

Reorganizing Educational Institutional Domain using Faceted Ontological Principles

Subhashis Das*, Debashis Naskar**, Sayon Roy***

*Dublin City University, School of computing, Glasnevin, Dublin 9, Ireland, <subhashis.das@dcu.ie>

**Polytechnic University of Valencia, Department of Computer Systems and Computation, (DSIC),

4 Valencia, Spain, <debashis@drtc.isibang.ac.in>

***Gangarampur College. Gangarampur, West Bengal, India, <sayon@drtc.isibang.ac.in>

Subhashis Das was born in Kolkata, India. He obtained his Ph.D. from ICT (Information and Communication Technology) Doctoral School, University of Trento, Italy in 2018 and master's degree in library and information science from the Documentation Research and Training Centre, Indian Statistical Institute, Bangalore, India in 2013. Currently, he is a Postdoctoral researcher at ADAPT Centre and CeIC, School of Computing, Dublin City University, Dublin, Ireland.

Debashis Naskar was born in Kolkata, India. He obtained his Ph.D. from the Department of Computer Systems and Computation at Polytechnic University of Valencia (Spain) in 2022 and master's degree in library and information science from the Documentation Research and Training Centre (DRTC), Indian Statistical Institute, Bangalore, India in 2014. His current research focuses on social network analytics, sentiment analysis or emotion extraction, and information influence modeling.

Sayon Roy was born in Kolkata, India. He obtained his master's degree in library and information science from the Documentation Research and Training Centre (DRTC), Indian Statistical Institute, Bangalore, India in 2014. Currently, he is a Ph.D. student at the University of Calcutta, Kolkata, India.

Das, Subhashis, Debashis Naskar and Sayon Roy. 2022. "Reorganizing Educational Institutional Domain using Faceted Ontological Principles." *Knowledge Organization* 49(1): 6-21. 49 references. DOI:10.5771/0943-7444-2022-1-6.

Abstract: The purpose of this work is to find out how different library classification systems and linguistic ontologies arrange a particular domain of interest and what are the limitations for information retrieval. We use knowledge representation techniques and languages for construction of a domain specific ontology. This ontology would help not only in problem solving, but it would demonstrate the ease with which complex queries can be handled using principles of domain ontology, thereby facilitating better information retrieval. Facet-based methodology has been used for ontology formalization for quite some time. Ontology formalization involves different steps such as, Identification of the terminology, Analysis, Synthesis, Standardization and Ordering. Firstly, for purposes of conceptualization OntoUML has been used which is a well-founded and established language for Ontology driven Conceptual Modelling. Phase transformation of "the same mode" has been subsequently obtained by OWL-DL using Protégé software. The final OWL ontology contains a total of around 232 axioms. These axioms comprise 148 logical axioms, 76 declaration axioms and 43 classes. These axioms glue together classes, properties and data types as well as a constraint. Such data clustering cannot be achieved through general use of simple classification schemes. Hence it has been observed and established that domain ontology using faceted principles provide better information retrieval with enhanced precision. This ontology should be seen not only as an alternative of the existing classification system but as a Knowledge Base (KB) system which can handle complex queries well, which is the ultimate purpose of any classification system or indexing system. In this paper, we try to understand how ontology-based information retrieval systems can prove its utility as a useful tool in the field of library science with a particular focus on the education domain.

Received: 4 September 2020; Revised: 28 March 2022; Accepted: 21 April 2022

Keywords: ontology, ontology engineering, domain modelling, education domain

1.0 Introduction

Ontologies are essential for representing knowledge in a structured way in modern knowledge-based systems. They are equally used as important tools for information retrieval and knowledge discovery. Domain ontology helps in the formalization of linguistic knowledge through the use of logical axioms. A faceted ontology refers to an ontology divided into subtrees, each of them encoding a facet, or a different aspect of domain knowledge (Prieto-Díaz 2003). It can therefore be seen as a set of classificatory knowledge-base. In this ontology, we plan to develop a faceted ontology that encodes specific domain knowledge for organizations. As per Bentivogli et al. (2004):

A domain can be defined as an area of knowledge, which is somehow recognized as unitary. A domain can be characterized by the name of a discipline where a certain knowledge area is developed (e.g. chemistry) or by the specific object of the knowledge area (e.g. space). [...] Domains can be organized in hierarchies based on a relation of specificity. For instance, we can say that “tennis” is a more specific domain than “sport”, or that “architecture” is more general than “town planning”.

1.1 Organization vs. institution

There might be confusion regarding the meaning and word- semantics of the two words “organization” and “institution”, which are frequently and alternatively used. To take an example, there might be persistent ambivalence in efforts to semantically delineate between a medical organization and a medical institution, or for that matter between an educational organization or educational institution. We try to obtain a semantic clarification of these two terms before proceeding to the next section. The Oxford English Dictionary defines organization as “an organized body of people with a particular purpose, especially a business, society, association, etc.”, and institution as “an organization founded for a religious, educational, professional, or social purpose”. We extend the above-quoted dictionary definition of institution as “a society or organization founded, up and running, with concrete and physical facilities associated to them for religious, educational, social, or similar purposes”.

From the above definition, it is clear that organization is an organized body of people and it can exist without any establishment in any particular location, but institution on the other hand should have some physical existence from which it operates and coordinates work. Educational institution refers to an institution dedicated to education, for example, school, college, university, etc.

The educational system is not globally uniform. It differs from country to country having varied nomenclature. We consider only the “general education system” in our classification. Other types of education systems have been excluded, for instance those found in predominantly Muslim countries, i.e. Madrasah education.¹ In the case of Bangladesh, which is a Muslim majority country, it is clear from the Bangladesh Government education system (Prodhan 2016) that they have both types of education systems, one is general and the other is Madrasah.

In general education systems, the education imparted is common to all systems and promotes global awareness and conscious development. It embraces the traditional subjects that form and provide the shared intellectual heritage of our diverse cultures. It teaches the skills of critical thinking, and of accurate and effective communication. It develops openness to the views of others, and allows revision of judgments after careful and critical thought. Such facility for comprehension is commonly and generally expected from any educated individual. General education promotes the integration, synthesis, and application of knowledge, and includes proficiency in information literacy (Cronk 2004). In this regard, UNESCO gives clear guidelines on the global education system in the International Standard Classification of Education (ISCED 2011).

While considering the diverse codification for general systems of education available universally, the existence of multiple, interchangeable, and osmotic terminology can be observed. On numerous occasions, our classification for an educational institution has alternatively been included in the concept of educational organization, by a different scheme of knowledge representation. We thus follow a faceted approach while developing our Educational Institution Ontology (EIO). Facet analysis for an existent entity has been carried out; this empowers EIO to capture and group the idea of an educational institution uniquely. Educational institutions and several related concepts are heterogeneously scattered under the broader umbrella of domain education. For a physically existing conglomerate that imparts education, there is no distinction when it comes to representing that particular conglomerate as an organization or as an institution. Among other objectives, EIO seeks to disambiguate this anomaly. EIO provides a facet based grouping that is further developed through the hierarchical tree structure. While carrying out sub-tree analysis, distinct divisions for educational organization and institution can be observed. The facet-based approach has helped us to determine the division characteristics, which is a salient feature for any knowledge representation scheme.

The rest of the paper structure is as follows: section 2.0 provides a brief literature review on education domain and discusses the related works; section 3.0 explains the methodology exemplifying its use for constructing the Educational

372.21 Preschool education

300 Social sciences

370 Education

372-374 Specific levels of education

372 Primary education (Elementary education)

372.2 Specific levels of primary education

372.21 Preschool education

372.210973 Day care--preschool education--United States, ...

372.218 Kindergarten

Figure 1. Classification of basic subject Education in WebDewey.

Institution ontology (EIO); section 4.0 emphasizes the core structure of the EIO Ontology. Implementation has been described in section 5.0 and model evaluation is provided in section 6.0.

2.0 Terminological and ontological issues relating to the domain of education

Education systems are diverse in nature. There might be several differences among educational systems across the continent. Van Vught (2009) mentions seven types of diversity, but within the scope of our work we have limited our discussion only to two diversities i.e. systematic diversity and structural diversity. We divided our discussion into three subcategories.

2.1 Education domain in library classifications

In library classification systems, the education domain is mainly categorized as a sub field under the social science category. For our discussion, we analysed categorized terminology among three major library classification systems, namely Dewey Decimal Classification (DDC), Universal Decimal Classification (UDC), and Colon Classification system (CC). The main objective is to show or verify how these classification systems treat different educational institutions within their respective scheme of classification while accommodating the diversity.

Dewey Decimal Classification (DDC), classifies the education domain under social sciences i.e. 300. Specific levels of education, for instance primary education or secondary

education, have been classified within the range 372-374. An important observation for this case is that “Day care-preschool-education”, though enumerated by this scheme under the United States of America, is strangely absent for all other countries. Figure 1 depicts one of such examples from DDC taken from the WebDewey browser.

DDC enumerates “Preschool education” as an instance of “Specific levels of primary education”. “Preschool education” ordinally has a lower rank than “Primary education”. Figure 2 depicts the schedule of classification of the Education domain as provided by the Colon Classification (CC) scheme. This scheme, being different from enumerative schemes, uses the analytic-synthetic approach. Hence construction of schedules for different subject ideas, and inclusion of sub-concepts pertaining to subject disciplines reflect facetization and application of principles for faceted theory. In CC, the concept of “Preschool education” ordinally has the same rank as “Primary education”. For our purpose, we have considered the idea existent with concepts like preschool, primary, elementary education; and have designated these as classes. Figure 3 illustrates how the idea of “Preschool education” has been accommodated in the Universal Decimal Classification (UDC) scheme. This scheme places “Preschool education” and “Primary education” at an ordinally similar rank. An important observation is that UDC has enumerated the concept “Organization of preschool education” and assigned a notation (373.21).

EDUCATION			
T [P]: [E], [2P], [2P2]			
	<i>Foci in [P]</i>	3	Medium of instruction
1	Pre-secondary	C	31 A
13	Pre-school child		32 Mother tongue
15	Elementary		35 Bilingualism
2	Secondary		38 Foreign medium
25	Intermediate	C	4 Classical medium
3	Adult		5 Heuristic method
31	Literate		7 Catechism
35	Foreigner		8 <i>Case study. (Observation)</i>
38	Illiterate		9 <i>Experiment</i>
4	University	C	91 Direct method
42	Pass		92 Dramatisation
43	Honours		93 Story method
45	Post-graduate		95 Pictorial method
48	Research		96 Play method
5	Sex		97 Lecture method
51	Male	Av	98 Discussion method
55	Female		
6	Abnormal		
61	Genius		1 Student's work
62	Idiot		2 <i>Foci in [P2]</i>
63	Insane		3 Home work
65	Criminal		4 Library work
67	Deaf and dumb		5 Study method
673	Stammerer		6 Field work
68	Blind		7 Examination work
7	Backward classes		8 Competition
9	Other classes		9 Group work
<i>To be divided by (SD) (Illustrative)</i>		1	10 Correspondence course
Educational measurement			
<i>Foci in [2P2]</i>			
Intelligence test			

Figure 2. Basic subject Education in Colon Classification. Legend: C= class, A= Attribute and Av =Attribute value.

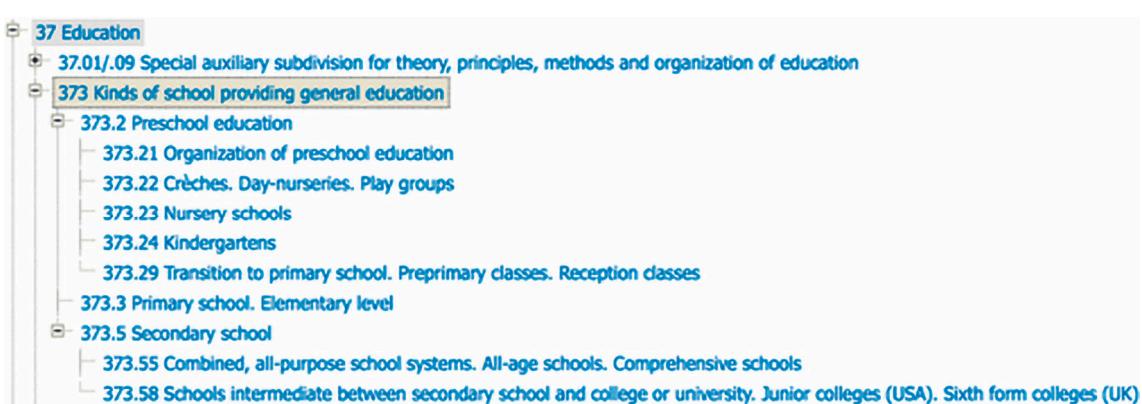


Figure 3. Classification of school in Universal Classification System (UDC).

2.2 Education domain in lexical semantic resource

The most popular lexical semantic resource is WordNet (Miller 1998). WordNet, developed at Princeton University, and available on an open license since the early 1990s, has proven useful for thousands of applications to English texts. It is not flawless, but it strikes a reasonable balance between the formalization of the descriptions of lexical meaning and the wide coverage required for practical applications. In the past decade, there are many examples of WordNet independently developed across cultures and countries. For our investigation, we limit our discovery to Princeton WordNet (PWN) version 3.0 and all examples and flaws are taken from the same.

ISO 25964-1 (2011) refers to complex concepts as those concepts that may be defined in terms of at least two other concepts. In the spirit of the faceted approach Ranganathan (1937) (as per the *meccano* property), we recommend avoiding complex concepts in the model. In fact, this would generate a concept with multiple ‘is-a’ parents. For instance, the concept of “red cloth” is a complex concept as it can be defined from the viewpoints of both “cloth” as well as “red”. However, in this specific case “red” should be treated as a value of the attribute “color”. A possible way to detect those cases is by parsing the text and to realize that “red” is actually an adjective modifying the meaning provided by the noun “cloth”. ISO 25964-1 (2011, 40-42) describes interesting factors to consider in deciding whether to admit or not a complex concept.

Examples of complex concepts we found in educational institutions are as follows: day school, night school. “Day” and “night” modify school as they denote the timing of the school activities. In this case “day” and “night” were codified as values of the attribute “school timing”.

Obsolete concepts are those concepts whose extension does not contain entities that currently exist, or that do not perform the same function anymore. In other words, they are concepts that are supposedly not to increase their extension in the future. For instance, a “chariot” is a two-wheeled horse-drawn battle vehicle used in war and races in ancient Egypt, Greece, and Rome. Therefore, on the one hand, it is unlikely that anybody would produce a new one nowadays in order to use it as a battle vehicle, and on the other hand,

even if it were produced it would not be used with the same purpose.

Redundant concepts are those cases in which two or more concepts in WordNet are equivalent, i.e. they actually have the same meaning (see Figure 4 for example). If this is the case, the concepts must be merged in order to avoid redundancy. In merging the two concepts, the corresponding synsets in any language need to be merged. In this case we keep all the corresponding terms and generate one single gloss for it. Examples of equivalent concepts we found in educational institution are as follows: kindergarten = a preschool for children age 4 to 6 to prepare them for primary school; nursery school = a small preschool for small children. These were merged into Nursery school, kindergarten = a preschool where children below the age of compulsory education, play and learn.

A special case of redundant concepts is given when the concepts are not only (nearly) equivalent, but, in a certain language, there is *polysemy*, i.e. when the concepts are lexicalized with the same term. In those circumstances, we keep the concept whose synset has a higher rank (Freihat, et al. 2013).

There is often confusion between concepts and individuals. In natural language, individuals are typically referred to with a proper name. Concepts correspond instead to common nouns, adjectives, verbs, and adverbs. A schema is meant only to contain concepts, and therefore it must be free of individuals. Hence, if for some reason during its management an individual is identified, that must be deleted. For example, while refactoring educational institution we deleted the following: United States Military Academy, United States Naval Academy, United States Air Force Academy, Plato’s Academy.

2.3 Education domain in formal ontology

An ontology is a data model that represents a set of concepts within a domain of discourse (D') and the relationships among those concepts (Figure 5). Ontology is situated at the top-spectrum of the semantic hierarchy (McGuinness 2002). It is used by machines to reason about the real-world objects within that domain. RDF (Resource Description Framework) is an XML-based syntax standard used for de-

School : an educational institution
School : an educational institution's faculty and students
were merged into
School : an educational institution designed for the teaching of students (or "pupils")
under the direction of teachers

Figure 4. Example of redundant concepts.

fining statements about a resource in the form of subject-predicate-object ($P(S,O)$) expressions called triples. RDF Schema (RDFS) defines the semantics of any particular domain with which concepts can be readily described and referred to by RDF. Miles and Bechhofer (2009) developed SKOS as “an area of work developing specifications and standards to support the use of knowledge organization systems (KOS) such as thesauri, classification schemes, subject heading systems and taxonomies within the framework of the Semantic Web”. SKOS provides a standard way to represent knowledge organization systems using RDF. Encoding this information in RDF allows it to be passed between computer applications in an interoperable way. Both RDF and SKOS have limited expressive power.

OWL (Web Ontology Language) provides a more expressive ontological description of complex relations between concept pairs than RDFS does. RDFS elements can be used to define a concept in terms of a class and assigned properties in OWL.

The purpose of building an ontology can be described as the specification of some domain or the things that make up a domain.

2.3.1 Other related work

This section briefly reviews the earlier literature that was produced for the education domain, for example Jian Qin & Naybell Hernández (2004) constructed EduOnto, which is an ontology for educational resources. In the same area, Guangzuo et al. (2004) conducted a study on the core of OntoEdu, which is a grid-based educational system ontology for e-learning. A study by authors Ameen et al. (2012), demonstrates a method of constructing an ontology in the education domain for the courses offered at universities. Woukeu et al. (2003) represent an ontological hypertext framework called Ontoportal for building generic web-based educational portals. The authors also describe how a hypertext framework could be used to create ontology-based metadata and generate educational portals in order to obtain semantic interlinking with various web-based educational resources for learning and teaching. An educational standard also has potential for simplifying lesson planning for teachers and provides support for students by linking relevant resources. Rashid and McGuinness (2018) created

an education standards ontology along with a methodology for automatically generating this ontology. This ontology helps to support literacy and numeracy in students, enables future potential services, and creates impact for an educational semantic web.

Designing integrated learning ontologies for conceptualizing multilevel knowledge structures also became popular. Chung and Kim (2016) proposed a design for syllabus integration and classification method based on the definition of the semantic model of the syllabus. To improve curricula in higher education institutions, Al-Yahya et al. (2013) present the CURONTO ontology for curriculum management. It is designed for the general management of an entire curriculum, in addition to the facilitation of program review and assessment. Similarly, a study conducted by Breis et al. (2012) reveals how they developed a Gescur platform that supports the development of the educational curriculum and facilitates the curriculum management process. Kartis et al. (2018) purpose their work for identification and conceptualization of the entities and procedures within an academic institution and aims to model the core concepts of a higher education curriculum. Another interesting ontological learning management system was proposed by Rani et al. (2016), where authors created an ontology to manage a learner profile so that a learner may be aligned to a proper path of learning. This ontology uses the VARK learning model which classifies what kind of learning the learner requires so that necessary resources can be provided. Relevant to the discussion of different models, Zeng (2008) proposed a classification of knowledge organization systems (KOSs) based on their structures (from flat to multidimensional) and main functions. The system encompasses all types of schemes for organizing information and promoting knowledge management, such as classification schemes, gazetteers, lexical databases, taxonomies, thesauri, and ontologies. Zeng et al. (2007) proposed an update of national and international standards ANSI/NISO Z39.19-2005 and BS 8723 (as discussed by Hudon (1995)) with reference to the development and encoding of KOS in the digital environment. Maria Teresa Biagetti (2020) presents the principal features of ontologies, drawing special attention to the comparison between ontologies and other kinds of knowledge organization systems (KOS), focussing on the semantic richness exhibited by ontologies.

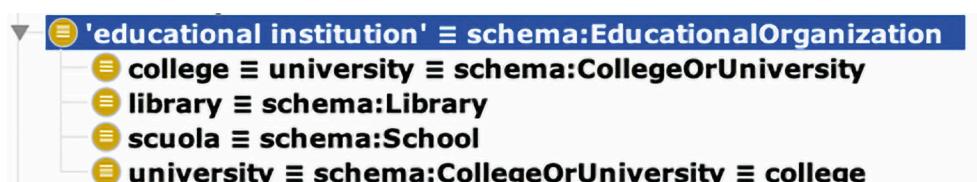


Figure 5. Classification of educational institutions in DBpedia Ontology.

Recently, the trend of using the open-source e-learning system in developing countries is more evident in comparison with the growth of proprietary e-learning systems (Suteja and Jt 2009). A move from traditional learning to the design of e-learning systems became very popular in the pursuit of explicit knowledge. A study by Lo (2011) focuses on traditional learning and e-learning, by adopting a value-added process orientation and an ontological instructional system. In the same way, a platform architecture for e-learning was proposed by Kaur et al. (2015), where their system consists of an ontology for e-learning processes such as teaching methods, learning styles, learning activities and course syllabus. Curriculum management and development can be improved by using ontologies in curriculum tasks like aligning, comparing, and matching between universities, educational systems or relevant disciplines. Automatically generating hypertext structures from distributed metadata is more flexible with an e-learning system. Alsultanny (2006) designed an e-learning system by using a semantic web to provide flexible and personalized access to these learning materials. Cloud computing has received considerable attention at both corporate and industry levels. Aljenaa et al. (2011) proposed an e-learning framework to store rapidly developing e-learning resources on the cloud due to its scalability, thus providing e-learning as a service (EaaS). Similarly, Rani et al. (2015) proposed an ontology-driven system to implement the Felder-Silverman learning style model in addition to the learning contents, to validate its integration with the semantic web environment. Cloud storage is used as the primary back-end in order to maintain the ontology. A value-adding instructional system is necessary in the design of an e-learning system. A study conducted by Lo (2011), where traditional learning and e-learning is involved by adopting a process-oriented and systematic method of analysis. This study also draws a model called the value-added model for instructional system design for e-learning.

Nowadays, assessment has become a very important task in the operation of e-learning systems, since it gives evidence of the student's intentions. Kumaran and Sankar (2013), proposed a concept, using an ontology mapping, which generates a concept map based on assessments from students' learning and determining what a student knows. A similar system called Ontology E-Learning (OeLe) was implemented by Litherland et al. (2013), which automatically marks the students' free-text answers to questions of a conceptual nature. The OeLe system also provides feedback and performance evaluations to individual students and teachers. Another interesting approach was formulated by Castellanos-Nieves et al. (2011), where their methodology combines with domain ontologies, semantic annotations and semantic similarity measurements. This approach supports the assessment of open questions in e-learning courses

by using Semantic Web technologies, and incorporates an algorithm for extracting knowledge from students' answers.

3.0 The methodology

Our main purpose was to verify and understand all concepts associated with organizations or institutions related to the educational domain. To determine such concepts we chose the WordNet (Miller 1998) as a primary resource for analysis, in which the organization domain contains about 1400 concepts. The classification is based on the definitions of the terms searched in various information sources such as the Oxford English Dictionary, United Nations (UN) reports, encyclopedias, Wikipedia, and other information sources. Organization is an abstract entity, as per Burkhardt and Smith (1991). and we are dealing with all possible subdivisions of organization, for example, business organization, political organization, educational organization, medical organization and religious organization. For this paper, we started our work by analyzing sub-trees of any "organization" which is related to education i.e. educational institution, alongside keeping provision for expansion with other sub-divisions of "organization" in future.

The following steps were undertaken in building our formal ontological model. These steps are inspired originally by Ranganathan's (1937) principles of facet analysis, as well as those provided by Giunchiglia et al. (2012, 2014) and Ghosh et al. (2020), and has been combined with Onto-Clean methodology by Guarino and Welty (2002).

3.1 Information acquisition

In this step we identify relevant resources and technical documents for understanding the domain of discourse.

3.1.1 Identification of relevant resources

Relevant resources have been identified initially by inspecting the terms identified during the previous step, and by consulting dictionaries, available standards, and online sources (e.g. Wikipedia); the purpose is to identify the key resources necessary to thoroughly understand the identified terms. This requires acquiring knowledge of relevant domains. We required each single design choice to be documented by referring to an authoritative source, stressing the advantages and disadvantages of possible alternatives and the rationale for the selected option. For instance, in the case of educational institutions a relevant domain is education and valuable references include the International Standard Classification of Education (ISCED) provided by UNESCO (2012).

3.1.2 Study of the domain

To effectively start the analysis, it is fundamental to study the domain under examination. This allows the identification of the core terms, i.e. the terms which play a central role in the domain. For instance, for education, we referred to the ISCED standard from UNESCO aiming at a general education system. It stresses that:

As national education systems vary in terms of structure and curricular content, it can be difficult to benchmark performance across countries over time or monitor progress towards national and international goals. In order to understand and properly interpret the inputs, processes, and outcomes of education systems from a global perspective, it is vital to ensure that data are comparable. This can be done by applying the International Standard Classification of Education (ISCED), the standard framework used to categorize and report cross-nationally comparable education statistics.

It also provides the following classification that we mapped to the terms identified from previous steps.

3.2 Synthesis

In this step, we gave shape to each facet by grouping similar concepts together. The main means of doing so was to use corresponding glosses that, according to the principle of context, should reflect the future position of the concept in the facets. In practice, this may require subsequent iterations of analysis and synthesis to progressively refine the facets and to ensure that the principles of exclusiveness, exhaustiveness, and helpful sequence are met.

3.2.1 Identification of the main characteristics of division

In arranging identified concepts, we proposed the identification of one or more high-level characteristics of division which are peculiar to the domain under examination. They can be used to come up with the first two or three levels of the facet and should be reflected in the differentiation of the various analyzed terms. For instance, as it emerges from the glosses in WordNet quite often age is used; for example “junior school: British school for children aged 7-11”, and “infant school: British school for children aged 5-7”.

However, it is clearly specified by Ranganathan that age is not a permanent characteristic and therefore it is not a good candidate. Among other things, the age of access to a certain level of education may vary in time and from country to country (in the above it clearly refers to the British

system). Therefore, at the first level we had rather distinguish educational institutions by level of complexity, from preschool to university; at the second level we distinguished secondary schools by programme orientation.

3.2.2 Characteristics used

We dropped “age” during classification as it generates time/country bias. For example, WordNet 3.1 defined junior school as “British school for children aged 7-11” and infant school as “British school for children aged 5-7”. Enrollment age varies from one country to another; it does not stick within a particular age bracket mentioned in WordNet gloss. We used level of complexity, and scope and purpose of the study, as deterministic characteristics for classification. The level of complexity is gradually increased from preschool to university. For choosing specific terms we followed mainly popular and most frequently used terms (i.e. Canon of currency by Ranganathan (1937)). In the case of classifying higher educational institutions beyond the secondary level, we used programme orientation as the main criterion e.g. academic, professional, and research.

3.3 Facet formulation

The facet formulation task consisted of identifying classes and attributes among the identified terms selected from the WordNet hierarchy.

3.3.1 Facets of entity classes

In facets of entity classes, the facet is constructed by simply looking at the genus of the definitions where it explicitly indicates the parent concept. For instance, the core structure of the facet of entity classes for the educational institution is shown in Figure 6 below.

3.3.2 Facets of attributes

fundingPolicy

- Value_of-Private (New) (New-fund collected from private bodies)
- Value_of-Public (New) (New-fund collected from government or form tax)
- Value_of- charter (New) (New-fund collected from Businessman or celebrity)

timing

- Value_of>Day (Day time of the school when it is light)
- Value_of>Night (Night time of the school between afternoon and bedtime)

facility

- Value_of> Boarding (adj)(New): the arrangement according to which pupils or students live in school during term

Educational Institution (<i>an institution dedicated to education</i>)
(is-a) Preschool (<i>an educational institution for children too young for primary school</i>)
(is-a) School (<i>an educational institution designed for the teaching of students under the direction of teachers</i>)
(is-a) Primary school (<i>a school for children where they receive the first stage of basic education</i>)
(is-a) Secondary school (<i>a school for students intermediate between primary school and tertiary school</i>)
(is-a) Tertiary school (<i>a school where programmes are largely theory based and designed to provide sufficient qualification for entry to advanced research programmes or professions with high skill requirements and leading to a degree</i>)
(is-a) Training school (<i>a tertiary school providing theoretical and practical training on a specific topic or leading to certain degree</i>)
(is-a) Vocational school (<i>a tertiary school where students are given education and training which prepares for direct entry, without further training, into specific occupation</i>)
(is-a) Technical school (<i>a tertiary school where students learn about technical skills required for a certain job</i>)
(is-a) Graduate school (<i>a tertiary school in a university or independent offering study leading to degrees beyond the bachelor's degree</i>)
(is-a) College (<i>an educational institution or a constituent part of a university or independent institution, providing higher education or specialized professional training</i>)
(is-a) University (<i>an educational institution of higher education and research which grants academic degrees in a variety of subjects and provides both undergraduate education and postgraduate education</i>)

Figure 6. The facet of entity class for the educational institution.

time. The word 'boarding' is used in the sense of "bed and board," i.e., lodging and meals.

modeOfTeaching

- value_of> correspondence (school) (44786) *synonyms* Distance (New) (New- Teaching through broadcasting mode)
- value_of> regular (New) (New-Class room teaching based on schedule)

runBy

- value_of>Governmental (New-run by government body such as education department of central or state)
- value_of>Religious (school) (New-run by religious body such as a church, Mosque or temple)
- -parochial
- -catholic (school)

4.0 Educational Institutional Ontology (EIO)

4.1 Core structure

In lieu of the above characteristics, we have divided educational institutions into four main sub-classes namely, preschool, school, college, and university. School is again divided into three subclasses based on three stages. For classification we considered the International Standard Classification of Education (ISCED 11) by UNESCO (2012) and we mapped it to our classification shown in Table 1.

4.2 Relationships

4.2.1 Hierarchical relation

Hierarchical relation is a subordinate/superordinate relationship between concepts. In the diagrams below (Figure 7 & 8) we show the hierarchical relations of the educational institution. It consists of *IS_A* relation.

4.2.2 Material relation

Material relation is a relation that we find in our real world. It connects two concepts with an explicit relation. In the diagram below (Figure 9) *educational institution* (subkind) and *student* (role) are connected with *studiedIn* relation that is derived from *enrolment* (relator). *Educational institution* (subkind) and *alma mater* (role) connected by *graduated* relation which is derived from *graduation* (relator). Here student is the role of a person and alma mater is the role of an educational institution.

Other relations are like one to many relations between college and university. In Figure 3, both *college* and *university* are the subkind of *education institutions*. But some colleges are independent and some colleges are affiliated under one university. With ontological language we can easily handle this kind of situation (Figures 10 & 11), unlike the classification system.

Term and Description by UNESCO	ISCED 2011 Classification Level code	EIO Label
Pre-primary education	ISCED 0	Preschool
Primary education	ISCED 1	Primary school
Lower secondary education	ISCED 2	Secondary school
Upper secondary education	ISCED 3	Secondary school
Post-secondary non-tertiary education	ISCED 4	Tertiary, Post-secondary school
Short-cycle tertiary education, vocationally oriented; typically prepares students to enter the workforce	ISCED 5	Vocational school
Bachelor's or equivalent level	ISCED 6	Training school, Technical school, college
Master's or equivalent level	ISCED 7	Training school, Technical school, Graduate school, college
Advanced research programmes, Doctoral or equivalent level	ISCED 8	University

Table 1. Mapping between UNESCO terminology and EIO.

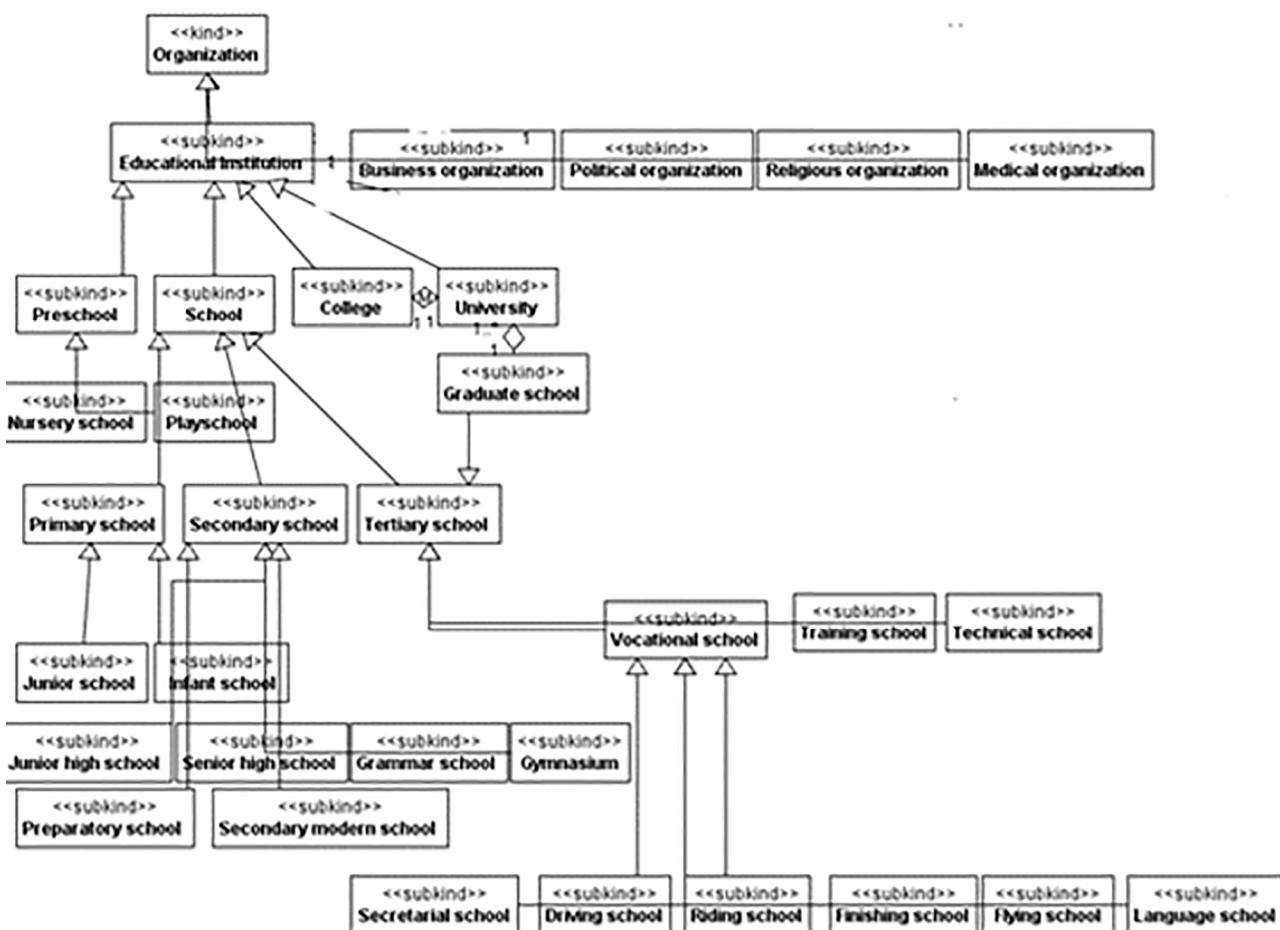


Figure 7. Hierarchy relation of the educational institution using OntoUML software.

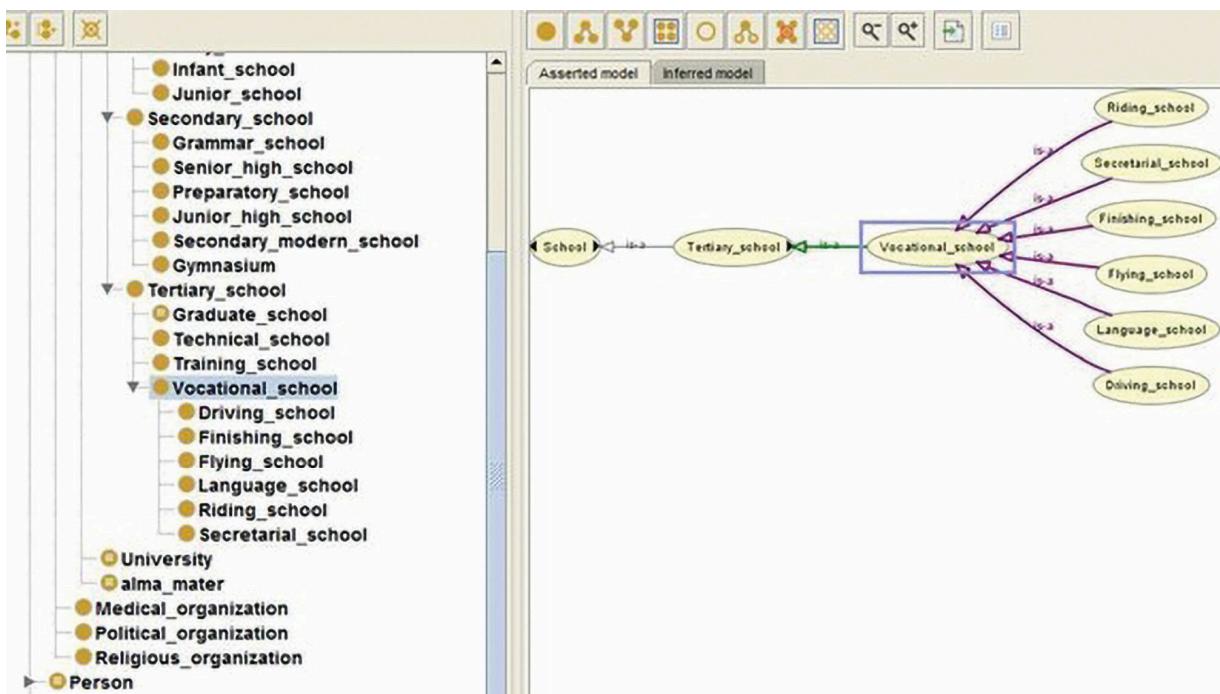


Figure 8. Hierarchy relation of the educational institution using Protégé software

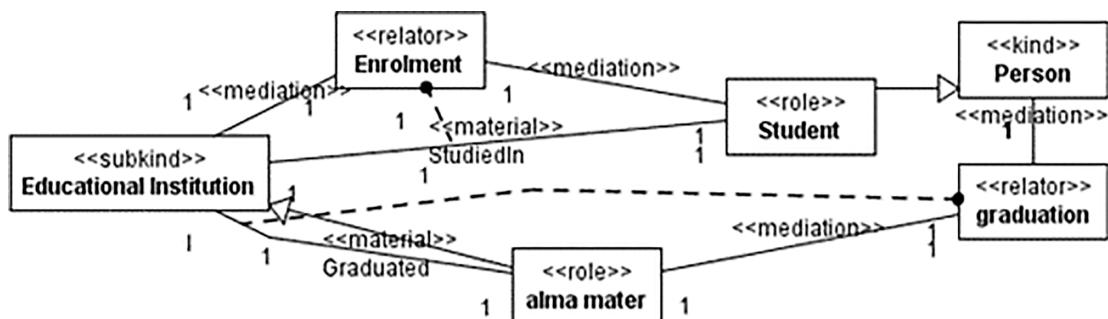


Figure 9. Material relation of enrolment in OntoUML software.

4.3 Process of the work

To curate and refine our work we followed a semantic approach for discerning the concept of meaning. We merged two or more concepts which have the same semantic meaning, and deleted from our final model those concepts which are examples of individuals and not general. More examples are provided below.

4.3.1 Merged concepts

1. “School : an educational institution faculty and student” merged with “School : an educational institution designed for the teaching of students (or pupils) under the direction of teachers”.

2. Our decision was to merge “Dance school (where students are taught to dance)” with “Dancing school (a school in which students learn to dance)” as these two are synonymous words. i.e. only vary the word form.

3. “Crammer: institution that prepares pupils for an examination intensively over a short period of time” merged with “Preparatory school (a school generally aimed to prepare students for entry into higher educational institution)” as these two are synonymous words.
4. “Kindergarten : preschool for children age 4 to 6 to prepare them for primary school” merged with “Nursery school”.

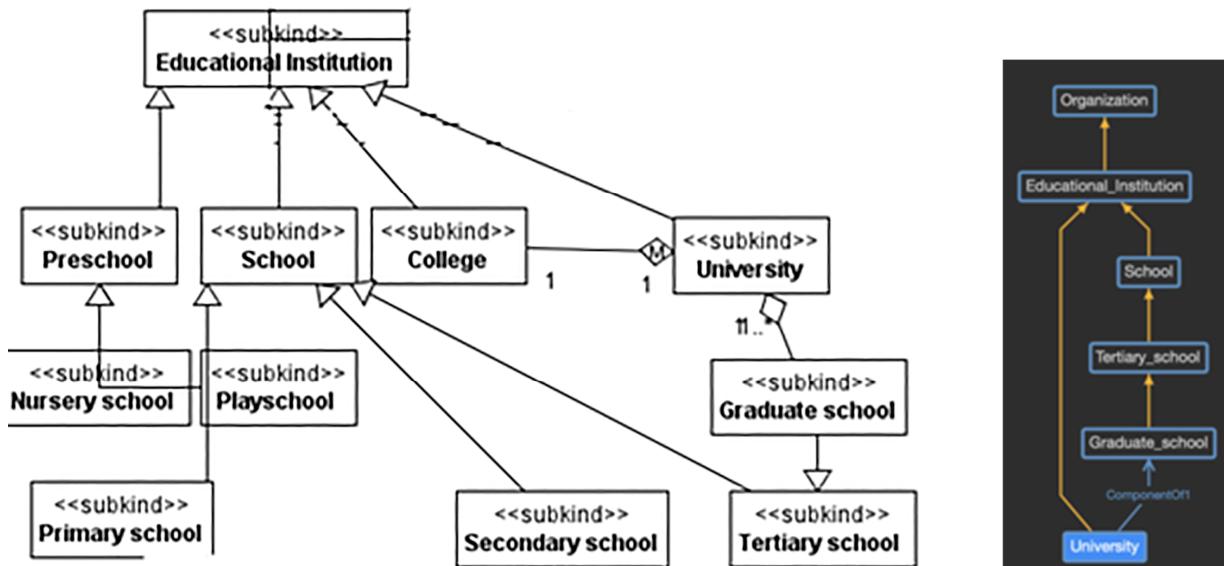


Figure 10. (Left) Class relationship of University in OntoUML software and (Right) same relationship depicted in WebProtégé user interface.

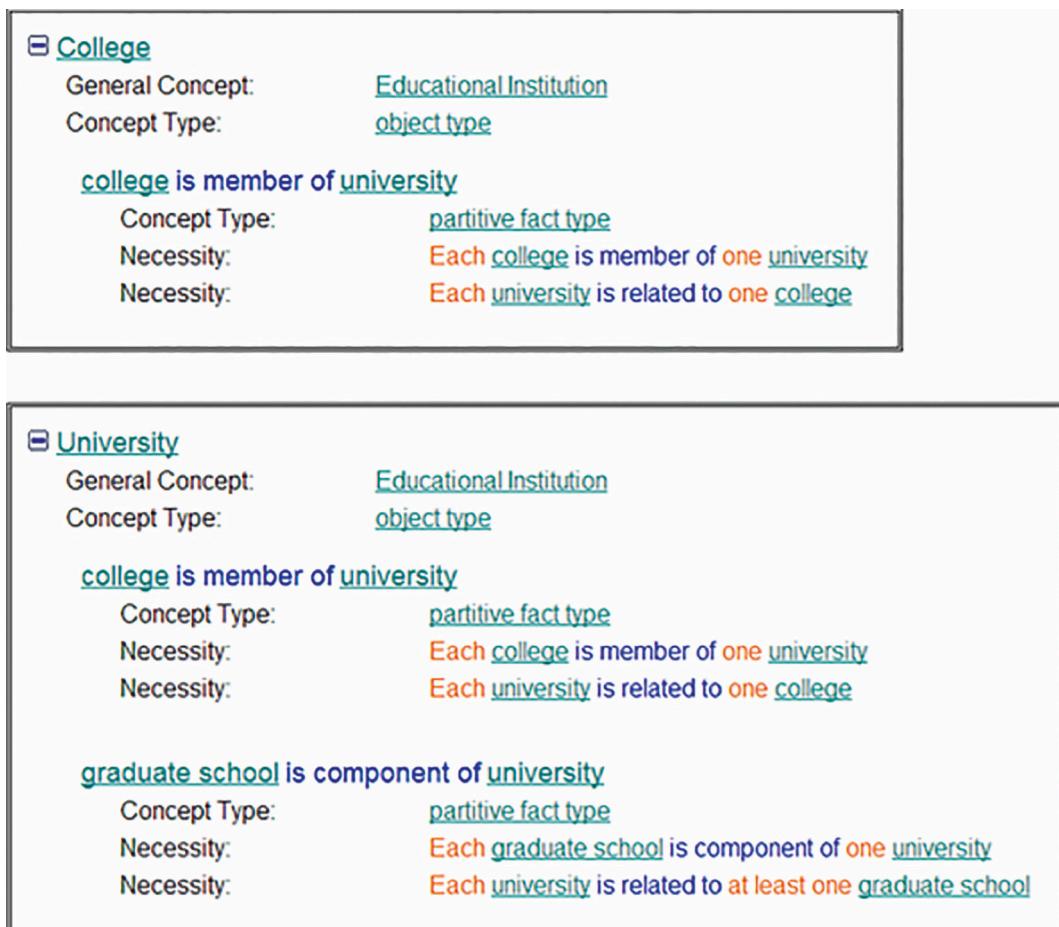


Figure 11. Details association of college and university in Protégé OWL Doc.

4.3.2 Deleted concepts

1. “Public school (45442)” and “Public school (45444)” we deleted these two concepts from EIO as they are attribute values. We use “Public (adjective)”.
2. “Private (school) (45447).” We used “Private (adjective)” as it is an attribute value.
3. “Madrasah (44814)” as it refers to a Higher educational institution (Arabic Nation or Islamic nation); we will incorporate it in an Arabic translation.
4. “United States Military Academy” deleted as Individual.
5. “United States Naval Academy” as above.
6. “United States Air Force Academy” as above.
7. “Plato’s Academy” deleted as Individual.
8. “Eton College”, often informally referred to as Eton, is a British independent boarding school located in Eton, deleted as above.
9. “Winchester College” an independent school for boys in the British public school tradition, situated in Winchester, Hampshire, England, deleted as above.
10. “Boarding school”: we used adjective “Boarding” with new gloss “the arrangement according to which pupils or students live in school during term time. The word “boarding” is used in the sense of “bed and board”, i.e., lodging and meals.
11. “Religious (school)": we used “Religious” i.e. attribute value.
12. “Religious school": as above.
13. “Catholic school": as above.
14. “Church school”, “Parochial school": as above.
15. “Day school": as above.
16. “Day (school)": as above.
17. “Night (school)": as above.
18. “Charter (school)": as above.
19. “Pesantran” is a Boarding school in Indonesia (space facet).
20. “Sabbath school": a religious school providing religious education. They used to give religious education or instruction on Sunday.

5.0 Implementation of the EIO model

To verify our proposed model, we tested it based on data sets collected from a UK open data website. The reasons behind choosing the UK open data website are that datasets are available in English and which meet our purpose. For the data integration task, the data is taken from the open data website data.glasgow.gov.uk:

- <https://data.glasgow.gov.uk/dataset/nursery-primary-secondary-and-asl-schools/resource/61370a0f-bf93-4145-8886-a7a6805b9770>

- <https://data.glasgow.gov.uk/dataset/colleges-and-universities-funded-by-scottish-funding-council/resource/b0d235cb-9f98-4d57-9d4b-8e896cf7e481>

The actual datasets are CSV files. The first link shows the list of Nursery, Primary, Secondary, Additional Services and Additional Support for Learning Establishments in Glasgow run by Glasgow City Council. The second CSV file shows the list of colleges and universities in Glasgow funded by Scottish Funding Council, and some attributes like websites, email, city, post code and address. The data was integrated via conversion to Excel files and the use of Protégé’s cellfie plugin. An opportunity for future work on the project would be to generalize our knowledge base further in order to integrate data from other countries into the ontology, including for example the ‘istituzioni scolastiche’15 dataset from open data Trentino, the portal harvesting the metadata of public sector information available on public data portals in Trentino. Working with this dataset as a basis was the initial objective of the project but has been put on hold for the time being as there was not enough data to model the entire field of our ontology, which is why the better documented dataset of Glasgow was chosen.

6.0 Evaluation of the EIO model

For evaluation of the EIO model, we followed the guidelines as proposed by Gómez-Pérez (1995) and Banerjee et al. (2020). According to Gómez-Pérez (1995), the goal of the evaluation process is to check what the developed ontology defines correctly, does not define, or even defines incorrectly. Two steps need to be followed namely verification and validation. The purpose of verification is to check syntactic correctness. The purpose of validation is to check its consistency, completeness, and conciseness. Ontology editors, such as Protégé, typically provide facilities to check syntactic correctness, and consistency can be checked by reasoners, such as HermiT, which are available as a Protégé plugins. The model is complete if it fully captures what it is purported to represent of the real world. The model is concise if it does not accommodate redundancies. We ensured that the developed model was complete and concise by inducing the necessary classes and properties from the competency questions. We also used an ontology Pitfall Scanner! to check structural errors such as missing annotation and domain-range conflict as developed by Villalón et al. (2014).

One of the main advantages of ontology is to answer complex queries. In this section, we have elaborated how the EIO Ontology can be used as a knowledge-base to answer queries. Let us consider one simple query (Figure 12):

Who is the president of the European University Association (EUA)?

Figure 12. SPARQL query.

```

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#>PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>PREFIX EI: <http://www.semanticweb.org/
ontologies/2013/12/ontology.owl#> SELECT ?Person ?Or-
ganization
WHERE { ?Person EI:PresidentOf ?Organization }
```

EIO has been aligned with the top-level ontology DOLCE. It is anticipated that this will help in increasing reusability and interoperability with other ontologies. The ontology is available at the web Protégé library: <https://webprotege.stanford.edu/#projects/3249bf90-bb06-4e3e-b9b7-ecf6b7bed0ab/edit/Classes>

7.0 Conclusion and future work

In this work we have analyzed various classification systems and lexico-semantic resources focussing on the education domain. Our future plan is to collect more datasets from different countries and integrate those using an open-source data integration tool. This ontology will help to guide all researchers as well as library scientists who seek information and want to explore a new way of representing library classification. We argue that our ontology-based system will provide the best results with high precision.

Acknowledgements

The authors would like to thank KnowDive group, University of Trento, Italy for providing guidance and idea of this article and to the two anonymous referees, for providing their valuable feedback. This research has received funding from the European Union's Horizon 2020 research and innovation programme under the ELITE-S Marie Skłodowska-Curie grant agreement No. 801522, by Science Foundation Ireland and co-funded by the European Regional Development Fund through the ADAPT Centre for Digital Content Technology grant number 13/RC/2106 and DAVRA Networks.

Notes

1. In madrasah education, one can learn Islamic religious education along with the general education as complementary to each other in the system of education.

References

Aljenaa, E., F. S. Al-Anzi and M. Alshayeqi, M. 2011. "Towards an Efficient e-Learning System Based on Cloud Computing." In *Proceedings of the 2nd Kuwait Conference on E-Services and e-Systems, KCESS'11*. New York: ACM. <https://doi.org/10.1145/2107556.2107569>

Alsultanny, Y. 2006. "E-Learning System Overview Based on Semantic Web." *Electronic Journal of E-Learning* 4: 111–18.

Al-Yahya, M., A. Al-Faries and R. George. 2013. "CURONTO: An Ontological Model for Curriculum Representation." In *Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education*. New York: ACM, 358.

Ameen, A., K. U. R. Khan and B. P. Rani. 2012. "Creation of Ontology in Education Domain." In *Proceedings - 2012 IEEE 4th International Conference on Technology for Education*, T4E. Washington, DC: IEEE, 237–8. <https://doi.org/10.1109/T4E.2012.50>

Banerjee, D., S. S. Ghosh and T. K. Mondal. 2020. "OnE: An Ontology Evaluation Framework." *Knowledge Organization* 47: 283-99.

Bentivogli, Luisa, Pamela Forner, Bernardo Magnini, and Emanuele Pianta. 2004. "Revising the Wordnet Domains Hierarchy: Semantics, Coverage and Balancing." In *Proceedings of the Workshop on Multilingual Linguistic Resources*, edited by Gilles Serasset, Susan Armstrong, Christian Boitet, Andrei Popescu-Belis and Dan Tufis. Stroudsberg, PA: Association for Computational Linguistics, 101-8.

Biagetti, Maria Teresa. 2020. "Ontologies (as Knowledge Organization Systems)." In *ISKO Encyclopedia of Knowledge Organization*, edited by Birger Hjorland and Claudio Gnoli. <https://www.isko.org/cyclo/ontologies>

Britannica Online Encyclopedia. <http://www.britannica.com/EBchecked/topic/557313/space>

Burkhardt, H., and B. Smith (Eds.). 1991. *Handbook of metaphysics and ontology*. Vol. 2. Munich: Philosophia. 550-2.

Castellanos-Nieves, D., J. T. Fernández-Breis, R. Valencia-García, R. Martínez-Béjar and M. Iniesta-Moreno. 2011. "Semantic Web Technologies for Supporting Learning Assessment." *Information Sciences* 181: 1517-37. <https://doi.org/10.1016/j.ins.2011.01.010>

Chung, H. and J. Kim. 2016. "An Ontological Approach for Semantic Modeling of Curriculum and Syllabus in Higher Education." *International Journal of Information and Education Technology* 6: 365-9. <https://doi.org/10.7763/ijiet.2016.v6.715>

Cronk, George. 2004. "Definitions and Systems of General Education: A Sampling from Various Sources." http://www.bergen.edu/gened/df_gened.pdf

Doria, O. D. 2012. "The Role of Activities Awareness in Faceted Classification Development." *Knowledge Organization* 39: 283-91.

Fellbaum, Christiane (Ed.) with a preface by George Miller. 1998. *Wordnet: An Electronic Lexical Database*. Harvard: MIT Press.

Fernández-Breis, J. T., D. Castellanos-Nieves, J. Hernández-Franco, C. Soler-Segovia, M. D. C. Robles-Redondo, R. González-Martínez and M. P. Prendes-Espinosa. 2012. "A Semantic Platform for the Management of the Educati ve Curriculum." *Expert Systems with Applications* 39: 6011-19. <https://doi.org/10.1016/j.eswa.2011.11.123>

Freihat, Abed Alhakim, Fausto Giunchiglia and Biswanath Dutta. 2013. "Approaching Regular Polysemy in Wordnet." In *Proceedings of 5th International Conference on Information, Process, and Knowledge Management* (eKNOW), Nice, France, edited by Dirk Malzahn. Red Hook, NY: IARIA XPS, 63-9.

Ghosh, S. S., S. Das and S. K. Chatterjee. 2020. "Human-centric Faceted Approach to Ontology Construction." *Knowledge Organization* 47: 31-44.

Giunchiglia, F., B. Dutta and V. Maltese. 2014. "From Knowledge Organization to Knowledge Representation." *Knowledge Organization* 41: 44-56.

Giunchiglia, F., B. Dutta, V. Maltese and F. Farazi. 2012. "A Facet-Based Methodology for the Construction of a Large-Scale Geospatial Ontology." *Journal on Data Semantics* 1: 57-73.

Giunchiglia, F., B. Dutta and V. Maltese. 2009. "Faceted Lightweight Ontologies." In *Conceptual Modeling: Foundations and Applications* edited by A. Borgida, V. Chaudhri, P. Giorgini and Eric Yu. Lecture Notes in Computer Science Vol. 5600. Berlin; Heidelberg: Springer-Verlag, 36-51.

Gómez-Pérez, A., N. Juristo and J. Pazos. 1995. "Evaluation and Assessment of Knowledge Sharing Technology." In *Towards Very Large Knowledge Bases*, edited by N. J. Mars. Washington, DC: IOS Press, 289-96.

Guangzuo C., C. Fei, and L. S. Chenhu. 2004. "OntoEdu: Ontology-based Education Grid System for e-Learning". In *Global Chinese Conference on Computers in Education GCCCE2004 International Conference, Hong Kong*, 240-7

Guarino, N. And C. Welty. 2002. "Evaluating Ontological Decisions with OntoClean." *Communications of the ACM* 45: 61-5.

Hudon, M. 1995. "NISO: Guidelines for the Construction, Format, and Management of Monolingual Thesauri: ANSI/NISO Z39.19-1993." *Knowledge Organization* 22: 180-1

ISO 25964-1:2011. 2011. *Information and Documentation – Thesauri and Interoperability with Other Vocabularies – PART 1: Thesauri for information retrieval*. <https://www.iso.org/standard/53657.html>

Katis, Evangelos, Haridimos Kondylakis, Giannis Agathangelos, and Kostas Vassilakis. 2018. "Developing an Ontology for Curriculum and Syllabus." In *The Semantic Web: ESWC 2018 Satellite Events. ESWC 2018*. Lecture Notes in Computer Science. Vol. 11155, Cham: Springer, 55-9. https://doi.org/10.1007/978-3-319-98192-5_11

Kaur, Pankajdeep, Pallavi Sharma and Nikhil Vohra. 2015. "An Ontology Based E-Learning System." *International Journal of Grid and Distributed Computing* 8: 273-8. <https://doi.org/10.14257/ijgdc.2015.8.5.27>

Kumaran, V. S. and A. Sankar. 2013. "An Automated Assessment of Students' Learning in e-Learning Using Concept Map and Ontology Mapping." In *Advances in Web-Based Learning – ICWL 2013*, edited by J.-F. Wang and R. Lau. Berlin; Heidelberg: Springer, 274-83.

Litherland, K., P. Carmichael, P. and A. Martínez-García. 2013. "Ontology-Based e-Assessment for Accounting: Outcomes Of A Pilot Study And Future Prospects." *Journal of Accounting Education* 31: 162-76. <https://doi.org/10.1016/j.jaccedu.2013.03.003>

Lo, Wei-shuo. 2011. "A Value-Adding Process Using the Ontological Engineering Approach for an e-Learning System Design". In *Proceedings of the 3rd International Conference on Information and Financial Engineering (ICIFE 2011), Shanghai, China*, 412-6.

McGuinness, Deborah L. 2002. "Ontologies Come of Age." *Spinning the Semantic Web: Bringing The World Wide Web To Its Full Potential*, edited by Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster. Harvard, MA: MIT Press, 171-94.

Miles, Alistair and Sean Bechhofer. 2009. "SKOS Simple Knowledge Organization System Reference." *W3C recommendation*, World Wide Web Consortium. <http://www.w3.org/TR/skos-reference/>

OECD. 2012. *Education at a Glance 2012, OECD Indicators*. Paris: OECD. <https://doi.org/10.1787/eag-2012-en>

Oxford English Dictionary. <http://www.oed.com>

Poveda-Villalón, M., A. Gómez-Pérez and M. C. Suárez-Figueroa. 2014. "Oops!(Ontology Pitfall Scanner!): An On-Line Tool for Ontology Evaluation." *International Journal on Semantic Web and Information Systems* 10, no. 2: 7-34.

Prieto-Díaz, R. 2003. "A Faceted Approach To Building Ontologies." In *Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications, 27-29 October 2003*. New York: IEEE Press, 458-65.

Prodhan, M. 2016. "The Educational System In Bangladesh and Scope for Improvement." *Journal of International Social Issues* 4: 11-23.

Qin J., and N. Hernández. 2004. "Ontological Representation of Learning Objects: Building Interoperable Vocabulary and Structures." In *Proceedings of the 13th International Conference on the World Wide Web. Alternative Track Papers and Posters New York, NY, USA, May 17-20, 2004*. New York: ACM, 348-9.

Ranganathan, Shiyali Ramamrita. 1937. *Prolegomena to Library Classification*. Madras: Madras Library Association.

Rani, M., K. V. Srivastava and O. P. Vyas. 2016. "An Ontological Learning Management System." *Computer Applications in Engineering Education* 24: 706-22. <https://doi.org/10.1002/cae.21742>

Rani, M., R. Nayak and O. P. Vyas. 2015. "An Ontology-Based Adaptive Personalized e-Learning System, Assisted by Software Agents on Cloud Storage." *Knowledge-Based Systems* 90: 33-48. <https://doi.org/10.1016/j.knosys.2015.10.002>

Rashid, S. M. and D. L. McGuinness, D. L. 2018. "Creating and Using an Education Standards Ontology to Improve Education." *Proceedings of the Workshop on Semantic Web for Social Good co-located with 17th International Semantic Web Conference (ISWC 2018) Monterey, California, USA, October 9, 2018*, edited by K. Krasnow Wartnerman, Deborah McGuiness and James A. Hendler. [Published by the Editors.]

Suteja, B. And P. Jt. 2009. "Implementing Ontology for E-learning System Development in Indonesia Based on Web 2.0." *International Journal of Web Applications* 1: 29-46.

UNESCO. Institute for Statistics. 2012. "International Standard Classification of Education: ISCED 2011." Montreal: UNESCO Institute for Statistics.

Vught, Frans (Ed.). 2009. *Mapping the Higher Education Landscape: Towards a European Classification of Higher Education*. Vol. 28. Springer Science & Business Media. Dordrecht: Springer.

WordNet 3.1 <http://wordnetweb.princeton.edu>

Woukeu, A., G. Wills, G. Conole, L. Carr, S. Kampa and W. Hall. 2003. "Ontological Hypermedia in Education: A framework for Building Web-Based Educational Portals." In *Proceedings of EDMEDIA: World Conference on Educational Multimedia, Hypermedia & Telecommunication* June 23-28, 2003, Honolulu, Hawaii, edited by David Lassner and Carmel McNaught. Norfolk, VA: Association for the Advancement of Computing in Education, 357-9.

Zeng, Marcia Lei. 2008. "Knowledge Organization Systems (KOS)." *Knowledge Organization* 35: 160-82.

Zeng, M., M. Hlava, J. Qin, G. Hodge and D. Bedford. 2007. "Knowledge Organization Systems (KOS) Standards." In *ASIST 2007 Proceedings of the 70th ASIS and T Annual Meeting - Joining Research and Practice: Social Computing and Information Science*. Vol. 44. <https://experts.syr.edu/en/publications/knowledge-organization-systems-kos-standards>