

Reihe 18

Mechanik/
Bruchmechanik

Nr. 355

M.Sc. Simeon Hubrich,
Hamburg

The hierarchical finite cell method for nonlinear problems: Moment fitting quadratures, basis function removal, and remeshing

The hierarchical finite cell method for nonlinear problems: Moment fitting quadratures, basis function removal, and remeshing

Vom Promotionsausschuss der
Technischen Universität Hamburg
zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von
Simeon Hubrich, M.Sc.

aus
Bremen

2021

Vorsitzender des Prüfungsausschusses

Prof. Dr.-Ing. Thomas Rung

Gutachter

1. Gutachter: Prof. Dr.-Ing. habil. Alexander Düster
2. Gutachter: Prof. Dr. rer. nat. Ernst Rank

Tag der mündlichen Prüfung: 16. Februar 2021

Fortschritt-Berichte VDI

Reihe 18

Mechanik/
Bruchmechanik

M.Sc. Simeon Hubrich,
Hamburg

Nr. 355

The hierarchical finite
cell method for
nonlinear problems:
Moment fitting
quadratures, basis
function removel,
and remeshing

VDI verlag

Hubrich, Simeon

**The hierarchical finite cell method for nonlinear problems:
Moment fitting quadratures, basis function removal, and remeshing**

Fortschr.-Ber. VDI Reihe 18 Nr. 355. Düsseldorf: VDI Verlag 2021.

176 Seiten, 111 Bilder, 7 Tabellen.

ISBN 978-3-18-335518-1, ISSN 0178-9457,

€ 62,00/VDI-Mitgliederpreis € 55,80.

Keywords: Finite cell method – Fictitious domain approach – High-order finite element methods – Numerical integration – Moment fitting quadratures – Basis function removal – Remeshing – Data transfer – Nonlinear problems – Finite strain problems

In this thesis, several approaches are discussed in order to further enhance the performance of the finite cell method (FCM). Thereby, novel moment fitting quadrature schemes are introduced that allow to reduce the effort of the numerical integration process significantly. Further, a basis function removal scheme is proposed to improve the conditioning behavior of the resulting equation system. Finally, an innovative remeshing strategy is presented that overcomes the problem of severely distorted elements for simulations with large deformations.

Bibliographische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek

(German National Library)

The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie (German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Arbeitsgruppe Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik

© VDI Verlag GmbH · Düsseldorf 2021

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe (Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung, vorbehalten.

Als Manuskript gedruckt. Printed in Germany.

ISSN 0178-9457

ISBN 978-3-18-335518-1

Acknowledgements

The present thesis is the result of my research work during my employment at the Institute for Ship Structural Design and Analysis (M-10) at Hamburg University of Technology (TUHH) in the period from January 2015 to April 2020. The work was funded by the Deutsche Forschungsgemeinschaft in the Priority Programme 1748 (DFG SPP 1748), in which the main objective was the development of modern non-standard discretization methods.

At this point, I would like to take the opportunity to thank everyone who contributed to my work and supported me during this time.

First of all, I would like to express my deep and sincere gratitude to my doctoral supervisor Prof. Dr.-Ing. habil. Alexander Düster. Dear Prof. Düster, many thanks for all the fruitful discussions, great suggestions, and your continuous support, which contributed considerably to the success of this work. While working with you, I was able to benefit a lot from your broad expertise and your long-time experience. Thank you very much!

Next, I would also like to thank Prof. Dr. rer. nat. Ernst Rank for acting as the second supervisor of my thesis – and Prof. Dr.-Ing. Thomas Rung for chairing my examination.

Further, I would like to thank all my colleagues at M-10 and of the SPP 1748 for the very successful and pleasant collaboration in many projects.

Furthermore, a big thank you goes to my family and friends for their support and for all the pleasant diversions from work.

Finally, I would like to express my deepest thanks to my love Anna. Dear Anna, over the years, we shared many happy adventures and have successfully overcome several challenges as a team. Together, we have a beautiful daughter. Thank you for your endless love, encouragement, and support during all these years. Thank you for everything, I love you so much!

*To my love Anna
and our beautiful daughter Clari,
I love you!*

Contents

1	Introduction	1
1.1	Motivation	1
1.2	Goal and scope of this thesis	3
1.3	Outline of this thesis	4
2	Basic elements of continuum mechanics	6
2.1	Kinematics	6
2.1.1	Motion and deformation	6
2.1.2	Strain measures	10
2.2	Equilibrium and stress measures	12
2.2.1	Equilibrium	12
2.2.2	Stress measures	13
2.3	Constitutive equations	15
2.3.1	Linear elasticity	15
2.3.2	Hyperelasticity	15
2.3.3	Small strain elastoplasticity	16
2.3.4	Finite strain plasticity	17
2.4	Strong and weak form of equilibrium	18
2.4.1	Strong and weak form in the initial configuration	19
2.4.2	Strong and weak form in the current configuration	20
2.5	Linearization of the weak form	20
2.5.1	Linearized weak form in the initial configuration	20
2.5.2	Linearized weak form in the current configuration	22
3	The finite cell method	23
3.1	Fictitious domain approach	23
3.1.1	Weak forms	24
3.1.2	Linearized weak forms	24
3.2	Spatial discretization	25
3.2.1	Mapping	25
3.2.2	Discretization of the weak forms	27
3.3	Numerical integration	30
3.3.1	Gaussian quadrature	30
3.3.2	Adaptive Gaussian quadrature scheme	33
4	Moment fitting quadratures	36
4.1	Moment fitting approach	39
4.1.1	Basis functions	40
4.1.2	Point distribution schemes	41
4.1.3	Computation of the moments	42

4.1.4	Computation of the weights	43
4.1.5	Optimized points and weights	43
4.1.6	Numerical examples	45
4.1.6.1	Cell cut by a sphere	45
4.1.6.2	Recovery of the Gauss-Legendre quadrature	54
4.2	Adaptive moment fitting	55
4.2.1	Moment fitting without solving an equation system	57
4.2.2	Computation of the moment fitting weights	59
4.3	Applications to the finite cell method	60
4.3.1	Hydrostatic sphere	60
4.3.2	Porous material	66
4.3.2.1	Linear elasticity	66
4.3.2.2	Small strain elastoplasticity	69
4.3.3	Cube with a cylindrical hole	72
4.3.4	Thick-walled plate with a circular hole	75
5	Basis function removal for the FCM	79
5.1	A simple function removal strategy for the hierarchical basis	82
5.1.1	Affected and nonaffected modes of the hierarchical basis	83
5.1.2	Removal criterion of affected modes	84
5.1.3	Implementation scheme	85
5.2	Benchmark problem	86
5.2.1	Linear elasticity	88
5.2.2	Small strain elastoplasticity	92
5.3	Finite strain problems	97
5.3.1	Single cube connector under pressure	98
5.3.2	Complex cube connector under pressure	107
5.3.3	Single pore of a foam-like structure under pressure	116
6	A remeshing strategy for the FCM	124
6.1	Kinematic relations	124
6.2	Remeshing procedure	126
6.2.1	Remeshing criteria	128
6.2.1.1	Ratio of Jacobians	129
6.2.1.2	Orthogonality	129
6.2.1.3	Inverse aspect ratio	130
6.2.1.4	Performance of the suggested remeshing criteria	130
6.2.2	Mesh generation	132
6.2.3	Data transfer	134
6.3	Finite strain problems	137
6.3.1	Plate with a circular hole	137
6.3.2	Single cube connector	141
6.3.3	Complex cube connector	146
7	Summary and outlook	150
Bibliography		154

Abstract

Over the last decade, nonstandard discretization methods based on the fictitious domain approach have gained increased interest. In these methods, the physical domain is embedded into a fictitious one – resulting in an extended domain of a simple shape. Consequently, structured meshes or Cartesian grids can be employed for the spatial discretization, thus simplifying the mesh generation process significantly. Due to this reason, such methods are a powerful tool for the numerical analysis of complex structures such as foam-like materials. A well-known example for these methods is the *finite cell method* (FCM), which combines the fictitious domain approach with high order finite elements. In the FCM, these elements are denoted as finite cells – thus giving the method its name – in order to distinguish them from boundary-conforming finite elements. However, the simplification in the mesh generation is accompanied by several numerical difficulties, induced by cut finite cells, reducing the efficiency and robustness of the FCM. In this thesis, we focus on the following issues in order to further improve the FCM.

The first topic is related to the **numerical integration of finite cells**. In general adaptive Gaussian quadrature schemes are used – commonly resulting in a large number of integration points, which renders the numerical integration computationally expensive. To overcome this problem, we propose novel quadrature methods based on **moment fitting**. Thereby, a promising approach is introduced that circumvents the necessity of having to solve an equation system. We show that this moment fitting method results in efficient and accurate quadrature rules for linear problems of the FCM, reducing the effort during the numerical integration process significantly. Moreover, in order to improve the performance for nonlinear applications, an adaptive moment fitting approach is presented.

The second topic addresses the **ill-conditioning of the global system**. To improve the conditioning behavior, we propose a new **basis function removal** approach applied to the hierachic shape functions of the FCM. In this approach, shape functions with a small contribution to the diagonal entries of the global system matrix are removed from the ansatz. To this end, a global criterion based on the discrete gradient operator is introduced to estimate the contribution. Moreover, by maintaining the nodal modes of the hierachic shape functions, the modified basis preserves the representation of the rigid body modes. Several examples show that the basis functions removal improves the conditioning behavior and, thus, the performance of the FCM significantly.

The last topic is related to the issue of **severely distorted finite cells for applications in finite strain**. To overcome this problem, we introduce a novel **remeshing strategy** that is based on a multiplicative decomposition of the deformation gradient. The essential idea of this strategy is to create a new mesh whenever the analysis fails due to severe distortions of the computational mesh – and then to continue the simulation. Further, a local radial basis function interpolation scheme for the implementation of the data transfer is presented. Considering problems of different complexity, we show that the remeshing strategy allows to improve the robustness behavior of the FCM considerably, especially in combination with the presented basis function removal.