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/1 N N
Axpps = NZ(AX}'I) ,
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where Ax, can be either the absolute or percentage difference between the corresponding
quantities x; N is the number of Ax, values (depending on the property, between 10 million and
100 million points are uniformly distributed over the respective range of validity).
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Abstract

Numerical process simulations, such as flow analysis with Computational Fluid Dynamics
(CFD), power-plant design with heat cycle calculations, and real-time process optimizations,
are widely used in power engineering. These simulations are computationally expensive,
especially when transient processes are considered. During the computation, the thermo-
physical properties of the utilized working fluids need to be calculated extremely often.
Therefore, fast and accurate property functions are required. Furthermore, numerical process
simulations require these property functions to be continuously differentiable once and
numerically consistent with each other. Because of their computing-time consumption, accurate
multiparameter equations of state are unsuitable for some extensive process simulations and
faster, but often less accurate, property calculation algorithms are applied.

In order to provide fast and accurate property calculation algorithms for computationally
expensive process simulations, the International Association for the Properties of Water and
Steam (IAPWS) has established the task group “CFD Steam Property Formulation”. Within
this task group, the Spline-Based Table Look-up Method (SBTL) has been developed in this
work. The SBTL method combines polynomial spline interpolation techniques and specialized
coordinate transformations to reproduce the results of an underlying property formulation, e.g.,
the industrial formulation IAPWS-IF97 or the scientific formulation IAPWS-95 for water and
steam, with high accuracy and low computing time. Depending on the order of the applied
spline polynomials, SBTL property functions are at least one time continuously differentiable.
Furthermore, the so-called inverse spline functions are numerically consistent with their
corresponding forward spline functions, e.g., u(p,v) and p(v,u).

In this work, the development of the SBTL method, as well as its practical application for
property calculations in numerical process simulations, is described. To begin, currently applied
property calculation methods are discussed regarding their accuracy and their computing-time
consumption. From the obtained findings, conclusions for the development of a new property
calculation method are drawn. Then the developed SBTL method is described in detail. The
SBTL method is exemplified by its application to the industrial formulation [APWS-IF97 and
the scientific formulation IAPWS-95 along with the current transport property formulations for
water and steam. For these formulations, SBTL property functions of specific volume and
specific internal energy (v,u), as required in CFD, are presented. From these SBTL property
functions, numerically consistent inverse functions for calculations from (p,v) and (u,s) are
derived. Analogously, SBTL property functions of pressure and specific enthalpy (p,4), as
required in heat cycle calculations, are described. With these functions thermodynamic and
transport properties, their derivatives, and inverse functions are calculable in the single-phase,
two-phase, and metastable regions. The properties calculated from the SBTL property functions
represent those of the underlying IAPWS standards with very high accuracy. Typically, the
maximum relative deviations amount to between 1 to 100 ppm depending on the property and
the range of state. Computations from the (v,u) spline functions are more than 100 times faster
than calculations with IAPWS-IF97 and are more than 200 times faster than calculations with
IAPWS-95.

The applicability of the SBTL method is verified in the CFD code TRACE, developed at the
German Aerospace Center (DLR), as well as in two different heat cycle calculation software
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XII Abstract

tools, namely in KRAWAL-modular, developed by SIEMENS PG, and in EBSILON®
Professional, developed by STEAG Energy Services. Additionally, the use of the SBTL method
is verified in RELAP-7, the thermalhydraulic program for the simulation of transient processes
in nuclear reactors and plants, developed by the Idaho National Laboratory (INL). The
numerical results of the process simulations with the SBTL method show negligible differences
from those obtained through the direct application of the underlying property formulations, but
the overall computing times are reduced significantly.

In order to apply the SBTL method to property functions for any fluid, the software
FluidSplines has been developed.

Based on the results outlined above, the “TAPWS Guideline on the Fast Calculation of Steam
and Water Properties with the Spline-Based Table Look-Up Method (SBTL)” has been
developed, which was adopted by IAPWS in 2015.
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X1

Kurzfassung

Numerische Prozesssimulationen, wie beispielsweise rechnergestiitzte Analysen stromungs-
mechanischer Vorgéinge (englisch: Computational Fluid Dynamics, CFD), Kreisprozess-
berechnungen zur Auslegung kraftwerkstechnischer Anlagen und Betriebsoptimierungen in
Echtzeit, werden in der Energietechnik vielfiltig eingesetzt. Diese Simulationen sind
rechentechnisch sehr aufwindig, insbesondere wenn instationdre Vorgédnge betrachtet werden
miissen. Wéhrend der Prozessberechnung miissen die thermophysikalischen Eigenschaften der
verwendeten Arbeitsfluide extrem héufig ermittelt werden. Hierfiir werden schnelle und genaue
Stoffwertfunktionen benoétigt. Die verwendeten Stoffwert-Berechnungsalgorithmen miissen
einmal stetig differenzierbar und numerisch konsistent zueinander sein. Aufgrund ihrer langen
Rechenzeiten sind genaue empirische Zustandsgleichungen fiir den Einsatz in aufwéndigen
numerischen Prozesssimulationen nicht geeignet, weshalb auf einfachere, jedoch haufig auch
ungenauere Stoffwert-Berechnungsalgorithmen zuriickgegriffen wird.

Um schnelle und gleichzeitig sehr genaue Stoffwert-Berechnungsalgorithmen zur
Verfiigung zu stellen, hat die International Association for the Properties of Water and Steam
(IAPWS) die Task Group “CFD Steam Property Formulation* gebildet. Innerhalb dieser Task
Group wurde das Spline-basierte Table Look-up Verfahren (SBTL) im Rahmen dieser Arbeit
entwickelt. Das SBTL Verfahren kombiniert Spline-Interpolationsalgorithmen mit speziellen
Koordinatentransformationen um die zugrunde gelegte Stoffwertgleichung, beispielsweise die
Industrieformulation IAPWS-IF97 oder die wissenschaftliche Formulation IAPWS-95 fiir
Wasser und Wasserdampf, mit hoher Genauigkeit und geringer Rechenzeit wiederzugeben.
Abhdngig vom Grad der verwendeten Spline-Polynome sind SBTL Stoffwertfunktionen
mindestens einmal stetig differenzierbar. Zudem ermdglicht das SBTL Verfahren die
Berechnung numerisch konsistenter Umkehrfunktionen.

In der vorliegenden Arbeit wird die Entwicklung des SBTL Verfahrens sowie dessen
praktische Anwendung zur Stoffwertberechnung in numerischen Prozesssimulationen
beschrieben. Dazu werden zunidchst die derzeit verwendeten Stoffwert-Berechnungs-
algorithmen hinsichtlich ihrer Genauigkeit und ihres Rechenzeitbedarfs diskutiert. Ausgehend
von den gewonnenen Erkenntnissen werden Zielstellungen und Ansitze fiir die Entwicklung
eines neuen Stoffwert-Berechnungsverfahrens formuliert. AnschlieBend wird das entwickelte
SBTL Verfahren im Detail erldutert. Das SBTL Verfahren wird beispielhaft auf die Industrie-
formulation IAPWS-IF97, die wissenschaftliche Formulation IAPWS-95 sowie die aktuellen
IAPWS Formulationen fiir die Transporteigenschaften fir Wasser und Wasserdampf
angewendet. Fiir diese zugrunde liegenden Gleichungen werden SBTL Stoffwertfunktionen
von spezifischem Volumen und spezifischer innerer Energie (v,u), wie sie beispielsweise in
CFD Simulationen zum Einsatz kommen, vorgestellt. Zudem werden aus diesen SBTL
Stoffwertfunktionen numerisch konsistente Umkehrfunktionen von (p,v) und (u,s) entwickelt.
Analog werden SBTL Stoffwertfunktionen fiir die in Kreisprozessberechnungen héufig
auftretende Variablenkombination von Druck und spezifischer Enthalpie (p,h) sowie
entsprechende Umkehrfunktionen von (p,7), (p,s) und (%,s) beschrieben. Mit diesen Funktionen
konnen die thermophysikalischen Eigenschaften sowie deren Ableitungen und Umkehr-
funktionen im Ein- und Zweiphasengebiet berechnet werden. Die aus den SBTL Funktionen
berechneten Stoffwerte stimmen mit den zugrundeliegenden Gleichungen mit sehr hoher
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X1V Kurzfassung

Genauigkeit {iberein, beanspruchen aber wesentlich geringere Rechenzeiten. Typische
maximale Abweichungen betragen je nach Stoffwertfunktion und Giiltigkeitsbereich 1 bis 100
ppm. Im Vergleich mit dem Industriestandard IAPWS-IF97 sind die SBTL Funktionen von
(v,u) mehr als 100-mal schneller. Gegeniiber dem wissenschaftlichen Standard IAPWS-95 sind
diese Funktionen mehr als 200-mal schneller.

Die Anwendbarkeit des SBTL Verfahrens wird im CFD-Code TRACE, entwickelt am
Deutschen Zentrum fiir Luft- und Raumfahrt (DLR), sowie in den Kreisprozessberechnungs-
programmen KRAWAL-modular, entwickelt von SIEMENS PG, und EBSILON®
Professional, entwickelt von STEAG Energy Services, nachgewiesen. Weiterhin wird der
Nutzen des SBTL Verfahrens in RELAP-7, der vom Idaho National Laboratory (INL)
entwickelten Software zur Simulation instationérer Prozesse in Kernreaktoren, aufgezeigt. Die
Ergebnisse der Prozessberechnungen mit dem SBTL Verfahren weisen gegeniiber der direkten
Verwendung der zugrunde liegenden Gleichungen vernachléssigbare Differenzen auf. Die
Gesamtrechenzeiten der Prozessberechnungen werden jedoch signifikant reduziert.

Fiir die Anwendung des SBTL Verfahrens auf weitere Stoffwertfunktionen und beliebige
Fluide ist in dieser Arbeit die Software FluidSplines entwickelt worden.

Auf Grundlage der Ergebnisse dieser Arbeit ist die neue “IAPWS Guideline on the Fast
Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method
(SBTL)” erarbeitet worden, welche von der IAPWS im Jahr 2015 als internationale Richtlinie
verabschiedet wurde.
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1 Introduction

Extensive numerical process simulations, such as Computational Fluid Dynamics (CFD),
heat cycle calculations, and real-time process optimizations are indispensable tools for power
engineering. In the development of advanced processes and plants, accurate process simulations
replace costly prototypes and enable detailed optimizations regarding efficiency, lifetime,
flexibility, costs, etc. Moreover, numerical process simulations are used to optimize process
parameters during plant operation.

In order to obtain accurate simulation results, the process to be analyzed needs to be
described with an appropriate mathematical model that requires a certain amount of computing
time. Driven by the pursuit of advancements in engineering, the complexity of numerical
process simulations is growing, leading to increased computing times. Detailed numerical
process simulations are computationally expensive, especially when transient processes are
considered. A large proportion of the computing time is spent on the calculation of
thermophysical properties of the working fluids used. Therefore, very fast property calculation
algorithms need to be applied. Moreover, the numerical algorithms employed in process
simulations require the property functions to be continuously differentiable once and
numerically consistent with each other; otherwise the computation may not reach convergence.

For water and steam, as the most important working fluid in power engineering, the
International Association for the Properties of Water and Steam (IAPWS) provides
internationally accepted formulations for thermodynamic and transport properties. The [APWS
Formulation 1995 for General and Scientific Use (IAPWS-95) [1, 2] is the most accurate
representation of the thermodynamic properties of the fluid phases of water substance over a
wide range of conditions currently available. As for other conventional Helmholtz equations of
state, property calculations from [APWS-95 are computationally expensive. In the steam power
industry, property functions of pressure and temperature (p,7), pressure and specific enthalpy
(p,h), pressure and specific entropy (p,s), and specific enthalpy and specific entropy (4,s) are
called millions of times when designing steam turbines, steam generators, and heat cycles.
These functions need to be calculated by iteration from IAPWS-95, which is very time-
consuming. This often leads to inacceptable computing times in extensive numerical process
simulations.

To meet the requirements of the steam power industry, the IAPWS Industrial Formulation
1997 (IAPWS-IF97) [3, 4] and its supplementary releases [5, 6,7, 8] are available. This
formulation is sufficiently accurate for industrial applications and enables fast property
calculations from (p,7), (p,h), (p,s), and (h,s). This is achieved by the combination of
computationally efficient fundamental equations, each of which represents a different region in
the range of validity of IAPWS-IF97, and so-called “backward equations” for calculating
inverse property functions without time-consuming iterations. Due to the imperfect numerical
consistency with the basic equations of IAPWS-IF97, the application of backward equations
for simulating non-stationary processes can lead to convergence problems. In these situations,
inverse property functions should be calculated by iteration from the basic equations with
starting values determined from the available backward equations.
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2 1 Introduction

For density based CFD solvers, property functions of specific volume and specific internal
energy (v,u), as well as of pressure and specific volume (p,v), are required. Due to the absence
of backward equations for these variable combinations, these functions need to be calculated
by iteration from the corresponding fundamental equation. This is computationally expensive
and therefore inappropriate for CFD. In order to reduce the computing times, property
calculations are often simplified, for example, through the use of the ideal-gas equation or a
cubic equation of state. Depending on the range of state, these simplifications cause
inaccuracies in the results of the process simulation.

As an alternative, table look-up methods are frequently applied for fast and accurate property
calculations. For these methods, discrete values of the required properties are calculated from
accurate equations of state and are stored in look-up tables. During the process simulation,
properties are determined from these look-up tables with simple interpolation or approximation
algorithms. A prime example for table look-up methods is the Tabular Taylor Series Expansion
method (TTSE), which was adopted as an IAPWS Guideline [9, 10, 11] in 2003. The desired
properties are calculated from second order Taylor series expansions obtained from the
tabulated derivatives at the midpoint of the corresponding cell in the look-up table. The TTSE
method is very fast, but adjacent Taylor series are not connected continuously. This
characteristic leads to numerical problems in CFD and non-stationary simulations with very
small spatial and time discretization.

In order to provide property calculation algorithms that fulfill the requirements of extensive
numerical process simulations regarding accuracy, computing speed, differentiability, and
numerical consistency, the task group “CFD Steam Property Formulation” was established by
the IAPWS working group “Industrial Requirements and Solutions” in 2008. Resulting from
the activities in this task group, the Spline-Based Table Look-Up method (SBTL) is proposed
in this work. The SBTL method is intended to be a supplement to existing property
formulations, not only for water and steam, but also for other fluids. The SBTL method aims to
represent the underlying property formulation with very good agreement, but with significantly
reduced computing time. Additionally, the SBTL method is intended to provide numerically
consistent forward and backward functions, e.g., of u(p,v) and p(v,u).

Section 2 gives an overview of thermodynamic property formulations that are relevant for
computationally expensive numerical simulations. From the discussion of these formulations
with regard to their accuracy, computing speed, and numerical consistency, conclusions for the
development of alternative property calculation algorithms are drawn. In Section 3, the
fundamentals of the newly developed SBTL method are explained in detail.

For generating SBTL property functions, the software FluidSplines has been developed. This
software enables the application of the SBTL method to one- or two-dimensional property
functions of any fluid. The basic structure and key features of FluidSplines are described in
Section 4.

The application of the SBTL method to the industrial formulation IAPWS-IF97 is described
in Section 5. SBTL property functions of (v,u) as well as numerically consistent inverse
functions of (p,v) and (u,s) are presented in Section 5.1. Analogously, SBTL property functions
of (p,h), and numerically consistent inverse functions of (p,T), (p,s), and (A,s) are presented in

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061
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Section 5.2. Through the use of the provided SBTL functions, thermodynamic and transport
properties, their derivatives, and inverse functions are calculable in the single-phase region and
in the two-phase region. SBTL property functions of (v,u) and (p,4) covering the stable and the
metastable vapor region are given in Section 5.3. The SBTL method has also been applied to
the IAPWS Formulation 1995 for General and Scientific Use as shown in Section 6. For every
SBTL property function presented in Sections 5 and 6, the deviations from the underlying
property formulation and the results of the computing-time comparisons are given. The
application of spline functions to thermodynamic potentials is discussed with an example for
s(v,u) in Section 7.

The applicability of the SBTL method in CFD is demonstrated in Section 8.1. In a joint
project with the German Aerospace Center (DLR), SBTL property functions based on IAPWS-
IF97 have been implemented into the advanced CFD software TRACE. The numerical results
and computing times of test calculations with the SBTL property functions have been compared
to those obtained through the use of the direct application of IAPWS-IF97. In Section 8.2 the
use of the SBTL method in heat cycle calculation software is demonstrated. The SBTL
functions of (p,4) and the corresponding inverse functions of (p,7), (p,s), and (4,s) based on
IAPWS-IF97 (see Sec. 5.2) have been implemented in KRAWAL-modular (developed by
SIEMENS PG) and EBSILON® Professional (developed by STEAG Energy Services). The
application of the SBTL method in RELAP-7, the nuclear reactor system safety analysis code
developed at the Idaho National Laboratory (INL), is explained in Section 8.3. For this purpose,
SBTL functions of (v,u) and inverse functions of (p,7), (p,v), (p,h), (p.s), and (h,s) were
developed based on IAPWS-95. The range of validity of these property functions includes the
metastable-liquid and metastable-vapor regions at the vapor-liquid phase transition. This
enables the application of a novel 7-equation non-equilibrium two-phase model, developed at
INL.
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2 Property Calculation Algorithms for Numerical Process Simulations

A prerequisite of many scientific and industrial calculations is the knowledge of the
thermophysical properties of the working fluids used. A basic theory to describe these
properties over the entire fluid range of state within the uncertainties of available measurements
is not known yet. Therefore, thermophysical properties are approximated either under some
theoretical assumptions or by empirical equations of state. In this section, selected
thermodynamic property formulations for water and their applicability in computationally
expensive numerical process simulations are discussed. The accuracy of these formulations is
described in the respective sections and computing-time comparisons are given in Sec. 2.5.3.

2.1 Simple Thermal Equations of State

Thermal equations of state describe the relationships between pressure, temperature, and
specific volume, i.e., p(T,v) or v(p,T). In conjunction with an equation for the isobaric heat
capacity of the ideal gas cj)
fundamental thermodynamic relations. The isobaric heat capacity of the ideal gas c; (T ) is

(T) the remaining caloric properties can be derived from

either obtained from theoretical models or from measurements extrapolated to zero density.

2.1.1 Ideal-Gas Model

Under the theoretical assumption that the molecules of a gas do not possess a volume and
do not interact with each other except for elastic collisions, the ideal-gas equation

p=RL @.1)
v
is derived as a thermal equation of state from statistical mechanics. The energy content of the
ideal gas is stored in the vibrational, rotational, and translational movement of its molecules
and is temperature dependent only. For water vapor, a simple fourth-order polynomial for the
isobaric heat capacity of the ideal gas c; (T) is given by Poling et al. [12] and reads

cg(T)=R(a0+a|T+a2T2+a3T3+a4T4). (2.2)

Through the use of fundamental thermodynamic relations all remaining thermodynamic
properties can be derived from Eq. (2.1) and ¢, (T') as shown in Table 1.

The deviations in specific volume and isobaric heat capacity of the ideal-gas model from the
real fluid behavior of water, i.e., from the reference equation of state IAPWS-95 [1], are shown
in Figs. 1 and 2. The pressure and temperature ranges covered by these diagrams include the
range of state of modern steam power cycles. The ideal-gas model can be applied to gases at
low densities and temperatures above the critical temperature. At higher densities and lower
temperatures, the volumes of the molecules and the interactions between them become more
significant and the real fluid behavior must be taken into account.

Due to its simplicity, the ideal-gas model is well established in CFD and other extensive
numerical process simulations. In many situations, the ideal-gas model is utilized for property
calculations in the non-ideal range of state, where a more complex formulation for the real fluid
would lead to inacceptable computing times. Depending on the range of state, this implies
inaccuracies in the results of the process simulation.
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2.1 Simple Thermal Equations of State 5

Table 1: Relationships between thermodynamic properties and the ideal-gas model

Property Relationship
T
Specific internal energy u’ u®(T)=h; + I ¢y (T)dT -RT
Ty
T
Specific enthalpy A° 1 (T)=hy + I cp(T)dT
Ty
T .0
c, (T
Specific entropy s sO(T)=s5+ J L (7) dT-RIn [pJ
- T Po
0
Specific isochoric heat capacity ¢} ) (T)=c,(T)-R
o (T
Speed of sound w w(T)= ﬂRT
p (T)-R
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Figure 1: Relative deviation in specific volume v of the ideal-gas model from the reference
equation of state IAPWS-95 [1].
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Figure 2: Relative deviation in specific isobaric heat capacity c; of the ideal gas from the
reference equation of state IAPWS-95 [1].

2.1.2 Cubic Equations of State

For process simulations with phase transitions from liquid to vapor, or vice versa, a
consistent property formulation for both phases is required. The first qualitatively correct

representation of thermal properties across the entire fluid range of state was given by van der
Waals [13] as

_RT _a 2.3)

v—>b V2
The parameter b represents the physical volume of the molecules and therefore the term (v - b)
in Eq. (2.3) can be considered as the remaining volume for the movement of the molecules. The

parameter a takes the intermolecular attraction forces into account, so that (a/ vz) can be
considered as a pressure drop due to these forces.

When rearranged as a function of specific volume v, the van der Waals equation of state,
Eq. (2.3), becomes a cubic polynomial

0=v3—[b+£jv2+£v—@
p p p

and is therefore named a cubic equation of state. The constants a, b, and R are obtained from

the parameters p., T, and v, at the critical point, where (8p/ 6V)T and (62 p/ n? )T are zero.
The resulting constants are

a=3py’, 24
c’c
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2.1 Simple Thermal Equations of State 7

V
b=-c, 25
3 (2.3)
R=8P% (2.6)
3T,

The specific gas constant R obtained from Eq. (2.6) does not match the value of R = E/ M.
Therefore, the van der Waals equation, Eq. (2.3), does not match the ideal-gas equation,
Eq. (2.1), for v>>b and v>>a.

In order to improve the accuracy in the liquid region and the critical region, and to predict
the vapor-liquid equilibrium more accurately, several cubic equations of state have been
developed. The Peng-Robinson equation of state [14] can be expressed as

RT a(T
_RT___alr)

Tv=b w(v+2b)-b @7

The parameters a(T) and b are calculated from
2
T
a(T)—aO[l+n[l—\/7]] . (2.8)
T

b= 0.0778ﬂ .
Pe

and

In Eq. (2.8), the parameters g, and n are calculated from

(RT,)’ 2
ap =0.45724——— and n=0.37464+1.54220—-0.26993w
De
where @ is the acentric factor that takes into account the non-centricity of the molecules. The
acentric factor was introduced by Pitzer [15] and is defined as

w——loglo[ps(OJTC)}—l.

(4

Rearranging Eq. (2.7) as a function of specific volume v yields

0=1* +(b—£]v2 +[7“_RT21’ —3szv—[RTb2 —ab +b3].
p p p
Cubic equations of state can be solved in terms of specific volume analytically, and calculations
from (p,T) are therefore possible without any iteration. However, the analytical solution for
v(p,T) requires the computation of transcendental functions and is therefore comparatively time
consuming. As discussed by Deiters and Macias-Salinas [16], the calculation of v(p,T) with an
appropriate iteration scheme is computationally more efficient in most cases.
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Table 2: Relationships between thermodynamic properties and thermal equations of state
p(T,v) in conjunction with the isobaric heat capacity of the ideal gas c; (T )

Property Relationship
T
Specific internal energy u u(T,v)=hy + j <) (T)dT -RT
T,
vV
op
,J. p(T,v)fT(—] } dv
iren-r() |
T
Specific enthalpy /4 h(T,v)=hy + I cp(T)dT
Ty
+p(T,v)v—RT—j{p(T,v)—T(sl;) } dv
Vo vJr
T 0 T
Specific entropy s s(T,v)=s5 + J L() dT-Rln {Tj Rln [VJ
7 T Ty Vo
()]
v \oT ),
Vo T

Specific isochoric heat capacity ¢, ¢, (T,v)=¢

Specific isobaric heat capacity ¢, ¢, (T,v)=c,(T,v)-T

Speed of sound w w(T,v)=—-v

c, (T, v) ov

The deviations in the specific volume calculated from the Peng-Robinson equation of state
from the real fluid behavior of water, i.e., IAPWS-95 [1], are shown in Fig. 3. The deviations
in the isobaric heat capacity, calculated from the Peng-Robinson equation in conjunction with
the isobaric heat capacity of the ideal gas (see Table 2) and from IAPWS-95, are shown in
Fig. 4. In the range of state of modern steam power cycles, these deviations are considerable
and lead to incorrect simulation results.
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Figure 3: Relative deviation in specific volume v of the Peng-Robinson equation of state from
the reference equation of state IAPWS-95 [1].
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Figure 4: Relative deviation in specific isobaric heat capacity c, of the Peng-Robinson equation
of state from the reference equation of state IAPWS-95 [1].
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10 2 Property Calculation Algorithms for Numerical Process Simulations

Since cubic equations of state only require knowledge of the critical parameters and for some
versions the acentric factor, they are available for many fluids. Therefore, cubic equations of
state are frequently applied in chemical engineering. Due to their comparatively short
computing times, these equations of state are often applied in CFD simulations. A comparative
study of the computing times is given in Sec. 2.5.3.

2.2 Fundamental Equations of State

For quasi-static reversible processes, the first law of thermodynamics describes the relation
of infinitesimal heat flux and infinitesimal volumetric work supplied to a closed system with
its infinitesimal change in internal energy as

dq—pdv=du. (2.9)

From the second law of thermodynamics, the infinitesimal heat flux of the reversible process at
the temperature 7 yields

6q=Tds. (2.10)
Inserting Eq. (2.10) into Eq. (2.9) yields

du=Tds— pdv. (2.11)
Comparing Eq. (2.11) to the total differential of u(v,s), namely

du:[a—uj dv+(%J ds, (2.12)

ov Jg 0s ),

shows that

[a—u) =-p and (@j =T. (2.13,2.14)

ovJ, 0Os ),

Since the partial derivatives in the total differential Eq. (2.12) are equal to full thermodynamic
properties, the full information to describe the thermodynamic state of the system is contained
in u(v,s). Therefore, u(v,s) is a thermodynamic potential from which all other thermodynamic
properties can be derived.

For the conjugate pairs of variables (p,v) or (7,s) in Eq. (2.11), the Legendre transformation can
be applied to obtain other thermodynamic potentials. For instance, the product rule for d(pv)
reads

d(pv)=pdv+vdp. (2.15)
Adding both sides of the Egs. (2.11) — (2.15) yields

du+d(pv)=Tds+vdp, (2.16)
and finally, with applying the addition rule and defining the specific enthalpy as A=u+pv, to

dh=Tds+vdp. (2.17)
By applying the Legendre transformation analogously to Eq. (2.11),

df =—pdv—sdT (2.18)
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can be derived, where the specific Helmholtz free energy is defined as f=u — Ts. Applying the
Legendre transformation to Eq. (2.18) to switch the conjugate pair of variables (p,v), the
following differential equation is obtained

dg =vdp—sdT, (2.19)
where the specific Gibbs free energy is given as g=h— T5.
The differential equations, Egs. (2.11), (2.17), (2.18), and (2.19), show that the functions
u(v,s), h(p,s), AT,v), and gp,7),

describe thermodynamic potentials. These functions are called fundamental equations of state.
In contrast to thermal equations of state (see Sec. 2.1), the calculation of thermodynamic
properties from a fundamental equation of state only requires its derivatives, but not integrals.
Among the independent variables of the equations above, only p, 7, and v are accessible through
direct measurements. Therefore, fundamental equations of state are established for either f{7,v)
or g(p,T). At the liquid-vapor phase boundary, the derivatives of g(p.T), i.e., (9g/dp), = v and
(8g /oT ) = —s, are discontinuous. Therefore, it is not possible to cover the entire fluid region
with a single equation for g(p,7). Nevertheless, fundamental equations explicit in the Gibbs free
energy g have been established in some cases to describe the liquid phase and the vapor phase
independently.

In process simulations, the solution of mass, energy, and entropy balance equations often
leads to (v,u), (p,h), (p,s), or (h,s) inputs for fluid property calculations. Therefore, the
development of fundamental equations of state with these pairs of independent variables from
a preliminary Helmholtz equation f{7,v) has been pursued, for instance by P. G. Hill for s(p,h)
(unpublished). The functional form of such an equation would be comparable to that of state of
the art Helmholtz equations. For independent variables other than those of the chosen
fundamental equation of state, property calculations would still require iterative procedures.

2.2.1 Reference Equations of State

Reference equations of state represent the measurements they are based on to within their
uncertainties. For water and steam, the scientific formulation IAPWS-95 [1, 2] is available. Its
fundamental equation is expressed as the reduced Helmholtz free energy @ = f / (RT) as a
function of reduced density & = p/p, and inverse reduced temperature 7 =7, /T and reads

D(5,7)=D° (5,7)+ D (5,7), (2.20)
where the ideal part is
8
©°(8,7) =In(8)+n +n$7+n§ In(r)+ Y0 In[ 1= exp(~ 777) @21
i=4

and the residual part is

7 51
o' (S,r):Zn[é‘d"rt” +Zni5d"r"’ exp(—&"")

o = « : (2.22)
+ > mshich exp(—a,- (5—8[)2 -B(t-% )2)+ > mahisy
i=52 i=55
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with

i

a=02+B[(5-1) [,

1

9:(1—7)+A,.[(5—1)2}7ﬁf,

v =exp(-C,(6-1) -D,(c-1)).

The parameters for Eqs. (2.21) and (2.22) are given in [1,2]. The relationships of
thermodynamic properties to the reduced Helmholtz free energy are given in Table 3.

Table 3: Relationships of thermodynamic properties to the reduced Helmholtz free energy @

and its derivatives

Property Relationship
Pressure p

p(6,7) .

=1+0d
p=p*(2f/op), PR ?
Specific internal energy u u ( S z')
> _ o r

u=f-T(ef/eT), RT =e(@f+at)
Specific enthalpy 4 h( s, T) . . .
h=f=T(er/oT),+p(of [op); = 14505 +7(®2+ 0} )

Specific entropy s

s=—(ar/or),

Specific isochoric heat capacity c,

__2 o r
(;V _ (611/67')/) R =—7 ((Dﬂ' +(D7T)
Specific isobaric heat capacity ¢, ‘, (5’ r) o r (1 5L~ e, )2

=—77| O, + -
cp =(Oh/T), R (@5 %) 14260} + 57D

2
Speed of sound w W2 (5.7) 250+ 2 (1 +5D —52'@5;,)
NCD) B ey
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The uncertainties of IAPWS-95 in specific volume v and specific isobaric heat capacity c,
for the region considered in Secs. 2.1.1 and 2.1.2 are given in Figs. 5 and 6.
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30 L 1 1 1 1 1 30
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2

8

~ 10 L 10

54 5
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Figure 5: Uncertainties in specific volume v as estimated for [APWS-95 [1].
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Figure 6: Uncertainties in specific isobaric heat capacity ¢, as estimated for IAPWS-95 [1].
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The residual part, Eq. (2.22), contains 7 polynomial terms, 44 exponential terms, 3 Gaussian
bell shaped terms, and 2 non-analytical terms. The large number of transcendental functions,
such as exponential functions and logarithms, not only in Eq. (2.22) but also in Eq. (2.21),
causes long computing times as discussed in Sec. 2.5. Therefore, the computing speed of such
complex reference equations of state is often much too slow for extensive process simulations.

2.2.2 Short Fundamental Equations of State for Industrial Applications

For various fluids, short fundamental equation of state have been published by Span and
Wagner [17, 18, 19], Lemmon and Span [20], and Kunz et al. [21]. In accordance with
Eq. (2.20), the short fundamental equation of state for water of Kunz et al. [21] consists of the
ideal part

@°(8,7)=In(8)+n +nSz+nyIn(z)+ Y. n} ln‘sinh(gl?f)‘

k=46 (2.23)
- ln‘cosh(z%?r)‘
k=57
and the residual part
7 16
o' (5,7)= Zn[é‘d"rt” + Z niﬁdirtf exp(—é‘"" ) (2.24)
i=1 i=8

The ideal part, Eq. (2.23), was derived from the isobaric heat capacity equation given by
Jaeschke and Schley [22]. The parameters of the residual part, Eq. (2.24), were fitted to data
calculated from IAPWS-95. The parameters of both equations are given in [21].

In contrast to the reference fundamental equations of state, the residual parts of these short
equations contain 12-16 terms only. Therefore, their accuracies are not as high as those of
reference equations of state (see Sec. 2.2.1), but sufficient for many industrial applications.
According to Lemmon and Span [20], computations from the short fundamental equations of
state in comparison to reference equations of state are 2-10 times faster. A comparative study
of the computing times is given in Sec. 2.5.3.

2.2.3 Fast Fundamental Equations for Separate Regions

The industrial formulation for water and steam IAPWS-IF97 [3, 4] consists of separate
fundamental equations of state for the liquid region 1, the vapor region 2, the critical and
supercritical region 3, and the high-temperature region 5 as depicted in Fig. 7. These so-called
basic equations were fitted to data calculated from IAPWS-95. For example, the basic equation
for region 2 represents the reduced Gibbs free energy y = g/ (RT ) and reads

y(z7)=y° (7. 70)+7 (7,7), (2.25)

where the ideal-gas part is given by
9 0
7° (ﬁ,r)=ln(7r)+2n;’rj" , (2.26)
i=1

and the residual part is
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43
I (7[,2’) = Znizrl" (r —O.S)Ji . (2.27)
i=1

In Egs. (2.25) — (2.27), the reduced variables are defined as 7 = p/IMPa and 7 =540K/T .
The parameters of Eqs. (2.26) and (2.27) are given in [3,4]. The relationships of
thermodynamic properties to the reduced Gibbs free energy are given in Table 4.

The uncertainties of IAPWS-IF97 in specific volume v and specific isobaric heat capacity c,
for the region considered in Secs. 2.1.1,2.1.2, and 2.2.1 are given in Figs. 8 and 9.

Among the terms in Egs. (2.26) and (2.27), the natural logarithm in Eq. (2.26) is the only
transcendental function. This term vanishes for each derivative with respect to 7 or becomes
algebraic for each derivative with respect to z. Thus, IAPWS-IF97 allows for a computationally
efficient implementation as discussed in Sec. 2.5.3.
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Figure 7: Regions, basic equations, and backward equations of IAPWS-IF97.
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Table 4: Relationships of thermodynamic properties to the reduced Gibbs free energy y and

its derivatives

Property

Relationship

Specific volume v

v=(8g/6p)r

Specific internal energy u
u=g-T(0g/oT),~p(dg/op);

Specific enthalpy &
h= g—T(ag/aT)p

Specific entropy s
s=—(og/ aT)p

Specific isochoric heat capacity c,
¢, =(0u/or),
Specific isobaric heat capacity ¢,

¢, =(om/or),

Speed of sound w

w=v,[~(dp/ov),

V(ﬂ,‘l‘)i=ﬂ'(}/§; +;/,rr)

RT

o=t ) (v )

(1—72'2}/:”,)+

2
o (mz) 5 (1+7r77rz_7”7/7rrr)
- R =-T (7?r+y;r)_ 1_”2}/;”[
c, (7,7
p(R ):_72(7;)1"'7;1')

r r 2
w(7,7) 1+27z7/7r+(ﬂ7/7r)
RT

(1+”77rr_”777rrr)2

2 (re+7k)
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Figure 8: Uncertainties in specific volume v as estimated for [APWS-1F97 [3].
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Figure 9: Uncertainties in specific isobaric heat capacity c, as estimated for IAPWS-IF97 [3].
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2.3 Backward Equations

In the steam power industry, the calculation of heat cycles and their components, such as
steam generators, turbines, condensers, and pumps, frequently requires property functions of
(»,h), (p,s), and (h,s). To calculate property functions from these pairs of variables without time-
consuming iterations, IAPWS-IF97 and its supplementary releases [3, 4, 5, 6, 7] provide so-
called backward equations. Additionally, a set of backward and auxiliary equations for v(p,T)
[8] is provided for the critical and supercritical region 3. The structure of IAPWS-IF97 along
with its backward equations is depicted in Fig. 7. For the calculation of 7(p,h) in region 2 of
IAPWS-IF97, this region is divided into the three subregions 2a, 2b, and 2c, as depicted in
Fig. 10. The corresponding backward equations are given by

34

Bal2h) ()= Fonat (-2)", @28)
i=1
38

B2 p(rn)=Son(-2)" (r-26)", 029)
i=1

and

23

w:e(ﬁ,n):z%(mzs)’f (n-1.8)". (2.30)
i=1

The boundary between the subregions 2b and 2c is given by

h
th:”(U):”l+”2ﬂ+”3U2~ (2.31)
p
The parameters of Egs. (2.28) —(2.31) are given in [3, 4]. The maximum (max) and root-mean-
square (RMS) inconsistencies between Eqs. (2.28) — (2.30) and the basic equation g,(p,T) of
IAPWS-IF97 region 2, Eq. (2.25), along with the permissible values (perm), are given in
Table 5.

Table 5: Maximum (max) and root-mean-square (RMS) inconsistencies between the
backward equations 7,,(p,h), T, (p,h), and T, (p,h), Eqgs. (2.28) — (2.30), and the basic
equation g,(p,T) of IAPWS-IF97 region 2, Eq. (2.25), along with the permissible
values (perm) according to [3]

Backward Eq. [AT] e [MK] |AT],,. [MK] |ATgs [MK]
T,,(p,h) 10 9.3 2.9
T, (p,h) 10 9.6 3.9
T,.(p,h) 25 23.7 10.4

Region determinations for (4,s) inputs would normally require iterative calculations from
the basic equations along the region boundaries. Similarly, the region boundary between region
3 and region 4 would require iterative calculations for (p,k) and (p,s) inputs. To avoid these
time consuming iterations, so-called region-boundary equations are provided in [6] and [7].
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Figure 10: Subregions 2a, 2b, and 2¢ with their corresponding backward equations 7(p,h).

For numerical simulations of transient processes, for instance in CFD, the requirements
regarding numerical consistency of the applied property functions are extremely high.
Investigations revealed that the numerical consistency of the existing backward equations with
their corresponding fundamental equations is insufficient for numerical simulations with very
small spatial and time discretizations and can lead to convergence problems. In these situations,
inverse property functions must be calculated by iteration from the corresponding fundamental
equation with starting values determined from the available backward equations. Where
applicable, the region boundaries must be calculated by iteration from their original definitions
in the (p,T) plane. The starting values for these calculations are obtained from the available
region-boundary equations.

2.4 Table Look-Up Methods

To calculate fluid properties with reasonable accuracy but with short computing times, so-
called table look-up methods are frequently applied. For these methods, the desired fluid
properties are determined from previously tabulated values. If the tabulated data originates from
an accurate equation and no additional smoothing of these data is required, then interpolation
methods can be applied. For tabulated measurement values that have not been pre-correlated,
approximation methods can be used to obtain a smooth representation of these values. This is
discussed for spline approximation methods in Secs. 2.4.1.3 and 2.4.2.3. To describe the
thermophysical properties of pure fluids and mixtures at constant composition, functions of one
and two independent variables are required. Phase boundaries, such as T ( p), are described
with functions of the form z(xl), whereas the properties in the single-phase region, such as
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T(p,h), are represented with functions of the form z(x;,x,). The basic principles of several
table look-up methods for one- and two-dimensional functions are explained in Secs. 2.4.1 and
242,

2.4.1 One-Dimensional Functions

If a table look-up method is applied to reproduce the results of an underlying function z( X ) s
then a series of discrete data points, the so-called nodes, can be defined arbitrarily along x;. In
order to enhance the accuracy of any interpolation or approximation method, it is advantageous
to linearize the function to be interpolated first by means of suitable variable transformations.
This is illustrated in Figs. 11 and 12. Both the independent variable x; and the dependent
variable z can be transformed into X; and Z . The number of nodes / and their X; ; locations are
chosen to ensure the desired accuracy. For some methods, the nodes are clustered in regions
with strong curvature to achieve the required accuracy and to minimize the number of nodes
over the domain of definition. For other methods, the nodes are distributed equidistantly along
X, as shown in Fig. 12. The z; values of the nodes (i) are calculated from the transformed
underlying equation Z(X;). The values between the nodes are interpolated by means of
polynomials E{i} (%) , which are locally defined in each interval {i}. For the methods described
below, an interval {i} usually ranges between two nodes. In order to interpolate or approximate
values from a given series of nodes, the interval {i} must be determined first. For non-
equidistant nodes, a search algorithm is required to identify the interval index i. For equidistant
nodes along X;, an extensive search algorithm can be avoided and the interval index i is simply
calculated from

. XX
i =floor| ——|. (2.32)
Ax

1

Underlying
function z(x,)

Node (i)

o

\4

X

Figure 11: Untransformed underlying function z(xl) with nodes equidistant in X rather than
in x.
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fl,l 3?1,1 1 )?l,iﬂ fu fl
5 ) %,
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Figure 12: Transformed underlying function E(fl) with nodes equidistant in X, and
interpolating polynomial Z;, (%) in the interval {i}.

2.4.1.1 Local Polynomial Interpolation

Local polynomial interpolation provides simple ways for calculating values from look-up
tables. The term “local” means, in this context, that the polynomials are piecewise defined for
each interval {i}, whereas “global” means that a single polynomial interpolates values across
the entire domain. For local methods, lower order polynomials can be used. For global methods,
the polynomial degrees depend on the number of nodes. Thus, a large number of nodes leads
to higher order polynomials that tend to oscillate. This problem can become very dominant if
the nodes are distributed equidistantly (Runge’s Phenomenon). Therefore global polynomial
interpolation methods are not considered here.

In contrast to spline interpolation methods (see Sec. 2.4.1.3), the local polynomials are
defined without any additional constraints to the adjacent intervals. Therefore, the continuity of
derivatives is limited as discussed later in this section for cubic polynomials. For local
polynomial interpolation methods, a polynomial E{i} ()?1) is defined in each interval {i}
between the nodes (i) and (i +1).

A polynomial of N-th order is given by

N+l k1
Zy (%)= ax ()71 —fu) : (2.33)
k=1
For the linear case, i.e., N=1, Eq. (2.33) has two coefficients a,, that can be obtained from two
constraints. These constraints can be defined at the boundaries of the interval {i} at which
Eq. (2.33) intersects the nodes (i) and (i+1). The resulting piecewise linear function is
continuous across the interval boundaries, but not continuously differentiable. A mathematical
description of linear interpolation methods can be found in [23].

In order to provide a property function with a continuous first derivative, cubic interpolation
is often recommended. The four coefficients of the cubic polynomial, Eq. (2.33) with N=3, can
be determined from given values of Z and (dz/dx, ) at the two bounding nodes of each interval.
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In contrast to this local method, a cubic spline function also provides a continuous second
derivative as described in Sec. 2.4.1.3.

2.4.1.2 Tabular Taylor Series Expansion Method (TTSE)

The Tabular Taylor Series Expansion method (TTSE) was adopted by IAPWS as a guideline
[9, 10] in 2003. For this method, the nodes are typically located at the center of each interval
{i}. From each of these nodes a Taylor series E{i} ()71) is expanded. The applied second order
Taylor series expansion is given by

N (-2 PE (R Y O o2 PO
), (%)=3% +(x1 —xl,i)[dxlj(xl,i)Jrz(xl _xl,i) [dx;](xu) (2.34)

Eq. (2.34) approximates the underlying function independently for each interval {i} without
any constraint to the neighboring intervals. The resulting inconsistencies at the boundaries
between two adjacent intervals are illustrated in Fig. 13.

\3\ Interval
{i}

—A
z

Node (i)
Zy (%)

N

»
—

¥ X
xl,i 1

Figure 13: Series of nodes with an interval {i} where the Taylor series E{i} (fl) is valid.

In [9], the TTSE method is applied to IAPWS-95. The TTSE property function 7,(p) and its
numerically consistent inverse function p(7) are created on the same series of 174 nodes. The
functions are valid in the following pressure and temperature ranges:

612.8 Pa < p < 22.064 MPa 275K < T < 647.096 K.

The maximum deviation of the TTSE property function 7(p) from IAPWS-95 is 1 mK, except
in the vicinity of the critical point, where the maximum deviation is 6 mK. The maximum
inconsistency at the interval boundaries is 2 mK. The nodes along with the corresponding
derivatives for each property are stored in a look-up table. The nodes are not equidistant along
p or T and the desired interval index i is determined by means of the bisection method. The
interval index i is stored for subsequent function calls to minimize the effort for the search
algorithm for contiguous state points. For random inputs, the search algorithm for the interval
index is the dominant factor for the computing time of the TTSE method.
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2.4.1.3 Spline Interpolation and Approximation Algorithms

Spline interpolation has its roots in engineering mechanics. The term “spline” refers to a
flexible rod that serves as a drafting tool for smooth curves and was introduced in 1946 by
Schoenberg [24]. The rod is fixed to a number of points and takes the shape with minimum
bending energy. Thus, this shape is considered to be the smoothest possible. The bending line
of the thin rod is described by the Euler-Bernoulli bending theory, a second order differential
equation, which reads

EIZ"(xl)zM(xl), (2.35)

where E is the modulus of elasticity, / is the moment of inertia, z” is the curvature, and M is
the bending moment. A simple example is shown in Figs. 14 and 15.

z z
(« s ‘jM,
XW;% T T )) T % 3 g—T—ﬁ ()
FF 5 £ / FF F,
Figure 14: Forces at a thin rod between two Figure 15: Free body diagram for the
supports (example). example given in Fig. 14.

The bending moment at the location x; in the interval {i}, where x;; <x <X, is derived
from the moment equilibrium, see Fig. 15, and reads
i

My ()= F (5 =x4)- (2.36)

k=1
The integration of Eq. (2.35) with Eq. (2.36) for each interval {i} yields
iR,

Elzy (3) = ;Z(x] ~3x) (3= 214)+ - 2.37)

Substituting (xl _xl,k) in Eq. (2.37) with (xl =X ) +(x1’i _xl,k) and rearranging for (0 leads
to a piecewise-defined function of cubic polynomials for the bending line, which reads

=h! ()= Zi(xl _xl,i)3 + 6{;},1 (xl —xu)+ 6{;},2 - (2.38)

For known forces F;, i=2 ... -1, the support forces F, and F; can be obtained from the force
and moment equilibria. The 2(/— 1) constants, 6{1},1 and 6{1.}’2 , can then be determined from
the conditions

Z{jmy (1 =0)=0, (2.39)
Zi=1-1 (xl = xl,l) =0, (2.40)
2y (3101) = 2y (311) i=l .., 1-2, (2.41)
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dz

gl (X1,i+1): &

dy

(Xl,m) i=1,..,1-2. (2.42)
{i} {i+1}

Because of the continuity of Eq. (2.36) and the chosen conditions Eq. (2.41) and Eq. (2.42), the
piecewise-defined function for the bending line is continuously differentiable twice.

Based on the considerations described above, spline interpolation algorithms were
developed in the middle of the 20" century. A spline function is a piecewise-defined function,
consisting of several spline polynomials that interpolate values between a series of discrete data
points, the so-called nodes. The spline polynomials are connected at knots, which can be either
equal or unequal to the nodes. In analogy to the piecewise-defined bending line discussed
above, cubic spline functions with the knots equal to the nodes were developed first. In between
the Inodes, /-1 intervals {7} are defined as X;; <X} <X ;. In each interval {i}, a cubic spline
polynomial is defined as depicted in Fig. 12. The cubic spline polynomial reads

4
_ = _ K
20 (%)= zaik (x1 —X1,i) . (2.43)
k=1
Each of the /— 1 polynomials E{ i ()?1) must intersect the adjacent nodes (¢) and (i + 1), so that
E{i}(fhi):fi(fm) i=1,..,1-1, (2.44)
2oy (%) = et (%) i=1,...1-1, (2.45)

At each of the /-2 knots between two adjacent polynomials, the first two derivatives with
respect to X, (dz/d¥;) and (dzf/dflz) , must also be equal

dz

$ V=9 (5 - _
dxfl{i}(xl’i”)_dfl {M}(x],,ﬂ) i=1,..,1-2, (2.46)
d’z| d’z - o ~
= {,-}( 1) dxf]z{iﬂ}(xl,m) i=l..,1-2. (2.47)

Two additional conditions are required to determine the 4(/— 1) unknown coefficients a;;, of
the /-1 spline polynomials. For this purpose, the first derivatives (dE / d)?]) at the endpoints
(i=1) and (i=1) are frequently provided, so that

dz _ .\ dz

dxfl{i:l}(xl’l)zﬁ(xl")’ (2.48)
dz _ dz

a5, (xu ) = g](xu ) : (2.49)

{i=1-1}

Alternatively, these derivatives can be approximated. The 4(/— 1) unknown coefficients a; of
the /-1 spline polynomials are obtained by solving the linear system of equations Eqgs. (2.44)
— (2.49). A comprehensive discussion of cubic spline interpolation algorithms with various
constraints is given by Spéth [23]. Computationally efficient implementations of these methods
are also given in [23].
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In 1962, Landis and Nilson published an article [28] on cubic spline functions and their
application for determining thermodynamic derivatives from tabulated values. They established
cubic spline functions for the reduced internal energy «/RT as a function of temperature 7 along
isochores. From these spline functions, values of c¢/R were calculated by analytical
differentiation. In addition, a least-squares spline-approximation technique is discussed that can
be employed to fit smooth spline curves to experimental data. Details of such a spline-
approximation technique were published by Klaus and van Ness [29] in 1967. The underlying
cubic spline interpolation method for this approximation technique is similar to the algorithm
given by Egs. (2.43) — (2.49). Therefore, the actual equations provided in [29] are not repeated
here, but the similarities and differences to the cubic spline interpolation algorithm given above
are discussed.

The /-1 polynomials approximate N>/ fixed data points ?,, ()%1’ ,,) as shown in Fig. 16. The
number of intervals /— 1 is an arbitrary choice and the X; location of each inner knot i coincides
with the X; coordinate of a data point n(i). Hence, in addition to the 4(/—1) coefficients gy,
the z positions of the 7 knots are unknown.

[e]
_A
z ’b
ESPL ()?l )7
G Spline polynomial E{,} ()?1 )
Z in the interval {i}

Xivl XN

X _
X1 X1

Figure 16: Data points to be approximated along with the series of knots and the interval {i},
where the spline polynomial E{i} (%) is valid.

The adjacent polynomials must fulfill the 3(/—2) conditions given by Egs. (2.46), (2.47),
and

Ziay (%) = Zjpay (Fri) i=l,..,1-2. (2.50)
Furthermore, the sum of squares
N a A2
o? = (%, (%) -7 (%) @2.51)

n=l1
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is to be minimized. The method of Lagrange’s underdetermined multipliers [30] is used to solve
this problem. For the M =4(/— 1)+ [ unknowns and the J=3(/ - 2) constraints, the M additional
equations
J

a—F+Z/1j%:0 m=1,..,M (2.52)

oX, A 0X,,
are formulated. In the M Egs. (2.52), F is the function to be minimized, i.e., Eq. (2.51), and X,
represents one of the 4(/— 1) unknown coefficients a; or one of the unknown values of z; at
the / knots. The constraints ¢; correspond to the Egs. (2.46), (2.47), and (2.50), which have to
be given in the form ¢; =0. The Junknown Lagrange multipliers 4; increase the total number
of unknowns to M+J. The system of equations to be solved simultaneously is then given by
the J constraints themselves, i.e., Egs. (2.46), (2.47), and (2.50), and the M Egs. (2.52). In [29],
the additional assumptions

&7,y /a6 (%) = 4°Fy) /a5 (%2) (2.53)
and

&2y [0 (%) = F ey 457 (%) (2.54)
were made.

Another spline-approximation approach with cubic polynomials was presented by Schot [31]
in 1968. Again, the underlying cubic spline interpolation method is similar to the algorithm
given by Egs. (2.43) — (2.49). Therefore, a mathematically equivalent description of the method
can be provided with Egs. (2.43), (2.46), (2.47), (2.50), and (2.52). For this method, the number
and the X; locations of the knots is equal to those of the given data points, i.e., /=N and
X, = il,i . The sum of squares to be minimized is given by

d2 SPL

fla) ) of [ s

where

N\)
Ny

22 2 2 2
A"z, 2 7
T T e e S (2.56)
Ax” X T Xie xl.l+1 xl i M T Xl
For w=0, the spline function is fitted to the given data points only. For w> 0, the differences

in the second derivatives from the second difference quotients are additionally minimized,
which reduces possible fluctuations in the resulting spline curve.

The spline approximation methods discussed above were developed to provide smooth and
computationally efficient representations of tabulated values from rather inexact property
formulations or measurement values with experimental errors. The development of new
measurement methods, for instance by Wagner and Kleinrahm [32], and enhanced fitting
techniques for empirical equations, such as those of Setzmann and Wagner [33], as well as of
Lemmon and Jacobsen [34], led to very accurate fundamental equations of state (see Sec. 2.2).
In order to provide fast property calculation algorithms based on such accurate equations, spline
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interpolations are preferred to spline approximations since there is no additional smoothing
required. Since the middle of the 19th century, the theory of splines has evolved quickly into a
new field of research in mathematics. Meanwhile, many spline interpolation and approximation
algorithms have been developed, not only for one-dimensional curves, but also for
multidimensional problems. A comprehensive overview of spline algorithms is given by
Schumaker [35]. The evaluation of polynomial splines, such as the cubic spline function
described earlier in this section, is simple and allows for short computing times. Furthermore,
polynomial splines are capable of fulfilling the requirements regarding continuity and
differentiability. Polynomials of a degree lower than five can be solved analytically, which
enables numerically consistent inverse functions. For these reasons, simple polynomial splines
are preferred for property calculations rather than more complex approaches such as non-
uniform B-splines, etc.

Cubic spline interpolation was applied by Miiller [25] for the property functions T ( p),
V'(p), v'(p), ' (p),and A"(p) of water and steam. The tabulated data were calculated from
IAPS-84 [26, 27]. The derivatives with respect to p are calculable from the generated spline
functions. A simple algorithm was applied to optimize the locations of the nodes along p. The
resulting series of nodes is not equidistant, and a search algorithm is required to determine the
interval that corresponds to the given value of p.

2.4.2 Two-Dimensional Functions

For functions of the form z(x,x, ), the nodes could be arbitrarily distributed in the (x;,x;)
plane. The local definition of polynomials would require a triangulation algorithm and an
extensive search to identify the adjacent points for interpolating z at (xl,xz) . Therefore, the
following discussion is restricted to methods where the nodes are ordered in structured grids.
Normally, rectangular grids with rectangular cells are used, as shown in Figs. 17 and 18.
Analogously to the description of one-dimensional functions (Sec. 2.4.1), it is assumed that a
table look-up method is applied to reproduce the results of an underlying equation, and a grid
of nodes can be defined arbitrarily. Again, all variables z, x;, and x, can be transformed into
z, X, and X, to enhance the accuracy of the interpolation. For some methods, the nodes are
clustered in regions with strong curvature to achieve the required accuracy and to minimize the
number of nodes over the domain of definition. For other methods, the nodes are distributed
equidistantly along X; and along X, . The number of nodes 1/ and their (fl’,-,fz’ /-) locations are
chosen to ensure the desired accuracy. The Z; (X ;,X, ;) values of the nodes are calculated from
the transformed underlying function z(x;,%,) . The values between the nodes are interpolated
by means of polynomials Z{ij (7,%,) , which are locally defined in each cell {i,j}. For the
methods described below, a cell {i,j} usually ranges between the four neighboring nodes. In
order to interpolate values from a given grid of nodes, the cell {i,j} must be determined first.
For non-equidistant nodes, a search algorithm is required to identify the interval indices i and
Jj. For equidistant nodes along X; and X,, an extensive search algorithm can be avoided and the
interval indices i/ and j are simply calculated from

o X=X . Xy —Xo
i = floor| —— | and j=floor| ——=|. (2.57,2.58)
Ax) A%,

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

28 2 Property Calculation Algorithms for Numerical Process Simulations

Node

x

Figure 17: Nodes aligned in a rectangular grid in the ()?1,)?2) plane, depictedina X —x, -z

diagram.
%] / Grid of nodes
Ot °©
gureeeed
O °
X2, j+1 S S o Ny
X2 /M Cell {i,j}, where
Xy ‘ Lo o the polynomial
D D S S S
A%, | | 1 1 1 is valid
Xy f—0-----ee TS ? 77777 ? 77777777 6
— = flr
X1 ! Mo R

Figure 18: Projection of the grid of nodes into the (fl,fz) plane and the definition of node
(i,y) and cell {i,j}.

2.4.2.1 Local Polynomial Interpolation

Following the reasoning given in Sec. 2.4.1.1, only local polynomial interpolation methods
are discussed in this work. Again, in contrast to spline interpolation methods (see Sec. 2.4.2.3),
the local polynomials are defined without additional constraints to the adjacent cells. Therefore,
the continuity of derivatives is limited as discussed later in this section for bicubic polynomials.
For local polynomial interpolation methods, a polynomial E{ i) (fl,)?z) is defined in each cell
{i,j} between the nodes (i,)), i+ 1,), (ij+1),and (i+1,/+1).
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A polynomial of N-th order in X; and X, dimension is given by

N+IN+1 k-1 -1
2o (%)= 2 Y e (% -%,) (R-%,) (2.59)

k=1 I=1
For the bilinear case, i.e., N=1, Eq. (2.59) has four coefficients Ay that can be obtained from
four constraints. For a rectangular cell {i,j}, these constraints are defined by the four corner
points at which Eq. (2.59) intersects the nodes (i,j), (i+1,), (ij+1), and (i+1,+1). The
resulting surface is not planar, but linear along X; for constant X, and vice versa. If the bilinear
function is defined on a triangle, then the resulting surface is planar. Piecewise bilinear
functions are continuous across the cell boundaries, but not continuously differentiable. A
mathematical description of bilinear interpolation methods can be found in [36]. Bilinear
interpolation on rectangular grids has been applied for property calculations for instance by Pini
et al. [37]. Property functions based on bilinear interpolation on triangulated grids are discussed
by Schulze [38]. In order to simplify the search algorithm, the nodes of the triangles are aligned
along constant X or constant X, .

In order to provide a property function with continuous first derivatives, bicubic
interpolation on a rectangular grid is often recommended. The 16 coefficients of the bicubic
polynomial, Eq. (2.59) with N=3, can be determined from given values of z, (dz/0x ). ,
(oz/ox, )?1 , and (622/ 6)?16)?2) at the four corner nodes for each cell. In contrast to this local
method, a bicubic spline function also provides a continuous second derivative (see
Sec. 2.4.2.3). The local bicubic interpolation method is available in CoolProp [39] and was also
applied by Miiller [25] and Schulze [38]. Laughman et al. [40] applied local bicubic
interpolation to describe the fundamental relation (D(T,v). Similarly, Pini et al. [37] applied
local bicubic interpolation to describe the thermodynamic potential u(v,s). Instead of providing
the derivatives (&z/ox; )fz , (6z]ex, );l ,and (622/6)716)?2) at the four corner nodes, the bicubic
polynomials are calculated from the z values of the four corner nodes and the additional twelve
adjacent nodes in [37]. As described in [36], the resulting function does not provide continuity
across the cell boundaries. In order to provide a thermodynamically consistent table look-up
approach, Swesty [41] suggests to apply biquintic Hermite interpolation to reproduce
Helmholtz free energy equations with two continuous derivatives.

2.4.2.2 Tabular Taylor Series Expansion Method (TTSE)

For two-dimensional TTSE functions [9, 10], the range of validity is divided in ZJ rectangular
cells as shown in Fig. 19. Typically, in the center of each cell {i,j} a node is located from which
a Taylor series E{ ij) ()?1 ,X, ) is expanded. Exceptions are made for cases where the midpoint of
the cell is out of range. In these cases, the node is shifted onto the corresponding region
boundary. This eliminates the need for extrapolations far beyond the desired range of validity,
as discussed in Sec. 2.4.2.3. The applied second order Taylor series expansion is given by
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N (- VR 1, _ Pz [ _
=7+ ) 5 | () 53] ()

+()72 —xz’j)[;éj
X

(% -3, ) (% _xz‘j)[axfgfz J(xl’i’xz’j)

x2

2
(xlvi:xz,j)+;(x2_Xz,j)z(;’;;] (fl,i’EZ,j) . (2.60)

Rl

Equation (2.60) approximates the fluid property surface independently for each cell without
any constraint to neighboring cells. The resulting inconsistencies at the grid lines are illustrated
on the right hand side in Fig. 19.

Cell {i, j}, where the
<Tay10r series E{i, it is valid

A
i 1 1 1 i G d f d
11y e g4 L omdotnodes Section at X, ; = const.
I I I I I A
1 1 1 1 —
| | | | z
— 1 1 1 1
S R ER A\ Sa R Ao
I I | I ~Node No_|
T T T T — g —_
I 1 I I I zZ ; (xl,iaxz,j) o]
A BARARARSE -
I I I I I
I \Q\
I
| » »
Ey % 3

Figure 19: Grid of nodes in the ()?1,22) projection with cell {i;j}, where the Taylor series
E{i’j} (%,X,) is valid (left hand side) and a section at constant X, ; illustrating the
inconsistencies at the grid lines (right hand side).

In [9], the TTSE method is applied to IAPWS-95, and TTSE property functions for 7(p,h),
v(p,h), and s(p,h) are created on a common grid with 200x200 nodes. The range of validity
covers the single-phase region in the following temperature and pressure ranges:

275K < T <1000 K 6128 Pa < p < 100 MPa.

The maximum (max) and root-mean-square (RMS) deviations of the TTSE property function
for T(p,h) from that of IAPWS-95 along with the permissible values (perm) are given in Table 6
for the vapor region. The maximum inconsistency at the interval boundaries is 20 mK.

The nodes along with the corresponding values and derivatives for each property are stored
in a look-up table. For the given example, the nodes are aligned equidistantly along the enthalpy
axis, which allows for a fast determination of the cell index, which corresponds to the given
enthalpy. However, the pressure coordinates are not equidistant and the desired pressure cell
index is determined by means of the bisection method. Inverse functions of (p,7), (p,s), and
(h,s) are consistently calculated from the tabulated values in the (p,4) plane. In order to
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determine the cell indices, which correspond to the given pair of variables, the bisection method
is also applied.

Table 6: Maximum (max) and root-mean-square (RMS) deviations of the TTSE property
function for 7(p,h) from that of IAPWS-95 along with the permissible values (perm)
for the vapor region according to [9]

[AT] o1y, [MK] |AT],, [mK] [ATlgys [mK]

T (p,h) 10 (25) &° 9.21% 0.25%

The vapor region corresponds to IAPWS-IF97 region 2 except for the pressure and
temperature limits as described above.

Y The permissible deviations differ for the subregions 2a, 2b, and 2¢ of IAPWS-IF97 region 2
as shown in Fig. 10 and given in Table 5.

The TTSE method provides fast property functions and is implemented for instance in the
CoolProp [39] software package. The inconsistencies between adjacent Taylor series are small
for a sufficient number of nodes. However, these inconsistencies may lead to problems in
simulations with small spatial and time discretization.

2.4.2.3 Spline Interpolation and Approximation Algorithms

In Sec. 2.4.1.3, the one-dimensional cubic spline function and its analogy to the bending line
of a flexible rod are discussed. The spline concept can be generalized to higher dimensions. For
two-dimensional functions, a bicubic spline function can be established as described in [36]. In
between the [/ nodes, (/- 1)(J—1) cells {i,j} are defined. Each cell ranges over X;; <X <X
and X, ; <X, <X, ;;;- In each cell {i,j}, a bicubic spline polynomial is defined as depicted in
Fig. 18. The bicubic spline polynomial reads

4

Y N &
xl,xz ZZayk,( xl’l-) (x2 —x2q]-) . (2.61)
k=11=1
The 16(/—1)(J—1) coefficients a, are determined by defining the following constraints. For
all cells {ij}, with i=1,.../-1 and j=1,...,J~1, each polynomial Z; }(xl,xz) intersects
the four nodes at its corners

2y (B %) = 20 (R T2 )- 2.62)

i) (971,,41 ’ EZ,/') =z (’71,141’?72,‘/ ) ) (2.63)

Zg) (BT ) =2y (R T (2.64)

2y (BT ) = 70 (BT )- (2.65)
For given values of (0Z/%,); at the nodes (i=1,) and (i=1y), with j =1, ..., J,

[ZL ’ (T, )= (j;]xz ETENE (2.66)
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N s, "

the remaining ((%/6)?1 ))72 values at the nodes (i), with i=2,...,/-1 and j=1,..,J, are

(xl,lrx2,j>=(§§] ()71,152,,‘): (2.67)

15

obtained from one-dimensional cubic spline interpolations. For this purpose, cubic spline
functions, see Sec. 2.4.1.3, are established to interpolate between the nodes (i), with i =1, ..., I,
along each grid line j. Then, the Z; and dz/dx; values in Eqs. (2.44), (2.45), (2.48), and (2.49)
correspond to the given values of Z; ; and (cz/ox, );2 along the considered grid line j. At each
node (i,j), with i=2,...,/—1 and j=1,...,J, the required derivative is then obtained from
the polynomial E{i}! ; (%) of the corresponding spline function for grid line j

(&J _
& Js, ij & {ih7

Analogously, for given values of (0z/0x,)_ at the nodes (ij=1) and (ij=J), with
1
i=1,..,1,

(%) =ain, - (2.68)

[ZJ (%)= [ZJ (%0 %2 (2.69)
2% 2%

oz o & o

(6)?21] r (xlsl"xlf) = [%jx‘ (xl,i’xz,./) > (2.70)

the remaining (%/8)?2 )f values at the nodes (i), with i=1, ...,/ and j=2,..,J-1, are
1

obtained from cubic spline functions along each grid line i. At each of these nodes (i,f), the

required derivative is determined from the polynomial E{ i (%,) of the corresponding spline

function for grid line i
=— (fz,j):ajz,i- 2.71)

&)
%, % ; ()i

Similarly, cubic spline functions are used to determine (623/ (o, )) at all nodes except
for the four corner nodes (1,1), (£,1), (1,J), and (1,J). Since (&z/ox, )?1 is cubic along X, cubic
spline functions can be established for the grid line j=1 and j=J. Then, the Z; and dz/dx,
values in Egs. (2.44), (2.45), (2.48), and (2.49) correspond to the previously determined values
of (&z/ox, ), along the considered grid line j and the given values of (622/ 0x;0%, ) at the
endpoints (1,1) and (/). At each node (i), with i=2,...,7/—-1 and j=1,J, the required
derivative is then obtained from the polynomial (6“/52)

(fl) of the corresponding spline
function for grid line j RUN

2 d(az/ox,)-
0z _ ( ° 2)xI (f”):aiz N 2.72)
feiteiyy I dx ’ b
i) {i}j

At each of the remaining nodes (i), with i=1,..,7 and j=2,..,J-1, the values of

(622/(6)716)?2)) are then determined from the polynomial (&/0}?1)}‘ (xy) of the
APy

corresponding spline function for grid line i b
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2— d(oz/ox; )-

0z _ ( /7 I)XZ‘ (fz '):a'2i' (273)
oxex, ) dx SIS

12 i,j 2 {j}i

Once the values of (Z/0%, ). , (Z/d%,). , and (522/(6)?16)?2 )) are known at each node
2 1
(i), the 16 coefficients of each polynomial E{[’j} (%,%,), Eq. (2.61), can be obtained from Eqs.
(2.62) — (2.65) and

0z _ 0z
5] Em(E] e
i) 2l
oz _ _ oz
[6}?1 ] (xl,m,xz,j)_[aﬁj , (2.75)
2 i) 2 liv1, )
oz _ oz
(XJ (xl,i,xz,_m ) = [6)?,] , (2.76)
2l *21i j+1
0z oz
[&ﬂj (xl i+1>X2 j+1) (@ﬂj , @.77)
*2 {i.j} 22141, j4+1
oz _ oz
[afj (%,.%,,) _(axj (2.78)
25l 25|
oz _ _ oz
2| Eem)Z]) - e
M, ) M,
oz _ oz
(%j (%o 1) = (%J , (2.80)
2 5 {i,j} 2 )% i
oz
[6}?) (xl i+15%2 ,+1 [ j (2.81)
275 {i.J} i, j+1
o’z o’z
[yar ] (%,.%,) [a = ] (2.82)
X0, (i) X0,
o’z _ o’z
(EF J (xl,iﬂ,xz,j):[”] (2.83)
e (i./} M2 i,
[ o'z J (%% )—[ o'z ] (2.84)
LisX2,j+1 ) = | == .
%) {i.J} o % ;1
o’z 0’z
— XX 41 )= | == (2.85)
[axlafz Jw} ( SR ) [5’715’62 Ji+l,j+1
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A comprehensive description of the method and a computationally efficient implementation is
given by Spith [36].

The spline approximation method for one-dimensional functions developed by Schot [31]
(see Sec. 2.4.1.3) was also extended to two-dimensional functions. This was achieved by fitting
cubic spline functions for E(fl )E for several values of X,, and then fitting cubic spline
functions for the obtained coefficients gy, (X, ). In addition to the one-dimensional functions
ps(T), v'(T),and v"(T), a two-dimensional function v(p,T) was approximated from the 1963
International Skeleton Tables for water and steam [42]. The applied two-dimensional cubic
spline algorithm for v(p,T) requires a rectangular domain in the (p,7) plane. Therefore, the
domain has been divided into several subdomains, which leads to inconsistencies at the
boundaries between these subdomains. From the spline functions for v(p,T) and an equation for
c; (T ) [43], the Gibbs free energy g, enthalpy %, and entropy s were derived according to
Table 2. The method was programmed in FORTRAN and was intended to be used for fast and
accurate property calculations in a computer-aided design process for ships.

Herbst [44] has extended the spline-approximation technique by Klaus and van Ness [29],
see Sec. 2.4.1.3, to functions of two independent variables. In his work, a function for the Gibbs
free energy g(p,7) is established for liquid water at pressures up to 100 MPa and temperatures
up to 550 K. This was achieved by creating spline functions for v(p,T) and S(T)PO first, and
applying the equation

)4 T
g(p.T)=go+ [v(p.T)dp~[s(T), dT, (2.86)
Po Ty
which can be obtained by integrating Eq. (2.19) from the chosen reference state, denoted by the
subscript “0”, to the actual state point (p,7). Furthermore, an inverse function for the specific
enthalpy /(p,s) has been derived analytically from the function for g(p,7). The bicubic spline
function v(p,T) was created in a similar fashion as done by Schot [31].

In parallel to the development of cubic spline approximation methods a least-squares fitting
method with biquadratic polynomials has been proposed by White [45]. The resulting property
surface is continuously differentiable once. Over the past several decades numerous new spline
interpolation and approximation algorithms have been developed. A comprehensive overview
and a detailed description of some of these methods is available for instance in [23], [35], and
[36]. As discussed in Sec. 2.4.1.3, spline interpolation algorithms are preferred to spline
approximations when accurate underlying equations are available.

For many two-dimensional spline interpolation methods a rectangular grid of nodes needs
to be defined over a rectangular domain. In many cases, this would require an appropriate
extrapolation for nodes beyond the range of validity, as illustrated in Fig. 20. As for example
in [31], this is often avoided by dividing the considered domain into several subdomains, which
leads to inconsistencies at the boundaries between those subdomains. Kretzschmar et al. [46,
47] aimed to develop interpolation methods with optimized grid structures. Aligning the nodes
in the grid in a way that prevents potential problems at the region boundaries was suggested.
This is achieved by distributing grid lines for constant values of one independent variable, e.g.,
for constant values of X, , across the domain. For each grid line, the number and the locations
of nodes along X; are defined independently. This is depicted in Fig. 21, where the number of
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nodes at X, ; is different from the number of nodes at X, ;.. The interpolation of values for
E(fl,fz) is realized as illustrated in Fig. 22. First, the interval {j} which corresponds to the
transformed given value X, is determined. Then the auxiliary values z; and Zz;, are
determined by cubic spline interpolation along the corresponding grid lines j and j+ 1 for the
transformed given value X;. Afterwards, the value for E(Tcl,fz) is calculated by linear
interpolation between z; and Z;,, for the transformed given value X,. In the vicinity of a
region boundary, the zg value at the region boundary itself is used for the interpolation as

shown in Fig. 23. The grid optimization method is summarized in Appendix Al.

A Region boundaries

Region boundaries

Xy B ;ZA
X271
22, J+1
X i
Xy ot =0 ! — 4 X
Extrapolation areas - _
X1 X M X
Figure 20: Rectangular grid of nodes with Figure 21: Distribution of nodes along
areas beyond the region constant values of X, with
boundaries (grey), where nodes independent numbers and
need to be extrapolated. locations along X;.

Region boundaries Region boundaries

X X X X
Figure 22: Interpolation of Z(%,%,) from Figure 23: Interpolation of z (X,X,) from
the auxiliary values z; and the auxiliary values zg and
Ej - Ej+1~
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Variable transformations of the form X, =x —x3(X,) or X, =x, —x, (%) have been
proposed by Miiller [25] to shift the nodes onto the region boundary B as illustrated in Figs. 24
and 25. The same approach was also employed by Gréber et al. [48] for property calculations
from bicubic splines functions. For the proposed variable transformations, the values at the
region boundary need to be computed first. In previous studies, for instance in [49], it was
proposed to determine the nodes beyond the considered range of validity by extrapolation. In
some cases this can simply be done with the underlying function. In other cases a suitable
extrapolation algorithm has to be applied. In [48] the following statement can be found: “Many
thermodynamic properties exhibit discontinuities of the first derivative or even jumps at the
saturation curve. With the approach of Kunick et al. (2008), the saturation curve runs across the
interpolation grid. This leads to either very inaccurate data or a comparable high number of grid
nodes.” This is not right. The concerning article [49] clearly describes that all nodes were
calculated from the underlying equation of state and extrapolations were made where required.
Moreover, the grid of nodes and the resulting deviations from the underlying equation of state
are given. The variable transformation described above has neither an influence on the local
node density nor does it linearize the property function. But it extends the computing time.
Therefore, the z values at the nodes outside the range of validity should be obtained from
appropriate extrapolations, for instance from the underlying equation of state.

>

Xy X X

Figure 24: Projection of the grid of nodes Figure 25: Projection of the grid of nodes
in the (x,X,) plane. in the (X,%,) plane.
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2.4.3 Thermodynamic Consistency of Table Look-up Methods

As stressed by Swesty [41], a table look-up method must ensure thermodynamic consistency
for the provided property functions. Otherwise, thermodynamic inconsistencies may lead to
unphysical behavior in process simulations. If, for instance, the thermodynamic properties
pressure p and entropy s are calculated from specific volume and internal energy (v,u), then
thermodynamic consistency requires that

%)
p(v,u)=—(%j - ZZ u (2.87)
%)

If such equations are not satisfied, then the evaluation of the balance equations for mass, energy,
and entropy for finite differences may lead to unphysical production or loss of these quantities.

By definition, thermodynamic consistency can only be realized if all thermodynamic
properties are derived from the same description of a thermodynamic potential (see Sec. 2.2).
To ensure continuity for the required property functions, this description must be at least two
times continuously differentiable. The equations employed in a table look-up method are
frequently simple polynomials, which require very short computing times. A polynomial
equation of at least third degree would be required to fulfill the aforementioned differentiability.
The computational effort to calculate an inverse function from a polynomial increases with its
degree. Therefore, fluid properties are often interpolated from separate look-up tables for each
property with lower order polynomials, rather than from a tabulated thermodynamic potential
with higher order polynomials. Such an approach does not provide full thermodynamic
consistency. If all properties including their derivatives and inverse functions are uniquely
defined, then the property formulation is said to be numerically consistent. If the tabulated
properties are derived from the same thermodynamic potential and the applied interpolation
method describes these properties with very high accuracy, then the resulting property
formulation is quasi thermodynamically consistent.

The importance of thermodynamic consistency is also discussed in the documentation of the
CFD software ANSYS CFX [50]. Nevertheless, for fast property calculations, look-up tables
based on cubic equations of state or IAPWS-IF97 are generated in this software [51]. The fluid
properties are tabulated as functions of pressure and temperature. The default tolerances for the
bilinearly interpolated enthalpy and entropy values are set to 1% and 3%, respectively.
According to [51], these tolerances are adequate for property calculations in CFD. A table look-
up method that is quasi thermodynamically consistent should therefore be applicable in process
simulations without limitations.
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2.5 Computing Time

The computing time an algorithm requires for its execution in a specific environment
(hardware and operating system) depends on its computational costs regarding the applied
mathematical operations, conditional constructs, loops, memory access, etc., as described in
Sec. 2.5.1. With regard to these computational costs, the considered algorithm must be
implemented efficiently to achieve short computing times. In Sec. 2.5.2 several possible
optimizations for computationally efficient property calculations are discussed. The computing
times of the several property calculation algorithms are compared to each other in Sec. 2.5.3.

The test procedures for the computing times of various operations and property calculation
algorithms, see Secs. 2.5.1 and 2.5.3, have been compiled into single-threaded 32-bit programs
with the Intel Composer 2011 with default options. The tests were carried out on a Windows 8
computer equipped with an Intel Core 17-3840QM CPU with 2.8 GHz and 16 GB RAM.

2.5.1 Computing Times of Various Operations

In order to understand and to optimize the computing speed of an algorithm, some important
aspects about the execution of various operations on a modern computer are summarized here.
The information provided below applies to standard personal computers (PCs) with Windows,
Linux, or Mac operating systems (32-bit or 64-bit). It is assumed that the algorithms are
compiled into executable binary code directly, which is usually the case for FORTRAN and
C/C++ compilers.

The computing times of various mathematical operations for double precision floating point
operands are described in Table 7. Additions, subtractions, multiplications, divisions, and
square roots are performed as single instructions on the CPU, while power functions,
exponential functions, and logarithms are calculated using math libraries provided with the
compilers. As described in [52], modern CPUs have two or more execution units for integer
operations, one execution unit for floating point multiplications, and one execution unit for
floating point additions. This enables the processor to perform certain operations, for instance
a floating point addition (a+5b) and a floating point multiplication (c¢xd), at the same time.
Moreover, an execution unit can start an operation before the preceding operation is completed.
This is beneficial if the operations are independent from each other, such as the multiplications
in (axb+cxd). In this context, the latency of an instruction is defined as the number of clock
cycles it takes to have the resulting data available for use by another instruction. The throughput
is defined as the number of clock cycles it takes for the instruction unit to accept the next
instruction of the same kind. Therefore, in expressions where the operations are dependent on
each other, such as in (( X+ a) XX+ b) x x , the latency of the operations must be considered. For
this example, the latency is 16 clock cycles for two multiplications and the two additions, which
is 5.33 times longer than the latency of an addition. The expression axb+cxd +e requires
the exact same operations, but the multiplications (axb) and (cxd) are independent of each
other and can therefore be calculated in 5+1=6 clock cycles. The additions take additional
3+3=6 clock cycles, so that the entire expression is computed in 12 clock cycles, which is 4
times longer than the latency of an addition.
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For the mathematical operations that are performed by compiler specific math libraries, such
as power functions, exponential functions, and logarithms, the latencies are operand dependent
and no definite values are provided in the literature. In order to provide average values for these
functions, the computing times of their implementations as Intel Intrinsic Functions [55] have
been measured. Profilers, as provided with many compilers, are unsuitable for such
measurements. This is because the computing times of the expressions considered here are often
smaller than the time resolution a profiler permits. Therefore, a program has been developed in
this work to determine the latencies of mathematical operations. For verification, the reference
values for the latencies given in Table 7 have been reproduced and the theoretical value for the
latency of ¥/a has been confirmed. The average latencies for a’, ¢, and In(a) with randomly
distributed values for the operands a and b in the ranges described in Table 8 have been
determined.

Table 8: Ranges for operands @ and b in a’, e, and In(a) for latency measurements

Operation Ain S A< Aoy bin SO <Dy
a® 0.1<a<10 0.001<a<10
& 0.001<a <100 -

In(a) 0.001< a <1000 -

The computing time required for branch predictions of conditional constructs, such as “if-
then-else” or “switch” statements, depends on their predictability. Whereas the correct
prediction of a branch adds 0-2 additional clock cycles, a branch misprediction adds 12-25 clock
cycles [52]. Loops with a low and fixed number of repetitions can be predicted perfectly. It is
less efficient if the number of repetitions depends on calculations in the loop, but for some tasks,
such as iteration methods, this cannot be avoided. More detailed information on branch
prediction is provided in [56].

The computational speed of memory access operations depends on the location of the
affected variable. If the variable is stored in the CPU’s register already, the computing time of
a read operation is < 1 clock cycle. If the variable has to be fetched from the random access
memory (RAM) this may require more than 100 clock cycles. To accelerate memory access
operations, modern CPUs are equipped with caches. Fetching data from the cache memory is
much faster than from the RAM. Since the sizes of the different cache levels are rather small,
modern CPUs automatically prefetch data to the cache. If a variable cannot be fetched from the
cache, this is called a “cache miss”. To minimize cache misses, data that is used together should
be stored together. Since memory access latencies depend on core frequency, RAM speed, etc.,
no definite values are provided in the literature. Table 9 provides rough approximations of
memory access latencies for the Intel® Xeon® Processor 5500 Series, as reported in [57].
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Table 9: Memory access latencies for the Intel® Xeon® Processor 5500 Series as given in [57]

Data source Latency [clock cycles] (rough approximation)

Level 1 cache 4

Level 2 cache 10

Level 3 cache 40
RAM 100-150

The computational costs of mathematical operations dominate for thermodynamic and
transport property equations. For complex cell-search algorithms in table look-up methods,
branch mispredictions can have a considerable influence on computing times. While the
computing-time consumption of memory access can be neglected for the computation of
thermodynamic and transport property equations, it can become noticeable when using table
look-up methods with a large amount of data. The actual effect of cache misses must be tested
in the process simulation where the property calculation algorithms are applied.

2.5.2 Computationally Efficient Implementation of Property Formulations

The computing time of an algorithm in a specific hardware and software environment
depends on the way it is implemented. In many situations, several different implementations of
the same algorithm are possible, leading to very different computing times. Some examples for
computationally efficient implementations are discussed in this section.

As described in Table 7 in the previous section, the power function a® is comparatively slow
and should therefore be avoided if possible. For integer exponents b, a® should therefore be
calculated as

a”=T]a. (2.88)

This optimization will be performed automatically by some compilers if 4 is known at compile
time. Similarly, the implementation of polynomial equations can take advantage of Horner’s
method, which can be written as

I

Zaixi=a0 +x(a1+x(a2 +,..+xa,)...))4 (2.89)

i=0
The factorized expression on the right hand side is computationally more efficient than the
calculation with power functions shown on the left hand side. Thus, Horner’s method can be
advantageously used for calculating the polynomial for the isobaric heat capacity of the ideal-
gas given by Eq. (2.2) for instance. In simple cases, the factorization will be performed by the
compiler if the exponents are known at compile time. Triibenbach [58] has developed an
algorithm to efficiently factorize more complex polynomial equations such as the basic equation
for region 2 of IAPWS-IF97, Eq. (2.27). Analogously, Horner’s method can also be applied to
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the residual part of the short fundamental equation of state for water, Eq. (2.24). In this equation,
all exponents of the inverse reduced temperature 7 are multiples of 1/8. Therefore, if 7 =¥/7
is calculated once, the equation can be rewritten as a polynomial function in terms of 7 and o
and Horner’s method can be applied. However, the natural exponential function in the terms
i=8,...,16 in Eq. (2.24) would have to be calculated in advance.

For the more general case with rational exponents of 7 and &, a combination of logarithm
rules is applied in REFPROP [59] to calculate the residual terms of the Helmholtz free energy
of the form

D (8,7)=n6% 7" exp(£;(5,7)). (2.90)
The natural logarithms of 7and Jdare calculated once and each term is then computed from
@] (5,7)=n;exp(d; In(5)+4;In(z)+ £;(5.7)). (2.91)

The non-analytical terms i=55,56 in Eq. (2.22) are computed in a similar manner. It is often
useful to store the values of the terms @] along with some other expressions dependent on 7
and o for later use.

For many thermodynamic properties, several derivatives of the fundamental equation of state
are required. It is advantageous to express the derivatives of each term @] as a product of ®@;
itself and a factor Fid(n) or E-T(m) for the considered derivative, where the superscripts &(n)
and 7(m) denote the n-th derivative with respect to  and the m-th derivative with respect to 7.
As shown in Appendix A2, the factors Fié ") and FI-T ") can be determined recursively from

Fl_a‘(n) _ 51;}55;5(”—1) +Fio‘(n—1) [Fi(s —(n _1)} (2.92)

FFm = Ff;(m—l) + FFmD) [ FF—(m- 1)} , (2.93)
with

FO =, (2.94)

FO =1, (2.95)

FA =R + E D[RO =2 ]+ FPOUDES, (2.96)
and

e L @97

The derivatives of the terms are then calculated from
8" D] 5y = DF (2.98)

and
D!

i,r(m)

=@IFT™ (2.99)

If the factor Fi(g(l) is independent from 7 and Ff(l) is independent from &, then the crossed
derivatives can simply be calculated from
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8T} sy ) = DI (2.100)

Eq. (2.100) can be used for all term forms appearing in Eq. (2.22) except for the non-analytical
terms i = 55,56, where the product rule for higher order derivatives must be employed.

The calculation scheme presented above can also be used for other types of equations of
state or transport property equations.

To calculate fluid properties from input variables other than temperature and density,
efficient iteration procedures need to be applied. If analytical derivatives are available, the
required property function can be calculated by iteration using Newton’s or Halley’s method.
Using Newton’s method, the root of a one-dimensional function f (x) is determined by the
iteration procedure

S (%)
f'(x%)
This procedure begins with a starting value x; and is repeated until ‘ f (xk )‘ <TOL . The
iteration procedure of Halley’s second order method reads

2 () ()
2 (o) T =1 () £ ()

Both methods are applicable to multi-dimensional problems as well. For example, the iteration

Xpot =X — (2.101)

Xpo1 =X — (2.102)

procedure of Newton’s method for a system of non-linear equations F(X) is written as
J(X,)AX, =F(X}) (2.103)

and

X=X, —AX,, (2.104)

where F is the vector of functions f; and X is vector of unknowns x;. In each iteration step &
the Jacobian matrix J (X k) must be determined, before the system of linear equations Eq.
(2.103) is solved. The element of the Jacobian matrix in the i-th row and the j-th column reads
of;
7, (x)=2

axj.

In the Appendices A3 and A4, computationally efficient formulations of Newton’s method for
two and three non-linear equations are given.

The linearization of the iterated function through the use of variable transformations can
drastically reduce the required number of iterations. Neither Newton’s nor Halley’s method
guarantees convergence. Therefore, sufficiently accurate starting values need to be provided.
As an alternative, the Dekker-Brent algorithm [60] is recommended for one-dimensional
iterations. For this method, convergence is guaranteed if the root is located in the given interval
and the function is continuous. The Dekker-Brent algorithm does not require analytical
derivatives of the function to be iterated and provides an at least linear rate of convergence.
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2.5.3 Computing-Time Comparisons

In this section, the computing times of the ideal-gas model, the Peng-Robinson equation of
state [14] (PR-EOS), IAPWS-95 [2], the short fundamental equation of state (ShortFEOS) for
water by Kunz et al. [21], IAPWS-IF97 [4], IAPWS-IF97 backward equations [4] (IF97-BWE),
and the TTSE method [10] (see Secs. 2.1 — 2.4) are compared with each other. In order to do
so, the computing times of the property functions for p(v,u), T(v,u), T(p,h), and v(p,h) have been
determined and compared with those of the iterative calculations from the Peng-Robinson
equation of state. For this purpose, the so-called Computing-Time Ratio (C7R) has been
determined, which is defined as

CTR = Computing time for the iterative calculation from the PR-EOS

- Computing time for the calculation from the considered algorithm -

The considered property calculation algorithms have been optimized for computing speed as
described in Sec. 2.5.2. For the isobaric heat capacity of the ideal gas c;’, , Eq. (2.2), as well as
its integrals used in conjunction with the ideal-gas equation, Eq. (2.1), and the Peng-Robinson
equation, Eq. (2.7), Horner’s method is applied. The IAPWS-IF97 basic functions and their
derivatives are also implemented using this method. The derivatives of the Helmholtz free
energy equation of IAPWS-95 [2] and the short fundamental equation of state of Kunz et al.
[21] are computed with the well optimized internal routines of REFPROP [59]. REFPROP’s
internal iteration procedures for functions of (v,u) or (p,h) are implemented to ensure
convergence for all calculable fluids. The determination of starting values has a more general
nature and the iteration procedure relies on an algorithm with bisection. For the test calculations
presented here, Newton’s method for either one or two dimensions (see Sec. 2.5.2) with
analytical derivatives is applied instead. The stopping criteria for these iterative calculations
with regard to the independent variables are as follows:

Vi Mo,

v
u<lklkg  |Au[<10KkIkg, w2 1klkg: <107,

u

p: ‘A—p <107,

P

_6 Ah -6

h<1kl/kg: ‘Ah‘SIO kJ/kg, h =z 1kJ/kg: —{<107".

The starting values for 7(p,h) and v(p,h) of IAPWS-IF97 are determined from the corresponding
backward equations [4]. For all other cases, the starting values are determined from simple
approximations, for instance from the ideal-gas model with constant heat capacities. Since the
independent variables of the various equations of state are either (7,v) or (p,7), the
determination of the starting values differs among the tested property calculation algorithms.
To consider the influence of the different algorithms for the starting values, the average number
of iterations (ANI) has been determined in addition to the CTR values. It is assumed that the
phase that corresponds to the given inputs is known for all calculations. Otherwise, the

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

2.5 Computing Time 45

saturation properties at vapor-liquid equilibrium would have to be determined first. If these
properties are calculated from the Maxwell criterion, the computing time of the phase test is
considerably higher than that of the actual property calculation.

The computing times were measured by means of a software similar to NIFBENCH [4] with
100,000 randomly distributed state points in the corresponding region of IAPWS-IF97. The test
calculations were carried out for the liquid region 1 and the vapor region 2 (see Fig. 7). The
employed compiler to build the test programs and the computer to run the test calculations are
described at the beginning of Sec. 2.5. The results of the computing-time comparisons are
summarized in Tables 10, 11, 12, and 13. These tables also show the average number of
iterations it takes for each algorithm to converge for the given starting values and the defined
stopping criteria. The tested property calculation algorithms have been conscientiously
implemented. However, it must be noted that the results of computing-time comparisons are
always implementation dependent and should be considered as such.

The computing times of the Peng-Robinson equation of state may be considered as just
acceptable for extensive process simulations, such as CFD. In the vapor phase, the (v,u)
property functions calculated from IAPWS-95 are at least 100 times slower than those
calculated from the Peng-Robinson equation of state. With regard to the property functions of
(p.h), IAPWS-95 is at least 45 times slower than the Peng-Robinson equation. Although
calculations from the short fundamental equation of state for water are roughly 4 times faster
than those from IAPWS-95, this equation is still much too slow for extensive process
simulations. The example of 7(p,/) shows that the IAPWS-IF97 backward equations are at least
7 times faster than the iterative calculations from the Peng-Robinson equation. However, the
numerical inconsistencies between the backward equations and the basic equations of IAPWS-
IF97 may lead to convergence problems in simulations with very small spatial or time
discretization. In these situations, inverse property functions must be calculated by iteration
from the basic equations of IAPWS-IF97 with starting values determined from the available
backward equations. The computing speeds of the resulting property functions for 7(p,h) are
similar to those of the Peng-Robinson equation of state. In order to provide high accuracy, short
computing times, and numerically consistent inverse functions, table look-up methods can be
applied to accurate fundamental equations of state. In some process simulation codes, such as
in ANSYS CFX [51], a simple table look-up method is applied even to the Peng-Robinson
equation to reduce the computing times. The computing-time comparisons show that the
IAPWS-95 based TTSE property functions for 7(p,4) are at least 4 times faster than those of
the Peng-Robinson equation. Due to the discontinuous behavior of the TTSE property
functions, the TTSE method cannot be used for simulations with small spatial or time
discretizations.
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Table 10: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state
along with the average number of iterations (ANI) for p(v,u) computed from various
property calculation algorithms in the liquid region 1 and the vapor region 2 of

IAPWS-IF97
p(vu)
TAPWS-IF97 Region 1 (liquid) TAPWS-IF97 Region 2 (vapor)

Algorithm ANI CTR ANI CTR
Ideal gas - - 3.83 1.48
Peng-Robinson 3 1.00 3.08 1.00
IAPWS-IF97 2.94 1/6.08 3.64 1/11.1
Short FEOS 2.99 1/20.1 3.63 1/23.3
IAPWS-95 2.94 1/76.9 3.68 1/93.0

Table 11: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state
along with the average number of iterations (4AN/) for 7(v,u) computed from various
property calculation algorithms in the liquid region 1 and the vapor region 2 of

IAPWS-IF97
T(v,u)
TAPWS-IF97 Region 1 (liquid) IAPWS-IF97 Region 2 (vapor)

Algorithm ANI CTR ANI CTR
Ideal gas - - 3.83 1.48
Peng-Robinson 3 1.00 3.08 1.00
IAPWS-IF97 2.94 1/6.18 3.64 1/11.3
Short FEOS 2.99 1/20.1 3.63 1/23.3
IAPWS-95 2.94 1/76.9 3.68 1/93.0
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Table 12: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state
along with the average number of iterations (4N/) for 7(p,h) computed from various
property calculation algorithms in the liquid region 1 and the vapor region 2 of

IAPWS-IF97
T(p,h)
TAPWS-IF97 region 1 (liquid) TAPWS-IF97 region 2 (vapor)
Algorithm ANI CTR ANI CTR
Ideal gas - - 3.68 3.66
Peng-Robinson 5.72 1.00 3.47 1.00
IF97-BWE - 31.0 - 7.83
IAPWS-IF97 1.99% 2.51% 2.02°% 1.01%
Short FEOS 4.56 1/10.0 3.63 1/13.2
IAPWS-95 42 1/33.9 3.62 1/47.4
TTSE - 7.33 - 4.61

& The starting values for the iteration from the IAPWS-IF97 basic equations are obtained from
the corresponding backward equations for 7(p,h).

Table 13: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state
along with the average number of iterations (4 NI) for v(p,h) computed from various
property calculation algorithms in the liquid region 1 and the vapor region 2 of

IAPWS-IF97
v(p,h)
TAPWS-IF97 region 1 (liquid) TAPWS-IF97 region 2 (vapor)

Algorithm ANI CTR ANI CTR

Ideal gas - - 3.68 3.64

Peng-Robinson 5.72 1.00 3.47 1.00
1IF97-BWE - 7.05% - 2.53%
IAPWS-IF97 1.99% 1.86% 2.02% 1/1.282
Short FEOS 4.56 1/10.2 3.63 1/13.3
IAPWS-95 4.2 1/33.8 3.62 1/47.8

TTSE - 7.46 - 4.48

®  The starting values for the iteration from the IAPWS-IF97 basic equations are obtained from
the corresponding backward equations for 7(p,h).
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2.6 Conclusions for the Development of a Fast and Accurate Property
Calculation Method for Extensive Process Simulations

The fluid property functions applied in extensive process simulations, such as transient CFD
or heat cycle calculations, need to meet the contradictory demands regarding high accuracy and
very short computing times. Moreover, these property functions need to be thermodynamically
and numerically consistent with each other.

The discussion of the available property calculation algorithms in the previous sections
shows that the calculation of fluid properties from equations of state is always a trade-off
between accuracy and computing speed. While reference equations of state, e.g., IAPWS-95
for water and steam, provide the highest accuracy and reasonable extrapolation behavior, their
computing speed is very slow. Short fundamental equations of state are sufficiently accurate
for industrial calculations and certainly faster than reference equations of state. However, they
are still too slow for a direct application in extensive process simulations such as CFD. The
fastest thermodynamically consistent approach is given by fundamental equations of state for
separate regions in conjunction with backward equations. The development of such equations
is a very time consuming task. Therefore, this was realized for the industrial formulation
IAPWS-IF97 for water and steam only. To meet the high demands regarding the numerical
consistency in numerical process simulations with small spatial and time discretizations,
inverse functions of (v,u), (p,h), (p,s), and (h,s) must be calculated by iteration. For calculations
from (p,h), (p,s), and (h,s) inputs, the available backward equations should be used to compute
the starting values. Backward equations for other pairs of variables, such as (v,u) or (p,v), are
not available. Due to the necessity of iterative procedures for property functions of these pairs
of variables, even IAPWS-IF97 is too slow for a direct application in CFD.

Table look-up methods provide an alternative for fast and accurate property calculations.
These methods can be flexibly applied to any existing equation of state or transport property
equation. Therefore, the development of an advanced table look-up method for property
calculations in CFD and other extensive process simulations is pursued in this work. The
capabilities and limitations of different table look-up methods have been discussed in Sec. 2.4.
Generally, the accuracy of these methods is determined by the number and the distribution of
the tabulated data points, the so called nodes, and the applied algorithm to interpolate or
approximate the values between them. In order to enhance the accuracy of a table look-up
method, the function to be interpolated should be linearized by means of suitable variable
transformations. If the fluid properties are calculated from separate look-up tables rather than
from a tabulated thermodynamic potential, then the accuracy of the resulting fluid property
functions must not only meet the requirements of the process simulation, but also needs to
ensure a certain thermodynamic consistency (see Sec. 2.4.3).

The computing time of a table look-up method largely depends on the desired search
algorithm to identify the interval or cell, which corresponds to the given variables. To simplify
these algorithms for two-dimensional functions, the nodes are often ordered in rectangular grids
with rectangular cells. For some of the table look-up methods currently applied, for instance in
[10] and in [25], the nodes in these grids are clustered in regions with strong curvature to
achieve the required accuracy. For some other methods, for instance in [37] and in [50], the
look-up tables are not prepared for the independent variables that are actually used most often
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for property calculations. For all these methods iterative cell search algorithms are required,
which suffer from branch mispredictions (see Sec. 2.5.1) and prolong the computing times. To
further simplify the search algorithms, equidistant nodes are preferable. To meet the
requirements of extensive process simulations, the computational speed of the newly developed
table look-up method should be comparable to or less than that of the IAPWS-IF97 backward
equations.

Some of the discussed table look-up methods do not fulfill the requirements regarding the
differentiability of the provided property functions and are therefore not recommended for
extensive process simulations. As discussed in Secs. 2.4.1.3 and 2.4.2.3, spline interpolation
algorithms are capable of representing property functions continuously. A polynomial spline
function of N-th degree can be (N — 1) times continuously differentiable. The spline polynomials
can be computed with very low computational effort and are therefore very fast. Moreover,
spline polynomials of a degree lower than five can be solved analytically for their independent
variables. This enables numerically consistent inverse functions. However, the analytical
solution of third or higher order polynomials involves the evaluation of some transcendental
functions, which are computationally expensive. Second order polynomials can be solved very
efficiently and fulfill the differentiability requirements of most process simulations. Therefore,
the newly developed table look-up method should employ spline interpolation methods,
preferably with second order polynomials.

Many two-dimensional spline interpolation methods require the definition of a rectangular
grid of nodes over a rectangular domain. This rectangular domain must include the range of
validity, which is irregularly shaped in the general case. In some cases it is sufficient to
extrapolate the nodes beyond the range of validity appropriately. For other cases, efficient
algorithms are required to transform the range of validity into a rectangular shape and to control
the local node density.

In order to make the new table look-up method applicable to any one- or two-dimensional
property function, a suitable software tool needs to be developed.
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3 The Spline-Based Table Look-Up Method (SBTL)

The Spline-Based Table Look-Up method (SBTL) applies polynomial spline interpolation
techniques to approximate the results of existing equations of state, with high accuracy and low
computing time. The accuracy, computing time, and memory storage advantages are enabled
with specialized coordinate transformations and simplified search algorithms as described
below. The properties in the single-phase regions, such as 7(p,h), are represented by two-
dimensional spline functions in the common form z5°- (x1,x,), whereas the phase boundaries,
such as T;(p), are represented by one-dimensional spline functions St (%) . Algorithms for
calculating properties in the two-phase region that are consistent with those of the single-phase
regions are also provided. The explanations given in this section are similar to those already
published in [61], but are extended for the sake of completeness.

3.1 One-Dimensional Spline Functions

3.1.1 Spline Functions

A one-dimensional polynomial spline function St (x;) is a continuous, piecewise-defined
function consisting of several spline polynomials. The spline function interpolates values
between a series of discrete data points, the so-called nodes (see Fig. 26). The number / and the
location x;; of the nodes are chosen to ensure the desired accuracy. The z;(x;;) values of the
nodes are calculated from the underlying function z(x;) . The spline polynomials are connected
at knots, which can either be equal or unequal to the nodes. For the SBTL method, the knots
are located at the midpoint between the nodes along x;, which results in symmetric boundary
conditions leading to superior accuracy [23]. A spline polynomial ranges over the interval {i}
between two knots and intersects the node (i) within. The z positions of the knots result from
the spline algorithm as explained below.

In most numerical process simulations, fluid property functions need to be continuously
differentiable once. The quadratic spline function is the simplest approach to continuously
represent a one-dimensional function and its first derivative. Furthermore, the quadratic spline
polynomial can easily be inverted. This enables the calculation of numerically consistent
backward functions, which are the so-called inverse spline functions. Therefore, in this
document the calculation of properties with the SBTL method is carried out through the use of
quadratic spline polynomials, as opposed to higher order polynomials, to create a spline
function z5P¢ (%) from the underlying function z(x;).

In order to increase the accuracy of the spline function, both the independent variable x; and
the dependent variable z are transformed into X; and z, respectively, so that the transformed
spline function yields ESPL()?I). A description of the transformations for one-dimensional
spline functions can be found in Sec. 3.1.2.

The spline function is created in transformed coordinates through the use of quadratic spline
polynomials

3

2y (7) = (7 -7,) (.1a)

k=1
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where ¥; is the transformed independent variable and Zy;, is the transformed dependent variable
in the interval {i}. In Eq. (3.1a), X, is the transformed value of the independent variable at the

node (i), and a; are the three coefficients of the quadratic spline polynomial valid in the
interval {i}. Eq. (3.1a) can also be written as
_ _ __\2
2} (%) =a; +a; (xl -y ) +ap (x1 - x1,,-) (3.1b)
The I polynomials are connected at knots aligned as shown in Fig. 26, where / denotes the
number of nodes along X;. Each polynomial E{i} ()?1) is used in an interval {i} and intersects

the node (9) at z;(x;;) .

=4 .
;" o Node
Interval |
morsal . Ko
— —SPL (—
””” Zoy (%)
Node (i) — I (%)
o Knot i¥
2(%)
z; —
o Spline polynomial E{i} ()?1 )
/‘/ . . .
‘,,o"‘/o in the interval {1}
-9~
ot IETIENE
i 1i+]
—K A
A% ENRET
Ax; ML

Figure 26: Series of nodes and series of knots with interval {i} and spline polynomial E{i} ()?1) .

The fllj values of the /+ 1 knots are located at the midpoint between the nodes along X, so
(3.2)

that
K 1, _ .
Xpi+l ZE(XI,I' +xl,i+1)s i=1 ..,
K _- 1,0 _ K S
X=X —5()‘1,2 =X ) sand X =X +5(x1,1 —xl,H) . (3.3,3.4)
The number of nodes / is chosen to ensure the required accuracy of the spline function over
its full domain of definition [fl,l =X (xl,min),)?l, I :fl(xl’max) . The nodes are distributed
equidistantly along X; so that a simple search algorithm can be used to determine the
interval {i} in the series of knots that fulfills YIK, <x< EIK, 1 for a given transformed variable

X; . For equidistant nodes, and therefore equidistant knots, i can easily be calculated from
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- _ =K

. XX

i =floor — |- (3.5)
Axy

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes,

in ranges for which Ax =X, —X; is constant. Furthermore, the node spacing along x

depends on the transformation X (x). Basic principles of transformation techniques are
outlined in Sec. 3.1.2.

The 3/ coefficients a; of the [ spline polynomials are obtained from the following
conditions. Each of the / polynomials ?{i} (fl) must intersect the node (7)

E{i}(fw):?i(fl,i) i=1..,1. (3.6)
Furthermore, the z values at the inner /— 1 knots have to be equal for the adjacent polynomials

E{i} (7‘11.%1) = 7{”1} (flljn) i=1 .., I-1 3.7
The derivative (dE /dx ]) at each of these knots must also be equal

dz

o @a)-F

W)= (754) i=1,..,1-1. (3.8)
{i} Uit}

At the outer knots, these derivatives are to be calculated from the underlying function z(x;)
with

dxfl{i:l}( 11)—dxfl(x11) and E{i:,}(XI’M)_E(XLM)’ (3.9,3.10)
where

dz _dz dz dy

@ dz do dy |

A comprehensive description of the method along with a computationally efficient
implementation is given by Spéth [23], where the function values at the outer knots are given
instead of the derivatives, Eqgs. (3.9) and (3.10). The linear system of 3/ equations, Egs. (3.6) —
(3.10), is reduced to the /— 1 equations
=
AXyy +Ax , dx

L[5, Mo |d
A\ 20 A +AY, Jda(x_, i*=3 (.11)

A s sy dFx
- aw (e =) m,ldfl(m)

1 dz

_ 1 &
AxX g +AY; dn |

AX; ; AX; - =
+ 1 gy it AN g
Axy, Axp g+ AN AN +AY ) dy

i=2,..,1-2, (3.12)

S|
1 dz
t—
Ax; +Ax ) do

4

. :Axfﬁ(ft+1 -Z)
1+ S

and
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1 E + 1 é+ Afl‘172 E
Ax o+ A% g Ao, AN\ 20 AN AN )dY |k, (3.13)
4 1 dZ ok '
=—(Z;;—Z;uj ) ————| X
AYIZH( i1~ Zi=1-1) 205, dﬁ( 1,1+1)
The variables A, ; in the equations above are defined as
AXy ;=X — X (3.14)

The Egs. (3.11) — (3.13) are solved for the unknown derivatives dE/dX]‘],K at the knots
% =2, ..., 1. The coefficients a;, are then obtained from

ay :gl_(gu) i=1..,1, (3.15)
aj =% A)?l,i—lg +Ml,i£7 i=l..,1, (3.16)
Ax gy +AYy,; dxi |k, di
and
g-— L | & i=1 .. 1. (3.17)
A+ A | A [k, AN |k

In Eqs. (3.16) and (3.17), the values of AX; ; and AX, ; are
Axp g =AY, and Axy =A% - (3.18,3.19)

Once all the coefficients a;; are determined, they are stored together with the values of the
nodes and knots in a look-up table. In order to calculate z°""(x;), the variable x; is first
transformed into X; with the transformation function X;(x;). From Eq. (3.5), the index 7 of the
interval is then determined. Finally, the transformed variable z is calculated from the spline
polynomial Zh (x), Eq. (3.1), and converted to z with the inverse transformation function

z(Z).
3.1.2 Transformations

In order to increase the accuracy of a quadratic spline function, the coordinates are
transformed in such a way that the third derivative, i.e., the change in curvature, is reduced.
Both the independent variable x; and the dependent variable z can be transformed with
functions of the form x;(x;) and z(z).If Z(z) is nearly proportional to X;(x;) , then the change
in curvature of the transformed function z(x;) is smaller than that of z(x;).

The transformation functions are continuous and monotonic. An analytic solution for the
inverse transformation function z(z) is provided. For the inverse spline function xllNV (z), the
inverse transformation function x;(%;) should also be analytical.

The effect of variable transformations is illustrated in Figs. 27 and 28. The untransformed
function, see Fig. 27, exhibits a non-zero third derivative, which cannot be described with a
quadratic function. If, for instance, z is nearly proportional to X;(x;), see Fig. 28, the accuracy
of the interpolation between the nodes increases because the spline polynomial can better
reproduce the transformed function.
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ZA Z(xl) ZA Z(fl )
Node Node

’\ T » M T T
X1 .1 (I-1)xAx,

Xy X7

3 s

=y

Figure 27: Untransformed function z(x;) with  Figure 28: Transformed function z(x;) with
nodes equidistant in X;, rather than nodes equidistant in x;.
in x.

In many cases, several alternatives of analogous transformations of z and x; are feasible.
Due to more suitable node distributions, the transformation of x; into ¥; is usually superior to
the transformation of z. Another useful approach to efficiently reduce the change in curvature
is a transformation of the form z(z,x;). If required, the accuracy and computing time of the
spline function itself, and its inverse spline function, must be assessed for the different
transformation approaches to determine the trade-off between these criteria.

The concepts explained above offer several alternatives to create a spline function, and can
be combined. Considering the requirements for accuracy, computing speed, range of validity,
and memory consumption, different transformation techniques must be assessed and the most
suitable variant must be chosen.

3.1.3 Inverse Spline Functions

From the spline function 2SPE (xl ), the inverse spline function xlINV (z) can be calculated
with complete numerical consistency. The transformed variable ¥ is obtained by inverting the
polynomial Z; (%), Eq. (3.1), in the interval {i}, which results in

(5457 —446,(2))

A ()= 1 X (3.20)

1

with
4 =a;,

B; =a;,, and
C(Z)=a;-Z.

For a monotonic spline polynomial E{IE(YI) in the interval {i}, the sign () in Eq. (3.20) is
negative if sgn(4;)(dz/dx)(d? z/dx; ) <0, otherwise it is positive. The inequality yields
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B; <0. Therefore, the sign (£) in Eq. (3.20) equals sgn(B;) if the spline polynomial is
monotonic in the interval {i}.

In order to determine the interval index 7 from Eq. (3.5) along X; for a given z , an auxiliary
spline function flAUX (z) is used to calculate an estimate for X;.

The procedure for calculating xllNV (z) is as follows. First, the variable z is transformed into
z . The index i of the interval that belongs to Z is determined with the auxiliary spline function
YIAUX (z) and Eq. (3.5). The inverse spline polynomial )?IIE'Y (E) , Eq. (3.20), is then evaluated.
The result must fulfill the condition X; <x; <X;},,; otherwise, the index i needs to be
incremented or decremented, and the calculation repeated. Eventually, X; is converted to x
with the inverse transformation function x;(X;) .

Non-monotonic functions have two valid solutions in the interval {i} where the extremum
of Z5PL (%) is located. This extremum is calculated from

X5y = —2—Ai+xl,[ and 2 = a3 (xl’{l.} —xl,l-) +a;, (xl’{i} —xl,l-)+a[1 . (3.21,3.22)

The coefficients of the flAUX () and Z5°* (%) spline polynomials along with values of
nodes and knots are stored together in a look-up table. This table, and the associated algorithm
for calculating the inverse spline function, is written to a source code file for application in
computer programs (see Sec. 4).

3.1.4 Derivatives

SPL

The first derivative of the spline function z> ~(x;) with respect to the independent variable

x, is calculated analytically from

dz ) (947 [%j dx (3.23)
dx dx ez )z \dx )
where the derivative of the spline function with the transformed variables, Eq. (3.1), within
interval {i} is calculated from

dz,
[dx{l}] ~ a4y +2a55 (% -7, (3.24)

The derivative of the general transformation function z(z,%;) is simplified to

0z dz
(al, =[5) (329

if the transformation of z is independent of X;, i.e., Z =Z(z).
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3.2 Two-Dimensional Spline Functions

3.2.1 Spline Functions

A two-dimensional polynomial spline function zSPL(xl,xz) is a continuous, piecewise-
defined function consisting of several spline polynomials. The spline function interpolates
values between a set of discrete data points, the so-called grid of nodes (see Fig. 29). The
number of nodes 1J and their (xl’l-,xz’_ ,-) locations are chosen to ensure the desired accuracy.
The z;(x;;,x, ;) values of the nodes are calculated from the underlying function z(x;,x,).
The spline polynomials are connected at knots, which can either be equal or unequal to the
nodes. For the SBTL method, the knots are located at the midpoint between the nodes along x;
and x, respectively, which results in symmetric boundary conditions leading to superior
accuracy [36]. A spline polynomial ranges over a rectangular cell {i,j} between four knots and
intersects the node within. The z positions of the knots result from the spline algorithm as
explained below.

In most numerical process simulations, fluid property functions need to be continuously
differentiable once. The biquadratic spline polynomial is the simplest approach that is capable
of fulfilling this requirement. Furthermore, the biquadratic spline polynomial can easily be
inverted. This enables the calculation of numerically consistent backward functions, the so-
called inverse spline functions. Therefore, in this document the SBTL method is carried out
through the use of biquadratic spline polynomials as opposed to higher order polynomials to
create a spline function AP (x;,x,) from the underlying function z(x,x,) .

In order to increase the accuracy of the spline function, both the independent variables x;
and x,, as well as the dependent variable z, are transformed into X;, X,, and z so that the
transformed spline function yields ESPL()TI,EZ). The biquadratic spline interpolation across
rectangular cells with continuous first derivatives requires a rectangular grid of nodes in the
(x1,%,) projection. Through the use of transformations, the irregularly shaped domain of
validity of a function can be transformed into a rectangle, and the distribution of nodes can be
controlled more effectively. Alternatively, the function z(xj,x,) must be extrapolated. A
description of the transformations for two-dimensional spline functions can be found in
Sec. 3.2.2.

The spline function is created in transformed coordinates through the use of biquadratic
spline polynomials
33

— SR = BN
i (31.3) = 20 X g (% -%,) (xz _x2,j) , (3.26a)
k=11=1
where X; and X, represent the transformed independent variables, z; s the transformed
dependent variable in the cell {i,j}, X;; and X, ; are the transformed values of the independent
variables at the node (i), and a;; are the nine coefficients of the spline polynomial valid in
the cell {i,j}. Equation (3.26a) can also be written as
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_ _ N2
Z{i,j}(prz):aijll+aij21(x1—xl,i)+aij31(x1—x1,i)

- — - -\ = =
+ [aij]z +a;9; (xl —-X, ) +ays, (xl - xl’i) :|(x2 - xz,j) . (3.26b)
_ N2l o2
+ [%‘/13 + 23 (xl — X ) + 33 (xl - xl,i) }(xz —Xp,j )

It is preferable to connect J polynomials at knots aligned as shown in the (;,X,) projection
of Fig. 29, where / and J denote the number of grid lines along X; and ¥, in the grid of nodes.
Each polynomial is used in a cell {i,j} and intersects the node E{i’ ,-}()71,;'7)72, ;) therein. The fllj
and Ezlf/- values of the (/+1)(J+ 1) knots are located at the midpoint between the nodes along
X, and X,, so that

_ 1, _ )
T ZE(XU +X141) i=1..,1-1 (3:27)
_ 1. _ .
SV 5()‘2,1‘ By ) J=les (3:28)
K - . _ K - 1. _
X1 =X 75()61,2 X ) s X141 = X1 1 +E(xl’1 *xl,l—l) > (3:29,3.30)
x - 1, _ K _ 1, _
X1 =% —E(xz,z —X21 ), and X=X, +5(x2,J — X271 ) . (3.31,3.32)
A {i} o Node
! ! ‘ ‘ ® Knot
-6~ f—{)f——fi«:}f——ffc:r oot e Grid of nodes
K | — Grid of knots
X2,j+1

R

X ! . NERER
2 Node (i,j) atz; ; (f],i,fz,j)
AT 0000 0N
<K : ‘ Cell {i, j}, where the spline
21 3 polynomial Z; , (., ) is valid
K ! ?
Ax :
X, X
—K K =K
X1 i Xt

Figure 29: Grid of nodes and grid of knots in the ()?1,)?2) projection with cell {i,j}, where the
spline polynomial E{i,j} (%,%,) is valid.

The number of nodes 1/ is chosen to ensure the required accuracy of the spline function over

its full domain [’71,1 =5 (X1min )+ %is = 5 (X ma )] and [?72,1 =% (X2.min ) 2.7 = %2 (X max )] .
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The nodes are distributed equidistantly along X; and X,, so that a simple search algorithm can
be used to determine the cell {7,j} in the rectangular grid of knots that fulfills )?llf <x¥ < )ﬁKl "
and )7213- <X < ff]- 4 for a given pair of transformed variables (¥;,X,) . For equidistant nodes,
and therefore equidistant knots, the indices 7 and j can easily be calculated from

— —K - =K

. X=X . X=X

i = floor| ——== and J=floor| ——==|. (3.33,3.34)
Ax, Ax,

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes,
in ranges for which Ax =X, —-%; and Ax, =X, ;,—X,;, respectively, are constant.
Furthermore, the node spacing along x; and x, depends on the transformations X (x;) and
X, (x,). Basic principles of these transformations are outlined in Sec. 3.2.2.

The 91J coefficients a;;; of all spline polynomials are determined as explained by Spith
[36]. Figure 30 illustrates the boundary conditions at a cell, where the superscript K denotes the
grid of knots. Each of the 1 polynomials Z; (3,X,) intersects the node (i,/). The z values

5, (% +1,/). (i, /%), and (i, /% +1) , marked with
gray circles in Fig. 30, are equal to the corresponding values of the adjacent cells. Furthermore,
the derivatives (0z/0x;)_ at (%, /) and (X +1,/), as well as (cz/0%,). at (i, /%) and
(i,j Ky 1) , are equal to the corresponding derivatives of the adjacent cells. In addition, the z
values and the crossed derivatives (62 Z /(5)716;?2 )) at the four knots at the corners (iK, jK ) s
(iK,jK +1), (iK +1,jK), and (iK +1Lj +1) are equal to the corresponding values of the

at the midpoints of the cell boundaries (¥,

neighboring cells. For these conditions, the required derivatives at the cell boundaries are
calculated considering the requirement that the resulting biquadratic spline function is
continuously differentiable once.

X o  Node
{j } e Knot
{:5 O B d ***** Grid of nodes
_K 3 —— Grid of knots
X2, /417
X2,
—K
X,

Node (i, /) atz; ; fl,i’flj)

Cell {i, j}, where the spline
polynomial Zi (%,%,) is valid

EN &

X X

Figure 30: Locations of points where boundary conditions are defined for a cell.
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3.2 Two-Dimensional Spline Functions 59

The variables Ax; and AX, ; in the equations below are defined as

AX; =X —X,; and A% ;=% =X (3.35)

For given derivatives (6? /0%, )xz at the left and right boundaries of the grid of knots

=)

the derivatives at the remaining knots (z’K, J ), with i = 2,...,1 and j=1,...,J, are obtained
by solving for each grid line j, with j=1,...,J,

(s, _Mha {ff] +1(ffj
A (2 ANy +AY, \ O ) oy AXy )+ A% 5 O

_i(g “E)- L
Aflz,l TR 245, O

2 (k= K _ i
(%L(xl’,.,xz,j) K =1,1+1, J=l...J, (3.36)

2K

i3,

, (3.37)

%)k

A%y + A\ O g Y

A% AT
+1£2+ R I ][‘Tj i=2,..1-2,  (33%)

Li A%y + A% AN+ AT )\ O a1
| [ﬁ J 4 7))
- = | = — T 5 ‘+1,A_ i,J
Ax; +AX g\ OX APy Axf,— TR
and
l(fﬁj L[5, M m
A%y + A% 1 \ O g .y Mo \2 AR+ A% )00 g sy
- 7 (339)
4 (o 2r) 1 (&]
=Bt "B ) e | =
A¥ir- 200,11\ BlKor4,)

Analogously, for given derivatives (0z/ afz)r at the lower and upper boundaries of the grid of
M
knots

oz 0z - —K . K
(Eb?] —{6}] (%.%5) i=l..1, JX=1J+1, (3.40)
2771 x 2%

the derivatives at the remaining knots (i,jK), with i=1,...,1 and jK =2,...,J, are obtained
by solving for each grid line i, with i =1,..., 1,
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(s, Aea [ﬁj *1[%j
A (2 A% +A%), )\ 0%, 5l AXy 1 + A%, 5 | 0%,

K_ 5|k
e MRS (3.41)
-T2 i, =2 " i,j=1 T A — | ~—
Avg VTR A, | o, A
l[ffj
A%, ;) + A%, ;| 0X, 7|,
AT, . AT, ;
PRI P e Y (&J J=2..,0-2, (342)
A%, A 1 +4%) ) A% +A%) ;i )\ 0%,

i, 64

. 1 [ oz ] 4 P
— | — =—\Zz: : 1 —Z:

AT+ A % —2 \Zi,j+l z,/)
2, T 1 (O o e AY;

and

=J-1

AX:
L (5, Sy (%j , (3.43)
A0 -i\2 Ay + A%y \O%2 )5

AX) g + 4% 51\ 0%, % %

_L(E _3 )_; oz
AfZZ,J—l i b= ZMZ,J—I a)?2

Now, for given derivatives (822/ (o%,0%, )) at the four corners of the grid of knots

o’z
0%, %,

the derivatives at the remaining knots (iK,jK), with i* =2,...,1 and jK =1,J+1, are

Nl Koy

7 )k —x K K
| L2 (=K, 5K K=1,1+41, K 1,41, (3.44
[6x16)?2]( 1,i 2,]) J ( )

K
Ly

obtained by solving for each grid line ;¥ =1 and j* =J+1
1 0’z
Riv—— -
x  AX ) +AY, | 0x0x,

1 (5, A%, o’z
Ax (2 Axy +AY, )\ o, K_y
. . , X2,

4 [ﬁj _[6?] 1 [azz]
Ax |\ 0% 5l ok \T gl | 285, 040N,

i=1,j

*=3, ¢

; (3:45)

i=2,) i*=1,;%
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1 o’z
AX g+ AX ;| O X,

A

+ 1 24 7A¥1,i—17 N 7M1,i+i [ 0’z
Axy; AX g +AY ;AN ANy )\ 0K,

iK1, K
i=2,..,1-2, (3.46
+ 1 o (3.46)
AX; +AX i | XX Ko, K
=& )
_j - I
AXj; ) T, X % Nl K
and
1 [ o’z ]
A%y o+ A% g \ 0T &
A%, ’z
L[5, M 0z (3.47)
Ax g\ 2 AX oy + A% ) O0dY, K=,
== || = "\, 245 4| %
AT X, I 0x, 5l ¥ 2A% ;- | Ox,0x, Kora, K

Now, all derivatives (62?/(6)?16)?2 )) at the knots (iX, /%), with X =1,...,7+1 and
jK =1,J+1, are known. At the remaining knots (iK,jK) , with ik = 1,..,/+1 and
jK =2,...,J , these derivatives are obtained by solving for each grid line =1, 0 +1

1 §+ Afz,z o’z
A% |2 AN +AY,, || 00X,

=—||=
Ay o2 0K i

Jj=2

. 1 oz
AXy ) +A%;, 0x,0%,

i<, K=2

& g, e 245, ; | X0,

i*K=3

, (3.48)

i, %=1
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1 o’z
Mz,, jat A@,_ ; 0X,0%,

A

L, A A% [ o’z ]
AX, ; A+ A A A% g )\ 00T, ) K

j=2,..,J-2, (349)

. 1 o’z
AX, ; + A% .| 060X,

A

4 (ﬁj
v ;|\ o %

iK

LJ+l i, j
and
1 [ oz J
A%y + A% 51\ 060X, K Koy
AX 2z

R O W ] oz (3.50)

Mo a\2 A o +A%G 0 )\ 0%, )« Ky
4 (&] [&j 1 [ o’z ]
- 2 — | — A= —

AXZ,J*I 6)?] % iK,j:,/ 6)?] % iK,j:,lfl 2Ax2,J*1 axlafz iK,jK:J-H

Each set of equations, Egs. (3.37) — (3.39), (3.41) — (3.43), and (3.48) — (3.50), provides a
symmetric tridiagonal coefficient matrix. Such sets of equations can be solved through the use
of simplified algorithms as discussed in [36].

Now, the 9 coefficients for each of the 1/ cells {i,j} are calculated from

a1 d2 453

G _ -T
Ay Ay Gy =[V(xl,iﬂ C[V(xz’j)} , (3.51)
a3; 4z 433
where
[ o’z ] [ & ] [ o’z J
6)?15)?2 K jK a1 |k ; 5)?16)?2 K K
c-| [& z Z : (3.52)
ox. b %y )
275 & 275 K
P4 0% Ky, K % Blx,y P4 0% 1,541 |
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0 1 0
VE)] - i e | (3.53)
Li-1 TAXY,; Axg +AYy,;
-1 0 1
| A% + A% Ay +AY, |
and
Axy, J -1
A%y ;1 +8% ;A% i +AY,
[V()?z’ j)}_T =[1 0 0 . (3.54)
A% 1 1

A)?M_l + A)’cz,j Afz,j_l + Mz’j

In Eqs. (3.53) and (3.54), the values of AX, o, AY, ;, AX, (, and AX, ; are
Axy o= Axpy, Axy =A%, (3.55,3.56)

A%, o =Ax%,;, and A%, ;=A% . (3.57,3.58)

The continuous behavior of the resulting spline function and its first derivatives at the
boundaries between the cells is mathematically proven in [36]. The number and distribution of
nodes is optimized to ensure the required accuracy of St (x1,x,) over the whole range of
validity. Once all the coefficients a;;; are determined, they are stored together with the values
of the nodes and knots in a look-up table. This table and the associated algorithm for calculating
the spline function is written to a source code file for application in computer programs (see
Sec. 4).

In order to calculate zSPL(xl,xz), the variables x; and x, are first transformed into X; and
X, with the corresponding transformation functions. Equations (3.33, 3.34) give the indices i
and j of the corresponding cell. The transformed variable z is then calculated from the spline
polynomial E{i’ ) (x,%,), Eq. (3.26), and is converted to z with the inverse transformation
function z(Z).

3.2.2 Transformations

In order to increase the accuracy of a biquadratic spline function, the coordinates are
transformed in such a way that the third derivatives, i.e., the change in curvature, is reduced.
Both independent variables x; and x,, as well as the dependent variable z, can be transformed
with functions of the form X;(x;), X,(x,), and z(z). If Z(z) is nearly proportional to x;(x;)
at constant X, and z(z) is nearly proportional to X,(x,) at constant Xj, then the change in
curvature of the transformed function z(X,X,) is reduced as compared to that of z(x,x,) .

The transformation functions must be continuous and monotonic. An analytic solution for
the inverse transformation function z(z) is needed. For the inverse spline functions
xllNV(z,xz) and xéNV (x1,z), the inverse transformation functions x;(¥;) and x,(¥,) should
also be analytical.
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In Secs. 5 and 6, where the SBTL method is applied to several property functions, the
increased accuracy resulting from transformations is demonstrated. In many cases, several
alternative analogous transformations of z, x;, and x, are feasible. Due to more suitable node
distributions, transformations of x; and x, into X, and X, are usually superior to the
transformation of z. If required, accuracy and computing time of the spline function itself and
its inverse spline functions must be assessed for the different transformation approaches to
determine the trade-off between these criteria.

Fast, non-iterative algorithms to determine the cell {i,j} for a given pair of transformed
variables (X;,X,) require a rectangular cell structure. In combination with the demands for the
continuity of the biquadratic spline function and its first derivatives, this leads to a grid of nodes
with a rectangular outer boundary in the (;,x,) plane. This rectangle must include the required
range of validity. States beyond the range of validity must be extrapolated from the equation of
state or with suitable extrapolation techniques.

In order to avoid extrapolations and to more efficiently control the node distribution across
the grid within the range of validity, additional variable transformations can be applied.
Through the use of these so-called scaling transformations of the form X;(x;,x,) and/or
X, (x,,x;), the irregular shaped range of validity is converted into a rectangle. For this purpose,
the boundaries of the range of validity are described with auxiliary spline functions of the form
Xmin (¥2) > X1 max (X2 > X2,min (¥1)» a0 X3 1y (1) -

If, for instance, the variable x, is to be scaled between the boundary curves x; ,;, (x,) and
X) max (¥2) , see Fig. 31, the form of the scaled variable transformation reads

X (xl’x2) =X (xlﬁxl,min (x2)7x1,max (x2)) . (3.59)

For example, Eq. (3.59) could be expressed as a linear scaling function for x; between
xl,min (x2) and xl,max(x2) with

X — X i
X (xp, x) = Lo (xl = X, min (xz)) + X1, min » (3.60)
X ,max (x2) —X ,min (x2)

where and X .. are free parameters chosen appropriately as the minimum and

fl,min
maximum values of the transformed coordinate. Figure 32 shows the range of validity and the

grid of nodes in transformed coordinates.

The spline functions for the liquid phase in the (v,u) plane (see Sec. 5.1) are insightful
examples for these transformation techniques. Another useful transformation approach results
from the combination of the dependent variable z and the independent variables x; and/or x,.
A transformation of the form z(z,x;,x,) can be used in some cases to efficiently reduce the
change in curvature. If, for instance, the specific volume in the gas phase is calculated from the
pressure p and another property x,, i.e., V(X = p,x,), the transformed specific volume
v(v, p) = pv is preferably used as the dependent variable. In Sec. 5.2, the spline-based property
function v9 (p,h) shows how this variable transformation technique is applied.

The concepts explained above offer several alternatives to create a spline function, and can
be combined. Considering the requirements for accuracy, computing speed, range of validity,
and memory consumption, transformation techniques must be assessed and the most suitable
variant must be chosen.
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o} Fmin (x2) Range of state x, 4 Grid of nodes  Range of state
X2, max] o= —f=som— =m0 X2, max] ¢
U A | | |
[ - 1 1 I
// e ] 1 1 [
. 1 | i
e e
S ) i i I i
[0 () A
’p/-d/dl 1 | | |
o i
ri’/ | 1 1 [
1)y ] | I |
i) ] I I |
4 S R
]
I'l,'l' Grid of nodes \ ' ! !
,"l, ] I I i
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pore il
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iy ) 1 1 1
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iy I ] ] 1
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2,min 2,min T T
> ! ! —>
x = = X
1 xl,min xl,max 1

Figure 32: Projection of the grid of nodes
in the (X,x,) plane for a
X (x7,x,) transformation.

Figure 31: Projection of the grid of nodes
in untransfomed coordinates.

3.2.3 Inverse Spline Functions

From the spline function z5°% (x1,x,), the inverse spline functions xIINV (z,x,) and
x%Nv (x1,z) can be calculated with complete numerical consistency. This is demonstrated for
xlINV (z,x,) . The transformed variable X, is obtained by solving the polynomial E{i i) (fl,fcz ),

Eq. (3.26), which results in
£ Bj —44;C; (3))

-B,
24;

+ X (3.61)

fliﬁ};} (z.%)=

with
Ay = a3 + (% -5 )(aiﬂZ +tays (BT, )) ,

By =ay +(% % )(alj22 + a5 (% —fz’j)), and

Cy (2) =+ (%~ % ) a2 + a3 (R -7, ))- 2
For a monotonic function Z i) (% ))72 in the cell {i,j}, the sign (%) in Eq. (3.61) is negative if
sgn(Aij)(fE/ﬁ)?] ))72 (822/6)?125@ <0, otherwise it is positive. The inequality yields B; <0.
Therefore, the sign (+) in Eq. (3.61) equals sgn(B;) if the spline polynomial is monotonic in
the cell {i,j} for fixed values of ¥, .

In order to determine the cell indices i and j from Eqs. (3.33) and (3.34) in the (¥;,%,) plane
for given values of Z and X,, an auxiliary spline function EIAUX (z,x,) is used to calculate an

estimate for xj.
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To calculate the inverse spline function xllNV (z,x,), z and x, are first transformed into z
and X, . The cell indices i and j that belong to the given values for (z,X,) are then determined
with the auxiliary spline function )EAUX (z,%,) and Egs. (3.33) and (3.34). Then, the inverse
spline polynomial )?]”{\x} (z,%,), Eq. (3.61), is calculated. The result must fulfill the condition
E]KI <X <X, otherwise, the index 7 needs to be incremented or decremented and the
calculation repeated. Eventually, X; is converted to x; with the inverse transformation function
x (%)

Non-monotonic functions have two valid solutions in the cell {i,j} where the extremum of
21} (% )EZ is located. This extremum is calculated from

g B (3.62)
1,{1,/} ZAij 1,i .

and
2oy = A (o)~ )2 + By (%0 )

+ayy, +(% —)?27])(%.,2 + a5 (%, —)?z,j))

If a scaling transformation (see Sec. 3.2.2) is applied with the dependent variable of the

(3.63)

inverse spline function, e.g., x;, where x, is scaled with X, (x,,x;), an analytic solution of the
inverse spline function cannot be provided. Instead, a one-dimensional Newton iteration should
be applied to solve

f0)=0=2""(x),, -2 (3.64)

with the following procedure
S ()
T (3.65)
E(xl,k)

where

d 0z

l(xl,k) = (} (x16)- (3.66)

dx ox

X2

The calculation of derivatives of spline functions is explained in Sec. 3.2.4.

The coefficients of the flAUX (z,x,) and ZSPL ()?] s fz) spline polynomials along with values
of nodes and knots are stored together in a look-up table. This table, and the associated
algorithm for calculating the inverse spline function, is written to a source code file for
application in computer programs (see Sec. 4).

The inverse spline function ngV (x1,z) can be calculated in a similar manner with the

equation
2 _
BB ))
007} (xl ,z) = i +Xy (3.67)
ij
where

Ay = a3 +(fl *)71,1’)(“@/23 +a;33 (fl *fl,i))’
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By =ay,+(% -3, )(a,m + a3 (% —fu)) ,and
C;(2)=ay +(% —fl,i)(al.j21 +ay (% —fl’i))—f .
For monotonic functions E{i ) (% ); in the cell {i,/}, the sign () in Eq. (3.67) equals sgn(B;),
\ %

as described earlier in this section.

Algorithms for the calculation of inverse functions in the two-phase region depend on the
formulation of the equilibrium condition. Practical examples are given in the Appendix.
3.2.4 Derivatives

The first derivatives of the spline function ZSPL(xl,xz) with respect to the independent
variables x;and x, are calculated analytically from

[62%/}] [%j _[az{i’j}J (aﬁj
82{1.,]»} _ ax 5 X, % 0, % o %, (3.68)
0x N (6xl ] (axz J [6)61 } (6)62 ]
) “ S |2 | 22
&, x % % % % 6)?1 x
and
(%,f}] [% ] [az{w}] (%J
62{1.’].} _ %, i Y15, @3 5 Xy % (3.69)
= @ EARLE,
1 — — I —
(532 5\ g o % X, 5
where
oz, . ozs. .
157} .7} (ﬁj and (3.70)
ax ) &)\ )5
% E3) 2
iy ) [ Fs (%j . (3.71)
Ox, % 0x, % Z ),
The derivatives of the general transformation functions z(z,;,,) are simplified to
(%j :(d—ij and (3.72)
0z % dz

Oz dz
(alz ‘[Ej G739

if the transformation of Z is independent of X; and X,, i.e., Z(2).

If no scaling transformations are applied, i.e., if X is independent of x, and X, is
independent of x;, the derivatives of the inverse transformation functions

X and %}
6)?2 fl axl fz

become zero, and Egs. (3.68) and (3.69) are simplified to

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

68 3 The Spline-Based Table Look-Up Method (SBTL)

(Gz{iﬂj}J _[az{m] [d)ﬁj (3.74)

axl B 6)?1 - dxl

[az{zx/}j _[az{faf}] (dsz (3.75)
axz . 6)?2 - dx2

The derivatives of the spline function with transformed variables, Eq. (3.26), within cell {i,j}
are calculated from

0z .
[6{”}] (%% ) = @y + 243 (fl —)71,1‘)
X .

and

+ [a;’/zz + 25 (% -5 )} (fz X ) (3.76)

_ )
+ [aij23 + 2aij33 (xl =X, )}(xz —x2’j)

oz,
[ {w}] (Eafz):aijlz+2“ij13(22_762’j)

+[ai/-22 +2ay55 (% -7, j)}(fl -%,) - (3.77)

_ o \2
+|:a,»j32 +2aij33 (x2 X ; )}(xl —x,‘,«)

3.2.5 Calculations in the Two-Phase Region

In order to calculate properties in the fluid two-phase region, the equilibrium condition must
be described in a suitable manner. The saturation states could be calculated from the Maxwell
criterion, i.e., equal pressures and specific Gibbs energies at constant temperature for both
phases; but for the sake of simplicity, a function for the relationship of pressure and temperature
at saturation should be used instead.

If one of the variables x; or x, represents either pressure or temperature, the saturation curve
can be described with the saturation temperature T;(p) or the saturation pressure p,(7),
respectively. For example, if spline functions are needed for the (x;,x,) plane, where x; is the
pressure p and x, is not the temperature, the saturation curve is described by T;(p).
Additionally, spline functions for both the liquid and the vapor phases, T’ L(x] =p,x,) and
76 (% = p,x,), must be provided. With their inverse spline functions sz (¢ =p,T) and
xzc' (x; = p,T), the saturated properties in the liquid phase xj and in the vapor phase x; are
calculated. Then, the desired mass-specific properties z(x; = p,x,) in the two-phase region can
be calculated with the relation

z(xl,x2)=2'+x%7x2 (z"-2), (3.78)

!
X2 =X

where x; = p, z'=z"(x; = p,x, =x}),and 2" =29 (x = p,x, =x}).
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Consequently, the calculation of z(x;,x,) in the two-phase region is numerically consistent
with values in the single-phase regions, and a phase test to determine if a given state (x,x,) is
located either in the single-phase region or in the two-phase region is distinct and simple. As
an example, an algorithm for calculating the properties in the two-phase region from (p,4) is
given in Appendix AS. The inverse calculations from (p,s) and (4,s) are given in Appendices
A6 and A7.

If x; and x, are neither pressure nor temperature, the properties in the two-phase region
must be calculated by iteration. Again, the relationship between pressure and temperature at
saturation can be described with a function 7;(p). Then, for given properties x; and x,, the
set of equations F(X), Egs. (3.79) — (3.83),

F(X)=0=p"(x{,x))- ;. (3.79)
Fy(X)=0=p°(:f.x5) - p,. (3.80)
Fy(X)=0=T"(x[.x5) - T,(p,). (3.81)
Fy(X)=0=T%(x,x5)-T,(p,). and (3.82)

’ ’
X=X X=X

Fs(X)=0= (3.83)

"

’ " ’
=X X=X

must be solved for the vector of unknowns X = (p, x{ , x5, x{, x5 )T . This can be done through
the use of Newton’s method for non-linear systems of equations by solving

J(X,)AX, =F(X,) and (3.84)
X =X, —AX, (3.85)
in each iteration step & until convergence is reached. The Jacobian matrix J(X) is given as

J(X)= (3.86)
- L -
-1 [(;l (x1,x5)
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The derivatives in the Jacobian matrix are provided analytically as given in Sec. 3.2.4. Auxiliary
spline functions for p, (x,x,) and for x{, x{, x5, and x} as functions of either temperature T
or pressure p are recommended to provide initial values of the unknown variables. With the
saturation properties, z'=z"(x},x3) and z"=z0(xl,x}), z(x,x,) is calculated from
Eq. (3.78).

In situations where state points are calculated in the vapor region and the two-phase region
only, such as in CFD simulations of steam turbines, or where small inconsistencies at the
saturated liquid line are tolerable, the following additional phase boundary conditions are
recommended. Instead of using 7;(p), the properties at saturation are described with spline
functions for

x(p), (3.87)
x(x,), and (3.88)
x(T). (3.89)

With this approach, the phase test at the saturation curves for a given state point (x,x,) can
be performed without iteration while the numerical consistency at the saturated vapor line is
preserved.

Through the use of the inverse spline functions sz (x;,p) and p(x)), obtained from
p5(x,x,) and Eq. (3.87), with

" G
x(xp) =x3' (x1, p = ps(x1)) 5 (3.90)
it can be determined if the state point is located in the vapor phase or in the two-phase region.

The properties in the two-phase region are calculated by solving
=S ({.x5), (3.91)
T, =T%(x{,x5), and (3.92)

’ ’
N=X _ X=X

— = (3.93)
X=X X=X

along with Eqgs. (3.87) — (3.89). This can be carried out efficiently with Newton’s iterative

procedure for one-dimensional problems as shown for calculations from (v,u) in Appendix A8.

The corresponding algorithms for the inverse functions of (p,v) and (u,s) are given in

Appendices A9 and A10.

Alternatively, explicit spline functions for the desired properties in the two-phase region can
be generated. This is the fastest approach, but will produce small inconsistencies at the phase
boundaries.
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4 FluidSplines — Software for Generating SBTL Property Functions

In order to apply the SBTL method to property functions of any fluid, the software
FluidSplines [62] has been developed. This software implements all features of the SBTL
method (see Sec. 3) and assists the user in generating spline functions for a given range of
validity with a user-specified agreement with the underlying property formulations. For
calculations from these underlying property formulations, an appropriate external property
library must be connected to FluidSplines. For this purpose, FluidSplines provides an extensible
low level interface. Currently, REFPROP [59] and the property libraries from the Zittau/Gérlitz
University of Applied Sciences can be used with FluidSplines.

4.1 Basic Structure

FluidSplines is written in C++. Its graphical user interface is based on the Microsoft
Foundation Classes (MFC) and follows the classical document-view architecture with a single
document interface (SDI). The drawing capabilities for two- and three dimensional diagrams
are implemented through the use of the Microsoft Windows Graphics Device Interface (GDI)
and OpenGL. Since MFC and GDI are Microsoft proprietary libraries, FluidSplines does not
run on operating systems other than Microsoft Windows to date. However, FluidSplines
produces pure C source code for the generated spline functions which is platform independent.
Figure 33 gives a brief overview of the architecture of FluidSplines and its interfaces to external
property libraries. As for every other MFC-SDI program, Windows creates the global
application object (CFluidSplinesApp), which is derived from CWinAppEx, and starts the main
function WinMain, which is part of the MFC library. WinMain calls a member function of
CFluidSplinesApp to initialize the frame window (CMainFrame), the document
(CFluidSplinesDoc), and one or more views derived from the CView base class. The frame
window (CMainFrame) contains the menu bar, the toolbars, and the status bar. Its base class
CFrameWndEx also implements dockable windows. In FluidSplines such dockable windows
are used to display project information and error messages. All relevant data is stored in the
document (CFluidSplinesDoc). The common base class of all objects in the document is
CObject, which implements serialization and run-time class information. Depending on the
chosen external property library, an instance of a CFluid-derived class is created. CFluid
encapsulates property functions and other fluid-specific information and interfaces to the
corresponding dynamic-link library (*.dll) of the external property library. The data related to
the SBTL property function and the applied unit system are kept in an instance of CProjectData.
One- and two-dimensional diagrams are represented by classes derived from CDiagram2D or
CDiagram3D, respectively. These classes contain the relevant information to be depicted in the
diagrams and provide functionalities to prepare the drawing elements, such as axes, curves,
surfaces, text, markers, etc. Libraries for these drawing elements have been developed
specifically for FluidSplines. The diagrams are drawn in the corresponding view. Instances of
CFluidSplinesView show customizable two-dimensional diagrams for the SBTL property
function to be generated. For two-dimensional SBTL property functions, these diagrams also
allow for a flexible definition of the range of validity as described in Sec. 4.3. To visualize the
grid of nodes in a three-dimensional view, an instance of CFluidSplinesView3D is created. The
graphical user interface of FluidSplines is shown in Fig. 34.
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~[ CMainFrame : CFrameWndEx ]

<[ CFluidSplinesDoc : CDocument ]

«[ CProjectData : CObject

CSplineData : CObject

CUnitSettings : CObject

«[ CDiagram2D*

<[ CDiagram3D*

Figure 33: Brief overview of the architecture of FluidSplines and its interfaces to external

.

property libraries. Class names begin with the character “C”, the operator

ko

separates the class from the base class it is derived from. The asterisk denotes

a pointer to an object.

In order to create an SBTL property function with FluidSplines, the underlying fluid property
formulation must be chosen first. For this purpose, the external property library and the required
fluid is selected first using the “Fluid” dialog box in the “Project” menu. If the external property
library provides several equations of state for the selected fluid, then the relevant equation can
be chosen by the user. Similarly, the reference state can be specified in the same dialog box.
The unit system for the SBTL property functions to be generated can be defined using the
“Units” dialog in the “Project” menu. The generation of one- and two-dimensional SBTL
property functions is outlined in Secs. 4.2 and 4.3.
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Figure 34: Graphical user interface of FluidSplines showing a u-v diagram with the deviations
of the created spline function from the underlying formulation as a color plot.
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4.2 Generation of One-Dimensional SBTL Property Functions

The generation of one-dimensional SBTL property functions in FluidSplines is demonstrated
using the example of 7 (p) based on IAPWS-95. The function to be interpolated, i.e., T(p) can
be selected from the “Function” dialog in the “Spline” menu. Once the function is selected,
FluidSplines will automatically prepare the corresponding 7-p diagram as shown in the upper
section of Fig. 35. The diagram can be customized using the “Diagram” menu items. For a one-
dimensional property function, the desired range of validity p i, < P < Prax can simply be
entered into the program through the use of the “Spline”’/”Region” dialog box. In this example,
the pressure ranges between p .. =6.11x10™ MPa and Pmax =22.064 MPa . The spline
interpolation algorithm, either quadratic or cubic, is chosen from the corresponding dialog
under the “Spline”/”Interpolation” menu item. In the same dialog box, the coordinate
transformations and the series of nodes are specified. In this example, a quadratic spline
function is prepared, where the pressure p is transformed into p(p)=+/p .
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Figure 35: Spline function T(p) and its deviations from [APWS-95.
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The series of piecewise equidistant nodes is created in transformed coordinates as follows:

5(6.11x10*‘ MPa) <p <p(0.1MPa): 200 nodes,
P2(0.1MPa) < p < p(22.064 MPa): 200 nodes .

The generation of the spline function is then started from the “Interpolation” dialog box. The
computation is carried out by a worker thread. In this way, the graphical user interface operates
without delays and the spline generation can be stopped on user’s demand. The spline
generation process is multi-threaded to minimize its duration. During the spline generation,
status and error messages are displayed in the “Output” window. A progress bar shows the
progress of the spline generation. If the external property library fails to provide a required
value, then this value is interpolated automatically within FluidSplines and a message is added
to the “Output” window. Once a spline function is successfully generated, it can be used to
provide starting values for the external property library. The accuracy test of the spline function
can also be started from the “Interpolation” dialog box. For the example described here, a
deviation diagram is added below the 7-p diagram for 7(p) as shown in Fig. 35. The generated
spline function can be exported from FluidSplines as pure C code.

4.3 Generation of Two-Dimensional SBTL Property Functions

The generation of two-dimensional SBTL property functions in FluidSplines is
demonstrated using the example of p(v,u) for the gas phase based on IAPWS-95. Upon the
selection of this function in FluidSplines, a u-v diagram is created automatically. This diagram
includes the isobars and isotherms bounding the range of validity of the underlying equation of
state and the phase envelopes. Other isolines for p, 7, v, x, u, h, or s, as well as spinodals and
melting curves can be added using the “Contents” dialog from the “Diagram” menu. The curves
in the diagram can be used to determine the required region, where the property function to be
generated should be valid. In this example, the spline function is defined in the gas phase and
is bounded by the isobars at 611.212 Pa and 1000 MPa, as well as by the isotherm at 1273.15 K
and a constant internal energy of 2015.735 kJ/kg. The region determination is started from the
“Region” dialog in the “Spline” menu. Messages in the “Output” window guide the user
through the process. The bounding curves of the range of validity need to be selected one after
another from the diagram. For every newly added curve, FluidSplines calculates the intersection
with the previous curve. If two functions intersect more than once, the intended intersection can
be picked from the diagram. Once the region is determined, FluidSplines automatically
determines all local extreme values at the boundaries. If no scaling transformations are applied
(see Sec. 3.2.2), the bounding rectangle of all intersections and extreme values defines the outer
boundaries of the grid of nodes as shown in Fig. 36.

In many cases it is necessary to determine whether a point lies in the selected region or not.
For polygons, the ray casting algorithm [63] can be used to determine whether a point lies inside
or not. The intersections of a ray casted from the point in an arbitrary direction are counted. If
the number of intersections is odd, then the point is located inside the polygon. For all other
cases it is outside the polygon. The ray casting algorithm can also be used if the segments of
the boundary are monotonic curves instead of straight lines. For this purpose, the selected region
boundaries are decomposed into monotonic sub-boundaries (see Fig. 36). The intersections of
the ray with the monotonic sub-boundaries must be determined by iteration.
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Figure 36: Determination of outer boundary of the rectangular grid of nodes and division of
region boundaries into monotonic sub-boundaries for the region determination

process.
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Figure 37: Inner and outer polygon for a larger number of monotonic sub-boundaries.
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To minimize the calculation of intersections by iteration, the following procedure is applied.
From the bounding rectangles of the monotonic sub-boundaries an inner polygon and an outer
polygon are created as shown in Fig. 36. In some situations an inner polygon cannot be created
this way. In other situations, the resulting inner polygon is self-intersecting and must be split
into non-self-intersecting polygons. If the inner polygon exists, any point inside this polygon is
also inside the selected region. Any point outside of the outer polygon is outside of the region.
For all other cases, the ray casting algorithm for monotonic curves is applied. In order to
increase the area of the inner polynomial, the monotonic sections of each boundary are divided
into a larger number of sub-boundaries as shown in Fig. 37.

As for the generation of one-dimensional spline functions, the spline interpolation algorithm,
the coordinate transformations, and the grid of nodes can be specified in the “Interpolation”
dialog box. In this example, a biquadratic spline function is prepared, where the specific volume
v is transformed into v (v)=In(v). The grid of piecewise equidistant nodes is created in

transformed coordinates as follows:

7(1.05272x1073 m3/kg) <y < V(8><10"3 m3/kg): 200 nodes,
7(8x107 mPkg) < ¥ < (961341 m3/kg): 200 nodes,
2015.735 kl/kg < u < 2650 kJ/kg : 100 nodes,
2650 kJ/kg < u < 4055.26 kl/kg : 100 nodes .

The generation of the spline function and the accuracy test are started as described in Sec. 4.2.
For the example described here, the deviations of the spline function for p(v,u) from the
underlying equation of state, are displayed as a color plot in the u-v diagram (see Fig. 38).
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Figure 38: Deviations of the spline function for p(v,u) from [APWS-95.
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The nodes are depicted in a three-dimensional diagram as shown in Fig. 39. In this way, the
calculation of the nodes can be verified. Moreover, the effect of variable transformations on the
property surface can be seen. The corresponding view is activated through the “Spline-3D”
button as shown in Fig. 34.
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Figure 39: All nodes for the p(v,u) spline function in a v —u — p diagram. The linear u-axis is
hidden behind the nodes and ranges from 2015 kJ/kg to 4055 kl/kg.

The nodes outside the range of validity of IAPWS-95 have been extrapolated from its
equation of state. In some situations it is not possible to do so. For these situations the user may
introduce extrapolation rules by picking curves in the 2D diagram and selecting extrapolation
methods for the nodes beyond these curves. Extrapolations from a lower order Taylor series or
mirroring the property surface at the specified curve are useful tools to obtain the required nodes
beyond the range of validity. These techniques are only intended to provide suitable nodes for
the spline interpolation algorithm but the resulting property functions may not produce
reasonable values in the extrapolated areas.

The generated spline function can be exported from FluidSplines as pure C code.
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5 SBTL Property Functions Based on IAPWS-IF97 for Water and Steam

The SBTL method has been applied to the industrial formulation IAPWS-IF97 through the
use of FluidSplines (see Sec. 4). The documentation of the resulting SBTL property functions
given in this section was originally published in [61].

5.1 Spline Functions of (v,u) and Inverse Functions

In order to provide fast and accurate property functions for extensive process simulations,
where water and steam properties are frequently calculated from (v,u), the SBTL method has
been applied to IAPWS-IF97. Spline functions have been created for the calculation of
p,T,s,w,n= f(v,u) in the single-phase region. Furthermore, numerically consistent property
functions of (p,v) and (u,s) are calculable through the use of inverse spline functions as
described in Sec. 3.2.3. The relationships between the spline and inverse spline functions are
illustrated in Fig. 40. The properties in the two-phase region are calculated as explained in
Sec. 5.1.3.

(v,u) (p,v) (u,5)
P ) —— u=u"(p.v)
TSPL(v,u) T,s,w,n=f(v,u)
SSPL(v,u) > =y (u,s)
WSPL(V,M) p,T,w,n=f(v,u)

7 (v,u)

Figure 40: Property calculations from (v,u), (p,v), and (u,s).

5.1.1 Range of Validity

The range of validity is bounded as follows:
273.15K < T <1073.15K 611.212 Pa < p < 100 MPa,
1073.15K < T < 2273.15K 611.212Pa < p < 50 MPa.

This range of validity corresponds to that of IAPWS-IF97, except for the lower pressure limit,
which is set to p (273.15 K)=611.212 Pa. Figure 41 shows the range of validity and the
defined regions of the spline functions with the variables (v,u). The single phase is divided into
the liquid region L, the gas region G, and the high-temperature region HT. With regard to
regions defined in IAPWS-IF97, the current liquid region L covers region 1 and a part of region
3. Region 2 and the remaining part of region 3 are included in the gas region G. The spline
functions are smoothed at the IF97 region boundaries 1-3 and 2-3. The two-phase region TP
corresponds to region 4 of [APWS-IF97 and the high temperature region HT matches region 5
of IAPWS-IF97.

The specific internal energy at the critical point u,=2019.025 106 kl/kg is used to define the
boundary between the L and G single-phase regions for supercritical state points. At the region
boundaries L-G and G-HT in the single-phase region, small inconsistencies are unavoidable
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(see Sec. 5.1.6). These should be negligible for most purposes, but if needed the transition at
these boundaries can be smoothed with simple interpolation equations.
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Figure 41: Range of validity in the (u,v) plane for spline functions based on IAPWS-IF97.

Note: For temperatures between 273.15 K and 273.16 K, the part of the range of validity of
region L between the pressures on the melting line and on the saturation-pressure line
corresponds to metastable liquid states. In the same temperature range, the part of the
range of validity of region G between the pressures on the saturation-pressure line and
on the sublimation line corresponds to metastable vapor states.

5.1.2 Spline Functions for the Single-Phase Regions

In each of the three single-phase regions, L, G, and HT, spline functions with the variables
(v,u) are created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific
volume v with the boundary curves vy, (#) = v( ppayx =100 MPa,u) and vy, (u)=v'(u) is
applied, so that

= _ Vmax ~ Ymin —

e LA
where the free parameters are set to V,;, =1 and V,,,,, =100. Thus, the shape of the grid of
nodes corresponds to the shape of the liquid region L (see Fig. 41). In the single-phase regions
G and HT, the specific volume is transformed as v =In(v). The grid dimensions of each (v,u)
spline function are given in Tables A1, A2, and A3 in Appendix A11. Nodes outside the range
of validity needed for the construction of a rectangular grid of nodes are obtained by appropriate

extrapolation.
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From the single-phase spline functions pSPL(v,u) and sSPL(v,u), the inverse spline
functions 1™V ( p,v) and vI™(u,s) are determined as described in Sec. 3.2.3. With these
inverse spline functions, all remaining properties are calculated from (p,v) and (u,s), as
illustrated in Fig. 40.

5.1.3 Calculations in the Two-Phase Region

The properties in the two-phase region TP are calculated with the spline functions in the
single-phase regions L and G, along with additional constraints for the phase equilibrium. For
process simulations where the range of states does not include the liquid region L or where
small inconsistencies at the saturated liquid line are tolerable, the calculation can be simplified
with spline functions for v'(p), v'(u), and u'(T) as discussed in Sec. 3.2.5. This simplification
is applied to the spline functions of (v,u) and their inverse functions of (p,v) and (u,s) for the
two-phase region TP described in this document. The algorithms are described in Appendices
A8, A9, and A10. Auxiliary spline functions pf‘UX (v,u) and prX (u,s) were created to
provide initial guesses for the calculations from (v,u) and (u,s).

5.1.4 Derivatives

The following derivatives are frequently required in CFD:

) & (&)
ov u’ ou V’ ov p’
(aTj (6Tj (6uj
-— | > — | ,and — .
ov ), ou ), ov)r

These derivatives are calculated analytically from pspL (v,u) and T SPL (v,u). The
derivatives are continuous and can therefore be applied in numerical calculations, e.g., to
prepare a Jacobian matrix in CFD. However, any thermodynamic property where high accuracy
is required should be obtained from a dedicated spline function, rather than using derivatives
of other spline functions. A description of the calculation of derivatives is given in Sec. 3.2.4.

5.1.5 Deviations from IAPWS-1F97

The maximum (max) and root-mean-square (RMS) deviations between the spline functions
implemented as discussed in Secs. 5.1.2 and 5.1.3 and IAPWS-IF97, along with the permissible
values (perm), are given in Tables 14 through 18. The permissible values were set by the
IAPWS Task Group “CFD Steam Property Formulation” to ensure that the differences in the
results of process simulations with the SBTL method from those obtained with the direct
application of IAPWS-IF97 are negligible. The permissible values are less than or equal to the
required numerical consistencies for the IAPWS-IF97 backward equations [3, 5, 6, 7, 8]. The
values given in Tables 14 through 18 do not include the deviations caused by the inconsistencies
of the IAPWS-IF97 basic equations at the IF97 region boundaries 1-3 and 2-3. The deviations
of the SBTL property functions for p(v,u), T(v,u), and s(v,u) from IAPWS-IF97 in the liquid
region L and the gas region G are depicted in Appendix A12, Figs. A5-A10.

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

82 5 SBTL Property Functions Based on IAPWS-IF97 for Water and Steam

Table 14: Deviations in pressure p(v,u) from IAPWS-IF97

IF97 Region 1AP] e ap| (8P) gurs
p<25MPa 0.6 % 0.12 % 0.012 %
p>2.5MPa 15 kPa 0.61 kPa 0.0044 kPa

2 0.001 % 0.00048 % 0.00012 %

3 0.001 % 0.00095 % 0.00004 %

4 0.0035 % 0.0035 % 0.00028 %

5 0.001 % 0.00053 % 0.00015 %

Table 15: Deviations in temperature 7(v,u) from IAPWS-IF97

IF97 Region ATy [MK] AT [mK] (AT) s [MK]
1 1 0.27 0.015
2 1 0.43 0.018
3 1 0.53 0.032
4 1 0.692 0.302
5 1 0.38 0.018

& Except for near-critical temperatures [(7,—T) < 1.5 K].

Table 16: Deviations in specific entropy s(v,u) from [APWS-1F97

. \As\pem |As| (A9) s
IF97 Region [10_6 Wi (ke K)] [10-6 KI/ (kg K)} [10—6 kJ/ (kg K)}
) 1 0.74 0.049
) 1 0.34 0.045
3 1 0.52 0.022
4 1 0.34 0.044
5 1 0.87 0.056
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Table 17: Deviations in speed of sound w(v,u) from IAPWS-IF97

TF97 Region AW Aw| (AW)gyss
1 0.001 % 0.00092 % 0.000007 %
2 0.001 % 0.00077 % 0.000008 %
3 0.001 % 0.00056 %* 0.000031 %®
5 0.001 % 0.00042 % 0.000005 %

a

In the vicinity of the critical point, the deviations of w are larger (< 0.02 %).

Table 18: Deviations in dynamic viscosity 7(v,u) from IAPWS-IF97 and the IAPWS
viscosity release with recommendations for industrial use [65]

IF97 Region ‘Aﬂ‘perm ‘Aﬂ‘max (AU)RMS
1 0.001 % 0.00041 % 0.000068 %
2 0.001 % 0.00015 % 0.000010 %
3 0.001 % 0.00032 % 0.000019 %

5.1.6 Numerical Consistency at Region Boundaries

The specific internal energy at the critical point u,=2019.025 106 kJ/kg defines the region
boundary between the liquid region L and the gas region G for supercritical state points (see
Fig. 41). This boundary is within IAPWS-IF97 region 3. The numerical inconsistencies of the
adjacent spline functions at the region boundary L-G result from the deviations between the
spline functions and the basic equation of IAPWS-IF97 region 3 (see Sec. 5.1.5), and are given

in Table 19.

Table 19: Numerical inconsistencies at the region boundaries L-G and G-HT

Region
‘Ap‘max ‘Ar‘max ‘As‘max max ‘An‘max
boundary
L-G* 0.0011 % 0.38 mK | 4.8x107 kI kg K'| 0.00046 % 0.00027 %
G-HT® 0.023 % 82 mK |8.2x10° kI kg K! 0.050 % -¢

G at constant specific internal energy u,=2019.025 106 kJ/kg.

HT at constant temperature 7=1073.15 K.

function for the dynamic viscosity 7 in the high-temperature region is not provided.
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The region boundary between the gas region G and the high-temperature region HT is
identical to the IAPWS-IF97 region boundary 2-5 and follows the isotherm 7=1073.15 K. The
underlying IAPWS-IF97 property functions have small discontinuities at the region boundary
2-5. The spline functions reproduce the results of the IAPWS-IF97 basic equations 2 and 5 with
high accuracy. Thus, at the region boundary G-HT, the numerical inconsistencies of the
TAPWS-IF97 basic equations (see [3]) are dominant; these are given in Table 19.

5.2 Spline Functions of (p,4) and Inverse Functions

In heat cycle calculations, water and steam properties are frequently calculated from (p,4).
Therefore, another set of spline functions has been created for the calculation of
T,v,s,w,n = f(p,h) in the single-phase region. Furthermore, numerically consistent property
functions of (p,7), (p,s), and (h,s) are required. These are calculated through the use of inverse
spline functions as described in Sec. 3.2.3. The relationships between the spline and inverse
spline functions are illustrated in Fig. 42. The properties in the two-phase region are calculated
as explained in Sec. 5.2.3.

(p,h) (p.7) (p,s) (h,5)

5" (p,h) —— h=h"V(p,T)

VWP (p,h) v,8,w, 1= f(p,h)

sSPL(p, h) > n=h"™"(p,s)

WS (p,h) T,v,w,n=f(p,h)

7P (o, h) > p=p""(hs)

T,v,w,n = f(p,h)
Figure 42: Property calculations from (p,4), (p,T), (p,s), and (4,s).

5.2.1 Range of Validity
The range of validity is bounded as follows:

273.15K < T <1073.15K 611.212 Pa < p < 100 MPa,
1073.15K < T < 2273.15K 611.212 Pa < p < 50 MPa.

This range of validity corresponds to IAPWS-IF97, except the lower pressure limit, which is
setto p (273.15K)=611.212 Pa. Figure 43 shows the range of validity and the defined regions
of'the spline functions with the variables (p,4). The single phase is divided into the liquid region
L, the gas region G, and the high temperature region HT. With regard to IAPWS-IF97, the
liquid region L covers region 1 and a part of region 3. Region 2 and the remaining part of region
3 are included in the gas region G. The spline functions are smoothed at the IF97 region
boundaries 1-3 and 2-3. The two-phase region TP corresponds to region 4 of IAPWS-IF97, and
the high-temperature region HT matches region 5 of IAPWS-IF97.
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The specific enthalpy at the critical point 4, =2087.546 845 kl/kg is used to describe the
boundary between the L and G single-phase regions for supercritical state points. At the region
boundaries L-G and G-HT in the single-phase region, small inconsistencies are unavoidable
(see Sec. 5.2.6). These should be negligible for most purposes, but if needed, the transition at
these boundaries can be smoothed with simple interpolation equations.

10002000 3000 4000 7000
T=273.15K |[p=50MPa)\__

r10°

Pressure p [MPa]

L
L

MSTELOT
MSTELTT
=

0 1000 2000 3000 4000 7000
Specific enthalpy / [kJ/kg]

Figure 43: Range of validity in the (p,4) plane for spline functions based on IAPWS-IF97.

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1.

5.2.2 Spline Functions for the Single-Phase Regions

In each of the three single-phase regions, L, G, and HT, spline functions with the variables
(p,h) are created. These spline functions are constructed on rectangular grids without scaling
transformations. Variable transformations have been applied to v(p,h), s(p,h), and w(p,h). The
variable transformations and grid dimensions of each (p,4) spline function are given in Tables
A4, AS, and A6 in Appendix All. Nodes outside the range of validity needed for the
construction of a rectangular grid of nodes are obtained by appropriate extrapolation.

From the spline functions 7 SPL (p,h) and $SPL (p,h) for the single phase, the inverse spline
functions hINV(p,T) S hINV(p,s), and pINV (h,s) are determined as described in Sec. 3.2.3.
With these inverse spline functions, all remaining properties are calculated from (p,7), (p,s),
and (4,s), as illustrated in Fig. 42.
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5.2.3 Calculations in the Two-Phase Region

The properties in the two-phase region TP are calculated with the spline functions in the
single-phase regions L and G, along with additional constraints for phase equilibrium. For
property calculations from (p,4) and (p,s) in the two-phase region, the saturation temperature
T; is calculated from a spline function 7;(p) based on the corresponding equation of IAPWS-
IF97. The enthalpies of the saturated liquid and the saturated vapor are determined from the
inverse spline functions h( p,T) and nS (p,T). The corresponding algorithms are described
in Appendices A5 and A6. For a given enthalpy and entropy (4,s), fluid properties in the two-
phase region must be determined by iteration as shown in Appendix A7. For this purpose, an
auxiliary spline function p;\ UX (h,s) was created to provide an initial guess.

5.2.4 Derivatives

In heat cycle simulations, derivatives such as:

[arj (6hj [ahj
—|,|—| ,and | —
o ), \oT ), ap )y

are frequently used. These derivatives are calculated analytically from T SPL(p,h). The
derivatives are continuous and can therefore be applied in numerical calculations, e.g., to
prepare a Jacobian matrix in heat cycle simulation software. However, any thermodynamic
property, where high accuracy is required, should be obtained from a dedicated spline function.
A description of the calculation of derivatives is given in Sec. 3.2.4.

5.2.5 Deviations from IAPWS-1F97

The maximum (max) and root-mean-square (RMS) deviations between the spline functions
and [APWS-IF97, along with the permissible values (perm), are given in Tables 20 through 24.
The permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation”
to ensure that the differences in the results of process simulations with the SBTL method from
those obtained with the direct application of IAPWS-IF97 are negligible. The permissible
values are less than or equal to the required numerical consistencies for the IAPWS-IF97
backward equations [3, 5, 6, 7, 8]. The values given in Tables 20 through 24 do not include the
deviations caused by the inconsistencies of the IAPWS-IF97 basic equations at the IF97 region
boundaries 1-3 and 2-3. The deviations of the SBTL property functions 7(p,%), v(p,h), and s(p,h)
from IAPWS-IF97 in the liquid region L and the gas region G are depicted in Appendix A12,
Figs. A11-A13.

Table 20: Deviations in temperature 7(p,4) from I[APWS-IF97

IF97 Region AT}y [mK] AT g [K] (AT )gpgs [mK]
1 25 0.63 0.073
2 10 081 0.026
3 25 0.65 0.045
5 10 034 0.042
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Table 21: Deviations in specific volume v(p,h) from IAPWS-IF97

IF97 Region AV N (A)eus
1 0.001 % 0.00093 % 0.000 14 %
2 0.001 % 0.00063 % 0.000010 %
3 0.001 % 0.00061 % 0.000044 %
4 0.001 % 0.00096 %° 0.00010 %
5 0.001 % 0.000037 % 0.000005 %

a

Except for near-critical temperatures [(7,— 7) <4 K] and for states near the saturated liquid

curve (0 <x <0.17) at pressures p <0.1 MPa where small deviations in the calculated vapor

fraction result in larger deviations in the calculated specific volume.

Table 22: Deviations in specific entropy s(p,4) from IAPWS-IF97

IF97 Regi ‘As‘pemi ‘ ‘max (AS)RMS
egion _ _
[107% k(e k)| | [10°kii(keK)] | 10K/ (ke K)]
1 1 0.78 0.021
2 1 0.78 0.062
3 1 0.81 0.039
4 1 0.81 0.12
5 1 0.37 0.024
Table 23: Deviations in speed of sound w(p,h) from IAPWS-IF97
IF97 Region AW Aw| (AW)gyss
1 0.001 % 0.00032 % 0.000038 %
2 0.001 % 0.00078 % 0.000013 %
3 0.001 % 0.00078 % 0.000054 %
5 0.001 % 0.000052 % 0.000007 %
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Table 24: Deviations in dynamic viscosity 7(p,h) from IAPWS-IF97 and the IAPWS
viscosity release with recommendations for industrial use [65]

IF97 Region AT LY/ (A1) s
1 0.001 % 0.00063 % 0.000077 %
2 0.001 % 0.00077 % 0.000014 %
3 0.001 % 0.00080 % 0.000033 %

5.2.6 Numerical Consistency at Region Boundaries

The specific enthalpy at the critical point /#,=2087.546 845 kJ/kg defines the boundary
between the liquid region L and the gas region G above the critical pressure (see Fig. 43). This
boundary is within IAPWS-IF97 region 3. The numerical inconsistencies of the adjacent spline
functions at the region boundary L-G result from the deviations between the spline functions
and the basic equation of IAPWS-IF97 region 3 (see Sec. 5.2.5) and are given in Table 25.

The region boundary between the gas region G and the high-temperature region HT is
identical to the IAPWS-IF97 region boundary 2-5 and follows the isotherm 7=1073.15 K. The
underlying IAPWS-IF97 property functions have small discontinuities at the region boundary
2-5. The spline functions reproduce the results of the IAPWS-IF97 basic equations 2 and 5 with
high accuracy. Thus, at the region boundary G-HT, the numerical inconsistencies of the
IAPWS-IF97 basic equations (see [3]) are dominant; these are given in Table 25 and are in
agreement with those from the IAPWS-IF97 basic equations at the region boundary 2-5.

Table 25: Numerical inconsistencies at the region boundaries L-G and G-HT

Region
boundary

L-G* | |AT] , =030mK |0.0007 % |3.9x10 k) kg K-'| 0.00051 % | 0.00033 %

‘Aw‘max ‘A n‘max

\AT\M or |Ah|

U s
max ‘ max max

G-HT" ||A4] =0.096 kI kg™| 0.012% |1.4x10*kIkg' K| 0.046 %

* These values were obtained from the corresponding (p,h)-spline functions for regions L and
G at constant specific enthalpy /., =2087.546 845 kl/kg.

® These values were obtained from the inverse spline functions hG( p,T) and AT (p,T) and
the corresponding (p,/)-spline functions at constant temperature 7=1073.15 K.

¢ Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline
function for the dynamic viscosity 7 in the high-temperature region is not provided.
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5.3 Spline Functions for the Metastable-Vapor Region

The industrial formulation IAPWS-IF97 [3, 4] provides a supplementary equation for part
of the metastable-vapor region. This equation is valid from the saturated vapor curve to the 5%
equilibrium moisture line (determined from the equilibrium 4" and 4" values) at pressures from
the triple-point pressure up to 10 MPa.

Spline-based property functions of (v,u) and (p,h) have been developed for calculations in
the metastable-vapor region described above. In order to avoid discontinuities at the saturated
vapor curve, the range of validity of these spline functions has been extended to the gas region
G as shown in Figs. 41 and 43. The spline functions described in this section are recommended
for use in non-equilibrium process simulations. For simulating equilibrium processes, the spline
functions described in Secs. 5.1 and 5.2 should be used.

5.3.1 Spline Functions of (v,u)

Spline-based property functions for calculating p,7,s,w,n = f(v,u) in both the metastable-
vapor region and the gas region G (see Fig. 41) have been created. For every spline-based
property function of (v,u), the specific volume is transformed as v = In(v). The grid dimensions
of these functions are equal to those given for the gas region G in Sec. 5.1.2 (see Table A2 in
Appendix A11). Nodes outside the range of validity needed for the construction of a rectangular
grid of nodes are obtained by appropriate extrapolation.

5.3.2 Spline Functions of (p,h)

Spline-based property functions for calculating 7,v,s,w,n7 = f(p,h) in both the metastable-
vapor region and the gas region G (see Fig. 43) have been created. Variable transformations
have been applied to v(p,h), s(p,h), and w(p,h). The variable transformations and grid
dimensions of each (p,4) spline function are given in Table A7 in Appendix A11. Nodes outside
the range of validity needed for the construction of a rectangular grid of nodes are obtained by
appropriate extrapolation.

5.3.3 Deviations from IAPWS-IF97

The deviations of the developed spline-based property functions from the IAPWS-IF97
supplementary equation for the metastable-vapor region and from the IAPWS-IF97 basic
equation for region 2, along with the permissible (perm) values, are given in Tables 26 and 27.
The values given in these tables do not include the deviations caused by the inconsistencies of
the TAPWS-IF97 basic equations at the IF97 region boundary 2-3. At the saturated vapor curve
for pressures p < 10 MPa, increased deviations due to the small inconsistency between the
IAPWS-IF97 supplementary equation for the metastable-vapor region and the IAPWS-IF97
basic equation for region 2 cannot be avoided. The maximum deviations (max) in the
metastable-vapor region and in region 2 of IAPWS-IF97 outside the temperature ranges
‘T -1, ( p)‘ and the maximum deviations (max, sat) within these ranges are given in Tables 26
and 27. The root-mean-square deviations (RMS) of the spline-based property functions from
the IAPWS-IF97 supplementary equation for the metastable-vapor region and from the
IAPWS-IF97 basic equation for region 2 are also given in Tables 26 and 27.
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5.4 Computing-Time Comparisons

The computing times of the SBTL property functions have been evaluated and compared
with those of IAPWS-IF97, where these functions are calculated from the basic equations, or,
where available, from backward equations. The Computing-Time Ratio (CTR) is defined as:

CTR = Computing time of the calculation from IAPWS-IF97 basic eq. or backward eq.

Computing time of the calculation from the SBTL property function

The IAPWS-IF97 property functions were computed from the Extended IAPWS-IF97 Steam
Tables software [66]. Since the region definitions of the SBTL functions (see Figs. 41 and 43)
are different from the regions of IAPWS-IF97 (see Fig. 7), the computing times of both
formulations include the determination of the region that corresponds to the given state point.
Neither IAPWS-IF97 nor the SBTL implementation takes advantage of information from
previously calculated state points. The computing times were measured by means of software
similar to NIFBENCH [3] with 100,000 randomly distributed state points in the corresponding
region. All algorithms have been compiled into single-threaded software with the Intel
Composer 2011 with default options. The tests were carried out on a Windows 8 computer
equipped with an Intel Core 17-4500U CPU with 2.39 GHz and 8 GB RAM.

The results of the computing-time comparisons between the SBTL property functions of
(v,u) presented in Sec. 5.1 and the iterative calculations from the IAPWS-IF97 basic equations
are summarized in Table 28. In the single-phase region, the SBTL functions of (v,u) are between
130 and 471 times faster than those of the [APWS-IF97 implementation. Computations from
the inverse spline functions u(p,v) and v(u,s) with are between 2 and 134 times faster than those
from the IAPWS-IF97 implementation.

Table 28: Computing-time ratios (CTR) of spline-based property functions of (v,u) and their
inverse functions of (p,v) and (u,s) in comparison to the iterative calculations from
the IAPWS-IF97 basic equations

IAPWS-IF97 Region

SBTL function 1 2 3 4 5
p(v,u) 130 271 161 19 470
T(v,u) 161 250 158 20 442
s(v,u) 164 261 160 17 449
w(v,u) 199 310 234 -2 471
n(v,u) 197 309 239 -2 -b
u(p,v) 2.0 6.4 2.8 5.6 32
v(u,s) 43 66 78 16 134

* Speed of sound w and dynamic viscosity 7 are not defined in the two-phase region.

b Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline
function for the dynamic viscosity 7 in the high-temperature region is not provided.
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The computing times of the SBTL property functions of (p,/) presented in Sec. 5.2 have
been determined and compared to those of the iterative calculations from the IAPWS-IF97 basic
equations that meet the demands for extremely high numerical consistency. As described in
Sec. 2.3, backward equations are used to determine suitable starting values for these iterative
calculations. The results of the computing-time comparisons are summarized in Table 29. In
the single-phase region, the SBTL functions of (p,/) are between 17 and 1290 times faster than
those of the IAPWS-IF97 implementation.

Table 29: Computing-time ratios (CTR) of SBTL property functions of (p,/) and their inverse
functions of (p,7), (p,s), and (A,s) in comparison to the calculation from IAPWS-
IF97 basic equations or backward equations (in parentheses)

SBTL TAPWS-IF97 Region

function 1 2 3 4 5
T(p,h) 17 (2.9 23 (4.7) 580 (3.0) 17 (4.4) 53 (26)
v(p,h) 18 (3.8) 23 (6.1) 655 (5.1) 5.5 (2.6) 46 (25)
s(p,h) 28 (3.8) 31 (5.7) 918 (5.7) 9.0 (2.9) 39 (12)
w(p,h) 32 (5.0 47 (10) 1160 (8.2) -2 90 (30)
n(p,h) 31 (5.6) 45 (9.2) 1290 (7.9) -2 b
h(p,T) 0.94 0.71 1.5 4.7) - 0.34
h(p,s) 4.6 (0.74) 8.1 (1.2) 88.1 (1.4) 52 (1.9) 9.3 (4.6)
T(p,s) 2.1 (0.50) 3.8(0.94) 43 (0.76) 2.8 (1.0) 49 (3.8)
p(h,s) 36 (2.2) 207 (11) 474 (1.8) 25 (5.6) 396 (64)
T(h,s) 15 (2.0 71 (8.6) 433 (1.7) 12 (5.8) 146 (52)

Speed of sound w and dynamic viscosity 7 are not defined in the two-phase region.

Since the upper temperature limit of the TAPWS viscosity release [65] is 1173.15 K, a spline
function for the dynamic viscosity 7 in the high-temperature region is not provided.

State points in the two-phase region are not uniquely defined with (p,T) inputs.

With the SBTL method, the specific enthalpy 4(p,7) is computed as an inverse spline
function of T(p,h), thus being numerically consistent with this function. This procedure is
slower than the calculation of 4(p,T) in IAPWS-IF97 regions 1, 2, and 5, where the basic
equations are directly applied. In heat cycle simulations, property functions are generally less
frequently calculated from (p,T). The SBTL function A(p,s) is computed as an inverse spline
function of s(p,h), and T(p,s) is calculated from 7(p,h(p,s)). Therefore, these property functions
are also numerically consistent with each other. Analogously, the SBTL function p(#,s) is
computed as an inverse spline function of s(p,%), and 7(h,s) is calculated from T(p(h,s),h). For
the IAPWS-IF97 implementation, the region boundaries are calculated by iteration from their
original definitions in the (p,T) plane. The starting values for these calculations are obtained
from the available region-boundary equations. Again, the property functions of (p,s) and (4,s)
are calculated from the IAPWS-IF97 basic equations by iteration with starting values obtained
from the available backward equations. The CTR values of the inverse spline functions of (p,7),
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(p,s), and (h,s) with regard to computations from the IAPWS-IF97 basic equations are given in
Table 29.

For the sake of completeness, the computing times of the SBTL functions have been
compared to those obtained through the direct application of backward, auxiliary, and region-
boundary equations. A suitable implementation of IAPWS-IF97 functions without iterative
procedures is also available in [66]. The resulting CTR values are given in parentheses in Table
29. More details on computing-time comparisons between calculations from backward
equations and iterative calculations from the IAPWS-IF97 basic equations can be found in [67].

The results of the computing-time comparisons for SBTL functions of (v,u) and (p,%) for the
metastable-vapor region presented in Sec. 5.3 are summarized in Tables 30 and 31.

Table 30: Computing-time ratios (CTR) of SBTL property functions of (v,u) compared to the
iterative calculations from the IAPWS-IF97 supplementary equation for the
metastable-vapor region

SBTL function
p(vu) T(v,u) s(v,u) w(v,u) n(v,u)
CIR 88.3 86.4 89.5 87.0 90.0

Table 31: Computing-time ratios (CTR) of SBTL property functions of (p,#) compared to the
iterative calculations from the IAPWS-IF97 supplementary equation for the
metastable-vapor region

SBTL function
T(p,h) v(p,h) s(p,h) w(p,h) n(p,h)
CTR 16.0 16.0 12.1 15.7 19.0

As discussed in Sec. 2.5.3, the results of computing-time comparisons are always
implementation dependent. In order to compare the computing times of the SBTL property
functions with fast implementations of the Peng-Robinson equation of state [14] (PR-EOS),
TAPWS-95 [2], the short fundamental equation of state for water by Kunz et al. [21], [APWS-
1F97 [4], IAPWS-IF97 backward equations [4], and the TTSE method [10], the CTR values as
defined in Sec. 2.5.3 are given in Table 32. For these comparisons it is assumed that the phase
that corresponds to the given inputs is known for all calculations.

Table 32: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state
for SBTL property functions of (v,u) and (p,h)

CTR values as defined in Sec. 2.5.3 for SBTL functions

IAPWS-IF97 Region p(v.u) T(v,u) T(p.h) v(p,h)
1 1.84 2.29 19.0 19.0
2 2.91 2.93 10.4 10.4
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6 SBTL Property Functions Based on IAPWS-95 for Water and Steam

The IAPWS-95 formulation for general and scientific use [1, 2] is the most accurate
representation of the thermodynamic properties of water and steam. The IAPWS-IF97
formulation for industrial use [3, 4] and the supplementary releases [5, 6, 7, 8] were developed
based on IAPWS-95 to meet specific needs for higher computing speeds in many industrial
applications, particularly for the steam power industry. The range of validity of IAPWS-IF97
is divided into five regions, resulting in small inconsistencies at the region boundaries. In
situations where these inconsistencies cannot be tolerated, and/or for general and scientific use
where the more accurate IAPWS-95 formulation is preferred, it may be useful to apply the
SBTL method to IAPWS-95. In order to demonstrate the applicability of the SBTL method to
IAPWS-95, several spline-based property functions for calculations from (v,u) and (p,h) have
been developed. For simplicity in developing this example, spline functions covering the region
of temperatures from 273.15 K to 1273.15 K and pressures up to 1000 MPa are described. This
excludes a small portion of the range of validity of IAPWS-95 at high pressures and low
temperatures, but application of the SBTL method in that region would be a straightforward
extension. The SBTL method has been applied to the industrial formulation IAPWS-IF97
through the use of FluidSplines (see Sec. 4). The documentation of the SBTL property functions
based on IAPWS-95 given in this section was originally published in [61].

6.1 Spline Functions of (v,u)

Spline functions based on IAPWS-95 for the calculation of p,T,s,w= f(v,u) in the single-
phase region were created analogously to those based on IAPWS-IF97 (see Sec. 5.1). The
results of the computing-time comparisons are summarized in Sec. 6.3.

6.1.1 Range of Validity

The range of validity covers the fluid range of state bounded as follows:
273.15K < T < 1273.15K 611.212 Pa < p < 1000 MPa.

This range of validity corresponds to that of IAPWS-95, except for the lower temperature limit,
which is 273.15K, and the lower pressure limit, which is p,(273.15 K)=611.212 Pa.
Figure 44 shows the range of validity and the defined regions of the spline functions with the
variables (v,u). The range of validity is divided into the liquid region L, the gas region G, and
the two-phase region TP. This division is similar to the division for [APWS-IF97 shown in Fig.
41, except that no separate high-temperature region HT is needed.

The specific internal energy at the critical point u,=2015.734 524 kJ/kg is used to define the
boundary between regions L and G for supercritical state points. At the region boundary in the
single-phase region, small inconsistencies are unavoidable. These should be negligible for most
purposes, but if needed the transition at this boundary can be smoothed using simple
interpolation equations.
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Figure 44: Range of validity in the (u,v) plane for spline functions based on IAPWS-95.
Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1.

6.1.2 Spline Functions for the Single-Phase Region

In each of the single-phase regions L and G, spline functions with the variables (v,u) were
created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific volume
v with the boundary curves vy, () = v(Ppax =1000 MPa,u) and vy, (u)=V'(u) is applied,
so that

> _ Vmax ~ Vmin =
v(v’u) = Vi (M) —Vomin (u) (V Vmin (u)) * Viin »
where the free parameters are set to v, ;, =1 and v,,, =100. Thus, the shape of the grid of
nodes corresponds to the shape of the liquid region L (see Fig. 44). In the gas region G, the
specific volume is transformed as v = In(v). The grid dimensions of each (v,u) spline function
are given in Tables A8 and A9 in Appendix Al1. Nodes outside the range of validity needed
for the construction of a rectangular grid of nodes are obtained by appropriate extrapolation.

6.1.3 Deviations from IAPWS-95

The maximum (max) and root-mean-square (RMS) deviations between the spline functions
and IJAPWS-95, along with the permissible values (perm), are given in Tables 33 through 36.
The permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation”
to ensure that the differences in the results of process simulations with the SBTL method from
those obtained with the direct application of IAPWS-95 are negligible. The permissible values
are less than or equal to the required numerical consistencies for the [APWS-1F97 backward
equations [3, 5, 6, 7, 8]. The deviations in p(v,u), T(v,u), and s(v,u) of the SBTL property
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functions from IAPWS-95 in the liquid region L and the gas region G are depicted in Appendix
A13, Figs. A14-A19.

Table 33: Deviations in pressure p(v,u) from IAPWS-95

Region ‘Ap‘perm ‘Ap‘max (AP)RMS
p<2.5MPa 0.6 % 0.092 % 0.0080 %
p>2.5MPa 15 kPa 2.74 kPa 0.0090 kPa

G 0.001 % 0.001 %*? 0.00012 %

& Except for near-critical states, where ‘Ap‘max <0.01%.

Table 34: Deviations in temperature 7(v,u) from IAPWS-95

Region AT,y [MK] AT],,, [mK] (AT)ggs [mK]
L 1 0.34 0.029
G 1 12 0.017

Except for near-critical states, where [AT| ~ <10mK .
Table 35: Deviations in specific entropy s(v,u) from IJAPWS-95

Reei ‘As‘perm ‘As‘max (AS)RMS
ceen [107% k(g k)| | [10°kii(keK)] | 10K/ (ke K)]
L 1 0.53 0.017
G 1 0.26 0.045

Table 36: Deviations in speed of sound w(v,u) from IAPWS-95

Region ‘Aw‘perm ‘Aw‘max (AW)RMS
L 0.001 % 0.001 %* 0.00092 %
G 0.001 % 0.001 %" 0.000039 %

® In the vicinity of the critical point, the deviations of w are larger but less than 0.4 %.

® In the vicinity of the critical point, the deviations of w are larger but less than 5 %.
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6.2 Spline Functions of (p,h)

Spline functions based on IAPWS-95 for the calculation of 7,v= f(p, /) in the single-phase
region were created analogously to those based on IAPWS-IF97 (see Sec. 5.2). The results of
the computing-time comparisons are summarized in Sec. 6.3.

6.2.1 Range of Validity

The range of validity covers the fluid range of state bounded as follows:
273.15K < T < 1273.15K 611.212 Pa < p < 1000 MPa.

This range of validity corresponds to that of IAPWS-95, except for the lower temperature limit,
which is 273.15K, and the lower pressure limit, which is p,(273.15 K)=611.212 Pa.
Figure 45 shows the range of validity and the defined regions of the spline functions with the
variables (p,/). The range of validity is divided into the liquid region L, the gas region G, and
the two-phase region TP. This division is similar to the division for IAPWS-IF97 shown in
Fig. 43, except that no separate high-temperature region HT is needed.

The specific enthalpy at the critical point s,=2084.256263 kJ/kg is used to define the
boundary between regions L and G for supercritical state points. At the region boundary in the
single-phase region, small inconsistencies are unavoidable. These should be negligible for most
purposes, but if needed the transition at this boundary can be smoothed using simple
interpolation equations.
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Figure 45: Range of validity in the (p,%) plane for spline functions based on IAPWS-95.
Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1.
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6.2.2 Spline Functions for the Single-Phase Region

In each of the single-phase regions L and G, spline functions with the variables (p,h) were
created. In the gas region G, a transformation for the specific volume v of the form v = pv is
applied. The grid dimensions of each (p,h) spline function are given in Table A10 in Appendix
All. Nodes outside the range of validity needed for the construction of a rectangular grid of
nodes are obtained by appropriate extrapolation.

6.2.3 Deviations from IAPWS-95

The maximum (max) and root-mean-square (RMS) deviations between the spline functions
and IAPWS-95, along with the permissible values (perm), are given in Tables 37 and 38. The
permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation” to
ensure that the differences in the results of process simulations with the SBTL method from
those obtained with the direct application of IAPWS-95 are negligible. The permissible values
are less than or equal to the required numerical consistencies for the IAPWS-IF97 backward
equations [3, 5, 6, 7, 8]. The deviations in 7(p,h) and v(p,h) of the SBTL property functions
from IAPWS-95 in the liquid region L and the gas region G are depicted in Appendix Al3,
Figs. A20 and A21.

Table 37: Deviations in temperature 7(p,4) from I[APWS-95

Region ‘AT‘perm [mK] ‘AT‘max [mK] (AT)RMS [mK]
L 1 1? 0.033
G 1 1? 0.025

Except for near-critical states, where ‘AT ‘max <10mK.
Table 38: Deviations in specific volume v(p,k) from IAPWS-95

Region ‘Av‘perm ‘Av‘max (AV)RMS
L 0.001 % 0.001 %*? 0.000062 %
G 0.001 % 0.001 %*? 0.000016 %

& Except for near-critical states, where ‘Av‘max <0.03%.

6.3 Computing-Time Comparisons

The computing times of the spline functions described in Secs. 6.1 and 6.2 have been
evaluated and compared with those of IAPWS-95. The Computing-Time Ratio (CTR) is:

CTR Computing time of the calculation from IAPWS-95

B Computing time of the calculation from the SBTL algorithms '

The IAPWS-95 property functions were computed from the internal routines of
REFPROP [59] where the phase (liquid or vapor) is known and no phase tests are performed.
Calculations from the IAPWS-95 fundamental equation and its derivatives are computationally
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expensive. In addition, depending on the considered property function, one- or two-dimensional
iteration procedures are used in the REFPROP software. The resulting computing times are
more than 100 times longer than for computations from SBTL functions. The computing times
were measured by means of software similar to NIFBENCH [3] with 100,000 randomly
distributed state points in the corresponding region. The compiler to build the test programs and
the computer to run the test calculations are described in Sec. 5.4. The results of the computing-
time comparisons are summarized in Table 39.

Table 39: Computing-time ratios (CTR) of spline-based property functions compared to
calculations from IAPWS-95

Region
SBTL function L G
p(v,u) 243 434
T(v,u) 251 410
T(p,h) =15000 6760
v(p,h) =14 500 6900
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7 Bicubic Spline Functions for the Thermodynamic Potential s(v,u)
for Water and Steam

The biquadratic spline functions described in Secs. 5 and 6 represent the underlying property
formulations with high accuracy. Therefore, such functions can be considered as quasi
thermodynamically consistent, as discussed in Sec. 2.4.3. Table look-up methods providing full
thermodynamic consistency have been described for instance by Schot [31], Herbst [44],
Swesty [41], and Pini [37] (see Sec. 2.4.2). For comparisons, bicubic spline functions for the
thermodynamic potential s(v,u) have been prepared based on IAPWS-95 through the use of
FluidSplines (see Sec. 4).

7.1 Range of Validity

Similarly to the SBTL property functions described in Sec. 6.1, the range of validity covers
the fluid range of state bounded as follows:

273.15K < T < 1273.15K 611.212 Pa < p < 1000 MPa .

Again, the range of validity is divided into the liquid region L, the gas region G, and the two-
phase region TP. The metastable-liquid and the metastable-vapor regions at the vapor-liquid
phase transition are included in the liquid region L and the gas region G, respectively. For the
metastable-vapor region no experimental data are available. IAPWS-95 produces reasonable
values close to the saturation line. For calculations further away from the saturation line, the
so-called gas equation [2] is recommended in [1]. Since the upper density limit of the gas
equation is 55 kg/m?, this equation cannot be applied to generate the nodes for the entire gas
region G. To ensure a continuous property surface, all nodes were calculated solely from
TAPWS-95. In the metastable-vapor region, the gas region G is bounded by the vapor spinodal
and u=2000 kJ/kg. The range of validity is shown in Fig. 46.

The specific internal energy at the critical point u,=2015.734 524 kJ/kg is used to define the
boundary between regions L and G for supercritical state points. At the region boundary in the
single-phase region, small inconsistencies are unavoidable. These should be negligible for most
purposes, but if needed the transition at this boundary can be smoothed using simple
interpolation equations.

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

102 6 SBTL Property Functions Based on IAPWS-95 for Water and Steam

10° 10° 10" 10" 10° 100 10’
T=1273.15K
4000 1 L 4000
3500 1 t 3500
=
=
= 3000 A t 3000
>
& 2500 - b 2500
S 2000 1 - 2000
5
E
S 1500 L1500
&
3 = «
& 1000 |15 § + 1000
£ S
500 /1.2 ) L 500
=1 A
=
0 H=——— ‘ ‘ ‘ 0
10° 10° 10" 10° 10° 10 10°

Specific volume v [m3/kg]

Figure 46: Range of validity in the (u,v) plane for s(v,u) based on [APWS-95.

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1.

7.2 Property Calculations in the Single-Phase Region

In each of the single-phase regions L and G, a bicubic spline function for the thermodynamic
potential s(v,u) was created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for
the specific volume v between the 1000 MPa isobar vy, (1) = v( ppae =1000 MPa,u) and the
liquid spinodal vy, (#) = viiq spin (#) is applied, so that

Vmax ~

Vmin =
Vi (u) Vi (u) (V Vimin (u)) +Vmin 5

where the free parameters are set to V;, =1 and V,;,,, =100. Thus, the shape of the grid of
nodes corresponds to the shape of the liquid region L (see Fig. 46). In the gas region G, the
specific volume is transformed as v = In(v). The grid dimensions of the s(v,u) spline functions
are given in Tables A11 and A12 in Appendix A11. Nodes outside the range of validity needed
for the construction of a rectangular grid of nodes are obtained by appropriate extrapolation.
The relationships between the thermodynamic potential s(v,u) and the remaining thermo-
dynamic properties are given in Table 40.

v(v,u)=
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Table 40: Relationships of thermodynamic properties to specific entropy s(v,u) and its

derivatives
Property Relationship
Pressure p as) (as)!
vau)=|—| | —

p=—(0ufov) p(vu) (6vju[6ujv
Temperature T as !

" () =(2)
T—(au/ﬁs)v ou ),
Gibbs free energy g [6sj ( 0Os j_l

gvu)=u+|v| —| +s|| —

g=u+pv-Ts ov), ou ),
Specific enthalpy /4 as) (os)!

_ h (v, u) =u+v|—| | —
h=u+ pv ov),\ou),

Specific isochoric heat capacity c,

¢, =(0u/or), ()= _[SZI [2:;1]

oh Os oh) (0Os
Specific isobaric heat capacity c,, o) \aw) Vo) Law
u v v u

¢y (aHor), CP(V’M):[ZU“ (&) (55

Speed of sound w

s

The derivatives of s(v,u) with respect to the independent variables v and u are derived from
the bicubic spline polynomial, Eq. (2.61) and the corresponding transformation functions. The
remaining derivatives required for the relationships given in Table 40 read

2)-2) @) (2] 2)H2) &)
2) -] Z)2)12) (2] &)
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GRS
ov ), ovou \ou ), ’
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) (8 @812
6pj ov? ., ou), \ov),|\ov),\ou), | ou? , Ovou
=) |
ou ),

and

7.3 Deviations from IAPWS-95

The maximum (max) and root-mean-square (RMS) deviations of the bicubic spline functions
for s(v,u) and the derived property functions for p(v,u), T(v,u), and ¢ (v,u) from IAPWS-95 are
given in Tables 41 through 44. In addition, the deviations are depicted in Appendix A14, Figs.
A22-A29.

Table 41: Deviations in specific entropy s(v,u) from IAPWS-95

Region ‘As‘max (AS)RMS
¢ [kI/(kgK)] [kI/(kgK)]
L 0.97 x 1077 0.21x107°
G 1.00 x 10782 0.67 x 107
& Except for near-critical states, where ‘As‘max <5x1078 kJ/(kg K) .
Table 42: Deviations in pressure p(v,u) from IAPWS-95
Region |Ap| (AP )rus
p<2.5MPa 2.22% 0.40 %
p>2.5MPa 0.81 kPa 0.023 kPa
G 0.001 %*? 0.000011 %

# Except for near-critical states, where ‘Ap‘max <0.012%.

IP 216.73.216.60, am 24.01.2026, 08:35:59. @ Urheberrachtlich geschitzter Inhalt.
tersagt, m ‘mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186618061

7.2 Property Calculations in the Single-Phase Region 105

Table 43: Deviations in temperature 7(v,u) from IAPWS-95

Region AT [MK] (AT ) s [MK]
L 0.79 0.0081
G 12 0.044

& Except for near-critical states, where ‘AT ‘max <5mK.

Table 44: Deviations in specific isochoric heat capacity ¢ (v,u) from [APWS-95

Region |Acy| o (Ac, )ems
L 0.067 % ? 0.0018 %
G 0.1%"° 0.0035 %

* For 1900 kJ/kg < u <u,, the maximum deviations of ¢, are larger but less than 4 %.

® In the vicinity of the critical point, the deviations of ¢, are larger but less than 7 %.

Properties, which depend on the first derivatives of s(v,u) only, such as p and 7, exhibit
comparatively small deviations from the underlying IAPWS-95 formulation. Other properties,
which depend on higher order derivatives, such as ¢,, show increased deviations. These
deviations exceed the permissible values described in Sec. 6.1.3, but are smaller than the
uncertainties of the underlying IAPWS-95 formulation.

7.4 Computing-Time Comparisons

The computing times of the bicubic spline functions for s(v,u) and the derived property
functions for p(v,u), T(v,u) have been evaluated and compared with those of IAPWS-95. The
IAPWS-95 implementation, the definition of the Computing-Time Ratio (CTR), and the test
procedure are equal to those described in Sec. 6.3. The computing times have been measured
in the stable single-phase regions only. The spline functions are implemented to return p, 7, and
s at the same time. The resulting CTR values for the liquid region L and the gas region G are
given in Table 45. Similarly, such functions can be implemented to efficiently compute other
sets of thermodynamic properties at once (see Table 40). For inverse functions, the analytical
solution of bicubic polynomials is computationally much more expensive than that of
biquadratic polynomials.

Table 45: Computing-time ratios (CTR) of property functions derived from the bicubic spline
functions for s(v,u) compared to calculations from [APWS-95

Region
SBTL function L G
p.Ts=f(vu) 96 159
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7.5 Property Calculations in the Two-Phase Region

To calculate the properties in the two-phase region, the set of equations F(X), namely

F(X)=0=p“ (. u) - pS (" u"), (3.94)
Fy(X)=0=T"("u)-T (" u", (3.95)
Fy(X)=0=g"(/,u)-g%(",u"), and (3.96)

Fy(X)=0=-"2_2“"% (3.97)

" ’ " '
[ u —u

must be solved for the vector of unknowns X =(v', u',V", u”)T . This can be done through the
use of Newton’s method for non-linear systems of equations by solving

J(X,)AX; =F(X;) and (3.98)
X = Xj —AX (3.99)
in each iteration step & until convergence is reached. The Jacobian matrix J(X) is given as

JX) = (3.100)
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8 Application of the SBTL Method in Computationally Expensive Process
Simulations

8.1 Computational Fluid Dynamics

To consider the real-fluid behavior of water and steam in Computational Fluid Dynamics
(CFD), SBTL property functions of (v,u) based on IAPWS-IF97 (see Sec. 5.1) have been
implemented into the density-based CFD software TRACE [68, 69]. This part of the work was
carried out in a joint project with the German Aerospace Center (DLR), where TRACE is being
developed and maintained. The implementation was verified through the use of several test
cases by di Mare [70]. As one of these test cases, the condensing steam flow around a fixed
blade in a low-pressure turbine stage was simulated. The geometry and the boundary conditions
were taken from a publication of White et al. [71], which also provides a detailed description
of measurements for verification. The simulations with TRACE were carried out for three
different property calculation algorithms, namely the existing IAPWS-IF97 implementation,
the newly developed SBTL property functions of (v,u) based on IAPWS-IF97, and the ideal-
gas model. The IAPWS-IF97 implementation is based on [66] and is extended for property
functions of (v,u). The computation of these property functions is carried out by iteration from
the IAPWS-IF97 basic equations. Starting values for property calculations at the current volume
element are provided from the previous iteration step in TRACE. For the ideal-gas model,
constant specific isobaric heat capacity is assumed. The findings obtained from the comparison
of the simulations with the three different property calculation algorithms regarding their
numerical results, computing times, and convergence behavior are published in [72]. In
comparison to the direct IAPWS-IF97 implementation, the computing times of the CFD
simulations were reduced by factors between 6 and 10 through the use of the SBTL functions.
With regard to CFD calculations where steam is considered to be an ideal gas, the computing-
time consumption with the SBTL functions is increased by a factor of only 1.4. The numerical
results show negligible differences from those obtained from simulations with the direct
IAPWS-IF97 implementation.

More recently, the flow solver applied in TRACE has been further modified by Post [73] to
enhance its capabilities for simulations considering real fluid properties. To compare the
different property calculation algorithms, the de Laval nozzle described by Moore et al. [74],
see Fig. 47, was simulated [75] using the IAPWS-IF97 implementation, the SBTL functions,
and the ideal gas model. The governing equations as well as the spatial discretization of the
nozzle geometry and the solution scheme are described in [73]. At the inlet, the total pressure
p, is 500 kPa and the total temperature T is 520 K. Since the flow is supersonic at the outlet,
the flow through the nozzle is fully determined. The nozzle height at the throat Ay, is
0.0315 m. For the different simulations using IAPWS-IF97 and the SBTL property functions,
homogeneous two-phase flow with condensation at equilibrium conditions is assumed.
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Figure 47: Computational grid for the de Laval nozzle with only every third grid line in each
direction shown.

The nozzle height and the axial distribution of area averaged pressure ratio and liquid mass
fraction are shown in Fig. 48. The results of the simulation using the SBTL property functions
are practically equal to those obtained through the direct application of IAPWS-IF97.
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Figure 48: Nozzle height 4 and area averaged axial distributions of pressure p and liquid
fraction along x.

The L1 residuals for the different simulations using the SBTL property functions, the
IAPWS-IF97 implementation, and the ideal-gas model are shown in Fig. 49. Convergence is
reached for all three property calculation methods after approximately 500 iteration steps. Due
to the numerical consistency of the SBTL property functions with their inverse functions, the
computation is very stable using this approach. With regard to the direct application of IAPWS-
1F97, the overall computing times for flow simulations through the de Laval nozzle using the
SBTL property functions are reduced by a factor of 5. In comparison to the ideal-gas model,
the computing times of simulations with the SBTL property functions increased by a factor of
2.5. It seems likely that the numerical consistency of the property functions of the IAPWS-IF97
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implementation causes the residuals to be larger. For some test calculations, the simulations
using the IAPWS-IF97 even failed to converge. This could be avoided by decreasing the
tolerances for the iterative calculations from the IAPWS-IF97 basic equations. Of course, this
would extend the computing times even further. Currently, the tolerances for the internal energy
u and the specific volume v are set to |Au| < 0.001kJ/kg and [Av/v|<107.

10° T
—— SBTL
; ; —=—  [deal gas
W0 T ——  IAPWS-IF97 [ 7§

L1 Residual [-]

1076 1 I I
0 500 1000 1500 2000

Iteration [-]
Figure 49: L1 residuals for the different simulations using the SBTL property functions, the
IAPWS-IF97 implementation, and the ideal-gas model.

8.2 Heat Cycle Simulations

In software tools for heat cycle simulations, the balance equations of mass, energy, and
entropy often lead to (p,h), (p,s), and (h,s) input variable combinations. To reduce the overall
computing times of heat cycle simulations, the SBTL property functions of (p,4) based on
TAPWS-IF97 and their inverse functions (see Sec. 5.2) have been implemented in two different
software tools for heat cycle simulations.

The heat cycle simulation software KRAWAL-modular is being developed and maintained
by SIEMENS PG. This software is primarily used as an in-house tool for power plant design
calculations. In a first study performed by Bennoit [76], the computing times of 7(p,h), s(p,h),
h(p,s), and p(h,s) computed from IAPWS-IF97 and from the SBTL property functions were
compared. In KRAWAL-modular, the industrial formulation IAPWS-IF97 is computed from
the Extended Steam Tables software package [66]. The IAPWS-IF97 property functions of
,h), (p,s), and (h,s) are calculated by iteration from the IAPWS-IF97 basic equations, where
the starting values are determined from the available backward equations [3, 4, 5, 6, 7]. The
region boundaries are calculated from their original definitions in the (p,7) plane, which
requires iterative procedures in some cases (see Sec. 2.3). The iterative calculations from the
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TAPWS-IF97 basic equations and region boundaries are required to ensure high numerical
consistency of forward and backward functions, as pointed out in Sec. 2.3. As described in [76],
computations of 7(p,h), s(p,h), h(p,s), and p(h,s) from the SBTL functions are at least 10 times
faster than those from the IAPWS-IF97 implementation [66]. It must be noted, that the
computing times reported in [66] are given as averaged values for each property function but
no distinction is made in what region these functions are called. Through the use of the complete
set of SBTL property functions of (p,/) based on IAPWS-IF97 and their inverse functions (see
Sec. 5.2) in KRAWAL-modular [77], the overall computing times are reduced on average by
50 % with regard to the direct application of IAPWS-IF97. The observed differences in the
engineering design parameters are less than 0.02 % and therefore negligible.

The SBTL property functions of (p,#) based on IAPWS-IF97 and their inverse functions
have also been implemented in the commercial heat cycle simulation software EBSILON®
Professional [78]. In this software, the direct implementation of IAPWS-IF97 is derived from
the LibIF97 property library [79] with a few modifications. In the original version of LibIF97,
the backward functions are calculated from the available backward equations to avoid time
consuming calculations from the IAPWS-IF97 basic equations by iteration. Where applicable,
the region boundaries are calculated from the region-boundary equations (see Sec. 2.3). Since
the numerical consistency of the backward equations for 7(p,h) with the IAPWS-IF97 basic
equations does not meet the requirements in EBSILON® Professional, this property function is
calculated by iteration from the corresponding basic equation. In contrast to KRAWAL-
modular, some components, such as turbine stage groups and steam generators, are described
with a lower level of detail in EBSILON® Professional. Thus, the calculation of fluid properties
consumes a smaller share of the overall computing time in EBSILON® Professional. To
compare the SBTL property functions with the direct application of IAPWS-IF97, a
conventional steam power plant was simulated with both implementations independently [80].
For the direct application of IAPWS-IF97, 25% of the overall computing time were spent on
property calculations for water and steam. With the SBTL property functions, the share of
property calculations in the overall computing time is reduced to 8% and the overall computing
times are reduced by 17% with regard to the direct application of IAPWS-IF97.

The practical application of SBTL property functions in software tools for heat cycle
simulations demonstrates their usefulness for this kind of numerical process simulations. While
the numerical results for the engineering design parameters obtained from simulations using
the SBTL method differ negligibly from those obtained through the direct application of
IAPWS-IF97, the overall computing times can be reduced significantly. The reduction of the
overall computing times depends on the computing-time share of the previously implemented
property functions and their computational speed. If the industrial formulation IAPWS-IF97
and its supplementary backward equations are in use, then the savings in computing time when
switching to the SBTL property functions are relatively small. In cases where backward
functions are calculated by iteration from the IAPWS-IF97 basic equations, the application of
SBTL property functions leads to more significant computing-time savings. With regard to
process simulations with IAPWS-95 or property formulations for other fluids, the overall
computing times can be drastically reduced through the use of the SBTL method.
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8.3 Nuclear Reactor System Safety Analysis

In RELAP-7 (Reactor Excursion and Leak Analysis Program) [81], the nuclear reactor
system safety analysis code currently being developed at the Idaho National Laboratory (INL),
the solution of the balance equations of mass, momentum, and total energy requires fluid
property calculations from (v,u). For fully non-equilibrium, fully compressible, two-phase
flows a novel 7-equation two-phase flow model is in use. This model describes both phases,
liquid and vapor, independently. Each phase may be in a stable or in a metastable state. If both
phases are in equilibrium (equal pressures, temperatures, Gibbs free energies, and velocities),
the 7-equation two-phase flow model reduces to the 3-equation homogeneous equilibrium
model. To consider the real fluid behavior of water and steam consistently for both models, the
SBTL method has been applied to IAPWS-95 [1] and the latest IAPWS standards on viscosity
[65] and thermal conductivity [82]. Differing from the SBTL property functions described in
Sec. 6.1, the range of validity is bounded by:

273.15K < T < 1273.15K 611.212 Pa < p < 100 MPa.

The single-phase region is divided into the liquid region L (see Fig. 50) and the gas region G
(see Fig. 51), where the corresponding metastable regions are included. For supercritical state
points, the boundary between the liquid region L and the gas region G is defined by the specific
internal energy at the critical point u,=2015.734 524 kl/kg.

In each of the regions L and G, spline functions for the calculation of p,T,s,w,n,A = f(v,u)
were created based on IAPWS-95 and the current IAPWS standards on viscosity [65] and
thermal conductivity [82]. As recommended in [1], metastable-vapor properties further away
from the saturation line should be calculated from the so-called gas equation [2], rather than
from IAPWS-95. Since the transition from IAPWS-95 to the gas equation along its maximum
density of 55 kg/m® is not smooth in the metastable region, all nodes were calculated from
IAPWS-95. The correlating equations for the dynamic viscosity 7 [65] and the thermal
conductivity A [82] contain critical enhancement terms to describe the behavior of these
properties in the critical region. The critical enhancement terms depend on the derivative
(av/ 8p)T , which is infinite along the spinodals. This causes numerical difficulties and
therefore, the critical enhancement terms were omitted for the generation of the 7(v,u) and
A(v,u) spline functions. For the dynamic viscosity 7, the critical enhancement is significant in
a very small region around the critical point only and its omission is recommended in [65] to
simplify the calculation for industrial use. For the thermal conductivity A, the critical
enhancement is significant in a larger range around the critical point as discussed in [82].

In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific volume v
with the boundary curves v, (4)=v(ppax =100 MPa,u) and vy ()= Vig gpin (#) s
applied, so that

Vmax 7‘7min ( ) =
— M (V—Vin (#) ) + Vinin »
Vimax (u) ~ Vmin (u) ( e ) e
where the free parameters are set to V,;, =1 and V,;,,, =100. Thus, the shape of the grid of
nodes corresponds to the shape of the liquid region L (see Fig. 50). In the gas region G, the

specific volume is transformed as v = In(v). A detailed description of the (v,u) spline functions

v(v,u)=

regarding their grid dimensions and the achieved accuracy is given in [83].
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Figure 50: Liquid region L in the (u,v) Figure 51: Gas region G in the (u,v) plane.
plane.

The specific enthalpy 4 and the specific Gibbs free energy g are calculated from 4 =u+pv
and g=h-Ts. Since the calculation of g(v,u) involves the evaluation of p(v,u), T(v,u), and
s(v,u), additional spline functions are provided for even faster computations of g(v,u). The
isobaric and isochoric heat capacities are calculated from p(v,u) and 7(v,u) according to their

definitions

(), (3
S E NN, ) Ml 17 P ()
S () AR S
ou ),\ov), \ov),\ou),
Since ¢, and ¢, contain the first derivatives of the biquadratic spline functions for p(v,u) and
T(v,u), the first derivatives of ¢,, and ¢, are discontinuous. In many process simulations, these
derivatives are not required. For all other cases, additional spline functions for the calculation
of p (v,u) and ¢, (v,u) are provided.

For calculations in the stable or metastable single-phase regions, inverse functions of (p,7),
(), (p,h), (p,s), and (h,s) are provided. In the gas phase, the inverse function (p,v) can be
calculated without any iterations as an inverse spline function (see Sec. 3.2.3). For all other
cases, the inverse functions are calculated by iteration from the (v,u) spline functions using
Newton’s method (see Appendix A3) and accurate auxiliary spline functions for the starting
values. The saturation states could be calculated from the Maxwell criterion, i.e., equal

pressures, temperatures, and specific Gibbs free energies for both phases; but for the sake of
simplicity, a spline function for Ty(p) is used instead. For this function, the pressure p is
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transformed as p =./p . For given (v,u), the properties at saturation are calculated by solving
the set of Eqs. (3.79) — (3.83) in Sec. 3.2.5 for the vector of unknowns X =(p,, V', u’,v" ,u”)T.
The variables x; and x, in Eq. (3.83) are v and u. Calculations in the two-phase region for
given (h,s) are performed in a similar fashion, but the variables x;, x|, x{, x,, x5, and x5 in
Eq. (3.83) are h, h'=u'+py', K" =u"+py", s, s’:sL(v',u'), and s"=s% (v",u"). For
given (p,v), (p,h), or (p,s), the properties at saturation are determined from the inverse functions
of (p,T), where T =T ( p). The property functions described above have been implemented
into the newly developed property library LibSBTL vu_95 [84]. An overview of calculable
functions and analytical derivatives is given in Table 46.

The property library LibSBTL vu_95 has been implemented into the nuclear reactor system
safety analysis code RELAP-7 as reported in [81]. In this way, the thermodynamic and transport
properties of water and steam are calculated with high accuracy and short computing times in
the 7-equation two-phase flow model and in the 3-equation homogeneous equilibrium model.
The test calculations documented in [83] show, that simulations using the SBTL property
functions are only 2% slower than those with the stiffened gas equation of state, which was
implemented in RELAP-7 during its development process.

Table 46: Property functions and derivatives exported from LibSBTL vu_95 [84]

Independent . L
. Dependent variables z Derivatives
variables
(v,u) D, T,x, 8 hy s, ¢, € W, 1, o) \au), ).
A 2 (@i) [QPJ
®.1) v, i, op ), \er ), \or),
®.v) u P V, Py p, v ).
o . [azj (62) (6]})
s s X,V U ~ 1A ] | A

v o), \on), \on),
o)\ (& ip]
».s) v, u [Gpl’( S)p,( 5),
(h,s) P T,x,v,u 0)\as), (s ),
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9 Summary and Outlook

The aim of this work was the development of suitable property calculation algorithms for
complex process simulations, such as flow analysis with Computational Fluid Dynamics
(CFD), power-plant design with heat cycle calculations, and real-time process optimizations.
In order to achieve the best possible results with these simulations, the applied property
functions must be very accurate. Since these functions are called extremely often during the
process simulation, their computing times must be very low. To ensure convergence, the
property functions need to be continuously differentiable once. Furthermore, simulations with
small spatial and time discretizations require the property functions to be numerically and
thermodynamically consistent.

In order to find a suitable approach which meets the requirements, the currently available
algorithms for calculating the properties of water and steam were compared with regard to their
accuracy and their computing time. The attainable accuracy of an equation of state is
determined by its functional form. The computing time required for evaluating the equation of
state results from the necessary mathematical operations. Property functions of (v,u) and (p,h),
which are frequently used in CFD and in heat cycle calculations, must be calculated by iteration
from the equation of state, which typically depends on (7,v) or (p,7), respectively. This leads
to extended computing times. Because of their comparatively short computing times, simple
thermal equations of state, such as the ideal-gas equation or the Peng-Robinson equation,
combined with an equation for the isobaric heat capacity of the ideal gas, are often used in CFD.
However, depending on the range of state, these equations may be very inaccurate, which in
turn leads to errors in the simulation results.

Many fundamental equations of state, such as IAPWS-95, contain numerous transcendental
terms, such as exponential functions and logarithms. As the computation of these terms is very
expensive, the property functions calculated from IAPWS-95 are between 30 and 100 times
slower than those calculated from the Peng-Robinson equation. Therefore, such equations of
state are inapplicable in extensive process simulations. This is also true for short equations of
state for industrial applications, such as the equation of Kunz et al., whose property functions
are between 10 to 26 times slower than those from the Peng-Robinson equation.

The industrial formulation IAPWS-IF97 enables fast and sufficiently accurate property
calculations by combining fundamental equations of state for separate regions with backward
equations, which are all optimized for computing speed. For example, property functions of
(p,h) are calculated by iteration from the IAPWS-IF97 basic equations with starting values from
the corresponding backward equation. Such calculations are numerically consistent and the
computing times are comparable to those of calculations from the Peng-Robinson equation.
Due to the absence of suitable backward equations, the IAPWS-IF97 property functions of (v,u)
are up to 11 times slower than those of the Peng-Robinson equation. Thus, even IAPWS-IF97
is too slow for extensive process simulations, where the independent variables of the applied
property functions are different from those of the basic equations and backward equations. The
development of fast fundamental equations of state for separate regions and suitable backward
equations is very time consuming and was therefore not pursued in this work.
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Table look-up methods are a fast and accurate alternative for property calculations. The
accuracy of a table look-up method can be controlled by the number and the distribution of the
tabulated data points. Furthermore, table look-up methods can be flexibly applied to various
property functions. The computing times of such methods are essentially dependent on the
algorithms used for interval or cell search. With the TTSE method, which was studied as an
example, property functions of (p,i) are more than 4 times faster than those of the Peng-
Robinson equation. However, the discontinuities along the TTSE property functions lead to
numerical problems in process simulations with very small spatial and time discretizations. The
advantages and disadvantages of different table look-up methods have been studied and
conclusions have been drawn for the development of an advanced table look-up method based
on spline interpolation.

The newly developed Spline-Based Table Look-Up method (SBTL) approximates the results
of existing equations of state or transport property equations, with high accuracy and low
computing time. This is enabled by the combination of polynomial spline interpolation
techniques, specialized variable transformations, and piecewise equidistant nodes for simplified
search algorithms. Second order polynomial spline functions are continuously differentiable
once and enable the fast calculation of numerically consistent inverse functions. Therefore,
quadratic and biquadratic spline functions are preferred, but the method can also be extended
to employ third or higher order polynomials. The mathematical details of the SBTL method are
described comprehensively in this work.

The software tool FluidSplines has been developed to enable the fast application of the SBTL
method to one- and two-dimensional property functions of any fluid. For this purpose, the
software provides an extensible interface to calculate the underlying property functions from
external property libraries, such as REFPROP for instance. Through the use of FluidSplines,
SBTL property functions can be generated for the range of validity and the desired accuracy
specified by the user. Currently, FluidSplines implements second- and third-order polynomial
spline interpolation methods only, but it may be extended to other methods as well. For two-
dimensional functions, an algorithm has been developed to determine whether or not a given
state point is located in a region arbitrarily described by a set of bounding curves. Furthermore,
several algorithms have been implemented to extrapolate nodes beyond the range of validity, if
this is required during the spline-generation process. The calculated nodes and the deviations
of the generated SBTL property function from the underlying property function can be assessed
in detail by means of suitable two- and three dimensional diagrams. The generated SBTL
property functions can be exported from FluidSplines as pure C source code, which is optimized
regarding its computational speed.

To provide fast and accurate property functions for water and steam, the SBTL method has
been applied to the industrial formulation IAPWS-IF97 and to the IAPWS-95 formulation for
general and scientific use. For each of these formulations, two different sets of SBTL functions
have been generated. The SBTL functions of (v,u) can be used for instance in CFD, whereas
the SBTL functions of (p,#) are useful in heat cycle calculations, for example. The maximum
deviations of these functions from their underlying property formulations are less than the
permissible values. The permissible deviations in the single-phase region are 0.001 % for p, v,
w, and 7, except for the liquid region, where |Ap| . =0.6 % for p<2.5MPaand |Ap| .. =15kPa

perm perm
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for p>2.5 MPa. The permissible deviations for T and s are 10 mK and 10°kJ/(kg K). These
values were set by the IAPWS Task Group “CFD Steam Property Formulation” to ensure that
the differences in the results of process simulations with the SBTL method from those obtained
with the direct application of the corresponding IAPWS formulation are negligible.
Furthermore, a certain thermodynamic consistency is ensured in this way. In addition to the
SBTL functions of (v,u) based on IAPWS-IF97, numerically consistent inverse functions of
(p,v) and (u,s) are provided. Similarly, numerically consistent inverse functions of (p,7), (p,s),
and (4,s) are provided for the SBTL functions of (p,/) based on IAPWS-IF97.

The computing times of the SBTL functions have been evaluated and compared with those
of the IAPWS-IF97 implementation given in [66]. Since the region definitions of the SBTL
functions are different from those of IAPWS-IF97, the computing times of both formulations
include the determination of the region that corresponds to the given state point. In the single-
phase region, the SBTL functions of (v,u) are between 130 and 471 times faster than those of
the IAPWS-IF97 implementation. The SBTL functions of (p,4) are at least 17 times faster than
the corresponding functions of the IAPWS-IF97 implementation, in which backward and
boundary equations are used to determine the starting values for the iterative calculations from
the basic equations. With regard to computations from (p,4), where backward and boundary
equations are directly applied, the SBTL functions are between 3 and 30 times faster.

The SBTL method has also been applied to the thermodynamic potential s(v,u). For this
purpose, bicubic spline functions have been generated for the liquid and the vapor phase based
on IAPWS-95. From s(v,u), the properties p, T, g, h, ¢,, ¢,, and w can be calculated consistently
from their thermodynamic definitions. The resulting property functions were compared to the
underlying IAPWS-95 formulation. In the gas phase, the maximum deviations in p and 7 are
less than 0.001 % and 1 mK. The maximum deviation in ¢, is 0.1 %, which is less than the
uncertainty of the underlying IAPWS-95 formulation. Simultaneous computations of p, 7, and
s from the bicubic spline functions for s(v,u) are between 100 and 160 times faster than those
from IJAPWS-95.

The applicability of the SBTL method in extensive process simulations has also been
demonstrated in this work. In a joint project with the German Aerospace Center (DLR), SBTL
functions of (v,u) and the corresponding inverse functions based on IAPWS-IF97 have been
implemented into the CFD software TRACE. Several test simulations were carried out for three
different property calculation algorithms, namely the existing IAPWS-IF97 implementation,
the newly developed SBTL functions of (v,u) based on [APWS-IF97, and the ideal-gas model.
In comparison to simulations with the direct implementation of [APWS-IF97, the computing
times were reduced by factors between 5 and 10 through the use of the SBTL functions. With
regard to simulations where steam is considered to be an ideal gas, the computing times are
increased by factors between 1.4 and 2.5. The numerical results show negligible differences
from those obtained through the direct application of the IAPWS-IF97 implementation in
TRACE.

The SBTL functions of (p,/) and their corresponding inverse functions based on IAPWS-
IF97 have been implemented into two different heat cycle simulation codes. In this way, the
overall computing times of simulations with KRAWAL-modular, the heat cycle simulation
software developed by SIEMENS PG, are reduced on average by 50 % with regard to the direct
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application of IAPWS-IF97. The observed differences in the engineering design parameters are
less than 0.02 % and therefore negligible. Similarly, the overall computing times of simulations
with EBSILON® Professional, the heat cycle simulation software developed by STEAG Energy
Services GmbH, are reduced by 17% with regard to the direct application of IAPWS-IF97.

For RELAP-7, the nuclear reactor system safety analysis code currently being developed at
the Idaho National Laboratory (INL), SBTL functions of (v,u) and inverse functions of (p,T),
®,v), (p,h), (p,s), and (h,s) were developed based on IAPWS-95. The range of validity of these
property functions includes the metastable-liquid and metastable-vapor regions at the vapor-
liquid phase transition. Through the use of the SBTL property functions, the real fluid behavior
of water and steam can be considered and the application of a novel 7-equation non-equilibrium
two-phase flow model is enabled. Simulations using the SBTL functions based on [APWS-95
are only 2% slower than those with the stiffened gas equation of state.

This work contributes to the activities within the IAPWS Task Group “CFD Steam Property
Formulation”. The newly developed Spline-Based Table Look-up method (SBTL) has been
adopted as an IAPWS-Guideline [61].

The application of the SBTL method to pure fluids, such as heavy water, carbon dioxide,
helium, and others, is currently in progress. Future activities focus on the extension of the SBTL
method to mixtures, such as humid air, humid combustion gas mixtures, etc.
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Appendix
Al Grid Optimization Algorithm of Kretzschmar et al.

The grid optimization algorithm proposed by Kretzschmar et al. [46, 47] is illustrated in
Figs. A1-A4. Starting from the coarse grid depicted in Fig. Al, the accuracy is tested in each
cell {i,j}. If the maximum deviation in each cell exceeds the required accuracy, the node density
in both directions is increased independently and the resulting accuracy in each cell is tested
again for both cases. This is illustrated in Figs. A2 and A3. In Fig. A2, at each grid line at
constant X,, an additional node is inserted. The nodes along each of these grid lines are kept
equidistant. Then, instead of inserting a node at each grid line at constant X,, the number of
grid lines is increased by one as shown in Fig. A3. Again, the new grid lines are aligned
equidistantly. The grid with the lowest maximum deviation in z(x,,x,) is selected. If a range of
cells meets the required accuracy, it is excluded from the optimization. If, for instance, the cells
{1,1} and {2,1} in the grid depicted in Fig. A3 are sufficiently accurate, then the node density
in the remaining grid is increased independently. This is shown for the grid of nodes in Fig. A4,
where additional nodes are only inserted at those grid lines at constant X, , that bound the cells
with higher deviations.

Figure Al: Initial grid of nodes for grid Figure A2: Grid of nodes with an
optimization. additional node along X at
each grid line at constant X, .
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Xy

Figure A3: Grid of nodes with an additional Figure A4: Grid of nodes with locally
grid line at constant X, . increased node density.

A2 Relationships between the Derivatives of the Residual Helmholtz Free Energy

The calculation of thermodynamic properties from a Helmholtz free energy equation often
requires the computation of several derivatives. The residual part of the Helmholtz free energy

equation ®'(6,7) and its derivatives with respect to & and 7, namely <I)5(,,) and (Dr(m), can
often be expressed as
f):2q>§(§,r), (A2.1)
5"0%, (8.7) Z‘D VEP™ (8,7). (A2.2)
and
"L, (8.7) =Y. @5 (8,7) FF™ (8,7). (A23)
i

The n-th derivative with respect to & and the m-th derivative with respect to 7 are multiplied
by their respective powers 6" and ™ since the resulting expressions are frequently used for
property calculations as can be seen in Table 3 in Sec. 2.2.1. In Egs. (A2.2) and §A2 .3), these

expressions are calculated from the products of the term @] itself and a factor F or Fl

respectively.

For instance, the (n— 1)-th derivative with respect to & can be written as
Of 5,y =8 OIFCD. (A2.4)
The derivative of Eq. (A2.4) with respect to ¢ leads to the n-th derivative
o =0 E D @] [ 6T ERMY + (1-m) OV . (A2.5)
Inserting CID;ﬁ = 6_1(1){1‘7,-‘s and rearranging for é‘"(I); 5(n) yields

5"V 5y = D} {5Fl.j§"*1> +FPODR (- 1)]} : (A2.6)
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Analogously, the expression

T — {TF,,;“"-D +FF DR —(m— 1)}} , (A2.7)

i,r(m) —

can be derived. The expressions in braces are the factors 171-5(") and Fir(m), namely

Fl_s(n) =5Fii5(n_l) +FE0D [Fis —(n—l)} (A2.8)
and

Fz'(m) TFr(m 1)+Fr(m 1)[ —(m— 1)} (A2.9)
Considering that F{S(O) =1, FT(O) =1,

F = 6E + FS O FO —n 2|+ POV ES, (A2.10)

and

F" =B BB —me2 | FOOR, (A2.11)
the factors F; o) and F' o(m) can be determined recursively.

A3 Newton’s Method for Two Dimensions

The iteration procedure for Newton’s method to solve two non-linear equations

simultaneously reads
0 0
o), (%)
)y 0x,

Mk+1 = X k41— DEN . (A3.0)
and
0 0
i(2%), (%)
~ X Y X )
X201 = X2 k41 T DEN (A3.2)
with
pen=| N | (22| (%) (2] (A3.3)
0x, ox; ox; 0x,
X Xy Xy X
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A4 Newton’s Method for Three Dimensions

The iteration procedure for Newton’s method to solve three non-linear equations

simultaneously reads

o,
X1 =X a1 =9 [[ 6x2
2

I
X],X3 3}(3 Xp,X3

afl 3)‘3)
a"a oy V2
aﬁ 5fz]
axz X1,X3 X3 X),X3
6 6
Yo k41 = X441~ i f2 f3
5x3 oty 1 ooty
5f1 6f3
axl X3,X3 3 X1,X
afl 6fz
5x3 ot 1 ooty
and
of; 9
X3 kel = X301~ 1 2 —= i
ox; - 0x s 0xy
z 0x, ox
X1,X3 X2,X3
% g
+ —_
£ |£ xlj ) (6)62
X2,X3 X15X3
with
ool (&], (8 3
| 0Ox ot 0Ox, s 0x, s
[ 9 %h| _[Ah 9%
0x3 ox ox, Ox
L X1,X2 X2,X3 X25X3
A2 (&) (&) (%
oxy ) 0x3 0x3 0ox:
L 13 X1,X2 X1,X2

_(fm

&
&

&%
oxy ).
X2X3 |

o
oh

%

(6)@

P

&

%

{&

P
oh

%

3 ])‘1 X |

])ﬂ - [ze
{ 0x ]xl X (af%

]xl X ( 6x2

]xz,x3£6x3
0x3 ooty Ox

]xz - {6)63

)
sz - [axz
[eib
ox
X1,X3

(

2 ]xl X3 |
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AS Property Calculations in the Two-Phase Region from (p,4)

In order to calculate the properties in the two-phase region from (p,%), the following
algorithm is recommended. In addition to the (p,4) spline functions in the liquid region L and
gas region G, a function for 7, (p) and the inverse spline functions hL( p,T) and nS (p,T) are
provided. From these functions, T, =T,(p), h' = Wt (p,Ty),and h" = 1S (p, T,) are determined
without iteration. The vapor fraction x is calculated from x = (h—h")/(h"—h") and the desired
mass-specific properties are calculated from z =z'+x(z"-Z').

A6 Property Calculations in the Two-Phase Region from (p,s)

In order to calculate the properties in the two-phase region from (p,s), the following
algorithm is recommended. In addition to the (p,#) spline functions in the liquid region L and
gas region G, a function for 7, (p) and the inverse spline functions hL( p,T) and hG( p,T) are
provided. From these functions T, =T,(p), h'= hL(p,TS), W =hC (».Ty), s'= st (p, 1), and
s"=sY9(p,h") are determined without iteration. The vapor fraction x is calculated from
x=(s—s")/(s"—s") and the desired mass-specific properties are calculated from
z :z’+x(z”fz').

A7 Property Calculations in the Two-Phase Region from (4,s)

In order to calculate the properties in the two-phase region from (4,s), the following
algorithm is recommended. In addition to the (p,4) spline functions in the liquid region L and
gas region G, a function for 7, (p) and the inverse spline functions WY (p,T) and kS (p,T) are
provided.

With the use of a one-dimensional Newton iteration scheme, the equation

f(p)=0=x,(p)~x,(p) (A7.1)
is solved for the pressure p, where
h=H(p) s—s'(p)
w\P)=—r and x(p)=— : (A7.2, A7.3)
=51 ) )
The iteration procedure is
Prs1 =Pk —df;ﬂ, (A7.4)
@(Pk)
where
df dx;, dxg
——(pe)=—"(pr)~ : A7S5
dp(PA) dp(l’k) dp(Pk) (A7.5)

In each iteration step &, T; , =T, (py ) is calculated with the corresponding spline function. From
the inverse spline functions h"(p,T) and h%(p,T), h'( pi) and A"(p;) are determined as
H(p)=h"(p.Typ) and  W'(p)=h%(pe.Tp). Then, s'(p)=s"(pe.h(py)) and
s"(pp) = G (p-h"(py)) are subsequently calculated.
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The derivatives in Eq. (A7.5) are calculated from

dn (dh" dh’] ds' x[ds” ds'J

LU (L L _
do, __dp \dp dp) 4 dx_ dp \dp dp) g6 a7
dp (h" 1) dp (s"=)

where

dh :(%j J{%j a7 dh :[@j +(@j 4% (A738,A7.9)
dp \op); \0T),dp dp \dp)p \0T),dp
ds'_(os +[@) o L[S +(@j A (A7.10, A7.11)
dp \op), \oh),dp dp \dp), \oh),dp

In Egs. (A7.8) — (A7.11), the derivatives

(6hj [ahj (asj (asj

— ||| =] sand | o

op)p \oT ), \op), oh),

are determined in the corresponding phase from TL(p,h) , TG (p,h), sL(p,h) ,and s° (p,h).
The temperature gradient along the saturation curve is derived from 7,(p). The iteration

procedure is repeated until ‘f‘ <TOL and py=p;, T,,x, h', h", s', and 5" are determined.
A spline function for p,(h,s) is used to initialize p .

A8 Property Calculations in the Two-Phase Region from (v,u)

For property calculations where small inconsistencies at the saturated liquid line are
tolerable, the following additional phase boundary conditions are recommended. In addition to
the (v,u) spline functions in the liquid region L and the gas region G, spline functions for the
properties at saturation v'(p), v'(u), and u'(T) are required. With the use of a one-dimensional
Newton iteration scheme, the equation

f(p)=0=x,(p)-x,(pr) (A8.1)

is solved for the pressure p, where

PR e V) R, () tmw(p)
,(P) ) v() d . (p) . (A8.2, A8.3)

The iteration procedure is

Pr+1 = Pr —&ff(ﬂ > (A8.4)
E(pk)
where
df _dx, _dx,
E(m)— P (Pr) as (p1)- (A8.5)
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In each iteration step &, v"(p;) is calculated with the corresponding spline function. From the
inverse spline function u°(p,v), u"(py) is determined as u"(pk)=uG (pr>v"(py)) . Then,
(o) =TS (P (p)). w'(p) =u'(Ty(py)). and V() =V(u'(py)) are subsequently
calculated. The derivatives in Eq. (A8.5) are calculated from

_dv'_x (dv"_dv'] _du'_x [du"_du']
v u
dx, __dp ; df’ 4r)  gpa % __dp ; d{’ 4P) (8.6, A87)
dp (v -V ) dp (u —u )
where
dv'_dv du’ dT, and du’ _du’ 4T, (A8.8,A8.9)
dp du'dT; dp dp dT;dp
The derivatives
dv' du’
— an
du’ drT;
in Egs. (A8.8) and (A8.9) are derived from the spline functions v'(u) and u'(T).
The saturation temperature gradient is calculated from
df, [T} 4, (or) du” (A8.10)
dp ov),dp \ou),dp

where

(6Tj [6Tj
— | and | —
ov ), ou ),

are determined in the gas phase from T G (v,u) . The derivative
dy"
dp

is derived from v"(p), and

do’ _[Qu +[6—“j dv (A8.11)
dp o), \ov),dp

is calculated with

ou (&4)
— | and | —| ,
ap ), o/,

which are derived from pG (v,u) in the gas phase. The iteration procedure is repeated until
‘f‘ <TOL and p, = p;, T,x, V', v", u' ,and u" are determined. A spline function for p(v,u)
is used to initialize py .
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A9 Property Calculations in the Two-Phase Region from (p,v)

In order to calculate the properties in the two-phase region from (p,v) consistently with the
calculations from (v,u) described in Appendix A8, the following algorithm is recommended.
From the spline and inverse spline functions v'(p), uG(p,v) ,TC (v,u), u'(T), and v'(u), the
saturation properties are subsequently calculated from

V'=V(p), u =u(py), T =T ), =/(Ty)  and v/ V()

without iteration. The vapor fraction x is calculated from x =(v—v")/(v"—V"), and the desired
mass-specific properties are calculated from z =z'+x(z"-Z').

A10 Property Calculations in the Two-Phase Region from (u,s)

In order to calculate the properties in the two-phase region from (u,s) consistently with the
calculations from (v,u) described in Appendix A8, the following algorithm is recommended.
With the use of a one-dimensional Newton iteration scheme, the equation

f(p)=0=x,(p)-x(p) (A10.1)

is solved for the pressure p, where

u=i(p) s=5'(p)
= d = A10.2, A10.3
xu( ) ul!(p)_ul(p) an XS(p) Sl!(p)_sr(p) ( )
The iteration procedure is
Pk+1 = Pk —dff(i) ) (A10.4)
E(pk)
where
df dx, dx;
il = — . A10.5
ap ()=, )= () (A10.5)

In each iteration step k, v"(py) is calculated from the corresponding spline function. From the
inverse spline function 9 (p,v), u"(ps ) is determined as u"(pg ) = uS (Ps V" (Ps &) - Then,
5"(Pss) =SS O ()" (P ))s To(po) =T O (Pt (pyg)), () =u'(Ty(pg))
Vi(ps i) =V (W' (psy)), and s'(pgy)= st (V'(psx)»t'(psy)) are subsequently calculated. The
derivatives in Eq. (A10.5) are calculated from

_du (du"_du'] ds' [ds”_ds'j
u s
dx, _dp dp dp) 4 4% __dp dp_dP) a106, A10.7)
dp (u"—u') dp (su_s/)
where
du’ _du’dTy and ds :[@) ‘L”Jr(@j 47 (A10.8, A10.9)
dp dTydp dp \ou),dp \ov),dp
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In Eqn. (A10.8), the derivative
du'
a7

is derived from the spline functions u'(T"). The derivative
dv' _dv du' dT,

- (A10.10)
dp du'dT;dp

is calculated with

dv'
du'’

which is derived from v'(u) . The temperature gradient at the saturation curve is calculated from
a7, =[6—Tj dv +(6—T) du” (A10.11)
dp ov),dp \ou),dp

where

(6T) [ arj
— | and | —
ov ), Ou ),

are determined in the gas phase from T G (v,u) . The derivative

dv"
dp
is derived from v"(p), and
du” _[ou +[6—” dv (A10.12)
dp op), \ov),dp

is calculated with

Ou ou
™ and >
P v v p
which are derived from pG (v,u) in the gas phase. The iteration procedure is repeated until

‘f‘ <TOL and p,=p;, T;,x, V', v', u', u", s",and s" are determined. A spline function for
ps(u,s) is used to initialize py .
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A1l Transformations and Grid Dimensions

For each spline function described in Secs. 5.1, 5.2, 5.3, 6.1, 6.2, and 7, the transformations
and dimensions of the grid of nodes are given in the tables below. For piecewise equidistant
nodes, the domain of the considered transformed variable X;, <X <X, is subdivided in
several intervals with equidistant nodes. In the tables below, this is described with

X...:
™ Fhodes

nodes |,
max

where the boundaries of the intervals are given in the column on the left and the number of
equidistant nodes between them is given in the column on the right.
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Table Al: Transformations and dimensions of the grid of nodes of each (v,u) spline function
for the liquid region L based on IAPWS-IF97 and the IAPWS viscosity release with
recommendations for industrial use [13] (see Sec. 5.1)

y [m¥/kg] u [kl/kg]
oy
Vvu)=—"08% __M___(y_y (1)) + 7V
Vimax (u) ~ Vmin (u) ( o ) e
Spline Vnin =1 Vipay =100
function -
Vmin \F 1 odes Hmin | odes
_ nodes nodes
vmax umax
17 —8.489 68
L os [[100 bso |00
P (v.u) 200 225
100 |- 2040.01
1] -8.489 68
T 100 200
(v.u) [100_[ ] { 2040.01 }[ ]
. [-8.489 687 _ 0]
L 100 10
() [100 [100] 200
. | 2040.01 |-7-
1 100 [-8.489 687 _ 0]
L
w (v,u) 90 { 50 } 10 200
100 | 2040.01 |-7-
| [-8.489 681 75T
L 100 300
- (vu) [100}[ ] 150
| 2040.01 |- -
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Table A2: Transformations and dimensions of the grid of nodes of each (v,u) spline function
for the gas region G based on IAPWS-IF97 and the IAPWS viscosity release with

recommendations for industrial use [13] (see Sec. 5.1)

v [m/kg] u [kl/kg]
v(v)=In(v)
Spline Vmin d Upmin d
function nodes nodes
_ nodes nodes
Vmax umax
PO (vau)
TS (v,u) 7(1.69844x107) 2009.99
150 ) 100
59 (v,u) \7(8x 1073) {200} 2650 { }
= 3693.67
e (v,u) v(1004.42)

79 (vou

Table A3: Transformations and dimensions of the grid of nodes of each (v,u) spline function
for the high-temperature region HT based on IAPWS-IF97 (see Sec. 5.1)

v [m*/kg] u [kJ/kg]
v(v)=In(v)
Spline Vimin d Umin d
function nodes nodes
_ nodes nodes
VITI&X umax
P (v ) .
7(7.456 81x10 432.
T (1) d <107) [200] F > 75}[751
v(2212.94) 6518.9
whT (v,u)
[7(7.344 62x103) | .
ST (v,4) i <10%) [200] {3408 16}[100]
v(2112.08) 6364.93
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Table A4: Transformations and dimensions of the grid of nodes of each (p,%) spline function
for the liquid region L based on IAPWS-IF97 and the IAPWS viscosity release with

recommendations for industrial use [13] (see Sec. 5.2)

» [MPa] h [KI/ke]
Do [h .
Spline Pmin M odes 1 Mhodes
function 7(p)
_ nodes nodes
pmax L ""max
75><10'47_100_
™ (. h 1x107 || g [-12.7192 [125]
(p.h) | P 20 2140
100 L
105 |- -
[5x107 | 00T
Ly 1x1072 75 -12.7192 [125]
viph) | op 20 2140
125
105 |- -
p(5x107 _ i}
li( * _2) 150 27192
s“(ph) | P P107) 1409 200 [150}
p20) |I100 2140
5(105) .
[5x107 _ .
, [[100 -12.7192]
Lo B0 75 200 |
wi(ph) | p 2001l 25 1700 | o
25 s 2140
105
(5x10™ _ _
, |[100 -127192)
7(ph) | p D107 1} 75 300
20 125
100 2140
105 -
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Table AS: Transformations and dimensions of the grid of nodes of each (p,%) spline function
for the gas region G based on IAPWS-IF97 and the IAPWS viscosity release with

recommendations for industrial use [13] (see Sec. 5.2)

» [MPa] h [KI/ke]
5 ho.
Spline Pmin M odes M1 Mhodes
function 7(p)
_ nodes nodes
pmax max
75><10"47_150_
3%107 75 2040 75
7% (p,h 2850
(P} | 7 %3 oo 4195.88 {75}
20 || :
105 | C
. 75><10'47_125_
v (p.h)= 2 [ 2040 T
G 3x10 50 75
7S (p,h) 2850
p 3 o3 | s0 419588 |0
20 || [4195.88 |
105 |
[B(5x10%) | 1507 [ 2040
s%(p.h) | Inp) pRO) || 2850 [75}
110y |- 4219.44 |
[B(5x10%) ] - _ )
PEx19 Vg 2040 1
wS (ph) | P P01l 55 2850 50}
p20) 100 4195.88 |-
| p0s) | - - -
5x10™ 100
2x107 || 5 2040 00
G 2850
7o (p.h) | p 0.7 || 7 o Lo
20 [ s [4195.88 |
105
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Table A6: Transformations and dimensions of the grid of nodes of each (p,%) spline function
for the high-temperature region HT based on IAPWS-IF97 (see Sec. 5.2)

p [MPa] h [kJ/kg]
_ N
Spline Pmin M odes ™M nodes
function 5(p)
nodes nodes
Pmax hmax
5x10™ 3833.08
HT 100 [100]
T (ph) | p [ 60 }[ ] [742098}
HT
h) =
(p.h) 5510 3833.08
SHT P [100] [75]
v (ph) 60 7420.98
P
In(5x107%) 3817.25
HT 125 [125]
s"(p.h) | Inp) [m(m) [125] 2a5034 |
5x10™ 3817.25
HT 100 75
wileh) | P [ 60 }[ ] {7420.98}[ ]
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Table A7: Transformations and dimensions of the grid of nodes of each (p,%) spline function
for the metastable-vapor and gas region MG based on IAPWS-IF97 and the IAPWS
viscosity release with recommendations for industrial use [13] (see Sec. 5.3)

» [MPa] h [k)/kg]
D [h.
Spline Pmin M odes M Mhodes
function (p)
_ nodes nodes
Pmax L "max
[sx10%]_
L [[1s0
9x10™ || 15 [ 2040 ]
™S (p) | p Oj 75 2850 {75}
100 | 4195.88
2011 75 |
| 105 |
75><10'47_125_
MG _ -3
Vi (p,h)= 9x107 || 5 2040 1
M |, 02 |l's0 2850 {50}
p 2 s 4195.88
20 | g5
| 105 |
-
PO r1557 2040
sMO(p.h) | In(p) f’(zgg 75 2850 {75}
p(20) | s 4219.44
| p0s) |- - -
[BGx10%) |- -
’j( 8 _2) 100 2040 -
wMS () | Jp P>107 199 2850
’ 5(20) 50
P 125 4195.88 |-
| p0s) | C
5x10™
2|13 2040
MG A0 55 Jsso |10
7 (ph) | p 07 100 s
4195.88
20 || s
105
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Table A8: Transformations and dimensions of the grid of nodes of each (v,u) spline function

for the liquid region L based on IAPWS-95 (see Sec. 6.1)

y [m¥/ke] o
v Vmax_vmin B
) = —Tmax “Vmin (o
0 Vmax(u)—vmin(u)( mm( )) min
Spline V=1 5100
function -
Vimin nodes min nodes |
— nodes o
vmax umax -
! _’150* 20 (350
L . 250
- - 225
- | 2040 |-
BIEY (207 -
Tt (v,u) 50 )
o " 1o 250
L
S () M K=
1] f—207. -
l [150] o 20
L —
w (V,M) 98 50 1750 150
100 |- - o
— 2040 5 -
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Table A9: Transformations and dimensions of the grid of nodes of each (v,u) spline function
for the gas region G based on IAPWS-95 (see Sec. 6.1)

v [m/ke] u [KI/kg]
v(v)=In(v)
Spline Vmin d Umin d
function nodes noaes
_ nodes nodes
Vmax umax
G
P (vu
() v(1.02796x10*3)
7 (vu) 200 2005 ey 409
. v(8x10*3) 200} 2650 [100}
57 (vu) 7(1188.87) 4085.27
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Table A10: Transformations and dimensions of the grid of nodes of each (p,%) spline function
for the liquid region L and the gas region G based on IAPWS-95 (see Sec. 6.2)

» [MPa] h [K/ke]
— =
Spline Pmin M 1odes ™M nodes
function 2(p)
_ nodes nodes
Prmax _hmax
4.84693x1074
L Moo
. Ix10 75 [-13.3533
" (p.h) | p 20 100 2140 |15
100 125
1100
[5x107 |
Lo
3x107 | 95 2040 ]
G 0.5
T (p.h) | p - 100 2850 [100}
100 4679.71
120 |15
| 1100 |
4.84693x10
L Moo
. Ix10 75 -13.3533
vi(ph) | p 20 100 a0 |[1s0]
100 125
1100
[5%107 |
. _[2s
v (poh)= 3107 5 2040 ]
v | 0550 2850 [75}
p Y 4679.71
120 || o
| 1100 |
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Table A11: Transformations and dimensions of the grid of nodes of the bicubic spline function
s(v,u) for the liquid region L based on IAPWS-95 (see Sec. 7)

v [m*/kg] u [kJ/kg]
v(v,u)= Vinax ~ Vmin (v —Vinin (u)) +Vimin
Vmax (u)- Viin (u)
Vinin =1 Vmax =100
min M hodes “min |Fhodes
nodes nodes
max | “max
1 [-12.356
50 200
20 250
150 200
40 1650
75 200
97.5 75 2000 50
100 | 2020

Table A12: Transformations and dimensions of the grid of nodes of the bicubic spline function
s(v,u) for the gas region G based on IAPWS-95 (see Sec. 7)

v [m’/kg] u [kJ/kg]
v(v) =In(v)
Ymin |° 1o des Ymin |Fhodes
_ nodes nodes
vlllﬂx umax
v(1.049 57x10*3)
2000
o4 200 100
v(8><10 ) 200 2650 || 00
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Figure A11: Deviations in temperature 7(p,n) from IAPWS-IF97 in the liquid region L and
the gas region G.
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Figure A12: Deviations in specific volume v(p,h) from IAPWS-IF97 in the liquid region L
and the gas region G.
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Figure A13: Deviations in specific entropy s(p,) from IAPWS-IF97 in the liquid region L
and the gas region G.
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Figure A20: Deviations in temperature 7(p,h) from IAPWS-95 in the liquid region L and the

gas region G.
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Figure A21: Deviations in specific volume v(p,4) from IAPWS-95 in the liquid region L and
the gas region G.
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