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Abstract

The capability to recognize biological motion, i.e. gestures, human actions
or face movements is crucial for social interactions, for predators, prey
or artificial systems interacting in a dynamic environment. The famous
point-light-walker experiments [58] reveal that humans have a highly skilled
mechanism dedicated to the analysis of motion information, however the
exact details of this mechanism remain largely unclear. A popular theory is,
that visual recognition is performed in a hierarchical feed-forward process,
consisting of multiple learned simple cell/complex cell layers [53]. In the
case of biological motion recognition these layers are spread throughout
the ventral and dorsal stream of the visual cortex, the ventral stream being
dedicated to static visual information, such as spatial gradient structures
and the dorsal stream is related to dynamic visual information, such as the
motion for each pixel in the input, also known as the optical flow.

In this thesis an artificial feed-forward neural network for biological
motion recognition is proposed. Like its natural counterpart, it consists
of multiple layers organized in two streams, one for processing static and
one for processing dynamic form information. The key component of the
proposed system is a novel unsupervised learning algorithm, called VNMF,
that is based on sparsity, non-negativity, inhibition and direction selectivity.

In the first layer of the dorsal stream, the VNMF is modified to solve
the optical flow estimation problem. In the subsequent layer the VNMF
algorithm extracts prototypical patterns, such as optical flow patterns
shaped e.g. as moving heads or limb parts. For the ventral stream the
VNMF algorithm learns distinct gradient structures, resembling edges and
corners. All these patterns represent the simple cells of the feed-forward
hierarchy, while the complex cells are modeled by a non-linear maximum
pooling operation.

The classification performance of the feed forward neural network is
analyzed on three real world datasets for human action recognition and one
face expression recognition dataset, outperforming other biological inspired
models while being competitive with current computer vision approaches.
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XI

Kurzfassung

Gesten, Mimiken und andere natiirliche Bewegungen sind ein wesentlicher
Bestandteil zwischenmenschlicher Kommunikation. Dariiber hinaus ist die
visuelle Wahrnehmung von Bewegungen notwendig um sich in einer sich
stetig verdndernden Umgebung zurechtzufinden. Die berithmten Point-
Light- Walker Experimente von Johansson [58] zeigen, dass Menschen Bewe-
gungen auch ohne klar definierte Formen wahrnehmen kénnen. Allerdings
ist es nach wie vor unklar wie die Bewegungsinformationen im menschlichen
Gehirn verarbeitet werden. Eine populdre Theorie [53] besagt, dass visuelle
Informationen in aufeinander folgenden, gelernten Neuronen-schichten ver-
arbeitet werden. Im Fall der visuellen Bewegungsanalyse sind die Schichten
im ventralen und dorsalen Pfad des visuellen Kortex verteilt. Der ventrale
Pfad verarbeitet statische, z.B. Kanten, Informationen, wahrend der dor-
sale Pfad eher dynamische Informationen, z.B. Punktbewegungen, auch
optischer Fluss genannt, verarbeitet.

In der vorliegenden Dissertation wird ein kiinstliches neuronales Net-
zwerk zur Erkennung von natiirlichen Bewegungen vorgestellt, welches,
dem biologischen Vorbild gleich, aus zwei parallelen Pfaden besteht. Die
Schliisselkomponente des vorgestellten Systems ist ein neuer Lernalgorith-
mus, welcher die neuronalen Verbindungen der verschiedenen Schichten
ausschlieflich anhand von Beobachtungen lernt. Die Kodierung der Bewe-
gungsinformation erfolgt richtungsspezifisch anhand von spérlichen, nicht-
negativen Aktivitdten, welche mit anderen Aktivitdten in ihrer lokalen
Nachbarschaft konkurrieren. In der ersten Schicht des dorsalen Pfades wird
das optische Flussfeld mit Hilfe des neuen Lernalgorithmus geschétzt. In
der darauf folgenden Schicht werden prototypische Muster gelernt, deren
Formen bewegliche Korperteile beschreiben. Im ventralen Pfad wird der
VNMF Algorithmus verwendet um Kantenstrukturen zu lernen.

Die Klassifikationseigenschaften des neuronalen Netzes werden anhand
von drei Datensétzen fiir Kérper- und Gesichts-bewegungen evaluiert. Die
Klassifikationsergebnisse des vorgestellten Systems sind genauer als die
anderer biologisch inspirierter Modelle und vergleichbar mit aktuellen
Modellen der Bildverarbeitung.
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1 Introduction

The human visual cortex, i.e. the part of the human brain that processes
visual information, solves multiple tasks, such as transforming the incoming
light-waves to a set of spatio-temporally arranged objects, like trees, books,
clouds, as well as recognizing and understanding complex movements,
such as gestures or facial expressions, a task known as biological motion
recognition. The ability to see is mainly learned after birth, newborn
children have a very blurry vision without a clear focus. Thus, the neural
network of the visual cortex has to be adapted to its surroundings and stays
adaptable throughout our life. The core idea of this thesis is to analyse
the principles underlying the learning mechanisms in the visual cortex and
to apply them to an artificial counterpart: a feed-forward neural network
for biological motion recognition.

How does the visual cortex process the visual information and how is
learning performed in the brain? While the exact methods of the brain are
far from being understood, a common theory is that visual information
is processed throughout a hierarchy of multiple layers. For each layer the
input is decomposed into a set of patterns, just like a puzzle, where each
piece, i.e. pattern, represents a specific part of the input. Throughout the
hierarchy the patterns get larger in size and increasingly object specific.
The patterns in the first layer might represent small generic structures,
like corners or edges, the mid-level structures group these patterns and
thus represent increasingly complex structures, like object parts. In the
final layer, there are object specific patterns which are only activated if the
specific object is presented in the input.

How are these patterns learned? In principle there exist three types of
learning concepts, supervised learning, reinforcement learning and unsuper-
vised learning. For supervised learning a “teacher” is required, e.g. label
information that tells the algorithm which class an input belongs to. Rein-
forcement learning does not require such a label, but a penalty (negative
reinforcement) or a bonus (positive reinforcement) signal. This information
has to be provided from outside and that is why both supervised and
reinforcement learning are not fully self-reliant processes.
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2 1 Introduction
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Figure 1.1: Illustrative example of the pattern learning task. Upper row: input
images showing a tree, the sun and a stick figure person. The pixel values of an
input image can be stored in a single vector V,,. Multiple images are stored in the
input matrix V. The lower row shows a learned model R,,. The model is a linear
superposition of learned basis patterns Wi, Wa, ..., W, each with an activation
hjn. The example shows a desirable decomposition into prototypical parts which
can occur in different combinations to form the given input images. Each basis
pattern represents a specific input part, i.e. a tree, sun, person. This kind of
parts-based decomposition is desirable, because the corresponding activations
indicate whether the specific pattern is present in the input. For a parts-based
decomposition the activations give a meaningful, interpretable description of the
input.

Contrariwise unsupervised learning relies only on self-organization and
is often termed learning without a teacher. In this thesis, unsupervised
learning is modeled as a generative process. An arbitrary initialized model
creates a reconstruction that is compared to input data and the difference
between the generated reconstruction and the input is minimized by up-
dating, i.e. learning the model parameters. This concept is illustrated in
fig. 1.1 and discussed in the following.

The basic idea is that each of the inputs is reconstructed by a super-
position of basic patterns, where each basic pattern is weighted by a
corresponding activation. If the basic patterns represent prototypical in-
put parts they are able to reconstruct the input and the corresponding
activations indicate whether this specific part is active in the input. A
parts-based decomposition is thus on the one hand generic, ¢.e. the parts

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

can be used to reconstruct a large variety of input data. On the other
hand, the patterns are discriminative, because the corresponding activa-
tions indicate the presence of specific part in the input. They are therefore
useful features for a classification hierarchy.

In short, the goal for these learning algorithms in this thesis is to learn
prototypical, parts-based patterns in an unsupervised fashion. However,
there exist multiple solutions to this particular unsupervised learning
problem, most of which do not include prototypical parts, but focus on
the generic ability. It is thus important to find learning principles that
favor parts-based decompositions. Fig. 1.2 illustrates the principles for the
learning algorithms that are presented in this thesis:

e non-negativity,
e sparse activations,
e inhibition.

All three can be motivated by the properties of neural processing as
observed in the visual cortex and enforce a parts-based encoding of the
input. Neural activations are always strictly non-negative. A non-negative
encoding for unsupervised learning was first proposed as Positive Matriz
Factorization in 1994 by Paatero and Tapper [78] and became famous in
1999 when introduced as Non-negative Matriz Factorization (NMF) by
Lee and Seung [66]. In 1997 Olshausen and Fleet showed in [77] that
using a sparse decomposition on natural image patches results in patterns
similar to those found in the primary visual cortex (V1). While neural
activations cannot have negative values, they can inhibit other activations,
making inhibition and not subtraction a central property of neural processes.
Another neural coding principle exploited in this thesis is having

e direction selective

representations. In case of vectorial data, describing e.g. movement direc-
tions, a non-negative representation can be enforced by using a direction
selective encoding. I.e. each movement direction has its own non-negative
representation. Following this idea allows for a fully non-negative model
even when the input contains positive and negative values.

In this thesis novel unsupervised learning algorithms based on the idea of
having a generic and prototypical, parts-based decomposition are proposed.
It is shown that these algorithms, combined in a multi-layer classification
hierarchy, are well suited to solve visual biological motion recognition tasks.
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Figure 1.2: Visualization of the desired properties for the learning algorithm.
1.) Non-negativity: a model that allows subtractions (yellow box) can achieve
a reconstruction using combination of holistic patterns and will not result in
parts-based decomposition. 2.) Sparse activations: examples for a non-sparse
(yellow box) and a sparse (blue box) decomposition. Sparsity favors large patterns
that group input parts that occur together. 3.) Inhibition: the activation of
overlapping patterns (yellow box) is penalized, which results in prototypical
patterns (blue box).

1.1 Biological Motion Recognition

The capability to recognize complex motions, such as gestures, human
actions or face movements is crucial for social interactions, for predators,
prey or artificial systems interacting in a dynamic environment. The
famous point-light-walker experiments of Johansson in 1973 [58] revealed
that humans have a highly skilled mechanism dedicated to the analysis of
motion information. He introduced the term biological motion, because
the first test scenarios for the point-light-walkers included the distinction
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Figure 1.3: Example applications. Upper row, from left to right: Detection and
recognition of traffic participants, detection of fights in public places, touch-free
human-machine interactions in a sterile operation setup. Lower row, from left
to right: Gesture and action recognition for entertainment systems and two
examples for non-verbal communications, i.e. facial expressions and gestures.

between human, thus biological, and artificial movements. Motivated by a
recent discussion about the brain’s capability to recognize a large variety
of different articulated movements [18], in this thesis, the term biological
motion is used to refer to any form of articulated movement coming from
humans, animals or artificial systems, in contrast to ego-motion induced
global optical flow fields [79].

The recognition of biological motion is a critical task of the human visual
cortex, because it is very important in human-human interactions. This
makes motion recognition very interesting for artificial systems as well,
since it could improve human-machine interaction in several areas. The
applications of motion recognition can be roughly split into three categories:
First, communication, such as the recognition of gestures or facial expres-
sions. Second, detection, e.g. people or bicyclist detection, which both have
very specific movement patterns, like the opposite movement of the legs
during walking. The third category is scene understanding, for example
human action recognition. The idea of human action recognition is to not
only detect people or identify a specific person, but to get an understanding
of what the person is doing: Is he walking, running, fighting, etc. The
term actions corresponds to small, possibly repetitive movements, such as
running, walking, punching, kicking, jumping, a.s.o. More complex move-
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Figure 1.4: Examples for the nine action classes in the UCF Sports dataset [88].

ments, such as a combination of the simple actions, thus action sequences,
are not discussed in this thesis, but can be thought of as concatonations of
prototypical movement patterns. The recognition of motion is important
to get an understanding of what is happening in a scene. This is useful,
for example to detect a panic in a crowd, a fight in an elevator or at public
places, such as train stations. Some application examples are illustrated in
fig. 1.3.

Due to the temporal component, biological motion recognition encounters
a large set of variations that are now discussed for the challenging UCF
Sports human action recognition dataset [88]. Fig. 1.4 depicts examples of
the nine action classes represented in the dataset: diving, kicking, weight
lifting, horse riding, golfing, running, skateboarding, gymnastics and walking.

Figure 1.5: Two example sequences of the kicking action. The action consists
of a sequence of poses and can have strong variations in its execution.

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

1.1 Biological Motion Recognition 7

Tara

Figure 1.6: Upper row: multiple examples of the same pose of the golfing action.
Lower row: examples of the same pose of the running action. Each pose can
have strong view-point variations as well as strong variations in the appearance
of the person performing the action.

1.1.1 Temporal and View-Point Variations

Fig. 1.5 shows two example sequences of the kicking action. For the same
action the involved poses can be very different and the pose sequence can
vary as well. This makes the problem difficult, because videos with a very
low degree of similiarity have to be grouped together, while videos that
share e.g. identical poses or even identical sub-actions (see fig. 1.7) must
stay in different class categories.

Even for classes with very distinct poses, like golfing, there are view-
point variations as depicted in fig. 1.6. The classification has to cope
with variations in scale, the viewing angle, texture variations, varying
backgrounds and lighting conditions.

Figure 1.7: Left: nearly identical poses of different actions. Right: almost
identical pose sequence for two different actions.
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Figure 1.8: Left: class specific key poses. Right: class specific sequences.

1.1.2 Discriminative Features

A major difficulty lies in finding the discriminative features for the different
actions. While some actions are very easy to differentiate, because they
have almost nothing in common, like e.g. diving and weight lifting, other
actions are very hard to differentiate. They share common poses and in
some cases even common sub-actions, like e.g. running and kicking (see
fig. 1.7). However, the same actions can have specific key poses or very
class specific sub-actions at a differnt point in time (see fig. 1.8).

Since it is not possible to say whether a class is specific because of small
local features, or a full body pose or even a pose sequence it is best to use
unsupervised and not supervised learning for the feature extraction. The
supervised learning of the classification should be as late in the hierarchy
as possible as to maximize the systems level of self-organization.

1.2 Computational Models for Biological
Motion Recognition

Biological motion recognition includes multiple and diverse fields, such as
biologically inspired computational models and application driven computer
vision algorithms. In computer vision biological motion recognition is often
divided into human action, gesture and facial expression recognition. A
review of proposed approaches in computer vision can be found e.g. in [1].
One of the currently most successful approaches, the Bag of Words (BOW)
is discussed in appendix A.

Classification systems in computer vision typically consist of two steps:
First the feature extraction and second the classifier. The classifier is
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a supervised learning algorithm, while the feature extraction is mainly
done via hand-designed features like the SIFT [70] or HOG/HOF [21]
descriptors. One important contribution of this thesis is the comparison of
novel, learned, pattern-based descriptors to the HOG/HOF descriptors.

1.2.1 Computational Neuroscience

Biologically inspired models are motivated by the capability of the brain
to solve complex tasks like biological motion recognition. In addition
these models can help to understand how the brain actually solves specific
problems. In computational neuroscience the goal is to find computa-
tional models that can help explain the observations of neurophysiological
experiments. A popular example is the primary visual cortex (V1). Neuro-
physiological experiments show that V1 consists of multiple cell populations
which work similar to Gabor filters of varying size and orientation. Models
from computational neuroscience try to find learning algorithms that learn
similar filters when presented with natural images [51, 77].

The computational model presented in this thesis follows this idea and
applies it to the field of biological motion recognition. The point-light-
walker experiments!) show that humans can recognize biological motion
even without explicit form information. These observations started an
ongoing discussion on how form and motion contribute to the recognition
process. While neurophysiological experiments, e.g. discussed in [18, 37—
40, 100], indicate the importance of both, form and motion information,
there are several open questions, e.g. the role of explict low-level motion
information, such as optical flow [48, 98, 112, 114]. The optical flow
explicitly describes the movement of each pixel and is itself not selective
to form. However, by grouping parts with consistent movements, like an
upper-arm or a torso, the spatial configuration and the movement direction
of these parts can be used to identify characteristic motion patterns. Early
computational models propose the use of optical flow patterns, e.g. in
a hierarchical manner [38, 56]. To the contrary, motivated by lesion
experiments of a patient whose early motion processing areas are impaired
but who could nevertheless recognize biological motion, [62, 100] suggest
that low-level motion plays no major role in the recognition of biological
motion. In their related proposed model, motion is only incorporated on a
higher level, as the transition between full body poses. Their model is in
good accordance with neurophysiological experiments which indicate that

DDiscussed in more detail in section 2.1.
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early motion processing areas of the brain may not be involved in biological
motion perception [4, 93]. However, low-level motion information improves
the recognition in the presence of noise [4], which hints to an involvement
of low-level motion. As suggested in [62], optical flow could be used to
segment the moving person from the background or, as discussed in [37],
the spatial configuration of mid-scale optical flow patterns could be used
as a way to describe the human body form alongside with static shape or
gradient information. Thus, body postures can be defined by the spatial
configuration of two, possibly redundant, types of information: static and
dynamic, e.g. gradient and optical flow patterns.

Similar to [32, 38, 56, 62, 100], this thesis contributes to the ongoing
discussion on a functional level by presenting a computational model that
consists of two complementary streams for motion information processing,
one for dynamic and one for static form information. Except for the
final layer, all layers of the proposed model consist of features gained by
unsupervised learning algorithms, based on the idea of non-negativity,
sparsity, inhibition and direction selectivity. The classification performance
of the individual and combined streams is examined in complex real world
scenarios to analyze how low-level motion, i.e. optical flow fields, can
contribute to the recognition of human actions. The presented model is
further compared to related models based on computer vision algorithms.

1.3 Summary & Thesis Structure

The contributions in this thesis can be summarized as follows:

1. A novel feed forward hierarchical system for biological motion recog-
nition is proposed.

2. The central components of this system are novel unsupervised learning
algorithms for optical flow estimation (VNMF-OFE) and feature
extraction (VNMF), based on the idea of non-negativity, sparsity,
inhibition and a direction-selective encoding.

3. The contribution of static and dynamic form descriptors and thus
the influence of low-level motion descriptors for biological motion
recognition is analysed and discussed.

4. The analysis further includes an evaluation of the proposed system
on computer vision datasets, including a comparison of the proposed
learned feature descriptors to state-of-the-art HOG/HOF descriptors,
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other pattern learning methods and a comparison of the overall
system to related biologically inspired models and state-of-the-art
computer vision models.

The thesis is structured as follows: First, the proposed biological motion
recognition system is introduced along with its neural counterpart. Next,
the mathematical foundations of the related and novel unsupervised learning
algorithms are proposed. This includes the VNMF algorithm that plays
a central role for the feature extraction in the recognition system. In the
following chapter optical flow estimation is reviewed and a modified version
of the VNMF for optical flow estimation, the VNMF-OFE algorithm, is
introduced and analyzed. The analysis focuses on how robustly the novel
algorithm can preserve small but important moving structures. After that,
the VNMF is applied as a feature extraction method on the estimated
optical flow fields of human actions. In addition, the VNMF is applied
on gradient amplitudes of the same data and the learned descriptors are
compared to state-of-the-art HOG/HOF [21] descriptors. In the subsequent
chapter the classification performance of the learned optical flow and
gradient descriptors and their individual contribution is analyzed. The
descriptors are further compared to the HOG/HOF descriptors and related
work on the Weizmann human action [8], UCF-Sports [88] and a facial
expression recognition benchmark.
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2 Computational Model

The proposed biological motion recognition system is highly inspired by the
processing of biological motion in the human visual cortex. In this chapter
neurophysiological experiments along with a functional analysis of motion
recognition in general are discussed. The discussion includes questions like
how motion is represented in the brain, i.e. whether small movements are
explicitly represented or whether biological motion is only analyzed as a
sequence of distinct body poses. In addition, the contributions of static
and dynamic information for the recognition is analyzed.

Based on the review of biological motion recognition in the brain, the
proposed biological motion recognition system is introduced as a Feed
Forward Neural Network (FFNN) that consists of two processing streams,
one for static and one for dynamic, i.e. explicit motion information. The
networked architecture is inspired by the idea that the visual cortex con-
tains two streams a what and a where stream. The ventral stream that
processes static information is considered to awnser what is in the image
and the dorsal stream that processes motion information locates the object.
This thesis differs concerning this classical two stream, because motion
information is used in combination with static information to determine
what is in the image.

2.1 Biological Motion Recognition in the
Brain

It is without question that the human brain has developed a remarcable
capability of recognizing complex biological movements. However, the
underlying neural processes that guide visual motion recognition are far
from being understood. There are approximately 4-6 billion neurons in
the human visual cortex, which cover ~ 20% of the cortical surface [106].
This highly complex system solves multiple vision tasks that are far too
complex to be analyzed in one dissertation. To give an idea of the brain
functionality a very rough and simplified summary of different tasks in
visual recognition is given in the appendix B. The focus in this thesis is
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Figure 2.1: Point-light-walker experiments as introduced by Johansson in
1973 [58].

on gradient and motion information and the contribution of both channels
to biological motion recognition, including the subtasks of optical flow
estimation, feature extraction for optical flow and gradient information.
In the following a short review of neurobiological research on biological
motion recognition is given.

Research on motion processing in the brain dates back to experiments by
Exner in 1887 [30], who first described a motion specific perceptual effect.
In his experiments, two points are set so close to each other that their spatial
location cannot be distinguished. If they change their illumination over
time, human observers can recognize a movement. Because the movement
cannot be tracked back to the exact spatial dot location, the change over
time, i.e. motion, must be directly measured. A brief review over this
experiment and the history of motion recognition is given in [95].

The current development is highly influenced by the famous point-light-
walker experiments which were first introduced by Johansson [58] in 1973.
The experiments show that humans can extract various information about
a person, such as the gender, the physical fitness, and even emotional states,
all while whatching only lighted dots, without an explicitly represented
shape or texture, as depicted in fig. 2.1. The recognition fails if the points
are shown as a static image. Even though point-light stimuli are hardly
found in a natural environment, the observed recognition performance
highlights the importance of time-varying visual stimuli for the recognition
of biological motion.
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Figure 2.2: From left to right: First, an image of a moving arm for two
consecutive time steps. Second, the corresponding optical flow field of the
articulated arm movement. Third, two specific optical flow patterns, each for
an area with coherent motion. Last, the position where each pattern has to be
placed to reconstruct the incoming optical flow field. The forearm and the upper
arm each have a coherent, but different translational movement and can thus be
differentiated based on the related optical flow pattern.

2.1.1 Different Motion Representations

It is not clearly defined on which layer of abstraction motion should be
explicitly described. On a small scale every pixel has its own movement,
which is called the optical flow. On a large spatial scale there are pose
sequences, which itself are already abstract descriptions and not known
beforehand. Pose sequences are way more specific than pixel movements
and therefore should be handled in a different manner.

The two motion types are different on a functional level as well. On the
larger spatial scale, motion is defined by pose sequences. Poses consist
of body part configurations, that form groups, or again parts, whose
occurrence and relative spatial relation define the pose. Actions can be
defined by either the temporal sequence of the full body pose or by temporal
sequences of pose parts, i.e. body part configurations. The first approach
has the advantage that each pose sequence is explicitly represented, which
makes the sequences easy to classify. This approach is quite suited when the
number of distinct pose sequences is limited. For a more general machinery
that is designed to represent and recognize a large variety of human actions,
gestures or facial expressions, a parts-based approach is more feasible,
because the common parts can be used in different combinations to describe
complex motion. A model and a learning algorithm for a non-negative pose
sequence description are discussed in appendix D and [45]. The focus of
this thesis is on temporally short actions, thus the small scale motion in
form of optical flow fields is more important than a specific pose sequence
description.

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

2.1 Biological Motion Recognition in the Brain 15

The small scale optical flow is very useful in abstracting relations between
pixels and thus relate motion with forms. F.g. the movement of rigid
objects on a small spatial and time scale can be described by affine or, as
a simplification, translational motion. Fig. 2.2 shows an articulated arm
movement where the forearm has a different movement than the upper arm.
The related optical flow field can be used to differentiate between these two
forms, by grouping optical flow vectors which exhibit identical translational
motion. Thus, regions with coherent motions, or parts of the optical flow
field are related to moving rigid body parts, i.e. the form of body parts.
In addition, the direction of the movement might be class-specific, since
e.g. walking mainly consists of horizontal motion, while jumping has more
vertical components. Finally, the velocity can be class-specific as well,
e.g. to distinguish walking from running or hand-shaking from boxing. In
conclusion, small scale motion, i.e. optical flow, is extremely powerful in
providing features for biological motion recognition.

The small scale motion description therefore has two parts. First, the
estimation of the optical flow and second, finding optical flow features,
e.g. parts-based optical flow patterns. The optical flow as well as the
patterns have to be generic, because they must be able to represent all
kinds of observed movements.

2.1.2 Static and Dynamic Form Description

For a biological motion recognition system it is important to find a robust
description for body or face part configurations, e.g. via form descriptors.
Optical flow describes motion and by grouping parts with coherent move-
ment, thus extracted optical flow patterns can be used to describe form
information. Since the optical flow patterns simultaneously describe form
and motion, they are termed dynamic form patterns. Form can also be
defined by spatial gradient patterns, which in the following are termed
static form patterns.

As discussed in [37], the spatial configuration of optical flow patterns can
be used as a way to describe the human body form, alongside with static
shape or gradient information. Thus, body postures can be defined by
the spatial configuration of two, possibly redundant, types of information:
static and dynamic, e.g. gradient and optical flow patterns.
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2.1.3 Neurophysiological Experiments

While the point-light-walker experiments shed a light on the amazing
motion recognition performance of the human brain, neurophysiologi-
cal experiments try to identify the brain areas that are involved in the
recognition process. There exist a vast amount of experiments, discussed
e.g. in [7, 39, 59, 82, 83, 101], where it is shown that multiple areas in the
visual cortex are involved in the recognition of biological motion. They are
located in the two main processing streams in the visual cortex: In the ven-
tral stream that is related to static object recognition and the dorsal stream
dealing with position and motion specific information. The extent to which
each area contributes in which form to the recognition of biological motion
is a vividly discussed topic. One result that is commonly agreed upon, is
that the posterior superior temporal sulcus (STSp) plays an important role
and is to some extent specialized to human actions [7, 55, 59, 82, 83].

A question that is much less understood and that is related to the
functional discussion about motion representation in the previous section
is: How do form and motion contribute to biological motion recognition?

One theory is that motion is only relevant on a global scale, i.e. that
global shapes over time are sufficient to represent biological motion [62, 100].
This idea is contradictory to other experiments [35] in which the authors
state that explicit motion is required for biological recognition. However,
they assume that form and motion are at some level integrated or that there
exist some sort of higher-order motion cues. Another idea is that form and
motion have individual contributions to biological motion recognition [101].
This is in good accordance with the functional discussion in section 2.1.1.

Another interesting relation is the effect of implied motion [55] observed
in biological motion recognition. The authors in [55] show that static
stimuli alone can trigger the motion selective areas. The hypothesis is
that there may exist a top-down mechanism that subsequently activates
the motion selective areas after the static stimuli activated a combined
representation. The benefit of such a combined representation and the
effect of the implied motion is used in computational models based on
flow-object analysis [43, 68].

2.1.4 Brain Areas based on Neurophysiological
Experiments

Motion processing in humans starts as early as on the retina. An overview
of recent experimental results and computational models for early motion
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processing is given in [9]. A common feature for all early motion processing
is direction selectivity, thus the ability to differentiate between the movement
in distinct spatial directions [9, 49, 59].

The signals from the retina are sent to the primary visual cortex (V1),
where, amongst other cells, there are direction selective cell populations
as well as neurons sensitive to motion boundaries [59, 86]. Most of the
cell populations in V1 are similar to Gabor filters of different orientations
and frequencies, thus they perform operations similar to spatial gradient
calculation.

V1 is connected to multiple other visual processing areas, including the
motion sensitive areas of the dorsal stream and the static ventral stream.
The dorsal stream inculdes the hMT+ complex (area middle temporal (MT)
and medial superior temporal (MST)) and the posterior superior temporal
sulcus (STSp). A theory is that the first levels contain a generic motion
processing, which gets more class specific throughout the hierarchy. In
between the generic early motion processing areas V1 and MT and the
already class specific neurons in STSp, there might exist mid-level motion
patterns related to limb forms and limb movement. The ventral stream
processing for biological motion recognition includes the extrastriate body
area (EBA) which to some extent overlaps with the dorsal stream.

The simplified architecture is illustrated in fig. 2.3. In the following
the different neurophysiological areas that contribute to biological motion
recognition are discussed in more detail.

2.1.5 Dorsal Stream Areas In Biological Motion
Recognition

V1, which performs basic processing for both, the ventral and dorsal stream,
is connected to the motion specific hMT+ complex. Here, cells in area MT
perform what is often termed early motion processing. In the subsequent
area MST the receptive fields are larger and related to global movement
patterns, such as rotations, and expansions. These are affine movement
patterns related to ego-motion [10].

However, these global patterns are not well suited to contribute to bio-
logical motion recognition, because articulated human actions are spatially
restricted by the underlying body form and do not include globally ex-
panding movements. In fact, a lot of research on the dorsal stream is
related to the global aspects of movements, like navigating and detecting
moving objects [10, 103]. That is why the dorsal stream is often termed the
where path in distinction to the ventral what path. These global movement
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Figure 2.3: Neurophysiological areas involved in the recognition of biological
motion. The hMT+ complex is related to explicit motion representations and
the EBA complex is sensitive to human body postures and limbs. The two areas
are partially overlapping. The illustration does not reflect the exact or relative
position of the distinct brain areas. Details on the localization can be found
in [110].

patterns are ego-motion induced and related to the depth structure of the
observed environment, but not to complex articulated movements.

Contrary to this focus on the global aspects of motion, locally restrained
mid-level motion patterns are more likely candidates to contribute to the
recognition of biological motion.

2.1.6 Mid-Level Motion Patterns

The presence of mid-level motion patterns has been proposed in multiple
computational models [13, 38], to bridge the gap between early form
invariant motion processing and STSp reaction to full body movements.
However, compared to the early motion processing stages there are rather
few experiments on this topic.

One publication of particular interest is [83], where it is investigated
whether STSp responses are limited to human articulated motion or if they
include so called ’creature’ motion. Their creatures were artificially created
random concatenations of limb-like constructs. In their experiments, Pyles
et al. measured the fMRI responses of humans observing creature and
human movements. The main result of their study is that STSp responded
more strongly to human action than to creature action, which is an indicator
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for a STSp specialization to human movements. This was concluded to be
in good accordance with its connection to the motor system, because the
observing humans are not capable of performing the actions of the creatures.
In addition they localized two brain areas in the ventral pathway, area
ITS and area pITG, which responded to the creature motion as well as to
the human biological motion and which thus play a role in a more general
processing of articulated motion, not restricted to human movements. ITS
and pITG respond both to creatures as well as humans, who do not share
a common global form, but rather common limb forms. In addition they
found another area, area 10S, which seemed to react exclusively to novel
object movements. In [110], area ITG is found to be a limb-selective part
of the EBA, that is overlapping with the hMT+ complex.

ITGs specialization on limbs and its activations by human and ’creature
movement, makeing it a strong candidate to be part of a kind of mid-level
motion pattern processing region that relates motion with distinct shapes.
However, this hypothesis needs additional confirmation, because it is not
clear if the neural activations of the ITG cells are mainly driven by the
static limb forms or by the specific articulated limb movements.

)

2.1.7 Ventral Stream Areas In Biological Motion
Recognition

The ventral stream of humans is suggested to perform core object recogni-
tion [23]. In macaque monkeys one of the key areas involved is the inferior
temporal (IT) complex, whose human counterpart could be the lateral occip-
ital cortex (LOC) [23]. Core object recognition is the ability to discriminate
between different visual objects in a scale and view-point invariant manner,
while being fast and thus mainly feed-forward driven. The experimental
results inspired many computational models, e.g. [33, 65, 87, 111].

In the case of biological motion recognition, body poses can be seen
as objects, whose recognition helps in classifying the displayed human
action. Areas related to the recognition of human bodies and limbs are the
fusiform body area (FBA) and the extrastriate body area (EBA) that are
both located on the inferior temporal sulcus (ITS) [40, 101].

Those areas are also located next to the dorsal hMT+ complex [110] and
EBA can be further separated into three limb selective areas, including
infero temporal gyrus (ITG) that overlaps with the hMT+ complex [110],
the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) and the
middle temporal gyrus (MTG).
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Figure 2.4: The overall architecture of a Feed Forward Neural Network. The
input of the first layer V1 is filted by a set of basic patterns Wi and the resulting,
post-processed activations H; are the input V5 for the subsequent layer.

2.1.8 Posterior Superior Temporal Sulcus (STSp)

Area STSp is located a few centimeters anterior to the motion responsive
middle temporal (MT) and medial superior temporal (MST) areas [83]
in the dorsal stream, that are also known as the hMT+ complex. It is
connected to several other brain areas, e.g. the motor system, the hMT-+
complex [59] as well as to areas of the ventral vision pathway. Due to its
multiple connections it is suggested that the STSp either integrates form
and motion or defines form from motion [82]. Pyles et al. [83] show that
area STSp reacts to articulated human stimuli but not to artificial ’creature’
(random concatenations of limbs) stimuli. They conclude that STSp is
specialized to human movement, i.e. unlike the hMT-+ complex it is not
a part of a generic motion processing, but is already class-specific. The
experiments reported in [40] further suggest that STSp has a person-centric
representation and is view-point invariant. In addition to being selective
to human full body movements and gestures, area STSp also reacts to face
movements [34].
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2.2 Proposed Computational Model

The biological motion recognition system proposed in this thesis is similar
to the biological archetype illustrated in fig. 2.3. It is a hierarchical sytem,
whoes layers are learend with novel unsupervised learning algorithms.
During recognition the hierarchical architecture is used as a Feed Forward
Neural Network (FFENN). For visual recognition, FENN are typically applied
for static object recognition, which consist of one information processing
stream. Following the previous discussion and to cope with the temporal
variations, the biological motion recognition system consists of two streams,

e one stream for static features, in our case based on gradients and
e one stream for motion features, in our case based on optical flow.

Before the system is introduced, FFNN along with their invariance proper-
ties are shortly discussed.

2.2.1 Feed-Forward Neural Networks

A popular approach towards invariant object recognition are so called Feed
Forward Neural Networks (FFNN), which also comporise Convolutional
Neural Networks or Deep Learning architectures. These methods are highly
motivated by the human visual cortex, especially the primary visual cortex
(V1) and the areas V2-V4 as well as the IT-complex [23]. They date back
to the early works of Rosenblatt [89], Minsky [73] and the Neocognitron
proposed by Fukushima [33]. More recent approaches are e.g. proposed
in [87, 111] and a discussion is provided in [65]. The main idea is that
primary visual object recognition is performed in a purely feed-forward
manner throughout a cascade of so called simple cell/complex cell layers.
The receptive field size as well as the specialization of the layers increases
along the hierarchy. As a consequence, the representation in the first layers
is spatially bound and not class specific, while the representations in the
middle layers show some invariance towards spatial shifts, and the final
layer contains so called grandmother cells that are object specific and
invariant to various 3D transformations. The architecture is depicted in
figure 2.4.
Each layer consists of four stages (see figure 2.5):

1. data preprocessing,

2. matching of the input to prelearned patterns (simple cell response),
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H H H

Figure 2.5: The four stages of one simple cell/complex cell layer of a Feed
Forward Neural Network. The input V is preprocessed and the resulting V'
is filtered with the simple cell patterns WW. The corresponding activations H
undergo a post-processing and in a subsequent step post-processed activations
H are spatially pooled to form the final output H of the layer.

3. non-linear post-processing of the resulting activations,
4. and spatial pooling (complex cell response).

The second step makes the responses specific and roughly corresponds to
an AND-, while the fourth step does a spatial grouping, similar to an
OR-operator.

FFNN have many variables, such as the number of layers, the pooling
size and operation, e.g. max, sum, winner-take-most [111], the preprocess-
ing, e.g. whitening or normalization, the kind of non-linearity, but most
important the simple cell patterns. They are typically learned via back-
propagation, which requires a large amount of training data, because the
gradients converge to zero during the back-propagation through multiple
layers which is known as the vanishing gradient problem. A common way to
overcome this problem is to use bottom up unsupervised pretraining. Here,
beginning with the earliest layer, the patterns are learned via unsuper-
vised learning algorithms. The inputs either consist of randomly extracted
small sample patches or, to be in better accordance with the detection,
in a convolutional manner on the entire input images. The choice of the
learning algorithm and the related properties of the extracted patterns is
crucial. Commonly, sparse coding algorithms are applied, but there are
other methods that are more extensively discussed in chapter 3.
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After the patterns of the first layer are learned, the input is projected
onto the second layer and the second layer patches are learned, a.s.0. In an
optional step, the prelearned layers can be refined by supervised learning,
e.g. back-propagation. However, as discussed in section 1.1.1, since there
are many overlaps between different classes on different levels, supervised
learning on early layers can be problematic.

2.2.2 Invariance Properties of Feed-Forward Neural
Networks

The main invariance that is implemented into a FFNN is an invariance
towards small shifts, due to the pooling layers, i.e. complex cells, that
loosen the information about the absolute local position of each feature.
Furthermore, the simple cell patterns correspond to input stimuli that
e.g. have a slightly different shape than the ones used for learning, thus pro-
viding another form of invariance. But all in all, the descriptive capability
of FFENN relies on

e the variations found in the training data and
e the ability to learn and represent all those variations.

As a consequence, even though there is an overall large amount of training
data, the learning system should be able to learn from very few examples,
since various class-specific representations might only have few occurrences.
In addition, the learning architecture must be sufficiently powerful and
generative to store all those different representations, while still learning
discriminative features.

2.2.3 Related Work

In related work, a popular model that is inspired by the neurobiological
observations depicted in fig. 2.3 is proposed by Giese and Poggio [38].
In accordance with the biological archetype it consists of two processing
streams: The ventral (static) and the dorsal (dynamic) stream that both
contribute to the recognition of biological motion in a fast, mainly feed-
forward driven architecture. A drawback of the Giese and Poggio model
is that the algorithms used to represent the specific areas are neither
non-negative nor sparse or direction selective and no inhibition between
neighbouring activations is considered.
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VNMF-OFE VNMF Pooling
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V2] VNMF Pooling

Figure 2.6: Overview of the proposed two stream hierarchical biological motion
recognition system. The architecture is inspired by the corresponding neuro-
physiological model depicted in fig. 2.3. The different colors mark the different
processing layers. In the first layer, the spatial (V) and temporal (V) gradients
of the incoming video data are calculated. In the motion processing stream, the
spatial and temporal gradients are used to estimate the optical flow (VNMF-
OFE, cyan) which is thereafter matched onto a set of prelearned optical flow
patterns via the VNMF algorithm (blue). In the gradient processing stream
(red) the spatial gradient amplitudes (||V.||) are calculated and matched onto
a set of prelearned gradient patterns with the VNMF algorithm. Both pattern
responses are spatially pooled and classified in the final layer that consists of a
Support Vector Machine (SVM). Each box with a (+) has a strict non-negative
representation.

2.2.4 Proposed Computational Model

The proposed computational model is depicted in fig. 2.6. The two streams
of this FFNN, one for the dynamic and one for the static form information,
share the first layer, which calculates spatial and temporal image gradients,
as well as the last layer, which performs the classification. In between there
are two layers for the optical flow stream and one for the gradient stream.
Each of these layers consists of multiple steps, e.g. a pattern matching
or, for the feature extraction, a spatial pooling. Following the discussion
in section 1.1.1, the only layer that is learned via supervised learning is
the final classification layer. All other layers are learned via unsupervised
learning.!)

DThe first layer is somehow an exception. There is a vast amount of literature which
shows that unsupervised learning performed on images produces Gabor Filters,
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The major difference of the proposed system compared to other FFNN
architectures is that each learned layer has its own unsupervised learning
algorithm to account for the different objectives encountered on the different
layers as discussed in section 2.1.1. Nonetheless, all the unsupervised
learning algorithms share the common idea of a parts-based decomposition
and use a common algorithm based on non-negativity and sparsity for
learning. Thus, the differences between the layers lie in the objective, i.e. the
energy function, but they share the same underlying coding principle.

The first layer in the motion stream uses the spatiotemporal gradient
information of the first layer to calculate an optical flow field. The proposed
unsupervised learning algorithm is the VNMF-OFE algorithm. The recep-
tive field sizes in this layer are typically small, since this layer has to be
able to represent a large variety of different optical flow fields. Optical flow
estimation is an ongoing research topic in computer vision that is discussed
alongside with related work and the proposed unsupervised learning based
solution in chapter 4.

The second layer in the motion stream and accordingly the first layer
in the gradient stream are used for feature extraction. The unsupervised
learning algorithm used in those two stages is the VNMF algorithm. The
extracted patterns and their relation to other feature extraction methods,
e.g. the state-of-the-art HOG/HOF [21] features are discussed in chapter 5.

In the final layer the pooled activations of both streams are classified using
a Support Vector Machine (SVM) [14]?). The classification is performed
per frame and the overall result per video is calculated by taking the
maximum of the class probabilities provided by the SVM for each frame.
The evaluation of the classification performance is done in chapter 6.

i.e. filters that can be used to calculate spatial gradients with different frequencies
and orientations (see e.g. [52, 54]). For computational reasons, the first layer is
modeled by simple, designed gradient filters, instead of learned patterns.

2)SVM’s share a lot of properties with the NMF algorithm that is the basis for the
VNMEF algorithm. The details are discussed in [80, 81].
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3 Unsupervised Pattern
Learning

The following chapter introduces unsupervised learning algorithms that
are applied to learn the patterns for each layer in the proposed hierar-
chical FFNN. As discussed in the previous chapters, the goal is to learn
generative, parts-based patterns. To this end non-negativity, sparsity and
novel inhibition functions are included into the learning framework. The
algorithms in this thesis build upon sparse coding (SC) introduced by
Olshausen and Fleet in 1996 [77] and non-negative matriz factorization
(NMF) introduced three years later by Lee and Seung [66], as well as on its
combination, sparse non-negative matriz factorization (sNMF) [27, 51, 52]
and the transformation invariant extension [28].

The goal of the discussed unsupervised learning algorithms is to find
generic patterns, termed e.g. principle components, independent compo-
nents, dictionary elements, basic patterns or basis vectors. These are
all synonyms for the same model component which is termed basis vector
throughout the thesis. The basis vectors are part of a model that is adapted
to resemble the given input. The model itself is a linear superposition of
the basis vectors. In mathematical terms, the model R for the given input
Y e RPXN ig

R =WH, (3.1)

with the basis vectors W € R”*7 and the activations H € R7*N. The two
input dimensions P and NN describe the number of pixels and the number of
input images, while J is the number of basis vectors. The model parameters
W and H are learned by minimizing an energy function based on a distance
function d( -), e.g. the euclidean distance, between the training data )V and
the model R and additional energy functions a( - ) depending on the model
parameters. The resulting optimization problem is

%71% (dV,ROW,H)) + a(OWV, H)). (3.2)
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Figure 3.1: Overview of the algorithms presented in this chapter. They are
based on sNMF and translation invariant sSNMF. The (+) in the corners indicate
that all components are non-negative. All novel algorithms are colored in blue.
The sNMF algorithm is extended by local inhibition and the translation invariant
algorithm is extended by lateral inhibition. The sNMF is further extended in
two novel ways to allow for a non-negative representations of real-valued data.
The application of the presented algorithm is thus not limited to non-negative
inputs. The algorithm which makes use of all the extensions is the novel VNMF
algorithm.

The learning algorithms differ in the additional structural restrictions
build into the model, in how the model parameters are learned and in
the additional energy functions a(-), but only few methods change the
structure of the model itself, e.g. translation invariant NMF [28] or trifactor
NMF [24].

The chapter is organized as follows: First, related work on pattern
learning is discussed, followed by an analysis of constraints that lead to a
parts-based representation. Then, sSNMF as the basis of the novel algorithms
is introduced and it is shown how sNMF can be extended to represent real
valued data in a non-negative form. Next, the concept of lateral inhibition
that leads to topological sparse representations is discussed along with
translation invariant learning. The resulting algorithm is the vector non-
negative matriz factorization (VNMF). The structure is further illustrated
in fig. 3.1.
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3.1 Related Work

There exists a vast amount of different unsupervised learning algorithms,
whose full review is beyond the scope of this thesis. The review will be
limited to two popular methods: principal component analysis (PCA)
and independent component analysis (ICA) as well as extensions of the
NMF. Other techniques such as singular value decomposition, which is
strongly related to PCA, non-negative PCA, vector quantization, factor
analysis and so on, employ other restrictions which are not discussed here.
More information concerning the above mentioned methods can be found
in [19, 54, 65, 76].

3.1.1 Principal Component Analysis

The oldest and still one of the most popular methods used for the extrac-
tion of patterns is principal component analysis (PCA). PCA is strongly
discussed in the literature, including multiple textbooks [6, 19, 54| and
articles [31, 38, 76] and there are numerous ways of how to introduce PCA.
Here PCA is discussed as a generative process. PCA learns the basis vectors
or principal components VV in an iterative fashion, starting with the first
principal component Wy, then the second a.s.o. The basis vectors have to
fulfill two conditions: First, the basis vectors have to be orthogonal, thus

W, W, =0, Vj#k, (3.3)
and second, the basis vectors have to be normalized
W W, =1, vje{l,.. J} (3.4)

The basis vectors are given by the eigenvectors of the input matrix V. The
first principal component is defined by the eigenvector with the highest
corresponding eigenvalue. In case of a zero mean input, Wi points to the
dimension with the highest variance in the data. When applied to images
or image patches, PCA produces holistic patterns [66]. PCA can be used
for dimensionality reduction or compression, because the amount of image
information that can be described by the basis vectors can be calculated
from the corresponding eigenvalues [6]. Yet, the basis vectors are holistic
and not parts-based and thus not suited for the task at hand, as discussed
in [66].

PCA is often applied in conjunction with a preprocessing step known as
whitening [6, 65], which can be combined with a dimensionality reduction.
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Whitening is performed as follows: first, the mean value of each input
dimensions is subtracted, which results in a zero-mean distribution of the
input data. Second, the data points are projected onto the orthogonal basis
provided by the principal components calculated with PCA. Using only
a subset of all principal components reduces the dimension accordingly.
In the last step the data is divided by the variance. The result is that
all dimensions have a similar distribution, which might be beneficial for
a qualitatively equal influence during the distance measurement in the
penalty function. The underlying assumption is that each input dimension
has similar value to the input data.

It is unclear whether this assumption is valid, e.g. if an input dimension
has only noise values near zero, whitening amplifies a variability in this
dimension that beforehand was not in the data. That is why throughout
the thesis no whitening is performed on the data.

3.1.2 Independent Component Analysis

Another widespread pattern learning algorithm is independent compo-
nent analysis (ICA) and its extension, the independent subspace analysis
(ISA) [54, 64]. Here the additional condition is to find a set of basis vectors
by maximizing the independence of the activations H; for each input Vj.
Independence is defined in terms of stochastic variables. Let h; and hy be
stochastic variables that correspond to the activations H; and Hj, used
in our deterministic interpretation. h; and hy are independent if the joint
probability density function can be split up into a multiplication of the
individual probability density functions: p(h;, hi) = p(h;)p(hi). Ie. the
presence of the basis vector W; in an input image is not related to the
presence of any other basis vector Wy, Vk # j. A detailed analysis is given
in [54].

3.1.3 Extensions of NMF

Since the introduction of the original NMF [66, 67] by Lee and Seung,
multiple extensions of the NMF haven been proposed. The overall trends
have recently been summarized in a textbook [19].

One of the major benefits of the NMF learning algorithm is its guaranteed
convergence, which is discussed in [26]. In [63], the uniqueness of the basis
vectors, learned with NMF is analyzed.

A popular extensions of the NMF is to add orthogonality constraints
on the basis vectors, like in [17] or the LNMF [69]. They report that the
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orthogonal basis vectors are more parts-based and achieve better results
for face recognition than the original NMF. A similar result is reported
when the NMF is combined with sparsity constraints on the activations
as proposed in [27, 51, 52]. Alternatively to sparsity and orthogonality
constraints, a determinant criteria is proposed in [91].

Structural extensions are proposed in [24] and [84]. The semi-NMF [24]
relaxes the non-negativity constraints on the input and the activations,
which broadens the possible range of applications for the NMF approach.
The authors further show the relations of the semi-NMF to k-means clus-
tering. In [84] a hierarchical NMF is proposed. The hierarchical approach
allows for decompositions of increasing complexity, because the activations
are themselves represented by an additional NMF layer.

The NMF learns the basis vectors given a finite number of inputs. The
algorithm proposed by Lee and Seung is thus a batch learning algorithm. To
extend the NMF to be able to adapt to novel data incremental learning [85]
and online-learning [72] algorithms are proposed.

Besides the relations of the NMF to k-mean clustering as discussed in [24],
there are close relations between NMF and SVM as discussed in [80, 81].
The relations can be used to solve the NMF with the algorithms used to
solve SVM and vice versa.

3.2 Properties of Parts-based Representations

The goal of the pattern learning algorithms is to get a parts-based, gen-
erative representation of the input. The question at hand is: What are
reasonable constraints for the learning algorithm to achieve a parts-based
decomposition? This is already motivated in the introduction and illus-
trated in fig. 1.1 and fig. 1.2, i.e. non-negativity, sparsity and inhibition
are desired constraints for the decomposition.

From the discussion of the related work another question arises concerning
the properties of the desired constraints: the constraints can either be strict
or weak. The orthogonality constraint on the basis vectors in the PCA is
an example for a strict condition, while the independence in the ICA is
only maximized, but in general not reached, thus it is a weak condition,
that is desired, rather than strictly enforced. In summary there are two
questions:

1. What constraints are applied on W and H and

2. How are the constraints applied, either
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a) strict constraints, that are enforced or

b) weak constraints, that are desired, but not necessarily reached.

Weak constraints can be mathematically formulated by energy functions
that are included into the optimization process. Thuse, following the idea
outlined in (3.2), the overal energy functions is a linear superposition of
individual energy functions depending on a subset or all model parameters,
i.e. the activations H and the basis vectors W.

E=EW,H)+ Ex(W,H)+ Es(W,H) + ... (3.5)

Each energy function F; representing a weak constraint. The weak con-
straints are useful if there exist multiple, probably conflicting constraints,
like e.g. in the case of ICA, being generative and having independent
activations. Furthermore, in case of an iterative learning procedure, weak
constraints allow the model to be flexible during the learning process. In
contrast, the strict constraints are fixed and thus cannot be optimized,
they rather restrict the design space of the optimization.

3.2.1 Basic Constraints

The strongest constraint is in fact the linear model with the fized number
of basis vectors J. In principle, a linear model can represent any input
if J is greater or equal than any of the two input dimensions P and N.
In case of a gray valued image with P pixels, the trivial model consist of
J = P basis vectors, each just representing a different single pixel.?) If
J = N each basis vector can simply represent one input, which is another
trivial solution. However, since the input data should be compressed by the
pattern learning algorithm, the model should fulfill the following condition:
To achieve a dimensionality reduction, the number of basis vectors J must
be smaller than both input dimensions P and N, i.e. ,

J << P, (3.6)
J << N. (3.7

This limitation on the amount of available basis vectors restricts the model
and makes it less arbitrary than in the case of the trivial solutions.

The next constraint is that the model has to be generative. It is a soft
constraint, because the full description of the input can in general only

D This will be termed the trivial solution, which will play an important role when the
translation invariant model is discussed.
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be achieved by the trivial solution discussed above. It is enforced by the
reconstruction energy

Eree =d(V,R), (3.8)

which can be considered as the driving force of the optimization, because it
is directly related to the input. However, being generative is not the only
goal of our optimization, to get an invariant representation other, possibly
conflicting constraints are required. In fact, all other addition constraints
used in this thesis increase the restrictiveness of the model and are thus
counterproductive concerning the reconstruction quality.

3.2.2 Non-negativity

The most important strict constraint that is enforced in all algorithms
developed in this thesis is the strict non-negativity of all components. The
concept was introduced in 1994 by Paatero and Tapper [78| as positive
matriz factorization and became increasingly popular when Lee and Seung
introduced their multiplicative learning rules for their new termed non-
negative matrix factorization (NMF) in 1999 [66]. When applied to face
images the NMF learns facial parts which lead to an increased interest
in the non-negativity constraints. The assumption is that non-negativity
favors parts-based representations.

This assumption, that was already discussed in the introduction, can
to some extent be explained by the following gedankenexperiment: non-
negativity in the activations and basis vectors removes the capability of the
model to subtract elements. If an element is added to the model, there is
no possibility to remove it by e.g. subtracting a basis vector that provides
the part that needs to be removed. Thus, if a basis vector is added to
the reconstruction model it must be useful in terms of the reconstruction
quality. This can be achieved by restricting the basis vectors to define only
prototypical parts of the input. Hence, the parts-based properties emerge
from the models inability to subtract elements.

The non-negative representation further provides a parameter free and
fast converging learning algorithm. Learning is achieved by minimizing the
energy function with an adapted, parameter free form of iterative gradient
descent of the model parameters W and H. To apply the NMF learning
rules the gradients need to be separated into their positive and negative
components. In case of the non-negative representation this can be achieved
in a straightforward manner as it will be discussed in the next sections.
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Beside the computational benefits, a non-negative representation is more
biologically plausible than a real valued representation including negative
values. A neuron can either be active (spiking) or inactive, but there is no
such thing as a negative neural activation.

Non-negativity might seem like a hard restriction because there exist a
lot of data with positive and negative values. However, the restriction only
applies to the inner representation of the model. In section 3.4 it is shown
how to achieve a non-negative representation for any kind of real-valued
input data.

3.2.3 Sparsity

The concept of sparsity was introduced into pattern learning in 1996 by
Olshausen and Fleet [77, 90]. When given natural images as input, their
sparse coding (SC) algorithm is capable of learning Gabor filters, as they
are found in experiments in the early human visual cortex V1. Sparsity
constraints have since then been of major interest in pattern learning. They
can either be applied to the basis vectors or, what is more common and
used in this thesis, on the activations.

Sparsity on the activations is a weak constraint, because it cannot be
strictly enforced. The most sparse representation is a model without only
one activations, which which may oppose the generative idea of representing
the input. Activations are necessary to build a model, so the generative
constraint and the sparsity constraint are in competition and have to be
balanced by the relative weights of the corresponding energy functions.

The main benefit gained from having sparse activations can be formulated
as follows: Enforced sparsity in the activations favors models with as few
active basis vectors as necessary. As a consequence basis vectors which are
spatially extended are favored over those with only few elements. As a
consequence, if the sparsity constraint is too strong, the decomposition will
be holistic and not a parts-based, because holistic representations require
only few activations.

In terms of pattern learning as an optimization problem, the sparsity
constraints favor those models, thus minima, that have only few active
basis vectors and penalizes those minima with multiple active basis vectors,
independent of the reconstruction energy. An example for a sparse and a
non-sparse decomposition are given in fig. 3.2.
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Figure 3.2: Two artifical decompositions of the input V,,. From left to right:
a sparse decomposition, i.e. only few basis vectors are activated to reconstruct
the given input. Then a non-sparse decomposition, ¢.e. multiple basis vectors
W are activated to reconstruct the given input. An enforced sparsity favors the
sparse decomposition with fewer activations.

3.2.4 Local and Lateral Inhibition

When applied in a FFNN, basis vectors with overlapping receptive fields
are simultaneously activated, which leads to blurry activation patterns
that counteracts the idea of sparse activations. This effect is termed the
superposition problem. There already exist effective methods on how to
deal with the superposition problem via non-linear pooling in the complex
cells of FFNN, that is now shortly discussed.

In the detection phase of a FFNN the simple cells are followed by the
complex cells, a non-linear projection of the simple cell responses with a
local and a lateral component. The local competition is between different
activities at the same position, for example a norm-, a maximum- or a
winner-takes-most [111] operator. The lateral competition is achieved via
a max-pooling step. Neighboring activities are projected onto a single
activity, which leads to activity images with a reduced resolution. Besides
the lateral competition, the pooling has the additional effect of increasing
the receptive field size and of introducing an invariance to small shifts in
the input space. Thus, the goal of the non-linear post-processing on the
activities is to arrive at a representation with sparser activities as well as
an increasing translation invariance and larger receptive fields throughout
the hierarchy.

A major drawback of the approach is that this non-linear post-processing
is not consistent with the learning process, since it is only applied during
the detection phase. I.e. , the learned basis vectors do not correspond to
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a topologically sparse decomposition and may not be best suited for the
complex cell type sparsifications.

While there are sparse coding algorithms that incorporate local com-
petition into the learning procedure [69, 90], the lateral competition is
not addressed. One reason for this drawback is that the basis vectors are
learned on randomly sampled image patches. Due to the sampling process
the neighboring dependencies get lost and cannot be addressed during the
learning process. To overcome this problem and to achieve a topological
sparse representation, a translation invariant learning procedure with an
additional local and lateral competition penalty function is proposed later
in this chapter.

3.2.5 Resulting Energy Function and Notations

Following the idea that the weak constraints are represented by correspond-
ing energy functions, the algorithms presented in this thesis consist of
either all or a subset of terms contained in the energy function

E = FEieo + MEL + M\ E,, (3.9)

with Eye. as the reconstruction energy term, £y, the sparsity term and E,
the inhibition term that further enforces a parts-basedness representation.?)
The corresponding weighting parameters for the different energy terms are
An and A,. The influence of these parameters will be discussed during the
experiments.

The notation applied throughout the algorithmic description in this
thesis is now introduced.

He RN, (3.10)

with R} = [0, 00), describes the entire matrix of non-negative activations.
A subset of this activation matrix, e.g. the activations corresponding to
the input vector V,, is H,,. A single entry of the activation matrix, e.g. the
activation corresponding to input V,, and the j-th basis vector is hjy,.
Lower case letters always correspond to scalar values, bold upper case
letters represent vectors and matrix are represented by cursive upper case
letters.?)

2)In case of multidimensional input data, such as vector fields representing the optical
flow, there is an additional energy function, dealing with effects related to opposing
directions. It will be discussed in section 3.4.

3)This notation is only valid in the non-translation-invariant case. The notation for
the translation-invariant NMF is given in section 3.5.
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The reconstruction of the entire input V is given by
R =WH (3.11)
and for a single V,, the reconstruction is
R, =WH,, (3.12)
with the partial reconstruction due to a single basis vector being
R, = Wjhj,. (3.13)

The element wise notation for the reconstruction of a single input and pixel
is

T'pn = prjhjn,~ (314)
J

All elements of the input and the model are strictly non-negative, i.e.

Upn >0, Vpe{l,..,P},Vne{l,.. N}, (3.15)
rpn >0, Vpe{l,..,P},Vne{l, .. N}, (3.16)
wp; >0, Vpe{l,.., PhVje{l,.., J}, (3.17)
hjn >0, Vjed{l, .., J}Vne{l, .., N} (3.18)

3.3 Sparse Non-negative Matrix Factorization

The basis algorithm for all methods proposed in this thesis is SNMF'. It
combines the ideas of strict non-negativity and sparsity in the activations.
Learning is seen as a optimization problem, which leads to two major
questions:

1. What is the optimization criterion?
2. How is the optimization problem solved?

The optimization criterion is the minimization of a given energy function
E(W,H), that depends on the model parameters, i.e. the basis vectors
W and the activations H. The energy function consists of varying parts,
depending on the constraints, such as sparsity and topological sparsity.
Due to the non-negativity of all involved components, the energy function
can be minimized by multiplicative gradient descent rules as proposed by

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

3.3 Sparse Non-negative Matrix Factorization 37

Lee and Seung [66]. In general any optimization technique could be used to
solve the learning problem, however, the multiplicative update rules are fast
and guarantee convergence [26]. In the following the different components
of the energy function for the sSNMF algorithm is introduced.

3.3.1 Sparse Activations

There exist multiple methods to favor sparse activations in the learning
process. One straightforward method is to penalize the activations with an
additional energy function Ey, = f(H), e.g. the l;-norm

By =0 Y hjn, (3.19)

n,j

with the positive gradient component
(Vi Bn)™ = . (3.20)

Other energy functions, including quadratic functions are e.g. proposed
in [77], but due to its simplicity and effectiveness eq. (3.19) is used in this
thesis.

3.3.2 Normalized Basis Vectors

Eq. (3.19) can lead to an undesired scaling effect between the basis vectors
and the activations, that circumvents any sparsity enforcing influence.
If the activations are reduced by % , the influence of the scaling on the
reconstruction can be averted by scaling the basis vectors up by the factor a.
As a consequence, the sparsity energy can be minimized without changing
the reconstruction energy. To avoid this undesired scaling effect, the basis
vectors are normalized using the euclidean norm

- W,
W; = -7 =
\/ p Wpj

For normalized basis vectors the following condition is valid, i.e.

Vie{l,..,J} (3.21)

W/ W, =1, ¥{1,...J}. (3.22)

In addition, the normalization influences the gradient calculated for the
update procedure. W (W) is a function of W, thus, the inner derivation of
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this function has to be considered when the basis vectors W are updated.
The resulting positive and negative gradient components, depending on
the gradient of the energy functions for the basis vectors is given by

(VWwE)" = (VwE)t + WV (V3 E) ™, (3.23)
(VWE)™ = (VwE)” + WW T (Vy,E)F. (3.24)

The indices (-)™ and (-)~ indicate the positive and negative part of the
gradients. The normalization influences the learning procedure in two ways:
the basis vectors have to be normalized after each update using eq. (3.21)
and the gradients of the energy functions towards the normalized basis
vectors have to be modified according to the equations (3.23) and (3.24)
to account for the inner derivation.

3.3.3 Sparse Basis Vectors

Sparsity constraints can be added upon the basis vectors as well, e.g. by
using the energy function

By =\e Y Wy, (3.25)
D:J

with the gradient

(Va,, Bw)™ = Aw. (3.26)

J

However, for the proposed algorithms this does not provide benefits for the
learning process and is therefore discarded.

3.3.4 Reconstruction Energy

The reconstruction energy function is the driving force of the learning
process. In [19] there is a comparison of different distance measures,
including several robust functions. A simple and computationally feasible
version is the euclidean distance as a measurement for the reconstruction
energy

1 1 _
Erec = §||V—RH% = §||V—WH||2F (3.27)
1 1 )
=52 Won =1pn)? =5 > (0pn = D _phin)®. (328
n,p n,p J
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The corresponding gradients for the activations are

(vHErec)+ = WTR) (329)

(Vi Frec)” = W'Y, (3.30)
and for the basis vectors

(VWErec)+ = RHT7 (331)

(Vi Free)” = VH . (3.32)

3.3.5 sNMF Learning Algorithm

Combining the reconstruction energy (3.28) using normalized basis vectors
with the sparsity energy function (3.19) results in the overall energy function
for the SNMF algorithm

1
Exnvr = §||V_RH%'+)\hzhjn- (3.33)

n,j
The gradients for the basis vectors are

(VwEaur)t = RHT +WWTVHT, (3.34)
(VwEanur)” = VHT +WWTRHT. (3.35)

The gradients for the activations are

(VaEsgour)™ = WIR + Ay, (3.36)
(Vg Eonmr) ™ =WV (3.37)
The learning algorithm consists of two parts, the initialization and the

updates, which are performed in an iterative process.
The algorithm is:

e Preprocessing

— Normalize V = ﬁ(\/)’

— initialize H and W randomly.
e Loop for i iterations

1. Calculate R = WH,
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(VuBsnmir) ~
update H — H o (Tt

calculate R = WH,

(VwEsnmr)
update W —Wo (Vo Eennr) ¥

5. normalize W, = %, Vie{l,..,J}.
P Pj

L A

One of the benefits of this algorithm is, that it is independent of step
size parameters that are typically required in gradient descent methods.
The multiplicative update rules in step 2. and 4. can to some extend be
considered as finding the optimal step size parameter. There exist different
alternatives of how to initialize W and H as well as different stopping
criteria for the learning loop, both discussed in detail in [19]. Throughout
this thesis W and H are initialized randomly and the learning is stopped
after ¢+ = 300 iterations, after which in all encountered cases the algorithm
lied close to the minima.

3.3.6 Orthogonality and Enforced Parts-Basedness

Another typical extension in form of a weak constraint of the NMF frame-
work is to favor orthogonal basis vectors [17, 69]. The underlying idea is to
achieve a more parts-based decomposition. While orthogonality between
the basis vectors is appealing (because it penalizes overlaps) it also has two
downsides. First, the additional energy functions that enforce orthogonality
on W depend on W only and do not scale according to the reconstruction
energy. Thus, for different input data, novel weighting parameters for the
different energy functions have to be found. This makes the approach rather
difficult to apply. The second downside is, that potential redundancies in
the basis vectors, e.g. two different types of noses in the case of face images,
will be penalized by the energy function, even if they have no overlapping
occurrence in the data.

The novel approach proposed in this thesis is not to enforce orthogonality
between the basis vectors, but between partial reconstructions R;,, and
Ry, (corresponding to the contributions of the basis vectors W; and Wy,
to the reconstruction R,,). Thus, only active overlapping basis vectors
are penalized. This form of orthogonality is related to the input driven
competition of activations with overlapping receptive fields, i.e. basis
vectors. The competition can either lead to one winning activation that
suppresses all activations that correspond to all overlapping basis vectors
or in a change of the basis vectors so that they are no longer overlapping.
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The proposed energy function is

Epart = part Z Rjn Z Rkn (338)

n,j k#j
1
= 5 Apart > (R),R, - R},R;») (3.39)
1 1
3 Apart > R)R, - 5 part > R/,Rj,, (3.40)
n n,j

with the two energy components
1

Ep1 = 5 Apart > R)R,, (3.41)
1

By = §Apart Z R/ R;, (3.42)

part Z U}p] Jn (343)

n,5,p

The partial gradients for the activations are

(vhanpl) = AP&TthTRna (344)
(vhanPQ) = AparthjnWjTWj, (345)
with eq. (3.22),
(Vi Ep1) = Apart W' R, (3.46)
(VHEpZ) = )\partH~ (347)

Combined with (Vg Ep1) —(VyEpz) > 0 the resulting positive and negative
gradient components are

(v’HEpart)+ = )\part(WTR - H), (348)
(V’HEpart)7 =0. (349)
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For the basis vectors the partial gradients are

(Vow, Ep1) = Apart Y hjn Ry (3.50)
= Apart RH | (3.51)
(Vw, Bp2) = Apart W 13, (3.52)
= Apart W, H Hj, (3.53)

and with (Vy, Ep1) — (Vg Ep2) > 0 the positive and negative gradient
components are set to
(Vw, Epart) " = Apart(RH; — W, H H;), (3.54)
(VW], Epary)” = 0. (3.55)

3.4 Non-negative Representations of
Real-valued Data

In their publication [66], Lee and Seung applied the NMF to gray value
images, which are naturally non-negative. However, other data types,
e.g. vector fields that are used to describe optical flow fields are two
dimensional and contain negative alongside with positive values. Still,
a parts-based decomposition as achieved with the sNMF algorithm is
desirable for this kind of data.

In this section the sSNMF is extended to deal with vector fields or mul-
tidimensional real valued data in general. To this end, two approaches
of how to deal with multidimensional input data are introduced and it is
shown how they can be applied to real valued data.

3.4.1 Multidimensional Input

The input matrix V is extended by an additional feature dimension, so that
Ve RYXNVXE, (3.56)
The element wise formulation is

Upns >0, Vpe{l,..,P},Vne{l,..,N},Vfell, .. Fl. (3.57)
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The additional dimension f has to be represented by the model, i.e. ,
the reconstruction R € Ri *NXE - This additional dimension can either
be encoded in the basis vectors (later used for the feature learning) or
the activations (used during the optical flow estimation). As discussed in
the beginning of this chapter, the basis vector as well as the activations
each share one of the dimension of the input, which is p for the basis
vectors and n for the activations. Adding the new dimension f to the basis
vectors is identical to extending the basis vector specific dimension p of
the input to p = p- f. Alternatively, the activation specific dimension n
of the input is extended to n = n- f. Yet, the explicit notation of the
new feature dimension is preferable, because it is required when addressing
the relations between the features in the case of translation invariant
learning in section 3.5. The two scenarios, multidimensional basis vectors
or multidimensional activations are introduced in the following.

3.4.2 Multidimensional Basis Vectors

In the first case, the basis vectors dimension is extended W € Ri XIXE
Here all feature dimensions are explicitly represented by the basis vector
and share a common activation. The reconstruction is

Ponf = Y Wpjfhjn, (3.58)
J

or written in vector form

Tpn = Y Wy;hin. (3.59)
J
The reconstruction energy becomes

1 _
Eree = 5 Z (Upnf - prjfhjn)zv (360)

P, f J

with the gradient components for the activations

(ViEree)™ =Y W[ Ry, (3.61)

f
(VaEree)” = > W]V, (3.62)
f
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and the basis vectors

(Vi Bree) ™ = RyHT, (3.63)
(Vyw, Brec)” = ViU (3.64)
The basis vectors have to be normalized over all features, i.e.
_ 1%
Wip = 7Jz’ vye{l,...,J}. (3.65)
Y, Zp,f Wpif
3.4.3 Multidimensional Activations

In the second case, the dimension of the activations is extended H €
RiXN *F and the features configuration can change depending on the
activation. The feature configuration is constant throughout the area
defined by the common basis vector and the reconstruction is

Tpnf = Z Wypihjng- (3.66)
J

or written in vector form

Tpn = prjhjn. (367)
J

The reconstruction energy is
1 _
Eroc = 5 Z (vsz - Z ijhjnf)2v (3'68)

P, f J

with the partial derivations for the activities

(Vi, Brec)t = W Ry, (3.69)
(v”HfErec)7 = WTV}% (370)
and the basis vectors
(ViwEree)™ =D RyHJ, (3.71)
f
(ViwErec)” =Y _ViH] . (3.72)
f
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3.4.4 Sparse Activation Amplitudes

Since for multidimensional inputs the activation h;, for each image and
basis vector is a vector and no longer a scalar value, the sparsity function
has to be adapted, otherwise each vector element hj,s would be treated
independently. Instead of penalizing the scalar vector elements hj, s, the
vector amplitude [|hj,[|2 can be addressed by a sparsity function. This
new sparsity function is

Ey :AhZthnHz :/\hz Zhinf, (3.73)
n,j n,j f

with the corresponding gradients

Byt = A tind (3.74)

—
\V Zf’ hjnf’

3.4.5 Positive and Negative Input

(Vi

jnf

In general, the input data V € RPXN*D ig not restricted to non-negative
data, but can contain positive and negative values. A non-negative repre-
sentation can still be achieved by splitting all input elements into positive
and negative components, by

Upnd| + Upn
Upndy = U‘”fpdj (3.75)

Upnd— = 7|Upnd|; Upnd.

(3.76)
This simple trick allows a non-negative representation of any kind of input
data. The positive as well as the negative values can each be represented
by a non-negative representation

Upnd+, Upnd— > 0, Vpe{l,..,P},Vne{l,.,N},Vde[1,..,D].
(3.77)

This comes at the cost of an additional dimension, because the positive
and negative values each have an individual representation.

The multidimensional representation can now either be treated like the
multidimensional input data as discussed in the previous section, which
results in a strict constraint, i.e. a separation of the positive and negative
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values. The positive and negative values of the same position are then
treated as individual features without any specific relation. In the following
this is termed strict non-negativity. Contrariwise, the positive and negative
values can only have a separated representation, but are used in combination,
€.9. Upnd+ — Upnd—, i the energy functions. Any desired interaction between
the two parts can then be addressed via weak constraints, i.e. additional
energy functions. In the following this is termed weak non-negativity. A
comparison of the two types of constraints can be found in [42].

3.4.6 Strict Non-negativity

In the strict non-negative representation the positive and negative com-
ponents are treated as two independent features. With the new feature
dimension F' = 2- D the reconstruction energy is

1
Etrict-nn = 5 Z (vpnf - rpnf)z' (378)

pn, f

The feature dimension can either be represented by the basis vectors or
activities as discussed in section 3.4.3 and section 3.4.2.

3.4.7 Weak Non-negativity

In case of the weak non-negative representation, there exist non-negative
feature dimensions for the input as well as for the reconstruction, the
activations and the basis vectors. The additional feature dimension of
the reconstruction can again either be represented by the basis vectors or
activities as discussed in section 3.4.3 and section 3.4.2. However, in the
reconstruction energy function

1

Eweak—nn = 5 Z (UpndJr — Upnd— — Tpnd+ + rp’n,d*)27 (379)

pn,d
the negative values are subtracted from the positive values.

If the additional feature dimension is represented by the basis vectors,
the energy function is

1

Ewcak—nn - 5 Z (Upnd+ - Upnd— - Z hjn(wpd—O— + wpd—))za (380)
pn,d J
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with the gradient components for the basis vectors

(Vow, Buweakenn) T = R_HT + VL HT, (3.81)
(Vw, Bweakenn) ™ = Ry H T +V_H T, (3.82)
(Vw )* (3.83)
(Vi ) (3.84)

Wcak—nn - (VW+ Ewcak—nn)7;

weak— nn

= (VW+Eweak—n11)+7

and the activities

(VHEweak—nn)+ = V_VIR+ + WI—R, + V_VI—V+ + V_VIV,, (385)
(v’HEweak—nn)_ = V_VIR— + WjR.;. + V_VIV_ + WIV+ (386)
(3.87)

If the additional feature dimension is represented by the activations, the
energy function is
1 _
Eweak-nn - 5 Zd(vpnd—i- — Upnd— — zj:(hjn—i- - hj’rL—)wp<i)27 (388)
Py,

with the gradient components for the basis vectors

(Vyy Bweakenn) ™ = RCHL + Vi HD + Ry H +V-H L, (3.89)
(VWEweak—nn)_ - R-ﬁ-HI + V_Hj + R_HI + V+HI, (390)
(3.91)

and the activities

(Var, Eweatenn) T = WIRL + WTV_, (3.92)
(V, Bwealenn)” =W R_+ WY, (3.93)
(Vi Egeakenn) ™ = (Va, Eweakenn) (3.94)
(Vi Eweakenn)” = (Vi Eweakenn) T (3.95)

(3.96)

In both cases, the sign for the gradients of the component with the
positive values is opposite to the sign of the gradients of the component
with the negative values. Hence, if e.g. a positive basis vector element wy;
is increasing, its negative counterpart wy;_ will be decreasing by the same
factor.
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The subtraction in the model counteracts the idea of the parts-basedness
achieved with a strict non-negative representation, because the purely
additive model is the main reason for a parts-based decomposition, as
discussed in section 3.2.2. However, the weak non-negativity allows for
an increased flexibility of the model, especially when the energy function
cannot be written in die strict form as in eq. (3.78). An example is the
optical flow estimation algorithm that is discussed later on in chapter 4.

3.4.8 Orthogonality between Positive and Negative
Reconstructions

To avoid an interaction between the positive and negative representations
of a weak non-negative model, an orthogonality constraint can be imposed
upon the two reconstructions, using the energy function

1 1
EorthoSign = iRIR* = 5 Z Tpnd+Tpnd—- (397)

p,n,d

The additional feature dimension of the reconstruction can again either be
represented by the basis vectors or activities as discussed in section 3.4.3
and section 3.4.2.

If the additional feature dimension is represented by the basis vectors,
the energy function becomes

1 _ _
EorthoSign = 5 Z Z h?n (wpd+wjpd*)a (398>

pn,d j

with the gradient components for the basis vectors

(VV\/Ur EorthoSign)+ =R_ HT (399)

(VV\)Jr orthoSlgn) (3100)

( orthoSign)Jr +HT7 (3101)

( orthoSign) - (3102)

and the activities

(VatEorthosign) ™ = WL R_ + W R, (3.103)

(Vi Eorthosign)~ = 0. (3.104)

(3.105)

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

3.5 Translation-invariant NMF 49

If the additional feature dimension is represented by the activations, the
energy function becomes

1
EorthoSign = 5 Z Z hjn-‘rhjn—w?pd, (3106)
pn,d j

with the gradient components for the basis vectors

(Vi Eorthosign) " = ReHT + R_H |, (3.107)
(VWEorthoSign)i = 07 (3108)
(3.109)

and the activities

(Vs Borthosign) T = W R_, (3.110)
(Va, Eorthosign)~ = 0, (3.111)
(Va1_ Eorthosign) " = W'R (3.112)
(Vi Eorthosign)~ = 0. (3.113)

(3.114)

3.5 Translation-invariant NMF

A lot of the basis vectors learned with regular unsupervised learning
algorithms, like SNMF, are simply shifted versions of few unique structured
basis vectors. To reduce this redundancy, translation-invariant (also known
as shift-invariant) learning algorithms [28] can be used. A translation
invariant learning scheme is in good accordance with a FFNN, because the
simple cell responses are also detected in a convolutional manner.

To achieve a translation invariant learning, each basis vectors is repeatedly
shifted in a way that for each shift, the basis vector is centered at a new
position in the entire input image. There are now P activations for a single
basis vector in each input image, i.e. one activation for each shift. This
allows the reconstruction to activate each basis vector at any position in
the reconstruction, thus to be translation invariant. The activations store
the absolute position of a pattern in the input vector and the corresponding
basis vector describes the structure of the pattern.

During the learning process, the gradient for each shifted version of a
single basis vector is reshifted to a reference position and all the reshifted
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gradients are accumulated. As a consequence, the statistics gathered
throughout the entire input image are used to update the basis vectors.

The benefits of having a translation invariant learning algorithm can be
summarized as follows:

e Learning is performed on the entire input image, thus fewer training
data is required and no key-point detection is needed to search for
meaningful patterns in the input.

e Fewer basis vectors are required, because redundant translated ver-
sions are omitted.

e Instead of multiple local models, one global model is used to represent
the entire input image. This global approach allows to influence the
interactions between neighboring activations and therefore to address
the superposition problem and topological sparsity.

e The basis vectors can be spatially restricted, which further enforces
a parts-based decomposition and local receptive fields.

Due to change in dimensions for the activations, the notation for the
translation-invariant NMF, introduced in section 3.2.5 needs to be adapted.
The activation that corresponds to an input V;, and the basis vector W is
now no longer a scalar value, but the activation vector H,.

3.5.1 Reconstruction Energy

In case of a two dimensional, spatially arranged input, like an image or a
vector field, each p € {1, ..., P} represents a two dimensional coordinate

T = (Z) (3.115)

withz € [1,..., X] and y € [1,...,Y], X, Y := number of pixels in horizontal
and vertical direction respectively and the relation P = X - Y. The two
dimensional coordinate is valid inside the interval x € [1,..., X |, with

X — (if) . (3.116)

Now the translation invariant NMF is introduced as a special case of the
transformation invariant NMF [28]. The reconstruction r,(x) at the two
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dimensional pixel coordinate x is
(@) = Y rjma(@) = Y hju(m) (T(m)a;(x)), (3.117)
J,m J,m

with the set of matrices T'(m), m € [1,..., X], that describe shift operations
which are applied to the basis vectors W;. With

T(m)w;(x) = w;(x —m) (3.118)
we get the pixel value of the jthe basis vector at the two dimensional
position (& — m) and shift it by m to reconstruct the pixel x. The

corresponding activity is hj,(m). By combining egs. (3.117), (3.118) and
the two dimensional convolution operation

> " a(m)b(@ — m) = convy(A, B)(x) (3.119)

the reconstruction for each pixel r,,(x) and the image reconstruction R,
becomes

Z hin(m)w;(z —m) = ZCOHV2(Hjn, W) (z),  (3.120)

= ZCOHVQ H;,, W;). (3.121)
J
The activations Hj,, € RX*Y are now images with as many elements as
there are pixels in the input. The anchors in the convolution in eq. (3.121)
are set so that the activation hj,(m) corresponds to a shift of the center
pixel of the corresponding basis vector to the pixel position (m). The
process is illustrated in fig. 3.3. Notice that for the reconstruction, each
basis vector can be shifted to each pixel position. Therefore, the basis
vectors can be spatially restricted by setting a mazimum receptive field size
(mRFS).
The new reconstruction in (3.121) leads to the following reconstruction
energy term

1 1 -
Erec = 3 Z Vo — Ryl = 5 Z Vi = ZCOHV2(Hjm WJ)||§7 (3.122)
n n 7
with the gradients for the activities

VH,, Erec = corra(R, W;) — corra(V,,, W), (3.123)

+ _
= (VH]n Erec) (ijn Erec
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() hJ'n(m)
+
ohjn(m’)
W, H;jy, Rjn

Figure 3.3: Illustration of the translation invariance. For each input, each
basis vector W; has a corresponding activation image Hj,. For the partial
reconstruction R, the basis vector is shifted in a way that the center of the basis
vector is located on the position of a single activation. For each activation pixel m
there is a partial reconstruction R;,.m» and the combined partial reconstruction
is Rjn =, Rjnm.-

with the two dimensional correlation
Z a(m)b(x + m) = corra(A, B)(x). (3.124)
The gradients for the basis vectors are

VWJ_ Froc = Z corra(R,, Hjr,) — Z corra(Vy,, Hjy) . (3.125)

n n

N _
= (ij Erec) ::<Vw_7. Erec)

The derivation of the gradients can be found in appendix C.1.

3.5.2 Sparse Activations

The sparsity energy function has to be adapted, due to the new dimen-
sionality of the activations. For the translation invariant NMF the energy
function becomes

En =X Y hjn(m), (3.126)

n,j,m

with the positive gradient component

+ _
(Vh,(m)Bn)* = An. (3.127)
IP 218.73.216.36, am 20.01.2026, 08:46:26. (geschitzter Inhalt.
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3.5.3 Orthogonality between Positive and Negative
Representation

In case of a multidimensional input, the translation invariant version of
orthogonality between the positive and negative components, as discussed
in section 3.4.8 is
1 1
EorthoSign == QRIR— = 5 Z Tnd+(x)rnd— (m) (3128)

xz,n,d
The additional feature dimension of the reconstruction can again either be
represented by the basis vectors or activities as discussed in section 3.4.3
and section 3.4.2.
If the additional feature dimension is represented by the basis vectors,
the energy function becomes

1
EorthoSign = 5 3 hin(m)* (War (x — m)wg_ (@ —m)),  (3.129)
x,n,dj,m

with the gradient components for the basis vectors

(VWjJrEorthoSign)+ = Z COTIT2 (Rn,, Hjn), (3130)
(VW7+EorthoSign)_ =0, (3.131)
(VW]‘, EﬂorthoSign)+ = COIT2 (Rn-i-, Hjn), (3132)
(ij,EorthoSign)7 = 07 (3133)

and the activities
(ijnEorthoSign)Jr = COI‘I‘Q(Rn_, Wj+) + Corr2(R7l+7 Wj—)a (3134)
(VH_M EorthoSign)i =0. (3135)

If the additional feature dimension is represented by the activations, the
energy function becomes

1
Eorthosign = 5 > Zhjm(m)hjn_(m)wjd(c —m)?, (3.136)
xz,n,d J
with the gradient components for the basis vectors

(vV_Vj EorthoSign)+ = Z COITQ(Rn+> H‘]TL*)

n

+ corre (R, Hjpy ), (3.137)
(ij EorthoSign)_ = 07 (3138>
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Wj Wk ijnv kan ijru ij’n ijnv ka’n

Figure 3.4: Visualization of overlapping receptive fields. On the left are two
example basis vectors and on the right three examples for overlapping receptive
fields. From left to right: Overlap of two different basis vectors anchored at
the same position, overlap of the partial reconstruction of the same basis vector
anchored at different positions and overlap of the partial reconstruction of the
two different basis vectors anchored at different positions.

and the activities

* = corra(Ry—, W),
= O,

= coer(Rn+, w;),

Hj, orthoSign

+

(Ve )
(VH;,. EorthoSign)
(VH;,_ Eorthosign)
( )"

VHJ,L, EorthoSlgn

This completes the derivation of the reconstruction-based orthogonality
in case of the translation invariant NMF.

3.5.4 Enforced Topological Sparsity

One of the benefits of having a translation invariant learning algorithm
is that interactions between neighboring activations can be addressed. In
section 3.3.6, the idea of enforcing parts-basedness is introduced in terms
of a local competition, i.e. inhibition, between different basis vectors. This
idea is now extended for a lateral competition between spatial neighboring
activations. The combined local and lateral competition favors topological
sparse activations and as a consequence parts-based and prototypical basis
vectors.

The topological sparsity is achieved via a weak constraint, i.e. an ad-
ditional energy function that penalizes overlapping receptive fields. There
are three cases as depicted in fig. 3.4. Overlaps between different basis
vectors V_Vj and W), at the same spatial position, overlaps between shifted
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versions of the same basis vector Wj and overlaps between shifted versions
of different basis vectors V_Vj and Wj,. Or, in simpler terms, any overlap
of a basis vector Wj shifted by m and the reconstruction at the same
position, except the part of the reconstruction that belongs to the identical
basic vector and the identical shift m.

With Zk’,m’ Ryyn = R, the energy function for local and lateral
competition is

Ey= > RO Rimn+ > Rjmm+ Y.  Rimm) (3.143)

n,j,m k#j m’#m k#j,m/£m
1
=5 > B (Rn - ijn) (3.144)
n,j,m
1 1
D) Z R, R, - 3 Z R pnRjmn, (3.145)
i n,j,m
=Ep :=FEps

with the gradients for the activities

ijnEp = VHanpl - VHanpQ (3146)
= COIT9 (Rn, W]) — HjnWjTWj (3147)

and the gradients for the basis vectors
Vw,Ep =V, Epy — Vi, Epo (3.148)
= corry(Ry, Hj) = W; Y HJ Hj,. (3.149)

The detailed derivation of the gradients can be found in appendix C.2.
The gradients for the first part of the competition energy term E,; (3.146),
(3.148) are identical with the positive components of the gradients of the
translation invariant reconstruction term (3.123), (3.125) and therefore
do not need to be computed again for the energy function E,. Thus,
the gradients of the competition term come with negligible additional
computational costs.

3.5.5 VNMF Learning Algorithm

The translation invariant learning algorithm can be combined with all the
extensions introduced in the section on non-negative representations of
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multidimensional data 3.4. One particular case, the vector non-negative
matrixz factorization (VNMF) is used to learn the generic, prototypical
patterns for the proposed FFNN hierarchy. It is a combination of translation
invariant reconstructions, sparsity in the activations, strong non-negativity
and enforced parts-basedness. The energy function is

1 _
Evnur = 5 D MVag =Y conva(Hju, Wi)3
n.f j

- Ap% Z Z R (Rnf - Rimnf) (3.150)

n,f jm

+An Y hjn(m).

n,j,m

The gradients can be directly derived from the equations (3.123), (3.125),
(3.127), (3.146) and (3.148). The learning algorithm for the VNMF is
in principle identical to the one proposed for the sNMF algorithm in
section 3.3.5. However, due to the translation invariance, the gradient
components are calculated per image, resulting in a slightly modified
learning algorithm:

e Preprocessing
— Normalize V = ﬁ(y)’

— initialize H and W randomly.

e Loop for i iterations
1. Loop for each of the N inputs
a) Calculate R, =3, conva(H jn, W),

(Va,, Evaur) ™~
(Va,, Evaur)t?

¢) calculate R,, = Zj convy(Hjp, ij%

b) update H;, — Hj, o vied{l,..,J},

d) calculate (VWEVNMF)I and (VWEVNMF);

2. update W — Wo (VwBynme) - with

(VwEvNwur)T?
(VwEvynur)™ =Y, (VwEyNur);, and
(VwEvNMr) ™ = 2, (VwEvNME), s

3. normalize W; = %, Vie{l,..,J}.
2 ¥
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The algorithm has two kinds of free parameters. First, the basis vector
parameters, i.e. the number of basis vectors J and the maximum receptive
field size mRFS. And second, the energy parameters, i.e. the sparsity
parameter A, and the parameter A, for the enforced parts-basedness. The
influence of these parameters on the pattern learning and the classification
will be discussed in the corresponding chapters.

One of the benefits of the proposed energy function is that all three
energy functionals scale with the activation, thus their relative contribution
to the overall energy is coupled. As a consequence, the parameters A, and
Ap can be set independent of the total number of input images as well as
the size of the images and the occurrences of each basis vector. This makes
the algorithm robust and easy to parametrize. The default parameters for
the energy function are set to A, = 0.1 and A, = 0.2.

3.6 Algorithm Summary

The algorithms introduced in the chapter are used to learn the simple
cell patterns of the proposed FFNN for biological motion recognition.
For the optical flow estimation (discussed in chapter 4), the proposed
OFE algorithm is based on the multidimensional, translation-invariant
VNMF algorithm. The multidimensional vector field is represented by weak
non-negativity (see section 3.4.7 and the additional feature dimension is
represented in the activations (see section 3.4.3). To care for the ambiguous
representations encountered with the weak non-negativity, the penalization
of opposing directions (see section 3.5.3) is included into the optimization.

For the feature layers, the VNMF algorithm is applied to learn the simple
cell patterns. In case of the optical flow patterns, the multidimensional
vector fields are represented by strict non-negativity (see section 3.4.6) and
therefore do not require a penalization of the opposing motion directions. As
opposed to the OFE algorithm, the additional dimensions are represented in
the basis vectors (see section 3.4.2) and not in the activations. For the static
stream, thus the gradient patterns, the input is not multidimensional and
the algorithm does not need an explicit multidimensional representation.

All three algorithms®) enforce non-negativy and have the sparsity and
inhibition term included into the optimization.

4)In appendix D there is a fourth, non-translation-invariant algorithm based on sSNMF,
adapted for spatio-temporal data.
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4 Optical Flow Estimation

As discussed in the introduction, motion is an useful source of information
for a variety of tasks, such as the recognition of human actions, gestures
or face expressions. Motion couples two important properties, form and
temporal variations. Rigid forms can only change consistently, thus motion
patterns are highly correlated to the underlying structure of the moving
object.

There are multiple ways to describe motion, e.g. by spatio-temporal
trajectories of key-points or via dynamical models. A representation that
captures the relations between movements and shapes are optical flow fields
(OF-fields). OF-fields describe the movement of every pixel in an image
Z(x) with a two dimensional motion vector

_ (Ve(®)
V(x) (Vy(m)> . (4.1)

Due to the dense representation the OF-fields are independent of pre-
processing such as key-point or object detection that are necessary for
trajectories or model-based representations of motion. Since every pixel
has a motion vector V(x), OF-fields can be easily combined with other
pixel-based information, such as gradient- or color information. Unlike the
color values of an image, an OF-field cannot be measured, but has to be
estimated.

Optical flow estimation (OFE) is a vivid research topic that was originally
introduced by Horn and Schunk in 1981 [50]. To successfully estimate an
OF-field multiple assumptions have to be made. Some of them lead to
rather reasonable simplifications while others lead to systematical errors,
highlighting the need for robust OFE-algorithms.

In this chapter a novel OFE-algorithm based on non-negative, translation
invariant sparse coding is introduced. The chapter is organized as follows:
First, the problem of OFE is introduced together with necessary conceptual
assumptions and conditions for OFE-algorithms. The section on related
work critically discusses recent approaches on OFE including benefits and
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77

IREIRERE

T(x,t) L(x,t+1) ) %1 Vo )2

Figure 4.1: Illustrative examples for the ill-constraint nature of OFE. All three
OF-fields V1, V2 and Vs can explain the displacement between the two consecutive
images Z(t) and Z(t + 1).

drawbacks in relation to the proposed method. Then the conceptual idea
of our OFE-algorithm and its mathematical formulation is stated. Finally
examples on real world data are shown.

4.1 Problem Formulation

In the following the basic ideas and assumptions underlying OFE are
discussed on the example that is illustrated in fig. 4.1.

Looking at the two consecutive images Z(t) and Z(t + AT') the intuitive
interpretation is that the bar in the middle is moving one step to the right,
which is represented in the optical flow field V;. But this is not the only
possible optical flow field that explains the difference between the two
images. Alternatively, the upper part of the bar could be moving to the
lower right, while the lower part is moving to the upper right position (Vs)
or the bar could actually be moving to the corner and the bar in the corner
could be moving into the middle of the image (V3). Even though there is
no correct answer our human intuition favors V; over the others, because
we make implicit assumptions to find the most reasonable explanation,
i.e. the explanation that is most consistent with our past experience. The
first and most important is

Assumption 4.1 (Brightness Consistency (BCA)). The gray value of each
pixel element between two time steps t and ¢ + AT does not change:

I(zx,t) =Z(x + V(x)AT),t + AT). (4.2)

Le. gray value changes are only caused by motion and not e.g. by illumina-
tion changes.
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Assumption A4.1 is reasonable if there are only small movements between
the two images, because for larger movements it is more likely that novel
objects enter the image, objects leave the image or objects get occluded.
In all three cases eq. (4.2) is no longer valid, because the novel or lost pixel
cannot be found in the corresponding image. However, those violations of
assumption A4.1 depend on the nature of the movement as well as on the
time step AT and are neglectable under

Condition 4.1. The time between two frames AT is so small that the
motion ) of each pixel is smaller than the change in the local image
structure.

The next assumption is

Assumption 4.2 (Continuous Motion). Motion is a continuous process
and thus the movement of objects between two consecutive frames is locally
bounded.

As long as condition 4.1 is fulfilled assumption A4.2 is valid for all
physical objects human observe in their natural surrounding. Due to
assumption A4.2 we intuitively favor V; over Vs.

The first two assumptions, especially the BCA are of fundamental impor-
tance and almost all OFE-algorithms are based on them. However, they
are simplifications and are systematically violated e.g. in case of occlusions
(where new objects can appear or disappear) or when objects enter or
leave the image. The consequence is that OFE-algorithms have to be
highly robust, not only to image noise, but to violations of the underlying
assumptions as well.

Because of assumptions A4.1 and A4.2 the OF-field V5 is discarded, yet
there are still two possible options, V; and V. The reason why humans
favor V; over Vs is that the two blue pixels are not seen independently, but
are grouped together to become a vertical bar, that is a non-deformable
rigid object. For rigid objects, there is the assumption

Assumption 4.3 (Rigid Object Motion). On a local scale, pixels of rigid
objects have similar motion.

Assumption A4.3 is again motivated by physical constraints. However,
like the first two assumptions it is only valid under condition 4.1 and
depending on the similarity model only for local regions.l.e. with the
projection equations it can be shown that rigid objects movements parallel
to the projection plane can be described by affine models.
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If all three assumptions are applied to the problem depicted in fig. 4.1,
the OF-field V; is the most probable interpretation. Unfortunately, as-
sumption A4.3 has a crucial condition, i.e. it must be known which pixels
belong to the same object. This requires a perfect image segmentation not
only for objects, but for rigid objects. FE.g. it is not enough to separate
a human from a background, but his limbs must be segmented as well.
Such a fine segmentation is not available in general. The problem at hand
is actually a hen-and-egg dilemma, because if the OF would be known,
the knowledge could be used with the model assumption to segment the
rigid objects. On the other hand if the segmentation is known, it can be
combined with assumption A4.3 to solve the OFE-problem.

Assumption A4.3 is of fundamental importance for OFE-algorithms,
because it describes a way spatial relations can be incorporated into the
OFE-problem. There are temporal relations for OF-fields as well, e.g. that
movements and thus OF-fields are often temporally smooth. Here we
encounter a similar problem as for the introduced spatial relations. Because
the temporal smoothness is not valid at the beginning and at the end of
movements, just like the spatial relations are not valid at the beginning and
end of rigid objects. So in addition to a spatial segmentation, a temporal
segmentation is required.

The analysis of the optical flow estimation problem as illustrated in
fig. 4.1 can be summerized as follows:

Optical flow estimation is an ill posed problem that can only be solved by
including reasonable assumptions derived from physical constraints found
in the real world. The first and most important is the brightness constancy
assumption. Further assumptions include spatial or temporal relations.

Before the discussion about the spatial relations is continued, a mathe-
matical formulation based on the BCA equation (4.2) is introduced together
with two algorithmic approaches of how to tackle the OFE-problem.

4.1.1 General Algorithmic Approaches

There are two different algorithmic approaches how to solve the OFE-
problem using the BCA equation (4.2), correlation methods and differential
methods. While correlation methods try to find similarities between two
consecutive images Z(x,t) and Z(z,t 4+ 1)V, differential methods focus on
the differences, thus the temporal derivation Z;(x,t) = Z(x,t + 1) — Z(x, t).
In other words, the correlation methods try to find correspondence where

DWithout the loss of generality the the time step is set to AT = 1.
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the difference is low, while the differential methods try to find areas with
high temporal difference and then search for the motion that explains this
temporal derivation. Even though they are both derived from the BCA
the two methods follow different principles. To successfully estimate the
optical flow, both methods relay on image structure which will be discussed
for each method.

4.1.2 Correlation Methods

Correlation methods or patch matching algorithms take a pattern A(x)
within a window around pixel & out of image Z(x,t) and try to find it
within a local search area S(x) around pixel  in the next image Z(x,t+1).
The position y € S(x) with the highest correlation is then used to calculate
the optical flow vector V() = y — «. This local pattern search is done for
each pixel € X in the entire image. The limited search radius is a direct
consequence of the continuous motion assumption A4.2.

The right choice of an appropriate window A(x) is crucial. The as-
sumption is that all pixels in this window have the same translational
movement and it is thus directly related to assumption A4.3. However,
assumption A4.3 refers to pixels on the same rigid object and the knowledge
about pixel-to-object correspondence is in general unknown, so a simplified
assumption is

Assumption 4.4 (Predefined Local Neighborhood). Pixels on a predefined
local neighborhood A(x) around pixel & share the same translational
movement V(x).

Assumption A4.4 is of course violated on object borders, but often a valid
simplification. The choice of the pattern size depends on the local image
structure. Correlation methods are local methods because the translational
model is only valid on a local scale, so the spatial relations are restricted
to small local areas. Local methods are prone to the aperture problem.
In a local window, even with spatial relations, the movement direction is
not always clearly defined. Only in the context of a larger structure this
problem can be solved.

Correlation methods are widely applied, because they are simple and
easy to implement. However, to find unique correspondences correlation
methods require image structures. The translational model restricts the
spatial relations to local areas that are analyzed independently, which
makes correlations methods suffer the aperture problem.
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Figure 4.2: Illustrative example for the differential method. The pixel at position
x2 marked in image Z(x, t) moves to position x; in image Z(x,t + 1). Thus, the
gray value at position x; changes, which results in a temporal gradient.

4.1.3 Differential Methods

Correlation methods take the BCA and try to find similar patterns in two
consecutive frames. The displacement between the two positions is then the
movement of that particular pattern. Differential methods have a different
approach. The BCA states that all temporal changes in an image sequence
can only be caused by pixel movements. Wherever a temporal variation
occurs, movement takes place. Differential methods try to find the motion
that is related to that temporal derivations.

Image structure is crucial for differential methods, because if movements
occur in homogenous regions, there is no temporal derivation at all. Only
pixels with different gray values can impose temporal variations. Motion is
in general only observable in structured image regions.

One characteristic of image structure is the presence of spatial derivations
I, = g—g and 7, = g—z. It is now discussed on a simple example how
differential methods use the temporal and spatial image derivations to
estimate an optical flow field V.

Image Z(x,t) as shown in fig. 4.2, has a constant linear gradient Z, = ¢
along the x-Axis. The motion for each pixel in the entire image is V, = 1
and V, = 0. The shifted image Z(«,t + 1) for the next time step is shown
in fig. 4.2. The gray value of the pixel at position x; for time step t is
Z(x1,t). Because of the constant image gradient Z, the gray value of the
pixel at position 1 will change its gray value linearly depending on the
spatial difference between x; and the former position x5 of the pixel that
is now at position x1. In mathematical terms
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I($17t—|—1) ZI(.’Bl,t)—FIx(.’Bl)(.’BQ—.’El) (43)
I(ll?l,t—i-l) —I(:cl,t) :Im($1>(w2_wl> (44)
Li(x1) = Lo (1) Vo (1), (4.5)

with the given temporal derivation Z;(x1) = Z(x1,t + 1) — Z(x1,t) and
spatial derivation Z, (1) and the unknown motion vector V,.(¢1) = &1 —xs.
Eq. (4.5) can be reformulated to

Vo(xy) = =T (1) /Lo (21). (4.6)

For a positive gradient ¢ > 0 and motion in positive x-direction V, the
temporal gradient is negative Z; < 0, because the former pixel with the
higher gray value will get replaced by a pixel with a lower gray value. This
relation is mathematically described by eq. (4.6), which can be solved to
get the optical flow vector V,(x1).

The example at hand illustrates how the optical flow can be calculated
out of the temporal and spatial image derivatives. However, two relevant
simplifications are made in this first example. First, only one-dimensional
movement was considered. For the two dimensional problem eq. (4.5)
becomes

T.(@)Va(®) + I, (@)V, (@) + Ti(x) = 0, (4.7)

which is the linear brightness constancy equation (BCE). It can be
derived directly from the general BCA eq. (4.2) by a first order Taylor
series approximation. The BCE is the basis for almost all OFE-algorithms
based on differential methods and also of significant importance for the
approach proposed in this thesis. It is the linearized version of the BCA,
which brings us to the second simplification used in the above example.
Only linear spatial gradients were considered, which is reflected by the

Assumption 4.5 (Linear Spatial Gradients). On a local scale all spatial
gradients Z(x) of image I(x) are linear.

Assumption A4.5 is only valid for small local scales and a simplification
in most cases. A simple way to make image gradients more linear is to filter
the image with an Gaussian filter before calculating the image gradients.
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A closer look at the BCE eq. (4.7) reveals that for each pixel @ there is
one equation and two unknowns V,(x) and V,(x), so the problem is ill-
constrained and needs additional assumptions like i.e. the spatial relations
(assumption A4.3). Also, if there are no spatial derivations the BCE
eq. (4.7) yields no information which again shows the dependence on image
structures for differential methods.

4.1.4 Method Comparison

Correlation methods directly search similar patterns and do not need
any linearization assumptions like the differential methods. They are
limited to translational models, because pattern deformations are hard
to include into a correlation scheme. Moreover correlation methods are
always locally bound and suffer from the aperture problem. It is easier to
include more complex motion models into differential methods, because
the OFE-problem for differential methods is not a patch matching, but
an optimization problem. The BCE 4.7 is can be minimized by different
optimization techniques. A very simple way is to use an euclidean error
measure and minimize the differential and convex function

i DI Ta(@)Va(@) + I, (@)Vy (@) + o) 3 (4.8)

with gradient descent. Because the differential methods allow the use
of optimization techniques learning algorithms can be incorporated in a
straightforward manner. This is the main reason differential methods are
chosen as the algorithmic basis for the OFE-algorithm in this thesis. The
learning algorithms introduced in chapter 3 are all based on multiplicative
gradient descent and thus need a differential energy function to be applied
to.

However, as discussed in the above section, the differential method
(as well as the correlation method) is only an algorithmic approach for
the BCA and additional assumptions are required. OFE consists of two
sub-problems:

1. Conceptual problem formulation (physical assumption and the general
algorithmic approach).

2. Solving the formulated problem (robust optimization methods).
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The proposed learning based approach tackles both sub-problems. A set
of local neighborhoods which fulfill assumption A4.3 is learned and the
OFE problem is solved with an algorithm derived from the NMF algorithms
introduced in chapter 3.

Next, related work on how to include the spatial relations to the BCE
and how they are solved is discussed. The discussion will be focused on a
conceptual problem formulation rather then on the optimization techniques.

4.2 Related Work

In the OFE literature there are numerous optimization techniques that
describe how to robustly solve the BCE and its additional energy functionals.
E.g. Sun et al. [98] show that if state-of-the-art optimization methods are
applied to the original formulated OFE algorithm introduced by Horn and
Schunk [50] it is competitive with most of the current OFE-algorithms. The
conceptual ideas of how to incorporate additional constraints to the BCE
are analyzed in the following, especially how to include spatial relations,
thus assumption A4.3.

4.2.1 Horn and Schunk

The BCE (4.7) was originally formulated by Horn and Schunk [50] with an
additional term that is related to the spatial assumption A4.3 but that is
not restricted to neighbors on the same rigid object, but rather to every
pixel neighbors.

Assumption 4.6 (Horn and Schunk (HS)). All neighbors move similar.

The corresponding energy function is

E = Epci+ Eus = Y _ | L(@)Vo(@) + Z,(@)V,y (@) + T(x) |5 (4.9)
+ s (Ve (@) = Va(x = D3 + [Vy (@) = Vy(z - 1)]3). (4.10)

The additional energy function Egg is characteristic for all OFE-
algorithms based on the HS assumption. It has two interesting properties.
First, the optical flow gets smoothed, which leads to smooth motion bor-
ders. The second property is, that the HS energy function finds solutions
for unstructured areas and thus gives fully dense optical flow fields. In
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homogenous areas the BCE gives no information about the optical flow,
because the spatial derivations are zero, only the Fyg energy function is
active which results in highly regularized OF-fields. This can be fairly rea-
sonable in some cases but does not guarantee correct estimations since the
assumption A4.6 is of course not valid for all cases, because it completely
discards any information about the local object segmentation.

4.2.2 Lukas and Kanade

Another method for OFE was proposed by Lukas and Kanade [71] which
introduced a local method in contrast to the global HS approach. Here the
idea is that the BCE is not solved for each pixel independently, but that a
predefined area A(x) around each pixel  has an identical motion vector

V(x).

Assumption 4.7 (Lukas and Kanade (LK)). All pixels in a predefined
neighborhood A(x) move similarly.

So instead of the under constrained problem of a single equation and the
two unknowns V,(x) and Vy(x) for each pixel « there is an over-constrained
problem with a linear system of equations with the size of the pixels in
A(z) and the two unknowns V,(x) and V,(x). The corresponding energy
function is

E=Y Z |Za(y) Ve (®) + I, (y) Vy (@) + Ze(y) 3. (4.11)

T yecA(x

Eq. (4.11) can be solved directly with least squares solvers. Unlike the
HS approach the LK algorithm is a local method. On the one hand the
LK approach gives no reliable estimates in unstructured areas and is more
prone to the aperture problem. On the other hand it is more robust in
structured areas and does not tend to over-regularize as compared to the
HS approach.

4.2.3 Extensions of the Classical Methods

There are several extensions of the two classical methods mentioned above.
E.g. Bruhn et al. [11] combine the local LK and global HS approach to
get the density and regularization properties of the HS energy functional
eq. (4.10) and the more robust local LK eq. (4.11). The conceptual problems
related to the assumptions A4.6 and A4.7 are not considered.
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Another typical extension is the use of more complex models than the
translational motion model with the two parameters V,(x) and V,(x).
E.g. affine motion models with its six free parameters can better describe
local optical flow fields than translational models [16, 44]. While affine and
other polynomial methods are better suited to model the local neighbor-
hoods they still are spatially smooth and cannot model motion boundaries.

4.2.4 Multi-Scale Methods

A major problem for the application of OFE algorithms is that condition 4.1,
thus the restriction to small displacements between two consecutive frames,
is often violated. Consequently the BCA A4.1 and the linearization as-
sumption A4.5 are not valid, which leads to erroneous estimations.

To overcome this problem, multi-scale methods [3, 11, 98] are commonly
applied together with the differential approach. The underlying idea is that
larger displacements correspond to small displacements on lower image
scales. By reducing the image resolution and hence the level of detail in the
image, the BCA 4.1 and the linearization assumption A4.5 become valid
again. The optical flow results for this low-scale images are projected onto
the underlying higher resolution image where the detailed optical flow is
estimated. This process is continued throughout all scales until the original
high resolution image is reached.

4.2.5 Other OFE-algorithms

There exist various other OFE-algorithms. Interesting examples are meth-
ods that make use of learned models to describe the local neighborhood.
The algorithm proposed in [31] applies local optical flow patterns that are
learned with PCA. A similar method proposed in [75] uses global PCA
patterns, while in [57] local patterns are learned with a sparse coding
algorithm. All these methods have in common, that they need optical flow
fields to learn their patterns. The local method proposed in [31] uses the
learned model to directly describe the OF-field, so the optimization problem
becomes a model parameter estimation problem. In [57, 75| the optical
flow has to fit a model defined by the prelearned patterns. The reconstruc-
tion error, thus the error between the estimated OF-field and the model
build with the prelearned model parameters, is an additional constraint
incorporated into the optimization as an additional energy function.
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Besides the learning based algorithms, there exist OF-methods that
combine segmentation and optical flow estimation [98, 99] or that exploit
temporal relations [112, 113].

4.3 VNMF-OFE Approach

The concept of parts-based models is now used to find locally bound spatial
relations based on the image statistics. The main idea is that

Assumption 4.8. All natural occurring optical flow fields can be described
by a sparse, non-negative, linear superposition of local, shift-invariant
patterns. Each pattern describes a local neighborhood with a consistent
flow field.

The set of basic patterns is learned by directly solving the BCE with
the model assumption using multiplicative gradient descent. Unlike re-
lated approaches the OF-field is directly restricted to be the model rather
than adding a constraint that the OF-field is similar to a model. The
additional constraints influence the nature of the model, favoring parts-
based, segmentation like representations, because they best represent the
physical constraints formulated in the spatial assumption A4.3. The main
additional constraint on the model is non-negativity for all components,
including the activations that describe the motion direction of the learned
local neighborhoods. Non-negativity is achieved by the direction selective
representation introduced in section 3.4. In addition to the non-negativity,
sparsity on the amplitudes of the activations, orthogonality between the op-
posing directions and lateral competition are enforced by additional energy
functionals. Once the basis vectors that describe the local patterns are
learned, the OFE-problem is reduced to a parameter estimation problem,
similar to [31]. The approach is now introduced in a formal manner.

4.3.1 Restrict Optical Flow Field to Model

The basis for the VNMF-OFE algorithm is the linearized BCE 4.7 with an
euclidean penalty function

1

Epcr =53 (Te(@)Val@) + T, @)V, (@) + L))" (4.12)
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The optical flow components V,, and V, are now restricted to global models

Vi = Ra(Hay W), (4.13)
Vy =Ry(Hy W), (4.14)
that depend on the basis vector set W and the corresponding direction

specific activation sets H, and H,. Eq. (4.14) inserted in the energy
function eq. (4.12) gives the new BCE

1 2

Epcr=33 (Im(w)Rz(w) +T,(2)R,y () + It(ac)) . (4.15)
x

The model itself is a linear superposition of shift invariant basis vectors as

described in section 3.5

Z hje(m)w;(x —m), (4.16)
Z hjy(m)w;(x —m), (4.17)

where both directions z and y share the common basis vectors Wj7 but
have individual activations H;, and H;,.

4.3.2 Enforced Non-Negativity

To achieve a parts-based composition and to be able to apply the NMF
update rules introduced in chapter 3 all components in the BCE (4.15) are
forced to be strictly non-negative. Since the optical flow fields can contain
positive and negative values, the model has to be split up as discussed
in the algorithmic section 3.4.3. The basis vectors should describe the
local neighborhoods, so the additional dimensions that encode the different
directions are represented in the activations of the model. The condition
for the non-negative basis vectors is

W > 0. (4.18)

The models which must be able to represent positive and negative values
for the different movement directions become non-negative by splitting
each component into its positive and negative representation, thus

Rz = Rac+ - R.r—v

Ry =Ryt —Ry—

Ras >0, de{zx,y},se{+, -} (4.19)
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For the four directions right, left, up, down the corresponding activations
are

des > 07 de {mvy}vs € {+7 _} (420)

To make every component in the BCE (4.15) non-negative it is not sufficient
to apply these conditions to the model components alone, but to split up
the gradients Z,, Z, and Z; as well.

T, =Ty — T,

1y =1yy — 1y,

Ly =1oy — 1,
Tys >0, ge{z,yt},se{+ -} (4.21)

The non-negative representation of the BCE (4.15) is

Eper =3 3 (T (@) - T (@) (Ret (@) ~ Re ()

xT

+ (L4 (@) — Ty () (Ry s (x) — Ry (@)
+ (T (@) - T ()] (4.22)

Analyzing the non-negative BCE (4.22) reveals that even though the
representation, thus all the components fulfill the non-negative constraints,
the model itself allows overlaps between the non-negative components that
represent the positive and negative parts. It is thus a form of the weak
non-negativity as discussed in section 3.4.7. As a consequence subtractions
in the reconstruction are possible which is contrary to the idea of a purely
additive model, i.e. a parts-based decomposition. To privilege but not
restrict the model to purely additive behavior additional constraints are
added via additional energy functionals.

4.3.3 Penalize Opposing Directions

In section 3.4.8 a penalty function for opposing directions is introduced.
The same energy function is now applied to penalize overlaps of opposing
directions s and § (s = —, if s = + and § = +, if s = —). The energy
function is

ZRdS YRas (). (4.23)
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Throughout the experiments the Er has the same weighting factor as
the Epcop term. Like the brightness constancy energy Epcpg, the energy
function Eg is directly depending on the reconstruction and therefore both
energy functions scale accordingly, so that adaptation of the weighting
factor is not necessary. As a consequence, the term for the penalty of the
opposing direction is parameter free.

4.3.4 Sparse Activity Amplitudes

To make the activations of the model sparse the energy cost function is
extended by an additional sparsity energy term. As discussed in the section
on multidimensional activations, section 3.4.3, the classical sparsity energy
contribution

Ep= Y llhjas(m)l (4.24)

Jym,d,s

is not directly applicable, because each of the four directions is penalized
independently of the others. This favors movements that have a high
amplitude towards one of the four directions and would discard small
angular variations towards any of the two neighboring directions. Instead
of eq. 4.24 the energy function proposed in section 3.4.4, that penalizes the
amplitude of the activity vector, rather then the single directions is applied.
The energy function for the sparsity of the activation amplitudes is

> Hias(m) . (4.25)
st [ M (m)?

In the case of one dimensional activations the two equations (4.24)
and (4.25) are identical.

En

4.3.5 Lateral Competition

As discussed in section 3.5.4 a topological sparse representation for the
translation-invariant model can be favored by a penalty on the overlaps of
the partial reconstructions. In contrast to penalty of the opposing directions
in eq. (4.23), the penalty on the partial reconstructions is performed for
each of the four directions independently. The energy function is

Ep = % Z ZRdem($)<kz:Rdskn(w) - Rdsjm(m)>~ (426)

x,d,s j,m
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4.3.6 VNMF-OFE Learning Algorithm

The overall energy function consist of four parts. The non-negative
BCE (4.22), the penalty function for the opposing directions in eq. (4.23),
eq. (4.25) for sparse activity amplitudes and the lateral competition term
in eq. (4.26) for topological sparseness and an enforced parts-based decom-
position. The combination of the four energy functions allows the learning
of the local neighborhoods with translational motion for which the spatial
relation assumption A4.3 is valid. The overall energy function is

Eyxwr.ore = Epor + Er + MEr + Apar Ep (4.27)
= 2 Y (s @) ~ T (@) (R (&) — Re ()
b Ty 8) — Ty )Ry () — Ry (0)
 Ti) - T (@)

v > Rusle) R

h; s
Y jds (M)
j,m.d,s \/Zd/75, hjd/sl (m)Z

+ )\part% Z Z Rdsjm (II)) ( Z Rdskn (Il?) - Rdsjm(w)) .
k,n

x,d,s j,m

To estimate the optical flow with eq. (4.28) the unknown basis vector set
W has to be learned and the activations H have to be detected. While
the basis vectors describe the local neighborhoods and only have to be
learned once, the activations are the parameters required to get the actual
optical flow field. A key difference to most learning based approaches in the
literature is that for both tasks the same energy function eq. (4.28) and the
same algorithm is used. Both learning algorithms consists of two parts, the
initialization and the updates, which are performed in an iterative process.
The algorithm for learning the basis vector set W is:

e Preprocessing

— Normalize 7 = ﬁ,
— calculate the image gradients Z,y,Z,_,Zyy, 2y, 1y, 1y,

— initialize H and WV randomly.
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e Loop for i iterations
1. Loop for each of the N inputs
a) Calculate Ryq = >_; conva(Hjnd, W),

(V#,,q EvNvr-oFE) ~
(Ve

c¢) calculate R,q = Zj conva(Hjna, Wir),

d) calculate (VWEVNMF-OFE): and (VWEVNMF-OFE);

b) update M ng = Hjnd ©

jnaEvNyME-oFe) T

(VwWE -OFE) ;
2. update W — Wo %, with

(VwEynur-ore)T = >, (VwEvNur-ore),, and
(VwEvnmr-ore)” = 2, (VwEVNMF-OFE);, »

3. normalize W; = \/%, Ve[l ... J].

The gradients for the basis vectors and activations are:

(VH_deVNMF—OFE) " = CoITy ((Ind 0A+1 ;0B), Wj), (4.28)

(VyjndEVNMF_OFE) = COITy ((Ind oB+1 ;oA), V_\/j), (4.29)

with
A=Tyi+ > TnaoRua, (4.30)
d
B=7T,_ + ZIM oR, 4 (4.31)
d

where d describes the opposing direction to d (e.9. d = x—,d = z+).
The gradient for the sparsity energy function is

_ Hjnd
[Ajn(m)]|2

The gradients for the penalization of the opposing directions are

(vHﬁLdEH) " (4.32)

(VHMER)+ = corrs (Rua, W) ) (4.33)
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Figure 4.3: Six example images of a smiling sequence of the MMI dataset [104].

and

(VWjER>+ _ Zcorrg (Rn(i,Hjnd). (4.34)
d

The two parameters A, and Apare control the influence of the sparsity
and parts-based terms. They both scale relative to Epcp and are therefore
easy to parametrize as will be discussed throughout the experiments.

4.3.7 VNMF-OFE Algorithm for Activation Inference

Once the basis vectors are learned only the activations have to be calculated
to estimate the optical flow. The algorithm for estimating the optical flow
with prelearned basis vectors is:

e Preprocessing

— Normalize 7 = ﬁ(z)v
— calculate the image gradients Zyy,Z,—, Zyy,Zy—, Ly, Ly,

— initialize H randomly.
e Loop for N iterations
1. Calculate Rpq = Zj conva(Hjna, Wj),

(Vg EvNmp-oFE) ™
(Ve

2. upda'te Hj”d - Hj”d ° jndEVNl\/IFfoFE)+ ’

The number of iterations for the optical flow estimation is set to N = 30.
The gradients are identical to the ones used for learning the basis vectors.
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4.4 Learning the Basis Vectors

In the following the parameter variations for learning the basis vectors W,
thus the local receptive fields with consistent motion, are discussed. The
experiments are performed on a video of a smiling person from the MMI
face expression recognition dataset [104] as depicted in fig. 4.3. Since the
focus of the OFE in this thesis is on finding suitable features for biological
motion recognition, the evaluation of the optical flow is not performed on
typically used benchmarks for OFE. The evaluation is instead focused on
how the algorithm is capable of preserving small details of the performed
movements, e.g. subtle movements of the lip during smiling.

A comparison for the full combination of all possible parameters is
computationally too extensive, so a baseline set of parameters is defined and
then single parameters are varied to analyze their influence on the extracted
patterns and the resulting optical flow field. The baseline parameters are

J =8, An = 0.001,
mREFS = 8 x 8, Apart = 0.

The number of iterations for basis vector learning is set to N = 150 for all
experiments.

4.4.1 Varying Model Parameters

Fig. 4.4 shows six different learned basis vector sets for varying model
parameters J and mRF'S.

For the smallest receptive field size (mRFS = 4 x 4) and for a low
amount of basis vectors (J = 1) no interpretable structures emerge in the
basis vectors. For a larger number of basis vectors bar-like structures are
learned, but the overall appearance of the basis vectors is not very specific.

The brightness constancy energy function over the 100 iterations for the
different model parameters is displayed in fig. 4.5. The learning algorithm
that uses the simple multiplicative update rules is converging in all cases.
In fact, in all performed experiments the algorithms always converged,
which is surprising, because the proof of convergence is only given for the
original reconstruction energy function used by Lee and Seung [26].

Increasing the number of basis vectors to any value J > 1 decreases
the energy function, because more details can be explicitly represented
by the basis vectors. However, this effect saturates for J > 4 while the
computational time is increasing linearly with J. The different mRFEFS
have no significant impact on the BCE function.
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| [m—

J =8, mRFS =4 x 4
J =4, mRFS =8 x 8

HTW’?EI

J=8 mRFS=8x8

J =8,mRFS = 16 x 16

J = 16,mRFS =8 x 8

Figure 4.4: Six basis vector sets for varying model parameters J and mRFS
learned on the face sequence depicted in fig. 4.3. The black parts indicate the
areas with coherent motion.

Epce — J =8 mRFS=4x4
—— J =8,mRFS =16 x 16
0.8 — J=1,mRFS =8x 8

e J = 4, mRFS = 8 x 8
—— J =8,mRFS =8 x 8

0.2

20 40 60 80 1

Figure 4.5: Normalized brightness constancy energy function for six different
parameter configurations over 100 iterations.

4.4.2 Varying Energy Parameters

The learned basis vector sets for a variation of the two energy parameters
An and Apae are shown in fig. 4.6. For the first parameter set (setl:
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_ _ = 2 w -
=0t =0 | TS S
=~ =

An = 0.001, Apare = 0.01 Eniq d J] ﬂ

A = 0.001, Apare = 0.1

Figure 4.6: Five basis vector sets for varying energy parameters An and Apart
learned on the face sequence depicted in fig. 4.3.

Ah = 0 A Apart = 0), the basis vectors are very sparse and only represent a
small local neighborhood. Due to the limited spatial structure, the learned
basis vectors only describe the parts of the image with a strong spatial
gradient and do not regularize well. Increasing the sparsity parameter (set2:
Anh = 0.001 A Apare = 0), penalizes the use of multiple activations, which
directly leads to spatially extended basis vectors. The basis vectors start to
represent local image structures. This effect can be further intensified by
increasing the sparsity parameter (set3: A, = 0.01 A Apars = 0) or by using
the parts-based energy function (set4: Ay, = 0.001 A Apare = 0.01). For a
higher value of the weighting parameter of the parts-based energy function
(seth: Ap = 0.001 A Apare = 0.1), the basis vectors tend to represent holistic
structures.

The effect of the parts-based term Ey,.¢ can be better understood if the
energy functions are analyzed. In fig. 4.7 the BCE energy function and the
parts-based energy function E, are shown for the five parameter sets.
The basis vectors learned without a penalization of the activations (blue,
setl: Ay = 0 A Apare = 0) have the smallest error for the BCE, because the
spatially sparse basis vectors are trivial solutions that can represent any
given model. They neglect the spatial relations of assumption A4.3 that
are necessary to solve the ill-constraint OFE-problem. In addition, the
trivial solution has the highest overlap between the partial reconstructions,
which is measured by the parts-based energy Epar¢. Increasing the sparsity
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Figure 4.7: Normalized brightness constancy (solid lines) and parts-based
(dashed lines) energy function for five different parameter sets(different colors)
over 100 iterations.

parameter increases the BCE as well (red, set2: A = 0.001 A Apary = 0),
while the overlap is reduced. The highest sparsity parameter (green, set3:
An = 0.01 A Apart = 0) has the worst BCE and the lowest parts-based
energy. Instead of increasing the sparsity parameter, a weakened parts-
based energy can be achieved by using the parts-based parameter (black,
setd: A\, = 0.001 A Apare = 0.01). The benefit of the Ay, parameter is
that it directly addresses the overlap. A further increase of the parts-based
parameter (pink, set5: A = 0.001 A Apare = 0.1) does not result in a more
parts-based decomposition and only worsens BCE.

The energy parameters directly influence the activations and the optical
flow as visualized in fig. 4.8. An increasing sparsity parameter A\, leads to
an increased sparseness of the activations and thus to less dense optical
flow fields as well. A similar effect is given by an increasing parts-based
parameter Apa¢. Here the activations are topological sparse and the
local reconstructions are limited to single basis vectors. As a result, the
corresponding basis vectors get more specific and are able to represent more
details, as it can be seen in the zoomed optical flow in fig. 4.8. However,
the restriction makes the model less flexible with the direct consequence,
that the optical flow field is less dense and that the BCE error measure
defined by the energy function is higher than without the Ep,. term.
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Figure 4.8: The activations H and optical flow fields R of the smiling sequence
for different energy parameters are shown for the entire image and for the zoomed
in eye area. The different colors for the activations indicate the use of different
basis vectors. The color code for the optical flow fields is taken from [98] and
works as follows: Each color indicates a direction (red = right, purple = up, blue
= left, yellow = down) while the velocity is encoded in the saturation.

4.4.3 Learned vs Designed Basis Vectors

To further show the benefits of learning the basis vectors, the learned basis
vectors are compared to a set of designed basis vectors. Two different sets
of designed basis vectors are chosen: First, the trivial case of one Gaussian
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Figure 4.9: Upper row: Two sets of designed basis vectors. Lower row: Two
sets of learned basis vectors with the same J.

basis vector and second, five designed basis vectors, including the Gaussian
basis vector and four rotated ellipsoidal basis vectors. For comparison two
learned basis vector sets with the same amount of basis vectors as the
designed sets are visualized together with the designed sets in fig. 4.9.

The single learned basis vector differs strongly from the designed Gaussian
basis vector. For increasing number of basis vectors different structures
emerge. In fig. 4.10 example activations along with the resulting optical
flows are shown. The learned basis vectors adapt to the structure present
in the images and are therefore more detail preserving than the designed
basis vectors. However, the differences between the flow fields are rather
insignificant.

Learning the basis vectors leads to a slightly lower BCE function com-
pared to using the designed basis vectors as depicted in fig. 4.11. However,
it is noteworthy that using designed basis vectors also provides reasonably
good results. Most details are preserved and the algorithm still converges.
Similar to the learned basis vectors, the designed basis vectors benefit from
the robust optimization due to the non-negativity, sparsity and the global
translation-invariant model.

4.4.4 Discussion of the Parameter Settings

To ensure a robust estimation with few misestimations the sparsity param-
eter should be set in a range of A, € {0.0001,0.01}. An increased sparsity
parameter results in a less dense optical flow field and the estimations focus
on the most prominent movements. The sparsity parameter is thus a tool to
regulate the robustness and the density of the optical flow estimation. The
parts based parameter Ay leads to more specific basis vectors and optical
flow estimations. On the one hand, this allows the algorithm to preserve

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

82 4 Optical Flow Estimation

designed J =1

designed J =5

learned J =1

learned J =5

Figure 4.10: The activations H and optical flow fields R of the smiling sequence
for the learned and designed basis vector sets are shown for the entire image and
for the zoomed in eye area. The different colors for the activations indicate the
use of different basis vectors.

fine detailed movements, like the motion of the eye lids. On the other hand,
the basis vectors get less generic and a large amount of basis vectors J is
required to preserve multiple details. The computational time is depending
linear on the number of basis vectors, thus preserving movement details
will increase the computational time.

In summary, setting A\, = 0.001, Apare = 0 and J = 8 will lead to a fast,
generic and robust optical flow estimation algorithm. If a finer optical
flow is required the parameters should be set to Apae = 0.01 and J must
be increased. Alternatively, the five designed patterns shown in fig. 4.9
give reasonable results over different datasets. All following optical flow
fields are estimated with the five designed basis vectors along with the
parameters A\ = 0.001 and Apare = 0.
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Figure 4.11: Normalized brightness constancy (solid lines) and sparsity (dashed
lines) energy function for the designed and learned basis vector sets (different
colors) over 100 iterations.

4.5 Comparison & Results

The two main characteristics of the VNMF-OFE algorithm are: First, the
learned detail preserving local receptive fields, represented by the basis
vectors. And second, the robust optimization due to one global model
that allows for interactions between the local receptive fields and the non-
negativity and sparsity constraints that eliminate miss estimations. The
first point has already been discussed in section 4.4. Next, the focus is on the
robustness of the proposed VNMF-OFE algorithm. The estimated optical
flow is compared to other algorithms on a face expression recognition dataset.
In addition, the optical flow of different full human body movements is
estimated. The videos contain cluttered background and camera motion.
Throughout the experiments in the following chapters the five designed
basis vectors are chosen®, along with the parameters A, = 0.001 and
)\part =0.

2)The designed basis vectors are choosen to make it easier to reconstruct the results in

the subsequent chapters.
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Table 4.1: Subset of possible AU and their related emotions, according to [29].

’ Emotion \ AU \ Description ‘

Fear, Sadness, Surprise 1 Inner brow raise
Fear, Surprise 2 Outer brow raise
Anger, Sadness, 4 Brow lower
Happiness 6 Cheek raise
7
9

Anger Lid tightened

Disgust Nose wrinkle
Happiness | 12 Lip corner puller
Disgust, Sadness | 15 | Lip corner depressor
Disgust | 16 Lower lip depressor

Fear, Surprise | 26 Jaw drop

4.5.1 Comparison to Related Work

The optical flow estimated with the VNMF-OFE algorithm is now compared
to the two classic algorithms from Lukas and Kanade (LK) and Horn
and Schunk (HS) as well as to a state-of-the-art algorithm from Sun
et al. (Sun) [98]. The results of this section have already been reported
in [48]. The dataset used for the comparison is a face expression recognition
dataset [104].

According to the psychologist Eckman, there exist six cultural universal
emotional facial expressions: anger, disqust, fear, happiness, sadness and
surprise [29]. Each facial expression has characteristic movements, so called
action units (AU), of different face parts, such as the inner or the outer
eyebrow, the corners of the mouth, etc. A subset of the set of action units
and their relation to each of the six emotional states is given in table 4.1.
Examples of this face expressions and the corresponding characteristic
movements are depicted in fig. 4.12. Also shown is the estimated optical
flow for each of the four algorithms.

The focus of the comparison is on whether the AU movement is preserved,
thus, if the movement can be locally assigned to a facial part. The HS OFE
can capture most of the movements, but looses all local shape relations due
to its strong dependency on the spatial regularization term. The LK OFE
can preserve most of the local relations, but has a lot of miss-estimations
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anger
AU: 4

disgust
AU: 9,15,16

fear
AU: 1,26

happiness
AU: 6,12

sadness
AU: 1,15

surprise
AU: 1,2,26

VNMF HS LK Sun

Figure 4.12: Method comparison: The first column presents the first image of
the apex phase (emotion fully expressed) for each emotion. In addition some of
the emotion-related AU are drawn onto the image (arrows). The other columns
show the color-coded integrated flow fields for the four different algorithms,
i.e. the integrated flow fields of each consecutive image pair of the onset phase
(face movement from neutral to apex).

and is the least robust method.?> The highly sophisticated OFE by Sun
et al. [98] is capable of preserving an impressive amount of detail due to
its local segmentation. Unfortunately similar to the HS algorithm it tends
to over-regularize in low contrast areas as e.g. the cheeks and thus looses
most of the local relations.

3)In the experiments outliers are discarded and a bias to zero movement was inserted
by adding a constant noise image to all images of a sequence.
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In contrary to the above mentioned methods, the VNMF-OFE algorithm
is capable of extracting the main AU related movements and keeps the
local shape relations robustly. F.g. the subtle narrowing of the eyebrows in
the anger sequence is detected (small red and blue patterns) as well as AU
1 (inner brow raise) during the fear sequence (small purple patterns).

4.5.2 VNMF-OFE for Human Actions

To highlight the robustness and easy parametrization of the VNMF-OFE
algorithm the optical flow is visualized for different kinds of videos that
include varying lighting conditions, clutter backgrounds and image noise,
different kind of articulated movements and moving cameras. For all the
videos the identical basis vector set and parameters are used. Parts of the
videos with the corresponding optical flow fields are shown in fig. 4.13.
For the two videos of the UCF-Sports dataset, the estimated optical flow
is very sparse and the estimation is erroneous, because the frame rate is
relatively low compared to the speed of the performed movements. Still, the
main movements are captured by the algorithm. In case of fast movements,
the algorithm focuses on the borders of the moving structure and is less
dense compared to the optical flow estimated e.g. on the Weizmann dataset.

4.6 Summary & Discussion

As discussed in the introduction of this chapter, OFE is an ill-posed
problem that via the brightness constancy assumption can be interpreted
as a correspondence problem. The proposed VNMF-OFE algorithm is a
differential method that uses the physical constraint that neighbors move in
a similar way. The novel element is the use of a global translation-invariant
VNMEF model for the optical flow that is included into the BCE and that
allows the learning of the local neighborhoods.

The experimental results show that learning the local neighborhood in
form of the basis vectors is possible and leads to a detail preserving optical
flow estimation. What is more important is the robustness of the entire
VNMF-OFE algorithm. The experiments show that the same parameters
and basis vectors can be applied for a variety of different videos. The fact
that the algorithm remains stable without any fine tuning of the parameters
highlights the robustness and usability of the approach and the underlying
assumptions.
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Figure 4.13: The figure shows six consecutive images of a video along with the
corresponding optical flow fields. From top to button: A jumping jack sequence
from the Weizmann dataset [8], a walking sequence of the same dataset, a diving
sequence from the UCF-Sports dataset [88] and a gymnastics sequence from the
same dataset.

In comparison to state-of-the-art OFE algorithms, the VNMF-OFE algo-
rithm is not as dense and not as accurate as the highly tuned approaches.
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However, these highly optmized algorithms, e.g. [98], are not easy appli-
cable to human action recognition datasets, because they are not robust
enough to deal with the different video qualities and movement speeds
encountered in these datasets. That is why the VNMF-OFE algorithm has
been choosen to provide the optical flow fields for the subsequent feature
extraction.
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5 Feature Extraction

A central part of the proposed system for biological motion recognition is
the feature extraction. The features are given by the complex cell response
of the simple cell patterns. The simple cell patterns need to be learned
beforehand. To understand the feature extraction process the two aspects
are analyzed in the following:

1. Batch learning of the simple cell patterns and

2. Calculation of the simple cell and complex cell response during the
detection.

In the first two sections of this chapter the pattern learning on two types
of input data is discussed. First, optical flow patterns that combine shape
and motion information, thus dynamic form patterns and second, gradient
amplitude patterns, that describe local image structures, thus static form
patterns. The third section introduces and compares the simple cell /complex
cell response to the popular HOG/HOF [21] feature descriptors.

As discussed in chapter 3, the goal is to learn local parts-based patterns;
for this purpose the VNMF algorithm as introduced in section 3.5.5 is
applied to learn the dynamic and static form patterns. The algorithm and
the learning procedure have multiple variables, such as the dependence on
the data the patterns are learned on, parameters of the different energy
term contributions, and the model parameters. The evaluation of the
extracted patterns is split up into two parts. In this chapter the visual
observable attributes, such as the parts-basedness and the topological
sparsity of the activations, in addition to the energy terms, are discussed.
The classification properties of the learned patterns are analyzed in detail
in chapter 6.

Due to the multiple parameters that influence the learning process, it
is neither computational feasible, nor does it bring any deeper insight, if
all combinatorial possible parameter combinations are analyzed. Hence,
baseline settings are defined and applied if not mentioned otherwise. The
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number of iterations is set to 300 and the baseline settings are

J = 16, An = 0.1,
mRFS = 16 x 16, Apart = 0.2.

5.1 Optical Flow Patterns

To learn the dynamic form patterns, the input for the VNMF are the
optical flow fields learned with the VNMF-OFE algorithm. Any details lost
during the OFE influence the quality of the learned dynamic form patterns,
because the VNMF, as an unsupervised learning algorithm, depends on
the data given for learning. It is crucial that the previous layer is capable
of preserving the important details. And further on, it is important which
videos are used as the training input for the VNMF. Since the goal is to
learn patterns related to human actions, it is natural to learn the patterns
on a human action recognition dataset. Here a subset of the Weizmann
human action recognition dataset [8] is chosen. The subset contains 4
persons performing 4 different actions: walking, running, jumping jack and
waving with two arms as shown in fig. 5.1. The performed actions include
a large variety of natural limb and full body motions which make them
well suited for the learning task at hand.

5.1.1 Preprocessing

To achieve a non-negative representation, the optical flow fields are split up
into four distinct directions right, up, left, down as discussed in section 3.4.3.
An example is shown in fig. 5.2. The input has four feature dimensions
which are represented in the basis vectors.!) The resulting basis vectors
are optical flow fields and the activations are scalar values. This allows
the basis vectors to describe not only translational, but any kind of optical
flow patterns.

In addition, the amplitude of the optical flow field is normalized using
the maximum norm for each video. The normalization guarantees that the
input values all lie in a similar range, which makes the parameterization
easy. However, the absolute velocity value of the optical flow field is lost.

DNote that in case of the VNMF-OFE the additional feature dimension was stored in
the activations.
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Figure 5.1: Six images and the corresponding optical flow fields of the videos
used for learning the basis vectors. The actions from left to right: jumping jack,
waving with two arms, running left, running right, walking left and walking right.

=

v Vot Vot Voo Vo

Figure 5.2: To achieve a non-negative representation of the optical flow fields,
the input V is split up into four distinct directions, each with its own non-negative
representation.

5.1.2 Varying Energy Parameters

An important set of parameters are the energy parameters controlling the
sparsity (An) and topological sparsity (Apart) of the decomposition. The
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Figure 5.3: Five basis vector sets containing J = 8 basis vectors. For a
better visualization, the size of the basis vectors is doubled compared to the
corresponding input data throughout this chapter.

influence of the two energy terms on the decomposition is analyzed in the
following.

Fig. 5.3 depicts basis vector sets containing J = 8 basis vectors, each
set learned with different parameter combinations. The basis vector sets
for A, = 0 all include the trivial solution of a basis vector that spans
just a single pixel. Due to the translation invariance these basis vectors
are too generic and do not yield any useful information. Another trivial
solution is achieved when Ay is set to one, then the penalty energy term
dominates the reconstruction energy and no meaningful reconstruction
is achieved. The results show that a sparsity parameter of A, > 0 is
required to learn meaningful basis vectors and that the upper bound is
approximately A, < 0.5 A Apary < 0.5.2)

The effect of the topological sparsity parameter Ap,,¢ can best be exam-
ined by comparing the activity patterns depicted in fig. 5.4. The activity
images learned with Ay, = 0.2 are topologically sparse and yield a small
number of dominant and sharply localized activations that are located all
over the moving body parts, e.g. on the limbs or on the head. Since only a
single activity is used to reconstruct a specific area, the corresponding basis
vectors tend to represent this specific part, e.g. the head or a limb. The

2)Note that these parameters only work when the input has been normalized using
e.g. the maximum norm during the preprocessing step.
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Figure 5.4: Two reconstructions, one with and one without the enforced parts-
basedness Apart, for two example inputs. In the upper row the reconstruction is
performed on a walking input and in the lower row on an input of a jumping
jack sequence. From left to right: the optical flow input V,, the summed
activation image H,, (different colors correspond to different basis vectors) and
the corresponding reconstruction R, first for Apare = 0.2 and then for Apare = 0.

activity patterns obtained with Ap.¢ = 0 are much more blurry, therefore
the corresponding basis vectors are less distinct.

For a quantitative analysis the average reconstruction error, the sparsity
per input and the parts-basedness of the reconstruction for both parameter
settings are compared in fig. 5.5 for varying J. For A,,¢ = 0.2 the focus
on topological sparsity comes at the cost of reconstruction quality, which
results in a larger reconstruction error. Since the model is restricted to
a limited number of basis vectors with bounded receptive fields, not all
possible patterns can be explicitly represented. In other words: the degrees
of freedom for the learning algorithm is decreased by enforcing a non-
negative and topological sparse representation. As a compensation the
restrictions can be relaxed otherwise, e.g. by increasing the number of
basis vectors. For Apa¢ = 0.2 the VNMF algorithm needs a larger J to
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Figure 5.5: Normalized reconstruction (blue), sparsity (red) and parts-basedness
(green) energy for varying number of basis vectors J. The green parts-based
energy visualized shows the overlap of partial reconstructions, even though it is
not penalized during optimization (i.e. Apart = 0).

achieve the same reconstruction quality as for Ap.¢ = 0, since it is enforced
to generate a topologically sparse representation. The sparsity and the
parts-based energy is always lower for Apa = 0.2 compared to Apare = 0,
because the parts-basedness energy term forces the algorithm to use fewer
activations.

5.1.3 Varying Basis Vector Parameters

Next, the effects of different basis vector parameters J and mRFS on the
learned basis vector sets WV is analyzed in more detail. The number of basis
vectors is varied in the range J € {8,16,24} and the maximum receptive
field size in the range mRF'S € {8 x 8,16 x 16,24 x 24}.%)

Fig. 5.6 shows basis vector sets learned for the different parameters. The
main observation is that by increasing the mRF'S, more discriminative
basis vectors can be learned and therefore the algorithm benefits from an
increased J. For the smallest mRFS (8 x 8) only a few different basis
vectors are represented and several basis vectors are redundant. The middle
sized (16 x 16) basis vectors already make use of the increased J and up

3)The results have been previously reported in [47].
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Figure 5.6: Five basis vector sets with varying number of basis vectors J and
different maximum receptive field sizes mRF'S.

to 16 different basis vectors are extracted. However, a further increase of
J produces mostly redundant basis vectors. The small and middle sized
basis vector sets are rather homogeneous concerning the expressed shape
size of each individual basis vector. When the mRF'S is further increased
(24 x 24) two kinds of patterns emerge. On the one hand, large and highly
prototypical patterns that describe almost entire human body parts and
on the other hand, small patterns with similar shapes as extracted for the
smaller mRF'S.

5.1.4 Detailed Analysis of the Learning Process

To get a better understanding on how the different energy terms affect
the basis vectors during the learning process, the energy terms over the
number of iterations are visualized in fig. 5.7 for the baseline parameters.
First, the reconstruction is optimized, as indicated by the large drop of the
reconstruction energy. In addition, the sparsity energy is highly decreasing,
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Figure 5.7: The normalized reconstruction (blue, Erec), sparsity (red, Eun)
and parts-based (green, Epar¢) energy terms over N = 150 iterations, for a
learning with (dashed, Apare = 0.2) and without (solid, Aparte = 0) the parts-
based energy term. The green parts-based energy visualized shows the overlap
of partial reconstructions, even though it is not penalized during optimization
(ze Apart = 0)

because the randomly initialized activations are not very sparse. Through-
out the optimization the basis vectors and thus the related reconstruction
converge and therefore the corresponding activations increase, which leads
to a decrease in the sparsity. Thus, the sparsity energy term is again
increasing over time.

The contribution of the parts-based energy term is increasing at the
beginning of the learning process. The properties of the basis vectors
throughout the learning process are visualized in fig. 5.8. Because the
basis vectors are not parts-based at the beginning an overlap of the partial
reconstructions is required to achieve a reasonable quality of the optical
flow. Thus, the reconstruction energy dominates the parts-based energy.
Once the reconstruction converged to a desirable level, the activations start
to get more topological sparse and the basis vectors get more parts-based
and as a consequence the parts-based energy is decreasing.

In summary the optimization can be split into three stages. First, after
the initialization all energies drop to the initial optimization step. Then, the
reconstruction is optimized, suppressing the sparsity and parts-based term,
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Figure 5.8: From upper row to lower row: The reconstruction, summed activa-
tions and four example basis vectors at different iteration steps of one learning
process. The symbols (start, triangle,...) on the activations mark the activations

with the highest amplitudes. Different symbols correspond to different basis
vectors.

which are increasing. When the reconstruction quality has reached a critical
level, the optimization focuses on sparsifing the activations topologically,
while retaining the same or even further optimizing the reconstruction

quality.
5.1.5 Comparison to PCA and sNMF

The VNMF algorithm is now compared to two non-translation-invariant
algorithms, the classic PCA and the sNMF algorithm described in sec-
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Figure 5.9: The upper block visualizes the first 16 basis vectors or principal
components learned with PCA on randomly selected 16 x 16 optical flow patches.
The lower block shows 16 basis vectors learned with the multidimensional extended
sNMF algorithm for the same input data. For comparable VNMF results see
fig. 5.6.

tion 3.3.5, using the non-negative representation for the multidimensional
input as introduced in section 3.4.2. For the input of the PCA and sNMF
a large set of 16 x 16 patches is extracted at random positions from the
optical flow fields.

The basis vectors learned with the two algorithms are shown in fig. 5.9.
In all sets basis vectors with horizontal motion dominate those with vertical
motion, which is in good accordance with the intuitive observation that
horizontal human movements like walking, running, a.s.o. are statistically
more frequent than vertical movements like jumping or hand waving. Due
to the non-negativity and sparsity constraints, the SNMF basis vectors are
more parts-based than the holistic PCA patterns. A further distinction
between the SNMF and the PCA is, that the sSNMF favors purely transla-
tional patterns, even though the basis vectors are not restricted concerning
the distribution throughout the different movement directions. This prop-
erty is rather a result from the inherent motion statistics contained in the
data, since all elements of rigid body parts yield consistent translational
movements. The main distinction between the different basis vectors is
thus the form and overall movement direction. Compared to the basis
vectors learned with SNMF the VNMF basis vectors, as shown in fig. 5.6,
have more ellipsoid-like forms and are better related to limb forms.
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Figure 5.10: From left to right: Input image Z; from the MMI dataset [104],
corresponding optical flow V;, summed activity image H, = > y H,n (different
colors correspond to different 7{;,) and extracted basis vector set WW. The
activations with the highest amplitudes are marked with symbols that correspond
to specific basis vectors. The activations are located on moving face parts such
as the corners of the lips, corresponding to facial action units.

5.1.6 Basis Vectors learned on Face Data

To show the generality of the VNMF algorithm another kind of input data
is analyzed. The VNMF algorithm learns a set of .J = 8 basis vectors on
a dataset showing face movements. As discussed in section 4.5.1, action
units, i.e. the movement of distinct face parts, such as the eyebrows or the
lips, are strongly related to emotional states. Face movements are thus
very important features in inter-human non-verbal communication.

In fig. 5.10, 8 learned basis vectors and the corresponding activities for
one example input motion field are shown. Similarly to the activation
patterns learned on the human full body movements, the activities are
topologically sparse. Changes in the number of basis vectors and the
mRFS have the same effect as for the human full body movements. The
level of detail preserved by the VNMF algorithm relays highly on the
quality of the underlying optical flow estimation, which unfortunately is
not able to preserve all detailed movements of the action units. Nonetheless,
the movements obtained by the optical flow are represented by the basis
vectors and further localized by the corresponding activations.
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Figure 5.11: Six images (upper row) and the corresponding spatial gradients
(middle row) and gradient amplitudes (lower row) of the videos used for learning
the basis vectors for static pattern information. The actions from left to right:
Jumping jack, waving with two arms, running left, running right, walking left and
walking right.

5.2 Gradient Patterns

In addition to the dynamic form patterns based on the optical flow, a set
of static form patterns is learned with the VNMF algorithm based on the
spatial gradients. The static patterns do not require any movement and
serve as basis for recognizing the parts of a pose that are not in motion.
The dataset that is chosen as input for the learning algorithm is the
same as for the optical flow fields and depicts four humans performing four
different full body movements as shown in the upper row of fig. 5.11.
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5.2.1 Preprocessing

The preprocessing of each input image consist of three steps. First, the spa-
tial gradients are calculated and in the second step the gradient amplitudes
are calculated based on gradient vector field. The third and final step is
the normalization of each image using the maximum norm of the gradient
amplitudes. In the following the first two steps are shortly discussed.

The spatial gradients are calculate with simple gradient filters. For an
image Z the gradients Z, in x-direction are calculated using the gradient
filter f, = (—1 0 1) and for the gradients Z, in y-direction the gradi-

ent filter f, = (—1 0 1)T is applied. The filter operation is the two
dimensional convolution

T, = conva(Z, fy), (5.1)
Z, = conva(Z, fy).

The result is a two dimensional vector field that contains positive and
negative values. A negative value corresponds to a gradient from bright to
dark and a positive value corresponds to a gradient from dark to bright.
The gradient vector field has thus the same dimensionality and range of
value as the optical flow fields and similarly, the multidimensional VNMF
could be applied directly on the gradient field. However, the sign of the
gradients is different e.g. when a person is moving with bright clothes in
front of a dark background or when a person is moving with dark clothes
in front of a bright background. To be invariant towards these kind of
brightness dependencies, the gradient amplitude is used as input for the
VNMF algorithm. For each element of Z(x) of an input image Z the
non-negative gradient amplitude value is

Taps(x) = /Lo ()2 + T, (2)2. (5.3)

Along with the sign of the gradient vector field, the direction is neglected
when using the gradient amplitude alone. The gradients are typically
orthogonal to the image structure and the image structure is to some extend
preserved in the learned gradient patterns. An additional representation of
the gradient direction is not required and would only increase the input
dimensionality. The gradient amplitudes for examples of the input data
used for the learning algorithms are shown in fig. 5.11 together with the
corresponding images and the image gradients.
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Figure 5.12: Five basis vector sets, each with J = 8 basis vectors.

5.2.2 Varying Energy Parameters

The learned basis vector set for variations in the energy parameters, i.e. the
sparsity parameter and the parts-based parameter, are visualized in fig. 5.12.
The parametrization of the resulting basis vectors shows an analogous
dependency as the optical flow patterns, e.g. a sparsity parameter set to
An = 0.1 results in meaningful patterns, while for a sparsity parameter
An = 0 the trivial basis vectors emerge. The parts-based parameter Ay, has
a similar effect as the sparsity parameter and further enforces prototypical
structures in the basis vectors.

The activity patterns for two cases are depicted in fig. 5.13. Again, the
parameter dependencies are similar to the ones observed during the learning
of the optical flow patterns. The activity images learned with Apa = 0.2
are topologically sparse and the corresponding basis vectors resemble local
gradient structures. The activity patterns obtained with Apa¢ = 0 are
much more dense and the learned basis vectors are less distinct. Unlike the
activations from the optical flow patterns, which are located on moving
body parts, the activations for the gradient patterns are located along both
sides of the limbs and define the borders of the body shape, rather than
the body shape itself.
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Figure 5.13: Two reconstructions, one with and one without the enforced parts-
basedness Apart, for two example inputs. In the upper row the reconstruction is
performed on a walking input and in the lower row on an input of a jumping
jack sequence. From left to right: the optical flow input V,, the summed
activation image H,, (different colors correspond to different basis vectors) and
the corresponding reconstruction R, first for Apare = 0.2 and then for Apare = 0.

5.2.3 Varying Basis Vector Parameters

In the following, basis vector sets learned with different basis vector pa-
rameters J and mRFE'S are analyzed. Five basis vector sets for varying
number of basis vectors J and maximum receptive field sizes mRF'S are
visualized in fig. 5.14.

The parameter dependency is again similar to optical flow patterns.
Increasing the mRF'S results in an increasing number of different basis
vectors. For J = 8 mostly small, generic basis vectors emerge. By increasing
the number of basis vectors more specific patterns are learned. The largest
amount of basis vectors, i.e. J = 24, shows prototypical patterns that
resemble complete parts of the input. A key difference to the optical flow
patterns is that the amount of redundant basis vectors is very low. The
gradient structures are more complex than the movement structures and

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

104 5 Feature Extraction

J=16,mRFS =8 x 8 q

N\ 7/ 1N / 1 \\
7 =8, mRFS — 16 x 16 = .. \‘
SU _ I [ — o
2 \ , b ‘\\ %‘ \
7 =16, mRFS — 16 x 16 —y I l
—— F—

] 0 1 /}‘\ / n \
LUAES RE]
j/= ( QI | J =24, mRFS =24 x 24
J

— 24, mRFS = 16 x 16

l

Figure 5.14: Five learned basis vectors sets with varying number of basis vectors
J and different maximum receptive field sizes mRF'S.

thus more specific to the underlying texture information. As a result a
larger number of different basis vectors emerged during the learning process.

5.2.4 Detailed Analysis of the Learning Process

Fig. 5.15 shows the reconstruction, activations and four examplary basis
vectors for different iteration steps during a learning process. After 10
iterations, three of the randomly initialized basis vectors already exhibit
a bar-like structure and the reconstruction depicts the human figure and
the gradient at the border of the image. At the beginning, most of the
activations are grouped at the strongest input structures and the highest
activation amplitudes of multiple basis vectors are in the same location.
As a consequence, the basis vectors resemble a similar structure. After 50
iterations the basis vectors become more specific and the corresponding
activations are spread throughout the image and not as spatially concen-
trated as during the beginning of the learning process. This high flexibility
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of the learning process is directly related to the multiplicative update rules,
which can lead to drastic changes in the activations and basis vectors.
As a consequence, the activations and basis vectors can change strongly
throughout the learning process and the overall algorithm is not depending
on a specific initialization.

Similar to the learning of the optical flow patterns, the effect of the
parts-based energy term that enforces the topological sparsity influences
the activations and the basis vectors at the end of the learning process.
Once the activations are spatially distributed, the basis vectors become
more and more specific and the penalty due to overlapping receptive fields
results in the sharply localized activations as shown for iteration numbers
100 and 150.

5.2.5 Comparison to PCA and sNMF

The patterns learned with two non-translation-invariant algorithms, the
classic PCA and the sSNMF algorithm described in section 3.3.5, on the
gradient amplitudes are now discussed. For the input of the PCA and
sNMF 16 x 16 patches are randomly extracted from the gradient amplitude
images.

The basis vectors learned with the two algorithms are shown in fig. 5.16.
The PCA patterns resemble different holistic filters with frequencies and
orientations. The sNMF basis vectors are local blocks without any specific
structure. Unlike the basis vectors learned with the translation-invariant
VNMEF algorithm, neither PCA nor sNMF learns prototypical structures,
like horizontal and vertical bars.

5.2.6 Basis Vectors learned on Face Data

In addition to the human full body movements, a set of basis vectors is
learned on a dataset that shows human faces [104].

In fig. 5.17, 8 learned basis vectors and the corresponding activities for
one example input video are shown. Similar to the activation patterns
learned on the human full body movements, the activities are topologically
sparse and parameter variations have the same effects. The basis vectors are
again divided into few highly generic parts and prototypical, template-like
basis vectors, that resemble face parts. Due to the high image contrast
on the left part of the input image, the gradient amplitudes on the left
side are higher than on the right side. As a consequence, all of the marked
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Figure 5.15: Development of gradient-based basis vectors during learning, each
column showing a different iteration step. From upper row to lower row: The
reconstruction, activations and four examplary basis vectors during different
iteration steps of a single learning process. The symbols on the activations mark
the activations with the highest amplitudes (one symbols for each basis vector).

activations, i.e. the activations with the highest amplitude, are located in
the left part of the image.

5.3 VNMF as Feature Descriptor

Once the optical flow and gradient patterns are learned, they can be applied
in the FFNN to compute the features. Thus, the two kinds of feature
descriptors used are the simple cell/complex cell responses related to the
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Figure 5.16: The upper block visualizes the first 16 basis vectors or principal
components learned with PCA on randomly selected 16 x 16 optical flow patches.
The principal components contain positive and negative values, in the visualization
gray values correspond to zero, white pixels to negative and black to positive
values. The lower block shows 16 basis vectors learned with the sNMF algorithm
for the same input data.

Figure 5.17: From left to right: Input image Z,, from the MMI dataset [104],
corresponding gradient amplitude V,,, summed activity image H, = Zj Hin
(different colors correspond to different H;,) and extracted basis vector set W.
Unlike the movement specific activations of the optical flow patterns shown in
fig. 5.10, the activations for the gradient patterns are located all over the face.

patterns learned on the two input types, i.e. optical flow and gradient
amplitudes. The calculation of a simple cell/complex cell layer of a FENN
as discussed in section 2.2.1 consists of four stages: preprocessing, the simple
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cell response, a non-linear post processing and the complex cell response.
The simple cell response is basically a similarity measure between an input
and each of the simple cell patterns. While the simple cells are selective
for specific patterns, the complex cell patterns pool a limited set of simple
cell responses inside an overlapping block grid to a common activation.

The preprocessing for the feature descriptors is identical to the prepro-
cessing for the pattern learning, i.e. the input is normalized using the
maximum norm. Once the simple cell patterns VW have been learned, the
simple cell response H,, for a given input V,, can be calculated. In the fol-
lowing two different kinds of simple patterns are compared: First, a simple
correlation between the patterns and the input and second a refinement of
the #H,, using the VNMF update rules for the activations. This refinement
is a non-linear interaction of the individual activations. The simple cell
response calculations for the optical flow and the gradient amplitude input
are illustrated in fig. 5.18. The complex cell response is an overlapping
spatial pooling operation, that is later discussed in section 5.3.2 and shown
in fig. 5.21.

One of the interesting properties of the VNMF features is the compact
representation of local gradient or optical flow structures. Popular feature
descriptors like SIFT [70] or HOG/HOF [21] lose the exact structure
information, because they are based on local histograms. The similarities
and differences of the VNMF and the HOG/HOF features will be discussed
at the end of this section.

5.3.1 Simple Cell Response

Before the simple cell response can be calculated, a set of basis patterns W
has to be selected. Fig. 5.19 shows 24 optical flow and gradient amplitude
patterns that are selected out of the various sets learned in the previous
two sections. The examples visualized in this section use these selected
basis vectors.

A simple way to calculate the simple cell response Hcop for a given input
VY, to a set of patterns WV is to use the two dimensional correlation

Heorr = Hjn = corra(Vn, W), Vje(l, .., J]. (5.4)

The resulting activation pattern for an example optical flow input are
shown in fig. 5.20. The activations are very blurry, because slightly shifted
patterns still have a high correlation value and there is no interaction
between the single activations. The VNMF learning algorithm includes
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Figure 5.18: The simple cell calculation for gradient (upper row) and optical
flow (lower row) inputs. The input data is reconstructed using a set of prelearned
basis vectors and the corresponding activations are then fed into a classification
stage. Different colors in the activation images (left side) correspond to different
basis vectors. The activations with the highest amplitudes are marked. The
maximal number of iterations is set to 150.

(
1

3

E

N |~

\|\n |/ A

~
-

i)
| —
ol
—
r\‘l——

!‘:: 3 & .
g4 08 @

\
aC
g

¥

| .-

.
t J

e

Figure 5.19: Two sets of 24 selected basis vectors learned with the VNMF
algorithm. The upper set contains basis vectors learned on spatial gradient
amplitudes and the lower set contains optical flow patterns. The basis vectors
are selected from various sets learned with the VNMF algorithm and are ordered
by size.
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these interactions, like a lateral competition between concurring activations
as enforced in the parts-based energy term. The second method to calculate
the simple cell response is therefore based on the VNMF update rules with
a fixed basis vector set with the convolution as initialization. The simple
cell response is termed Hefine and the algorithm is

e Initialize Hyefine = corra(Vy,, W;), Vi€ [l,...,J].

e Loop for N iterations
L. Calculate R, = }_; conva(Hn, W),

o (Vae;, Evamr) ™
(Ve Evur) T

2. update Hrefine — Hrefine Vie [l ..., J].

in
The energy parameters are set to Apare = 0.2 and A, = 0.1 and the maximal
number of iterations is set to N = 10. The resulting activations patterns are
depicted in fig. 5.20. Compared to the simple correlation, the activations
are increasingly topologically sparse, but not as sparse as the activations
during learning. This is due to the low number of iterations. Increasing
the number of iterations leads to more topologically sparse activations as
depicted in fig. 5.18, but has linearly increasing computational costs.

To avoid the calculation of a large number of iterations, a simple non-
linear post processing (nl) is performed. Ie. the activations are thresholded
in a way that small valued activations are set to zero. There are two kinds
of threshold values. First, an absolute value 7,5 which ensures that noisy
parts of the input do not result in an activation, and a relative value 7eg,
which depends on the highest activation in a predefined local neighborhood.
The local neighborhood is defined by the spatial pooling block cells A(x)
discussed in the next subsection. The mathematical operations are

=0, Vhjn(®) < Tabs, (5.5)
jn(w) =0, Vh]n(dﬁ) < Trel © Max (hjn(y))
yEA(z)

The threshold values are set to Taps = 0.05 and 7.5 = 0.1. The post-
processed activations for the correlation Heoprn and the refined activations
Hrefinerni are shown in fig. 5.20. They have an increased topological sparsity,
because small activations are clipped to zero by the thresholding. However,

they are still far from being as sparse as the refined activations using
N = 150 iterations shown in fig. 5.18.
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Figure 5.20: Different simple cell responses for two kinds of inputs, gradient
amplitudes (upper row) and optical flow fields (lower row). From left to right:
The input V, the correlation response Hcorr, the correlation response with the
non-linear post processing Hcorr+nl, the correlation response refined with N = 10
VNMF updates without Hefine and with the non-linear post processing Hrefine-+ni-
Different colors correspond to different activations. Multiple activations on the
same spatial position result in an addition of the colors, i.e. a black spot indicates
the presence of multiple activations of different basis vectors.

5.3.2 Complex Cell Response

The complex cell response used in the proposed FFNN is a spatial pooling
operation with 50% overlapping blocks. The basic idea of the spatial
pooling is, that the features should be invariant to small shifts. In addition
the invariance reduces the spatial resolution and thus the feature dimension
significantly. The pooling operation is illustrated in fig. 5.21. In the
example the number of pooling blocks is set to 5 x 2 = 10 blocks, as shown
in the right image of fig. 5.21. Since the blocks have a 50% overlap in both
directions, there exist 6 x 3 = 18 cells as illustrated in the middle image
of fig. 5.21. Except for the cells at the border of the image, each cell is
part of four overlapping blocks. The simple cell activations in the example
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Figure 5.21: The spatial pooling process of a simple cell response. From left to
right: The simple cell response, the pooling grid with the overlapping pooling
blocks and the resulting descriptors. The background colors mark the pooling
area for three example pooling blocks.

have a dimensionality of Y x X x J = 128 x 64 x 8 = 65536. The pooled
activations have a dimensionality of 5 x 2 x 8 = 80.

Pooling is further necessary, because even though the image is centered
around the person, the exact position of key elements of poses, such as the
head or the arms, vary strongly depending on different factors, such as view
points or the person performing the action. Due to the spatial pooling, the
exact position is lost and the complex cell response for different position is
identical, thus invariant to the shifts. However, it is important that the
invariance is locally bound, since the relative position of certain features
is a significant information to differentiate different poses. E.g. , during
waving the arms reach the area above the head, while during walking they
stay below the shoulders. I.e. the pooling range has to be a compromise
between the generality of the feature and its class-specific properties. More
specific features with smaller pooling blocks can be used when the figure
centering is robust and accurate and the number of variations can be
captured by the training data. The fewer training data that is available,
the more invariances have to be build in the system.

The overlap of the blocks smoothes the complex cell responses. Without
overlapping blocks, the invariance to the shifts would end at the exact
border of the pooling block. As a consequence a shift of one pixel at the
border would result in an uncorrelated complex cell response. Due to the
overlap a simple cell activation in an overlapping cell activates two feature
responses, one for each of the overlapping blocks. If the activation is shifted
outside the overlapping cell it will still remain in one of the overlapping
blocks, even though it left the receptive field of the other block.
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In mathematical terms, the complex cell response C,, of an simple cell
activation H,, is

(@)= Y hi(@), Vie[l,.J], (5.7)

z€A(y)

with A(y) defining all pixels inside the block at block position y.

The pooling block size during the classification was choosen to 32 x 32
pixels which leads to 7-7 = 49 blocks. This size resulted from a compromise
between the preserved locality information and the desired invariance to
shifts. For J = 8 basis vectors the feature dimension is thus 392 for the
gradient and the optical flow. The combined features have a dimensionality
of 784. Increasing the number of basis vectors J further increases the
feature dimension.

5.3.3 Relation to HOG/HOF Descriptor

The VNMF patterns resemble explicit local structures and the complex
cell responses retain a coarse representation of the location of these local
structures in the input. Other types of image descriptors also describe
the local structures, but not by locating explicit structural elements, but
rather by representing the local statistics of the gradient or optical flow
field, e.g. by using histograms of discrete gradient directions as feature
descriptors.

One popular method is the Histogram of Oriented Gradients (HOG)
introduced by Dalal and Triggs [21] as descriptors for pedestrian detection,
or the feature descriptors used in the SIFT descriptors introduced by
Loewe [70] for object recognition. In the following the similarities and
differences between the HOG/HOF descriptors and the VNMF descriptors
are discussed.?) In related work, Le et al. [64] compare the classification
performance of patterns learned with ISA, a two layered extension of the
well known ICA [54], to extract spatio-temporal features for human action
recognition. They show that the learned pattern features outperform the
classic HOG/HOF and 3D HOG descriptors on multiple human action
recognition datasets.

The HOG descriptor is a hand-designed statistical description of gradient
structures via a histogram, where each entry corresponds to a discrete
gradient direction, a so called bin. The descriptors are able to represent
class discriminative structures and are computationally cheap. However,

4)The discussion is based on the publication [46].
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Figure 5.22: The HOG and VNMF descriptor for two 16 x 16 images (upper
and lower row). From left to right: Artificial input image (Z), spatial gradients
(Ze), HOG descriptor (HOG) with b = 8 bins, gradient amplitudes (Zans), basis
vector set (W) with J = 8 basis vectors, activations (). The activations 1 and 4
mark the position, where the corresponding basis vectors W; and Wi are placed
for the reconstruction of the input.

the simplistic histogram description has natural limitations. It discards
local spatial relations between structural elements, i.e. the topology of
the gradients is neglected, because the explicit spatial occurrence of the
gradients is lost in the histogram representation. Furthermore, the number
of elements in each descriptor block is limited by the number of bins.

The HOG descriptor consists of two parts: First, a grid of 50% overlap-
ping blocks. The cell/block structure is identical to the cell/block structure
of the spatial pooling cells used during the calculation of the complex cell
responses described in section 5.3.2. The second step is the calculation
of a normalized histogram of the oriented gradients in each of the blocks.
The block descriptor is build in three steps: First, each gradient vector (in
case of HOF, optical flow vectors) is binned into one of e.g. b = 8 distinct
directions. Second, for each block the gradient vectors are summed up for
each bin, resulting in a histogram with b elements. To achieve invariance to
contrast changes, the histograms are normalized using the Euclidean norm.

The main similarity is that for both descriptor types, the input image
is fragmented in a grid of overlapping blocks. The block grid captures
the global spatial relations between the block descriptors, e.g. the upper
blocks are more likely to describe head shapes, while the lower blocks
reflect features corresponding to leg poses and movements. However, the
features differ in the way they describe what is inside the blocks, i.e. the
local topological information in the image.
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Fig. 5.22 shows the HOG descriptors and the VNMF activations for
two 16 x 16 artificial input images. The HOG descriptors for both blocks
are identical, because the blocks differ only in the spatial structure of the
gradients, and not in the amount of gradient vectors, which is captured by
the histograms. In contrast, the pooled activations are different, because
different basis vectors are used for the reconstruction. This artificial
example illustrates why in principle pattern-based descriptors are able to
preserve the local topological information in cases where the histogram
descriptor discards this information.

Another difference is how the image structure is described. The binning
approach is simple and computationally cheap. Nevertheless, the number
of bins b is limited, because a finer binning makes the HOG descriptor
less invariant and may not increase its discriminative properties. On the
contrary, the sparsity constraints in the VNMF algorithm allow the learning
of an overcomplete basis, so the number of basis vectors J is not as limited
as the number of bins, because the more basis vectors are learned, the more
image structures can be explicitly represented. Besides, the basis vectors
are learned and not hand-crafted as the HOG, so they are easier to adapt
to different kinds of input data.

In summary, the VNMF descriptors should outperform the HOG de-
scriptors if the local topological information is important for modeling
discriminative image descriptors. In the following chapter, this hypothesis
is evaluated in classification experiments.
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6 Human Action Recognition

The goal of the proposed FFNN is the classification of human movements
such as gestures, facial expressions or human full body movements, e.g. ac-
tions. The classification performance is evaluated on two benchmarks for
Human Action Recognition (HAR), the Weizmann [8] and UCF-Sports
dataset [88] and a benchmark for Facial Expression Recognition (FER) of
Dollar et al. [25]. The evaluation focuses on the classification performance
of the FFNN as proposed in chapter 2. The influence of the two feature
types, i.e. the static (gradient amplitude) and dynamic (optical flow) form
patterns is analyzed for different basic vector sets learned with varying
energy (Ap and Apar¢) and basis vector (J and mRF'S) parameters. The
classification performance of the patterns learned with the VNMF algo-
rithm is compared to patterns learned with PCA and sNMF as well as with
HOG/HOF descriptors. The evaluation includes the two types of how to
calculate the simple cell response as discussed in section 5.3.1. The overall
system is further compared to related results of state-of-the-art algorithms.

6.1 Support Vector Machine (SVM)

The final supervised learning layer of the proposed FFNN contains a
multiclass Support Vector Machine (SVM) [14, 105], a classifier often
applied in computer vision. SVMs are still a vivid research topic, details
about the mathematical definitions and properties can be found e.g. in [6].
For details on the implementation see the related work on the LIBSVM
library [14].

Since the Weizmann and UCF-Sports datasets have no defined training
and testing sets, the classifiers are trained and evaluated in leave-one-out
experiments. The persons used for the learning of the basis vectors on the
Weizmann dataset are discarded in the evaluation. The FER dataset [25]
has only two different persons, so one person is used for training and one
for testing. This procedure is applied to both persons.

The SVM is learned with an RBF Kernel and a soft-margin parameter
to increase robustness. The corresponding parameters are obtained using
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Figure 6.1: Example images for the ten classes, bending, jumping jack, hopping,
Jumping, running, skipping, jump on one leg, walking, waving with one arm and
waving with two arms of the Weizmann dataset [8].

5-fold cross validation on the training data. Once the SVM classifiers
are trained, each frame of each video is classified individually. The final
classification result for each video is the weighted average of all its frame
results. The weights are the class probabilities provided by the SVM.

6.2 Results for Different Basis Vector Sets

The classification performance for the different basis vector sets is evaluated
on the two HAR datasets. The 10-class Weizmann dataset [8] shown in
fig. 6.1 and the 9-class UCF-Sports dataset [88] as depicted in fig. 6.2
differ strongly in the complexity and variations. The Weizmann dataset is
filmed with a static camera and no view-point variations and the actions
are performed by the different persons in the dataset in a similar manner.
The difficulty encountered in the dataset are the high similarities between
the different actions. While e.g. bending can be easily differentiated to
walking, there are multiple classes, e.g. hopping, running, skipping, jump
on one leg, walking with very similar poses. To the contrary, the actions in
the UCF Sports dataset have strong variations in the viewpoints and in
the individual performance of the actions, as discussed in section 1.1.1.
The default parameters for the learned simple cell patterns are

J =16, A = 0.1,
mRFS =16 x 16, Apart = 0.2.

And the default parameters for calculating simple cell/complex cell response
are

)\part - 02, Ah = 01,
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Figure 6.2: Example images for the nine classes, diving, kicking, weight lifting,
horse riding, golfing, running, skateboarding, gymnastics and walking of the UCF
Sports dataset [88].

calculated with the correlation method eq. (5.4) including the non-linear
refinement eq. (5.6) and a pooling block size of 32 x 32. The results for
the optical flow are marked with ), and the gradient patterns are marked
with Z,. The optical flow has been calculated using the method introduces
in chapter 4.

6.2.1 Varying Basis Vector Parameters

Table 6.1 shows the classification results based on the optical flow patterns.
There is no strong parameter dependency for both datasets. Surpris-
ingly, a higher number of basis vectors does not enhance the classification
performance significantly.

Table 6.1: Classification results for the optical flow (V) patterns for different
J and mRF'S.

mRFS 8 x 8 16 x 16 24 x 24

J 8 16 24 8 16 24 8 16 24
Weiz. | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.97 | 0.97 | 0.99 | 1.00
UCF | 0.89 | 0.88 | 0.87 | 0.89 | 0.89 | 0.90 | 0.89 | 0.91 | 0.89

The results are similar for the gradient patterns (table 6.2) and the
combined patterns (table 6.3). While an increased number of basis vectors
does not seem to have an effect on the classification performance, a larger
mRFS improves the results in all three cases.
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Table 6.2: Classification results for the gradient patterns (Z,) patterns for
different J and mRF'S.

mRFS 8 x 8 16 x 16 24 x 24

J 8 16 24 8 16 24 8 16 24
Weiz. | 0.60 | 0.58 | 0.58 | 0.63 | 0.70 | 0.64 | 0.79 | 0.69 | 0.69
UCF | 0.81 | 083|081 | 0.85| 0.87 | 0.87 | 0.85 | 0.87 | 0.87

The dynamic optical flow patterns outperform the static gradient patterns
for both datasets. While the combined patterns give the best results for the
UCF-Sports dataset, the optical flow patterns outperform the combined
patterns for the Weizmann dataset.

Table 6.3: Classification results for the combined use of optical flow (V) and
gradient patterns (Z) for different J and mRF'S.

mRFS 8 x 8 16 x 16 24 x 24

J 8 16 24 8 16 24 8 16 24
Weiz. | 0.92 | 0.90 | 0.90 | 0.92 | 0.93 | 0.90 | 0.92 | 0.92 | 0.94
UCF | 091091091092 ]| 093|092 | 0.93 | 0.91 | 0.91

6.2.2 Varying Energy Parameters

Table 6.4 shows the results for the VNMF patterns learned with different
energy parameters. For both datasets, the patterns learned with the
parts-based parameter set to Apa¢ = 0.2 significantly outperform the
patterns learned without the parts-based energy. These results indicate
that the topological sparsity learns prototypical patterns that are class
discriminative. Like for the varying basis vector parameters, the dynamic
optical flow patterns outperform the static gradient patterns.

6.2.3 Comparison to PCA and sNMF Patterns

Table 6.5 and table 6.6 show the classification results for the VNMF patterns
compared patterns extracted with PCA and sNMF. The VNMF patterns
clearly outperform the PCA and sNMF patterns on both datasets. This
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Table 6.4: Classification results for different Apare € {0,0.2} for the optical flow
(Vz), gradient (Z,) and combined (Va+Zs) patterns.

Vo To Vo L
Xpart | 0 ] 02 | 0 |02 ] 0 | 02
Weiz. | 0.94 | 0.99 | 0.67 | 0.70 | 0.95 | 0.93
UCF | 0.77 | 0.89 | 0.47 | 0.87 | 0.77 | 0.93

further underlines the benefits of the topological sparse and translation
invariant learning procedure.

Table 6.5: Classification results for optical flow (V) and gradient (Z,) patterns
learned with PCA, sSNMF and VNMF.

Va I
PCA | sNMF | VNMF | PCA | sNMF | VNMF
Weiz. | 0.94 0.94 0.99 0.65 0.66 0.70
UCF | 0.71 0.80 0.89 0.65 0.70 0.87

Table 6.6: Classification results for combined (Vo+Zz) patterns learned with
PCA, sNMF and VNMF.

Vo +1a
PCA | sNMF | VNMF
Weiz. | 0.94 0.94 0.93
UCF | 0.83 0.80 0.93

6.2.4 Varying Simple Cell Response

Next, the results for the two types of simple cell responses as discussed in
section 5.3.1 are compared. Table 6.7 shows the results for the correlation
response and the correlation refined with the VNMF update rules. The
correlation response outperforms the refined simple cell response for both
datasets. This result indicates that the SVM profits from the non-sparse
representation of the correlation. This is somehow contradictive to the
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Figure 6.3: Example images for the six classes, anger, disqust, surprise, fear,
happiness and sadness of the FER dataset [25].

idea of a sparse decomposition, but computationally beneficial, because the
correlation method is the fastest way to calculate the simple cell response.

Table 6.7: Results for two types of calculated simple cell responses: The corre-
lation response (Corr) explained in eq. (5.4) and the correlation response with
the VNMF refinement (Corr+Ref) for the optical flow (Vz), gradient (Z,) and
combined (Vz+Zs) patterns.

Vi Zs Ve +Zy
Corr | Corr+Ref | Corr | Corr+Ref | Corr | Corr+Ref
Weiz. | 0.99 0.93 0.70 0.68 0.93 0.92
UCF | 0.89 0.89 0.87 0.68 0.93 0.89

6.3 Facial Expression Recognition

To show that the proposed FFNN is not restricted to the recognition of
human actions, the algorithm is evaluated on a dataset for Facial Expression
Recognition (FER) as depicted in fig. 6.3. The goal of the classification is
to differentiate the six basic emotions introduced by Ekman [29]).

Table 6.8 and table 6.9 show the classification results for the gradient,
optical flow and combined patterns learned with PCA, sNMF and the
VNMF algorithm on the FER dataset. For all input types, the VNMF
outperforms the other learning algorithms. The dynamic form patterns
learned on the optical flow outperform the static form patterns learned
on the gradient amplitudes, while the combined patterns perform best.
This results indicate that the low-scale movements are captured by the

DFor details on FER see discussion in section 4.5.1.
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VNMF-OFE algorithm and that the motion related to the facial action
units (see table 4.1) is indeed very class-discriminative.

Table 6.8: Results for optical flow (V) and gradient (Z) patterns learned with
PCA, sNMF and VNMF on the FER dataset.

Vy Ta
PCA | sNMF | VNMF | PCA | sNMF | VNMF
0.72 0.70 0.75 0.67 0.66 0.71

Table 6.9: Results for the combined (Vs+Zz) patterns learned with PCA, sNMF
and VNMF on the FER dataset.

PCA | sNMF | VNMF
0.69 0.72 0.82

6.4 Comparison to Related Work

In the following the classification results of the VNMF descriptors are
compared to the state-of-the-art HOG/HOF descriptors [21] and the overall
system is compared to other HAR systems.

6.4.1 HOG/HOF Results

To make the comparison of the learned basis vectors to state-of-the-art
features extractors independent of the figure-centering and optical flow
estimation in the preprocessing, the HOG/HOF features are calculated
on the same data as used for the learned basis vectors. The cell/block
building of the HOG features is identical to the overlapping summation
pooling blocks used for the complex cell response. The same pooling sizes
is used for both features types. To make the feature dimension identical the
number of basis vectors (J) is set equal to the number of bins (b) typically
used for the HOG descriptor: b= J = 8.

The results are depicted in table 6.10. Throughout all datasets, the
dynamic form patterns (optical flow) outperform the static form patterns
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(gradient), while the combined features (optical flow + gradient) perform
best on the UCF-Sports and Facial Expression dataset. This result is
of particular interest, because it shows that the dynamic information
contributes more to the recognition of biological motion than the static
information. However, each stream on its own is able to recognize some
of the actions, and the information from both streams is complementary,
since the results improve considerably when combining form and motion.

Table 6.10: Results for the VNMF and HOG/HOF descriptors for the optical
flow (V&), gradient (Zz) and combined (Vy+Z) patterns.

Va Iy Votls
VNMF | HOF | VNMF | HOG | VNMF | HOG/HOF
Weiz. | 0.99 0.86 0.63 0.80 0.92 0.87
UCF 0.89 0.78 0.85 0.77 0.92 0.80
FER 0.31 0.39 0.75 0.63 0.82 0.71

The learned pattern features outperform the designed state-of-the-art
HOG/HOF descriptors significantly for all three datasets. As discussed in
section 5.3.3, the fact that the VNMF descriptors outperform the HOG
descriptors shows that the local topological information is important for
modeling discriminative image descriptors.

6.4.2 Benchmark Results

The experimental results of the proposed FFNN are now compared to other
HAR systems on four benchmarks for HAR and FER, i.e. the Weizmann [8],
KTH [92], visualized in fig. 6.4, UCF-Sports [88] and FER dataset by
Dollar [25].

Table 6.11 shows the results for the proposed FFNN using the VNMF
and the HOG/HOF descriptors as well as related work. The systems
most similar to the proposed FFNN are the biologically inspired multilayer
network of Jhuang et al. [56] as well as the system proposed by Dean et
al. [22]. [56] make use of example-based patterns, no learning is applied
during the feature extraction. In [22] the features are learned with a sparse
coding algorithm applied to space-time-volumes. Both networks, as well as
the HOG/HOF descriptors are outperformed by the proposed FFNN.

Most of the other algorithms [2, 15, 60, 107] are Bag-of-Words approaches
as discussed in appendix A. They differ e.g. in the way the codebook is
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Figure 6.4: From left to right: Example images for the six classes, bozing,
clapping, waving, jogging, running and walking of the KTH dataset [92]. Each
row depicts one of four sets, the second set includes view-point and scale variations,
the third set varying clothing and the fourth set a different background.

learned. While the classical approaches [60] train the codebook with k-
means clustering, others use NMF [2], sparse coding [41] or sNMF [15],
with improved results.

In addition, the descriptors can be learned, e.g. with ISA; the classi-
fication results [64] are slighty better than the results of the proposed
FFNN on the KTH dataset, but significantly worse on the more challenging
UCF-Sports dataset. The only algorithm that outperforms the proposed
FFNN on the UCF-Sports dataset is introduced in [15]. Besides a codebook
that is learned with SNMF, they added a novel vorticity-based feature-point
detector to the Bag-of-Words approach.

In summary, the proposed FFNN outperforms other biological inspired
approaches, but does not achieve the best classification performance on
the challenging KTH and UCF-Sports dataset, compared to highly opti-
mized state-of-the-art algorithms in computer vision. In the FFNN the
VNMEF descriptors outperform the HOG/HOF descriptors. Since the high
performing algorithms make use of extended HOG/HOF descriptors, the
Bag-of-Words approach might benefit from the VNMF descriptors as well.
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Table 6.11: Classification results for optical flow (Vz), gradient (Zz) and com-
bined (Vo+Z,) patterns on the Weizmann [8], KTH [92], UCF-Sports [88] and
FER by Dollar [25] for the VNMF algorithm (J = 16, mRF'S = 16 x 16) compared
to state-of-the-art HOG/HOF features and related work.

KTH | Weiz. | UCF | FER
Ts 0.71 | 0.80 | 0.87 | 0.31
VNMF Ve 0.90 | 0.99 | 0.89 | 0.75
Vot1Iy 0.93 | 0.99 | 0.93 | 0.82
Tw 0.67 | 0.74 | 0.77 | 0.39
HOG/HOF Ve 0.80 | 0.86 | 0.78 | 0.63
Vot Ly 0.82 0.87 | 0.80 | 0.71
Jhuang et al. [56] | 0.92 | 0.96 - -
Dean et al. [22] 0.86 - - -
Guha et al. [41] - 0.99 - 0.82
Klaser et al. |60 - - 0.90 -
Related Work Amiri et al. [[2]] 1.00 - - -
Le et al. [64] 0.94 - 0.87 -
Wang et al. [107] - - 0.89 -
Chen et al. [15] 0.97 - 0.99 -
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7 Conclusion

In the following the experimental results for the proposed Feed-Forward
Neural Network (FENN) for biological motion recognition, the optical flow
estimation (VNMF-OFE) and the learned features (VNMF) are summarized
and critically discussed. Finally, the shortcomings of the proposed algo-
rithms are analyzed and an outlook on future work based on the discussion
is given.

7.1 Summary & Discussion

The basis for the different layers in the proposed FFNN is the novel VNMF
algorithm introduced in chapter 3, with its focus on a direction selective,
strict non-negative representation, sparse activations and inhibition. The
basic idea, that the non-negativity constraints results in meaningful, thus
interpretable patterns, which are more class-specific than holistic patterns,
is confirmed by the experimental results for all layers. The inability to
subtract patterns from a model, whether during the optical flow estimation
or for learning gradient or optical flow patterns, guides the underlying
optimization problem to local minima related to basis vectors that resemble
prototypical input parts. This behavior is further emphasized by the local
competition of overlapping patterns introduced with the novel inhibition
functions.

Besides the benefit of learning prototypical patterns, the VNMF learning
framework is highly robust, easy to parametrize and consists of linear opera-
tions which can be easily implemented for parallel computing. Unlike most
unsupervised learning algorithms, all energy functions that are optimized
with the VNMF algorithm scale relative to the reconstruction and are thus
directly coupled. This makes the parametrization independent of the type
of the input data as well as from the amount of input data. The algorithm
directly scales with the number of inputs and can thus be extended to
larger datasets without any re-parametrization. This claim is underlined
by the fact that the algorithms were applied with identical parameters to
varying input types and different datasets.
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7.1.1 Optical Flow Estimation (VNMF-OFE)

The motion analysis starts on the small scale with the estimation of the
optical flow, i.e. the motion of each pixel between two consecutive images.
The VNMF approach changes the OFE problem to an model parameter
search problem. The result is a sparse but detailed optical flow. For
the VNMF-OFE the local receptive fields are learned and allow for the
preservation of small but class-specific movements, like the motion of face
parts during facial expressions. The major benefit of the VNMF-OFE
method is its robustness. The optical flow model is estimated for the entire
input image and not to a local restricted neighborhood, which makes it
less vulnerable to the aperture effect.

If any necessary conditions for an successful OFE are violated, e.g. in
case of really fast movements, the VNMF-OFE focuses on the borders of
the moving object and the sparsity suppresses the motion for the unreliable
areas. The computational costs of the VNMF-OFE algorithm scale linearly
with the number of basis vectors (J) and are independent of the maximum
receptive field size (mRFS). The most time consuming operations are the
two dimensional correlations and convolutions, which need to be performed
per basis vector. Since all operations are linear they can be calculated in
parallel and independently for each basis vector. An optimized and parallel
implementation is thus independent of (J). During learning the algorithm
scales with the number of input images, which can also be implemented for
parallel computing and during the detection the computational cost are
only depending on the size of the input, thus the x- and y-dimension.

However, the proposed method has several drawbacks. The current
version does not include a multi-scale approach to care for fast movements.
Further on, the euclidean energy function is not very robust towards outliers
and thus the estimated optical flow is often not accurate concerning the
speed of the movement. The estimated optical flow is not fully dense and
not evaluated on standard optical flow benchmarks.

Nevertheless, due to the robustness and the simple parametrization, the
VNMF-OFE is a great tool for OFE on datasets for biological motion
recognition. And above all, the VNMF-OFE directly links unsupervised
pattern learning to the spatio-temporal domain.

7.1.2 Feature Extraction (VNMF)

The goal of the proposed unsupervised learning algorithm is to learn
prototypical parts of the input, i.e. to give a puzzle-like decomposition.

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

128 7 Conclusion

Following the idea of a non-negative, sparse, direction-selective, translation-
invariance representation that includes inhibition of overlapping parts,
the VNMF algorithm achieves the proposed goal. The new inhibition
function has a strong effect on the activations, i.e. it leads to topological
sparse activations, without any additional non-linear function. As a direct
consequence the patterns resemble prototypical input parts.

Since all energy terms of the optimization objective function scale relative
to the input space, the VNMF has identical properties, whether the inputs
are optical flow fields or gradient amplitudes. If given optical flow fields
as inputs the VNMF patterns represents body parts. For the gradient
amplitudes the VNMF patterns resemble edge structures.

The structure preserving ability of the VNMF patterns is what makes
them useful during the classification of human actions. The simple
cell/complex cell feature extraction outperforms the state-of-the-art HOG/
HOF descriptors throughout all experiments. The parts-based VNMF
patterns outperform the patterns learned with sSNMF and the holistic PCA,
which highlights the benefits of parts-based over holistic representations.

The computational costs of the VNMF algorithm scale linear with the
number of basis vectors (J) and are independent of the maximum receptive
field size (mRFS). The most time consuming operations are the two
dimensional correlations and convolutions, which need to be performed
per basis vector. Since all operations are linear they can be calculated in
parallel and independent for each basis vector. An optimized and parallel
implementation is thus independent of (.J). During learning the algorithm
scales with the number of input images, which can also be implemented for
parallel computing and during the detection the computational cost are only
depending on the size of the input, thus the x-, y- and feature-dimension.

Learning algorithms, including the proposed VNMF algorithm often suffer
from over-fitting to the training dataset. However, in the experiments the
patterns learned on the Weizman dataset are directly applied to the UCF-
Sports dataset without reduced classification performance, even though the
UCF-Sports dataset is in no way similar to the Weizman dataset. E.g. the
Weizman dataset has no camera movement and a rather homogenous
background, while the UCF-Sports dataset has strong camera motion as
well as different cluttered backgrounds. The learned patterns can even be
applied to a face movement dataset and still achieve good results for FER.
This suggests that the VNMF algorithm is capable of learning general
purpose, rather than dataset specific patterns.
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7.1.3 Biological Motion Recognition Model (FFNN)

The proposed FFNN for biological motion recognition consists of two
streams, one for static (i.e. gradient amplitudes) and one for dynamic
(i.e. optical flow) form representations. The results on multiple computer
vision benchmarks (Weizman, UCF-Sports and FER) show that the biolog-
ical inspired model is competitive with state of the art approaches.

It is shown that the static as well as the dynamic patterns contribute to
the classification of human actions. While both, the static as well as the
dynamic patterns, can achieve reasonable results when applied unpaired,
the best results are achieved when both patterns are used in parallel. These
results indicate that low-level motion analysis contributes to the recognition
of biological motion.

A major difference of the proposed FFNN compared to other hierarchical
convolutional models [65] is that the feature stages are trained in a purely
unsupervised fashion and no supervised learning, e.g. in form of a back-
propagation algorithm, is applied to refine the features. As discussed in
section 1.1.2, using unsupervised feature learning is beneficial when different
classes share identical poses or pose-sequence, which is true for human
actions, such as walking, running and kicking.

Another specialty of the proposed FFNN is the multiplicity of how the
VNMEF algorithm is applied to solve different tasks throughout the stages
of the classification hierarchy. By adapting the objective function, but
keeping the sparse, non-negative model, the VNMF approach can solve
diverse tasks such as OFE, optical flow and gradient feature extraction as
well as modeling linear dynamic systems (discussed in appendix D).

All these results strongly suggest that sparsity, non-negative represen-
tations and inhibition are coding principles that are beneficial, not only
for the proposed FFNN for biological motion recognition, but for multiple
kinds of neural networks.

7.2 Outlook

The results reported in this thesis indicate the usefulness of the proposed
FFNN and the novel unsupervised learning algorithms. However, the
properties of the proposed system need to be further analyzed and extended.
In the following, some strait forward extensions for the different stages of
the FFNN are listed.

1P 216.73.216.36, am 20.01.2026, 08:46:26. geschiltzter Inhalt.
tersagt, m mit, fr oder in Ki-Syster



https://doi.org/10.51202/9783186251084

130 7 Conclusion

The current version of the VNMF-OFE does not include a multi-scale
approach which is typically used to deal with larger displacements. The
algorithm should be extended to include a multi-scale optical flow esti-
mation. In addition, the VNMF-OFE could be combined with a robust
segmentation (see [99]) to achieve an increasingly dense OF-field. Includ-
ing temporal relations into the VNMF-OFE as proposed in [112] would
further increase the robustness and accuracy of the OFE. The modified
VNMF-OFE should be evaluated on state of the art OFE benchmarks [36].

The VNMF-OFE could be modified to solve the correspondence problem
in stereo vision. Like OFE, extracting a depth map out of a stereo camera
setting is a correspondence problem, which can be solved with the proposed
VNMF-OFE algorithm. The additional depth information could provide
additional features for the FFNN as well as a segmentation that could
improve the quality of the OFE.

The model of the VNMF algorithm is restricted by the fixed number of
basis vectors J. To overcome this restriction, the VNMF could be extended
by e.g. iterative NMF as proposed in [85]. Furthermore, the euclidean
error function used for the reconstruction energy term is not robust to
outliers in the input data. Hence, more robust energy functionals (for
an overview see [19]) could be applied. Most importantly, a faster feed
forward simple cell computation during detection should be considered.
In [65] an additional feed-forward filter learning is proposed in combination
with a sparse coding algorithm. The VNMF could be extended to include
this filter learning. During detection only the feed-forward filters with an
additional non-linearity could be used to calculate the activations, thus
speeding up the detection process significantly.

It should be further investigated how to new inhibition term can be
related to the dropout [97] technique that is currently used in all hierarchical
convolutional networks for object classification. Dropout, i.e. the random
cancellation of activations during learning, is said to increase the networks
sparsity. Unlike the proposed inhibition function, which has a similar
effect, dropout is a random heuristic approach whose usefulness is hard to
motivate.

To make the proposed biological motion recognition setting applicable
in a real world scenario, a robust action detection step [60] would be
required. To better understand how the proposed approach scales for a
larger amount of classes, the FFNN should be tested on larger datasets
like the UCF-101 [96] and HMDB [61]. The scene complexity of these two
datasets is comparable to the UCF-Sports datasets, however, they have
over 50 different action categories and over 24 hours of video material.
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In the current setup, all layers of the FFNN are learned in uncoupled
subsequent steps. If the hierarchical NMF approach introduced in [84]
would be extended to include the pooling step, all layers could be learned in
a unified procedure. To push the idea of the unified algorithm setting even
further, the classification layer should be changed from the SVM to a non-
negative and sparse algorithm. This could be either done by exploiting the
similarities between SVM and NMF [80] or by using a non-negative multi-
layer perceptron instead of the SVM. This would require a modification of
the back propagation algorithm to care for the non-negative representation.
Such a back propagation algorithm could be trained throughout all layers
of the FFNN;, similar to other convolutional recognition hierarchies [65, 97].
Though, this would contradict the idea of learning the first layers in a
purely unsupervised fashion as discussed in section 1.1.2.

And last but not least, the FFNN should be included into a larger system
for dynamic scene understanding as discussed in appendix B, including
feed-forward recognition as well as context and task driven feed-back loops.
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A Bag of Words

The Bag of Words (BOW) method for human action recognition as in-
troduced in [94] is widely applied, because it is robust and has a good
classification performance without the need of any pre-processing, such as
figure centering or an exact temporal segmentation of subactions. Each
video is seen as a 3D space-time-volume, which is represented by a single,
high-dimensional feature descriptor. The classification is divided into four
steps:

1. 3D feature point detection,
2. for each feature point, calculation of a local spatio-temporal descriptor,
3. which is then projected onto a prelearned codebook,

4. the resulting codebook histogram for all the feature points is then
classified using a multi-class SVM.

For each step there are different algorithms. A comparison of the classi-
fication performance for the feature point detectors and local descriptors
is given in [108]. Common local descriptors are 3D extensions of the
HOG/HOF descriptors introduced in [21], e.g. the dense trajectory descrip-
tors in [107]. The codebook can either consist of a set of randomly selected
descriptors [60], can be learned on training data using k-means [60], sparse
coding [41], NMF [2] or sSNMF [15]. The classification is mostly done with
a SVM using radial basis functions or linear kernels.

The major drawback of the BOW method is that the spatio-temporal
relations between the local descriptors are lost, because they are treated
independently of their relative location in the video. In [60] it is shown
that a figure centric representation with a spatial grid improves the results
of their BOW method. In related work [5, 109] the spatio-temporal context
between the local descriptors is described by designed features.
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B Visual Cortex

Processing of visual information starts as early as in the eye, where different
cell types on the retina are specialized e.g. to differentiate between colors
or to be motion sensitive. From the retina, the continuous signals are send
to the visual cortex that consists of different types of spiking neurons. As
a simplification, in this thesis, we make the assumption that the input
is always a discrete time series of images. Furthermore, neurons are not
modeled as spiking devices, but by using non-negative continuous signals.
This highly simplified approach is biologically inspired rather than a realistic
description of the actual biological processes. It focuses the analysis on the
functional level rather than on the anatomical level.

The tasks solved by the early visual system include the control of the eye
movement for object tracking and finding relevant focus points in an input
image. In the visual cortex the tasks have an increasing complexity and
include e.g. object/action segmentation, detection and recognition and self
localization. To successfully solve these tasks, information coming from the
visual input as well as information from other sensors or higher cognitive
areas are merged. If we e.g. search a specific person and hear his/her
voice, we already know where to look at (focus point) as well as what to
look for (prior knowledge about the person). The recognition of visual
actions might be to some extent guided by the motoric system and self
localization is accomplished by fusing information from the sensors in the
inner ears with input from the eye. Sensor fusion as well as the influence
of higher cortical areas are not discussed in this thesis. The focus is on
primary visual functions [23], i.e. feed-forward driven recognition processes.
Finding the focus of attention or object detection are also not analyzed.
The analyzed persons are always given in a figure-centric representation.

The visual information coming from the two eyes can be categorized into
four channels: color, gradient, depth and motion information. Unlike the
color information, the information from three other channels needs to be
estimated in the visual cortex. The information in the different channels
can either be redundant or complementary, so a visual recognition system
that makes use of all four channels might give the best results, but a
reduced system can still reach a high performance. This redundancy makes
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Figure B.1: Simplified overview of the visual system: The information coming
from the eye can be roughly divided into four types of information: color,
gradient, depth and motion. Based on these four channels a scene representation
is build in a feed-forward process. The visual information contained in the scene
representation, such as positions and attributes of objects is fed back into the
feed-forward process to stabilize and enhance the detection. Task and context
information further guide the recognition process. In this thesis only the motion
and gradient channels and their interactions are analysed, while the feed-back
loops are neglected.

visual recognition very robust to partial failures, as e.g. the loss of stereo
vision due to a loss of an eye. An example for this redundancy and the
partially complementary information is the extraction of form. Forms can
be defined by similarities in color, depth, motion or by its borders defined
in image gradients. Finding distinct forms can then help in segmentation
and recognition. In addition, segmentation can help to calculate depth and
motion information, i.e. due to feedback loops from higher visual processes
the different information types can interact and their estimation can be
improved. A simplified model of such a visual system is illustrated in
fig. B.1.
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C Gradient Derivations

C.1 Translation Invariant Learning

= IV R (1)
= % Z (vn Z hjn(m)w;(x — Tn))2 (C.2)

Gradients for the activities:

= ra(@)wi(x —m) = vn(x)wj(®—m)  (CA)
VH;, Eree = corra(Ry, W ;) — corra(V,,, wW. ) (C.5)

+ _
5:<VHJ-" Ercc) = (VH]n Ercc)

Gradients for the basis vectors, with the substitution ' = x — m:

Vs, (@) Erec = Z ( Ry — &) (on (@) — Tn(w))) (C.6)
= Zrn (x— ') Zvn hjn(z — ') (C.7)
VV_VJ' Erec = Z Corrz(RVH H]TL) - Z COITQ(VI?,) H]n) (08)
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I
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C Gradient Derivations

C.2 Topological Sparsity

Ep =5 Z Rngm (Rn - Rn]m) (Cg)
n,j,m
-5 Z anm Z Rn]m njm (010)
n,j,m n,j,m
‘:Epl ::Epg
2
By = - Z (ij jn(m)) (C.11)
1 _
E, = 5 Z w?(a: - m)hfn(m) (C.12)
n,x,j,m
Gradients for the basis vectors, with the substitution =’ = z — m:
Vo, @) Ep1 = th x — )1, () (C.13)
vv‘vj 1l = Zcorrg (R, Hj,) (C.14)
vﬁ’] (m/)EPQ = Z’U_J] Z hj’lL (015)
=W, Z (C.16)
Vw, Ep =V, Epy — Vg E (C.17)
= corry(Rn, Hj,) — W; > HJ Hj, (C.18)
Gradient for the activities:
Vi, (m) Ept = ij m)r,(z) (C.19)
Vi, (m)Ep = corrg(Rn, W) (C.20)
th”( m) B = hjn Zw T —m) (C.21)
VH,, Ep = HjnWTW (C.22)
VHJ”E = VHJ” VHJ,L (0.23)
= corrg(Rn, W;) — HjnWJTWj (C.24)
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Figure D.1: The activations of a sSNMF depicted on the left share a common
set of basis vectors W for all inputs V, but are conditionally independent. The
activations of a sSNN-LDS depicted on the right share a common set of basis
vectors VW and the temporal transitions between the activations are defined by
the common transition matrix K.

D Sparse Non-Negative Linear
Dynamic Systems

D.1 Temporal Extension of sSNMF

As introduced in section 3.3.5, the sNMF model does not contain any specific
relations between consecutive input data V,, and V,, ;. The underlying
assumption is that they are conditionally independent and only coupled due
to a common basis vector set /. However, this assumption might not hold,
e.g. for human actions, where the actions can be defined by consecutive
poses.

By adding transitions between the activations, the static SNMF model
can be extended to a dynamic model. The relation between each consecutive
inputs can be modeled by a linear dependency between the corresponding
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activations H,, and H, ;. The result is a sparse non-negative linear
dynamic system (sNN-LDS). The two systems are illustrated in fig. D.1.
The temporal relation between the single activations are

hjnt1 =Y kjthin, (D.1)
l

with a transition parameter kj. Written in matrix form

HQ = KHS, (D.2)

S = (8 g) , (D.3)

0= (8 g) , (D.4)

Q € RV*N | that masks out the first input V5. I € R7*7 is the transition
matrix, that contains only non-negative elements, i.e.

ki >0, Yjlell,...J. (D.5)

with the shift matrix

S € RV*N and the matrix

If multiple videos are used to learn the parameters of the sSNN-LDS, the
matrices @ and § are modified accordingly. The activation H,, 1 is now
influenced by the corresponding input V,, 1 and the previous activation H,,.
The sNN-LDS is defined by the transition matrix I and the observation
matrix or basis vectors W.

It is noteworthy, that since both the observation and transition models are
linear, the model can be be consider as a discrete linear dynamical system
(LDS) with non-negativity constraints. Additional sparsity constraints
make it a sSNN-LDS as illustrated in fig. D.2.

D.2 Related Work

There already exist several temporal extensions for NMF or SC algorithms,
e.g. the fussed lasso [102] or [12]. However, these algorithms do not learn
the transitions between the activations, but rather enforce a strict temporal
consistancy by penalizing differences between consecutive activations.

In speech recognition, there exist hidden markov models learned with
NMF-like algorithms [20, 74]. Again, the transitions are not learned, but
rather given via prior knowledge into the model.
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Figure D.2: The sNN-LDS depicted as a discrete linear dynamic system. The

components marked with a (+) are strictly non-negative.

D.3 Transition Energy

In addition to the reconstruction energy that is used to learn the basis
vectors W of a sSNMF model, the sNN-LDS requires an energy function that
reflects the influence of the transition matrix K. The reconstruction energy
scales relative to the input, so it is beneficial for the parameter settings
if the transition energy scales in the same manner. Thus, the estimated
activation KHS is projected onto the input space by the basis vectors W.

The transition energy function is
1 _
Ey = At§\|VQ —~ WKHS||%.
The gradients for the activations are
(VuE)T = MCTWTWKHSST,
(VuE)~ = METWTVST,
and for the basis vectors
(VWE)T = AWKHSSTHTKT,
(ViwE) ™ = AMVASTHTKT,
and the transition matrix
(VE)T = AW TWKHSS ™ 1T,
(VkE)” = AWTVaSTHT.
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D.3.1 Sparsity in the Transitions

To reduce the amount of transitions an additional energy function that
enforces sparse transitions is added. The energy function is

Be= N Y _ ki, (D.13)
75l

with the gradient for the transitions

(Vi B = A (D.14)

D.3.2 sNN-LDS Learning Algorithm

The overall energy function for learning the sNN-LDS is
ENN-LDs = Erec + AnEn + ApEp + M By + A By

1 1
=5IV- RIF+ A D> hjn + 3 Apart > (RLY R

n.j n,j k#j

1 _
+)\t§||VQ—WIC”HS||% + e Y ki (D.15)
3l
The gradients can be derived from the equations (3.34), (3.35), (3.36),
(3.37), (3.48), (3.54), (D.7), (D.8), (D.9), (D.10), (D.11), (D.12) and (D.14).
The algorithm to learn the model parameters H, W and K of a SNN-LDS
is:
e Preprocessing
_ i - %
Normalize V = (V)

— initialize H, VW and K randomly.

e Loop for ¢ iterations
Calculate R = WH,

(Va Esnn-LDs) ~
update H — H o (& v e F

calculate R = WH,

(VwEsNN-LDS)
update W — Wo (VwEsnn-LDps) T

5. normalize W, = \/%, viell,...J],

- e
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(Vi EBsnn-Lps) ~
6. update K — K o (Fem o™

The default settings for the energy parameters are A\, = 0.1, A, = 0.2,
A = 0.2 and A\, = 0.1.

D.4 Results

Classification results of the sNN-LDS algorithm for varying number of
basis vectors J for human action recognition are discussed in [45]. Here the
sNN-LDS is applied as an additional layer on top of the pooled features
and it is compared to a static SNMF algorithm with the same amount of
basis vectors. The VNMF layer consists of 8 basis vectors for the optical
flow and 8 basis vectors for the gradients. The overall system is illustrated
in fig. D.3.

Table D.1: Classification results for leave-one-out experiments.

sNMF sNN-LDS
J 50 100 50 100
Weizmann | 0.98 | 0.99 | 0.99 | 1.00
UCF-Sports | 0.88 | 0.87 | 0.90 | 0.92

Table D.1 shows the results for the different experiments on the UCF-
Sports and Weizmann dataset. The sNN-LDS slighty outperforms the
sNMF on the Weizmann datasets and by 2% on the UCF-Sports datasets,
which shows that modeling the temporal relations improves the classification
performance. Increasing the number of basis vectors J from 50 to 100
improves the results, but not as significantly as adding the temporal
relations.
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VNMF-OFE  VNMF  Pooling
TR f&s
S| L [Ij:l sNN-LDS SVM
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walk

Figure D.3: Overview of the extended two stream hierarchical biological motion
recognition system. At first, the spatial and temporal gradients of the incoming
video data are calculated. In the motion processing stream (coloured blue), the
spatial and temporal gradients are used to estimate the optical flow (VNMF-OFE)
which is thereafter matched onto a set of prelearned optical flow patterns via the
VNMF algorithm. In the gradient processing stream (coloured red) the spatial
gradient amplitudes are calculated and matched onto a set of prelearned gradient
patterns with the VNMF algorithm. The spatially pooled pattern responses are
then given as input for a sSNN-LDS layer (coloured cyan). The activations are
classified in the final layer that consists of a Support Vector Machine (SVM).
Each box with a (+) has a strictly non-negative representation.
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