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Kurzfassung

Die heterodyne Interferometrie oder auch Laser-Doppler-Vibrometrie hat sich als kon-
taktlose, empfindliche und genaue Schwingungsmesstechnik fiir die Mikrosystemtechnik
in Industrie und Forschung etabliert. Aufgrund aktueller Entwicklungen insbesondere in
der Nachrichtentechnik besteht der Bedarf zur Messung mikroakustischer Schwingungen
bis zu 6 GHz bei Subnanometer-Amplituden. Dabei stofst die konventionelle Geréte-
technik der Interferometrie in Hinblick auf das vorteilhafte Trager- oder Heterodyn-
verfahren an ihre Grenzen. Fiir eine uneingeschriinkte Messfihigkeit bis 6 GHz ist eine
Geridtetechnik erforderlich, die Trigerfrequenzen von mindestens 6 GHz erzeugen kann.
Die konventionelle Technik zur Trigererzeugung limitiert die Interferometer des Stands
der Wissenschaft und eine Messfiahigkeit wird nur auf Kosten der Immunitét gegen
Nichtlinearitdten und der Eindeutigkeit erreicht. Die uneingeschrinkte Messfahigkeit
eines Interferometers erfordert zudem eine ausreichende Ortsauflosung der Schwingfor-
men auf dem Mikrosystem. Mit steigender Schwingungsfrequenz nimmt die akustische
Wellenlénge ab, sodass der Messlaserstrahl mit einer Mikroskop-Optik fokussiert werden
muss. Die Beugung limitiert dabei die minimale Grofe des Laserfokus und damit die
Ortsauflosung, was die Messfiahigkeit eines Interferometers fiir Schwingungsfrequenzen
im Gigahertz-Bereich ebenfalls einschrénkt.

In dieser Arbeit wurden die Trégererzeugung mittels phasengekoppelter Laser in
einer optoelektronischen Phasenregelschleife theoretisch und experimentell untersucht,
um eine Messfdhigkeit von heterodynen Interferometern bei mechanischen Schwing-
ungen bis zu 6 GHz zu erzielen. Zudem wurde die Steigerung der Ortsauflosung
jenseits der Beugungsgrenze durch Absorbanzmodulations-Nanoskopie in Reflexion
theoretisch analysiert. Anhand der systemtheoretischen Beschreibung der optoelek-
tronischen Phasenregelschleife wurden Anforderungen an die Eigenschaften geeigneter
Laser und der weiteren Komponenten formuliert. So muss die Regelbandbreite grofer als
die summierte Linienbreite der Laser sein. Als wichtige Eigenschaft des Interferometers
wurde die erreichbare Schwingungsamplitudenauflésung in Abhéngigkeit vom Interfe-
rometeraufbau, den phasengekoppelten Lasern und der Phasenregelschleife modelliert
und numerische Simulationen durchgefiihrt. Es wurde gezeigt, dass der Einfluss des
Phasenrauschens der phasengekoppelten Laser mit steigender Schwingungsfrequenz
schwindet und daher andere Rauschbeitrige, wie beispielsweise das Schrotrauschen, die
Schwingungsamplitudenauflésung limitieren kénnen. Des Weiteren wurde der Einbruch
des nutzbaren Trigers analytisch beschrieben, der durch den Verlust der gegenseitigen
Kohérenz bei grofsen Pfaddifferenzen im Interferometeraufbau entsteht. Die theoretische
Modellierung vereinfacht so eine zielgerichtete Auslegung der Tréagererzeugung mittels
phasengekoppelter Laser fiir die Interferometrie.
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Kurzfassung

Das theoretische, beugungsbegrenzte Ortsauflosungsvermogen eines Interferometers
wurde anhand einer akustischen Oberflichenwellen hergeleitet. Es wurde gezeigt, dass
die Grofe des Lasermessflecks um mindestens den Faktor 8 geringer sein muss als die
akustische Wellenlédnge, damit die systematischen Messabweichungen vernachléssigbar
bleiben. Fiir eine Ortsauflosung jenseits der Beugungsgrenze wurde die Absorbanz-
modulations-Nanoskopie modelliert, die eine reversible, dynamische Nahfeldblende in
einer Diinnschicht auf der Messoberfliche erzeugt. Das Simulationsmodell umfasst die
Photokinetik, die mikroskopische Bildgebung und die Beugung an der der dynamischen
Nahfeldblende. Aus dem Modell wurden analytische Ndherungen fiir eine einfache
Auslegung eines Absorbanzmodulations-Nanoskops abgeleitet. Insbesondere wird eine
Formel zur Steigerung der Ortsauflosung in Beziehung zu Systemparametern hergeleitet,
die eine interessante Analogie zu der bekannten Auflosungsformel der STED-Mikroskopie
aufweist. Eine Parameterstudie der numerischen Simulation zeigt das Potential einer
Auflgsungssteigerung auf 1/5 der Beugungsgrenze bei 100nm Schichtdicke, wenn eine
Konzentrationserhohung oder eine Verbesserung der photophysikalischen Eigenschaften
des Photochroms um einen Faktor 2 gegeniiber dem Stand der Technik erzielt werden
kann. Diese Studie bietet die Grundlage fiir die Dimensionierung und den experimen-
tellen Nachweis des Potentials der Absorbanzmodulations-Nanoskopie in Reflexion. Es
wurde der weitere Forschungsbedarf zur Anwendung in der Interferometrie diskutiert.

Auf Basis der Erkenntnisse wurde ein heterodynes Laser-Doppler-Vibrometer-Mikro-
skop mit phasengekoppelten, monolithischen Halbleiterlasern im sichtbaren Spektralbe-
reich ausgelegt und realisiert. Die Bandbreite der Datenerfassung limitiert die Messung
auf Schwingungsfrequenzen bis 3 GHz. Die Erzeugung einer Trigerfrequenz wird durch
den Photodetektor auf maximal 10 GHz begrenzt. Die Messfihigkeit des Experimental-
aufbaus fiir Hochfrequenz-Mikrosysteme wurde anhand einer Messungen auf einem
Oberflichenwellen-Filter bei 315 MHz demonstriert. Die erreichte Amplitudenauflosung
von < 100fm/+/Hz fiir Schwingungsfrequenzen > 1 GHz ist vom Intensitéitsrauschen
der Halbleiterlaser und vom thermischen Rauschen der Elektronik limitiert. Somit
kann die Trégererzeugung mittels phasengekoppelter Halbleiterlaser die heterodyne
Interferometrie zur Messung von Schwingung bis iiber 6 GHz beféhigen, wenn das
Potential der Absorbanzmodulation zur Steigerung der Ortsauflésung ausgeschopft wird.
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