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VIII

Notation

The notation and operators that are used throughout this thesis are defined here. Note the
definitions are based on the Cartesian coordinate system with base vectors �ei, i = 1, 2, 3. All the
operators and variables will be defined when they appear for the first time.

Tensors

A, a Scalar value
�a = ai �ei First order tensor (vector)

∼S = Sij �ei ⊗ �ej Second order tensor

∼C = Cijkl �ei ⊗ �ej ⊗ �ek ⊗ �el Fourth order tensors

Matrices

a Local element single column matrix
a Global single column matrix
A Local element matrix
A Global matrix

Mathematical tensor operations

�u ⊗ �v = ui vj �ei ⊗ �ej Dyadic product

∼S · ∼F = Sij Fij Inner, scalar or dot product

∼S ∼F = Sij Fjk �ei ⊗ �ek Tensor product

∼S
T = Sij �ej ⊗ �ei Transposed tensor

∼S
−1 Inverse of a tensor

det ∼S Determinant of a tensor
div Divergence operator
grad Gradient operator
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Abstract

The finite cell method (FCM) is a combination of the fictitious domain approach and high-order
finite elements. Thanks to the fictitious domain approach, the task of the mesh generation in
the FCM is drastically simplified as compared to the standard finite element method, where
boundary-fitted meshes have to be employed. Moreover, due to applying high-order approaches,
with the FCM it is possible to obtain high convergence rates similar to those of high-order finite
element methods. These two main characteristics make the FCM a viable tool for the numerical
analysis of problems in solid mechanics where the mesh generation is the main bottleneck of
the simulation – for instance regarding structures consisting of highly heterogeneous materials,
foam-like materials, sandwich plates, or composites which may exhibit debonding, delamination
or fiber breakage due to a loading. The FCM’s interesting properties do however come with
some numerical challenges. This thesis is concerned with the study of some of these challenges,
and it investigates possible approaches to overcome them.

The first challenge that is addressed in this thesis is the task of performing numerical integra-
tion. In the scope of the FCM, we commonly have to compute integrals with discontinuous

integrands. Such integrals, unfortunately, cannot be accurately computed with standard quadra-
ture rules. To overcome this issue, we will introduce and study different numerical integration
schemes, particularly the adaptive integration method and the moment fitting approach. We will
discuss the algorithms and characteristics of each of these approaches and show that the proposed
methods enable us to efficiently and reliably compute the corresponding integrals for 1D, 2D and
3D problems. The second concern of this thesis is the local enrichment in the context of the

FCM. The local enrichment is required for problems including discontinuities or singularities,
for which a degradation of the convergence rate of the FCM is to be expected. An example for
such a situation is the case of a problem that involves material interfaces, which is one of our
focal points in this thesis. To avoid such drawbacks, we will propose two high-order enrichment
strategies based on the hp-d approach and the partition of unity method. Based on several nu-
merical examples, the proposed local enrichment strategies will be examined in 1D, 2D, and 3D
in order to point out the advantages and disadvantages of each method. We will show that if the
local enrichment is performed properly in the FCM, it is possible to obtain an accurate represen-
tation of the displacements and stresses and to retain the high convergence rate of the method.
Finally, the application of the finite cell method will be extended to the simulation of wave prop-

agation problems. To this end, we will propose a novel approach based on the combination of
the FCM and spectral elements. Here, the main focus will be on the issue of the mass lumping
when the fictitious domain method is applied as well as on the aspect of efficiently employing an
explicit time-integration algorithm such as, for instance, the central difference method. We will
show that the proposed approach, which is referred to as the spectral cell method, offers a very
fast and novel technique with a high convergence rate for the simulation of wave propagation
problems of structures obeying complicated geometries.
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Zusammentfassung

Die Finite-Cell-Methode (FCM) basiert auf einer Kombination der Fictitious-Domain-Methode
mit finiten Elementen hoher Ordnung. Im Vergleich zur Finite-Elemente-Methode, welche
oberflächen-angepasste Netze erfordert, wird die Netzgenerierung durch die Verwendung eines
fiktiven Gebiets erheblich vereinfacht. Des Weiteren ermöglicht die Verwendung von Ansätzen
hoher Ordnung hohe Konvergenzraten, ähnlich denen der Finite-Elemente-Methode hoher Ord-
nung. Aufgrund dieser beiden Hauptmerkmale ist die FCM als eine effiziente Methode für die
numerische Analyse von Problemen im Bereich der Festkörpermechanik anzusehen, bei denen
die Netzgenerierung die größte Herausforderung für die Simulation darstellt. Ein Beispiel hierfür
sind Probleme mit stark heterogenen Materialien, schaumartige Materialien sowie Sandwichplat-
ten oder Verbundwerkstoffe, bei denen Belastungen zu Delamination oder Faserbrüchen führen
können. Die vorteilhaften Eigenschaften der FCM bringen allerdings auch numerische Heraus-
forderungen mit sich. Im Rahmen dieser Arbeit werden einige dieser Herausforderungen näher
erläutert sowie verschiedene Lösungsansätze vorgestellt.

Zuerst wird dabei auf die numerische Integration eingegangen. Die wesentliche Herausforderung
ist hierbei die Berechnung von Integralen mit diskontinuierlichem Integrand. Solche In-
tegrale lassen sich üblicherweise nicht effizient mit herkömmlichen Quadratur-Regeln berech-
nen. Um dieses Problem zu lösen, werden in diesem Zusammenhang verschiedene numerische
Integrationsverfahren vorgestellt und untersucht, wobei vor allem auf die adaptive Gauß-
Quadratur und die Moment-Fitting-Methode eingegangen wird. Die Algorithmen und Eigen-
schaften der einzelnen Ansätze werden diskutiert, um zu zeigen, dass die vorgestellten Meth-
oden es ermöglichen, die entsprechenden Integrale für 1D-, 2D- und 3D-Probleme effizient
und zuverlässig zu berechnen. Der zweite Schwerpunkt dieser Arbeit liegt auf der lokalen

Anreicherung in der FCM. Die lokale Anreicherung ist in Problemstellungen erforderlich,
die Diskontinuitäten oder Singularitäten beinhalten, die in der FCM die Konvergenzrate re-
duzieren. Ein Beispiel hierfür sind Probleme, bei denen Materialgrenzflächen auftreten, was
gleichsam einer der Schwerpunkte dieser Arbeit ist. Um diese Herausforderung zu lösen, wer-
den zwei Anreicherungsstrategien höherer Ordnung vorgestellt, welche auf dem hp-d Ansatz
sowie der Partition-of-Unity-Methode basieren. Anhand verschiedener numerischer Beispiele
werden die vorgeschlagenen lokalen Anreicherungsstrategien in 1D, 2D und 3D untersucht, um
die Vor- und Nachteile der einzelnen Methoden aufzuzeigen. Es wird gezeigt, dass durch eine
geeignete lokale Anreicherung eine genaue Berechnung der Verschiebungen und Spannungen
ermöglicht wird, und somit die hohe Konvergenzrate erhalten bleibt. Abschließend wird die
Finite-Cell-Methode auf die Simulation von Wellenausbreitungsproblemen angewendet. Zu
diesem Zweck wird ein neuer Ansatz vorgestellt, der auf einer Kombination der FCM mit spek-
tralen Elementen basiert. Hierbei liegt der Schwerpunkt auf dem Mass-Lumping unter Verwen-
dung der Fictitious-Domain-Methode sowie auf dem effizienten Einsatz eines expliziten Zeit-
integrationsalgorithmus, wie z.B. des zentralen Differenzverfahrens. Es wird gezeigt, dass der
vorgestellte Ansatz, die Spectral-Cell-Methode, eine sehr schnelle und innovativ Methode ist,
die bei der Simulation von Wellenausbreitungsproblemen in geometrisch komplexen Strukturen
zu hohen Konvergenzraten führt.
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