Chapter 2: Eigenface

Background: Eigenface in the Development
of AFR Technology

«

Cultural historian Wolfgang Schivelbusch reminds us that, “as
technological methods recede in importance, they reappear as
an object of study.” It has been almost thirty years since the AFR
method known as eigenface was first developed. Since its intro-
duction, more sophisticated methods of AFR have been developed
and have become more widely used. Yet the eigenface method re-
mains important to consider when investigating the visuality of
AFR. The eigenface method served as a basis for the development
of other procedures that went on to expand the possibilities of AFR.
Its success validated the use of facial recognition algorithms and
spurred on the development of facial recognition technology. For
example, the development of the eigenface method made possible
the introduction of fisherfaces, a more refined method allowing
for a more precise recognition process. The methods of facial rec-
ognition more often used today rely on deep neural networks and
other feature-based methods. The Viola-Jones algorithm (2001), for
instance, uses a method of Haar Cascade to detect objects through
superimposition, training an algorithm to differentiate true pos-
itives from increasing variations of false negatives. The methods
that have since developed do not produce an image or deploy an ab-

1 Wolfgang Schivelbusch, The Railway Journey: The Industrialization of Time
and Space in the 19th Century (Berkeley, CA: The University of California
Press, 1986), xiii.
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stract notion of “seeing” through an algorithmic process. Program-
mers argue that today’s AFR algorithms do not remotely resemble
the human capacity of vision.

The eigenface method was introduced after what has been
termed the “AI Winter” of the 1980s, when pessimism surrounded
the technology development sector and funding for new technolo-
gy declined. Nevertheless, this decade also saw the first use of the
term “biometrics” in the media and in public forums to describe
automated recognition systems. This was the result of a growing
awareness in the field of automated recognition technologies? that
led to a “Coming of Age” of technological development in the 1970s.
In the 1990s, the decade in which eigenface was introduced, the first
“Biometric Consortium” was held, organized by the research divi-
sion of the US National Security Agency (NSA).?

The eigenface method was first developed as a fully automated
biometric facial recognition system by two MIT scientists, Matthew
Turk and Alex Pentland, who developed it in conjunction with Arbi-
tron,* a television ratings company, for the purpose of monitoring
ratings. Working within this consumer-marketing context, their
goal was, as they have stated, to “develop a computational model
of face recognition that is fast, reasonably simple, and accurate
in constrained environments such as an office or a household.” It
was designed to be used in TV sets to determine which individuals
within a household were watching TV at which times, feeding this
information into consumer ratings for specific television programs.
Essentially, eigenface was designed to be integrated into a kind of
TV that watches you as you watch it. Given this context, the ide-
al situation for the algorithm to operate in is a real-time situation
in which people are sedentary. Ideally, the faces to be recognized
would all be positioned conveniently, that is, squarely in front of the
TV screen, in a neutral, forward-facing pose. This pose is familiar
from identification photographs, so it was not a great leap to imag-

2 Wayman, “Scientific Development of Biometrics,” 266.
3 Ibid., 269.
4 Turk, “Over Twenty Years of Eigenface,” 2..

5 Turk and Pentland, “Eigenfaces for Recognition,” 71.
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ine that eigenface might potentially have uses outside of the context
of TV ratings, particularly in areas involving the use of identifica-
tion documents. The multi-faceted application of facial recognition
methods can be understood as a bleeding through from the sphere
of consumer interests to the socio-political arenas of risk and con-
trol.

At the time of its introduction in 1991, the eigenface method was
considered one of the first facial recognition methods successfully
to perform face detection and recognition in real time. Before ei-
genface, automated recognition methods had focused on “feature
extraction,” that is, the recognition of isolated features (also termed

“landmarks”) of the face, such as the eyes, nose and mouth, and the

measurement of the distances between these features. The eigen-
face method departs from this earlier approach by relying on a rep-
resentational mechanism that takes into account a holistic repre-
sentation of the face rather than its isolated features. In doing so,
the eigenface algorithm had a built-in capacity to detect faces, as
well as to locate, track and classify a subject’s face.

Bledsoe: “The Model Method in Facial Recognition”

The introduction of the eigenface method marked a shift in the de-
velopment of AFR technology not only because its seemingly sim-
ple technique was successful but also because it performed recog-
nition differently from the AFR systems that came before it (and
from those that would come after). The eigenface method shifted
the approach of AFR methods towards a holistic representation of
the human face. To understand why eigenface was considered suc-
cessful, it helps to understand the original problems and challeng-
es to which this technology was developed as a response. The first
attempts to codify and automate facial recognition in an operable
process were documented in reports authored by the computer sci-
entist Woodrow Wilson Bledsoe, considered one of the founders of
artificial intelligence. Two of these reports were only recently made
publicly available (in 2014). They had previously been classified,
while references to these reports described them as being commis-
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sioned by an “unnamed intelligence agency.” Alongside the recent
discovery and publication of these reports, it has also emerged that
they were funded by a CIA front organization, the King-Hurley Re-

search Group.”

Figure 1: “Examples of photograph pairs used in the study,”
Woodrow W. Bledsoe, 1964.

6

~N

Michael Ballantyne, Robert S. Boyer, and Larry Hines, “Woody Bledsoe:
His Life and Legacy,” AI Magazine 17, no. 1 (Spring 1996): 7—20, https://doi.
org/10.1609/aimag.v17i1.1207 and Wayman, “Scientific Development of Bio-
metrics,” 264.

The two Bledsoe reports were made publicly available thanks to the efforts
of researcher Justin Lange, who, in 2013, as a master’s student at the Inter-
active Telecommunications Program at New York University, was able to
successfully retrieve them from the Dolph Briscoe Center for American His-
tory at the University of Texas. On the basis of his research into Bledsoe’s re-
ports, Lange concludes that the King Hurley Research Group, whose name
is included in the title of one of these reports, was a front organization for
the CIA. Lange’s claim is corroborated by Christopher Robbins’s book The
Invisible Air Force: The Story of the CIA’s Secret Airline (London: Macmillan,
1981). Thank you to artist Kyle McDonald for information about this back-
story and for connecting me with Justin Lange.
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Thus, AFR technology seems to have originated as a mechanism for
surveillance and intelligence accumulation in the context of nation-
al security operations, specifically under auspices of the research
arm of the CIA.

Figure 2: “Double exposure shows that the two different subjects are
surprisingly similar on a point by point basis,” Woodrow W. Bledsoe,
1964.

Figure 3: “Double exposure shows that the two poses of the same subject
have very little in common when considered on a point by point basis,”
Woodrow W. Bledsoe, 1964.

There are many fascinating details in these original reports of the
pioneering and systematic attempt to automate the recognition
of the face, but the most relevant to this discussion is Bledsoe’s
account of the problems and challenges of the task and how he
chooses to visualize these. In Bledsoe’s report, “The Model Meth-
od in Facial Recognition,” Bledsoe notes that “one of the most chal-
lenging areas of pattern recognition is the identification of human
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photographs by machine.” He goes on to describe the difficulties of
recognition on the basis of facial photographs, given the variations
in age, expression, the angle and rotation of the face and in the di-
rection and intensity of light hitting the face. This original account
of the challenges faced by automated recognition is still mentioned
in scientific papers published on AFR technology today. As part of
this report, Bledsoe included a collection of training images, a data-
set that he drew upon (figure 1). It is still not known where these
original training images originated from, but they are all of white
males of various ages.’

Bledsoe uses the method of double exposure to visualize some
of these challenges confronting automated recognition. He pairs
two portraits together that differ in the direction of facial rotation
and superimposing one over the other to make clear the differenc-
es between a reference image and a capture image. Figure 2 is an
example of this. It presents the facial faces of two men of different
ages, yet these images exhibit the same direction of lighting and the
same head rotation. Once superimposed, the faces merge. Accord-
ing to Bledsoe’s caption, “two different subjects are surprisingly
similar on a point-by-point basis.” In a contrasting series of imag-
es, Bledsoe presents two images of the same man, now with differ-
entlighting direction and head rotation (figure 3). Here, he presents
a double-exposure image depicting a jumble of ears, eyes and hair.
Bledsoe describes how the two images of the same subject have very
little in common. Bledsoe’s exercise in superimposed photographic
depiction conveys the central problem of similarity and difference
in AFR technology, and thus the potential for false positives and
false negatives. Bledsoe’s early visual experiments with the over-
laying of facial images foreshadow the eventual solution found in
the eigenface method. The method of statistical pattern recognition

8 Woodrow Wilson Bledsoe, “The Model Method in Facial Recognition,”
Technical Report PRI 15 (Palo Alto, CA: Panoramic Research, Inc., 1964), 2.

9 Based on the demographics, Lange speculates that these portraits are from
a criminal database. Bledsoe himself cites the work of Alphonse Bertillon
and Cesare Lombroso on the “criminal man.”

10 Bledsoe “The Model Method,” 7.
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used in eigenface essentially utilizes these differences and similar-
ities and encodes them. This early production of a binary composite
reveals the kinds of challenges faced in the initial stages of the de-
velopment of AFR technology. Yet Bledsoe’s composites also antic-
ipate the eigenface approach, which utilizes the representation of
similarity and difference through superimposition and transforms
this into a mechanism of successful recognition.

Representational Mechanisms and the Machinic Observer

The inspiration for the eigenface algorithm was the thought that it
might be possible for algorithmic processes to mimic the processes
of human recognition. This was expressed through a shift in the al-
gorithmic modeling of the face from a concentration on its isolated
features to a holistic representation of the face. Turk and Pentland
were working at the intersection between physiology, information
theory and the psychology of face recognition. They argued that
human face recognition does not occur through the perception of
individual facial features and the relationships between them, as
previous algorithmic research had suggested. They stated: “individ-
ual features and their immediate relationships comprise an insuffi-
cient representation to account for the performance of adult human
face identification.™ Instead, Turk and Pentland set out to build an
algorithmic facial recognition technique that could produce a ho-
listic representation of the face. This shift is important to consider.
Algorithms depend on some form of representation and reproduc-
tion of the face. The form and design of this representation in the
algorithm provides a foundation that allows the AFR technology to
learn to recognize a human face. Marcin Mitkowski has defined the
representational mechanism in computational learning processes
as having three capacities: “it can refer to a target of representation,
it can identify information about the target that is relevant for its
own interests and goals, and it can evaluate the value of the infor-

11 Turk and Pentland, “Eigenfaces for Recognition,” 72.
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mation based on environmental feedback.”* Here I use the term
“representational mechanism” to refer to a part of the AFR process
thatis responsible for identifying information relating to a face that
is relevant to a process of recognition. Eigenface relies on the use
of a statistical method of pattern recognition as a representational
mechanism. It is this representational mechanism which is depict-
ed in the eigenface image.

Figure 4: “Sample face on top and its caricature below it.”
Sirovich, Kirby, 1987.

In order to produce the primary representational mechanism for
eigenface, Turk and Pentland drew on the work of two scholars of
applied mathematics at Brown University, Lawrence Sirovich and

12 Marcin Mitkowski, Explaining the Computational Mind (Cambridge, MA:
MIT Press, 2013), 156.
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Michael Kirby. In 1987, Sirovich and Kirby published a paper on the
use of a statistical method of pattern recognition called Principal
Component Analysis (PCA), which they applied to facial images in
order to produce what they called “eigenpictures.” In their paper,
Sirovich and Kirby speculate about how humans perform the func-
tion of recognizing faces and note how adept humans are at this
complex task: humans can recognize an almost infinite number of
different faces. They propose that humans are able to recognize so
many faces because we engage in a process of deduction in relation
to facial characteristics; that is, we recognize the characteristics of a
face that depart from a kind of characteristic mean. They addition-
ally propose a mathematical translation of this process, applied to
multiple facial images, as a possible model for how humans recog-
nize faces." For example, at one point they refer in the text to pho-
tographs of two faces (figure 4), with one photograph having had
this mathematical translation of the deduction process (referred to
as the Fourier method) applied to it, a photo they refer to as a “car-
icature,” and the other without having had this reduction applied
to it. The photographs, they say, appear “virtually the same to us.”®
The original (on top) is a still from a video, whereas the other, having
undergone a mathematical reduction of pattern recognition, is its
transformation into a computational image. When looking at these
two facial images, I see a significant difference between the “carica-
ture” and the original; the caricature looks as though it has under-
gone what is referred to in photography as a solarization process,
whereby a tonal inversion occurs through the developing process of
a photographic image. In the caricature, the mid-tones and shadow
areas become darker while any highlighted areas, in contrast, be-
come brighter. It is as if the tonal spectrum of the image has been
compressed and the differences between tones are made more ex-
treme. Sirovich and Kirby, however, conclude that, since the images

13 Sirovich and Kirby, “Low-dimensional Procedure,” 521. Although Sirovich
and Kirby were the first to apply PCA to facial images, Turk and Pentland
were the first to design an automated recognition system utilizing PCA.

14 1Ibid., 519.
15 Ibid., 523.
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appear the same to them, they provide evidence that “our own visu-
al apparatus does a similar subtraction.” In other words, our own
perceptual processes of recognition most likely involve a process of
some form of deduction.

In their recorded observations and conclusions it is possible
to detect an interesting and altogether separate confrontation
that occurs in these initial eigenpictures, and that is a confronta-
tion between human and machine perception. It is exemplified by
Sirovich and Kirby’s reference to “our own visual apparatus.” For
the mathematical caricature, the video still and our own process-
es of perception all represent intersections of perceptual relation-
ships between multiple apparatuses — photographic, video, com-
putational and bare human perception - that inform an exercise
in recognition. With their speculation about the human ability
to perceive faces and the possibility of expressing this capacity in
these abstract and mathematically based caricatures, Sirovich and
Kirby stray into the realm of what John Johnston has described as
“machinic vision,” that is, “not only an environment of interacting
machine and human-machine systems but a field of decoded per-
ceptions that, whether or not produced by or issuing from these
machines, assume their full intelligibility only in relation to them.””
Two key movements that Johnston outlines in relation to machinic
vision are a deterritorialization and a reterritorialization of vision.'
The former occurs when visual perception is freed from the person
that is doing the seeing, and the latter occurs when that seeing is
“recoded,” that is, recontextualized and expressed in a new form so
as to produce new meaning. Sirovich and Kirby’s speculation may
be understood along these lines: the caricature is an expression of
vision, in a process of recognition, freed from human cognition.

16 Ibid.

17 Johnston, “Machinic Vision,” 27.

18 1Ibid., 28. Here Johnston is drawing on Gilles Deleuze and Félix Guattari’s
use of the term “machinic.”
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Figure 5: AT&T Laboratories, Eigenfaces of faces from the ORL
face database.

Sirovich and Kirby pay close attention to their own visual perception
of these caricatures. They believe that the conditions of recognition
can be revealed through them. In this way, the caricatures also re-
veal the conditions of human recognition. What is also important
to consider is that, for Sirovich and Kirby, the caricature makes
visible the human recognition process; in other words, it makes it
possible to see how we see. In this way, it reveals an “observer,” in
the sense of the term Jonathan Crary explains in his study of the
historical construction of vision: “one who sees within a prescribed
set of possibilities, one who is embedded in a system of conventions
and limitations.” Crary argues that it is only through the observer
that vision, in history, is able to “materialise, to become itself visi-
ble.”?° These early experiments with eigenpictures express an early
assemblage between human cognitive processes of recognition and
a machinic translation of that recognition. In the caricature, a kind

19 Crary, Techniques of the Observer, 6.
20 Ibid.,,s.
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of “machinic observer” is revealed, and we can begin to see how vi-
sion can be codified within a specific operation and within the con-
ventions of an operation of recognition. In other words, Sirovich
and Kirby’s early eigenpictures and caricatures give a visual form to
the conditions of recognition.

Three Aspects of Eigenface

The German prefix eigen- means “inherent, own, individual, peculiar,
specific, and characteristic.” As this suggests, the facial recognition
method is supposed to be an algorithmic ability to distinguish what
is characteristic of an individual’s face in order for the algorithm
to determine the individual’s identity. The eigenface algorithm is
designed to do just this. Eigenface is based on the premise that the
most relevant information about an individual face has to do with
the ways it is different from another. Eigenface has been successful
in demonstrating an ability both to detect faces and to encode the
differences between multiple faces. As Turk and Pentland state, “A
simple approach to extracting the information [..] is to somehow
capture the variation in a collection of face images [...] and use this
information to encode and compare individual face images.”* In-
deed, the primary difficulty in developing a successful AFR system
is, as Bledsoe had earlier realized, that human faces vary endlessly
in appearance. The eigenface method takes this difficulty and trans-
forms it into a recognitive capacity through a tool of differentiation.
In this way, variation is utilized in encoding an individual face. Yet,
far from distinguishing particular characteristics, the eigenface
image depicts a very different process: an erasure of all individual
facial particularities (figure 5). All that is specific and particular to
a human face seems to dissolve in a blur. This paradox between the
method and the image harbors a contradiction in the modalities of
recognition between algorithm and human. To further elaborate on

21 “Eigen,” Wiktionary, last modified April 7, 2019, https://en.wiktionary.org/
wiki/eigen#German.

22 Turk and Pentland, “Eigenfaces for Recognition,” 73.
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the mode of recognition by eigenface, I will describe briefly here
three key technical aspects of the eigenface process that produce
this image and that constitute its representational mechanism and
operation of recognition. These three aspects are Principal Compo-
nent Analysis, the eigenvector and the face space.

Principal Component Analysis is a statistical procedure that has
primarily been used as a classification tool and as way of producing
predictive models based on a statistical method of mean centering.
In mathematical terms, PCA treats each facial image as a point or
a vector on a grid with a high-dimensional space allowing for high
degrees of variation. This high-dimensional coordinate space can
be understood as Cartesian space gone digital. Each collected fa-
cial image in the training set is translated into a unit of measure-
ment, or a weight, within this virtual space. Averages are calculated
from the different weights of facial images. Each average takes into
account all the possible variations of each weight. The averaged or
mean face is described as “the center of gravity for all the faces com-
bined.” This averaged face delimits the highest degrees of varia-
tion, that is, the farthest directions of deviation from the average
that exist between the collected facial images. Turk and Pentland
explain that “any collection of face images can be approximately re-
constructed by storing a small collection of weights for each face.”*
The PCA procedure calculates a mean by averaging the value of each
pixel across the face images. PCA is able to extract the principal
components, or the primary differences, between multiple faces
and encode this variation. Eigenface programmers describe this
as revealing the internal structure of the data. Sirovich and Kirby
state: “It seems reasonable to assume that an efficient procedure for
recognizing and storing pictures concentrates on departures from
the mean. With this in mind, the deviation or departure from the
mean is defined.”” What they describe is a way of defining the char-

23 Jeremy Kun, “Eigenfaces, for Facial Recognition,” Math Programming
(blog), July 27, 2011, https://jeremykun.com/2011/07/27/eigenfaces|/.
24 Turk and Pentland, “Eigenfaces for Recognition,” 73.

25 Sirovich and Kirby, “Low-dimensional Procedure,” 519.
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acteristics of faces through the differences between faces. The mean,
therefore, becomes a base from which to designate a difference.

As in many facial recognition algorithms, the application of PCA
begins with a training set produced from multiple facial images. In
1986, Sirovich and Kirby were the first to experiment with building
a training set of faces on which to apply the method of PCA. They
report taking still analogue shots of video recordings.? Their first
test group of faces came from their immediate environment, the
relatively homogenous population of “the undergraduate male pop-
ulation” that dominated the mathematics department at Brown
University, a group they describe as made up of “smooth-skinned
caucasian males.” They recorded the faces for the training set using
video, on top of which they overlaid a cross-hair aligned vertically
with the midline of the face and horizontally with the pupils. They
were able to adjust the depth of field of each video still so that the
width of each face could be equalized. These images were then dig-
itized and turned into gray-scale pictures through an image pro-
cessor. The result of PCA is a mean of all the faces of the training set
and is depicted in an image in Sirovich and Kirby’s paper (figure 6).

Figure 6: Sirovich, Kirby, “Average face based on an ensemble
of 115 faces.” 1987.

26 Ibid., 522.
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These initial experiments with training sets and the application
of PCA are interesting to examine because the average male face
was constructed from a training set collected from the exclusive-
ly white, male population of the applied mathematics department
at Brown University. In choosing faces whose characteristics were
closer in similarity, it raised the threshold of success for recogni-
tion. Sirovich and Kirby describe how they purposefully chose faces
that were similar to each other in order to produce the best out-
come.” Higher rates of positive recognition are thus dependent on
a smaller degree of difference between the faces included within
the modeling of the average face.?® Similarities between the phys-
ical characteristics of faces is part of the logic of recognition. Even
at this stage, the building a viable training set, there is already a
kind of reduction being applied, a normative categorization of faces
according to characteristics of gender and race.

There is another technical reduction process that occurs at this
initial stage. The facial images that make up the training sets are
converted to gray-scale (if originally in color) and to low pixel res-
olution. This reduction is indicative of perceptual conditions that
contrast with those of human processes of recognition. The conver-
sion to low resolution (usually at 200 x 180 pixels) and to gray-scale,
that is, to values of light and dark, reduces the amount of visual in-
formation available to the human eye. Yet, for the algorithm, this
reduction provides clarity by way of “simplifying” the images — to
use the vernacular of digital post-production terminology — mean-
ing that it leaves only the information necessary for the operation
and gets rid of the rest. Reduction by way of gray-scale and low res-
olution eliminates the obscurity or extra information that detracts
from the ingredients the algorithm deems important, that is, what
can be measured and calculated through pixel values.

The reduction of the information in the image provides a better

“palette” for pattern recognition to take place. These initial process-
es of reduction, both in the format of the images and in the choice

27 Ibid., 524.
28 This method made possible improvements to the eigenface algorithm and
the development of the method of “fisherfaces.”
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of demographic from which the faces are drawn, are part of con-
structing the representational mechanism of the algorithm; that is,
they help shape what is deemed salient and relevant to an opera-
tion of recognition. In applying statistical processes of reduction,
PCA performs a kind of transformation of facial variations into a
“working object.” As Lorraine Daston and Peter Galison explain, a
“working object” as, “any manageable, communal representative of
the sector of nature under investigation” such as atlas images and
type specimens, that at times replace the natural specimens they
represent.” Organic forms produce endless variation and are un-
able to “cooperate” in generalizations and comparisons. In contrast
a “working object” provides a common object inquiry. In describing
scientific atlases as a “working object,” Daston and Galison explain
how it served to “teach how to see the essential and overlook the in-
cidental, which objects are typical and which are anomalous, what
the range and limits of variability in nature are.”® The principle of
the “working object” was based on allowing for collective scientific
inquiry to occur through the standardization of natural forms. As
Daston and Galison show, the creation of working objects was cen-
tral to the work of scientific inquiry and the classification of natural
phenomena. PCA performs the task of transforming faces and fa-
cial variations into a manageable and workable object by defining
the range of facial variations in an operation of recognition. The
statistical method of PCA is able to merge multiple natural forms
of faces into a single conglomerate. As with the working object,
PCA is able to refine the facial variations and envelop them within a
readable (at least by a machine) working object of the averaged face,
transforming the variations into a manageable form. In this way,
the statistical process of PCA functions like a scientific atlas of the
algorithm to train it to see the essential aspects of the human face,
found in the average but also to see the “incidental” or rather the
deviations from the average as a method of recognition.

29 Lorraine Daston and Peter Galison, Objectivity (Cambridge: Zone Books,
2007), 19.
30 Ibid., 26.
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Training sets are the data banks and, as such, the source of
knowledge for an algorithm. They provide knowledge for the algo-
rithm on what it is allowed to see and recognize. In this way, for an
algorithm, the training set is the link between knowing and see-
ing. The training set is what enables the algorithm to know certain
faces and thus to recognize them. The early examples of images of
average faces produced by Sirovich and Kirby’s training sets reveal
a bias toward white men as a primary and normative category of
recognition. Although the training sets used in their research were
part of an experiment with eigenface and not examples of the ac-
tual application of AFR technology, the demographic of the people
in the images corresponds with that of the people in the training
sets in the initial experiments with AFR technology conducted by
Bledsoe. As such, there is a history of the training sets used in the
development of automated processes of recognition predominant-
ly involving the figure of the white male. In their analysis of facial
recognition systems, Lucas D. Introna and David Wood remark that
such reductions are where bias can be located in the algorithmic
process.” Although they do not scrutinize specific AFR methods in
great detail, based on their examination of training databases they
speculate that, through the reductive process of both image-based
and feature-based algorithms, minorities are most likely to deviate
from statistical averages that result from facial recognition systems.
In analyzing the problematics of reduction, they conclude that mi-
norities of Asian and African-American descent are the easiest to
recognize in virtue of this deviation from the mean.* This, they ar-
gue, contradicts the claims of suppliers and security analysts in the
biometric industry about the neutrality of AFR systems.* In light of
Introna and Wood’s findings and the “average faces” presented in
the papers on the development of eigenface, we may conclude that
representation in facial recognition systems has been dominated
by the white male, presenting all other demographics as deviations
from the norm.

31 Introna and Wood, “Picturing Algorithmic Surveillance,” 186.
32 Ibid., 190.
33 Ibid., 191.
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The application of PCA to training set images creates “eigenvec-
tors,” that is, mathematical objects that display the degree of vari-
ability or deviation between facial characteristics and an average.
Each eigenvector represents the greatest degree by which the facial
images may vary - i.e., the highest eigenvalues. Multiple eigenvec-
tors result from applying PCA to training sets, creating a mecha-
nism to classify unknown faces based on their deviation from these
eigenvectors. The eigenvector is a virtual model of “known” faces
and serves as a reference point for the classification of unknown
faces. Like a map, an eigenvector stands as a kind of idealized mod-
el; it acts as a primary referent on the basis of which the algorithm
is able to measure the distance or variation between it and an un-
known face. As a virtual model, the eigenvector is a form of repre-
sentation that transforms the pictorial, individual representations
of known faces into a geometrical space defined by facial measure-
ments. In this way the eigenvector comes to represent faces based
solely on their relationships to other faces. The eigenvector is a rep-
resentation of the differences and similarities between faces and in
this way functions as a unit of facial measurement.

It is only when an eigenvector is displayed to meat eyes, that is,
to human vision, that it is referred to as an eigenface. The greater
the variation of an eigenvector, the more blurred the eigenface ap-
pears. Programmers have referred to eigenvectors as “ghost faces™*
because of their phantom-like appearance. These programmers are
describing the form of these eigenvectors, which is characterized
by the multiplicity that is inherent in the statistical process. The
programmers’ reference to ghost faces evokes a notion of imagery
put forward by W. J. T. Mitchell, who describes a type of imagery
that is perceptual and occupying, “a kind of border region where
physiologists, neurologists, psychologists, art historians, and stu-
dents of optics find themselves collaborating with philosophers

34 Miige Garikgiand Figen Ozen, “A Face Recognition System Based on Eigen-
faces Method,” Procedia Technology 1 (2012): 122, https://doi.org/10.1016/j.
protcy.2012.02.023. [118-123]
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and literary critics.” He further describes this imagery as playing
the role of fantasmata and as existing as “revived versions of those
impressions called up by the imagination in the absence of the ob-
jects that originally stimulated them.” The eigenface image can be
understood as this type of fantasmatic image. Indeed, one of the
primary aesthetic features of the eigenface image is the absence of
the individual face, which disappears in the midst of its conglom-
erate form. Instead, the facial appearances in the eigenface image
function symbolically to construct the virtual facial model, which
acts as the central referent in the recognition process.

The collection of eigenvectors create a subspace referred to as
the “face space.” Eigenface developers have described the face space
as a virtual subspace that is defined and framed by the measured
distances between a collection of eigenvectors. The concept of a face
space derived from the field of psychology in interpreting how fac-
es are processed by human recognition. The face space is originally
defined as a, “multidimensional psychological space, in which fac-
es can be represented according to their perceived properties” and
with the, “assumption...that faces (or concepts) could be represent-
ed as a collection of interchangeable parts.” The face space in the
eigenface algorithm is defined by the range of variability of these
“interchangeable parts.” Conceptually, the face space spans all pos-
sible variations of faces. Turk explains that any kind of:

image deviations (whether due to image noise or other factors,
such as illumination, pose, expression, occlusions, etc.) push an
image away from the space, and the distance from face space can be
used to determine how likely an image is to be a face in the first
place, thus providing a built-in mechanism for face detection.”

35 W . T. Mitchell, Iconology: Image, Text, Ideology. Chicago: University of
Chicago Press, 1986, 10.

36 Tim Valentine, Michael B. Lewis, and Peter J. Hills, “Face-Space: A Uni-
fying Concept in Face Recognition Research,” Quarterly Journal of Experi-
mental Psychology 69, no. 10 (2016): 1996-2019, https://doi.org/10.1080/1747
0218.2014.990392.

37 Turk, “Over Twenty Years of Eigenface,” 2-3 (italics in original).
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Turk’s description thus identifies the face space as the source of
facial detection in the algorithm. The face space operates as a vir-
tual data bank, storing an algorithm’s knowledge, enveloping all
the variations of possible faces that the eigenface algorithm can
conceivably recognize. The collection of eigenvectors with highest
eigenvalues, that is, highest measured variations, is used as a refer-
ential source for algorithmic knowledge. In this way, the face space
is like a virtual filing cabinet — the primary bureaucratic mecha-
nism of identification in criminology. But instead of a filing cab-
inet storing individual records, the face space collects statistical
averages or eigenvectors to serve in the process of recognition and
verification.

The actual recognition process in eigenface involves projecting
the captured image of the individual who needs to be identified on
to the face space. The image is compared with the face space by cal-
culating the Euclidian distances between the eigenvectors and the
captured image. If there is a small distance between the capture
and the eigenface, there may be a match. The distances between
them are then expressed in numerical values and a data set is creat-
ed. This data set then represents a person’s identity and is entered
into a database. An individual is classified within a biometric data-
base not through their image but rather through numerical code. If
there are large distances between the capture and the eigenvectors
within the face space, then there is no match. If there is no match,
the captured face can be incorporated into the algorithm, adding a
new variation within the eigenvector. Turk and Pentland expand-
ed on Sirovich and Kirby’s use of the PCA method by incorporat-
ing this machine-learning technique within the eigenface method.
They state: “The concept of face space allows the ability to learn and
subsequently recognize new faces in an unsupervised manner.”®
Turk and Pentland describe the process by which the detection of
unrecognized faces builds new patterns in the algorithm:

When an image is insufficiently close to face space but is not classi-
fied as one of the familiar faces, it is initially labeled as “unknown.”

38 Turkand Pentland, “Eigenfaces for Recognition,” 79.
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The computer stores the pattern vector and the corresponding un-
known image. If a collection of “unknown” pattern vectors cluster
in the pattern spaces the presence of a new but unidentified face
is postulated.®

The statistical average or eigenvector defines the recognition proce-
dure and is the form of measurement in relation to which a face is or
is not recognized. In machine learning, the algorithm is designed
to continue developing over time as facial variations are continu-
ously added and learned.

Figure 7: Vincent Scheib, “Eigenfaces of UNC”.

Face spaces provide visual sources of information about the eigen-
face process. As collections of eigenvectors, face spaces depict a
wide spectrum of measured distances of similarity and difference. I
present three face spaces here in order to illustrate the kinds of vari-
ation they exhibit, as well as the issues and problems that arise in
the construction of these spaces. By presenting eigenvectors side by
side, face spaces can illustrate specific aspects of variation in these
eigenvectors. The face space in figure 7 is typical of the face spac-
es created by programmers working with eigenface. One thing that
we can see clearly in this face space is the variation between the dif-

39 Ibid.
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ferent eigenvectors.*® The eigenvector at the top left has the highest
eigenvalues, representing the average of all the 201 faces within the
training group. The eigenvector immediately to the right captures
the overall brightness of the face in the picture. The two following
eigenvectors to the right capture the direction from which the face is
illuminated. The eigenvectors on the bottom row capture variations
in face shape. As the programmer states, the rest of the eigenvectors,
of which there were 201, capture more subtle details.

Figure 8: Alexandra Feldman, “Face Recognition: Final Project CS 129,
Spring 2011,” Computer Science at Brown University

The greater the variation of an eigenvector, the more blurred it ap-
pears. For example, figure 8 is a face space created by a computer
science student at Brown University.” This face space stood out to

40 Vincent Scheib, “Eigenfaces of UNC,” accessed April 25, 2015, http://www.
scheib.net/school/uncfaces/index.html.

41 Alexandra Feldman, “Face Recognition: Final Project CS 129, Spring 2011,”
Computer Science at Brown University, accessed April 25, 2015, http://
cs.brown.edu/courses/csciiz90/2011/results/final/amfi/.
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me from other face spaces because each individual eigenvector is
constructed through extreme contrasts of light and shadow, cre-
ating a grouping that is aesthetically characterized by a painterly
effect, where each conglomerate facial feature resembles a brush
stroke. Rather than the usual blur, the facial features are defined
through blunt markings of light and shadow. The eyes of the figure
in the upper-middle eigenvector are blacked out, like two large ink
spots, while the eigenvector in the lower left sports a glowing beard.
From a programming perspective the student who constructed
this face space was considered to have made a gross error (and was
required to fix the contrast levels in her algorithm),* its tonal ex-
tremities reveal an aspect of the process by which face spaces are
built. Increasing the contrast levels so dramatically causes the fea-
ture similarities within each eigenvector to become more distinct
- so much so that these distinctions begin to merge into each other
and construct other (facial) forms out of the composited similar-
ities. The eigenvector in the upper-left corner is rendered almost
completely black. This eigenvector has the highest eigenvalues in
the face space. The higher value, which equates to a larger amount
of information for machine perception, amounts, paradoxically, to
the least visually coherent image for human vision.

Figure 9: Wonju Lee, Minkyu Cheon, Chang-ho Hyun, and Mignon Park,
“Best Basis Selection Method Using Learning Weights for Face
Recognition,” Sensors (Basel) 13, no. 10 (October 2013)

42 Ibid.
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Figure 9 is a face space included in an article written by four en-
gineers who were experimenting with an alternative method for

selecting eigenvectors for face spaces. In this method, the eigen-
vectors were selected not on the basis of their eigenvalues but rather

through groupings of similar, closely related faces.* The face space

thus created highlights the extreme differential values produced by
misaligned faces and is expressed through varying tones of illumi-
nation. The silhouette of differently positioned faces creates a halo

effect. These “halos” consist of light and shadow that correspond to

high eigenvalues. As in the previous face spaces, the eigenvalues

descend in order, starting in the top-left corner. The students who

created this face space argue that the eigenvectors in group (a), the

three images on the top row, are “unimportant eigenfaces” because

they do not “have discriminant information™* that would allow the

technology to perform an act of recognition. They argue that the

faces in the training set should be cropped even closer so as not to

include the illuminated edges within the eigenvalues of an eigen-
vector. Their rationale here is that the variation in illumination was

found to have weakened the overall recognition process, and their

aim was to find ways to more tightly define facial variation in order

to allow for more precise techniques of recognition.

The Eigenface Image

I have outlined these three technical aspects, the PCA, the eigenvec-
tor and the face space, because they structure the ways in which the
algorithm performs recognition. They also form the empirical ba-
sis for my own analysis of how the algorithm perceives. These three
aspects provide routes into an understanding of the conditions of
recognition in an AFR system. They explain how a face comes to be

43 Wonju Lee, Minkyu Cheon, Chang-ho Hyun, and Mignon Park, “Best
Basis Selection Method Using Learning Weights for Face Recognition,”
Sensors (Basel) 13, no. 10 (October 2013): 12830-51, https://doi.org/10.3390/
§131012830.

44 1bid., 12834.
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known and how information is produced and archived by the al-
gorithm through successful operations of recognition. In order to
understand these processes within the cultural and socio-politi-
cal contexts in which they take place, I plan not to examine their
more technical elements but instead to place them into a dialogue
with ideas from the field of visual culture theory and to recognize
them as enculturing an algorithmic way of seeing and medium of
thought. What I mean by “medium of thought” here is that eigen-
face is not a static technical process; it is rather designed to learn
new faces continuously and to incorporate them within its face
space. The representational mechanism of PCA and the production
of eigenvectors are the eigenface algorithm’s means of knowledge
accrual. The eventual operation of recognition produces knowl-
edge of an individual’s identity. In this way, the algorithmic way
of seeing is intertwined with modes of contemporary knowledge
production. These technical aspects thus reveal the ways in which
the algorithm sees and knows. John Berger opens his seminal book
Ways of Seeing by outlining the intimate relationship between seeing
and knowing: “Seeing comes before words [...] The relation between
what we see and what we know is never settled.™ Berger describes a
productive and “always-present gap” between knowing and seeing
that is fundamental to the experience of visual perception.*® In con-
trast, seeing by way of recognition through an automated algorith-
mic process reverses the order Berger describes. Knowledge comes
before seeing. In this section, I examine this reversal by asking how
it affects the subject being seen and by tracing the ways of seeing
present in the aspects of the eigenface algorithm discussed above.
The production of the eigenface image marks a kind of pictori-
al turn, albeit a brief one, in the development of automated facial
recognition technology. In this turn, images come to supplement
equations in the operations of the algorithmic process. The eigen-
face image is a visualization of a statistical process. It depicts a sta-
tistical way of seeing in which the eigenvector, or the aggregate face,
becomes the source of knowledge for the algorithm. Statistics, as a

45 Berger, Ways of Seeing, 7.
46 1Ibid.
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way of seeing, is not new. In fact, statistics has been described as a
tool of visualization, as a way of seeing on a scale beyond the capac-
ity of human senses. In his critical genealogy of the term “informa-
tion,” media theorist John Durham Peters describes how statistics
merged with an understanding of information in contemporary
society. Peters notes that the etymological origins of the word lie
in the German statistik, meaning the comparative (and competitive)
study of states. Statistics arose as a tool of politics and state gov-
ernance. Peters states, “The scale of the modern state presents its
managers and citizens with a problem: it is out of sight and out of
grasp. It must be made visible.” He goes on: “statistics arose as the
study of something too large to be perceptible - states and their cli-
mates, their rates of birth, marriage, death, crime [...] [Statistics is]
a set of techniques for making those processes visible and interpre-
table.™® As such, statistics is a visual tool that is inextricably bound
up with its original context of use: state governance and control.

Peters highlights an analogy between the acquisition of knowl-
edge and the body, describing statistics as the “empiricism of the
state,” whereby “the state becomes the knower, bureaucracy its
senses, and statistics its information.”™ When information comes
to be understood in the form of statistics, the process of knowledge
accumulation relocates from the site of the body to the site of the
governing institution. Peters characterizes information produced
through statistics simply as “knowledge with the human body tak-
en out of it.”*° Considering the use of the statistical method of PCA
as the representational mechanism of eigenface, this suggests an
ontological paradox. The eigenface method, and other AFR meth-
ods, are wholly reliant on statistical pattern recognition process-
es to produce information, but this information is constituted by
and issues from the body itself. This presents us with a situation in
which the physical phenomenon deemed invisible and ungraspable
is none other than the body itself.

47 DPeters, “Information,” 14.
48 Ibid.

49 Ibid.

5o Ibid., 15.
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The foregoing discussion about statistics as a tool of vision rais-
es the issue of the treatment of the body as information. Btihaj Aja-
na, a scholar working within the field of digital cultures, sets out an
important approach to the understanding of the body as informa-
tion with regard to biometric practices. Drawing on Eugene Thack-
er’s concept of “biomedia,” she argues for an understanding of the
use of biometrics as “less as a tool and more as a process, less as an
instrument and more as an act.”" Along these lines, Ajana argues
that the result of these biometric processes and acts is that the body is
rendered as “both the ‘medium’ (the means by which ‘measurement’
is performed) and the ‘mediated’ (the ‘object’ of measurement).”>
Through the differential calculations of the eigenvector, the recog-
nition process in the eigenface method realizes the convergence be-
tween these two roles that the body plays. Irma van der Ploeg claims
that the treatment of the body as information in biometric practic-
es introduces a new body ontology. She describes a process of the
“informatization of the body,” in which bodies are represented in
digital code, which “construe[s] the body in terms of flows of infor-
mation and communication patterns.” She describes the body as a
historical construction (much as Peters describes information) that
is “implicated in a process of co-evolution with technology - infor-
mation technologies, but also surgical, chemical and genetic and vi-
sualization techniques, and combinations of these.”* She describes
how biometrics produces new forms of knowledge that transform
our understanding not only of technology but of the body itself.

The eigenface image, as a visual artifact of the algorithmic
process, allows us to investigate the visuality of the informatized
body of AFR systems. The image presents us with the way faces are
depicted, read and treated as information. The visualization of its
patterns and form is a result of a statistical representational mech-
anism, PCA. Algorithms are often invisible, operating in a “black
box” and leaving no trace of their processes of computation behind.

51 Ajana, Governing through Biometrics, 23 (italics in original).
52 Ibid.

53 Van der Ploeg, “Biometrics and the Body,” 64.

54 Ibid.
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The algorithm does not need to produce pictures to understand its
own process of recognition. The picture is for human eyes. The ei-
genface image serves as a training image, not for the algorithm but
rather for us; it allows human eyes to see like algorithmic eyes. As a
window into this process, the image answers one of the sociological
criticisms of AFR systems, namely, that they lack reciprocity - its
systems identify people without identifying with people. The eigen-
face image provides a form of visual reciprocity, depicting what and
how the algorithm “sees.” But observation of the eigenface image
provides the very opposite of clarity concerning a person’s identity.
The eigenface image depicts a moment of stasis between the mul-
tiple inputs of data from the training set and the singular output
of recognition. The images compiled in the eigenface training sets
offer a multitude of possibilities and a wealth of variation, while the
operation of recognition reduces the output to one possible match.
Positioned at this in-between phase of the algorithm, the eigenface
image not only presents a statistical process but also preserves a
moment at which multiple possibilities remain open.

Turk has explained that he and Pentland designed the produc-
tion of the eigenface image as part of the algorithm because they
“wanted to keep clear of the ‘black box’ approach of [..] neural net-
works [...] in order to have a better ability to understand and debug
the method.” The eigenface image is part of the recognition oper-
ation; it is really information and not an image in the traditional
sense. It is an example of what the artist Harun Farocki has termed
the aesthetics of which were not intended

” «

an “operational image,
[..] instead of representing the objects in the world, these images
are doing things in the world, they are part of a process [..] they
are information and not really images.” Operational images are
produced by a machine and are self-reflexive in the sense that they
depict both the conditions of observation and what is observed by
the machine. In this way, the eigenface image is, in a sense, pure
information. Yet, for the human observer, it gives a sense of a mo-
dality of machinic recognition, complete with an inherent aesthetic,
asis suggested by its description as a “ghost face.” In developing the

55 Farocki, War at a Distance.
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concept of the operational image further, specifically with regard to
surgical imaging, Aud Sissel Hoel and Frank Lindseth say that they
are “generative,” that they “differentially intervene,” distilling char-
acteristic patterns that would not be seen in other ways.* The eigen-
face image can also be read in this way, as depicting a process of the
statistical pattern recognition of multiple faces through a process of
differentiation that results in an operation of recognition.

Sirovich and Kirby claim at one point in their paper that the
“eigenpicture” is a way of “making matters more concrete.” This
claim about the function of the eigenface image relates to its role
as a technical image, as Vilém Flusser terms images that structure
information in contemporary society and replace other forms of
communication. Flusser differentiates the technical image from
what he calls “traditional images.” Technical images, he says,
operate at the “intervals” of understanding. They “translate par-
ticles” and “bits of information” that could otherwise not be seen
into something that is “graspable, conceivable, tangible.”® Flusser
says that one of the functions of the technical image is specifically
to make graspable information that has become abstract through
processes of mathematical calculation. Importantly, Flusser de-
scribes the technical image as having an ability “to turn from
extreme abstraction back into the imaginable.”® The concepts of
the operational image and the technical image offer ways of un-
derstanding the role of the eigenface image within the context of
its production, as a part of the operation of recognition. But they
also offer a way out: that is, they draw our attention to how the ei-
genface functions outside of the programming context and within
a wider ecology of images that break from traditional notions of
representation. In particular, two features of images are useful in

56 Aud Sissel Hoel and Frank Lindseth, “Differential Interventions: Images
as Operative Tools,” Photomediations: A Reader, ed. Kamila Kuc and Joanna
Zylinska (London: Open Humanities Press, 2016), 181.

57 Vilem Flusser, Into the Universe of Technical Images, trans. Nancy Ann Roth
(Minneapolis, MN: University of Minnesota Press, 2011), 10.

58 Ibid., 16.

59 Ibid., 21.
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approaching the eigenface method within the context of notions
of recognition and identity: their “generative” character and their
ability to render things “imaginable.”
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