.3.3.

A second advantage is that max-marginals are itself (non-normalized) distribu-
tions and thus provide richer information about the target distribution than the
“single shot” MAP estimate. This can be exploited to enable efficient inference over
continuous random variables using stochastic search methods. Section 3.4 gives
an overview of stochastic search methods and in Section 3.5 and Chapter 4 these
methods are applied on the task of MAP inference.

In the following section 3.3.1, a very basic method for calculating the (max-)
marginals and MAP in tree structured graphs is introduced. Afterwards in Secs.
3.3.2-3.3.3, (approximate) methods are introduced which also work in loopy graph-
ical models.
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3.3.1 Max-Product Belief Propagation

The max-product belief propagation (MP-BP) algorithm is a method to compute the
max-marginals y,(x;) in tree structured graphs.

Let us start with a simple example. Consider the joint density function p(a, b, ¢, d) =
0a(@)Pap(a,0)dpc(b, )dpa(b, d). The goal is to compute the max-marginals p,(a),
wp(D), pe(c), and pq(d). A straight forward approach to compute, e.g., pq(a) is to
directly apply its definition (cf. Eq. (3.19))

fa(a) = Iila()i(p((l,, b,c,d) = max Ga(@)Pap(a, b)ppc(b, c)dpa(b, d).

One can observe that maximization over, say, variable d does only involve the factor
®b,a(b,d). The rest is constant wrt. d. Thus, the max-operation over d can be
“pulled out”:

pala) = max Ga(@)Pap(a,b)de(b, c) max Pba(b, d) .
. ®)
Md—b

The new factor mg_,(b) = maxy ¢y q(b,d) is not dependent on d anymore. The
variable d is eliminated, hence the algorithm name wvariable elimination. Further
elimination of ¢ and b leads to

ta(a) = dq(a) mbax[dla,b(a, b) max (b, €) max (b, d)] .

la: me—p(b) 1b: mg_p(b)

2: mp—yq(a)

Note the elimination order la, 1b, 2. Steps la and 1b are done independently of
each other and could be switched in order as well. Thus, the visiting schedule is a
partial ordering. The same procedure can be repeated for marginalizing over, e.g.,
variable d:

pa(d) = mgtx[m(?x ¢a(a)Pap(a,b) max Ob.c(b, ) Ppa(b,d)] .

la: mg—p(b) 1b: me—yp(b)

2: mp_sq(d)

Figure 3.3a summarizes the variable elimination steps for y,(a) and pq(d).

An important observation is that the calculation of mg—;(b) is actually done twice
(one time for calculating p,(a) and a second time for calculating 114(d)). Another
observation is that the elimination order can drastically influence the computational
effort. If variable b is eliminated first, then the maximization must be performed
over the remaining three variables (b,c,d in case of y,(a), and a,b,c in case of pq(d)).

The MP-BP algorithm can be interpreted as a parallelization of the variable elim-
ination algorithm where intermediate computation steps are cached. Caching of
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Figure 3.3: (a) Two example instances of the variable elimination algorithm for
calculating marginals of vertices a and d, respectively, and its corresponding message
evaluation orders. (b) Belief propagation message passing scheme on a tree. The
dashed circle indicates the root node. The numbers indicate the visiting order for
message computation (cf. Eq. (3.20) and Alg. 1). (c) Loopy Belief propagation
message passing scheme.

these intermediate results leads to significant computational savings since these val-
ues would be otherwise computed multiple times. The intermediate results mg_;
are called messages (from node s to node ¢). The computational effort for calcu-
lating the max-marginals with MP-BP is O(2|€|), whereas with the naive variable
elimination approach (without caching) it would be O(|V|-|€]). Figure 3.3b depicts
an instance of MP-BP for the above toy example.

In the following, the exemplary procedure above is formulated for general tree
structured graphical models.

Max-Marginals: Max-Product Message Passing

Recall, that graph G must form a tree (i.e. G does not contain loops). Then, there
exists a partial ordering (r — ¢) < (t — s) (a visiting schedule) which defines a valid
order in which to compute the messages as follows:

M s(T5) o<'rvna)?([qbt(zt),o‘syt(:ps,:rt) H Myt (24)]. (3.20)
Tt reNt\{s}

A partial ordering is valid, if all ingoing messages wrt. some vertex ¢ (i.e. all
messages {ms_(2;)}s) are calculated prior to all outgoing messages wrt. ¢ (messages
{mus(xs)}s). A valid visiting schedule can be constructed by using the following
scheme: First, choose an arbitrary node as the tree’s root. Then, compute all
messages pointing towards the root node, beginning at the leafs and ending at the
root. Third, compute all messages pointing away from the root node, beginning at
the root and ending at the leafs. This schedule is depicted in Fig. 3.3b.
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Algorithm 1 Max-Product Belief Propagation

Input: Gibbs factorization {¢s}sey, {@st}(s,pee, and visiting schedule S.
Ensure: Max-Marginals {js}scy, MAP configuration x* € arg max p(x)
XE

1: for (t — s) € S in visiting order do

2: Compute message my—s(2s) x max [¢p(x1)Ps (s, xe)  I1 mrsi(x)]
T EX reN\{s}

3: end for

4: for each node s do

5: Compute belief ps(zs) < @ds(xs) 1 miss(zs)
teNs
6: end for

7: Decode z} € arg max jus(zs)
TsEX s

Finally, the max-marginals are calculated as the product of the unary potential
and all incoming messages:

lf’s((rs) x ¢S(IS) H mLﬁs(Is) (321)

teNs

MAP Decoding from Max-Marginals

Decoding is the task of inferring a MAP configuration x* € arg max p(x) from the
XE.

max-marginals. One can show that if and only if the max-marginals have unique

maximizers then a unique MAP configuration exists and the decoding process reduces

to finding local maximizers of the max-marginals [61]:

T, = arg max s (Ts). (3.22)

Note, that this is not necessarily the case. For instance, consider a discrete dis-
tribution with two random variables with state space X = {0,1}. Assume that
the unary potentials are non-informative with ¢;(0) = ¢5(1) = 0.5 and the pair-
wise potential connecting both variables prefers equal states, but is otherwise com-
pletely symmetric: ¢;,(0,0) = ¢,(1,1) = 0.9, ¢5:(0,1) = ¢5,(1,0) = 0.1. Then, the
max-marginals are p,(0) = ps(1) = 0.5. This suggest that any joint configuration
(21,22) € {(0,0), (0,1),(1,0), (1,1)} would maximize the joint probability. This is ob-
viously not the case as only the two joint configurations {(0,0),(1,1)} are solutions of
the original MAP problem. To resolve such cases correctly, a backtracking approach
using, e.g., dynamic programming must be applied [116]. Algorithm 1 summarizes
the MP-BP method.

3.3.2 Max-Product Loopy Belief Propagation

If the graph G is not a tree then the recursive message update in Eq. (3.20) cannot
be applied directly. That is because this recursion contains circular dependencies.
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E.g. consider the loopy graph in Fig. 3.3c. In order to compute m,_, the message
from node a to node b, one has to compute my_,, first. For computing this message
in turn, the message m._,4 has to be available and prior to this, message m._,; has to
be known. But message m._,;, again depends on message m,_,;, which is our desired
unknown.

Approaches to workaround this dilemma resort to iterative computation of the
messages. In the initialization step, all messages are typically set to the non-
informative, uniform distribution m;_s(zs) = 1. In subsequent iteration steps, the
messages are updated similar to Eq. (3.20) using a predefined message passing sched-
ule. But instead of using the true (possibly unknown) incoming messages m,_(z+)
for computing m,_,s(z5), the (approximate) messages of the previous iteration step
are used instead.

Now, the hope is that after sufficient iterations an equilibrium is reached, also
called a fixpoint. In general, this heuristic scheme is not guaranteed to converge.
And even if it converges to a fixpoint, the computed quantities in Eq.(3.21) are
no longer guaranteed to match the true max-marginals. Furthermore, convergence
and speed of convergence highly depend on the chosen message passing schedule.
Selecting optimal message passing schedules is an open issue.

The (max-)marginals inferred using (max-product) loopy belief propagation (BP)
or other approximate (max-product) message passing methods are usually referred
to as pseudo-(max-)marginals.

Practical Considerations Implementation of the max-product (loopy) belief
propagation algorithms is fairly easy and straight forward. However, some prac-
tical issues have to be considered in order to ensure correct behavior [89).

It is advantageous to implement the inference algorithms in negative log-space
in order to increase numerical stability. That is, M;s(xs) = —loglmis(zs)],
Bg(zs) = —log[us(xs)], and Ny(zs) = —log[vs(zs)]. Applying the negative log-
arithm transforms products to sums and max-operators to min-operators. After
some rearrangement, the max-product message-passing formulas transform to min-
sum message-passing as follows:

M;ys(zs) = ;}g{{}‘[d}s,t(xmxt) + Bi(@) — Msi(21)] (3.23)
By(z5) = s(zs) + Z Mis(xs). (3.24)
teNs

A further issue is the unbounded growth of the message values after each mes-
sage passing operation (cf. Eq. (3.20)). The messages are normalized as follows
My(ws) = Mys(xs) — ming My,,(2}). Algorithm 2 summarizes the loopy min-
sum message passing implementation.
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Algorithm 2 Loopy Min-Sum Algorithm

Input: Factor potentials {¢)s}sev, {¥st}(s.0)ee

Ensure: Negative log pseudo max-marginals {Bs}scy, MAP estimate x*
1: Initialize the messages MY, (w5) = 0 and log disbelief BY(z5) = 0 Vs,t
2: for BP iteration n =1 to N do
3: for each node s do

4: for cach t € Ns do
5: M (0) = min h(eare) + BY (@) — MIS )

t t
6: end for
T B (xs) = ¥s(xs) + 2o M, (xs)

teN s

8: end for
9: Normalize messages: M, (s) := M, (vs) — min M}, (a}) Vs,t

10: Normalize beliefs: BY (zs) := B} (x;) — min By (z}) Vs
‘ts

11: end for
12: Decode z* € arg min BY (z5)

TsEX s

3.3.3 Dual Methods

The previously introduced loopy belief propagation algorithm can be seen as a
heuristic method in case of loopy graphs. It does not have a convergence guar-
antee and even if a fix-point is reached, optimality is not guaranteed. The methods
which are presented in the following Sections are based on Lagrangian dual formu-
lations of Egs. (3.19) and (3.17), respectively. Due to its superior properties both
in theory and practical application, these methods will be used in the consecutive
chapters.

Tree-Reweighted Max-Product Belief Propagation

The tree-reweighted belief propagation (TRBP) algorithm of [116] is a modification of
the MP-BP method. It originates from the idea of decomposing the original graphical
model into arbitrary sets of spanning trees 7. The MAP problem is then (approxi-
mately) solved by using convex combinations of these spanning trees. The resulting
iterative optimization method turns out to have surprising similarity to the ordinary
BP method in section 3.3.1:

[T my(2)r=
L reN\{s}

mys(2s) o max e(0) Ps p (s, ) Pot @) (3.25)
Ns(xs) X Os(‘rs) H mL—»s(Is)pzSA (326)
teNs
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The basic message passing mechanism is preserved. The TRBP message propagation
and pseudo-max-marginal formulas include weighting factors pg; for each edge (s,t) €
& (note, again, the symmetry ps; = pis). Additionally, unlike to ordinary BP, the
TRBP message propagation from node s to node ¢ (denoted as s — t) also depends
on the reverse message t — s. The weights ps are the probabilities of the edges
(s,t) being part of a tree 7 in the set of all spanning trees 7. Their values can
be computed by first sampling a random set of spanning trees 7 from graph G
such that each edge is covered at least once. The weight pg is then the number
of spanning trees covering the corresponding edge (s,t) divided by the number of
overall spanning trees |7].

One can see that by setting the weights ps to one, the TRBP algorithm reduces
to ordinary BP. In fact, all weights are equal to one if and only if the graph is a tree.

The TRBP method has a strong connection to a tree-relaxed linear program (LP)
formulation of the MAP problem and one can provide an upper bound of the MAP
probability after each iteration. This allows for estimating the quality of the es-
timated MAP configuration. One simply considers the gap between the estimated
MAP probability (which is naturally an upper bound) and the lower bound, referred
to as the primal-dual gap. If the primal-dual gap vanishes, the LP-relaxation is tight
and one is guaranteed to have found the exact MAP. TRBP is, similar to loopy belief
propagation, not guaranteed to converge. In practice, convergence can be enforced
by introducing message damping with a damping factor « € (0, 1]:

L @ _
o) = (5 a0 () MR (3.27)
t t
with premessage

My (T4)Ps

- reNt\{s}
Mi—ys(xy) X ¢y
tﬁ&( t) d)t( t) msﬁt(zt)l—ps:

(3.28)

In the last decade, there appeared a number of other dual BP approaches [115, 116,
63, 41, 45, 80, 47, 46]. The sequential tree-reweighted message passing algorithm
proposed by Kolmogorov [63], for example, guarantees a monotonically decreasing
upper bound. The method of [45] is another tree-reweighted message passing variant
in which convergence is guaranteed. In practice, we observed that these methods
require more iterations than TRBP in combination with a sufficiently large message
damping. Other BP approaches such as [101] exploit the decomposability of the
dual formulation to implement distributed variants. This allows to process very
large graphical models where the full graph does not fit into the memory of a single
computer but can be split into smaller subgraphs and distributed across several
machines. An approach similar in spirit to the distributed BP method but with a
more flexible formulation is provided in the following section.
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Dual Decomposition

The family of inference methods based on dual decomposition (DD) [12] is discussed
in the following. Instead of solving the MAP problem on the complete graph, one
resorts to inference on smaller (independent) sub-problems, which only involves
(overlapping) subsets of random variables. Each sub-problem (slave) works on its
own copy of some shared random variables. A master forces consensus on the
shared state configurations by iteratively balancing cost terms. The property of
having independent sub-problems renders DD an ideal candidate for parallelization
and distributed computing.

An intuitive analogy is provided via the resource allocation problem in economics.
The resource allocation problem is the assignment of a limited amount of available
resources to produce various goods with the goal to fit the needs of the society. The
economics approach to solve this problem is via pricing. Global adjustment takes
place via the free market price mechanism. Highly demanded resources become more
expensive whereas underutilized resources get cheaper.

The methods proposed in this Section differ from the convex belief propagation
methods mentioned in the previous Section in two ways. First, the sub-problems
require only to solve MAP estimates instead of marginals. Second, the sub-problems
are not restricted to tree structures. In fact, each sub-problem can have its own MAP
inference method tailored to the specific problem structure. For example, consider
joint image segmentation and pose estimation. The corresponding graphical model
consists of two sets of random variables. One set of random variables represents the
foreground /background segmentation labeling over image pixels and the other set
encodes the pose of an object within the image. Each object pose random variable
is connected with each pixel random variable. The image segmentation sub-problem
is efficiently solved using graph cuts, whereas the pose estimation sub-problem is
solved using belief propagation. In Sect. 5.3 this type of problem is described in
more detail.

DD is a fairly old technique in the optimization community and somewhat surpris-
ingly it has only recently experienced a revival in the computer vision and machine
learning community. Its advantages are high flexibility, modularity, and promis-
ing convergence properties. Some recent computer vision problems solved via DD
are multi-layer human pose estimation [31, 32], joint pose estimation and image
segmentation [119] and higher-order graph matching [131].

In the following is provided a compact mathematical introduction to DD. The
mathematical backbone of DD is Lagrangian relaxation [12, 65, 66]. The starting
point of our derivation is MAP inference in a graphical model. For the sake of
simplicity and to reduce notational clutter this introduction is restricted to pairwise
MRFs, although an extension to higher-order models is straight forward.

min Ex) =Y ts(x)+ Y sz, m). (3.29)
x€ seV (s,t)€E
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The decomposition methods do not directly work on the discrete state space X but
on a reparametrization using indicator variables. Assume without loss of generality
that the discrete state space is X5 = {1, ..., Ls} with Lg states per random variable
X,. The corresponding indicator variable vectors y. = {yu}rs,, Yo = {ystkl}ﬁjff
for each vertex s € V and for each edge (s,t) € € are then defined as

)1 ifxg=k ) 1 ifrg=k AT =1
Yk = { 0 otherwise, Ystht = { 0 otherwise. (3.30)

The unary and pairwise potential functions can then be reformulated as linear func-
tions:

Ls Ls Lt
= Z eskysk Us t IL:vIt Z Z estkIJstkl (331)
k=1 k=1i=1

with parameters #. The resulting problem formulation then is:

Z Osiysk + Z Z Ostriysth- (3.32)

min
yEM(G,X ) k=11=1
where M(G,X) is the marginal polytope, that is the set of valid marginals {ysx, ysiri €
R | 3p such that yg, = vs(Xs = k), ysua = Vsui(Xs = kA X, = 1)}. Note that the
marginal polytope is the convex hull of valid (1nteg01) configurations y and that
minimizer of problem (3.32) are always integer [117].

Packing all elements y, and ygy into a single vector y and doing the same with
the parameters, one can easily see that the equation in problem (3.32) is a scalar
product. The simplified problem statement is thus

Join (0, y). (3.33)
The structure of the marginal polytope M(G, X) can be quite complex. Problem
(3.33) is an integer program which in general is NP-hard [117]. However, there exist
a number of structures for which efficient algorithms for solving (3.33) exist (e.g.
tree-structured graphs or sub-modular objective functions).
The approach for decomposition methods is to decompose the problem (3.33) into
a sum of tractable sub-terms:

min E(y) = Y Eo(y) = 3 (0,.y) (3.34)

yeM(G.X) TET TET
The sub-terms can again be defined over (sub-)graphs G, = (V,,&;):

E(y;) = (07, y7) (3.35)
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subject to the marginalization constraints M(G,, X'). Obviously, the parameters
0. have to be chosen such that the original distribution is not altered, that is:

0 = > 60,. The main idea of dual decomposition now is to introduce a copy of
TET
the configuration vector for each sub-term and to add an equality constraint which

enforces consistency:

min SN Ey-) (3.36)
ydyrtrer IS

s.t. yr € M(G,, X)VT €T (3.37)

y-=yVreT. (3.38)

Decomposition into independent subproblems is achieved by relaxing the hard-
constraint (3.38) using Lagrangian relaxation. The Lagrangian dual is equivalent
to an LP relaxation where the marginal polytope M(G, X) is replaced by a looser
(much simpler) constraint set £(G, X) D M(G, X), called the local polytope [116].

The resulting subproblems can then be solved independently from each other.
The decomposition of problem (3.33) has to be done such that the resulting sub-
problems have pleasant properties which allow for efficient inference. For example,
tree-structured subproblems can be efficiently solved with the max-product BP al-
gorithm in Sec. 3.3.1.

MAP-DD

In the DD of [65, 66], Lagrangian relaxation is applied on the consistency constraint
(3.38), leading to the following problem formulation:

in L{y-}r 2z, A 3.39

max min L({yr}r,2,A) (339)

where A € A are Lagrange multipliers restricted to a convex feasible set A = {\, |

Yrer Ar = 0}. The variable y is replaced by z in order to emphasize that the

optimal solution z* of Eq. (3.39) is not necessarily an optimizer (or even a feasible

solution) to the original MAP problem. This is especially the case when z* is not
integer. The Lagrangian L(y, z, \) is as follows:

LiydnmN =3 [(02,y2) + A (- —2)] . (3.40)

Rearranging equation (3.40) leads to

LAYtz A) =3 (0 + A ye) = (30 A) T2 (3.41)

TeT TeT

Since the minimization over z is unconstrained, it is easy to see that the inner
(minimization) problem of (3.39) is only bounded when the right-most term of
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Eq. (3.41), (X,e7 M)z, is equal to zero for all z. This is exactly the case when
YrerAr =0, and thus A € A:

g(A) ifAreA
zr{g}fnf L{yr}r 2, A) = { —0o otherwise (3.42)

with the dual function g(\) = {mi{l Yrer (0 + Ar,y-). That is, a A which max-
yrie

imizes g(A\) must lie in the subspace A. The minimization of the dual g is now
completely independent of z. This is exactly the property which enables splitting
into independent subproblems:
= (O () = i 0r + Ay yo). A

Tez;g (Ar) gr(A-) = min {0+ Ary) (3.43)
The weak duality theorem guarantees that g(\) < E(y) = (f,y) for all A and for
all y. That is, g(\) lower bounds E(y). The aim is to reduce the gap between the
lower bound (the dual energy ) ¢g(A\) and the current MAP energy E(y) (the primal
energy) as much as possible.

The dual problem of the primal problem (3.32) then is:

max g(A) = Y g-(Ar). (3.44)
AeA
TET
It is easy to verify that the negative dual —g(\) is convex. Since g()) is not con-
tinuously differentiable, usual gradient ascent algorithms are not applicable. Addi-
tionally, the constraint A € A has to be fulfilled.
These requirements lead to the following projected subgradient method:

)‘-TrlH = [AT + @, Vg (A7)]a (3.45)

where —Vg.();) is a subgradient of —g,( - ) at point A, and n is the current DD
iteration. The positive constant «,, denotes the step length for gradient ascend and
[ - ]a describes the projection onto the feasible set A.

A subgradient V f(xg) of a convex function f(z) at point z is the slope of a linear
function (the subtangent) such that the following condition holds:

(@) > f(xo) + Vf (w0) - (x — o) V. (3.46)

A subgradient is not necessarily unique. The set of subgradients at point zg is called
the subdifferential at point xo, denoted by V f(xo) € 9f (xo).

Somewhat surprisingly, it turns out that Vg, (\;) = y% is a subgradient of —g,(A;),
where y? is the minimizer of the slave problem in Eq. (3.43) [65]. The projection
operator | - |a reduces to subtracting the average vector A= “7‘ > A; from each A;.
The final projected subgradient update can be summarized as follows:

N = DN o, yta = A+ an(yr |7.‘ Sy (3.47)
T'eT
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The choice of the step size «,, crucially influences the convergence behavior of the
DD algorithm. One can show that by using step size sequences which satisfy the
following conditions, the sub-gradient algorithm converges to the optimal solution
of the relaxed problem in Eq. (3.44) [65].

oo

a, >0 Jim o, =0 Zoan =00 (3.48)
It is guaranteed that after N = O(1/e) iterations, e-accuracy is reached with g(A\YV)—
g(A*) < e, where \* is the optimal solution [12]. There exist various choices on
selecting the step size [65, 66]. A time complexity of O(1/e2) is impractically slow. An
accelerated DD method has been proposed in [55] based on smoothing the Lagrangian
relaxation, achieving a much better time complexity of O(1/e). The (ordinary) DD
algorithm for solving the relaxed MAP problem is summarized in Alg. 3.

Algorithm 3 MAP Dual Decomposition Algorithm

Input: Problem decomposition {0 },c7, step sizes {an }n
Ensure: MAP estimate y

1: Initialize AL = 0

2: for n =1to N do

3: for Subproblems 7 € 7 do

4: Solve MAP y"*+! = ar, min (0, + \?
yT gyTEM(g-,-,X)< T T7y7'>
5 end for
6: Compute consensus z" 1 = ﬁ eyt
7 Update Lagrange multipliers A"+ = A" + oy, (y"+! — z"+1)

8: end for
9: Decode primal estimate y from partial solutions y,

The methods introduced so far handle MAP inference in graphical models over
discrete random variables. The goal in this thesis is to perform inference over con-
tinuous random variables. A key technique to achieve this goal is via Monte-Carlo
simulation which is the topic of the following two sections.

3.4 Markov Chain Monte-Carlo Methods

In the following, first the idea of Monte-Carlo simulation is briefly introduced, fol-
lowed by Markov chain Monte-Carlo (MCMC) simulation (see [122, 3] for an in-depth
introduction). This introduction focuses on the most fundamental MCMC methods:
the Gibbs sampler and the Metropolis-Hastings sampler. After this, the slice sam-
pler [88] is introduced which provides the basis for our proposed MAP inference
approach in Chapt. 4. See [3] for a more detailed introduction on MCMC methods
for machine learning.
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Monte-Carlo simulation is a sampling based approach to approximately calculate
(or simulate) certain properties, such as, e.g., the expectation

Eulg(X)] = [ g@u(x)ds (3.49)

of a real-valued function g. The idea is to approximate the target density p by the
empirical point-mass function

i (z) = %z 8,00 () (3.50)

using a finite set of independently and identically distributed (i.i.d) drawn samples
{z@IN | from the target density p(z). Here, 6, (2) denotes the Dirac impulse lo-
cated at 2. The expectation E,,, [g(X)] converges almost surely (a.s.) to E,[g(X)]
for N — oo:

Furlo(X)] = 5 36 225 [ ga)(o)de = Blo(X), (3.51)

according to the strong law of large numbers.

An important advantage of Monte-Carlo simulation towards deterministic inte-
gration is that the discretization points (i.e. the samples) concentrate in regions
of high probability. Thus, one can also use these samples for approximate MAP
inference:

arg max w(z). (3.52)

This behavior will be of fundamental use to construct efficient stochastic MAP in-
ference algorithms as presented in chapter 4.

Direct or exact sampling from the target distribution () is in general not feasible.
In many cases, it is much easier to sample from a conditional density p(z( | z(=1).
This leads to the idea of MCMC sampling.

A Markov chain is a special case of a stochastic process. More precisely, it is a
sequence of random variables z{®, ¢, ... € X where the conditional distribution of
2t given (@, ..., 2™~ depends on the last element 2™~ only, i.e.

p@™ | 2, 2" 1) = plat™ | om0, (3.53)

The first element z‘* is has an arbitrary initial probability (density) vo(z(?). The
second element depends on the first element by the conditional distribution T} (z(?, z(M) =
(D | ), the transition probability density or the transition kernel. The joint
probability p(z(® ..., 2¢™) is obtained using the chain rule:

pa®, 2™y = v (2N T (&, 2 - T (Y gy, (3.54)
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OHE-OHEPO =0 == EO

Figure 3.4: Graphical model for Markov chain Monte-Carlo sampling.

The marginal probability of the second element is:
va(zV) = / vo(z )T (2, 9 dz . (3.55)
X
Likewise, the marginal probability of the m-th element is:

V(™)) = / Vo(e )T (20, 20 - Ty (20, 2 gz gplm=1),
A XXX
(3.56)

A Markov chain is called homogeneous if the transition kernel T,,, does not depend
on m, i.e. T =T, Ym. A Markov chain is called irreducible if when starting from
any state it reaches eventually each other state with positive probability (density).
A Markov chain is called aperiodic if it can not get trapped in cycles. If a Markov
chain is irreducible and aperiodic, then the Markov chain converges to a unique
stationary distribution.

Our goal is to construct a transition kernel 7" such that the marginal distribution
V(2™ asymptotically converges to the target distribution u(x) for m — co. The
convergence should be independent of the starting point v, the (initial) distribution
of (9. Figure 3.4 summarizes the MCMC approach graphically.

The question is how to construct transition kernels T" such that the Markov chain
converges to the desired target function p? An approach is given using the notion
of reversibility.

A Markov chain is called reversible with respect to the distribution p(z{™~1) if
the detailed balance (d.b.) condition is fulfilled:

(eI (@™, 2 ) = p(em )T (Y, e ). (3.57)

The detailed balance condition is sufficient for convergence to the target distribution
p(z). This can be seen by marginalization over ™1

/!L(x<m71))T(.z'<m’1>,:1;<7">)d:1:<m’1> @ /u(as<m>)T(as<m>7x<m’1))dfl;<m’1> = (™).
X X

(3.58)

The right-most equality is due to the property [y 7T (z,y)dy = 1 for conditional
probabilities. Omitting the variables results in the simplified formula p7" = pu. That
is, the target distribution p is a fix-point of the Markov chain. Note that the Markov
chain need not be homogeneous in order to provide convergence. It is sufficient that
detailed balance holds for each T,,.
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3.4.1 Metropolis-Hastings Sampler

This method has been widely used for approximate inference, especially the particle
belief propagation (PBP) approach in Sect. 3.5.

An Metropolis-Hastings (MH) step consists of two parts. The first part is sampling
from a proposal distribution q(x<m> | x“"‘”). The generated sample z* is a candidate.
The proposal distribution only needs to fulfill some fairly general conditions and are
generally designed to be easy to sample from. A very popular family of proposal
distributions is the Gaussian distribution. The second step is an acceptance test.
The candidate sample z* is accepted with probability

. p(x*)g(zm | o)
Hm {1’ p(ztm=1)g(z* | xm-1)) } ' (3.59)

One can show that the induced transition kernel satisfies the detailed balance con-
dition for the target distribution x [3]. Convergence of MH is ensured if aperiodicity
and irreducibility is provided. Aperiodicity is ensured due to the rejection step (a
candidate can be rejected at any time, having the effect of “breaking” cycles). Irre-
ducibility is provided when the support of the proposal distribution ¢ includes the
support of p, i.e. {z : plx) >0} C{z : ¢z |y) > 0}

Figures 3.5-3.7 show an example MH simulation for the Gaussian mixture distri-
bution p(z) = 0.6 - M(x; —1.5,0.5) + 0.4 - N'(;2.5,2.0). These figures show how
important it is to select an appropriate proposal distribution. If the proposal distri-
bution is too narrow (cf. Fig. 3.6), the MCMC chains move too slowly and thus the
sampling space is not discovered well. If the proposal distribution is too broad (cf.
Fig. 3.7), the samples get rejected too often and the MCMC chains “get stuck”.

A huge variety of other sampling methods have been proposed over the years.
Listing these approaches is out of scope of this thesis. A very promising approach,
slice sampling, is presented in Sect. 3.4.3. The slice sampler is much more robust
against parameter choice than MH. In some special cases, this method can be made
parameter-free. But before explaining slice sampling we need to introduce another
very important sampler, the Gibbs sampler, in the following section.

3.4.2 Gibbs Sampler

Let us for now consider sampling from a joint distribution with random variables
X = (X1, .., Xn)T. In Gibbs sampling, a single element (or a subset of elements) s
is picked from the current configuration vector x™~1 in turn and sampling is done
solely on this selected subset while all other elements are kept fixed. An advantage
of this method is that sampling from the conditional distributions p(zs | _5) can
often be implemented very efficiently.

The Gibbs sampler can be interpreted as a special case of the MH sampler with
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Figure 3.5: MH-MCMC simulations of a toy Gaussian mixture distribution repeated
10000 times. Top: The first twenty Markov chains of the MH simulation using a
Gaussian proposal distribution with standard deviation of 1.0. Bottom: Histograms
and target distribution at different simulation steps. The histogram fits the target
distribution well after twenty MCMC iterations.
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Figure 3.6: MH-MCMC simulations using a Gaussian proposal distribution with stan-
dard deviation of 0.5. The MCMC chains move very slowly, degrading the sample
quality.
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Figure 3.7: MH-MCMC simulations using a Gaussian proposal distribution with stan-
dard deviation of 10.0. The MCMC chains often get stuck due to a high sample
rejection rate. This again degrades the sample quality.

proposal distribution
p(a | x<_TZJ71>) ifx*, = ximy

3.60
0 else. ( )

0 x) = {

The vector x_, denotes the subvector (1, ..., %51, Zsp1, -, n) " (i.e. vector x with-
out entry ).

It is easy to see that the acceptance probability is always 1, that is there is no
rejection of sample candidates. If one can sample directly from the conditional
distributions p(z? | JI}<_T:L,71>) for all vertices s, then Gibbs sampling is a very efficient
(and often easy to implement) method.

The main disadvantage of this method is that convergence of the Markov chain can
be very slow if the random variables are highly correlated. One way to counter this
issue is to sample from a block of variables, leading to block Gibbs sampling. Here,

s is redefined as a set of vertices s C {1,..., N'}. Formula (3.60) applies analogously.

3.4.3 Slice Sampler

In this section the concept of slice sampling [88, 3] is introduced. This method is an
instance of so-called auxiliary variable samplers. Instead of sampling from the target
distribution p(z) with state space X, one instead samples from a higher-dimensional
distribution ¢(x,u) with state space X x U.
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Figure 3.8: Slice Sampling [88, 3]. Given a previous sample point 2™~ first an aux-
iliary variable u‘™ is sampled uniformly from the interval [0, g(x~)]. Afterwards,
the new sample 2™ is uniformly sampled from the region for which g(z{™) > w(™,
defining the slice A.

The joint distribution is as follows

Lifo<u<q@)

_1 7z
q(w,u) = { 0 otherwise (3.61)

for any ¢(z) « p(z) and normalization constant Z = [g¢(x)dz. Intuitively, this
approach can be interpreted as uniformly sampling from the volume under the plot
of g(z),ie. V={reX ,ueld : 0<u<p(x)} CX xU.

Direct sampling from this density function is in general not feasible. Therefore,
one resorts to Gibbs sampling, alternately sampling from the conditional distribu-
tions ¢(u | ) and ¢(x | u). The conditional distributions are particularly simple:

w™ ~g(u | 2™0) = U0, g(zm )] (3.62)
2™~ gz ] ul™) = UA, (™)), (3.63)

where U[l,7] is the uniform distribution over an interval with lower bounds ! and
upper bounds 7, U(A) is the uniform distribution over a region A, and the region
A (uf™) is defined as

A,u™) = {a q(a) > ul™}. (3.64)

The first step can be interpreted as selecting a level set (i.e. a slice) u at which to cut
through the plot of the graph, as shown in Fig. 3.8. The second step is uniformly
sampling from the region for which ¢(z) > w.

This method is easy to implement and very efficient given that the interval A is
easy to calculate. Unfortunately, this is rarely the case.
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An extension of this approach is the product slice sampler [83, 26]. Assume that
g(z) can be decomposed in L functions g;(«) such that

L
q(z) o< [T au(2) (3.65)
=1

and ¢(z) is easy in terms of {z; ¢ (x) > u} can be computed efficiently. Then a

sample from ¢(z) can be drawn by introducing L auxiliary variables uy, ..., uz:
™)~ qluy | 20 = U0, gy (2] (3.66a)
ul™p ~qlug | ™) = U0, gr (2] (3.66b)
™~ g | uf™ L u ™) = (A, (u™)), (3.66¢)

where A,(u™) = {z ; q(z) > ul<m>,l =1,...,L} [3].

The main difficulty lies in determining the slice region A,(u™). A simple obser-
vation is that this region decomposes over an intersection of sub-regions A, (u[<m>) =
{z; qz) > ul<m>} for each factor ¢;(z):

Ay (uf™). (3.67)

e

Ag(umy =

=1

Assuming that the sub-regions A, (ul<m>) can be computed (or at least approx-

imated) efficiently, the implementation of product slice-sampling is straight for-
ward. Some important function families for which this is the case are summarized
in Sect. 4.1.2.

There have been proposed two methods by Neal [88] for approximating the slices
in case that a direct computation of A4, (ul<m>) is infeasible: the stepping-out method
and the doubling method. These two approaches work by first finding an approx-
imate interval Aql(ufw) ~ [L,R] with left and right interval bounds L and R, re-
spectively, and then performing rejection sampling on the approximated interval in
combination with an interval shrinking scheme in order to reduce the rejection rate.
Note that care must be taken in the choice of the interval expansion and shrinking
steps to ensure a valid MCMC scheme which converges to the target distribution p(z).
The resulting constraint is that the interval [L, R] must be able to be constructed
from point 2™~ as likely as from point 2™ i.e.

2™ e {z |z € A, (u,<m>) N [L,R] and
P(select [L, R] | at state z) = P(select [L, R] | at state ™)}, (3.68)

Two approaches for finding the initial interval bounds are proposed: “stepping
out” and “doubling”. In “stepping out”, an initially drawn interval of fixed width
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Figure 3.9: Slice sampling MCMC simulation of the same distribution as shown in
Figs. 3.5-3.7. The MCMC chains jump more quickly than the MH chains (good chain
mixing). After ten MCMC iterations, the target distribution is approximated better
than with the MH approach.

around z{™ 1 and iteratively widened by a constant step length until the outer
bounds L and R are outside of A, (ul<m>). This can be tested by simple point-wise
evaluation of ¢;( - ). The “doubling” procedure doubles in each iteration the width
of the interval by expanding with equal probability either the left bound L to the
left or the right bound R to the right until both bounds are outside of A, (u™).

The shrinking operation is as follows: A new sample candidate x* is generated
from the interval [L,R] and tested if z* € Aq,(ufm)) using point-wise evaluation. If
not, then the interval [L, R] is successively shrunk and a new sample candidate is
drawn. This shrinking operation continues until a valid sample is found. For the
doubling procedure it may be necessary to further check for condition (3.68).

For multivariate sampling, i.e. X = (z1,...,xx)", one straightforward method is
to apply Gibbs sampling as in Sect. 3.4.2 [88]. The conditional distributions can
then be sampled using single-variable slice sampling [26].

Figure 3.9 depicts the MCMC chain simulations from the example introduced in
Sect. 3.4.1 but using slice sampling with the step-out procedure instead of MH. Slice
sampling leads to much better chain mixing and hence reaches a good approximation
of the target distribution earlier than MH (after the 10th iteration).
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Graphical Model (exemplary) MCMC sampling

Figure 3.10: Particle Belief Propagation framework. Left: Message passing mecha-
nism. Right: MCMC particle sampling of the belief b(x,) with an exemplary MCMC
sampling chain of one particle (blue) and its corresponding histogram (red).

3.5 Max-Product Particle Belief Propagation

For arbitrary potential functions ¢s(z;) and ¢, (s, ;) over continuous variables,
the max-operators in Egs. (3.20) and (3.22) for the message passing and decoding
operations are in general intractable. In some special cases, these operations can be
solved exactly and computationally efficiently. This is, e.g., the case if all potential
functions are Gaussian, thus leading to the special case of Gaussian Markov random
fields [97] and especially to Gaussian BP [15].

In the following the max-product particle BP algorithm [67, 14] is summarized.
One method for approximating the max-operator over the continuous state space
X in the message-passing rule in Eq. (3.20) is to restrict the max-operation over
a discrete and finite set of particles P, = {mgl), e ,I,Ep)}, where p is the number of
particles per node. The modified max-product rule is:

My () & s (5) = max(n(we) G (v, 1) 1T eoe(z)]. (3.69)
e reNi\{s}

In fact, since P, C Xy, it is my—s(zs) < mys(zs) and thus the true max-marginal
15(zs) is always underestimated:

ﬂS(IS) = ¢s(xs) 1:\[[ mtﬁs(xs) < /Ls(‘rs)A (370)

Nevertheless, approximate MAP estimates can be decoded from:

2% € arg max fis(zs). (3.71)
TsE€Ps

Note that the belief p(z,) and the messages 7 ,s(z5) can be calculated for all
continuous values x, € X, rather than only on the particle set Ps. On the other
hand, the messages from node s to node t are approximated only using the particles
xy from the particle set P; of node t.
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Algorithm 4 Particle belief propagation [67, 14]

Input: Initial set of particles: {x‘(f)},;zl____,p, proposal distribution ¢
1: Initialize the messages m{_,  (x5) = 1 and beliefs /zg(mgl)) =1 for all st
2: for BP iteration n =1 to N do

3: for each node s and each particle : = 1,...,p do
4: Initialize sampling chain xé")“” — fo)

5: for MCMC iteration m = 1,...,M do

6: Sample iffﬂm) ~go(z | x&i”m‘”)

7 Calc. belief u?(igmm)) from Egs. (3.70), (3.69)
8: Sample v ~ U[0,1]

9: if u < min 17”g<'7;-(7’1)<ﬂl>)/}L?(i‘gi)(ﬂl))} then
10: Accept: 20 7D

11: end if

12: end for

B ol e g0

14: end for

15: Normalize messages and beliefs

16: end for

A major issue in particle-based inference methods is how and from which distri-
bution to sample the particles. Koller [62] suggests that the true marginal v (z;)
would be the best choice. This statement is mathematically founded by [50]. Since
this quantity is not available, one resorts to sampling from the most recent max-
marginal estimate p”(z,) [67]. Messages and beliefs are calculated iteratively for
n =1,..., N iterations. New particles are sampled in each BP iteration using the
most recent belief estimate.

The main issue in PBP is then how to sample from the (arbitrarily shaped) belief
density function. For this task a short MH-MCMC chain simulation is typically used.
This method requires a proposal distribution ¢ where new particles can be easily
sampled from. Typically a Gaussian function ¢(x | y) = ¢-(x | y) with a predefined
standard deviation o is used.

Figure 3.10 shows a schematic overview of the PBP framework. Algorithm 4 sum-
marizes the Metropolis-Hastings based max-product belief propagation algorithm
(MH-PBP).

The proposal function ¢ needs to be carefully adjusted to the true belief distri-
bution. This introduces a dependency on prior knowledge about how the labels are
distributed in the label space. In Sec. 4.1, a modification of algorithm 4 is proposed
which replaces the MH sampler by an appropriate slice sampler which exploits the
message-passing structure for efficient sampling.
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In recent years, stochastic inference methods have been applied for solving max-
imum a posteriori (MAP) inference problems in high-dimensional, continuous or
discrete-continuous probabilistic networks [62, 112, 92, 14, 91]. These methods face
two major difficulties. To explain them, consider the following naive approach:
First, randomly generate sample proposals from the set of feasible solutions. Then,
evaluate the joint distribution at these configurations and return the best match
found so far as the MAP estimate. This approach is quite simple but has a critical
drawback. The number of samples needs to be sufficiently large in order to capture
all areas of interest (i.e. areas of high probability). Unfortunately, the relative area
of high probability with respect to the whole search space shrinks exponentially with
the number of dimensions of the search space. And hence, the required number of
particles to obtain a reasonable MAP estimate rises exponentially with the dimen-
sionality. This is an effect of the curse of dimensionality [9]. The second challenge
is sample proposal generation. Intuitively, we want to place the samples in areas of
high probability. At the same time, due to limited resources, we want to spare areas
of low probability in favor of efficient sample usage. This leads to a chicken-egg-
problem, since we do not know the probability distribution a priori (otherwise, MAP
inference would become trivial). The Markov chain Monte-Carlo (MCMC) frame-
work presented in Section 3.4 can be applied in such situations. MCMC sampling
in high-dimensional space may work out well but requires cleverly designed MCMC
moves tailored to the particular computer vision task at hand [122].

The curse of dimensionality problem can be alleviated by applying a hybrid ap-
proach combining stochastic methods with message passing schemes [62, 61]. The
particle belief propagation algorithm (introduced in Sect. 3.5), successfully applied
to complex computer vision problems [50, 112, 91, 90], is such a prominent approach.
In the message passing framework, sampling is performed over each message or node
variable independently. Hence, instead of having one global and high-dimensional
MCMC chain, the hybrid approach leads to a large number of low-dimensional (de-
coupled and parallel) MCMC chains.

Generating sample proposals is easier in low dimensional spaces but still requires a
large amount of application-dependent tuning. Hence, many heuristically motivated
sampling methods have been proposed, such as random walk proposals [112, 92],
neighbor-based sampling [14], and data-driven approaches [91]. Some of them de-
pend on tunable parameters and due to their local generation nature they only
provide slow information propagation. In the context of message-passing in hybrid
Bayes networks, Koller et al. argue that a sensible choice for good sampling propos-
als are the marginal distributions [62]. Obviously, this choice is impractical, as the
marginal distributions are a priori unknown. As a solution to this dilemma, they
propose to use an approximate marginal distribution based on the current message
estimate. This results in an iterative scheme in which the message estimates and
the approximate marginal distributions are alternately improved. This finding was
rediscovered by Thler and McAllester [50], leading to the sum-product particle belief
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Figure 4.1: Overview of MCMC sampling approaches for inference in probabilistic
graphical models: a) Sampling from the joint state space requires an infeasibly
large number of particles due to the curse of dimensionality. b) Sampling from
the marginal distributions p (provided by, e.g., belief propagation) is better suited
for large-scale problems. However, sampling from g is treated as a black box and
requires application-dependent parameter tuning. c) Proposed approach: Same as
b) but exploits the structure of 1 by combining slice sampling with message-passing.
This leads to robust and fast particle sampling without parameter tuning.

propagation (PBP) approach. In [50] it is further proposed to use a Metropolis-
Hastings MCMC sampler with Gaussian proposals. A max-product variant for MAP
inference was later on proposed in [67].

All the previously mentioned sampling approaches treat the inference task as a
black box. They ignore the underlying structure of the marginal distributions. In
the following section, a novel sampling method is proposed which is tailored to the
max-product message-passing scheme of the particle belief propagation algorithm
presented in Sect. 3.5. The proposed approach efficiently generates high-informative
sample proposals which respect long-range variable dependencies in the graphical
model while requiring significantly less MCMC iterations than black-box Metropolis
samplers. Figure 4.1 visualizes the proposed approach (bottom) in comparison to
previous methods (top).
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4.1 Slice-Sampling Particle Max-Product

The intuition behind the proposed approach is to follow the divide-and-conquer
principle: instead of trying to sample from the marginal distribution directly, which
can be arbitrary complex, the full distribution is decomposed in its single contribut-
ing elements and sampling is applied on these much easier shaped, low dimensional
distributions.

The proposed method is described step-by-step, starting in Sect. 4.1.1 with the
product-max sampler which forms the core sampling method of our approach. In
Sect. 4.1.2 our main contribution, sampling from max-marginal distributions in the
max-product belief propagation framework, is derived. An empirical random walk
analysis with comparison to the baseline PBP algorithm is presented in Sect. 4.1.4.
In Sect. 4.2, an extension of our approach is presented. Sampling behavior is fur-
ther improved by applying two modifications. First, the loopy belief propagation
scheme is replaced with a state-of-the-art convergent message-passing algorithm.
This increases global consensus of the entire graphical model and hence leads to
better guiding of particle sampling. Second, to enforce monotonicity of MAP energy,
a particle selection mechanism based on the diverse particle max-product (DPMP)
method of [90] is applied. Here, the likelihood to discard particles corresponding
to previously discovered high-probable modes is significantly reduced while at the
same time preserving diversity in the particle set.

4.1.1 Sampling from Product-Max Distributions

A simple but very important observation is that the (pseudo) max-marginal beliefs
which can be computed by max-product message-passing algorithms such as MP-BP
(cf. Sect. 3.3.1), TRBP (cf. Sect. 3.3.3), and Metropolis-Hastings particle belief
propagation (MH-PBP) (cf. Sect. 3.5) have the following structure:

q(z) o< qo(w) [ [ maxai(z, y)- (4.1)
=1

This distribution is in the remainder of this thesis referred to as a product-max
distribution. In the following is shown how slice sampling (cf. Sect. 3.4.3) can
be applied to draw samples from product-max distributions. Slice sampling has
several advantages towards other sampling methods such as Metropolis-Hastings
sampling. The method is free of sensitive tuning-parameters and the MCMC chain
mixing behavior is much better [88]. The only requirement is that the computation
of the slice regions {x ; go(z) > u} and {z ; ¢(x,y) > u} for [ > 1 must be cheap.
This is usually not an issue. Many potentials ¢y and ¢; are given in closed-form and
very often a closed-form (partially) inverse exists. On the other hand, slice regions of
more general potentials such as data-driven functions (for example log-linear models
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with arbitrary feature functions, cf. Eq. (3.14)) can be approximated with moderate
costs using, e.g., the step-out procedure (cf. Sect. 3.4.3).
It can be observed that Eq. (4.1) factorizes to ¢(x) o< [T7, ¢:(x) with

qi(z) = max q(z,y) foralll>1. (4.2)
yeN

This factorized form is directly suitable for efficient sampling with the product slice
sampler (cf. Eq. (3.65)). The product slice sampler requires an efficient way to
compute the following slice regions:

Ag (™) = {5 @) 2 u™} = {o s maxai(e,y) > u™}. (4.3)

Assuming discrete and finite state spaces ), one can in Eq. (4.3) factor out the
max-operation over yl which turns into a union over Y;:

Ay = U e s aley) 2 0™} = U Ay .) (4.4)
yeEM yeENL
with Ag, (v, y) = {o; q@(z,y) > u}. The equivalence of (4.3) and (4.4) can be easily
seen by the following set-theoretic equivalences:
(m)

z€{zr; max q(z,y) > 71, } = max alz,y) >y (4.5a)
yel
Sel : alzy) >u™ (4.5b)
eIyel : ze{r; qlzy) 2u™} (450
sze Uz aley) =™ (4.5d)
yeEW

According to Eq. (3.67), the slice regions A,, (ufm)) are combined to a joint slice re-
gion via intersection: A,(u™) = N4, (ul<m>)‘ Bringing everything together leads to
l

the following relationship between product-max distributions and its corresponding
slice regions:
L

gz) o< gox) ][I max  aley)

=1 Yy

7 I 7 (4.6)
Aq(u<'">) _ {m U“m m U ;4[”('11;‘”“\'\-,1/)

L yey

The correspondence between the operators is highlighted with colors where the [ <>
M correspondence follows from the product slice sampler (cf. Egs. (3.65)—(3.67))
and the max <> [J correspondence is shown above in Egs. (4.5). The product-max
sampler is summarized in Alg. 5. In case that the slice regions for ¢o(z) or ¢;(z,y) do
not have closed-form solutions (as is the case when using, e.g, data-driven likelihood
functions), one can resort to approximating the slice regions. This then requires an
additional acceptance test
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Algorithm 5 Product-max sampler

Input: Initial particle (%, slice regions Ag, (u,y) for each factor ¢, discrete and finite
sets V)
L
Ensure: z ~ [] maxq(z,y)

=1 YEN
1: for m =1 to M do

2: for [ =1to L do

3: Sample ul<m> ~ U0, g (zm1)]

4: Compute region Ag, (ul<m>) = U Aql(ul(m), )
yeNL

5: end for

L
6:  Compute region Ay (u™) = ) Ay (u™)
=1

T Sample new particle z{™ ~ U(Aq(u“")))

8: \\ (Optional) Acceptance test for approximated slice regions:
9: if vl gatm) > ul<m> then

10: Accept (™

11: else

12: \\ Shrink slice (cf. Sect. 3.4.3):
13: if z(™ < z{m=1) then

14: Ag(lm™) — Ay (ub™) N [0 00)

15: else

16: Ag(utm) Ay (ul™) N (—o0, z™)]

17: end if

18: goto 7

19: end if

20: end for

21: Set 2 = 2(M)

4.1.2 Particle Max-Product

In this section, a novel particle sampling strategy is proposed which exploits the
message-passing structure of the underlying inference framework for generating high-
informative particles. The core inference method is the PBP approach of Sect. 3.5.
In the literature, particles for PBP are generated either from Metropolis MCMC
simulations or from heuristic proposals. In both cases, parameter tuning may have
a high impact on the quality of the generated particles. The proposed approach
in this chapter exploits the properties of (product) slice sampling which is robust
against parameter selection.

The following derivation assumes pairwise graphical models. The generalization
to higher-order models is straightforward. Similar to PBP introduced in Sect. 3.5,
particles are drawn from max-marginal distributions. But the strategy to generate
them is different. The Metropolis-Hastings is replaced by the product-max sampler

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

62 Chapter 4 Stochastic Inference in Probabilistic Graphical Models

introduced in the previous section. The pseudo max-marginals computed by the
(loopy) belief propagation algorithm have the following structure (cf. Sect. 3.5):

fs(zs) = os(xy) H max (@ (21) ds 1 (s, 21) H 1 (24)]. (4.7)
teN

L 5P, .
teN 1T reN\{s}

This equation follows by substituting the message 7 ,s(x5) defined by Eq. (3.69)
into the belief equation (3.70). Note that this distribution is in fact a product-
max distribution over z; as visually highlighted corresponding to Eq. (4.6). Hence,
Alg. 5 can be directly applied to sample from the pseudo max-marginals fi,(xs).
The relationship between Eq. (4.1) and Eq. (4.7) can be seen by using the following
substitutions:

L =N (4.8a)
20(7s) = ¢s(xs) (4.8b)
Vi =P (4.8¢)
Qt(xm It) = ¢t(It)¢s,t($th) H ﬁlTﬁt(xt) (4-8d)
reN\{s}
The corresponding slice regions A,, are thus defined as follows:
Ago(u) = Ay, (u) (4.9a)
-1
Ag(u) = Ag, (U, 2¢), G=u- [(f)t(lt) 11 T?I,Tg,t(fL’t)} (4.9b)

reN\{s}

with Ay, (u) = {zs ; ¢s(xs) > u} and Ay, (4, ) = {xs ; Psp(vs,20) > 0.

In the following we switch to the negative logarithm representation of the beliefs,
messages, and factor potentials, as it is common practice for increasing numerical
stability. This essentially leads to replacing products with sums and max-operators
with min-operators. The proposed method is summarized in Alg. 6. Note that the
set-operators union and intersection of Alg. 5 are not altered, since the slice regions
stay the same in both the max-product and min-sum variants. The slice regions for
unary potentials Ay, (v) = {zs; ds(xs) > u} transforms to Ay (T) := {5 ; ¥s(xs) <
u} where @ := —log(u). For binary and higher-order potentials the definitions apply
analogously.

The above described algorithm, summarized in Alg. 6, is in the following referred
to as slice-sampling particle belief propagation (S-PBP).

Convergence Properties The core of the proposed approach is the product slice
sampler which introduces auxiliary variables {u; }; .., for each factor respectively.
Neal [88] mentions in his comparison of single auxiliary variable samplers to mul-
tiple auxiliary variable samplers that the MCMC convergence time for product slice
sampling is in O(L). This implicates that samples are more correlated with larger L
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Algorithm 6 Slice-Sampling Particle Belief Propagation

Input: Initial set of particles: {mgi)}izlwp
1: Initialize the messages MY, (75) = 0 and log disbelief Bg(mgl)) =0Vs,t
2: for BP iteration n =1 to N do

3: for each node s and each particle it = 1,...,p do

4: Initialize sampling chain xff)w) “— xg-i)

5 for MCMC iteration m = 1,...,M do

6 Sample ug ~ U[0,1]

T Tp ws(xii)<m'71>) — log(ug)

8 for t € Ny do

9: Sample u; ~ U0, 1]

10: Up < J\ﬂgs(zgmmfm) — log(ut)

11: Compute region Appr | (u) = U7> Ay, (e — My_ys(zy), 1)

Tt t
12: end for o
13: Compute region Ap, (7) = Ay, (o) (A][ A, (1)
teN

14: Sample new particle candidate z{™ ~ U(Ap, (7))
15: Calc. belief B?(z5)™) from Egs. (3.70), (3.69)
16: if ¢, (z)™) <5 and M2, (28" < @, V¥t € N, then
17: Accept: x£i><’"> — 5527‘)(”‘

18: end if

19: end for
20: 2 OO0
21: end for
22: Normalize messages and beliefs
23: end for

and therefore has a negative impact on MCMC chain mixing. In our case, the number
of factors is limited by the structure of the underlying graphical model G. To be
more precise, Ly = 1+ |N|, where | V] is the number of neighbors of node s. Since
MCMC is performed for each node independently and can be done in parallel, the
overall convergence time for the complete graph is of order Lyax = 1+ maxsey JN|.
Note that L,y is typically < 10 (e.g. Lmax = 3 for chain graphs and Ly,.x = 5 for
grid structures with a 4-neighborhood).

Computational Complexity The computational complexity can be a useful cue
in comparing different algorithms. A proxy for the computational complexity are
the sum of number of factor potential evaluations and the number of slice computa-
tions. This is a meaningful measure, because the two operations provide the smallest
possible interface between the graphical model representation and the inference al-
gorithms.
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The baseline method is MH-PBP as introduced in Sect. 3.5. The computational
complexity for MH-PBP is O(N.SpM (1+Vp)) and for S-PBP is O(NSpM (3+2Vp))
given the number of PBP iterations IV, nodes S, particles p, MCMC iterations M and
the average number of neighbors per node V. This indicates a doubling of compu-
tation time of S-PBP compared to MH-PBP which is due to the overhead introduced
for computing the interval regions A(u). Note, however, that the MCMC sampling
chain can be significantly shorter in S-PBP than in MH-PBP due to much better chain
mixing properties of slice sampling. The chain mixing behavior is analyzed in more
detail in Sect. 4.1.4.

Multivariate Distributions To deal with multivariate label spaces, i.e. £, € R?
for d > 1, there are several possible choices. One approach is to randomly select one
dimension in each MCMC step and slice sample on this dimension while the other
dimensions are held fixed. Another choice is to apply Gibbs sampling. This is a
deterministic variation of the former method where over each dimension is sampled
exactly once in an (arbitrarily chosen) predefined order.

4.1.3 Computing the Slice Regions

The proposed slice sampling approach relies on fast computation of the slice regions.
This section summarizes approaches for computing either exact or approximate slice
regions.

Exact slice regions can be provided when the potential function under test f
is (partially) invertible with a closed-form representation. With slight abuse of
convention we refer to these functions in short as invertible functions and to all other
types as non-invertible or data-driven functions. Computing the exact slice region
Aj(m) = {x; f(z) < u} then involves two steps. First, determining a partitioning
of the domain of f into branches {D;}; and pivot points {p;}; in which f(z) is
monotonic decreasing for all x € D; with z < p; and monotonic increasing for all
x € D; with > p;. Second, computing the inverses ff,l and ff]% of f for each
branch ¢ corresponding to the left and right side of p; correspondingly. Finally, the
slice region Ay(@) is a union over all intervals [f; /' (2), f; 2(@)] for which @ is in the
image of f restricted to branch D; (or equivalently in the domain of f,i,_Ll and fl_}%)

For example, the function f(x) = 22 has only one branch D; = (—o0,00) with
pivot point p; = 0 and partial inverses ffl(y) = —/y and ff}{(y) =y The
corresponding slice region is Ay(u) = 0 if @ < 0 and Ay () = [—/,\/y] otherwise.

The process for defining Ay, (u) and/or Ay (u) as described above can be auto-
mated using standard computer algebra solvers. A MATLAB®-MuPAD® interface was
developed to solve the inequalities and derive the slice regions automatically. This
avoids tedious manual derivations which can get quite large and are likely to contain
mistakes.
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Approximate Slice Regions

Closed-form solutions for the slice regions are not always available. The proposed
framework is capable of handling such a case. This works by first computing an
approximation AP (u) of the true slice region and perform rejection sampling
with slice shrinking. Neal [88] proposes two methods for univariate functions: the
step-out procedure and the doubling procedure (cf. Sect. 3.4.3). The two methods
successively enlarge an initial small slice region until a stopping criterion is reached.
This requires repeated factor potential evaluation, which has, depending on the
selected step size and the shape of the factor potentials, a negative impact on the
algorithm runtime.

Another approach is to directly derive an outer bound approximation A3 (u) >
Ag(u). Provided that the state space is bounded with X C [I,r] and —oo < I <
7 < 00, a naive outer bound approximation is A" (u) = [I,r]. A downside of
such a loose outer bound approximation is that the number of sample rejections in
the slice shrinking step rapidly increases, which, again, increases algorithm runtime.
In practice, the slow-down is not as large. Recall that samples are drawn from the
max-marginal distribution p,(xz5). This involves the computation of slice regions for
the unary potential Ay, (u) and all pairwise potentials Ay, , (@, 2;) to neighboring
nodes t € N,. Further recall from Alg. 7 that the region from which a new sample
is drawn is the intersection of multiple slice regions. Assume that at least one slice
region can be computed exactly and the resulting slice region area is reasonably
small compared to the sample space. Due to the intersection operator, the area of
the resulting sampling region is then at most as large as the smallest slice region.

If, for example, the slice region for the unary potential ¢,(z,) is approximated
as (—oo,00) and the exact (bounded) slice regions for the pairwise potentials are
provided, then the intersection of all regions is bounded. Omitting the slice shrinkage
step would in this case lead to sampling from the distribution [T;cpr, 7u—s(s) instead
of the approximate max-marginal distribution ¢,(zs) [T;cpr, 74— (%), hence ignoring
the influence of the unary potential ¢,(x;) at all. Therefore, slice shrinking is only
triggered when the unary potential ¢s(x;) disagrees with the rest of the network.

Further speedup in product slice sampling can be achieved by summarizing all
non-invertible terms into a single factor and performing slice approximation solely
for this summarized factor. This reduces the number of multiple slice approximation
steps to a single slice approximation and furthermore reduces the number of set
union and intersection operations over the slice regions. In the extreme case when
all potential functions are non-invertible this method reduces to black-box sampling
(cf. Fig. 4.1).
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Slice Approximation for Gaussian Mixture Models

In the following it is shown that an outer bound approximation can be provided
when the factor potential is a Gaussian mixture model:

K
bs(x5) = D wpN (s | pw,07) (4.10)
k=1

with component means i, component variances J,% and component weights wy > 0,
where Y wr = 1. An outer bound approximation of Ay, (u) can be constructed by
relaxing ¢4(z,) as follows

GEPPIX () = ax KwpN (z, | p,07) > ¢s(5). (4.11)

This can be easily seen by the following inequality
K

K
> wpN (x| o) < > max_wpN(z | L0 )
k=1 ot B K

= Kk,g}axK W N (x| e ,08) = PP (). (4.12)

The corresponding slice region has the following form

AP (u) = U [k — dagey i, + dag), (4.13)

with dy = O'k\/Q(ﬂ + log(Kwy,) — log(v/2moy)).

Note that other approximations are also possible, e.g., maxy N (x, | ux,02), but
were not considered in the remainder of this thesis.

Table 4.1 provides a summary of the discussed potential functions and their cor-
responding slice regions or slice region approximations.

4.1.4 Random Walk Analysis

In the following, the chain mixing behavior of the proposed S-PBP algorithm is ana-
lyzed on the application of edge-preserving image denoising. Each pixel is associated
to a random variable x5, where s = 1,..., W - H with an image of W columns and
H rows. We restrict ourselves to grayscale images. The observed variables d € [0,1]
take the (noisy) intensity values of the corresponding image pixels. The random
variables x; represent the intensities of the true (denoised) image pixels. Assuming
ii.d. Gaussian noise and a robust smoothness prior between neighbored pixels, the
image denoising model is as follows:

ws(xs) = 91(-7;5 - ds)27
Yoi(Ts, 7) = Oy min{Bs, (v, — ,)*}. (4.14)
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Table 4.1: Listing of frequently used potential functions and its corresponding (ap-
proximate) slice regions.

Type Potential ¢4(z) Slice region Ag, (u)
Gaussian exp [ — %} v — ov2u, p+ ov/24]
p u<d — 0V 22U, + ovV2u
Truncated quadratic exp [ — min{é, %2")—2}} i s ]
u>0 R
Absolute deviation exp [ — A|zs — p] =% pu+%
Robust penalty exp [ — p((zs — w)?)] [l —=vVp (@), p+ Vo ()]
Data driven f(zs) step-out method
sli
Data driven (bounded)  f(zs) : zs € X5 C [I,r] Xs S, 1ce.
shrinking
Gaussian mixture S N (zs | Ok) Ulp — di, o+ di)
% k

This model is suitable for our analysis due to its moderate problem size, allowing
an empirical evaluation with hundreds of runs. Yet, it has sufficient complexity in
terms of a high number of highly-correlated random variables and a graph structure
with many tight loops.

For minimizing particle noise in the final estimation result an annealing scheme
is used where the target belief distribution is modified to 6 (2()¥/%" where

T, =Ty (Tn/To)"™ (4.15)

is the temperature at PBP iteration n, Ty is the start temperature, and T the end
temperature. Given this annealing scheme the temperature is successively reduced
for each new iteration n.

The evaluation was done on an example image as shown in Fig. 4.2. The training
and testing sets each include 10 noisy image instances with Gaussian noise standard
deviation o = 0.05. Training of the parameter vector 6§ = {61,02,03} is done by
minimizing the empirical risk R(8) = + YK, L(xg'),y“)) given the loss function
L(x,y) = ||x —yl|2 where {y®,d®} is the training data pair with ground-truth y®
and noisy observation d? and xﬁj) is the MAP estimate given d® and the parameter
0. Learned parameters are 07 = 0.756, 05 = 1.170, 63 = 0.0059.

Comparing S-PBP with MH-PBP The efficiency of slice sampling is compared
to the baseline Metropolis-Hastings sampling approach. The experimental setup
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‘Tl

Figure 4.2: Denoising example: Groundtruth (left), noisy input example (middle
left), reconstruction with MH-PBP (middle right), reconstruction with our proposed
S-PBP method (right).
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Figure 4.3: Comparison of the empirical risk for S-PBP and MH-PBP with different
proposal distributions.

has the following parameters: N = 100 PBP iterations, p = 5 particles, and a
temperature schedule of Ty = 1 to Ty = 107*. An MCMC chain of M = 500
samples was generated for each particle and in each PBP iteration. The iteration
numbers are chosen to be more than sufficiently large in order to guarantee con-
vergence and to collect statistical information in the MCMC chains in steady-state
situations. For the MH-PBP proposal distribution the family of Gaussian distribu-
tions py(z | 20 D) = (270?) % - exp[—0.5(x — 2™ "2 . ¢7?] is used. In order
to provide a fair comparison the proposal distribution is adapted to the current
temperature by using p,(z | 2T instead.

Figure 4.3 shows a comparison of the empirical risk for different MH-PBP proposal
distributions. For ¢ > 0.7 the empirical risk stays nearly at the same level and
thus o = 0.7 was selected for all further experiments. Another observation is that
S-PBP outperforms MH-PBP in terms of minimal empirical risk. This is because
the reconstructed images with MH-PBP have always much higher noise than images
reconstructed with S-PBP. This effect can be significantly reduced by averaging over
particles instead of only selecting the best one as stated in Eq. (3.71).
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Figure 4.4: Comparison of S-PBP and MH-PBP at different PBP iterations (dotted
n = 30, dashed n = 50, and solid n = 70) using an annealing schedule.

For comparing the random walk behavior of the MCMC sampling chains from
S-PBP and MH-PBP, the normalized autocorrelation function

met (2 — 3) (2N — 7)

SAH @t = ap

m=1

Pr = (4.16)

where 7 = L 2™ is used [118]. Only the last 50% of the MCMC chain is
considered to skip any burn-in phase. Figure 4.4 shows a comparison of the first 20
k-th order autocorrelation of S-PBP and MH-PBP at different PBP iterations n (and
thus at different temperatures 7,,). It can be observed that the MH-PBP method
produces a much higher autocorrelation than the S-PBP method, thus it can be
concluded that the MCMC chain mixing behavior of S-PBP outperforms MH-PBP.

The evaluation in this section only focused on synthetic data. An evaluation with
real-world data is provided in Sect. 5.1 with the application of part-based object
tracking.

4.2 Tree-Reweighted Particle Max-Product

In the previous section, the inference mechanism of S-PBP is based on loopy belief
propagation. As already pointed out in Sect. 3.3.2; loopy belief propagation has
poor convergence behavior. Convergence is not guaranteed. Non-convergence often
manifests in oscillating message updates from which the algorithm must be aborted
after an arbitrary number of maximally allowed iterations. In such cases, the com-
puted pseudo max-marginals can be misleading which has a negative impact on the
particle sampling quality.
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It is shown in the following that the proposed product-max sampling is also ap-
plicable on other message-passing methods which have much better convergence
behavior. The derivation focuses on the TRBP algorithm with activated message-
damping as introduced in Sect. 3.3.3. In preliminary tests it was observed that this
approach achieves sufficiently fast convergence.

The pseudo max-marginals of TRBP have the following structure:

fs(xs) oc os(zs) | (11184‘(05_[(‘(@,"L‘,,)(‘m1 w(lr,,)“””) m?fs(:ps)”"“(l’”) (4.17)

teN . T E€P¢

My s(s)Pts

This equation follows by substituting the damped message m;_,s(z;) as defined in
Eq. (3.27) into the belief equation (3.26) where m;_,s(z;) is the premessage and
m4_(x) is the old message from the previous iteration. One can observe that this
form almost perfectly matches the pattern required by the product-max sampler
in Eq. (4.6) of Sect. 4.1.1. The only term which does not match the product-max
pattern is m2'd,
term is recursively defined through the iterative message passing mechanism. A
repeated substitution by its recursive definition is not desirable because the number
of factors L for the product slice sampler would grow with each substitution. As
pointed out in Sect. 4.1.2, larger L requires more MCMC iterations and thus has a
negative impact on the computational overhead. Therefore, this approach is not

tractable. Another approach is to slightly modify the target distribution (4.17) by

(:Es)'”-“(l’a) originating from the message damping mechanism. This

replacing my_,(z5)?* with (mHs(T»')/mgﬁs(zs)lfﬂ)%, leading to the following tractable
proposal distribution:

Pts

e xoe) T (L) (118)

teNs Mis (xs)lia

= () [[ maxos (s, z )My (20)" (4.19)

v €Py

In the case of disabled message damping (o = 1), the pseudo max-marginal in
Eq. (4.17) reduces to

ﬂs(ZS) o8 @9(19) H max ¢s,t(xs7xt)mt4_s($t)p” X qs(xs). (4.20)

1 €P¢
s

That is, the pseudo max-marginal is equivalent up to a scaling factor to the proposal
gs(xs). In the case of enabled message damping (o # 1), one can observe the
following. If the TRBP algorithm converged to a fixpoint, i.e. ms(zs) = m24, (zy),
the proposal distribution equals the pseudo max-marginal ¢s(vs) = fis(xs). The
proposed proposal ¢s(z;) in Eq. (4.18) does not equal the pseudo max-marginal if
both a # 1 and the TRBP algorithm is not converged. That means that the use

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

4.2 Tree-Reweighted Particle Max-Product 71

Algorithm 7 TRBP max-marginal sampler.

Input: Initial particle 2 for vertex s, slice regions Ay, (u) and Ay, ,(u, 2¢)

Ensure: z; ~ fis(zs)
1: for m =1to M do
2 Sample uém> ~Ufo, ¢s(x,<gm71))]
3: for t ¢ N, do
4 Sample uim ~ U0, (eors (@) fmetd ({m=1y1-a) 5]

Compute region Ay, . (u{™) = U Ay (0 s a(wiyest, 1)
z1E€Pt

ot

6: end for
T Compute region A, (ui™) = Ay, (uém)) N A,,LHs(u,<,m>)
teNs

8: Sample new particle z¢™ ~ U(Ag, (ul™))
9: end for
10: Set x4 = x§M>

of the proposed proposal could potentially have a negative impact on the particle
quality in the starting phase of TRBP with enabled message damping. On the other
hand, when TRBP converges, the proposal ¢,(x;) successively approaches fis(z;) and
thus the particle quality increases from iteration to iteration.

The TRBP max-marginal sampler is summarized in Alg. 7. Note that this method
can be interpreted as a generalization of the S-PBP approach of the previous section.
Loopy belief propagation is achieved by setting the TRBP parameters py; = 1 and
the damping factor @ = 1 (no damping).

4.2.1 Diverse Particle Selection

The S-PBP approach presented in the previous sections focuses on improving the
MCMC sampling mechanism. However, one drawback of the MCMC PBP framework
is that the set of particles is replaced after each sampling step. Already discovered
good MAP estimates are often discarded in the next PBP sampling iteration. There
are several ways of dealing with this problem: The easiest way is to keep track of
the configuration which achieves the lowest energy (highest probability) so far. This
guarantees a monotonically decreasing upper bound of the MAP energy. A second
approach is to perform temperature annealing. This method is for example applied
in the image denoising in the previous section (cf. Sect. 4.1.4) and in the part-
based object tracker in the next chapter (cf. Sect. 5.1). Although this approach
works reasonably well, it has some downsides. First, another tuning parameter, the
annealing speed, is introduced. Second, the risk of getting stuck in local optima is
increased, especially when the cooling-down schedule is too rapid.

Other approaches try to keep the most promising particles by first augmenting
the old particle set by newly sampled particles, leading to a much larger augmented
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particle set. The augmented particle then must be reduced by applying a filtering
step. A simple filter is to discard particles with the smallest max-marginals [14].
This approach tends to cluster the particles to a single mode [90]. The approach
of Pacheco et al. [91, 90] follow a similar approach but with another objective
than the max-marginals in order to put emphasis towards diversity. They showed
substantial improvements in MAP estimation on complex problems with multiple
modes such as human pose estimation [91], optical flow estimation, and protein
side chain prediction [90]. This method is denoted as diverse particle max-product
(DPMP).

The criterion for selecting diverse particles in DPMP is to minimize the approxima-
tion error of the max-product messages. Since the true max-product messages are
not available, they use the messages computed over the augmented particle set as
reference. Let P denote the initial particle set for vertex ¢ containing L, = |Pi"|
particles and P78 = Pinit |y Prew the particle set augmented with /&, newly gener-
ated particles P, Hence, |P;"®| = L; + K;. Then, the goal is to filter a subset
of L; particles P; from the augmented particle set P; ® according to the following
objective:

Z Hmtﬁs(Pt) - m/tas(PZtmg)Hl (4'21)
seNt

s.t. ‘Pfl = Ltv

min
aug
PCP;

where m;_,s(A) are message(-vectors) calculated over its corresponding particle set

A:

s (4) = {max b (o, )i (o) (422)

au
z,€PYE

and || - ||; is the L1-norm with ||a||; = Y; |a;|. The problem (4.21) is approximately
solved with an efficient lazy greedy approach [90].

Figure 4.5 shows a comparison of the temperature annealing approach and diverse
particle selection applied on the image denoising example in Sect. 4.1.4. Tempera-
ture annealing does not guarantee monotonic decreasing MAP estimates. DPMP with
slice-sampling converges much faster.

The particles P}V are generated from heuristic proposal generators that include
random-walk, neighbor-based, and data driven proposal distributions [90]. These
proposals are motivated from previous literature [112, 14]. Such heuristic approaches
have the downside of requiring careful parameter tuning in order to produce use-
ful particle candidates. We argue that S-PBP produces at least as good particle
candidates as heuristic proposal generators without requiring parameter tuning.

Combining DPMP with our S-PBP framework is straightforward. Figure 4.6 illus-
trates the integration of S-PBP to DPMP in comparison to vanilla DPMP.
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Figure 4.5: Temperature annealing (left) versus diverse particle selection (right) on
the image denoising toy example of Sect. 4.1.4.

Heuristic Proposals Max-Product BP J [Slice Sampling )—»(Max-Product BP J

Data-Driven
Neighbor

Random Walk Diverse Particle Diverse Particle
Selection Selection

Figure 4.6: Integration of S-PBP in the diverse particle selection framework of [90].

4.2.2 Heuristic Proposals versus Slice-Sampling

In the following the proposed S-PBP approach is compared to black box slice sam-
pling and the heuristic proposal generator in DPMP. The graphical model for this
experiment is a chain graph with one hundred nodes only consisting of Gaussian
pairwise potentials ¢ (s, z¢) x exp [—(z; — zs — 1)?/20?] and without unary po-
tentials. The heuristic proposal generator consists of two components: a neighbor-
based proposal q(zs | @) = ¢se(xs, z¢) for ¢ uniformly sampled from the set of
neighbors A and a random walk proposal g(z, | #9) = exp [—(ws — z2d)2/ QUfnd].
Neighbor-proposal and random walk proposals are mixed with probabilities pp,
and py, respectively, where p,, = 1 — p,. Thus, hyperparameter selection is
obtained by performing grid search over py, € {0.0,0.1,0.2,0.3,0.4,0.5,0.6} and
Oma € {0.05,0.1,0.2,0.5,1.0,2.0,4.0}. As loss function, the area under the curve of
the energy with respect to the iteration number is used (omitting the first 20% of it-
erations for reducing noise induced by random initialization). This loss encourages a
fast decreasing energy as well as a low final energy. The estimated hyperparameters
are py, = 0.7, prw = 0.3, and oyq = 0.2.

The initial particles {x®};—; _, are drawn randomly in the interval I = [0,3 - 5],
where S is the number of nodes. Independent uniform sampling of the initial parti-
cles causes high odds of initializing the Markov chain in a poor initial state due to
the high probability of leaving a large gap between nearby random samples as illus-
trated in Fig. 4.7a). This leads in the first iterations of PBP to move towards a local
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a) i.i.d. sampling
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b) stratified sampling
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Figure 4.7: a) Independently and identically distributed (i.i.d.) sampling can lead
to large gaps as highlighted with the red ellipse. (b) Stratified sampling avoids large
gaps by dividing the support region in equal sized subregions and draw exactly 1
sample within each subregion.

optimum with high energy from which it takes a long time to recover. Therefore,
instead of i.i.d. sampling we use stratified sampling as follows:

aD ~U(B-(i—1),3-9) , i=1,.p. (4.23)

This guarantees that the gap between two particles will never be larger than twice
the subregion width, as can be seen in Fig. 4.7b).

Figure 4.8 shows comparison results of DPMP with heuristic proposals, with black-
box slice sampling, and with S-PBP proposals, respectively. DPMP was run with
p = 20 particles per node for all experiments.

Slice sampling and S-PBP produce very low energy MAP estimates after 300 DPMP
iterations, while the heuristic proposal method is slower with about 800 DPMP it-
erations. Black-box slice sampling is the most computationally demanding method,
and heuristic sampling is the fastest. S-PBP is a good tradeoff between the other
methods as it requires a moderate number of function evaluations while producing
high informative samples. While a single S-PBP iteration is slower than heuristic
sampling, this was compensated by a faster convergence (i.e. less iterations) as
shown in the bottom right of Fig. 4.8.

In the next and final synthetic experiment, the chain graph of above is extended
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(a) Heuristic Proposals

(b) Slice Sampling Proposals
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Figure 4.8: Comparison of DPMP with heuristic proposals, slice sampling, and with
S-PBP on the chain graph with uninformative unary potentials, respectively. (a)-
(c) Evaluation over the number of iterations. Energy mean (blue), median (solid
black), 5%, and 95% percentiles (dashed black) are computed over 100 random
initialized runs and with 20 particles per node. (d) Comparison of the mean energy
of the corresponding methods with respect to run time on an Intel Core i7-3770K
3.50 GHz CPU (4 cores) and 32 GB RAM.

with unary potentials:

S S—1
p(xh ce. ,Is) = H ¢s($s) H ¢s,s+1(x37 Is+l) (424)
s=1 s=1

where ¢,(x;) are randomly generated Gaussian mixture models and the pairwise
potentials are (unnormalized) Gaussian distributions ¢s s11(s, T511) = exp[—(xs —
2411)?/20?] with variance o = 0.1. The number of nodes is S = 100. The number
of components (mixtures) per Gaussian mixture model is 10. Due to the Gaussian
mixtures, the joint probability p(zi,...,zy) is highly nonconvex and hence MAP
inference is challenging. The number of particles is p = 20. It was observed that
DPMP gets stuck at local optima regardless of the number of particles (it was tested
with p = 100 particles) using either heuristic sampling, slice sampling, or S-PBP.
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Therefore, to ensure convergence, DPMP is combined with temperature annealing.
The annealing scheme of Eq. (4.15) is used with start temperature Ty = 200.0 and
end temperature Ty = 1.0 where the number of PBP iterations is N = 200.

The heuristic sampler consists of three components: sampling from neighborhoods
qs(Ts) X Ysenr, Gsi(@s, 1), sampling from unary potentials g (xs) o ¢s(x), and ran-
dom walk sampling q4(xs) = N (zs | 2,°4,62 ). The hyperparameters for the heuris-
tic sampler are the probabilities for selecting one of the components puy, Pun, Prw, T€-
spectively, and the random walk variance o2, 4. These four parameters were selected
using grid search over py, pry € {0.0,0.1,0.2,0.3,0.4,0.5}, pup = 1 — Pun — Prw, and
oma € {0.5,1.0,2.0,4.0,8.0,16.0}. The optimal parameters for the tested instantia-
tion of the graphical model are py, = 0.7, puy = 0.0, prw = 0.3, and o,4q = 2.0.

Figure 4.9 shows the evaluation results. It can be observed that all methods
achieve similar energy. Here, heuristic sampling achieves similar performance with
respect to the number of iterations. With respect to wall clock time, heuristic
sampling is faster than the other methods. Note, however, that heuristic sampling
requires careful tuning of the hyperparameters. This is not the case for slice sampling
and S-PBP.

4.3 Discussion

In this chapter, a novel proposal generation method for the particle belief prop-
agation (PBP) framework was presented. The proposed approach, slice-sampling
particle belief propagation (S-PBP), generates random sample proposals from the
(preudo-) max-marginals of the target graphical model distribution using slice sam-
pling. Slice sampling is much less sensitive to hyper-parameters than competing
methods. The hyper-parameters in slice sampling only affect the approximation
quality and the average number of function evaluations for computing the slice re-
gions. It was shown that by exploiting the message-passing property of PBP, the
slice regions can be computed either exactly or approximately for a large variety
of factor potential functions using product slice sampling. Thus, dependence on
hyper-parameters is eliminated.

It was shown in experiments on synthetic data that the S-PBP proposals out-
perform Metropolis-Hastings sampling (Sect. 4.1.4) and that they perform on par
with heuristic sampling (Sect. 4.2.2). A downside of S-PBP is its relatively high
computational effort compared to heuristic sampling. On the other hand, this can
often be compensated by the generated high-quality sample proposals leading to
low-energy MAP estimates requiring fewer MCMC iterations and PBP iterations than
the competing methods.

In the following chapter, the previously developed methods provide the core for
inference in both continuous and discrete-continuous graphical models for articulated
online object tracking.
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Figure 4.9: Comparison of DPMP with heuristic proposals, with slice sampling, and
with S-PBP, respectively, on the chain graph with Gaussian mixture unary potentials.
(a)-(c) Evaluation over the number of iterations. Energy mean (blue), median (solid
black), 5%, and 95% percentiles (dashed black) are computed over 100 random
initializations. (d) Comparison of the mean energy of the corresponding methods
with respect to wall clock time.
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Figure 5.1: Online tracker principle. The tracker is initialized at the first frame with
a pose annotation provided by the user (green rectangle). On each new arriving
image a prediction step estimates the current object pose. The predicted poses are
illustrated as red rectangles. The update step performs learning using the current
(and possibly past) frame and the predicted poses. Looking ahead to future frames
is strictly forbidden. This is visually illustrated by fading out of the future frames.

In this chapter, the previously developed inference algorithms (cf. Chapt. 4)
are applied to part-based online object tracking. Object tracking is a fundamental
problem in computer vision. It is the basis for many high-level tasks such as human-
computer interaction, scene understanding, action recognition and many more. On-
line object tracking is a special case of object tracking in which the object class (a
human, an animal, a cup, etc.) is a priori unknown. The tracker is initialized using
a manual annotation (such as a bounding-box) in the first frame. In a prediction
step, the object pose is estimated on previously unseen image frames. The update
step performs a model update, i.e. learning. This step is crucial in order to adapt
to appearance changes during tracking. Furthermore, the tracker is not allowed to
look at future frames. The frames arrive to the system in a similar fashion to a live
feed, e.g., from a web cam. This property is known as causality. The workflow for
online object tracking is illustrated in Fig. 5.1.

The challenging part of object tracking is when both the target object and the
background undergo strong appearance changes or temporal occlusions of the target
object occur. Changes of the object appearance can be caused by illumination
changes, object deformations (e.g. out-of-plane rotation), occlusions, camera blur,
and many more. Object appearance descriptors have to be as invariant as possible
against such influences. Although it has been made rapid progress in the field
of bounding-box based online tracking [70], state-of-the-art trackers must resort to
clever feature descriptors and sophisticated online learning mechanisms. This comes
at the price of high computational complexity and poor scalability with respect to
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the number of target objects to track at the same time. State-of-the-art features are
based on deep neural networks [27, 70]. Forward propagation in these networks is
known to be computationally high demanding even on (massively) multi-threaded
platforms. The results from the very recent VOT challenge 2016 [70] show that all
state-of-the-art trackers do not reach real-time processing speed.

It was shown in other works [127, 132] that part-based approaches increase tracker
robustness with respect to non-rigid object deformations and partial occlusions when
compared to bounding-box trackers. A large amount of changes in appearance can
be well compensated by these part-based approaches without resorting to sophis-
ticated feature descriptors. The introduction of parts although comes at the price
of increased computational complexity due to the exponential growths on the num-
ber of feasible poses. While the search space dimension in bounding-box trackers
is relatively small and can be well-compensated by applying efficient convolution
operations (such as discrete Fourier transforms), such approaches do not scale well
to higher dimensional problems. Efficient inference is achieved in tree-structured
models when either the pairwise relationships are Gaussian [37] or a coordinate
transform can be applied such that efficient Gaussian convolution can be applied
[4]. This, though, does not scale to loopy graphs with more complex pairwise or
higher-order relations.

The following sections handle the part-based object tracking problem using the
stochastic inference methods proposed in Chapt. 4. Stochastic inference scales well
to high-dimensional problems. In Sect. 5.1, a template-based tracker is introduced.
The S-PBP method proposed in Sect. 4.1.2 is applied and evaluated against con-
curring methods. Sect. 5.3 extends the part-based tracking model in several ways.
First, the model space is extended to include foreground/background segmentation
cues, leading to a discrete-continuous inference problem with complex high-order
constraints. Second, the template-based likelihoods are replaced with discrimina-
tive models as used in state-of-the-art online trackers. In a third contribution (cf.
Sect. 5.3.3), the tracker model is furthermore extended with auxiliary variables mod-
eling the wisibility of parts.

5.1 Part-Based Template Tracking

The proposed feature tracker uses a pairwise MRF model. The model is separated
into two parts: (a) the unary potentials are derived from a feature patch matching
model, and (b) the pairwise potentials encode the relative positioning of the features
to each other. The label space of the MRF is the space of feature poses including the
local central patch position, patch rotation, and scale. The proposed MRF model
is as follows:

E(x) = Zd’e(%) +a- Z Z s (s, ), (5.1)

seV seV teNs
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where the unary potential function
Ys(s) = X*(HOG1, (py, 05), HOG frer (p™f, 07°1)) (5.2)

is the Chi-square distance of histogram of oriented gradients (HOG) features [79] of
a patch at position p, € R? of the current image I,, and orientation o, € R?, where
zs = {p,, 05} and a reference image I™f at reference position pg"f and orientation
o™ The orientation vector o, encodes two aspects: the feature patch rotation
(rotation of oy, i.e. atan2(o,)) and feature patch scale (length of oy, i.e. | 0sl2).
For the tracker to be able to deal with fast moving objects, a resolution pyramid
approach is applied on the unary potentials. This is done by concatenating HOG
descriptors of patches with differing spatial resolution. For each resolution pyramid
level (scale) the image is downsampled by a factor of 0.5 using bicubic interpolation.
The pairwise potential ¥ (x5, x;) is as follows:

P; — deslH% + lps — P, — RLdLSHE

oo ) = P (5.3)

Oz,s(t)  —Oy,s(t)
Oy,s(t)  Ow,s(t)
matrix. The proposed pairwise potential function models the surrounding of each
feature point as a weak-perspective model and transforms its neighbor points (with
respect to the reference frame) according to a similarity transformation (consisting
of translation, rotation, and scaling).

The scalar parameter o > 0 is a weighting factor determining the stiffness of the
feature mesh balancing between feature point independence (o — 0; i.e. multi-target
tracker) and rigid single object tracking.

where dgs) = pgﬁﬁ) — pﬁf) and Ry = { } is a 2 x 2 rotation and scale

5.1.1 Inference

To infer the most probable pose x = min F(x) in each frame, the S-PBP approach as
introduced in Chapt. 4 is applied. Inference is done for each frame independently,
but the particle set from the previous frame is used as a starting point for the current
frame. In order to increase tracker robustness, a particle resampling step is applied
where for each frame the initial set of particles is drawn with replacement from the
set of particles {x(®},_; _, from the previous frame with probability fi,(z{).
S-PBP requires the computation of slice intervals Ay, (u) and Ay | (u). Since ¥y, is
given as an analytic function (cf. (5.3)), an analytic derivation of the slice intervals
can be obtained by using a symbolic solver. The MuPAD® computer algebra system is
used for fully automatic symbolic slice region computation. An analytic form of the
data-driven unary potentials is not available and thus a reasonable approximation
for the corresponding slice intervals has to be found. We chose to set the slice
interval Ay, (u) to the whole image space for p,, i.e. p, € [1,W] x [1,H], where
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Figure 5.2: Datasets and tracking results for our proposed method: PAPERI, PA-
PER2, FACEOCC1, FACEOCC2 (from left to right). First two rows: successful track-
ing; third row: tracking failure cases.

W and H are the image width and height respectively, and to restrict o, to o5 €
[—10,10] x [—10,10]. This way it is ensured that the sampling space is large enough.
On the other hand, particles sampled outside the true slice regions are discarded by
resorting to the rejection sampling mechanism in Alg. 6.

The S-PBP approach is compared to the MH-PBP approach. In order to provide
a fair comparison the the proposal distribution has to designed carefully such that
good MCMC chain mixing is ensured. We propose to use a 4D Gaussian distribution
with a covariance matrix ¥ combined with a suitable coordinate transformation.
The label space can be divided into two parts, the feature position p, € R? and
orthogonal feature transformation o, € R2. The proposal distribution for p, is
p(P™ | pim) = N(p™ | pim Y, Taxs - 04y), Where N(z | p, %) is a Gaussian
distribution over x with mean p and covariance . Ipyo is the 2 x 2 identity matrix.
The vector o, is sampled analogously, but in the polar coordinate system with
covariance matrix Spolar = [02,0;0, U?,], where 02 is the variance for the radius and
0'?5 the variance for the angle. The proposal distribution depends on three hyper-
parameters o, 0, and o4, which are tuned using grid search.

5.1.2 Experiments
Test sequences

The following challenging test sequences are used for evaluation: PAPER1, PAPER2,
FACEOCC], and FACEOCC2. The self-made PAPER] and PAPER2 sequences were cho-
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sen to challenge the methods on a fast moving deformable object under major scale
changes and deformations. The sequences have a spatial resolution of 960 px x 540 px
and consist of 563 and 726 frames respectively. The captured object (paper) is tex-
tured with patches of similar appearance and shape. The similar appearing features
were chosen to stress the relational structure of our tracker model. Thus the only
way to distinguish the features is by considering the relative position of the fea-
ture patches to each other. The PAPER] sequence consists of five feature patches
with a carefully chosen position pattern which allows unique identification of the
features by only having knowledge about the relative distances of the features to
each other. The PAPER2 sequence is more challenging since the number of features
is increased to 70 and the features are arranged in a grid structure allowing local
relational ambiguities. The FACEOCCI and FACEOCC2 sequences from [5, 30] are
designed for evaluating object trackers under major occlusions. The sequences have
a spatial resolution of 352 px x 288 px (FACEOCC1) and 320 px x 240 px (FACEOCC2)
and both consist of 888 frames each. While the FACEOCC1 sequence has only slow
object movements, but showing substantial occlusions, the FACEOCC2 sequence chal-
lenges with fast movements, illumination changes, object rotation and substantial
occlusions. The sequences and tracking results are shown in Fig. 5.2.

Parameter selection

Parameter selection can be split into two parts. The first part consists in MRF model
parameter selection. Since the proposed model is relatively robust to changes in «,
this parameter is set in an ad-hoc fashion for each sequence as follows: « = 20
for PAPER] and PAPER2 and o = 50 for FACEOCC1 and FACEOCC2. For the HOG
features we set the smallest scale pyramid resolution to 50 px x 50 px. This leads to
3 scales for FACEOCC1 and FACEOCC2 and 4 scales for PAPER] and PAPER2.

The second part is parameter selection for the PBP framework. The number of
PBP iterations is set to N = 20 and the number of particles to p = 10 for each node.
With this setting both algorithms (MH-PBP and S-PBP) converge well. Since the
overall sampling behavior of the proposed method is evaluated rather than the belief
propagation convergence behavior, selecting these parameters should be uncritical.

Evaluation metrics

The distance ey, between the estimated feature position and the groundtruth
(manually labeled) position is used as a quality measure. Two metrics are derived
from this measure: The root-mean-square deviation (RMSD) and a quantile box-plot
(10%, 25%, 50%, 75%, and 90% quantiles). While the first metric is very sensitive
to outliers, the second metric provides more information about the overall error
distribution.
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5.1.3 Discussion

The evaluation results comparing S-PBP with MH-PBP using different MCMC iter-
ations are shown in Fig. 5.3. For MH-PBP, the MH sampling parameters {og,,
0,04} are chosen (from the set {0.1,0.2,0.5,1.0,2.0,5.0} x {0.01,0.02,0.05,0.10,0.20,
0.50} % {0.01,0.02,0.05,0.10,0.20,0.50}) such that the RMSD is minimized. Note that
for S-PBP such parameter tuning is not necessary. We have evaluated the tracking
performance for different MCMC iterations M = 2 to 5. The box plots in Fig. 5.3
show that S-PBP outperforms or performs equally well as MH-PBP for all tested se-
quences except for sequence PAPER2 with only 2 (and 3) MCMC iterations where
both methods fail. This is mainly due to a much higher overall sampling noise of
the MH-PBP method compared to S-PBP. We observed that the sampling noise of
S-PBP is much less than with MH-PBP at feature positions with high confidence (i.e.
high belief). On the other hand the sampling noise of S-PBP increases for uncertain
feature positions. The RMSD in sequence PAPER2 and FACEOCCI is higher for S-
PBP than for MH-PBP due to temporal tracking failures. These tracking failures are
caused by strong local deformations or by occlusions of many feature points. Typi-
cal tracking failures are depicted in the bottom row of Fig. 5.2. It can be observed
in such cases that S-PBP leads to much higher tracking error than MH-PBP due to
broader particle sampling in uncertain feature positions.

Figure 5.4 shows an evaluation of MH-PBP under differing (non-optimal) sampling
parameters. To this end, we vary each of the three sampling parameters individ-
ually and let the other two parameters stay fixed at their optimal values. Note
that the estimation error varies highly, where very high values (usually > 15px)
indicate a tracking failure. In order to visualize both the performance differences
for near-optimal parameters and tracking failures, the error values below and above
the 15 px mark are shown with a differing vertical axis scaling. In Fig. 5.4, only a
comparison for PAPER1 and FACEOCC] is shown. The other two sequences perform
similarly. It can be observed that the tracking performance of MH-PBP strongly de-
pends on careful parameter selection. The parameter o, has the highest impact on
the tracking performance and the optimal parameter value varies strongly between
sequences (o, = 5 for PAPER] and o,, = 0.5 for FACEOCCL1). Selecting o,y is a
compromise between allowing fast object motions and reducing overall localization
noise. Selecting o, and o, has analogous effects on changes in object scaling and
rotation. This way one has to incorporate prior knowledge about the object motion
in order to obtain good tracking results using MH-PBP.

The computational complexity for MH-PBP is O(NSpM (1 + Vp)) and for S-PBP
is O(NSpM (3 + 2Vp)) given the number of PBP iterations N, nodes S, particles
p, MCMC iterations M and the average number of neighbors per node V. This
indicates a doubling of computation time of S-PBP compared to MH-PBP which is
due to the overhead introduced for computing the interval bounds A. A look at the
CPU times using fixed parameters for both algorithms (M = 5, p = 10, N = 20)
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verifies this finding: FACEOcC: 0.69s/frame (S-PBP) vs. 0.33s/frame (MH-PBP) ;
PAPER2: 7.43s/frame vs. 3.66s/frame. Nevertheless it was shown that S-PBP needs
significant less MCMC iterations than MH-PBP such that the computational overhead
can be typically well compensated.

5.2 Object Tracking Demonstrator

An online part-based face tracker demonstrator was developed on top of the rela-
tional feature tracker as proposed in the previous Sect. 5.1. The tracker runs in
real-time and is robust against partial occlusions, lighting and appearance changes.
Since the tracker’s goal is to track faces and to get rid of manual part initialization,
the template-based likelihoods (cf. Eq. (5.2)) are replaced in favor of discriminative
HOG features which are trained using a linear SVM [114].

The tracker was embedded in a live demonstrator for controlling a game via visual
input from a webcam, as shown in Fig. 5.5. The system was exposed on the CeBIT
2015 [73].

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

86 Chapter 5 Tracking

PAPER1
100 6
2 40 4 3
S 20 £ 50 g 4
~ & & 2
0
2 3 4 5 MH-PBP S-PBP MH-PBP S-PBP
M M =2 M=5
PAPER2
100 4
2 60 4 g 3
= 40 £ 50 g 2
& 20 & ]
0 0 0
2 3 4 5 MH-PBP S-PBP MH-PBP S-PBP
M M=2 M=5
FACEOCC1
——n—= 6
.
= £ 2 £ 2
0 0
2 3 4 5 MH-PBP S-PBP MH-PBP S-PBP
M M=2 M=5
FACEOCC2
8
a 6 : S & 4 10 8
Z 4 2 g 6
= £ 5 5 4
o2 [ o9
0
2 3 4 5 MH-PBP S-PBP MH-PBP S-PBP
M M =2 M=5

—e— MH-PBP —=— S—PBP‘

Figure 5.3: Relational feature tracker evaluation results showing the overal RMSD (for
MCMC iterations from 2 to 5) and box plots over the error distance to groundtruth
for selected MCMC iterations.
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Figure 5.4: Optimal parameter evaluation for MH-PBP method (with A = 5). The
vertical axis shows the error distance to groundtruth in px. Note that the verti-
cal axis is stretched for error values lower than 15px in order to better visualize
performance differences.
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A

Figure 5.5: Realtime part-based face tracking demonstrator: Schematic overview of
the game flow.

5.3 Joint Tracking and Segmentation

Bounding-box initialized visual object tracking has made rapid progress in the last
couple of years [71, 124]. Especially the use of online learning methods [44, 56, 132]
and recently the incorporation of part-based models [132, 127] and image segmen-
tation [119, 74] have lead to significant improvements in visual online tracking.

Another rapidly evolving area is part-based pose estimation using offline trained
discriminative models such as DPMs [36, 125, 32]. DPMs are favorably applied to
human pose estimation. Hereby, the human body is decomposed into semantically
meaningful parts. The relations between the parts are modeled using weak joints
such as Gaussian-type pairwise probability density functions. Unfortunately, an
expensive offline-training phase is necessary, requiring a huge database of annotated
full poses.

The goal in this section is to merge both approaches and propose a part-based
online object tracking framework providing detailed articulated pose while keeping
the initialization and training effort low. The proposed model is automatically
initialized from a single template image and a foreground pixel mask, as shown in
Fig. 5.6. Automatic object initialization is a major issue due to (self-)occlusions
occurring in the template image. No prior semantic or structural information is
available which define, for example, a skeleton. To tackle this problem, the DPM is
extended with (a) part visibility cues to model (self-)occlusions and (b) a visibility-
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Template Frame 1

J Frame 101

4

Frame 201

Figure 5.6: Fine-grained non-rigid object tracking with strong segmentation cues.
The DPM is generic (non-discriminative) and solely initialized from the template
image (left). The parts are color-coded and overlaid to the input frames (best
viewed in color).

adapted spring-force model which allows to adaptively switch off part dependencies.

Suitable priors are crucial for a stable visibility estimation on the parts level. To
this end, patch masks are introduced which define the shape of the object parts.
The visibility weighted patch masks are combined and forced to consistency with
a foreground/background image segmentation through a novel global consistency
prior. The basic principle of the global consistency prior is depicted in Fig. 5.7
(yellow box).

In the online tracking domain, state-of-the-art approaches [44, 56, 132, 127] lead
to high quality bounding box estimates. The trackers in [44, 56] parametrize the
target object pose as a single rigid patch. Recent approaches [132, 127] combine
online tracking with part-based models.

Part-based models such as DPMs [36] are well known approaches for pose estima-
tion and detection of highly articulated objects such as humans. They have been
originally introduced for object detection. They use a relatively simple parametriza-
tion with only 2D positions and a spring force related model to connect the parts in
a tree structure. It was shown by [125] that the expressiveness of DPMs can be sig-
nificantly improved by increasing the number of patches combined with a “switched
spring model”. A multi-layer arrangement of patches can further improve pose esti-
mation accuracy [32]. Due to the inherent tree-structure, these methods still suffer
from the well known double-counting problem.

The methods [119, 74] deal with (self-)occlusions and double-counting by fusing
pixel-wise image segmentation with DPM. Ladicky et al. [74] assign image pixels to a
part-specific label and enforce consistency between image segmentation and DPM by
“switching off” the body parts which do not correspond to the image segmentation
labeling. We follow their approach and introduce wvisibility variables which modify
the influence of the appearance and pairwise DPM terms. The work in [119] enforces
consistency between DPMs and a FG/BG segmentation by introducing pairwise po-
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Figure 5.7: Schematic overview of our joint pose estimation and image segmentation
using particle sampling (left) and MAP inference via dual decomposition (yellow
area). Our proposed global consistency prior (blue area, cf. Eq. (5.7)) enforces
consistency between pose estimation and image segmentation.

tentials loosely coupling each image pixel with each part. For a tight coupling they
introduce non-convex high-order residual terms. Since optimizing their full objective
function is intractable, they use a relaxed DD [65, 66] approach for inference. They
propose a lower bound approximation of the dual energy by ignoring the higher-order
terms. This leads to an over-estimate of the primal-dual gap and hence important
properties of DD are lost. We adopt the DD approach but propose an approxima-
tion of the higher-order constraints to enable efficient inference of the full objective
function.

The contributions in this section are as follows: A novel yet simple formulation of a
global consistency prior for joint part-based object tracking and image segmentation
is proposed. It is shown how to solve the global consistency constraints efficiently
using methods based on dual decomposition. This model is further extended to pre-
dict the visibility of each DPM part. The additional visibility variables are coupled
with the DPM pose prior. This can lead to increased robustness towards subopti-
mal model initialization and topology changes during tracking of highly articulated
subjects. The joint tracking and segmentation framework is evaluated on the VOT
2015 and VOT 2016 benchmark [71, 70] (cf. Sect. 2.1) and on manually annotated
sequences. The proposed joint model consistently outperforms the baseline trackers.

First, the basic framework for joint post estimation and image segmentation is
introduced in Sect. 5.3.1. Following that, this framework is extended with latent
visibility variables in Sect. 5.3.3. An evaluation of both frameworks is conducted in
Sect. 5.3.4, followed by a discussion in Sect. 5.3.5.
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Indepindent Joint Tracking aAnd Segmentation
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Figure 5.8: Online tracking framework: Comparison of joint tracking and segmenta-
tion (right) and independent tracking and segmentation (left) on two frames from the
david sequence. Top: The DPM guides the image segmentation. Bottom: The image
segmentation guides the part placement of the DPM. Differences are highlighted by
red arrows.

5.3.1 Joint Pose Estimation and Segmentation

Object tracking over a sequence of frames s = 1,....S can be cast as a frame-by-
frame pose estimation problem [127, 132], where a pose p* and pixel-wise labeling
y?® is estimated for each frame s>2. Frame s=1 is the reference frame. The joint
pose estimation and image segmentation model is based on the following problem
formulation

{p57 ys} = aergmin EBPM (p) +E:eg (Y) +Econ(p7 Y) (54)
peXrose y

The first term corresponds to a deformable part model. The second term is a pixel-
wise image segmentation energy, labeling every pixel as either foreground or back-
ground. The third term is a consistency constraint enforcing consistency between
image segmentation and pose estimation. A comparison of a joint optimization to
an independent handling of the two complementary cues Eppy and Fig is visualized
in Fig. 5.8. The three terms in Eq. (5.4) are introduced in detail in the following
paragraphs.
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Deformable Parts Model

The proposed framework is built upon the well known deformable parts model (DPM)
[36], where the target object is decomposed into a set of parts. The object parts
are indexed over a node set V. Each part ¢ € V has its own pose configuration p;
which includes the 2D-position and scale. The parts are related to each other by
local spring forces, which encode pairwise spatial context information. The set of
these pairwise relations (the edge set) is denoted by £. The energy function over
the corresponding graphical model G = (V, €) is as follows

Eppu(p) = fo(pl) + Z Jiir (i, pir), (5.5)
i€V (i,i")e€
where p = (p1,...,ppy|) € AP, f# are unary potentials encoding an appearance

model (e.g. obtained by a score map from a discriminative classifier), and the binary
potentials f5 (p;,pi) encode directed spring forces.

Efficient MAP inference is done via max-product belief propagation over a finite
set of candidate poses p; € P; = {p}, ..., pf} A commonly followed approach in
online tracking is to densely sample pose candidates over the whole search space by
applying grid search with a spacing of one pixel. Inference over such a large number
of candidates is not tractable in our case since the patch masks, introduced later,
then will easily exceed RAM limitations. Hence an iterative stochastic sampling
approach is applied instead based on DPMP (cf. Chap. 4). New particle candidates
can be either generated from a proposal distribution ¢;(p;) or with S-PBP.

Image Segmentation

The image segmentation model consists of a pixel-wise appearance term and a pair-
wise contrast-sensitive Potts-model between neighboring pixels. The corresponding
energy function is as follows

Eug(y) =3 9i(up) + > diylly; # ), (5.6)
Jjew (G.3NeF
where y = (y1,...,yn) € X% = {0,1}, N = |W|, W is the set of pixels, F is the
set of edges (a 4-neighborhood), d;; is a contrast-sensitive weight similar to [19] and
I[ - ] is the indicator function. Normalized Lab color histograms with 8 x 8 x 8 bins
are used as appearance model g;(y;). The energy term Fg(y) is submodular and
hence can be efficiently optimized with graph cuts [6, 18, 17, 64].

Global Consistency Prior

The consistency prior should enforce that every pixel which is covered by (at least)
one part of the DPM is labeled as foreground. All other pixels are labeled as back-
ground. On the other hand, if some pixels prefer to be foreground due to the image

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

5.3 Joint Tracking and Segmentation 93

segmentation appearance model, at least one part should cover those pixels. Con-
sequently, pixels preferring to be background should not be covered by any part.

A masking function p; : AP — [0,1] for each pixel j is introduced which encodes
the area overlap of the DPM parts with the j-th image pixel, i.e. u;(p) =1 if a part
covers pixel j and p;(p) = 0 if no part covers pixel j. For pixels at the boundary of
a part, p;(p) can be something between 0 and 1 (e.g. via anti-aliasing). Stacking all
functions y; together leads to the vectorized form pu : XP°¢ — [0,1]Y. Note that
this is not restricted to hard mask boundaries. In fact, it can be advantageous to
define soft masks where the part boundaries appear blurred. This accounts better
for uncertainties in the part shape modeling.

The consistency constraint energy can be formulated as

Beon(p,y) = ally — p(®)l3 = o Y (y; — 1;(p))* (5.7)
jew

which is a pixel-wise quadratic soft constraint enforcing p;(p) =~ 1, if Pixel j is
foreground, and y;(p) ~ 0, if Pixel j is background.

This constraint is in general very hard to optimize due to its non-convexity with
respect to p. The mask function is approximated as follows, leading to tractable
optimization of the consistency constraint. The mask function is decomposed into
independent parts analogously to the DPM formulation:

1;(p) & D, i (i) (5.8)
Furthermore, the pose p is restricted to a discrete set of pose candidates p; € P; =
{p},....pFy € AP ie. p; = p¥ for some I; € {1, ..., L;}. This way, the pose vector
p can be recoded as an indicator variable vector x = [X;; m;xM] with x; =eli(l;).
The vector eX(1) is an L-dimensional column-vector where the I-th entry is one and
all other entries are zero. These constraints are encoded in the constraint set C, i.e.
x € C. The mask function p( - ) can thus be encoded as a linear function

1i(P) =D, Bij - Xi = B X, (5.9)
where g = [p1, ..., )7 is a (sparse) matrix. The joint energy term with indicator

variables reads as

in B(x,y) = Eppu (%) + Eueg (y) +ally — px|[3. (5.10)

Optimization of this non-convex function is still non-trivial. In the following section,
a dual decomposition approach is proposed to solve problem (5.10).

5.3.2 Dual Decomposition

The problem (5.10) is solved with dual decomposition (cf. Sect. 3.3.3). The proposed
decomposition of problem (5.10) consists of three sub-problems: the DPM, the seg-
mentation, and the global consistency constraint. The decomposition is graphically
depicted in Fig. 5.7.
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The decomposition is derived as follows. A second set of variables x’,y’ is intro-
duced. The equality constraints x = x’ and y =y’ enforce them to be exact copies
of x and y:

in - Eoesi(x) + Bug(y) + ally’ = px'[l (5.11)
Xy st x=x, y=y.

Through Lagrangian relaxation, the hard equality constraints are relaxed, leading
to the following Lagrangian dual formulation:

max min _ Eppy(X) + Eeeg(y) + oy’ —px'|3 (5.12)
A1, A2 xEC,,y €D T , T ,
Xy FAM(x =X+ Xy -Y)

With some rearrangement, the Lagrangian dual can be decomposed into the follow-
ing sub-problems (also referred to as slave problems):

g1(A1) = min Eppy (x) + A x (5.13)
92(0) = min By (y) + A3y (5.14)
g3(A1, Ag) = I)f}lyr} ally’ = ux'|[; = Alx' = Al (5.15)

with the corresponding master problem

&Illfk)?(!]l()\l) +g2(A2) + ga(A1, A2). (5.16)

Sub-problems 1 and 2 take the same form as Eqs. (5.5) and (5.6), respectively.
Hence, exactly the same methods can be used for solving the corresponding sub-
problems. Sub-problem 3 is an unconstrained quadratic program and hence leads
to solving a (sparse) linear equation system. However, sub-problem 3 is unfortu-
nately not well defined since p' p is singular almost always. Hence, regularization
is introduced:

g3(A, Ao) = min ally’ — px'|l3 = Al = AJy' (5.17)
XLy
+B X3 + Bally’ — 0.5][3,

where the regularization parameters ; and (5 are chosen sufficiently small. The
regularization of y’ towards 0.5 has the rationale of not introducing a bias neither
towards foreground (y; = 1) nor towards background (y; = 0). It is easy to show
that the solution of the joint problem in Eq. (5.4) stays the same for all 31,85 > 0.

The master problem is concave and non-smooth and hence can be solved using a
subgradient method:

Nt = 2\F L Vg (W) (5.18)
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where M is the concatenation of A; and Ay at the k-th iteration. The subgradient is
Vo(\f) = [x* —x"; y* =y (5.19)

where x*, y* x’* and y™* are the minimizer of the respective sub-problems g;(A¥),
g2(A5), and g3(\F, M), The step-size is m, = 7 - W for a positive scalar v,
following the heuristic step size rule in [65, 66].

Finally, a primal solution (x*, y*) is constructed from the partial solutions X, X', y,
and ¥’ with x* = X and y* = argming, Eys(y) + Eeon(X*,y). That is, the solution
of the DPM subproblem is used and from this, the optimal segmentation given the
DPM pose is computed. This can, again, be efficiently computed with graph cuts.
The best primal solution (wrt. Eq. (5.10)) over all DD iterations is returned as the
final MAP estimate.

The final inference approach is a double-loop algorithm (cf. Fig. 5.7). In each
outer loop iteration a new particle set is sampled using DPMP. The inner loop han-
dles the dual decomposition updates over the sampled pose candidates as described
above.

Since the inner loop problem (5.11) is expected to be quite similar from iteration
to iteration, we warm start DD by initializing the Lagrangians A; o accordingly from
the previous DD run. Initializing A, is trivial, since the state space X' for y is static.
Warm-starting the Lagrangians A; is more involved as the particles P C AP for
p change after each outer loop iteration. An interpolation strategy is used with
ALY = interppoi_y puew (A9) to map the state space defined by the particle set of the
previous iteration P° to the state space P"% of the current iteration. A simple
nearest-neighbor interpolation strategy is applied.

Segmentation with Shape Prior

To show the efficacy of the proposed consistency prior, a preliminary image segmen-
tation experiment is conducted as shown in Fig. 5.9. The focus is set on testing the
influence of the consistency prior in presence of a weak DPM and image segmentation
model. The DPM model only consists of a single part and hence no pairwise connec-
tions are involved. The DPM appearance model is kept completely uninformative.
Thus, pose estimation is solely guided through the consistency prior. The part has
a square shape as shown in the left image of Fig. 5.9 and can vary in its z,y-position
and square side length s. This shape information is encoded in the mask function pu.
Since the DPM is completely uninformative, particles are sampled from a proposal
function ¢;(p;). The x,y-position is sampled from a Gaussian random walk pro-
posal N'([z,y]" | [z,y)]4,02,) and the scale s is sampled from a Gamma distribution
I'(s | k,0) with shape k and scale 6 chosen such that the mode (k — 1)6 = soq and
the variance k62 = (TSQCI. The parameters are set to 0.y = 05 = 0.2.

The input image is corrupted with severe Gaussian and salt/pepper noise which
makes the image segmentation model quite uncertain in its decision. As can be
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Figure 5.9: Image segmentation with shape prior. Left: Input image corrupted with
noise, groundtruth pose (red square), reconstructed pose (green square). Middle

left: Groundtruth segmentation. Middle right: Graph cut segmentation. Right:
Our approach.

seen in the right image of Fig. 5.9, our consistency prior leads to an improved
segmentation compared to a segmentation using Eg(y) only. Furthermore, the
correct pose p could be reconstructed (green rectangle).

5.3.3 Visibility Estimation

The model presented in Sect. 5.3.1 implicitly assumes that all DPM parts are visible
in every frame. This is a reasonably well assumption for short-time object tracking.
In fact, this assumption is exploited in state-of-the-art online tracking frameworks
where the best pose candidate in the current frame is selected as a new training
sample candidate, such as is the case with the popular Struck tracker [44]. These
approaches can well compensate for temporal distractions (e.g. occlusions) by using
robust training methods. Thus, explicit visibility estimation often cannot bring
performance improvements.

On the other hand, when strong image segmentation cues are available, visibility
estimation can significantly improve tracking performance. In the following, it is
assumed that the foreground/background image segmentation cues are sufficiently
reliable. Auxiliary variables v = (vy,...,v) are introduced to the DPM model,
where v; € [0,1] with v; = 0 if part ¢ is invisible and v; = 1 if part 4 is fully visible.
The DPM in section 5.3.1 is thus modified as follows:

Evppm(p,v)= Z vifi(pi) + Z vy fiir (i, Pir)- (5.20)
S (i,4')e€

Note that the visibility estimates not only influence the part appearance term, but
also the connections between parts. The rationale behind this is that it is often
difficult to provide appropriate pose priors in presence of topology changes or severe
deformations (cf. Figs. 5.10, 5.12, and 5.13). Especially in the case of online track-
ing, the amount of available training data is not enough to provide well-trained,
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Figure 5.10: Visibility-aware DPM: Through introducing part weights v;, the DPM
parts (blue rectangles) are allowed to vanish (dotted rectangle) and its corresponding
spring forces (black lines) are weakened accordingly (dotted lines). Thus, the ripping
apart of an object can be modeled by the visibility-aware deformable parts model
(vDPM) if the underlying image segmentation (gray area) supports this.

complex pose priors which can handle strong deformations and arbitrary non-rigid
articulations. On the other hand, developing generative pose priors is a non-trivial
task [1]. The introduction of latent variables can bridge the gap between the gener-
ative and discriminative approaches. Here, we use the variables v; to switch on/off
the spring forces f(p;, pir). Likewise, the mask function p(p) is augmented with v
to p(p,v) such that p;;(p;,v;) = v; - pij(pi). This accounts for part transparency.

Multi-Layer Model

Note that a flat model such as is commonly used in human pose estimation methods
[36] tends to rip apart into two or more completely independent objects. This is
due the tree structure of the DPM, where per definition, every part is connected to
other parts over a unique path (cf. Fig. 5.11, top). We counteract this behavior
by introducing long-range dependencies through a multi-layer DPM as shown in
Fig. 5.11, bottom.

Inference

The pair (p,v) can, again, be encoded with indicator variables x, with the difference
that the non-zero entries in x are not 1 but in [0,1]. To be precise: x; = v;eli(l;).
This constraint is encoded in the constraint set C' D C. Since the image segmenta-
tion is assumed to be almost perfect, the energy term Fyg(y) can be dropped. To
nevertheless account for a data-driven penalty of deviations of the image segmenta-
tion to the mask pux, we introduce a latent variable vector w € [0,1]V and a penalty
term GSTegw. The modified energy function is as follows

. T . _
e mn Evppm(%) +05,W  s.t. W= px. (5.21)

Unfortunately, the Lagrangian relaxation as used in Sect. 5.3.1 is not tight. This can
be seen by considering the subproblem miny¢p 1jv (fseg + A2)Tw. Here, the solution
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Single-scale

Multi-scale

Level 4
Level 3 — -

Level 2 — E—

Level1 — —

Figure 5.11: Behaviour of single-scale model (top) vs. multi-scale model (bottom) in
case when some parts are not visible (non-filled circles). In the single-scale model,
the disappearance of one part leads to a separation into two independent sub-graphs
(green and blue areas). In the multi-scale model, the connection is retained through
the higher scale levels (red area).

is always integer, since the objective function is linear. Hence, no solution with
w; € (0,1) could be found although ,u;—x could span anything between [0, 1] which
contradicts with the equality constraint w = px in problem (5.21). To resolve this
issue, we resort to an augmented Lagrangian relaxation approach, thus leading to
the non-convex alternating direction method of multipliers (ADMM) (cf. [16, 81]).
The augmented Lagrangian is of the following form

L(x,w, x, W, u) :EVDPM(X)+9STCgW+§||X*X’+111 ||§+

Llw—w+wl} s.t. w=px’ (5.22)

This form is in general difficult to optimize. The ADMM approach is to alternate
between (i) minimizing over (x,w), and holding x’, w/, u fix, (ii) minimizing over
(x’,w'), and holding x, w, u fix, and (iii) a gradient ascent step over u with u**! =
u* + p([x; w] — [x;w']). The (x/, w')-update corresponds to solving (5.15) plus a
quadratic term. Performing the (x’,w’)-update is essentially the same as solving
the DD subproblem g3 (cf. Eq. (5.15)), since both problems are (unconstrained)
quadratic programs. The (x, w)-update involves the optimization of Evppum(p,v). A
joint optimization is not tractable and we resort to alternating between optimization
over p and v.

An extension to loopy DPMs, as required by the multi-scale model, is straight
forward. The loopy DPM is decomposed into a set of trees 7 with Eppum(x) =
Sier Bhpy(x) and each tree has its own set of pose variables x¢. The set of consensus
constraints (cf. Eq. (5.11)) is extended to x" =x', accordingly. See [65] for further
details. The used tree decomposition is indicated in Fig. 5.11 (bottom left) via
color-coding of the lines.
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Connection to Flexible Mixture-of-Parts

The proposed model can be interpreted as an extension to the flexible mixtures-of-
parts (FMP) model [125]. FMP is a switched-spring model, extending the DPM with
hidden variables ¢ € {1,...,T}.} which activate ¢;-th spring from a set of T} springs
per part:

Beovp(pot) = 3 (k) + 2 o™ 0k o). (5.23)
keV! (kK)EE!
A connection of this approach to ours can be seen by setting fi(p;) = fi(pr),

e

fir(pispir) = frir® (pr, prr) for a bijective mapping ¢ : (k,t) — i forallk =1,...,|V|,
ty = 1,..., T}, and the additional constraint

Ty
Zt::l V) =1, v €{0,1} (5.24)

stating that ezactly one spring has to be chosen for each part. By dropping the
constraint (5.24), the model is relaxed such that at most one part (and its connected
springs) can be active at a certain position. At the same time, it is ensured by
the global consistency constraint F.,, that at least one part and corresponding
springs become activated in areas where the foreground cues are strong enough.
In contrast to [125], the proposed model is not prone to the well-known double
counting phenomenon (i.e. the activation of multiple parts at a single location),
since an activation of multiple parts at the same position would lead to pux > 1,
which is prevented by the E.., constraint.

5.3.4 Experiments

The proposed approach is evaluated on two application cases. First, bounding-box
initialized short-term online tracking. Here, the objects are rather compact in shape
such that the object pose can be well described using a simple bounding-box. The
main challenges here are strong appearance changes and partial occlusions during
tracking. The second case is non-rigid object tracking with severe articulation. Here,
bounding-box estimation is not sufficient for describing the object pose. It will be
shown that in both cases, the incorporation of the global consistency prior leads to
improved pose estimation results.

Visual Object Tracking Benchmark

The proposed tracker in Sect. 5.3.1 is evaluated on the VOT 2015 benchmark dataset
[71] comprising 60 sequences of varying length, image size and tracking difficulty. As
appearance model, we use the Struck tracker [44]. This tracker provides an support
vector machine (SVM) score map S(p) which can be converted to a probability map
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through Platt scaling. Each part ¢ € V of the DPM has its own tracker with unary
terms

fz(pl) = —Qscore * 10?, [m} . (525)

The part structure consists of five parts in two scale layers (cf. Fig. 5.7), similar to
related work [127]. The initial part structure is derived from the initial groundtruth
bounding box such that part 1 has the same size and position as the bounding box.
Parts 2 to 5 are half the size of part 1 and are connected to part 1 via directed
spring forces of type

d;y

Syt

—diy I3 (5.26)

1 d;;
fii’(piapi’)zi || Zvl

- 1
—da 2=
507 |15 ~diwlat 5|

where d;i = [;,;]7 — [xs,y#]7 is the displacement of the patch centers of patch 4 to
patch @/, and d;» is the initial displacement in the reference frame. The pose of the
i-th part consists of the 2D patch center position (z;,y;) and a positive scale factor
si w.r.t. the initial patch size, i.e. p; = (z;, s, ;). The positive factor §;; is the
ratio of the patch sizes of the i-th to the #-th patch in the reference frame.

A neighbor-based proposal distribution g;(p;) o exp[— fir(pi, pir)] is used for par-
ticle sampling, where ¢’ is chosen randomly from the set of neighbors of part i. Note
that no explicit motion prior is applied. Instead, the particles (part pose candidates
produced by the DPMP framework) of the last frame are used as initial particles for
the new frame. If some particles are previously discarded by the DPMP framework,
the contingent is filled up by sample proposals randomly selected from a uniform
7 x 7 grid around the last bounding box position with a grid spacing of 10 px. Ad-
ditionally, a temperature annealing scheme is applied with temp**! = 0.96 - temp*,
and temp' = 1.0 in order to produce less noisy pose estimates.

Parameter tuning of our tracker was done on selected sequences from the online
tracking benchmark [124]. These sequences are not part of the VOT 2015 sequences,
thus avoiding any overfitting in the final benchmark. Parameters are set empirically
toa=1.0,8; = > =0.1,7 = 0.1, agcore = 100.0,0 = 0.5.

The proposed approach was tested against the baseline Struck tracker [44], a DPM
version of Struck (which is essentially applying our approach with «=0.0), and the
single-part Struck tracker with the consistency constraint (i.e. [V|=1). The pro-
posed approach will be further abbreviated with Struck-DPM-Seg, and the other
approaches with Struck, Struck-DPM, and Struck-Seg, respectively. The evaluation
results are summarized in Tab. 5.1. The joint tracking and segmentation approaches
outperform both the Struck and Struck-DPM approaches without consistency con-
straints. Note that the proposed framework is not limited to the Struck tracker, but
can be applied to any tracker which provides a likelihood map.

In a second experiment, the proposed approach is tested with the state-of-the-art
online tracker CCOT [27]. We observed that the neighbor-based proposal generation
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Table 5.1: VOT 2015 benchmark tracking results for different tracker configurations
of Struck showing the raw accuracy, the average number of failures, and the expected
overlap corresponding to [71]. Red is first and blue is second ranking. 1/{ indicates
higher/lower value is better, respectively.

Tracker Exp. Overlap? Accuracyt Failures]
Struck 0.1960 0.46 2.42
Struck-DPM 0.1839 0.47 2.19
Struck-Seg 0.2152 0.47 2.28
Struck-DPM-Seg 0.2020 0.48 1.92

Table 5.2: VOT 2016 benchmark tracking results for different tracker configurations
of CCOT showing the raw accuracy, the average number of failures, and the expected
overlap corresponding to [70]. Red is first and blue is second ranking. 1/{ indicates
higher/lower value is better, respectively.

Tracker Exp. Overlapt Accuracy? Failures)
CCOT 0.2807 0.51 1.03
CCOT-DPM 0.2364 0.48 1.32
CCOT-Seg 0.2857 0.51 1.07
CCOT-DPM-Seg 0.2676 0.49 1.10

leads to very slow convergence when the state space is extended to scale estimation,
instead of only the bounding-box center position. Therefore, the heuristic proposals
are replaced in favor of the slice sampling proposal as introduced in Sect. 4.2. The
evaluation results on the VOT 2016 benchmark are shown in Tab. 5.2. In overall,
joint segmentation and tracking again increases the expected overlap compared to
the baseline methods. Multi-part tracking did not improve performance on the
CCOT tracker.

Fine-scale Non-rigid Object Tracking

In this section, the visibility-aware multi-part tracking framework is evaluated. The
VDPM approach is applied on surveillance sequences of babys and on a sequence of a
snake. The tracked subjects underly severe articulations, where bounding-box track-
ers are not suitable. Due to the low number of training data, discriminative DPM
approaches with pre-trained, complex pose priors [125, 74, 32] are not applicable. In
order to capture the whole body articulations, a fine-grained patch decomposition
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is desirable. Patch sizes of 10 x 10 px for the Baby-sequence and 5 x 5px for the
Sidewinder-sequence with 3 scale levels for both sequences are used. The part like-
lihoods consist of HOGs and color histograms in red, green, and blue (RGB)-space.
All histograms are concatenated to a single feature vector and the x? distance of
the current feature to a template feature is used as appearance potential f;(p;).

For the FG/BG segmentation, a skin detector is applied on the Baby-sequence
and k-means clustering on the Sidewinder-sequence. It is assumed that the image
segmentation is robust enough to allow inference of part visibility.

Groundtruth The videos are manually annotated with skeletal points as shown in
the first row in Figs. 5.12-5.15 (blue lines). From this rather sparse representation,
the groundtruth patch positions which densely cover the target object are derived
(cf. second row in Figs. 5.12-5.15). These patches are generated from the sparse
control points as follows. Let ¢ = (qi,...,qx) be the set of control points of the
skeletal annotation and Egerer be the bone (edge) structure with e = (4,5) € Euelet,
iff ¢; and g; are connected by a bone (an edge). A Gaussian weight function g.(p) =
exp(—0.5(p — 1) "X (p — pe)) over patch positions p is estimated for each bone,
indicating the proximity of patch p to bone e. The mean . is chosen as lying exactly
in the middle of the bone, i.e. p. = '“Tq]. The covariance ¥, is chosen such that the
joints ¢; and g, lie exactly on the focal points of the ellipse (p — fie)"Se(p — pte) = 1
and the ratio r = § of the half axes a and b of the ellipse is fixed to some value
r < 1. The ratio r determines how “skinny” the object appears. We chose r = 0.5
in our experiments. The Gaussians are depicted in Figs. 5.12-5.15 as green ellipses.

Evaluation The full VDPM approach is compared to the baseline DPM approach
without visibility and segmentation cues. Furthermore, a weaker VDPM model is
constructed where the visibility variables only influence the unary potentials but
not the pairwise terms. This modification is denoted as visibility-aware deformable
parts model without edge (VDPM-e). It corresponds to setting high confidence to
the DPM pose prior.

Figures 5.14a and 5.15a show a percentage of correct parts (PCP) evaluation of
the different approaches with different spring force parameters ¢. VDPM clearly
outperforms the baseline DPM and the weaker VDPM-e approach. For VDPM and
DPM, the best PCP is reached with ¢ = 10 in the Sidewinder sequence. Therefore,
this value is kept for further experiments. Figues 5.12 and 5.13 rows 3-5 show
qualitative results on both sequences. It can be observed that the DPM approach
(last row) tends to drift away in presence of high articulations or fails to correctly
estimate the motions of the limbs. VDPM-e performs better, but faces problems with
self-occlusions during initialization (Fig. 5.13 row 4) and is suspect to local minima
(Fig. 5.12 row 4).

Convergence statistics are shown in Figs. 5.14b and 5.15b, where F,; is the pro-
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jection error of x’ on C’. It can be observed that the non-convex ADMM fails to
converge with DPM. The multi-layer DPM consists of many loops and thus finding
a consensus of all DPM trees is hampered. VDPM tends to perform better, proba-
bly because contradictory local estimates lead to a weak consensus and therefore
(temporally) reduces the visibility of such patches. This, in turn, leads to higher
consensus. In later iterations, the visibility can rise again with consensus on all
trees.

5.3.5 Summary

A framework for bounding-box initialized online tracking and fine-grained articu-
lated object tracking was presented. A joint DPM and image segmentation model is
proposed on the basis of a novel, yet simple global consistency prior. Two scenar-
ios are shown in which the joint model improves image segmentation and/or object
tracking performance. In the first scenario, the segmentation cues and pose cues are
fused to improve object tracking performance. The proposed approach outperforms
the baseline Struck tracker on the VOT 2015 benchmark. The second scenario han-
dles articulated tracking with strong segmentation cues and weak pose cues. It was
shown that extending the standard DPM with auxiliary visibility variables improves
tracking performance.
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GT Skeleton

Figure 5.12: Qualitative evaluation results for the SIDEWINDER sequence with 208
frames, 501 x 401 px resolution, and 775 patches. The patch size in the finest scale
is 5 x b px. The five rows are: Groundtruth skeleton annotation, groundtruth patch
positions, DPM, and our proposed approaches VDPM-e and VDPM (best viewed in
color). The first column is the reference frame. Red arrows indicate tracking failures.
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GT Skeleton

Figure 5.13: Results for the BABY sequence with 828 frames, 360 x 270 px resolution,
and 337 patches. Patch size in the finest scale is 10 x 10 px. The right leg occludes
the hand during model initialization (red circle in the left top image). Red arrows
indicate failures.
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Figure 5.14: a) Quantitative evaluation and b) convergence evaluation results for

the SIDEWINDER sequence.
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Figure 5.15: a) Quantitative evaluation and b) convergence evaluation results for
the BABY sequence.

IP 216.73.216.60, am 24.01.2026, 01:49:56.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

107

Chapter

Conclusions

IP 216.73.216.60, am 24.01.2026, 01:49:5¢

6. © Urhebarrechtlich geschiizter Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

108 Chapter 6 Conclusions

Throughout this thesis, the topic of stochastic inference in continuous-state prob-
abilistic graphical models (PGMs) has been adressed. The guiding application of the
developed inference methods is situated in the field of part-based online tracking of
articulated objects.

The first contribution of this thesis is the extension of the state-of-the-art on
stochastic inference in PGMs towards novel methods for generating more efficient
particle proposals. This topic is of particular interest, since the particle proposal
generation process is a cruicial part in obtaining good maximum a posteriori (MAP)
estimates in high-dimensional space. Previous approaches heavily rely on heuristic
proposals which are application-dependent and require carefully tuning of hyper
parameters.

The main result of this thesis is a flexible sampling framework for inference in
continuous-labeled PGMs based on (product) slice sampling. Our proposed slice-
sampling particle belief propagation (S-PBP) algorithm can be either used as a
black-box sampler, or a white-box sampler. Black-box sampling is relatively slow
and agnostic to the underlying graphical model structure but allows for rapid pro-
totyping. The novel white-box sampling approach has the advantage of fast sample
generation and does not dependend on tuning parameters. This is achieved by ex-
ploiting the message-passing structure of state-of-the-art inference methods and the
incorporation of prior knowledge about the factor potentials of the PGM.

We proposed to use slice sampling in favor of heuristic proposal generators or
Metropolis-Hastings based samplers. The incorporation of product slice sampling in
the diverse max-product framework leads to a significant speed-up of the MAP infer-
ence process. We proposed to exploit the message-passing structure of max-product
algorithms to replace the slice region approximation process by exact slice region
computation. This approach is applicable as long as exact slice region computation
is feasible for the factor graph potentials. In cases where this is not feasible (for
instance in high-dimensional data-driven likelihood potentials), the framework re-
verts to approximate slice region computation. This way, the proposed framework
is applicable in both generative and discriminative PGMs.

It was shown that slice sampling leads to less-correlated samples than Metropolis-
Hastings while at the same time being more robust towards the choice of hyper-
parameters. A downside of our approach is that a single S-PBP iteration is in com-
parison to other proposal generators much slower. On the other hand, this behaviour
is well compensated by faster convergence of S-PBP. S-PBP requires significantly less
iterations than all other tested approaches while at the same time producing MAP
estimates with lower energy.

The second contribution of this thesis is to combine the field of articulated pose
tracing and online tracking. Hereby, the previously developed inference framework
provides the core of our proposed part-based online tracking approaches. We started
by developing a generative part-based object tracker which is initialized from the
first frame of a video or online video stream (for instance from a webcam) by man-
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ually annotating the object parts and relations. The proposed tracker is robust
against partial occlusions and flexible enough to adapt to deformable surfaces. A
live demonstrator application in form of a visual tracker controlled game illustrates
the real-time capability of our proposed approach.

The final contribution is an automatic initialized online tracking framework for
articulated objects. The basic idea for automatic model initialization is to use an
over-segmentation of the target object into a regular grid of small part patches. The
main problem of part-based online tracking is tracker drift. We showed that by intro-
ducing image segmentation cues and a novel global consistency prior which connects
image segmentation and object tracking in a high-order constraint, our framework is
able to perform tracking of highly articulated objects with significantly less tracker
drift than standard deformable parts model (DPM) based approaches. The result-
ing objective function is highly non-convex and consists of factor potentials of high
order. We proposed a novel combination of particle max-product and dual decom-
position for solving the challenging MAP inference task. Experiments show that the
proposed joint tracking and segmentation framework improves both part tracking,
as well as image segmentation accuracy. On the one hand, the image segmentation
cues guide the part tracking. On the other hand, the DPM in conjunction with the
proposed global consistency prior works as a shape prior for the image segmentation.

6.1 Future Work

Our proposed S-PBP algorithm is very generic and applicable to a large variety of
other PGMs. Applications in which particle-based stochastic inference approaches
have already been successfully applied are optical flow estimation and protein folding
[90], human pose estimation [104, 90], and self-localization in sensor networks [51].

The particle-based stochastic inference approach still depends on a number of
parameter such as the number of particles or the Gibbs temperature and other pa-
rameters related to the message passing approaches (number of iterations, damping
factor, edge probabilities). All these parameters still require careful tuning in order
to guarantee that the algorithm converges to the true MAP. As pointed out before
[51], the required number of particles highly depend on the complexity of the fac-
tor potentials. Complexity estimation is still an unresolved problem. Furthermore,
the Gibbs temperature controls how peaky the joint distribution is and indirectly
influences the diversity of particles produced by DPMP. Preliminary experiments
show that a low Gibbs temperature (a distribution with sharp peaks and broad,
flat valleys) leads to clustering of particles towards a single mode. Future research
should focus on developing rules, heuristics, or guidelines for choosing the hyper-
parameters optimally with respect to balance between computational efficiency and
approximation error.

Further research requires the extension of slice sampling in the particle belief
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propagation framework to the higher-dimensional case. The proposed approach
works well in factor graphs with pairwise potentials, but sampling in higher-order
potentials is currently only supported by applying Gibbs sampling. Gibbs sampling
is suboptimal when the high-dimensional distribution is skewed.

The proposed non-rigid online tracker is currently only implemented in MATLAB®
with only partial multi-threaded CPU support. Therefore, the implementation is
very slow. As the proposed approach is solely based on distributed inference meth-
ods such as dual decomposition and message passing, we expect that for instance a
massive parallel GPU implementation would speed up the inference process drasti-
cally.
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Figure A.1: (a) Location and photo of a percutaneous implant, and (b) OCT dense
3D scan volume rendering (percutaneous pin is not visible).

A.1 Optical Coherence Tomography

This section summarizes the contributions of the author on OCT motion compensa-
tion and image undistortion. This work was published in [84, 85, 29].

OCT is a non invasive imaging modality used for taking optical biopsies of layered
tissue structures such as the epidermis [109] and the retina [38, 128]. Apart from
clinical use, OCT also has applications in animal studies with the advantage of
repetitive biopsies at one animal at different time points instead of lethal biopsies
at different animals for each time point. The particular objective of this study is
the morphometric analysis of the skin in the vicinity of a percutaneous implant
situated in the lateral abdominal region of a hairless mouse to draw conclusions on
its biocompatibility (see Fig. A.la).

A.1.1 Problem Setup

OCT measures the backscattering profile of a light beam penetrating the sample
in axial direction. We use in our setting a spectral-domain OCT (SD-OCT) which
enables a shorter acquisition time since it acquires the backscattering profile in spec-
tral domain rather than time domain. For 3D volume acquisition, single axial scan
(A-scan) acquisition is combined with a lateral scanning mechanism. 2D scans (B-
scans) are composed by a series of A-scans along the z-axis (fast scanning axis). 3D
volume scans in turn consist of a series of B-scans along the y-axis (slow scanning
axis). In our setting we are confronted with severe axial motion shift due to heart
beat or breathing during in vivo SD-OCT (spectral-domain OCT) volume acquisi-
tion of mouse skin tissue around a percutaneous implant (see Fig. A.3). Along the
fast scanning axis, motion artifacts are illustrated by averaging three consecutive
B-scans, resulting in noticeable image blur. In slow scanning direction, motion ar-
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Figure A.2: Image distortion effect in OCT scans. (a) Single OCT B-scan (cropped
at half) showing the distorted baseline, and (b) corresponding undistorted result
using our method.

tifacts manifest itself in dithering in axial direction as is illustrated in the bottom
of Fig. A.3.

As the optical properties of the tissue introduce distortions into the OCT images
[121], segmentation based image undistortion is an important step towards fully
automatic image analysis tasks.

A.1.2 Motion Compensation

Yun et al. [130] have investigated motion artifacts of SD-OCT occurring during a
single A-scan capturing such as signal fading, spatial distortion and blurring. These
artifacts can be reduced by increasing the A-scan acquisition rate. However, image
shifts in axial direction of several pixels occurring during acquisition of several thou-
sands of A-scans (e.g. for volume acquisition) are still an issue. Later works [96, 75]
focus on compensating such image shifts in full volume scans using reference mea-
sures. While Ricco et al. [96] compensate transverse motion in retinal volume scans
using scanning laser ophthalmoscopy (SLO) images as a reference measure, Lee et
al. [75] correct motion shift in dynamic SD-OCT imaging, periodically capturing
the same region over several seconds, using one of such captures as reference. Recent
work in [68] correct motion artifacts by estimating a displacement vector for each
A-scan using orthogonal OCT scan patterns. The method works without having a
reference measure. Inference of the displacement field is done by minimizing an ob-
jective function using a gradient-descent method combined with a multi-resolution
approach. Our work extends this approach by transferring the objective function to
CRF notation and adding additional priors, allowing better tissue structure preser-
vation and fast global optimization.

Contributions: We propose a probabilistic method for estimation and compensa-
tion of axial motion shift in in vivo SD-OCT without requiring a reference measure.
The key challenge is to distinguish between motion shift and the natural spatial
structure of the subject tissue. We tackle this problem by combining two different
lateral scanning schemes for volume acquisition: The motion shift of multiple taken
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Figure A.3: In vivo SD-OCT scan (cropped) and its motion compensated (MC)
result. Top: Slice along the fast scanning axis. Three slices are averaged for vi-
sualization of the motion distortion. Bottom: One reslice along the slow scanning
axis.

@ (fast)

A-scans at the same lateral position (but at various time points) differ whereas the
tissue structure remains unchanged. The motion compensation problem is formu-
lated as an energy minimization problem using a conditional random field (CRF)
notation, allowing both estimation of the motion field and the tissue structure. For
inference, the CRF is simplified to a Gaussian Markov random field (GMRF) by
approximating crosscorrelation terms with a Gaussian pdf. Finally, our method is
applied on in vivo SD-OCT scans of skin tissue with a percutaneous implant (see
Fig. A.3, dashed red rectangles indicate the subcutaneous implant base).

Motion Field Model

For estimation and compensation of in vivo subject movement, the following as-
sumptions are made: A sequence of A-scans {d;} is captured at discrete time points
t and lateral position p, = (x;,y;). For image acquisition, it is assumed that the
scanned subject is somehow fixed (e.g. no frechand capturing involving transverse
motion drift). Nevertheless, subject movements can not be suppressed completely,
e.g., slight up-down movements caused by breathing or heart beating can still occur,
but are limited in amplitude. Thus, for each A-scan d;, we have a corresponding
axial motion shift f,. Since axial shift is not solely determined by f; due to spatial
tissue structure changes, the true axial shift is defined by f; + sp,, where s, is the
tissue surface height at lateral position p,. In the following, we derive a CRF model
E(f,s|d)=E(d]| f,s)+ E(f,s) given an observation model E(d | f,s) and regu-
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Figure A.4: Proposed model: (a) Motion correction workflow: Motion field { f;}; (red
arrows) is estimated by maximizing the crosscorrelation R[d;,d;](z = f; — f;) (blue
curves) of adjacent image rows d;, d;, (b) Graphical model structure (red arrows
indicate temporal scanning direction).

larizer E(f,s) with f = {f;} as described below. E(f,s | d) is defined over a graph
G = (V,€) given the vertex set V containing model instances and the edge set £
representing dependencies between instances.

Observation model: The observation model is based on the assumption of
structural similarity of (i) spatial neighbored A-scans d; and d; with (i,j) € EF,
where the structure of £ depends on the scanning scemes used (see Fig. A.5c in
Sect. A.1.2) and (ii) A-scans taken at the same spatial position but at different time
points d; and d; with (¢,5) € € = {(¢,j) | p; = p]} As a similarity measure of
adjacent A-scans, we use the crosscorrelation R[d;, d;](2) = [ dy(7) - dj(z + ) dT of
two adjacent volume gradient columns d; ,d]7 with 2 = fi — f; denotlng the relative
motion shift (see Fig. A.4a). Actually, the axial shift does not only depend on
the motion shift itself, but also on the spatial change of the tissue surface structure.
Therefore, we introduce new model variables {sp, }p.cvs denoting the subject surface
change. Then, the relative axial shift is now determined by f;+ sy, rather than only
by fi, i.e. z becomes (f; + sp,) — (fj + sp,). If s is not known a priori, the problem
is ill-posed because of ambiguities in the sum of relative motion and surface change.
We solve this ambiguity by correlating A-scans taken at the same sample position
at different time points. For such A-scans, it is z = fi + sp, = fj — sp, = fi = [},
because sp, = s, V(i,7) € £ Thus, we have

E(d] fis)=y > Ri(fi+tsp,—fi—sp,)+ > Ri(fi—1F;) (A1)

(i,j)eer (i.j)e€e

where Ry;( - ) := —log R[d;,d;]( - ) and 7 is a weighting factor.
Motion field prior: For regularizing the motion estimation problem, additional
assumptions are encoded in the prior energy term. Due to mass inertia of the
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subject, the motion field has to be smooth in time direction. In our model, we use
first order smoothness. Additionally, we assume a Gaussian motion shift prior with
zero mean, i.e. f; ~ N (0, a}). The tissue surface s is regularized analogously. Thus,
the prior is:

2

E(fos) =0 040 5 (=P +0% 2400 ¥ (sp - (A2)

ievf (i,4)e&f i€ys (i.j)e€s

with & = {(t,t+1) | t € [0,1,...,T]} and 6; = Vo2, 63 = Ay, 03 = Vo2, O, = A,
05 = ~ are the model parameters. The composed graph structure G = (W UV*, £/U
ERUESUE®) is depicted in Fig. A.4b.

Inference

To efficiently find a configuration {f*, s*} minimizing E(f,s | 0), we have de-
cided to simplify E(f,s | ). The only terms in E(f,s | #) which makes efficient
inference difficult are the crosscorrelations R[d;,d;]( - ). Assuming that the A-
scan intensities follow an edge-step model and is augmented with additive white
Gaussian noise, the crosscorrelation of the first derivative of the A-scan intensities
has a Gaussian shape with additive white Gaussian noise. For model parameter
estimation, nonlinear least-squares Gaussian fitting is applied. Thus we obtain
R[d;,d;](2) ~ R[d;,d;](z) = N(pij, 03, 2), where py; and o7 are the mean and
variance of the estimated Gaussian distribution N (u, 02, - ).

Using this approximation, the CRF energy function E(f,s | d) simplifies to a
Gaussian Markov random field (GMRF), i.e. E(f,s | d) is a quadratic function in
{f. s} and can be rewritten as E(x | 0) = 327 Agx + 27 bg + cp, where z = {f, s} and
Ay is sparse due to the Markov property. Its minimizer is * = —A;'bs. This can
be efficiently solved by (sparse) Cholesky decomposition of Ay [97].

Estimation of the optimal parameter vector §* is done by minimizing the mean-
square-error (MSE) of f with 0* = argming || f; — feorrect||3, Where 2 = arg min, E(z | d, 0)
with zf = {f;, 55} and feorreet is the ground truth motion field. In practice, it is
sufficient to set o, A\s and v fixed (e.g. o5 = 500, Ay = 0.01 and v = 1) and only op-
timize over oy and Ay, since the former parameters don’t affect the estimation results
much. Finally, grid search is performed for estimation of oy € {10, 100, 1000, 10000}
and Ay € {0.0001,0.001,0.01,0.1}.

Experiments and Discussion

In this section, we compare three different settings of our proposed method. The
first setting uses v = 1, o, = 500 and Ay = 0.01. In the second setting, the tissue
surface is ommited, enforcing s = 0, i.e. 0, — 0 and Ay — co. The third setting
additionally omits the spatial crosscorrelation (EF) term, i.e. v = 0, leading to a
configuration most similar to the approach of Kraus et al. [68].
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Figure A.5: Scanning schemes: (a) spoke and dense 3D pattern, (b) lateral positions
of B-scans (red lines) over time. Dashed blue lines: connection of consecutive B-
scans. Color shading and arrows depict temporal direction, (c) spatial structure of
E® for spoke and 3D pattern. Blue points: A-scans d;, black lines: neighborhood
relations (i,j) € ER.

We present two different experiments involving synthetic data and real OCT ac-
quisitions. The first experiments are done on synthetic datasets, where ground truth
surface and motion fields are available. In a second part, real OCT scans of both
post mortem (with artificial motion field) and in vivo (without prior known motion
field) are evaluated. For synthetic data, as well as real OCT measures, the subjects
are scanned consecutively with two scanning schemes for ensuring that enough sur-
face points are scanned twice. The first scheme is a spoke pattern scanning scheme
with Ngpoke B-scans, each B-scan consists of Ny A-scans as shown in Fig. A.5a.
The second scanning scheme is a dense 3D (cuboidal) scanning scheme with N3p
B-scans. Figure A.5b shows a schematic of the lateral scanning positions over time
of a complete subject scan. Figure A.5¢ shows the spatial structure of neighboring,
crosscorrelated A-scans (encoded in EF).

Synthetic data is generated with Ngoke = 16, N3p = 100, Ny = 100 and
axial resolution of Z = 600px. The tissue is modeled as a uniformly scattered
medium with the tissue-air interface modeled by a step edge function convolved
with a Gaussian kernel with oge, = 5. The image intensities (with range [0, 1])
are corrupted with additive Gaussian noise with o2, = 0.07. Artificial motion
artifacts were generated by adding two sine waves of random amplitude and phase
to simulate periodic movement. Low-frequency random shift of up to £20 px is added
for simulation of non-periodic movement. We evaluated our motion compensation
algorithm on data with sinusoidal tissue surface of amplitude a as shown in Fig.
A.6b. Performance evaluation is done using mutual information (MI) inspired by
[68], i.e. measuring the similarity between spoke scan volume and 3D scan volume
(resliced to capture the same regions as the spoke scan), denoted with MIg, 3p. Since
ground truth volumes for synthetic data is available, we can also compute the MI
of the ground truth volume scans to its motion compensated volume, denoted with
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Figure A.6: Synthetic data results: (a) Evaluation of the mutual information to-
wards the ground truth (Mlgr, left) and the RMSE of the motion fields towards
ground truth for different surface amplitudes (right) and (b)—(d) example surface
segmentation of a synthetic dataset with non-planar surface. (b) Example B-scan
slice, (c) Spoke scans and (d) dense 3D volume scans. Left: with motion artifacts,
right: motion compensated.

MlIgr. Figure A.6a shows Mgt and motion RMSE results of 30 randomly generated
datasets with varying tissue surface amplitudes (10 datasets for a = 0, 5, and 10
respectively) with errorbars indicating the standard deviation. The results show best
performance on the first configuration, showing most increase of MI and least motion
RMSE. The configuration ommiting £f and s performs worst on every dataset.
Mg, 3p gives nearly similar results for every configuration, since this measure only
captures intra-volume similarity enforced by the £¢ term and cannot capture the
tissue structure preservation, as noticed in [68]. Figure A.6c—(d) shows a comparison
of extracted tissue surface renderings of uncompensated to compensated volumes.

Real OCT scans: Our real world application uses in vivo and post mortem
SD-OCT scans of the percutaneous implant of an anesthetized (and fixed) mouse
from [84]. The setting has following parameters: Ngpoke = 72, N3p = 800, N = 800
and an axial resolution of Z = 600 px. Acquisition time was approx. 0.1s per B-
scan. For enhancement of computation time and memory usage, a downsampling
along the fast scanning axis by a factor of 8 is applied and the motion field is
upsampled afterwards for providing motion compensation in full resolution. In Fig.
A.7, the evaluation results of one post mortem dataset (p. m.) corrupted with
artificial motion (thus known ground truth) and several in vivo datasets (without
known ground truth) are shown. For both post mortem and in vivo scans a increase
of Mgt and Mlg, 3p, respectively, is observed, showing a significant reduction of
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Figure A.7: Evaluation on post mortem data (with known ground truth) using Mlgr
and motion RMSE and in vivo data (without known ground truth) using My, 3p.

motion artifacts. This finding can also be observed in the surface segmentation
visualization of the post mortem dataset (see Fig. A.8a) and a typical in vivo data
example as shown in Fig. A.8b and Fig. A.3.

Conclusion

In this work, we propose a novel probabilistic approach for motion compensation of
in vivo SD-OCT volume scans. The motion estimation problem is reformulated as
a CRF energy function and approximated by a GMRF for efficient inference. Our
method reliably separates axial motion from tissue structure change by combining
two scanning schemes. We use multiple A-scans taken at the same lateral position
but different time points as anchor points to estimate the tissue morphology. The
method is verified on synthetic data as well as in vivo SD-OCT volume scans. Motion
artifacts are significantly reduced while the geometry of the tissue is preserved.
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(b)

Figure A.8: Motion compensation results: (a) post mortem dataset with ground
truth (left), artificial motion (middle), and motion compensated (right) and (b) in
vivo data with motion artifacts (left) and motion compensated (right). Red and
green lines indicating the position of slices and reslices respectively shown in Fig.
A.3. Top row: spoke pattern scan, bottom row: dense 3D scan respectively.
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A.1.3 OCT Image Undistortion

As the optical properties of the tissue introduce distortions into the OCT images
[121], segmentation based image undistortion is an important step towards fully
automatic image analysis tasks. In recent works, several methods like graph based
global optimization, active contours and random fields are proposed for layer seg-
mentation. In practice, graph based approaches, as used in [40] for fully automatic
3D retinal multilayer segmentation, lead to huge graph sets, limiting the number of
voxels. Active contour models (e.g. snakes) [59, 128] provide robust results, however
require manual initialization. In [58], a fully automatic 2D feature segmentation is
presented using conditional random fields and efficient optimization algorithms for
inference. Segmentation of a single 2D OCT scan (B-scan) can be susceptible to
local shading effects and image perturbations and extending the scanning scheme to
the third dimension can significantly improve the segmentation quality [33, 40, 49].
Thus our algorithm is based on 3D segmentation.

This paper proposes an approach for fully automatic segmentation of 3D Fourier-
domain OCT and refractive undistortion. The determination of the refractive index
is facilitated by the geometry of the implant which consists of a percutaneous pin
(3 mm diameter and 5 mm length) anchored beneath the dermis by a flat disc shaped
base which is visible in OCT (see Fig. A.la—(b)).

Two main technical contributions are proposed. First, estimation of the skin
surface in the 3D space from several OCT B-scans is done using a Markov random
field (MRF) approach with an efficient combination of global and local optimization
algorithms. A spoke pattern scanning scheme is used for 3D data acquisition and
is further compared with a dense 3D scanning scheme (see Fig. A.9a). Our second
contribution addresses the segmentation of the implant base. The distorted implant
base is segmented using a refractive distortion model and the previously segmented
skin surface for parameter estimation in order to match the distorted implant base
best to the a priori known shape of the undistorted base contour. The parame-
ters of the implant base are estimated with a fast generalized 3D Hough transform
approach, optimizing the refractive index, as well as the 3D position and orienta-
tion of the implant base. The segmented model is finally used for refractive image
undistortion (see Fig. A.2a—(b)).

In Section 2, the 3D segmentation of the pin position, the skin surface and the
implant base is described (Fig. A.9b), which is used for refractive image undistortion
(Fig. A.9¢). In Section 3, the used undistortion model is verified and a comparison of
the spoke pattern and dense 3D scanning scheme is shown, followed by a quantitative
analysis of several mouse datasets segmented and undistorted using our method.
Finally, in Section 4, a short conclusion is given.
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Figure A.9: (a) Schematic of the percutaneous implant (pin and base) and OCT
scanning schemes (dense 3D and spoke pattern), (b) two orthogonal OCT B-scans
with segmentation (mesh overlay) of pin position (yellow), skin surface (blue) and
deformed base (red), (c¢) undistorted B-scans with mesh overlay.

Methods

The OCT data is acquired in a sequence of B-scans (I*);—; _x (sce Fig. A.9a) with
image width W and height H. To reduce noise and small scanning artifacts, while
preserving edges, we apply a median filter to each B-Scan as a first preprocessing
step. In a second step we apply a pixel intensity normalization to each image, leading
to a zero-mean intensity distribution with unit variance, in order to retrieve uniform
edge responses from the in the final preprocessing step applied edge filter. We use
a Sobel filter in combination with a presmoothing Gaussian kernel with gauss = 1.5
to get first order derivative images I¥ and If in x- and y-direction of I*.

For 3D segmentation, the two-dimensional B-scans are embedded in a global 3D
coordinate system. A mapping of a 3D point position P = (X,Y,Z) to image
coordinates p = (z,y), i.e. (X,Y,Z) — (k,z,y) as shown in Fig. A.10a is done,
resulting in a sparse volume representation V(X,Y,Z) = I*(z,y) for the image
intensities. The volumes of the image derivatives V,, and Vj, are analogously defined,
using I} and I} instead of I*.

The proposed implant segmentation method is divided into three consecutive steps
(see Fig. A.9b-~A.9¢): The pin segmentation (yellow cylinder), the skin surface seg-
mentation (blue mesh), and the base segmentation (red mesh). The segmentation
steps are described in the following subsections.

Pin Segmentation In the image area where the implant pin is located, there is
no contour information, thus this area can be ignored for following segmentation
steps. The pin is of cylindrical form and the diameter d is known a priori. The
diameter is allowed to have a variance v* of +10pel. For each image I*, the z-
position of the left and right pin boundary z¥ and 2§ = 2% 4+ d + v* is computed
using a generalized Hough transform [7] approach over I¥ (z) = 3, |[IF(z, y)| with

acc
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Figure A.10: (a) Modeling of skin surface f over grid points x;, x; with respect to
global coordinate system (X,Y,Z) using spoke pattern scanning scheme, (b) top
view of accumulated image intensities I, and segmented pin boundary for each
B-scan individually (red), and with fitted cylinder (yellow).

mMax,k [Igcc(x’f) +IE (2% +d+ vk)} The pin estimation in a single B-scan is sus-
ceptible to noise and vanishing of boundary contours (see Fig. A.10b, red line).
Therefore, the boundaries are smoothed by assuming a cylindrical form and radius
r of the pin: At first, the center position C = (Cx, Cy) of the pin in the XY-plane
is calculated as the arithmetic mean of all boundary positions B¥ and B% corre-
sponding to o} and 2%, i.e. C = ;- >, (B} + B}). Then, the radius r is computed
as the median of all radians 7 = median(|CB!|,...,|CBX|). The yellow line in Fig.
A.10b shows a typical result of the pin segmentation step.

Skin Modeling and Segmentation A correct estimation of the skin surface
is crucial for a correct modeling of the implant base. The skin surface, denoted
as f(X,Y) = Z, is assumed to be smooth and to behave like a membrane, thus
having no discontinuities, except the pinhole. Several approaches can be used to
model the surface: Markov Random Fields (MRF), Conditional Random Fields or
Discriminative Random Fields [76]. Due to the smoothness property, we decided to
use an adapted MRF for segmentation of the skin surface. Following the notations
in [76], the posterior probability of the skin surface f given the volumetric pixel
intensities V' can be written as P(f | V) o« P(f,V) = p(V | f)P(f) using the
Maximum A-Posteriori framework (MAP), where P(f) is the smoothness prior and
p(V | f) denotes the likelihood function of f for V fixed.

To represent probabilistic relationships of the MRF, a common graphical notation
is used. The neighborhood relationships of a MRF can be described given a graph
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G = (V,E) with a set of nodes V representing the instances of the random field and
a set of edges F representing the conditional dependencies between the instances.
The prior probability is then modeled as follows:

P(f) =exp[- iy U(fi)] with  U(fi) = Xpnes(fi — fi)?/202 ,  (A3)

where o, is a constant weighting factor. Figure A.10a shows the relation of the
skin surface f; = f(x;) in the observation point x; to its neighboring point x’;. A
4-neighborhood system is used.

The likelihood of the true skin surface at position x; = (z;,y;) going through the
volumetric point (X;,Y;, Z;), with Z; = f(x;) is given as

p(V[fi) o Vo (X3, Y5, f(xi) + ¢ (A.4)

with a shifting constant ¢, forcing strict positive probabilities. Determining the
optimal solution of the given MRF problem is transferred to finding the global
maximum of P(f | V). The given MRF model consists of K -W edges and K -W - H
observation points, thus searching for the global maximum of the joint probability
turns out to be a complex task. In order to solve this task in a reasonable amount of
time and memory usage, we decided to use an iterative local optimization algorithm.
The Iterated Conditional Modes (ICM) approach with the coding method of Besag
[13] is used because of its ability for fast convergence. The ICM algorithm searches
for a local maximum of the joint probability P(f | V) by iteratively maximizing
each local probability P(f; | V) independently:

fit = argmin[—logp(V | f" = 2) + pinen(z — £7)*/207] (A5)

where f° is an initial guess of the surface. ICM is a local minimization method
and the estimation result highly depends on the initial surface guess f°. Therefore,
the initial guess is retrieved by independently estimating an optimal path for each
B-scan using a Markov model, i.e. the same model as for the MRF, but with a
2- instead of a 4-neighborhood system. Finally, the Viterbi algorithm is used for
global optimization [113]. Additionally, an annealing procedure inspired by anneal-
ing labeling ICM of [76] is used, i.e. allowing the membrane for n = 0 to be more
relaxed by setting 0 to a higher value oy and decreasing it for each L’s iteration
by O.7L+L

s

n .

= maX{Ucnm Og Jdccl‘}~

Baseline Modeling and Detection with a Hough Transformation To achieve
an appropriate segmentation of the implant base in presence of scanning artifacts,
noise, and local vanishing edge structures, a robust and model based segmentation
approach was developed using a generalized Hough transform [7]. The applied re-
fractive image undistortion model uses the fact that the axial position of reflections
captured with the OCT system matches to the optical path length 2z, of light
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passing through the observed tissue, rather than the geometric path length zge,. In-
spired by [109], the relation between zyy, and zge, can be approximately formulated
as Zopt = MZgeo, as shown in Fig. A.2a-(b), assuming a homogeneous layer with re-
fractive index n. The model used for conversion of optical path length to geometric
path length of each axial scan (A-scan, see Fig. A.9a) is z = g, + (¢ — gu)/n, where
gu is the known upper position (the skin surface, estimated in Section A.1.3), g; the
lower position (base layer), and z denotes the geometric position of the base layer
(see Fig. A.2a). Given g, and the constraint of maximal edge intensity support of
I over g, the maximization term for the generalized Hough transform is stated as
follows:

, max Sendyr (@ gu(z, k) = [gu(z, k) — Zoy 6y (z,K)] - 1) . (A.6)

Z,n.,0x .0y
The implant base is modeled as a plane with geometric position Z. Since the pin
is not located perfectly horizontal, a rotation of the plane in X- and Y-direction is
applied to Z, denoted by Zp, o,. As the parameter space is of dimension 4, small
discretization step sizes lead to high computation time, i.e. doubling the precision
increases the computation time by a factor of 2¢. Since the minimization problem
has only one global optimum, which can be distinguished very well from small local
extrema, a resolution pyramid approach [52] is applied.

Experiments

In this section, a ground truth experiment for verification of the proposed undis-
tortion model, as well as a comparison of the used spoke pattern and dense 3D
scanning scheme is performed. We further show results of a quantitative study on
several mouse datasets'. The B-scans have a dimension of 800 px x 600 px with a
lateral distance of the A-Scans of 7.5 pm/px and an axial scale of 4.7 pm/px. Fol-
lowing parameters work best for our datasets: An 11 x 11 median filter, ogaq = 70,
Oend = 10, 0gec = 0.9, and K = 5.

Model Verification A plane plastic slide is prepared with two glue drops of
slightly different size (Vitralit® 4731) with known refractive index of n = 1.474. An
example image and its segmentation results are shown in Fig. A.11. The estimated
refractive index of the two glue drops are neg; = 1.494 and ney, = 1.507 respectively.
It is assumed that the ground carrier plate is not perfectly planar as expected by
the estimation model, causing the deviation from groundtruth.

Scanning Scheme The spoke pattern scanning scheme is compared with the
dense 3D scanning scheme using real mouse recordings. To this end, we use the skin

LAll animal experimental procedures have been approved by the local governmental animal care
committee (Approval No. 33-42502-04-08,/1498).

IP 216.73.216.60, am 24.01.2026, 01:49:56. Inhalt,
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186860101

126 Appendix A Appendix
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Figure A.11: Glue drop (Vitralit® 4731) with n = 1.474, (a) comparison of original
(top) with segmented and undistorted (bottom) OCT B-scan (images cropped), (b)
closeup photo of a glue drop, (c) corresponding rendered surface reconstruction.

(a)

(¢)

Figure A.12: (a) Comparison of spoke pattern scanning scheme (top) and dense 3D
scanning scheme (bottom), (b) comparison heightmap of absolute surface differences
in pel, (¢) example skin segmentation results of mouse datasets using spoke pattern.

surface reconstructions of scans captured using the spoke pattern with 72 B-scans
and the dense 3D scanning scheme, respectively. Figure A.12a shows reconstructions
for a typical skin surface (acquired post mortem). The segmented surface using the
spoke pattern is projected onto the dense 3D grid. Small surface differences show
the ability of capturing important surface features using the spoke pattern (see
Fig. A.12b). The root mean square deviation (RMSD) is calculated as 1.546 pel.
Furthermore, several other surfaces were reconstructed (see Fig. A.12¢). The results
show, that using the spoke pattern still leads to good results and preserves many skin
details. Moreover, scanning is faster and approximately 91 % of computation time
and disk space is saved due to the decreased number of B-scans. With 937.5 KiB per
image, 666.5 MiB are saved. Skin surfaces of spoke pattern scans are reconstructed
using an unoptimized MATLAB implementation in 5.78 min, compared to 68.14 min
using dense 3D scans.
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Quantitative Study We further carried out a quantitative analysis on a set of
60 OCT mouse scans of 23 mice at various points of time (including post mortem
scans) using the spoke pattern scanning scheme. Manual segmentations of the skin
and base were done from experts for 8 OCT images (each 9th slice) per scan, having
3 individual manual segmentations per slice. The experts were instructed to trace
only visible parts of the contours. As a metric, we use the RMSD of a surface S}
towards the mean of a set of surfaces Ss, ..., S,,. For each B-scan, the RMSD of the
automatic skin segmentation towards the mean of all manual skin segmentations is
calculated. The average and standard deviation (in pel) over all B-scans is 3.98 £
3.29. For comparison, the RMSD of each manual skin segmentation towards the
mean of all other manual skin segmentations is calculated with 3.62 £+ 1.03. For
automatic vs. manual base segmentations, we get: 12.90 £ 18.27 and 3.55 £ 4.51.
After outlier removal (B-scans with RMSD >= 10pel), the RMSD of our fully
automated approach is 3.63 & 1.33 (2.3 % outlier) and 5.27 & 2.40 (39.0 % outlier),
which is close to the RMSD of the manual segmentation performed by experts with
3.62£1.00 (0.1 % outlier) and 3.21 £1.37 (1.4 % outlier). Outliers are mostly due to
motion artifacts in scans captured in vivo. Future work will concentrate on reducing
the outliers.
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