Ratnadeep Rajendra Kharade, Hadi Adineh
and Dieter Uckelmann

Comparing Service-Oriented System Management
Solutions in Remote and Virtual Laboratory
Environments

Abstract

Digitalized laboratories are gaining importance in the higher education sec-
tor. Students are being provided with remote access to physical laboratory
infrastructures as well as online access to virtual labs. Due to the complexity
of systems in digital laboratory environments, it is often difficult to manage
the applications efficiently. Moreover, there can be multiple types of labora-
tories with different system configurations. These laboratories need different
management solutions based on the heterogeneity of lab systems. Therefore,
different approaches are needed to create deployable software units which
support multiple architectures.

We compare a microservices approach and monolithic architectures. As
regards production deployment, virtualization and containerization along
with their benefits and disadvantages are considered. In our research, we
compared Docker solutions as well as the main Kubernetes tools like Mini-
kube, Kubeadm, K3S, and Microk8s. Our goal is to identify solutions that
are easy to manage even in heterogeneous hardware environments. Security,
high availability, and compatibility with digitalized laboratories are also
considered.

Keywords

Remote Laboratories, Digitalization, Microservices

1 Introduction

Digitalization is rapidly changing the world and many sectors are benefit-
ting from it (Rodriguez-Andina et al., 2010). Digitalization in education is
also being adopted in this wave. In lab-based education, digitalized laborato-
ries, like remote laboratories and virtual laboratories are gaining more and

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

114 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

more importance. Corresponding applications vary from basic web-based
dashboards to highly domain-specific software (Taivalsaari & Mikkonen,
2018). Those applications can be designed based on monolithic architec-
tures or microservices approaches.

University labs are using a wide variety of hardware components. Some
of the laboratories are specially designed for specific requirement. Unfortu-
nately, hardware heterogeneity increases the complexity of system design
and management. However, modern system management solutions can
handle different hardware architectures, e.g., servers with Intel or AMD
processors or IoI-compatible devices such as Raspberry PI with ARM archi-
tecture.

Considering monolithic architectures as well as microservices approa-
ches in homogeneous and heterogeneous environments, the aim of this
research is to come up with a suitable solution based on the system require-
ments in remote and virtual laboratories. Our findings will be beneficial for
other digital laboratories.

As part of the Open Digital Lab 4 You (DigilLab4U) project (Pfeiffer
& Uckelmann, 2019) and the concept of research based education, the
requirements mentioned here have been researched by senior and student
researchers (Kharade, 2021) at the University of Applied Sciences Stuttgart
(HFT Stuttgart).

2 Background

Various architectures ranging from monolithic to microservices are compa-
red along with their benefits in this research. The benefit of monolithic
architecture is that its development can be faster in the initial phases (Kals-
ke et al., 2017). However, the complexity of hardware architecture and
problems arising due to an increase in codebase size could be mentioned
as two major challenges with monolithic architecture. This poses challenges
in the updating and scaling of application. On the other hand, microser-
vices are small software units that run independently and have a single
responsibility. Since microservices are loosely coupled, application scaling
and deployments can be carried out independently (Kalske et al., 2017).
Traditionally, the deployment of the application used to be done directly
on the underlying infrastructure, the host OS. Virtualization enables the
creation of isolated virtual machines on a single hardware system. In con-
trast, containers virtualize only the file system, whereas VMs virtualize the
entire operating system. A container engine is basically a software piece
that takes requests from users, including options from the command line,

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Comparing Service-Oriented System Management Solutions 115

pulls images, and executes the container from the perspective of the end
user (McCarty, 2018). Compared to other container engines (e.g., RKT,
CRIO and LXD), Docker provides additional features such as building the
images and signing (Baker, 2020). Therefore, in this research for a laboratory
environment, Docker is used as one of the use cases for container runtime.
By taking advantage of Docker’s methodologies for shipping, testing, and
deploying code quickly, the delay between writing code and running it in
production can be significantly reduced (Official Docker Documentation).

Docker Swarm, Apache Mesos, and Kubernetes are some of the popular
Container Orchestration Tools. Jawarneh et al. (Al Jawarneh et al., 2019) has
done a comprehensive comparison of these tools based on major functiona-
lity groups such as resource management, scheduling, and service manage-
ment.

Kubernetes (Kubernetes.io, 2020) is an open-source, extendable, porta-
ble platform for managing containerized workloads and services, aiding
both automation and declarative configuration. It has a vast and rapidly
evolving ecosystem. Kubernetes services, support, and tools are commonly
obtainable. For this research, Kubernetes is further evaluated in terms of ma-
naging applications in a laboratory environment, and the recent container
orchestration tools are compared and evaluated.

3 Software Systems in a laboratory environment

There are different architectures for a software system, from traditional mo-
nolithic architectures to the modern microservices architecture. Laboratory
environments can be different in terms of hardware and software complexity
and number of devices. So, each laboratory environment can have different
requirements in terms of system architecture.

Similarly, based on laboratory requirements, system environments can
also differ. There can be traditional servers or virtual machines or use of
containerization.

3.1 System Architecture
A typical software system consists of various components such as web user
interface, back end, and database application.

Traditionally, software systems were designed using a Monolithic archi-
tecture. It provides a unified model in context to software design.

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

116 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann
3.1.1 Monolithic Architecture and its Challenges

Monolithic software is constructed as one unit. Monolithic software is struc-
tured to be selfcontained; elements of the package are connected and are
dependent on each other. These packages have a high coupling between
them. To execute the code, all components must be always available in
a tightly coupled system. The benefit of monolithic architectures is that
their development can be faster in their initial phases (Kalske et al., 2017).
Monolithic architectures are best suited for laboratories which have very few
hardware and software components and do not need frequent upgrades.

Even though monolithic types of software are simple and straightfor-
ward to develop, they have some downsides. There are two major categories
of challenges with monolithic architecture which are relevant for the soft-
ware systems in a complex laboratory or IoT setup.

a. Challenges with Hardware Architecture Complexity

Laboratory environments may consist of different devices which have va-
rious applications. These applications can be independent of each other
and are distributed throughout the infrastructure. For example, a digital
laboratory can have some applications which enable robotic movements
using a Raspberry Pi, while the UI application and database applications
run on high-end servers. Moreover, suppose that a lab needs to run other
applications requiring high performance computing, virtual reality, artificial
intelligence, or machine learning algorithms as well as data processing on
GPUs. Since monolithic architectures are tightly coupled in nature, they
are not particularly useful in IoT environments, where multiple applications
run independently.

Also, different devices in an Iol infrastructure need different pro-
gramming languages based on the functionality they need to achieve. This
makes monolithic architectures unsuitable for deployment in complex labo-
ratory environments as they are mostly based on the same programming
context. For example, monolithic software based on tomcat server hosts uses
interface, business logic as well database access in the same environment.

b. Challenges posed by the Software Development Process

The challenges with monolithic architectures escalate as the codebase in-
creases in size. It is more difficult to incorporate new features and improve-
ments to existing features as the developer must find the right place to apply
changes (Kalske et al., 2017).

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Comparing Service-Oriented System Management Solutions 117

Along with that, whenever a change is required in the software, the
whole software is affected and needs to be redeployed, which increases the
downtime of software even though it is not required for other functionali-
ties.

3.1.2 Microservices Approach

Microservices are small software units that run independently and have a
single responsibility, as shown in Figure 1. Microservices are loosely coupled
in nature and focus on one utility. Loose coupling enables developers to
make individual changes to microservices without impacting the rest of the
codebase. Since microservices are not connected to each other, application
scaling and deployments can be carried out independently (Kalske et al.,
2017).

Complex laboratory environments can benefit by incorporating micro-
services architecture. Complex laboratory systems consist of independent
software units which have varied purposes, such as data collections from
sensors, actuation, data processing, and user interface. These functionalities
work independently. Also, platform-dependent microservices can be develo-
ped based on hardware architecture, for example software based on ARM
architecture for Raspberry Pi and AMD for software based on intel servers.
Development and scaling of these applications can be done independently
without affecting other applications. This enables the development of IoT
systems with wide availability.

3.2 System Environment

Traditionally, the deployment of the applications used to be done directly
on the underlying infrastructure. In this approach, the applications are de-
ployed directly on the host Operating System (OS) and access the system
resources directly via host OS processes. Multiple applications are installed
on an OS. These applications are exposed using ports on the host operating
system.

3.2.1 Virtualization
Virtualization enables the creation of isolated Virtual Machines (VMs) on
a single hardware system. These virtual machines have their own operating

systems, also referred to as guest operating systems. This approach isolates
software applications inside VM and limits resource usage per application.

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

118 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

@—b User Interface User Interface

Application
Logic

Microservice Microservice Microservice
Data Access
DB

Monolithic Architecture H H “

Microservices Architecture

Microservice

Figure 1: Monolithic vs. Microservices architectures

System encompassing virtualization has components such as Host OS, hy-
pervisor, and VM, as displayed in Figure 2.

VM 1 VM 2 VM 3

[‘*,,' '.1} [",,' i 2] [Applicationa}

Container 1 Container 2 Container 3
[Bins/Libs J [Bins/Libs] [Bins/Libs J [, . in”J [, . '-2J [, - 3]
[Guest 08 J [Guest 0§] [Guest 0§ J [Bins/Libs J [BinsiLibs J [BinsiLibs]

[Hypervisor J [Container Engine]

[Host Operating System } { Host Operating System]

[Hardware Infrastructure } { Hardware Infrastructure]
Virtualization Containerization

Figure 2: Virtualization and Containerization

The benefit of VMs is that, in a laboratory environment, virtualized deploy-
ments can be done on servers with greater processing power and memory.

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Comparing Service-Oriented System Management Solutions 119

So VMs are suitable for applications that are resource-intensive. Also, VMs
are more secure because applications are deployed in the Guest OS.

The challenge with virtualization is that it is not suitable on edge de-
vices as the guest OS on VM is itself heavyweight and a large chunk of the
resources must be assigned to VMs. So VMs are not suitable in labs with
low-end servers and applications needing few resources.

3.2.2 Containerization

The term containerization originates from shipping containers, where all
goods are packaged within containers and shipped across the world. Soft-
ware containers are used to pack software along with its dependencies.
Software containers provide an isolated environment for an application
which also contains the required packages, dependencies, and libraries, as
displayed in Figure 2.

Software containers are platform independent. Containers try to solve
the dev-ops problem through abstraction and platform independence in
various environments such as ‘development’ and ‘production’

A container is a runtime instance of an image. The image is a blueprint
of a container which is never running. An image contains file systems and
source codes. Many containers can be spawned from the same image.

3.2.3 Containers vs. VMs

Containers virtualize only the file system, whereas VMs virtualize entire
operating systems. Containers share the kernel with the host OS. VMs create
a new virtual kernel. Containers require a lower amount of storage, are
lightweight, and take less time to boot up. On the other hand, VMs need
mode storage as the OS and programs are not only installed and run, but are
also heavyweight and even take more time to boot.

In a complex laboratory environment with multiple edge devices, con-
tainers are a better option than VMs as edge devices require fewer system
resources.

3.2.4 Container engines

A container engine is basically a software piece that takes requests from
users, including options from the command line, pulls images, and executes
the container from the perspective of the end user (McCarty, 2018).

Many container engines are available for running containers, such as
Docker, RKT, CRI-O, and LXD. Along with that, various cloud providers
such as Google GCP, Microsoft Azure, and Amazon AWS have their own

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

120 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

container engines, which utilize container images compliant with Docker or
the open container initiative (McCarty, 2018).

Compared to other container engines, Docker provides additional fea-
tures such as building the images and signing (Baker, 2020). Therefore, in
this paper for a laboratory environment we used Docker as one of the use
cases for container runtime.

3.2.5 Docker

Docker is a popular container technology provider. Using Docker, it is easier
to create, deploy, and run applications. Docker is an open platform for deve-
loping, shipping, and running applications. Docker enables separation of
applications from infrastructure, so software can be delivered fast. By taking
advantage of Docker’s methodologies for shipping, testing, and deploying
code quickly, the delay between writing code and running it in production
can be significantly reduced.

3.3 Container Orchestration

Automatic container deployments, management, scaling, and networking
are achieved through the Container Orchestration process. It is feasible to
deploy the same application in different environments and without any
architecture modifications (RedHat, 2019). Along with managing a contai-
ner’s life cycle, container orchestration tools also support the integration of
continuous integration and continuous deployment workflows.

A container orchestration tool's major tasks are the management of sys-
tem resources, scheduling of applications, and management of services (Al
Jawarneh et al., 2019). Container orchestration tools manage the underlying
infrastructure for setting up the applications and provisions communicati-
ons between them even though they are distributed.

Although containers are a better solution, it gets difficult to manage
applications when there are many servers distributed in a laboratory en-
vironment, where there are distributed servers. Managing and networking
challenges can be overcome using container orchestration.

3.3.1 Container Orchestration Tools

Over the last few years, many container orchestration platforms have been
developed in the industry. Although they all perform the same simple con-
tainer automation task, they run in various ways and have been developed

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Comparing Service-Oriented System Management Solutions

for various usage scenarios. The most popular tools are Kubernetes (k8s),

Docker Swarm, and Apache Mesos.

These tools are compared by Jawarneh et al. (Al Jawarneh et al., 2019),
as shown in Table 1 and Table 2, and we found out that Kubernetes is best

suited to a laboratory environment.

Table 1: Comparison of container orchestration tools based on resource utilization

(Al Jawarneb et al., 2019)

| Functionality | Docker Swarm | Apache Mesos | Kubernetes |

Memory yes yes yes
CPU yes yes yes
GPU no partial no
Disk Space no yes no
Volume yes yes yes

Persistent Volume no partial partial
Port yes yes yes

P partial partial partial

Table 2: Comparison of container orchestration tools based on features
(Al Jawarneb et al., 2019)

| Functionality | Docker Swarm | Apache Mesos] Kubernetes ‘

Memory yes yes yes
CPU yes yes yes
GPU no partial no
Disk Space no yes no
Volume yes yes yes

Persistent Volume no partial partial
Port yes yes yes

1P partial partial partial

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

122 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

3.3.2 Kubernetes

Kubernetes is an open-source, extendable, portable platform for managing
containerized workloads and services, aiding both automation and declara-
tive configuration. It has a vast, speedily evolving ecosystem. Kubernetes’
services, support, and tools are commonly obtainable.

The platform generally referred to as K8s or Kube has started taking the
place of Development and Operations (DevOps) in recent years by helping
developers to speed up the coding along with best practices, also to speed
up deployments, automated testing, and updates. Moreover, working on
Kube helps developers to manage apps as well as services with almost zero
downtime. Also providing self-healing abilities, Kubernetes has the ability to
detect and restart services if a process fails inside a container (Kubernetes.io,
2020).

To develop scalable and portable application deployments that can be
managed, scheduled, and maintained easily, it’s easy to notice why it’s be-
coming the go-to technology of preference. Kubernetes can be integrated
with all of the top free cloud offerings and can be used on-site in a corpora-
te data hub. Its features, like cross-functionality and heterogeneous cloud
support, are the reason behind making this platform standard in container
orchestration (Kubernetes.io, 2020).

3.3.3 MicroksSs

Microk8s is Kubernetes distribution developed by Canonical. Microk8s sup-
ports a single node as well as a multi-node Kubernetes cluster in the produc-
tion environment. Microk8s is also a minimal version of Kubernetes and is
suited to all kinds of servers, such as high-end workstations to IoT devices.
Microk8s’ installation is simple. Microk8s supports all popular add-ons,
which are disabled initially and can be enabled when required. This makes
Microk8s lightweight and suitable for any environment.

3.3.4 Suitable Kubernetes for a Laboratory Environment

The laboratory environment is a combination of multiple devices with diffe-
rent architectures, such as ARM and AMD. Also, there are varying resources
per device. For example, devices such as Raspberry Pi have less storage,
memory, and CPU than high-end workstations such as Intel based CPUs.
Due to these parameters, it becomes challenging to come up with proper
tools in such a heterogeneous environment. Also, ease of setup and available
features are important parameters.

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

Comparing Service-Oriented System Management Solutions 123

Based on the comparison of the tools, Microk8s and K3S are best suited
for the laboratory environment and support multiple architectures.

4 Discussion and Sample Scenarios

Each digital laboratory has its own requirements and criteria as well as
different hardware and software configurations. Some of them are used for
performing experiments by accessing hardware remotely, while others are
purely virtual ones. Based on these features the preferred solution for each
laboratory can be chosen. These solutions could be adopted with personal
computers, high-end servers or even lower-end Single-Board Computers
(SBC) such as Raspberry PIs. Although there is no unique solution for all
digital laboratories, this paper can help them to find the suitable solution.
For example, here are some scenarios and solutions.

Scenario 1: To digitalize the RFID laboratory at the University of Ap-
plied Sciences Stuttgart (HFT Stuttgart) in order to enable remote experi-
ments, as discussed in (Pfeiffer et al., 2022), there is a RFID measuring
device which is designed to be operated remotely. The device controller
software needs to be run during the remote experiment runtime and part
of its Graphical User Interface (GUI) is intended to be shared with remote
users. Thus, we could only run this program on a real or virtualized Micro-
soft Windows operating system, because this GUI dependency makes it too
sophisticated to be containerized.

Scenario 2: In the second scenario, we found that the DigiLab4U La-
boratory Management System (LabMS) (Adineh et al., 2022) is fully com-
patible with containerization. A LabMS is an application with which to
manage laboratory instruments, as well as enhance remote operation while
cooperating with DigiLab4U shared services. LabMS applications have been
mainly developed based on DigiLab4U LabMS libraries and are potentially
adoptable in dockerization scenarios.

Scenario 3: Consider that there is a virtual laboratory through which
to execute and evaluate Artificial Intelligence (AI), Machine Learning (ML),
or data analytics algorithms. These algorithms consume high performance
computing resources as well as Graphical Processing Units (GPUs) on the
server’s side. As shown in other research, like that by Xu et al. (2017),
by dockerizing part of GPUs’ computation, not only could the benefits of
containerization be significantly minimized, but in some cases so could the
overheads.

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/

124 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann
5§ Conclusions and Future works

In this paper, we prepared different solutions for system management in
digital laboratories (remote and virtual laboratories) which have a different
hardware and software complexity. The results show that when there is one
application or service to be run, it is suitable for deployment on a single
computing machine (e.g., PC, server, Raspberry Pi) as a normal running
application. If there are multiple services to be run in one machine, imple-
menting the Docker solution enables us to have more control over applicati-
on management. Moreover, with the help of Kubernetes, laboratories with
multiple machines in a distributed system can be managed more efficiently.
Based on our findings, Kubernetes distribution Microk8s can handle multi-
ple applications gracefully in laboratory environments with heterogeneous
computing machines (PCs and Raspberry PIs). Mikrok8s is also easy to use
in a laboratory environment as compared to other Kubernetes distributions.

As regards future work, evaluating the results of this research in a pu-
rely virtual laboratory as well as a virtual reality provider is considered.
Moreover, this research could be continued by providing a Kubernetes-based
solution with which to manage all DigiLab4U services. Finally, we want to
evaluate the architecture mentioned in a real laboratory and compare the
results in terms of deployment speed, failure recovery, and security.

Acknowledgements

The DigiLab4U project, on which this paper is based, was funded by the
Federal Ministry of Education and Research (BMBF), Germany under the
funding code 16DHB2112. The responsibility for the content of this publi-
cation lies with the authors.

References

Adineh, H., Galli, M., Heinemann, B., Hohner, N., Mezzogori, D., Ehlenz, M., & Uckelmann,
D. (2022). Challenges and Solutions to Integrate Remote Laboratories in a Cross-Univer-
sity Network. In M. E. Auer, K. R. Bhimavaram, & X.-G. Yue (eds.), Lecture Notes in
Networks and Systems. Online Engineering and Society 4.0 (vol. 298, pp. 189-202). Springer
International Publishing. https://doi.org/10.1007/978-3-030-82529-4_19

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://doi.org/10.1007/978-3-030-82529-4_19
https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1007/978-3-030-82529-4_19

Comparing Service-Oriented System Management Solutions 125

Al Jawarneh, I. M., Bellavista, P, Bosi, E, Foschini, L., Martuscelli, G., Montanari, R., & Palopo-
li, A. (2019). Container orchestration engines: A thorough functional and performance
comparison. In ICC 2019-2019 IEEE International Conference on Communications (ICC).
Symposium conducted at the meeting of IEEE.

Baker, E. (2020). A Comprehensive Container Runtime Comparison. https://www.capitalone.com/t
ech/cloud/container-runtime/

Kalske, M., Mikitalo, N., & Mikkonen, T. (2017). Challenges when moving from monolith
to microservice architecture. In International Conference on Web Engineering. Symposium
conducted at the meeting of Springer.

Kharade, R. R. (2021). System Management, Recovery and Security in Laboratory Environment.
Stuttgart University of Applied Sciences (HFT Stuttgart), Stuttgart, Germany.

Kubernetes.io. (2020). Kubernetes. https://kubernetes.io/docs/home/

McCarty, S. (2018). A Practical Introduction to Container Terminology. https://developers.redhat.co
m/blog/2018/02/22/container-terminologypractical-introduction/

Official Docker Documentation. Docker overview. https://docs.docker.com/get-started/overview/

Pfeiffer, A., Adineh, H., & Uckelmann, D. (2022). Aligning Technic with Didactic — A Remote
Laboratory Infrastructure for Study, Teaching and Research. In M. E. Auer, K. R. Bhima-
varam, & X.-G. Yue (eds.), Lecture Notes in Networks and Systems. Online Engineering and
Soctety 4.0 (vol. 298, pp. 78-86). Springer International Publishing. https://doi.org/10.1007
/978-3-030-82529-4_8

RedHat. (2019). What is container orchestration? https://www.redhat.com/en/topics/containers/w
hat-is-container-orchestration

Rodriguez-Andina, J. J., Gomes, L., & Bogosyan, S. (2010). Current Trends in Industrial Elec-
tronics Education. IEEE Transactions on Industrial Electronics, 10(57), 3245-3252.

Taivalsaari, A., & Mikkonen, T. (2018). A taxonomy of IoT client architectures. IEEE Software,
35(3), 83-88.

Xu, P, Shi, S., & Chu, X. (2017). Performance Evaluation of Deep Learning Tools in Docker
Containers. In 2017 3rd International Conference on Big Data Computing and Communicati-
ons (BIGCOM). IEEE. https://doi.org/10.1109/bigcom.2017.32

Authors

Ratnadeep Rajendra Kharade

HFT Stuttgart

Schellingstral§e 24

70174 Stuttgart
hteps://de.linkedin.com/in/ratnadeep-rajendra-kharade
-a0597a18

ratnadeep.kharade@outlook.com

https://dol.org/10.5771/9783957104106-113 - am 19.01.2026, 22:55:54.

https://www.capitalone.com/tech/cloud/container-runtime
https://www.capitalone.com/tech/cloud/container-runtime
https://kubernetes.io/docs/home
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://docs.docker.com/get-started/overview
https://doi.org/10.1007/978-3-030-82529-4_8
https://doi.org/10.1007/978-3-030-82529-4_8
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1109/bigcom.2017.32
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://mailto:ratnadeep.kharade@outlook.com
https://ratnadeep.kharade@outlook.com
https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.capitalone.com/tech/cloud/container-runtime
https://www.capitalone.com/tech/cloud/container-runtime
https://kubernetes.io/docs/home
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://docs.docker.com/get-started/overview
https://doi.org/10.1007/978-3-030-82529-4_8
https://doi.org/10.1007/978-3-030-82529-4_8
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1109/bigcom.2017.32
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://mailto:ratnadeep.kharade@outlook.com
https://ratnadeep.kharade@outlook.com

126 Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

Hadi AdinehDINEH

HFT Stuttgart

Schellingstr. 24

70174 Stuttgart
https://www.hft-stuttgart.de/p/hadi-adineh
hadi.adineh@hftstuttgart.de

Prof. Dr.-Ing. Dieter Uckelmann

HFT Stuttgart

Schellingstr. 24

70174 Stuttgart
hteps://www.hftstuttgart.de/p/dieter-uckelmann
dieter.uckelmann@hft-stuttgart.de

https://dol.org/0.5771/9783957104106-113 - am 19.01.2026, 22:55:54, [

https://www.hft-stuttgart.de/p/hadi-adineh
https://www.hft-stuttgart.de/p/hadi-adineh
https://mailto:hadi.adineh@hft-stuttgart.de
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://dieter.uckelmann@hft-stuttgart.de
https://doi.org/10.5771/9783957104106-113
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.hft-stuttgart.de/p/hadi-adineh
https://www.hft-stuttgart.de/p/hadi-adineh
https://mailto:hadi.adineh@hft-stuttgart.de
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://dieter.uckelmann@hft-stuttgart.de

	1 Introduction
	2 Background
	3 Software Systems in a laboratory environment
	3.1 System Architecture
	3.1.1 Monolithic Architecture and its Challenges
	a. Challenges with Hardware Architecture Complexity
	b. Challenges posed by the Software Development Process
	3.1.2 Microservices Approach

	3.2 System Environment
	3.2.1 Virtualization
	3.2.2 Containerization
	3.2.3 Containers vs. VMs
	3.2.4 Container engines
	3.2.5 Docker

	3.3 Container Orchestration
	3.3.1 Container Orchestration Tools
	3.3.2 Kubernetes
	3.3.3 Microk8s
	3.3.4 Suitable Kubernetes for a Laboratory Environment

	4 Discussion and Sample Scenarios
	5 Conclusions and Future works
	Acknowledgements
	References
	Authors

