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Symbolverzeichnis

AML Die Absorbanzmodulations-Schicht betreffend

B Den Zustand des Photochroms nach der Photoreaktion betreffend

bal Bei Verwendung abgeglichener Photodetektoren

BB Im Basisband (engl. ‚Base Band‘)

c Den Träger betreffend (engl. ‚Carrier‘)

D Am Ort des Photodetektors

det Die Detektionsvorgang betreffend

eff Effektiv

einzel Bei Verwendung eines Einzelphotodetektors

el Elektrisch

est Geschätzt (engl. ‚Estimated‘)

exc Angeregt (engl. ‚Excited‘)

fr Freilaufend (engl. ‚Free-running‘)

hold Im Haltebereich der Phasenregelschleife

I Erster Ordnung

in Eintreffend

kin (Photo-)kinetisch

L Die Regelschleife betreffend

LDV Das Laser-Doppler-Vibrometer betreffend

LO Den Lokaloszillator betreffend

lock Im geregelten/eingeschwungenen Zustand

m Den Messstrahl betreffend

M Den Master-Laser betreffend

max Maxmalwert

mes Den Messprozess betreffend

min Minimalwert

mix Den Mischprozess betreffend

mod Den Modulationseingang des Slave-Lasers betreffend

ne Rauschäquivalent (engl. ‚Noise Equivalent‘)

P Eine Polstelle der Übertragungsfunktion betreffend
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Symbolverzeichnis

Ph Bezogen auf Photonen

PhC Das Photochrom betreffend

PN Phasenrauschen (engl. ‚Phase Noise‘)

r Den Referenzstrahl betreffend

ref Referenz

relax Die Relaxationsoszillation betreffend

RINlim Intensitätsrausch-begrenzt (engl. ‚Intensity-Noise limited‘)

S Den Slave-Laser betreffend

sa Die Abtastung betreffend (engl. ‚Sampling‘)

sat Gesättigt

SN Schrotrauschen (engl. ‚Shot Noise‘)

SNlim Schrotrausch-begrenzt (engl. ‚Shot-Noise limited‘)

stat Im photostationären Gleichgewicht, statisch, stationär

str Störung oder parasitär

sub Das Substrat betreffend

T Transversal

th Thermisch

TIV Transimpedanz-Verstärker

tot Gesamt, total

tw Laufende akustische Welle (engl. ‚Travelling Wave‘)

vib Die Schwingung betreffend

Z Eine Nullstelle der Übertragungsfunktion betreffend (engl. ‚Zero‘)

Abkürzungen
A Stabiler Grundzustand des Photochroms (geöffnete Ringstruktur eines BTE)

B Zustand des Photochroms nach der Photoreaktion (geschlossene Ringstruktur
eines BTE)

S0 Grundzustand eines Fluorophors

S1 Angeregter Zustand eines Fluorophors

𝐿 Akustische Longitudinalmode

𝑆 Akustische Schermode

XV

https://doi.org/10.51202/9783186270085-I - Generiert durch IP 216.73.216.36, am 20.01.2026, 18:00:14. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186270085-I


Symbolverzeichnis

AB Aperturblende

AC Wechselanteil (engl. ‚Alternating Current‘)

ADU Analog-digital Umsetzer oder Wandler (engl. ‚Analog-to-Digital Converter‘)

AMI Absorbanzmodulations-Bildgebung (engl. ‚Absorbance-Modulation Imaging‘)

AML Absorbanzmodulations-Schicht (engl. ‚Absorbance-Modulation Layer‘)

AMOL Engl. ‚Absorbance-Modulation Optical Lithography‘

APP Anamorphes Prismenpaar

AU In Bezug zum Durchmesser des Airy-Scheibchens (‚Airy Unit‘)

BAW Volumenwelle (engl. ‚Bulk Acoustic Wave‘)

BPF Bandpassfilter

BTE 1,2-bis(thienyl)ethene

BTE-I 1,2-bis(5,5’-dimethyl-2,2’-bithiophen-yl) perfluorocyclopent-1-en

CCO Strom-gesteuerter Oszillator (engl. ‚Current-Controlled Oscillator‘)

DBR Engl. ‚Distributed Bragg Reflector‘

DC Gleichanteil (engl. ‚Direct Current‘)

DSO Digitales Speicheroszilloskop

EM Elektromagnetisch

FI Faraday-Isolator

FK Faser-Kollimator

HF Hochfrequenz

HWP Halbwellenplatte

I/Q In-Phase / Quadratur

IDT Interdigital-Transducer

Ir Iris

Kon Kondensor

L Linse

LB Lochblende

LD Laserdiode

LDV Laser-Doppler-Vibrometer

LED Leuchtdiode (engl. ‚Light-Emitting Diode‘)
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Symbolverzeichnis

LO Lokaloszillator

LP Langpass

MEMS Mikroelektromechanisches System, Mikrosystem
(engl. ‚Microelectromechanical System‘)

NCO Numerisch-gesteuerter Oszillator (engl. ‚Numerically-Controlled Oscillator‘)

NF Niederfrequenz

OPLL Optoelektronische Phasenregelschleife (engl. ‚Optical Phase-Lock Loop‘)

PD Photodetektor

PE Peltier-Element

PIN Engl. ‚Positive Intrinsic Negative‘

PM-SMF Polarisationserhaltende Singlemode-Faser

PMT Photomultiplier (engl. ‚Photomultiplier Tube‘)

PP Planparallele Platte

PSD Spektrale Leistungsdichte (engl. ‚Power Spectral Density‘)

PSF Punktbild, Punktverwaschungsfunktion (engl. ‚Point-Spread Function‘)

PST Polarisierender Strahlteiler

QCM Schwingquarz-Mikrowaage (engl. ‚Quartz-Crystal Micro-Balance‘)

RK Richtkoppler

SAW Oberflächenwelle (engl. ‚Surface Acoustic Wave‘)

SF Strahlfalle

Sp Spiegel

ST Nicht-polarisierender Strahlteiler

STED Engl. ‚Stimulated-Emission Depletion‘

TEM Transversal-elektromagnetische Mode

TIV Transimpedanz-Verstärker

TL Tubuslinse

TPF Tiefpassfilter

UV Spektralbereich der ultravioletten elektromagnetischen Strahlung

VNA Vektor-Netzwerkanalysator

VWP Viertelwellenplatte
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Symbolverzeichnis

Mathematische Operationen und Funktionen
Δ(·) Breite, Schwankung, Änderung, Diskretisierung

˙(·) Partielle Ableitung nach der Zeit d
d𝑡

d Differenzial

⟨(·)⟩𝑝 Scharmittelwert

⟨(·)⟩𝑡 Zeitmittelwert

(·) Mittelwert

(·)* komplex Konjugierte

(·)𝑇 Transposition des Vektors

(̂·) Amplitude

ℑ(·) Imaginärteil

ℜ(·) Realteil

x Vektor

H𝑚(·) Struve-Funktion der Ordnung 𝑚

J𝑚(·) Bessel-Funktion erster Gattung und Ordnung 𝑚

δ(·) Delta-Distribution

ℱ{·}(𝑥) Fourier-Transformation nach der Variablen 𝑥

(·)′ Spektrale Dichte der Größe bezogen auf 1 Hz Auflösungsbandbreite(︀
𝑛
𝑘

)︀
Binomialkoeffizient

max{·} Maximalwert der Größe
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Kurzfassung

Die heterodyne Interferometrie oder auch Laser-Doppler-Vibrometrie hat sich als kon-
taktlose, empfindliche und genaue Schwingungsmesstechnik für die Mikrosystemtechnik
in Industrie und Forschung etabliert. Aufgrund aktueller Entwicklungen insbesondere in
der Nachrichtentechnik besteht der Bedarf zur Messung mikroakustischer Schwingungen
bis zu 6 GHz bei Subnanometer-Amplituden. Dabei stößt die konventionelle Geräte-
technik der Interferometrie in Hinblick auf das vorteilhafte Träger- oder Heterodyn-
verfahren an ihre Grenzen. Für eine uneingeschränkte Messfähigkeit bis 6 GHz ist eine
Gerätetechnik erforderlich, die Trägerfrequenzen von mindestens 6 GHz erzeugen kann.
Die konventionelle Technik zur Trägererzeugung limitiert die Interferometer des Stands
der Wissenschaft und eine Messfähigkeit wird nur auf Kosten der Immunität gegen
Nichtlinearitäten und der Eindeutigkeit erreicht. Die uneingeschränkte Messfähigkeit
eines Interferometers erfordert zudem eine ausreichende Ortsauflösung der Schwingfor-
men auf dem Mikrosystem. Mit steigender Schwingungsfrequenz nimmt die akustische
Wellenlänge ab, sodass der Messlaserstrahl mit einer Mikroskop-Optik fokussiert werden
muss. Die Beugung limitiert dabei die minimale Größe des Laserfokus und damit die
Ortsauflösung, was die Messfähigkeit eines Interferometers für Schwingungsfrequenzen
im Gigahertz-Bereich ebenfalls einschränkt.

In dieser Arbeit wurden die Trägererzeugung mittels phasengekoppelter Laser in
einer optoelektronischen Phasenregelschleife theoretisch und experimentell untersucht,
um eine Messfähigkeit von heterodynen Interferometern bei mechanischen Schwing-
ungen bis zu 6 GHz zu erzielen. Zudem wurde die Steigerung der Ortsauflösung
jenseits der Beugungsgrenze durch Absorbanzmodulations-Nanoskopie in Reflexion
theoretisch analysiert. Anhand der systemtheoretischen Beschreibung der optoelek-
tronischen Phasenregelschleife wurden Anforderungen an die Eigenschaften geeigneter
Laser und der weiteren Komponenten formuliert. So muss die Regelbandbreite größer als
die summierte Linienbreite der Laser sein. Als wichtige Eigenschaft des Interferometers
wurde die erreichbare Schwingungsamplitudenauflösung in Abhängigkeit vom Interfe-
rometeraufbau, den phasengekoppelten Lasern und der Phasenregelschleife modelliert
und numerische Simulationen durchgeführt. Es wurde gezeigt, dass der Einfluss des
Phasenrauschens der phasengekoppelten Laser mit steigender Schwingungsfrequenz
schwindet und daher andere Rauschbeiträge, wie beispielsweise das Schrotrauschen, die
Schwingungsamplitudenauflösung limitieren können. Des Weiteren wurde der Einbruch
des nutzbaren Trägers analytisch beschrieben, der durch den Verlust der gegenseitigen
Kohärenz bei großen Pfaddifferenzen im Interferometeraufbau entsteht. Die theoretische
Modellierung vereinfacht so eine zielgerichtete Auslegung der Trägererzeugung mittels
phasengekoppelter Laser für die Interferometrie.
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Kurzfassung

Das theoretische, beugungsbegrenzte Ortsauflösungsvermögen eines Interferometers
wurde anhand einer akustischen Oberflächenwellen hergeleitet. Es wurde gezeigt, dass
die Größe des Lasermessflecks um mindestens den Faktor 8 geringer sein muss als die
akustische Wellenlänge, damit die systematischen Messabweichungen vernachlässigbar
bleiben. Für eine Ortsauflösung jenseits der Beugungsgrenze wurde die Absorbanz-
modulations-Nanoskopie modelliert, die eine reversible, dynamische Nahfeldblende in
einer Dünnschicht auf der Messoberfläche erzeugt. Das Simulationsmodell umfasst die
Photokinetik, die mikroskopische Bildgebung und die Beugung an der der dynamischen
Nahfeldblende. Aus dem Modell wurden analytische Näherungen für eine einfache
Auslegung eines Absorbanzmodulations-Nanoskops abgeleitet. Insbesondere wird eine
Formel zur Steigerung der Ortsauflösung in Beziehung zu Systemparametern hergeleitet,
die eine interessante Analogie zu der bekannten Auflösungsformel der STED-Mikroskopie
aufweist. Eine Parameterstudie der numerischen Simulation zeigt das Potential einer
Auflösungssteigerung auf 1/5 der Beugungsgrenze bei 100 nm Schichtdicke, wenn eine
Konzentrationserhöhung oder eine Verbesserung der photophysikalischen Eigenschaften
des Photochroms um einen Faktor 2 gegenüber dem Stand der Technik erzielt werden
kann. Diese Studie bietet die Grundlage für die Dimensionierung und den experimen-
tellen Nachweis des Potentials der Absorbanzmodulations-Nanoskopie in Reflexion. Es
wurde der weitere Forschungsbedarf zur Anwendung in der Interferometrie diskutiert.

Auf Basis der Erkenntnisse wurde ein heterodynes Laser-Doppler-Vibrometer-Mikro-
skop mit phasengekoppelten, monolithischen Halbleiterlasern im sichtbaren Spektralbe-
reich ausgelegt und realisiert. Die Bandbreite der Datenerfassung limitiert die Messung
auf Schwingungsfrequenzen bis 3 GHz. Die Erzeugung einer Trägerfrequenz wird durch
den Photodetektor auf maximal 10 GHz begrenzt. Die Messfähigkeit des Experimental-
aufbaus für Hochfrequenz-Mikrosysteme wurde anhand einer Messungen auf einem
Oberflächenwellen-Filter bei 315 MHz demonstriert. Die erreichte Amplitudenauflösung
von ≤ 100 fm/

√
Hz für Schwingungsfrequenzen > 1GHz ist vom Intensitätsrauschen

der Halbleiterlaser und vom thermischen Rauschen der Elektronik limitiert. Somit
kann die Trägererzeugung mittels phasengekoppelter Halbleiterlaser die heterodyne
Interferometrie zur Messung von Schwingung bis über 6 GHz befähigen, wenn das
Potential der Absorbanzmodulation zur Steigerung der Ortsauflösung ausgeschöpft wird.
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