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Abstract 

Numerical process simulations, such as flow analysis with Computational Fluid Dynamics 
(CFD), power-plant design with heat cycle calculations, and real-time process optimizations, 
are widely used in power engineering. These simulations are computationally expensive, 
especially when transient processes are considered. During the computation, the thermo-
physical properties of the utilized working fluids need to be calculated extremely often. 
Therefore, fast and accurate property functions are required. Furthermore, numerical process 
simulations require these property functions to be continuously differentiable once and 
numerically consistent with each other. Because of their computing-time consumption, accurate 
multiparameter equations of state are unsuitable for some extensive process simulations and 
faster, but often less accurate, property calculation algorithms are applied. 

In order to provide fast and accurate property calculation algorithms for computationally 
expensive process simulations, the International Association for the Properties of Water and 
Steam (IAPWS) has established the task group “CFD Steam Property Formulation”. Within 
this task group, the Spline-Based Table Look-up Method (SBTL) has been developed in this 
work. The SBTL method combines polynomial spline interpolation techniques and specialized 
coordinate transformations to reproduce the results of an underlying property formulation, e.g., 
the industrial formulation IAPWS-IF97 or the scientific formulation IAPWS-95 for water and 
steam, with high accuracy and low computing time. Depending on the order of the applied 
spline polynomials, SBTL property functions are at least one time continuously differentiable. 
Furthermore, the so-called inverse spline functions are numerically consistent with their 
corresponding forward spline functions, e.g., u(p,v) and p(v,u). 

In this work, the development of the SBTL method, as well as its practical application for 
property calculations in numerical process simulations, is described. To begin, currently applied 
property calculation methods are discussed regarding their accuracy and their computing-time 
consumption. From the obtained findings, conclusions for the development of a new property 
calculation method are drawn. Then the developed SBTL method is described in detail. The 
SBTL method is exemplified by its application to the industrial formulation IAPWS-IF97 and 
the scientific formulation IAPWS-95 along with the current transport property formulations for 
water and steam. For these formulations, SBTL property functions of specific volume and 
specific internal energy (v,u), as required in CFD, are presented. From these SBTL property 
functions, numerically consistent inverse functions for calculations from (p,v) and (u,s) are 
derived. Analogously, SBTL property functions of pressure and specific enthalpy (p,h), as 
required in heat cycle calculations, are described. With these functions thermodynamic and 
transport properties, their derivatives, and inverse functions are calculable in the single-phase, 
two-phase, and metastable regions. The properties calculated from the SBTL property functions 
represent those of the underlying IAPWS standards with very high accuracy. Typically, the 
maximum relative deviations amount to between 1 to 100 ppm depending on the property and 
the range of state. Computations from the (v,u) spline functions are more than 100 times faster 
than calculations with IAPWS-IF97 and are more than 200 times faster than calculations with 
IAPWS-95. 

The applicability of the SBTL method is verified in the CFD code TRACE, developed at the 
German Aerospace Center (DLR), as well as in two different heat cycle calculation software 
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tools, namely in KRAWAL-modular, developed by SIEMENS PG, and in EBSILON® 
Professional, developed by STEAG Energy Services. Additionally, the use of the SBTL method 
is verified in RELAP-7, the thermalhydraulic program for the simulation of transient processes 
in nuclear reactors and plants, developed by the Idaho National Laboratory (INL). The 
numerical results of the process simulations with the SBTL method show negligible differences 
from those obtained through the direct application of the underlying property formulations, but 
the overall computing times are reduced significantly. 

In order to apply the SBTL method to property functions for any fluid, the software 
FluidSplines has been developed. 

Based on the results outlined above, the “IAPWS Guideline on the Fast Calculation of Steam 
and Water Properties with the Spline-Based Table Look-Up Method (SBTL)” has been 
developed, which was adopted by IAPWS in 2015. 
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Kurzfassung 

Numerische Prozesssimulationen, wie beispielsweise rechnergestützte Analysen strömungs-
mechanischer Vorgänge (englisch: Computational Fluid Dynamics, CFD), Kreisprozess-
berechnungen zur Auslegung kraftwerkstechnischer Anlagen und Betriebsoptimierungen in 
Echtzeit, werden in der Energietechnik vielfältig eingesetzt. Diese Simulationen sind 
rechentechnisch sehr aufwändig, insbesondere wenn instationäre Vorgänge betrachtet werden 
müssen. Während der Prozessberechnung müssen die thermophysikalischen Eigenschaften der 
verwendeten Arbeitsfluide extrem häufig ermittelt werden. Hierfür werden schnelle und genaue 
Stoffwertfunktionen benötigt. Die verwendeten Stoffwert-Berechnungsalgorithmen müssen 
einmal stetig differenzierbar und numerisch konsistent zueinander sein. Aufgrund ihrer langen 
Rechenzeiten sind genaue empirische Zustandsgleichungen für den Einsatz in aufwändigen 
numerischen Prozesssimulationen nicht geeignet, weshalb auf einfachere, jedoch häufig auch 
ungenauere Stoffwert-Berechnungsalgorithmen zurückgegriffen wird. 

Um schnelle und gleichzeitig sehr genaue Stoffwert-Berechnungsalgorithmen zur 
Verfügung zu stellen, hat die International Association for the Properties of Water and Steam 
(IAPWS) die Task Group “CFD Steam Property Formulation“ gebildet. Innerhalb dieser Task 
Group wurde das Spline-basierte Table Look-up Verfahren (SBTL) im Rahmen dieser Arbeit 
entwickelt. Das SBTL Verfahren kombiniert Spline-Interpolationsalgorithmen mit speziellen 
Koordinatentransformationen um die zugrunde gelegte Stoffwertgleichung, beispielsweise die 
Industrieformulation IAPWS-IF97 oder die wissenschaftliche Formulation IAPWS-95 für 
Wasser und Wasserdampf, mit hoher Genauigkeit und geringer Rechenzeit wiederzugeben. 
Abhängig vom Grad der verwendeten Spline-Polynome sind SBTL Stoffwertfunktionen 
mindestens einmal stetig differenzierbar. Zudem ermöglicht das SBTL Verfahren die 
Berechnung numerisch konsistenter Umkehrfunktionen. 

In der vorliegenden Arbeit wird die Entwicklung des SBTL Verfahrens sowie dessen 
praktische Anwendung zur Stoffwertberechnung in numerischen Prozesssimulationen 
beschrieben. Dazu werden zunächst die derzeit verwendeten Stoffwert-Berechnungs-
algorithmen hinsichtlich ihrer Genauigkeit und ihres Rechenzeitbedarfs diskutiert. Ausgehend 
von den gewonnenen Erkenntnissen werden Zielstellungen und Ansätze für die Entwicklung 
eines neuen Stoffwert-Berechnungsverfahrens formuliert. Anschließend wird das entwickelte 
SBTL Verfahren im Detail erläutert. Das SBTL Verfahren wird beispielhaft auf die Industrie-
formulation IAPWS-IF97, die wissenschaftliche Formulation IAPWS-95 sowie die aktuellen 
IAPWS Formulationen für die Transporteigenschaften für Wasser und Wasserdampf 
angewendet. Für diese zugrunde liegenden Gleichungen werden SBTL Stoffwertfunktionen 
von spezifischem Volumen und spezifischer innerer Energie (v,u), wie sie beispielsweise in 
CFD Simulationen zum Einsatz kommen, vorgestellt. Zudem werden aus diesen SBTL 
Stoffwertfunktionen numerisch konsistente Umkehrfunktionen von (p,v) und (u,s) entwickelt. 
Analog werden SBTL Stoffwertfunktionen für die in Kreisprozessberechnungen häufig 
auftretende Variablenkombination von Druck und spezifischer Enthalpie (p,h) sowie 
entsprechende Umkehrfunktionen von (p,T), (p,s) und (h,s) beschrieben. Mit diesen Funktionen 
können die thermophysikalischen Eigenschaften sowie deren Ableitungen und Umkehr-
funktionen im Ein- und Zweiphasengebiet berechnet werden. Die aus den SBTL Funktionen 
berechneten Stoffwerte stimmen mit den zugrundeliegenden Gleichungen mit sehr hoher 
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Genauigkeit überein, beanspruchen aber wesentlich geringere Rechenzeiten. Typische 
maximale Abweichungen betragen je nach Stoffwertfunktion und Gültigkeitsbereich 1 bis 100 
ppm. Im Vergleich mit dem Industriestandard IAPWS-IF97 sind die SBTL Funktionen von 
(v,u) mehr als 100-mal schneller. Gegenüber dem wissenschaftlichen Standard IAPWS-95 sind 
diese Funktionen mehr als 200-mal schneller. 

Die Anwendbarkeit des SBTL Verfahrens wird im CFD-Code TRACE, entwickelt am 
Deutschen Zentrum für Luft- und Raumfahrt (DLR), sowie in den Kreisprozessberechnungs-
programmen KRAWAL-modular, entwickelt von SIEMENS PG, und EBSILON® 
Professional, entwickelt von STEAG Energy Services, nachgewiesen. Weiterhin wird der 
Nutzen des SBTL Verfahrens in RELAP-7, der vom Idaho National Laboratory (INL) 
entwickelten Software zur Simulation instationärer Prozesse in Kernreaktoren, aufgezeigt. Die 
Ergebnisse der Prozessberechnungen mit dem SBTL Verfahren weisen gegenüber der direkten 
Verwendung der zugrunde liegenden Gleichungen vernachlässigbare Differenzen auf. Die 
Gesamtrechenzeiten der Prozessberechnungen werden jedoch signifikant reduziert. 

Für die Anwendung des SBTL Verfahrens auf weitere Stoffwertfunktionen und beliebige 
Fluide ist in dieser Arbeit die Software FluidSplines entwickelt worden. 

Auf Grundlage der Ergebnisse dieser Arbeit ist die neue “IAPWS Guideline on the Fast 
Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method 
(SBTL)” erarbeitet worden, welche von der IAPWS im Jahr 2015 als internationale Richtlinie 
verabschiedet wurde. 
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1 Introduction 

Extensive numerical process simulations, such as Computational Fluid Dynamics (CFD), 
heat cycle calculations, and real-time process optimizations are indispensable tools for power 
engineering. In the development of advanced processes and plants, accurate process simulations 
replace costly prototypes and enable detailed optimizations regarding efficiency, lifetime, 
flexibility, costs, etc. Moreover, numerical process simulations are used to optimize process 
parameters during plant operation. 

In order to obtain accurate simulation results, the process to be analyzed needs to be 
described with an appropriate mathematical model that requires a certain amount of computing 
time. Driven by the pursuit of advancements in engineering, the complexity of numerical 
process simulations is growing, leading to increased computing times. Detailed numerical 
process simulations are computationally expensive, especially when transient processes are 
considered. A large proportion of the computing time is spent on the calculation of 
thermophysical properties of the working fluids used. Therefore, very fast property calculation 
algorithms need to be applied. Moreover, the numerical algorithms employed in process 
simulations require the property functions to be continuously differentiable once and 
numerically consistent with each other; otherwise the computation may not reach convergence. 

For water and steam, as the most important working fluid in power engineering, the 
International Association for the Properties of Water and Steam (IAPWS) provides 
internationally accepted formulations for thermodynamic and transport properties. The IAPWS 
Formulation 1995 for General and Scientific Use (IAPWS-95) [1, 2] is the most accurate 
representation of the thermodynamic properties of the fluid phases of water substance over a 
wide range of conditions currently available. As for other conventional Helmholtz equations of 
state, property calculations from IAPWS-95 are computationally expensive. In the steam power 
industry, property functions of pressure and temperature (p,T), pressure and specific enthalpy 
(p,h), pressure and specific entropy (p,s), and specific enthalpy and specific entropy (h,s) are 
called millions of times when designing steam turbines, steam generators, and heat cycles. 
These functions need to be calculated by iteration from IAPWS-95, which is very time-
consuming. This often leads to inacceptable computing times in extensive numerical process 
simulations. 

To meet the requirements of the steam power industry, the IAPWS Industrial Formulation 
1997 (IAPWS-IF97) [3, 4] and its supplementary releases [5, 6, 7, 8] are available. This 
formulation is sufficiently accurate for industrial applications and enables fast property 
calculations from (p,T), (p,h), (p,s), and (h,s). This is achieved by the combination of 
computationally efficient fundamental equations, each of which represents a different region in 
the range of validity of IAPWS-IF97, and so-called “backward equations” for calculating 
inverse property functions without time-consuming iterations. Due to the imperfect numerical 
consistency with the basic equations of IAPWS-IF97, the application of backward equations 
for simulating non-stationary processes can lead to convergence problems. In these situations, 
inverse property functions should be calculated by iteration from the basic equations with 
starting values determined from the available backward equations. 
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For density based CFD solvers, property functions of specific volume and specific internal 
energy (v,u), as well as of pressure and specific volume (p,v), are required. Due to the absence 
of backward equations for these variable combinations, these functions need to be calculated 
by iteration from the corresponding fundamental equation. This is computationally expensive 
and therefore inappropriate for CFD. In order to reduce the computing times, property 
calculations are often simplified, for example, through the use of the ideal-gas equation or a 
cubic equation of state. Depending on the range of state, these simplifications cause 
inaccuracies in the results of the process simulation. 

As an alternative, table look-up methods are frequently applied for fast and accurate property 
calculations. For these methods, discrete values of the required properties are calculated from 
accurate equations of state and are stored in look-up tables. During the process simulation, 
properties are determined from these look-up tables with simple interpolation or approximation 
algorithms. A prime example for table look-up methods is the Tabular Taylor Series Expansion 
method (TTSE), which was adopted as an IAPWS Guideline [9, 10, 11] in 2003. The desired 
properties are calculated from second order Taylor series expansions obtained from the 
tabulated derivatives at the midpoint of the corresponding cell in the look-up table. The TTSE 
method is very fast, but adjacent Taylor series are not connected continuously. This 
characteristic leads to numerical problems in CFD and non-stationary simulations with very 
small spatial and time discretization. 

In order to provide property calculation algorithms that fulfill the requirements of extensive 
numerical process simulations regarding accuracy, computing speed, differentiability, and 
numerical consistency, the task group “CFD Steam Property Formulation” was established by 
the IAPWS working group “Industrial Requirements and Solutions” in 2008. Resulting from 
the activities in this task group, the Spline-Based Table Look-Up method (SBTL) is proposed 
in this work. The SBTL method is intended to be a supplement to existing property 
formulations, not only for water and steam, but also for other fluids. The SBTL method aims to 
represent the underlying property formulation with very good agreement, but with significantly 
reduced computing time. Additionally, the SBTL method is intended to provide numerically 
consistent forward and backward functions, e.g., of u(p,v) and p(v,u). 

Section 2 gives an overview of thermodynamic property formulations that are relevant for 
computationally expensive numerical simulations. From the discussion of these formulations 
with regard to their accuracy, computing speed, and numerical consistency, conclusions for the 
development of alternative property calculation algorithms are drawn. In Section 3, the 
fundamentals of the newly developed SBTL method are explained in detail. 

For generating SBTL property functions, the software FluidSplines has been developed. This 
software enables the application of the SBTL method to one- or two-dimensional property 
functions of any fluid. The basic structure and key features of FluidSplines are described in 
Section 4. 

The application of the SBTL method to the industrial formulation IAPWS-IF97 is described 
in Section 5. SBTL property functions of (v,u) as well as numerically consistent inverse 
functions of (p,v) and (u,s) are presented in Section 5.1. Analogously, SBTL property functions 
of (p,h), and numerically consistent inverse functions of (p,T), (p,s), and (h,s) are presented in 
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Section 5.2. Through the use of the provided SBTL functions, thermodynamic and transport 
properties, their derivatives, and inverse functions are calculable in the single-phase region and 
in the two-phase region. SBTL property functions of (v,u) and (p,h) covering the stable and the 
metastable vapor region are given in Section 5.3. The SBTL method has also been applied to 
the IAPWS Formulation 1995 for General and Scientific Use as shown in Section 6. For every 
SBTL property function presented in Sections 5 and 6, the deviations from the underlying 
property formulation and the results of the computing-time comparisons are given. The 
application of spline functions to thermodynamic potentials is discussed with an example for 
s(v,u) in Section 7. 

The applicability of the SBTL method in CFD is demonstrated in Section 8.1. In a joint 
project with the German Aerospace Center (DLR), SBTL property functions based on IAPWS-
IF97 have been implemented into the advanced CFD software TRACE. The numerical results 
and computing times of test calculations with the SBTL property functions have been compared 
to those obtained through the use of the direct application of IAPWS-IF97. In Section 8.2 the 
use of the SBTL method in heat cycle calculation software is demonstrated. The SBTL 
functions of (p,h) and the corresponding inverse functions of (p,T), (p,s), and (h,s) based on 
IAPWS-IF97 (see Sec. 5.2) have been implemented in KRAWAL-modular (developed by 
SIEMENS PG) and EBSILON® Professional (developed by STEAG Energy Services). The 
application of the SBTL method in RELAP-7, the nuclear reactor system safety analysis code 
developed at the Idaho National Laboratory (INL), is explained in Section 8.3. For this purpose, 
SBTL functions of (v,u) and inverse functions of (p,T), (p,v), (p,h), (p,s), and (h,s) were 
developed based on IAPWS-95. The range of validity of these property functions includes the 
metastable-liquid and metastable-vapor regions at the vapor-liquid phase transition. This 
enables the application of a novel 7-equation non-equilibrium two-phase model, developed at 
INL. 
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2 Property Calculation Algorithms for Numerical Process Simulations 

A prerequisite of many scientific and industrial calculations is the knowledge of the 
thermophysical properties of the working fluids used. A basic theory to describe these 
properties over the entire fluid range of state within the uncertainties of available measurements 
is not known yet. Therefore, thermophysical properties are approximated either under some 
theoretical assumptions or by empirical equations of state. In this section, selected 
thermodynamic property formulations for water and their applicability in computationally 
expensive numerical process simulations are discussed. The accuracy of these formulations is 
described in the respective sections and computing-time comparisons are given in Sec. 2.5.3. 

2.1 Simple Thermal Equations of State 

Thermal equations of state describe the relationships between pressure, temperature, and 
specific volume, i.e.,  ,p T v  or  ,v p T . In conjunction with an equation for the isobaric heat 
capacity of the ideal gas  o

pc T  the remaining caloric properties can be derived from 
fundamental thermodynamic relations. The isobaric heat capacity of the ideal gas  o

pc T  is 
either obtained from theoretical models or from measurements extrapolated to zero density. 

2.1.1 Ideal-Gas Model 

Under the theoretical assumption that the molecules of a gas do not possess a volume and 
do not interact with each other except for elastic collisions, the ideal-gas equation 

RT
p

v
  (2.1) 

is derived as a thermal equation of state from statistical mechanics. The energy content of the 
ideal gas is stored in the vibrational, rotational, and translational movement of its molecules 
and is temperature dependent only. For water vapor, a simple fourth-order polynomial for the 
isobaric heat capacity of the ideal gas  o

pc T  is given by Poling et al. [12] and reads 

   o 2 3 4
0 1 2 3 4pc T R a a T a T a T a T     . (2.2) 

Through the use of fundamental thermodynamic relations all remaining thermodynamic 
properties can be derived from Eq. (2.1) and  o

pc T  as shown in Table 1. 

The deviations in specific volume and isobaric heat capacity of the ideal-gas model from the 
real fluid behavior of water, i.e., from the reference equation of state IAPWS-95 [1], are shown 
in Figs. 1 and 2. The pressure and temperature ranges covered by these diagrams include the 
range of state of modern steam power cycles. The ideal-gas model can be applied to gases at 
low densities and temperatures above the critical temperature. At higher densities and lower 
temperatures, the volumes of the molecules and the interactions between them become more 
significant and the real fluid behavior must be taken into account. 

Due to its simplicity, the ideal-gas model is well established in CFD and other extensive 
numerical process simulations. In many situations, the ideal-gas model is utilized for property 
calculations in the non-ideal range of state, where a more complex formulation for the real fluid 
would lead to inacceptable computing times. Depending on the range of state, this implies 
inaccuracies in the results of the process simulation.  
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Table 1: Relationships between thermodynamic properties and the ideal-gas model 

Property Relationship 
 

Specific internal energy u
o
    

0

o o o
0 d

T

p
T

u T h c T T RT    

 

Specific enthalpy h
o
    

0

o o
0
o d

T

p
T

h T h c T T    

 

Specific entropy s
o
    

0

o o

0

o

0 d ln
T

p

T

c T p
s T s T R

T p

 
    

 
  

Specific isochoric heat capacity o
vc     o o

v pc T c T R   

 

Speed of sound w
o
    

 

o
o

o
p

p

c T
w T RT

c T R



 

 

Figure 1: Relative deviation in specific volume v of the ideal-gas model from the reference 
equation of state IAPWS-95 [1]. 
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Figure 2: Relative deviation in specific isobaric heat capacity o
pc  of the ideal gas from the 

reference equation of state IAPWS-95 [1]. 

2.1.2 Cubic Equations of State 

For process simulations with phase transitions from liquid to vapor, or vice versa, a 
consistent property formulation for both phases is required. The first qualitatively correct 
representation of thermal properties across the entire fluid range of state was given by van der 
Waals [13] as 

2

RT a
p

v b v
 


. (2.3) 

The parameter b represents the physical volume of the molecules and therefore the term  v b  
in Eq. (2.3) can be considered as the remaining volume for the movement of the molecules. The 
parameter a takes the intermolecular attraction forces into account, so that  2a v  can be 
considered as a pressure drop due to these forces. 

When rearranged as a function of specific volume v, the van der Waals equation of state, 
Eq. (2.3), becomes a cubic polynomial 

3 20
RT a ab

v b v v
p p p

 
     

 
  

and is therefore named a cubic equation of state. The constants a, b, and R are obtained from 
the parameters cp , cT , and cv  at the critical point, where  Tp v   and  2 2

T
p v   are zero. 

The resulting constants are 

2
c c3a p v , (2.4) 
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c

3

v
b  , (2.5) 

c c

c

8

3

p v
R

T
 . (2.6) 

The specific gas constant R obtained from Eq. (2.6) does not match the value of R R M . 
Therefore, the van der Waals equation, Eq. (2.3), does not match the ideal-gas equation, 
Eq. (2.1), for v b  and v a . 

In order to improve the accuracy in the liquid region and the critical region, and to predict 
the vapor-liquid equilibrium more accurately, several cubic equations of state have been 
developed. The Peng-Robinson equation of state [14] can be expressed as 

 
  22

a TRT
p

v b v v b b
 

  
. (2.7) 

The parameters  a T  and b are calculated from 

 
2

0
c

1 1
T

a T a n
T

  
        

. (2.8) 

and 

c

c

0.0778
RT

b
p

 . 

In Eq. (2.8), the parameters 0a  and n are calculated from 

 2c
0

c

0.45724
RT

a
p

  and 20.37464 1.5422 0.26993n      

where  is the acentric factor that takes into account the non-centricity of the molecules. The 
acentric factor was introduced by Pitzer [15] and is defined as  

 s c
10

c

0.7
log 1

p T

p


 
   

 
. 

Rearranging Eq. (2.7) as a function of specific volume v yields 

2
3 2 2 32

0 3
RT a RT b RTb ab

v b v b v b
p p p

     
                 

.  

Cubic equations of state can be solved in terms of specific volume analytically, and calculations 
from (p,T) are therefore possible without any iteration. However, the analytical solution for 
v(p,T) requires the computation of transcendental functions and is therefore comparatively time 
consuming. As discussed by Deiters and Macías-Salinas [16], the calculation of v(p,T) with an 
appropriate iteration scheme is computationally more efficient in most cases. 
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Table 2: Relationships between thermodynamic properties and thermal equations of state 
p(T,v) in conjunction with the isobaric heat capacity of the ideal gas  o

pc T  

Property Relationship 
 

Specific internal energy u    

 

0

0

o o
0, d

               , d

T

p
T

v

vv T

u T v h c T T RT

p
p T v T v

T

  

       




 

 

Specific enthalpy h    

   

0

0

o
0

o, d

            , , d

T

p
T

v

v Tv

h T v h c T T

p
p T v v RT p T v T v

T

 

         




 

 

Specific entropy s    

0

0

o

0 0

o
0, d ln ln

               d

T
p

T

v

vv T

c T T v
s T v s T R R

T T v

R p
v

v T

   
      

   

       




 

 

Specific isochoric heat capacity vc     
2

o

2

,

               d

v p

v

v T

c T v c T R

p
T v

T

 

          


 

 
Specific isobaric heat capacity pc     

2

, , v
p v

T

p
T

c T v c T v T
p
v

 
   
 

  

 

 

Speed of sound w 

 
   

 
,

,
,

p

v T

c T v p
w T v v

c T v v

     
 

 

The deviations in the specific volume calculated from the Peng-Robinson equation of state 
from the real fluid behavior of water, i.e., IAPWS-95 [1], are shown in Fig. 3. The deviations 
in the isobaric heat capacity, calculated from the Peng-Robinson equation in conjunction with 
the isobaric heat capacity of the ideal gas (see Table 2) and from IAPWS-95, are shown in 
Fig. 4. In the range of state of modern steam power cycles, these deviations are considerable 
and lead to incorrect simulation results. 
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Figure 3: Relative deviation in specific volume v of the Peng-Robinson equation of state from 
the reference equation of state IAPWS-95 [1]. 

Figure 4: Relative deviation in specific isobaric heat capacity cp of the Peng-Robinson equation 
of state from the reference equation of state IAPWS-95 [1]. 
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Since cubic equations of state only require knowledge of the critical parameters and for some 
versions the acentric factor, they are available for many fluids. Therefore, cubic equations of 
state are frequently applied in chemical engineering. Due to their comparatively short 
computing times, these equations of state are often applied in CFD simulations. A comparative 
study of the computing times is given in Sec. 2.5.3.

2.2 Fundamental Equations of State 

For quasi-static reversible processes, the first law of thermodynamics describes the relation 
of infinitesimal heat flux and infinitesimal volumetric work supplied to a closed system with 
its infinitesimal change in internal energy as 

d dq p v u   . (2.9) 

From the second law of thermodynamics, the infinitesimal heat flux of the reversible process at 
the temperature T yields 

dq T s  . (2.10) 

Inserting Eq. (2.10) into Eq. (2.9) yields 

d d du T s p v  . (2.11) 

Comparing Eq. (2.11) to the total differential of u(v,s), namely 

d d d
s v

u u
u v s

v s

            
, (2.12) 

shows that 

s

u
p

v

     
 and 

v

u
T

s

    
. (2.13, 2.14) 

Since the partial derivatives in the total differential Eq. (2.12) are equal to full thermodynamic 
properties, the full information to describe the thermodynamic state of the system is contained 
in u(v,s). Therefore, u(v,s) is a thermodynamic potential from which all other thermodynamic 
properties can be derived. 

For the conjugate pairs of variables (p,v) or (T,s) in Eq. (2.11), the Legendre transformation can 
be applied to obtain other thermodynamic potentials. For instance, the product rule for d(pv) 
reads 

 d d dpv p v v p  . (2.15) 

Adding both sides of the Eqs. (2.11) – (2.15) yields 

 d d d du pv T s v p   , (2.16) 

and finally, with applying the addition rule and defining the specific enthalpy as h = u + pv, to 

d d dh T s v p  . (2.17) 

By applying the Legendre transformation analogously to Eq. (2.11), 

d d df p v s T    (2.18) 
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can be derived, where the specific Helmholtz free energy is defined as f = u  Ts. Applying the 
Legendre transformation to Eq. (2.18) to switch the conjugate pair of variables (p,v), the 
following differential equation is obtained 

d d dg v p s T  , (2.19) 

where the specific Gibbs free energy is given as g = h  Ts. 

The differential equations, Eqs. (2.11), (2.17), (2.18), and (2.19), show that the functions 

u(v,s), h(p,s), f(T,v), and g(p,T), 

describe thermodynamic potentials. These functions are called fundamental equations of state. 
In contrast to thermal equations of state (see Sec. 2.1), the calculation of thermodynamic 
properties from a fundamental equation of state only requires its derivatives, but not integrals. 
Among the independent variables of the equations above, only p, T, and v are accessible through 
direct measurements. Therefore, fundamental equations of state are established for either f(T,v) 
or g(p,T). At the liquid-vapor phase boundary, the derivatives of g(p,T), i.e.,  Tg p v    and 

  p
g T s    , are discontinuous. Therefore, it is not possible to cover the entire fluid region 

with a single equation for g(p,T). Nevertheless, fundamental equations explicit in the Gibbs free 
energy g have been established in some cases to describe the liquid phase and the vapor phase 
independently. 

In process simulations, the solution of mass, energy, and entropy balance equations often 
leads to (v,u), (p,h), (p,s), or (h,s) inputs for fluid property calculations. Therefore, the 
development of fundamental equations of state with these pairs of independent variables from 
a preliminary Helmholtz equation f(T,v) has been pursued, for instance by P. G. Hill for s(p,h) 
(unpublished). The functional form of such an equation would be comparable to that of state of 
the art Helmholtz equations. For independent variables other than those of the chosen 
fundamental equation of state, property calculations would still require iterative procedures. 

2.2.1 Reference Equations of State 

Reference equations of state represent the measurements they are based on to within their 
uncertainties. For water and steam, the scientific formulation IAPWS-95 [1, 2] is available. Its 
fundamental equation is expressed as the reduced Helmholtz free energy  f RT   as a 
function of reduced density c    and inverse reduced temperature cT T   and reads 

     o r, , ,         , (2.20) 

where the ideal part is 

     
8

o o o o o o
1 2 3

4

, ln ln ln 1 exp( )i i
i

n n n n      


           (2.21) 

and the residual part is 

   

    

7 51
r

1 8

54 56
2 2

52 55

, exp

              exp

i i i i i

i i i

d t d t c
i i

i i

d t b
i i i i i i

i i

n n

n n

      

        

 

 

   

      

 

 
, (2.22) 
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with 

 22 1
ia

iB     
 

,    
1

2 21 1 iiA       
 

, 

    2 2
exp 1 1i iC D       . 

The parameters for Eqs. (2.21) and (2.22) are given in [1, 2]. The relationships of 
thermodynamic properties to the reduced Helmholtz free energy are given in Table 3. 

Table 3: Relationships of thermodynamic properties to the reduced Helmholtz free energy  
and its derivatives 

Property Relationship 

Pressure p 

 2
T

p f     
  r,

1
p

RT 
 




    

Specific internal energy u 

 u f T f T      
   o r,u

RT  
 

    

Specific enthalpy h 

   Th f T f T f          
   r o r,

1
h

RT   
 

        

Specific entropy s 

 s f T      
   o r o r,s

R  
 

      

Specific isochoric heat capacity vc  

 vc u T     
   2 o r,vc

R  
 

     

Specific isobaric heat capacity pc  

 p p
c h T    

     2r r
2 o r

r 2 r

1,

1 2

pc

R

 
 

 

  


 

   
    

   
 

Speed of sound w 

 sw p     

 

   
 

2r r
r 2

2

2 o r

1,
1 2 rw

RT

 
 

 

  
 



   
    

 
  
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The uncertainties of IAPWS-95 in specific volume v and specific isobaric heat capacity cp 
for the region considered in Secs. 2.1.1 and 2.1.2 are given in Figs. 5 and 6. 

 
Figure 5: Uncertainties in specific volume v as estimated for IAPWS-95 [1]. 

 
Figure 6: Uncertainties in specific isobaric heat capacity cp as estimated for IAPWS-95 [1]. 
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14 2 Property Calculation Algorithms for Numerical Process Simulations 

The residual part, Eq. (2.22), contains 7 polynomial terms, 44 exponential terms, 3 Gaussian 
bell shaped terms, and 2 non-analytical terms. The large number of transcendental functions, 
such as exponential functions and logarithms, not only in Eq. (2.22) but also in Eq. (2.21), 
causes long computing times as discussed in Sec. 2.5. Therefore, the computing speed of such 
complex reference equations of state is often much too slow for extensive process simulations. 

2.2.2 Short Fundamental Equations of State for Industrial Applications 

For various fluids, short fundamental equation of state have been published by Span and 
Wagner [17, 18, 19], Lemmon and Span [20], and Kunz et al. [21]. In accordance with 
Eq. (2.20), the short fundamental equation of state for water of Kunz et al. [21] consists of the 
ideal part 

       

 

o o o o o o
1 2 3

4,6

o o

5,7

, ln ln ln sinh

                                                            ln cosh

k k
k

k k
k

n n n n

n

      

 





     






 (2.23) 

and the residual part 

   
7 16

r

1 8

, expi i i i id t d t c
i i

i i

n n      
 

     . (2.24) 

The ideal part, Eq. (2.23), was derived from the isobaric heat capacity equation given by 
Jaeschke and Schley [22]. The parameters of the residual part, Eq. (2.24), were fitted to data 
calculated from IAPWS-95. The parameters of both equations are given in [21]. 

In contrast to the reference fundamental equations of state, the residual parts of these short 
equations contain 12-16 terms only. Therefore, their accuracies are not as high as those of 
reference equations of state (see Sec. 2.2.1), but sufficient for many industrial applications. 
According to Lemmon and Span [20], computations from the short fundamental equations of 
state in comparison to reference equations of state are 2-10 times faster. A comparative study 
of the computing times is given in Sec. 2.5.3. 

2.2.3 Fast Fundamental Equations for Separate Regions 

The industrial formulation for water and steam IAPWS-IF97 [3, 4] consists of separate 
fundamental equations of state for the liquid region 1, the vapor region 2, the critical and 
supercritical region 3, and the high-temperature region 5 as depicted in Fig. 7. These so-called 
basic equations were fitted to data calculated from IAPWS-95. For example, the basic equation 
for region 2 represents the reduced Gibbs free energy  g RT   and reads 

     o r, , ,          , (2.25) 

where the ideal-gas part is given by 

   
o9

o o

1

, ln iJ
i

i

n    


  , (2.26) 

and the residual part is 
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   
43

r

1

, 0.5 ii JI
i

i

n    


  . (2.27) 

In Eqs. (2.25) – (2.27), the reduced variables are defined as 1MPap   and 540 K T  . 
The parameters of Eqs. (2.26) and (2.27) are given in [3, 4]. The relationships of 
thermodynamic properties to the reduced Gibbs free energy are given in Table 4. 

The uncertainties of IAPWS-IF97 in specific volume v and specific isobaric heat capacity cp 
for the region considered in Secs. 2.1.1, 2.1.2, and 2.2.1 are given in Figs. 8 and 9. 

Among the terms in Eqs. (2.26) and (2.27), the natural logarithm in Eq. (2.26) is the only 
transcendental function. This term vanishes for each derivative with respect to  or becomes 
algebraic for each derivative with respect to . Thus, IAPWS-IF97 allows for a computationally 
efficient implementation as discussed in Sec. 2.5.3. 

 

Figure 7: Regions, basic equations, and backward equations of IAPWS-IF97. 
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16 2 Property Calculation Algorithms for Numerical Process Simulations 

Table 4: Relationships of thermodynamic properties to the reduced Gibbs free energy  and 
its derivatives 

Property Relationship 

Specific volume v 

 Tv g p       o r,
p

v
RT         

Specific internal energy u 

   p T
u g T g T p g p        

     o r o r,u

RT    
 

          

Specific enthalpy h 

 p
h g T g T     

   o r,h

RT  
 

     

Specific entropy s 

  p
s g T     

     o r o r,u

R  
 

         

Specific isochoric heat capacity vc  

 v v
c u T    

     2r r
2 o r

2 r

1,

1
vc

R

 
 



  
  

 

 
   


 

Specific isobaric heat capacity pc  

 p p
c h T    

   2 o r,pc

R  
 

      

Speed of sound w 

 sw v p v     

 

   

   
 
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2 r

2 o r
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1
1
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RT

 

 


 

  

 
 

  

 


 
 


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2.2 Fundamental Equations of State 17 

 

Figure 8: Uncertainties in specific volume v as estimated for IAPWS-IF97 [3]. 

 

Figure 9: Uncertainties in specific isobaric heat capacity cp as estimated for IAPWS-IF97 [3].
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18 2 Property Calculation Algorithms for Numerical Process Simulations 

2.3 Backward Equations 

In the steam power industry, the calculation of heat cycles and their components, such as 
steam generators, turbines, condensers, and pumps, frequently requires property functions of 
(p,h), (p,s), and (h,s). To calculate property functions from these pairs of variables without time-
consuming iterations, IAPWS-IF97 and its supplementary releases [3, 4, 5, 6, 7] provide so-
called backward equations. Additionally, a set of backward and auxiliary equations for v(p,T) 
[8] is provided for the critical and supercritical region 3. The structure of IAPWS-IF97 along 
with its backward equations is depicted in Fig. 7. For the calculation of T(p,h) in region 2 of 
IAPWS-IF97, this region is divided into the three subregions 2a, 2b, and 2c, as depicted in 
Fig. 10. The corresponding backward equations are given by 

     
34

2a
*

1

,
, 2.1 ii JI

i
i

T p h
n

T
    


   , (2.28) 

       
38

2b
*

1

,
, 2 2.6i iI J

i
i

T p h
n

T
    


    , (2.29) 

and 

       
23

2c
*

1

,
, 25 1.8i iI J

i
i

T p h
n

T
    


    . (2.30) 

The boundary between the subregions 2b and 2c is given by 

   2bc 2
1 2 3*

p h
n n n

p
       . (2.31) 

The parameters of Eqs. (2.28) – (2.31) are given in [3, 4]. The maximum (max) and root-mean-
square (RMS) inconsistencies between Eqs. (2.28) – (2.30) and the basic equation g2(p,T) of 
IAPWS-IF97 region 2, Eq. (2.25), along with the permissible values (perm), are given in 
Table 5. 

Table 5: Maximum (max) and root-mean-square (RMS) inconsistencies between the 
backward equations T2a(p,h), T2b(p,h), and T2c(p,h), Eqs. (2.28) – (2.30), and the basic 
equation g2(p,T) of IAPWS-IF97 region 2, Eq. (2.25), along with the permissible 
values (perm) according to [3] 

Backward Eq. |T|perm [mK] |T|max [mK] |T|RMS [mK] 

T2a(p,h) 10 9.3 2.9 

T2b(p,h) 10 9.6 3.9 

T2c(p,h) 25 23.7 10.4 

Region determinations for (h,s) inputs would normally require iterative calculations from 
the basic equations along the region boundaries. Similarly, the region boundary between region 
3 and region 4 would require iterative calculations for (p,h) and (p,s) inputs. To avoid these 
time consuming iterations, so-called region-boundary equations are provided in [6] and [7]. 
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2.3 Backward Equations 19 

 

Figure 10: Subregions 2a, 2b, and 2c with their corresponding backward equations T(p,h). 

For numerical simulations of transient processes, for instance in CFD, the requirements 
regarding numerical consistency of the applied property functions are extremely high. 
Investigations revealed that the numerical consistency of the existing backward equations with 
their corresponding fundamental equations is insufficient for numerical simulations with very 
small spatial and time discretizations and can lead to convergence problems. In these situations, 
inverse property functions must be calculated by iteration from the corresponding fundamental 
equation with starting values determined from the available backward equations. Where 
applicable, the region boundaries must be calculated by iteration from their original definitions 
in the (p,T) plane. The starting values for these calculations are obtained from the available 
region-boundary equations.

2.4 Table Look-Up Methods 

To calculate fluid properties with reasonable accuracy but with short computing times, so-
called table look-up methods are frequently applied. For these methods, the desired fluid 
properties are determined from previously tabulated values. If the tabulated data originates from 
an accurate equation and no additional smoothing of these data is required, then interpolation 
methods can be applied. For tabulated measurement values that have not been pre-correlated, 
approximation methods can be used to obtain a smooth representation of these values. This is 
discussed for spline approximation methods in Secs. 2.4.1.3 and 2.4.2.3. To describe the 
thermophysical properties of pure fluids and mixtures at constant composition, functions of one 
and two independent variables are required. Phase boundaries, such as  sT p , are described 
with functions of the form  1z x , whereas the properties in the single-phase region, such as 
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20 2 Property Calculation Algorithms for Numerical Process Simulations 

T(p,h), are represented with functions of the form  1 2,z x x . The basic principles of several 
table look-up methods for one- and two-dimensional functions are explained in Secs. 2.4.1 and 
2.4.2. 

2.4.1 One-Dimensional Functions 

If a table look-up method is applied to reproduce the results of an underlying function  1z x , 
then a series of discrete data points, the so-called nodes, can be defined arbitrarily along 1x . In 
order to enhance the accuracy of any interpolation or approximation method, it is advantageous 
to linearize the function to be interpolated first by means of suitable variable transformations. 
This is illustrated in Figs. 11 and 12. Both the independent variable 1x  and the dependent 
variable z can be transformed into 1x  and z . The number of nodes I and their 1,ix  locations are 
chosen to ensure the desired accuracy. For some methods, the nodes are clustered in regions 
with strong curvature to achieve the required accuracy and to minimize the number of nodes 
over the domain of definition. For other methods, the nodes are distributed equidistantly along 

1x  as shown in Fig. 12. The iz  values of the nodes (i) are calculated from the transformed 
underlying equation  1z x . The values between the nodes are interpolated by means of 
polynomials    1iz x , which are locally defined in each interval {i}. For the methods described 
below, an interval {i} usually ranges between two nodes. In order to interpolate or approximate 
values from a given series of nodes, the interval {i} must be determined first. For non-
equidistant nodes, a search algorithm is required to identify the interval index i. For equidistant 
nodes along 1x , an extensive search algorithm can be avoided and the interval index i is simply 
calculated from 

1 1,1

1

floor
x x

i
x

 
   

. (2.32) 

Figure 11: Untransformed underlying function  1z x  with nodes equidistant in 1x  rather than 
in 1x . 

 

1x

Node ( )i
z

Underlying
function ( )z x1

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


2.4 Table Look-Up Methods 21 

 

Figure 12: Transformed underlying function  1z x  with nodes equidistant in 1x , and 
interpolating polynomial    1iz x  in the interval {i}. 

2.4.1.1 Local Polynomial Interpolation 

Local polynomial interpolation provides simple ways for calculating values from look-up 
tables. The term “local” means, in this context, that the polynomials are piecewise defined for 
each interval {i}, whereas “global” means that a single polynomial interpolates values across 
the entire domain. For local methods, lower order polynomials can be used. For global methods, 
the polynomial degrees depend on the number of nodes. Thus, a large number of nodes leads 
to higher order polynomials that tend to oscillate. This problem can become very dominant if 
the nodes are distributed equidistantly (Runge’s Phenomenon). Therefore global polynomial 
interpolation methods are not considered here. 

In contrast to spline interpolation methods (see Sec. 2.4.1.3), the local polynomials are 
defined without any additional constraints to the adjacent intervals. Therefore, the continuity of 
derivatives is limited as discussed later in this section for cubic polynomials. For local 
polynomial interpolation methods, a polynomial    1iz x  is defined in each interval {i} 
between the nodes (i) and (i + 1). 

A polynomial of N-th order is given by 

     
1 1

1 1 1,
1

N k
ik ii

k

z x a x x
 


  . (2.33) 

For the linear case, i.e., N = 1, Eq. (2.33) has two coefficients aik that can be obtained from two 
constraints. These constraints can be defined at the boundaries of the interval {i} at which 
Eq. (2.33) intersects the nodes (i) and (i + 1). The resulting piecewise linear function is 
continuous across the interval boundaries, but not continuously differentiable. A mathematical 
description of linear interpolation methods can be found in [23]. 

In order to provide a property function with a continuous first derivative, cubic interpolation 
is often recommended. The four coefficients of the cubic polynomial, Eq. (2.33) with N = 3, can 
be determined from given values of z  and  1d dz x  at the two bounding nodes of each interval. 

1x
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22 2 Property Calculation Algorithms for Numerical Process Simulations 

In contrast to this local method, a cubic spline function also provides a continuous second 
derivative as described in Sec. 2.4.1.3. 

2.4.1.2 Tabular Taylor Series Expansion Method (TTSE) 

The Tabular Taylor Series Expansion method (TTSE) was adopted by IAPWS as a guideline 
[9, 10] in 2003. For this method, the nodes are typically located at the center of each interval 
{i}. From each of these nodes a Taylor series    1iz x  is expanded. The applied second order 
Taylor series expansion is given by 

           
22

1 1 1, 1, 1 1, 1,2
1 1

d 1 d

d 2 d
i i i i ii

z z
z x z x x x x x x

x x

  
            

. (2.34) 

Eq. (2.34) approximates the underlying function independently for each interval {i} without 
any constraint to the neighboring intervals. The resulting inconsistencies at the boundaries 
between two adjacent intervals are illustrated in Fig. 13. 

Figure 13: Series of nodes with an interval {i} where the Taylor series    1iz x  is valid. 

In [9], the TTSE method is applied to IAPWS-95. The TTSE property function Ts(p) and its 
numerically consistent inverse function ps(T) are created on the same series of 174 nodes. The 
functions are valid in the following pressure and temperature ranges: 

612.8 Pa    22.064 MPap   275 K    647.096 KT  . 

The maximum deviation of the TTSE property function Ts(p) from IAPWS-95 is 1 mK, except 
in the vicinity of the critical point, where the maximum deviation is 6 mK. The maximum 
inconsistency at the interval boundaries is 2 mK. The nodes along with the corresponding 
derivatives for each property are stored in a look-up table. The nodes are not equidistant along 
p or T and the desired interval index i is determined by means of the bisection method. The 
interval index i is stored for subsequent function calls to minimize the effort for the search 
algorithm for contiguous state points. For random inputs, the search algorithm for the interval 
index is the dominant factor for the computing time of the TTSE method. 
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2.4.1.3 Spline Interpolation and Approximation Algorithms 

Spline interpolation has its roots in engineering mechanics. The term “spline” refers to a 
flexible rod that serves as a drafting tool for smooth curves and was introduced in 1946 by 
Schoenberg [24]. The rod is fixed to a number of points and takes the shape with minimum 
bending energy. Thus, this shape is considered to be the smoothest possible. The bending line 
of the thin rod is described by the Euler-Bernoulli bending theory, a second order differential 
equation, which reads 

   1 1EIz x M x  , (2.35) 

where E is the modulus of elasticity, I is the moment of inertia, z  is the curvature, and M  is 
the bending moment. A simple example is shown in Figs. 14 and 15. 

 

Figure 14: Forces at a thin rod between two 
supports (example). 

Figure 15: Free body diagram for the 
example given in Fig. 14. 

 

The bending moment at the location 1x  in the interval {i}, where 1, 1 1, 1i ix x x   , is derived 
from the moment equilibrium, see Fig. 15, and reads 

     1 1 1,
1

i

k ki
k

M x F x x


  . (2.36) 

The integration of Eq. (2.35) with Eq. (2.36) for each interval {i} yields 

           
3

1 1 1, 1 1,,1 ,2
1 6

i
k

k ki i i
k

F
EIz x x x C x x C


     . (2.37) 

Substituting  1 1,kx x  in Eq. (2.37) with    1 1, 1, 1,i i kx x x x    and rearranging for  iz  leads 
to a piecewise-defined function of cubic polynomials for the bending line, which reads 

           
3

1 1 1, 1 1,,1 ,2
1 6

i
k

i ii i i
k

F
z x x x C x x C

EI
     . (2.38) 

For known forces Fi, i = 2 … I  1, the support forces F1 and FI can be obtained from the force 
and moment equilibria. The 2(I  1) constants,  ,1iC  and  ,2iC , can then be determined from 
the conditions 

   11 0 0iz x   , (2.39) 

   1 1,1 0Ii Iz x x    , (2.40) 

       1, 1 1, 11i ii iz x z x   1, ... , 2i I  , (2.41) 
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 
 

 
 1, 1 1, 1

1 1 1

d d

d di i
i i

z z
x x

x x 


  1, ... , 2i I  . (2.42) 

Because of the continuity of Eq. (2.36) and the chosen conditions Eq. (2.41) and Eq. (2.42), the 
piecewise-defined function for the bending line is continuously differentiable twice. 

Based on the considerations described above, spline interpolation algorithms were 
developed in the middle of the 20th century. A spline function is a piecewise-defined function, 
consisting of several spline polynomials that interpolate values between a series of discrete data 
points, the so-called nodes. The spline polynomials are connected at knots, which can be either 
equal or unequal to the nodes. In analogy to the piecewise-defined bending line discussed 
above, cubic spline functions with the knots equal to the nodes were developed first. In between 
the I nodes, I  1 intervals {i} are defined as 1, 1 1, 1i ix x x   . In each interval {i}, a cubic spline 
polynomial is defined as depicted in Fig. 12. The cubic spline polynomial reads 

     
4 1

1 1 1,
1

k
ik ii

k

z x a x x



  . (2.43) 

Each of the I  1 polynomials    1iz x  must intersect the adjacent nodes (i) and (i + 1), so that 

     1, 1,i i iiz x z x  1, ... , 1i I  , (2.44) 

     1, 1 1 1, 1i i iiz x z x    1, ... , 1i I  , (2.45) 

At each of the I  2 knots between two adjacent polynomials, the first two derivatives with 
respect to 1x ,  1d dz x  and  2 2

1d dz x , must also be equal 

 
 

 
 1, 1 1, 1

1 1 1

d d

d di i
i i

z z
x x

x x 


  1, ... , 2i I  , (2.46) 

 
 

 
 

2 2

1, 1 1, 12 2
1 1 1

d d

d d
i i

i i

z z
x x

x x
 



  1, ... , 2i I  . (2.47) 

Two additional conditions are required to determine the 4(I  1) unknown coefficients ika  of 
the I  1 spline polynomials. For this purpose, the first derivatives  1d dz x  at the endpoints 
(i = 1) and (i = I) are frequently provided, so that 

 
   1,1 1,1

1 11

d d

d d
i

z z
x x

x x

 , (2.48) 

 
   1, 1,

1 11

d d

d dI I
i I

z z
x x

x x 

 . (2.49) 

Alternatively, these derivatives can be approximated. The 4(I  1) unknown coefficients ika  of 
the I  1 spline polynomials are obtained by solving the linear system of equations Eqs. (2.44) 
– (2.49). A comprehensive discussion of cubic spline interpolation algorithms with various 
constraints is given by Späth [23]. Computationally efficient implementations of these methods 
are also given in [23]. 
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In 1962, Landis and Nilson published an article [28] on cubic spline functions and their 
application for determining thermodynamic derivatives from tabulated values. They established 
cubic spline functions for the reduced internal energy u/RT as a function of temperature T along 
isochores. From these spline functions, values of cv/R were calculated by analytical 
differentiation. In addition, a least-squares spline-approximation technique is discussed that can 
be employed to fit smooth spline curves to experimental data. Details of such a spline-
approximation technique were published by Klaus and van Ness [29] in 1967. The underlying 
cubic spline interpolation method for this approximation technique is similar to the algorithm 
given by Eqs. (2.43) – (2.49). Therefore, the actual equations provided in [29] are not repeated 
here, but the similarities and differences to the cubic spline interpolation algorithm given above 
are discussed. 

The I  1 polynomials approximate N > I fixed data points  1,
ˆˆ

n nz x  as shown in Fig. 16. The 
number of intervals I  1 is an arbitrary choice and the 1x  location of each inner knot i coincides 
with the 1x  coordinate of a data point n(i). Hence, in addition to the 4(I  1) coefficients ika , 
the z  positions of the I knots are unknown. 

Figure 16: Data points to be approximated along with the series of knots and the interval {i}, 
where the spline polynomial    1iz x  is valid. 

The adjacent polynomials must fulfill the 3(I  2) conditions given by Eqs. (2.46), (2.47), 
and 

       1, 1 1, 11i ii iz x z x   1, ... , 2i I  . (2.50) 

Furthermore, the sum of squares 

    22 SPL
1, 1,

1

ˆ ˆˆ
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n n n
n

z x z x


    (2.51) 
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is to be minimized. The method of Lagrange’s underdetermined multipliers [30] is used to solve 
this problem. For the M = 4(I  1) + I unknowns and the J = 3(I  2) constraints, the M additional 
equations  

1

0
J

j
j

m mj

F

X X







 

   1, ... , m M  (2.52) 

are formulated. In the M Eqs. (2.52), F is the function to be minimized, i.e., Eq. (2.51), and Xm 
represents one of the 4(I  1) unknown coefficients ika  or one of the unknown values of zi at 
the I knots. The constraints j  correspond to the Eqs. (2.46), (2.47), and (2.50), which have to 
be given in the form 0j  . The J unknown Lagrange multipliers j  increase the total number 
of unknowns to M + J. The system of equations to be solved simultaneously is then given by 
the J constraints themselves, i.e., Eqs. (2.46), (2.47), and (2.50), and the M Eqs. (2.52). In [29], 
the additional assumptions 

       2 2 2 2
1 1,1 1 1,21 1d d d di iz x x z x x  ,  (2.53) 

and 

       2 2 2 2
1 1, 1 1, 11 1d d d dI Ii I i Iz x x z x x      (2.54) 

were made. 

Another spline-approximation approach with cubic polynomials was presented by Schot [31] 
in 1968. Again, the underlying cubic spline interpolation method is similar to the algorithm 
given by Eqs. (2.43) – (2.49). Therefore, a mathematically equivalent description of the method 
can be provided with Eqs. (2.43), (2.46), (2.47), (2.50), and (2.52). For this method, the number 
and the 1x  locations of the knots is equal to those of the given data points, i.e., I = N and 

1, 1,
ˆ

i ix x . The sum of squares to be minimized is given by 

      
2

2 2 SPL122 SPL
1, 1, 1,2 2

1 2 1, 1

ˆ dˆ ˆ ˆˆ
ˆ ˆd

I I
i

i i i i
i i i

z z
z x z x w x

x x




 

 
    
  

  , (2.55) 

where 

2
1 1

2
1, 1 1, 1 1, 1 1, 1, 1, 11,

ˆ ˆ ˆ ˆ ˆ2
ˆ ˆ ˆ ˆ ˆ ˆˆ

i i i i i

i i i i i ii

z z z z z

x x x x x xx
 

   

   
       

. (2.56) 

For w = 0, the spline function is fitted to the given data points only. For w > 0, the differences 
in the second derivatives from the second difference quotients are additionally minimized, 
which reduces possible fluctuations in the resulting spline curve. 

The spline approximation methods discussed above were developed to provide smooth and 
computationally efficient representations of tabulated values from rather inexact property 
formulations or measurement values with experimental errors. The development of new 
measurement methods, for instance by Wagner and Kleinrahm [32], and enhanced fitting 
techniques for empirical equations, such as those of Setzmann and Wagner [33], as well as of 
Lemmon and Jacobsen [34], led to very accurate fundamental equations of state (see Sec. 2.2). 
In order to provide fast property calculation algorithms based on such accurate equations, spline 
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interpolations are preferred to spline approximations since there is no additional smoothing 
required. Since the middle of the 19th century, the theory of splines has evolved quickly into a 
new field of research in mathematics. Meanwhile, many spline interpolation and approximation 
algorithms have been developed, not only for one-dimensional curves, but also for 
multidimensional problems. A comprehensive overview of spline algorithms is given by 
Schumaker [35]. The evaluation of polynomial splines, such as the cubic spline function 
described earlier in this section, is simple and allows for short computing times. Furthermore, 
polynomial splines are capable of fulfilling the requirements regarding continuity and 
differentiability. Polynomials of a degree lower than five can be solved analytically, which 
enables numerically consistent inverse functions. For these reasons, simple polynomial splines 
are preferred for property calculations rather than more complex approaches such as non-
uniform B-splines, etc. 

Cubic spline interpolation was applied by Müller [25] for the property functions  sT p , 

 v p ,  v p ,  h p , and  h p  of water and steam. The tabulated data were calculated from 
IAPS-84 [26, 27]. The derivatives with respect to p are calculable from the generated spline 
functions. A simple algorithm was applied to optimize the locations of the nodes along p. The 
resulting series of nodes is not equidistant, and a search algorithm is required to determine the 
interval that corresponds to the given value of p. 

2.4.2 Two-Dimensional Functions 

For functions of the form  1 2,z x x , the nodes could be arbitrarily distributed in the  1 2,x x  
plane. The local definition of polynomials would require a triangulation algorithm and an 
extensive search to identify the adjacent points for interpolating z at  1 2,x x . Therefore, the 
following discussion is restricted to methods where the nodes are ordered in structured grids. 
Normally, rectangular grids with rectangular cells are used, as shown in Figs. 17 and 18. 
Analogously to the description of one-dimensional functions (Sec. 2.4.1), it is assumed that a 
table look-up method is applied to reproduce the results of an underlying equation, and a grid 
of nodes can be defined arbitrarily. Again, all variables z , 1x , and 2x  can be transformed into 
z , 1x , and 2x  to enhance the accuracy of the interpolation. For some methods, the nodes are 
clustered in regions with strong curvature to achieve the required accuracy and to minimize the 
number of nodes over the domain of definition. For other methods, the nodes are distributed 
equidistantly along 1x  and along 2x . The number of nodes IJ and their  1, 2,,i jx x  locations are 
chosen to ensure the desired accuracy. The 1, 2,( , )ij i jz x x  values of the nodes are calculated from 
the transformed underlying function 1 2( , )z x x . The values between the nodes are interpolated 
by means of polynomials   1 2( , )ijz x x , which are locally defined in each cell {i,j}. For the 
methods described below, a cell {i,j} usually ranges between the four neighboring nodes. In 
order to interpolate values from a given grid of nodes, the cell {i,j} must be determined first. 
For non-equidistant nodes, a search algorithm is required to identify the interval indices i and 
j. For equidistant nodes along 1x  and 2x , an extensive search algorithm can be avoided and the 
interval indices i and j are simply calculated from 

1 1,1

1

floor
x x

i
x

 
   

 and 2 2,1

2

floor
x x

j
x

 
   

. (2.57, 2.58) 
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Figure 17: Nodes aligned in a rectangular grid in the  1 2,x x  plane, depicted in a 1 2x x z 
diagram. 

Figure 18: Projection of the grid of nodes into the  1 2,x x  plane and the definition of node 
(i,j) and cell {i,j}. 

2.4.2.1 Local Polynomial Interpolation 

Following the reasoning given in Sec. 2.4.1.1, only local polynomial interpolation methods 
are discussed in this work. Again, in contrast to spline interpolation methods (see Sec. 2.4.2.3), 
the local polynomials are defined without additional constraints to the adjacent cells. Therefore, 
the continuity of derivatives is limited as discussed later in this section for bicubic polynomials. 
For local polynomial interpolation methods, a polynomial    1 2, ,i jz x x  is defined in each cell 
{i,j} between the nodes (i,j), (i + 1,j) , (i,j + 1), and (i + 1,j + 1). 
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z
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i j
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A polynomial of N-th order in 1x  and 2x  dimension is given by 

       
1 1 11

1 2 1 1, 2 2,,
1 1

,
N N lk

ijkl i ji j
k l

z x x a x x x x
  

 
    . (2.59) 

For the bilinear case, i.e., N = 1, Eq. (2.59) has four coefficients aijkl that can be obtained from 
four constraints. For a rectangular cell {i,j}, these constraints are defined by the four corner 
points at which Eq. (2.59) intersects the nodes (i,j), (i + 1,j), (i,j + 1), and (i + 1,j + 1). The 
resulting surface is not planar, but linear along 1x  for constant 2x  and vice versa. If the bilinear 
function is defined on a triangle, then the resulting surface is planar. Piecewise bilinear 
functions are continuous across the cell boundaries, but not continuously differentiable. A 
mathematical description of bilinear interpolation methods can be found in [36]. Bilinear 
interpolation on rectangular grids has been applied for property calculations for instance by Pini 
et al. [37]. Property functions based on bilinear interpolation on triangulated grids are discussed 
by Schulze [38]. In order to simplify the search algorithm, the nodes of the triangles are aligned 
along constant 1x  or constant 2x . 

In order to provide a property function with continuous first derivatives, bicubic 
interpolation on a rectangular grid is often recommended. The 16 coefficients of the bicubic 
polynomial, Eq. (2.59) with N = 3, can be determined from given values of z ,  

2
1 x

z x  , 

 
1

2 x
z x  , and  2

1 2z x x    at the four corner nodes for each cell. In contrast to this local 
method, a bicubic spline function also provides a continuous second derivative (see 
Sec. 2.4.2.3). The local bicubic interpolation method is available in CoolProp [39] and was also 
applied by Müller [25] and Schulze [38]. Laughman et al. [40] applied local bicubic 
interpolation to describe the fundamental relation  ,T v . Similarly, Pini et al. [37] applied 
local bicubic interpolation to describe the thermodynamic potential u(v,s). Instead of providing 
the derivatives  

2
1 x

z x  ,  
1

2 x
z x  , and  2

1 2z x x    at the four corner nodes, the bicubic 
polynomials are calculated from the z  values of the four corner nodes and the additional twelve 
adjacent nodes in [37]. As described in [36], the resulting function does not provide continuity 
across the cell boundaries. In order to provide a thermodynamically consistent table look-up 
approach, Swesty [41] suggests to apply biquintic Hermite interpolation to reproduce 
Helmholtz free energy equations with two continuous derivatives. 

2.4.2.2 Tabular Taylor Series Expansion Method (TTSE) 

For two-dimensional TTSE functions [9, 10], the range of validity is divided in IJ rectangular 
cells as shown in Fig. 19. Typically, in the center of each cell {i,j} a node is located from which 
a Taylor series    1 2, ,i jz x x  is expanded. Exceptions are made for cases where the midpoint of 
the cell is out of range. In these cases, the node is shifted onto the corresponding region 
boundary. This eliminates the need for extrapolations far beyond the desired range of validity, 
as discussed in Sec. 2.4.2.3. The applied second order Taylor series expansion is given by 
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. (2.60) 

Equation (2.60) approximates the fluid property surface independently for each cell without 
any constraint to neighboring cells. The resulting inconsistencies at the grid lines are illustrated 
on the right hand side in Fig. 19. 

Figure 19: Grid of nodes in the  1 2,x x  projection with cell {i,j}, where the Taylor series 

   1 2, ,i jz x x  is valid (left hand side) and a section at constant 2, jx  illustrating the 
inconsistencies at the grid lines (right hand side). 

In [9], the TTSE method is applied to IAPWS-95, and TTSE property functions for T(p,h), 
v(p,h), and s(p,h) are created on a common grid with 200x200 nodes. The range of validity 
covers the single-phase region in the following temperature and pressure ranges: 

275 K    1000 KT   612.8 Pa    100 MPap  . 

The maximum (max) and root-mean-square (RMS) deviations of the TTSE property function 
for T(p,h) from that of IAPWS-95 along with the permissible values (perm) are given in Table 6 
for the vapor region. The maximum inconsistency at the interval boundaries is 20 mK. 

The nodes along with the corresponding values and derivatives for each property are stored 
in a look-up table. For the given example, the nodes are aligned equidistantly along the enthalpy 
axis, which allows for a fast determination of the cell index, which corresponds to the given 
enthalpy. However, the pressure coordinates are not equidistant and the desired pressure cell 
index is determined by means of the bisection method. Inverse functions of (p,T), (p,s), and 
(h,s) are consistently calculated from the tabulated values in the (p,h) plane. In order to 

2x

1x1,ix

2, jx

Grid of nodes

� �, 1, 2,

Node

,i j i jz x x

z

1x

� 	,

Cell { , }, where the
Taylor series is validi j

i j
z

2,Section at const.
jx

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


2.4 Table Look-Up Methods 31 

 

determine the cell indices, which correspond to the given pair of variables, the bisection method 
is also applied. 

Table 6: Maximum (max) and root-mean-square (RMS) deviations of the TTSE property 
function for T(p,h) from that of IAPWS-95 along with the permissible values (perm) 
for the vapor region according to [9] 

 |T|perm [mK] |T|max [mK] |T|RMS [mK] 

T (p,h) 10 (25) a,b 9.21 a 0.25 a 

a The vapor region corresponds to IAPWS-IF97 region 2 except for the pressure and 
temperature limits as described above. 

b The permissible deviations differ for the subregions 2a, 2b, and 2c of IAPWS-IF97 region 2 
as shown in Fig. 10 and given in Table 5. 

The TTSE method provides fast property functions and is implemented for instance in the 
CoolProp [39] software package. The inconsistencies between adjacent Taylor series are small 
for a sufficient number of nodes. However, these inconsistencies may lead to problems in 
simulations with small spatial and time discretization. 

2.4.2.3 Spline Interpolation and Approximation Algorithms 

In Sec. 2.4.1.3, the one-dimensional cubic spline function and its analogy to the bending line 
of a flexible rod are discussed. The spline concept can be generalized to higher dimensions. For 
two-dimensional functions, a bicubic spline function can be established as described in [36]. In 
between the IJ nodes, (I  1)(J  1) cells {i,j} are defined. Each cell ranges over 1, 1 1, 1i ix x x    
and 2, 2 2, 1j jx x x   . In each cell {i,j}, a bicubic spline polynomial is defined as depicted in 
Fig. 18. The bicubic spline polynomial reads 

       
4 4 11

1 2 1 1, 2 2,,
1 1

,
lk

ijkl i ji j
k l

z x x a x x x x


 
   . (2.61) 

The 16(I  1)(J  1) coefficients aijkl are determined by defining the following constraints. For 
all cells {i,j}, with 1, ... , 1i I   and 1, ... , 1j J  , each polynomial    1 2, ,i jz x x  intersects 
the four nodes at its corners 

     1, 2, , 1, 2,, , ,i j i j i ji jz x x z x x , (2.62) 

     1, 1 2, , 1, 1 2,, , ,i j i j i ji jz x x z x x  , (2.63) 

     1, 2, 1 , 1, 2, 1, , ,i j i j i ji jz x x z x x  , (2.64) 

     1, 2, , 1, 2,, , ,i j i j i ji jz x x z x x . (2.65) 

For given values of  
2

1 x
z x   at the nodes (i = 1,j) and (i = I,j), with 1, ... , j J , 

   
2 2

1,1 2, 1,1 2,
1 1

1,

, ,j j
x xj

z z
x x x x

x x

    
       

, (2.66) 
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   
2 2

1, 2, 1, 2,
1 1

,

, ,I j I j
x xI j

z z
x x x x

x x

    
       

, (2.67) 

the remaining  
2

1 x
z x   values at the nodes (i,j), with 2, ... , 1i I   and 1, ... , j J , are 

obtained from one-dimensional cubic spline interpolations. For this purpose, cubic spline 
functions, see Sec. 2.4.1.3, are established to interpolate between the nodes (i), with 1, ... , i I , 
along each grid line j. Then, the iz  and 1d dz x  values in Eqs. (2.44), (2.45), (2.48), and (2.49) 
correspond to the given values of ,i jz  and  

2
1 x

z x   along the considered grid line j. At each 
node (i,j), with 2, ... , 1i I   and 1, ... , j J , the required derivative is then obtained from 
the polynomial    1,i jz x  of the corresponding spline function for grid line j 

 
 

2

1, 2,
1 1 ,,

d

d i i j
x i ji j

z z
x a

x x

 
   

. (2.68) 

Analogously, for given values of  
1

2 x
z x   at the nodes (i,j = 1) and (i,j = J), with 

1, ... , ,i I  

   
1 1

1, 2,1 1, 2,1
2 2

,1

, ,i i
x xi

z z
x x x x

x x

    
       

, (2.69) 

   
1 1

1, 2, 1, 2,
2 2

,

, ,i J i J
x xi J

z z
x x x x

x x

    
       

, (2.70) 

the remaining  
1

2 x
z x   values at the nodes (i,j), with 1, ... , i I  and 2, ... , 1j J  , are 

obtained from cubic spline functions along each grid line i. At each of these nodes (i,j), the 
required derivative is determined from the polynomial    2,j iz x  of the corresponding spline 
function for grid line i 

 
 

1

2, 2,
2 2 ,,

d

d j j i
x j ii j

z z
x a

x x

 
   

. (2.71) 

Similarly, cubic spline functions are used to determine   2
1 2z x x    at all nodes except 

for the four corner nodes (1,1), (I,1), (1,J), and (I,J). Since  
12 xz x   is cubic along 1x , cubic 

spline functions can be established for the grid line j = 1 and j = J. Then, the iz  and 1d dz x  
values in Eqs. (2.44), (2.45), (2.48), and (2.49) correspond to the previously determined values 
of  

1
2 x

z x   along the considered grid line j and the given values of   2
1 2z x x    at the 

endpoints (1,j) and (I,j). At each node (i,j), with 2, ... , 1i I   and 1, j J , the required 
derivative is then obtained from the polynomial  

 
 

1
2 1

,x i j
z x x   of the corresponding spline 

function for grid line j 

 

 
 1

2 2
1, 2,

1 2 1, ,

d

d
x

i i j

i j i j

z xz
x a

x x x

  
     

. (2.72) 

At each of the remaining nodes (i,j), with 1, ... , i I  and 2, ... , 1j J  , the values of
  2

1 2z x x    are then determined from the polynomial  
 

 
2

1 2
,x j i

z x x   of the 
corresponding spline function for grid line i 
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 

 
 2

2 1
2, 2,

1 2 2, ,

d

d
x

j j i

i j j i

z xz
x a

x x x

  
     

. (2.73) 

Once the values of  
2

1 x
z x  ,  

1
2 x

z x  , and   2
1 2z x x    are known at each node 

(i,j), the 16 coefficients of each polynomial    1 2, ,i jz x x , Eq. (2.61), can be obtained from Eqs. 
(2.62) – (2.65) and 

 
 

2 2

1, 2,
1 1

, ,

,i j
x xi j i j

z z
x x

x x

    
       

, (2.74) 

 
 

2 2

1, 1 2,
1 1

, 1,

,i j
x xi j i j

z z
x x

x x



    
       

, (2.75) 

 
 

2 2

1, 2, 1
1 1

, , 1

,i j
x xi j i j

z z
x x

x x



    
       

, (2.76) 

 
 

2 2

1, 1 2, 1
1 1

, 1, 1

,i j
x xi j i j

z z
x x

x x 

 

    
       

, (2.77) 

 
 

1 1

1, 2,
2 2

, ,

,i j
x xi j i j

z z
x x

x x

    
       

, (2.78) 

 
 

1 1

1, 1 2,
2 2

, 1,

,i j
x xi j i j

z z
x x

x x



    
       

, (2.79) 

 
 

1 1

1, 2, 1
2 2

, , 1

,i j
x xi j i j

z z
x x

x x



    
       

, (2.80) 

 
 

1 1

1, 1 2, 1
2 2

, 1, 1

,i j
x xi j i j

z z
x x

x x 

 

    
       

, (2.81) 

 
 

2 2

1, 2,
1 2 1 2, ,

,i j

i j i j

z z
x x

x x x x

    
            

, (2.82) 

 
 

2 2

1, 1 2,
1 2 1 2, 1,

,i j

i j i j

z z
x x

x x x x


    
            

, (2.83) 

 
 

2 2

1, 2, 1
1 2 1 2, , 1

,i j

i j i j

z z
x x

x x x x


    
            

, (2.84) 

 
 

2 2

1, 1 2, 1
1 2 1 2, 1, 1

,i j

i j i j

z z
x x

x x x x 
 

    
            

. (2.85) 
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A comprehensive description of the method and a computationally efficient implementation is 
given by Späth [36]. 

The spline approximation method for one-dimensional functions developed by Schot [31] 
(see Sec. 2.4.1.3) was also extended to two-dimensional functions. This was achieved by fitting 
cubic spline functions for  

2
1 x

z x  for several values of 2x , and then fitting cubic spline 
functions for the obtained coefficients  

2, 2ik xa x . In addition to the one-dimensional functions

 sp T ,  v T , and  v T , a two-dimensional function v(p,T) was approximated from the 1963 
International Skeleton Tables for water and steam [42]. The applied two-dimensional cubic 
spline algorithm for v(p,T) requires a rectangular domain in the (p,T) plane. Therefore, the 
domain has been divided into several subdomains, which leads to inconsistencies at the 
boundaries between these subdomains. From the spline functions for v(p,T) and an equation for 

 o
pc T  [43], the Gibbs free energy g, enthalpy h, and entropy s were derived according to 

Table 2. The method was programmed in FORTRAN and was intended to be used for fast and 
accurate property calculations in a computer-aided design process for ships. 

Herbst [44] has extended the spline-approximation technique by Klaus and van Ness [29], 
see Sec. 2.4.1.3, to functions of two independent variables. In his work, a function for the Gibbs 
free energy g(p,T) is established for liquid water at pressures up to 100 MPa and temperatures 
up to 550 K. This was achieved by creating spline functions for v(p,T) and  

0p
s T  first, and 

applying the equation 

     
0

0 0

0, , d d
p T

p
p T

g p T g v p T p s T T    ,  (2.86) 

which can be obtained by integrating Eq. (2.19) from the chosen reference state, denoted by the 
subscript “0”, to the actual state point (p,T). Furthermore, an inverse function for the specific 
enthalpy h(p,s) has been derived analytically from the function for g(p,T). The bicubic spline 
function v(p,T) was created in a similar fashion as done by Schot [31]. 

In parallel to the development of cubic spline approximation methods a least-squares fitting 
method with biquadratic polynomials has been proposed by White [45]. The resulting property 
surface is continuously differentiable once. Over the past several decades numerous new spline 
interpolation and approximation algorithms have been developed. A comprehensive overview 
and a detailed description of some of these methods is available for instance in [23], [35], and 
[36]. As discussed in Sec. 2.4.1.3, spline interpolation algorithms are preferred to spline 
approximations when accurate underlying equations are available. 

For many two-dimensional spline interpolation methods a rectangular grid of nodes needs 
to be defined over a rectangular domain. In many cases, this would require an appropriate 
extrapolation for nodes beyond the range of validity, as illustrated in Fig. 20. As for example 
in [31], this is often avoided by dividing the considered domain into several subdomains, which 
leads to inconsistencies at the boundaries between those subdomains. Kretzschmar et al. [46, 
47] aimed to develop interpolation methods with optimized grid structures. Aligning the nodes 
in the grid in a way that prevents potential problems at the region boundaries was suggested. 
This is achieved by distributing grid lines for constant values of one independent variable, e.g., 
for constant values of 2x , across the domain. For each grid line, the number and the locations 
of nodes along 1x  are defined independently. This is depicted in Fig. 21, where the number of 
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nodes at 2, jx  is different from the number of nodes at 2, 1jx  . The interpolation of values for 

 1 2,z x x  is realized as illustrated in Fig. 22. First, the interval {j} which corresponds to the 
transformed given value 2x  is determined. Then the auxiliary values jz  and 1jz   are 
determined by cubic spline interpolation along the corresponding grid lines j and j + 1 for the 
transformed given value 1x . Afterwards, the value for  1 2,z x x  is calculated by linear 
interpolation between jz  and 1jz   for the transformed given value 2x . In the vicinity of a 
region boundary, the Bz  value at the region boundary itself is used for the interpolation as 
shown in Fig. 23. The grid optimization method is summarized in Appendix A1. 

Figure 20: Rectangular grid of nodes with 
areas beyond the region 
boundaries (grey), where nodes 
need to be extrapolated. 

Figure 21: Distribution of nodes along 
constant values of 2x  with 
independent numbers and 
locations along 1x . 

 

Figure 22: Interpolation of  1 2,z x x  from 
the auxiliary values jz  and 

1jz  . 

Figure 23: Interpolation of  1 2,z x x  from 
the auxiliary values Bz  and 

1jz  .
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Variable transformations of the form  1 1 1,B 2x x x x   or  2 2 2,B 1x x x x   have been 
proposed by Müller [25] to shift the nodes onto the region boundary B as illustrated in Figs. 24 
and 25. The same approach was also employed by Gräber et al. [48] for property calculations 
from bicubic splines functions. For the proposed variable transformations, the values at the 
region boundary need to be computed first. In previous studies, for instance in [49], it was 
proposed to determine the nodes beyond the considered range of validity by extrapolation. In 
some cases this can simply be done with the underlying function. In other cases a suitable 
extrapolation algorithm has to be applied. In [48] the following statement can be found: “Many 
thermodynamic properties exhibit discontinuities of the first derivative or even jumps at the 
saturation curve. With the approach of Kunick et al. (2008), the saturation curve runs across the 
interpolation grid. This leads to either very inaccurate data or a comparable high number of grid 
nodes.” This is not right. The concerning article [49] clearly describes that all nodes were 
calculated from the underlying equation of state and extrapolations were made where required. 
Moreover, the grid of nodes and the resulting deviations from the underlying equation of state 
are given. The variable transformation described above has neither an influence on the local 
node density nor does it linearize the property function. But it extends the computing time. 
Therefore, the z  values at the nodes outside the range of validity should be obtained from 
appropriate extrapolations, for instance from the underlying equation of state. 

 

Figure 24: Projection of the grid of nodes 
in the  1 2,x x  plane. 

Figure 25: Projection of the grid of nodes 
in the  1 2,x x  plane.
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2.4.3 Thermodynamic Consistency of Table Look-up Methods 

As stressed by Swesty [41], a table look-up method must ensure thermodynamic consistency 
for the provided property functions. Otherwise, thermodynamic inconsistencies may lead to 
unphysical behavior in process simulations. If, for instance, the thermodynamic properties 
pressure p and entropy s are calculated from specific volume and internal energy (v,u), then 
thermodynamic consistency requires that 

 , u

s

v

s
vu

p v u
sv
u

 
           
  

.  (2.87) 

If such equations are not satisfied, then the evaluation of the balance equations for mass, energy, 
and entropy for finite differences may lead to unphysical production or loss of these quantities. 

By definition, thermodynamic consistency can only be realized if all thermodynamic 
properties are derived from the same description of a thermodynamic potential (see Sec. 2.2). 
To ensure continuity for the required property functions, this description must be at least two 
times continuously differentiable. The equations employed in a table look-up method are 
frequently simple polynomials, which require very short computing times. A polynomial 
equation of at least third degree would be required to fulfill the aforementioned differentiability. 
The computational effort to calculate an inverse function from a polynomial increases with its 
degree. Therefore, fluid properties are often interpolated from separate look-up tables for each 
property with lower order polynomials, rather than from a tabulated thermodynamic potential 
with higher order polynomials. Such an approach does not provide full thermodynamic 
consistency. If all properties including their derivatives and inverse functions are uniquely 
defined, then the property formulation is said to be numerically consistent. If the tabulated 
properties are derived from the same thermodynamic potential and the applied interpolation 
method describes these properties with very high accuracy, then the resulting property 
formulation is quasi thermodynamically consistent. 

The importance of thermodynamic consistency is also discussed in the documentation of the 
CFD software ANSYS CFX [50]. Nevertheless, for fast property calculations, look-up tables 
based on cubic equations of state or IAPWS-IF97 are generated in this software [51]. The fluid 
properties are tabulated as functions of pressure and temperature. The default tolerances for the 
bilinearly interpolated enthalpy and entropy values are set to 1% and 3%, respectively. 
According to [51], these tolerances are adequate for property calculations in CFD. A table look-
up method that is quasi thermodynamically consistent should therefore be applicable in process 
simulations without limitations. 
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2.5 Computing Time 

The computing time an algorithm requires for its execution in a specific environment 
(hardware and operating system) depends on its computational costs regarding the applied 
mathematical operations, conditional constructs, loops, memory access, etc., as described in 
Sec. 2.5.1. With regard to these computational costs, the considered algorithm must be 
implemented efficiently to achieve short computing times. In Sec. 2.5.2 several possible 
optimizations for computationally efficient property calculations are discussed. The computing 
times of the several property calculation algorithms are compared to each other in Sec. 2.5.3. 

The test procedures for the computing times of various operations and property calculation 
algorithms, see Secs. 2.5.1 and 2.5.3, have been compiled into single-threaded 32-bit programs 
with the Intel Composer 2011 with default options. The tests were carried out on a Windows 8 
computer equipped with an Intel Core i7-3840QM CPU with 2.8 GHz and 16 GB RAM. 

2.5.1 Computing Times of Various Operations 

In order to understand and to optimize the computing speed of an algorithm, some important 
aspects about the execution of various operations on a modern computer are summarized here. 
The information provided below applies to standard personal computers (PCs) with Windows, 
Linux, or Mac operating systems (32-bit or 64-bit). It is assumed that the algorithms are 
compiled into executable binary code directly, which is usually the case for FORTRAN and 
C/C++ compilers. 

The computing times of various mathematical operations for double precision floating point 
operands are described in Table 7. Additions, subtractions, multiplications, divisions, and 
square roots are performed as single instructions on the CPU, while power functions, 
exponential functions, and logarithms are calculated using math libraries provided with the 
compilers. As described in [52], modern CPUs have two or more execution units for integer 
operations, one execution unit for floating point multiplications, and one execution unit for 
floating point additions. This enables the processor to perform certain operations, for instance 
a floating point addition ( )a b  and a floating point multiplication ( )c d , at the same time. 
Moreover, an execution unit can start an operation before the preceding operation is completed. 
This is beneficial if the operations are independent from each other, such as the multiplications 
in ( )a b c d   . In this context, the latency of an instruction is defined as the number of clock 
cycles it takes to have the resulting data available for use by another instruction. The throughput 
is defined as the number of clock cycles it takes for the instruction unit to accept the next 
instruction of the same kind. Therefore, in expressions where the operations are dependent on 
each other, such as in   x a x b x    , the latency of the operations must be considered. For 
this example, the latency is 16 clock cycles for two multiplications and the two additions, which 
is 5.33  times longer than the latency of an addition. The expression a b c d e     requires 
the exact same operations, but the multiplications ( )a b  and ( )c d  are independent of each 
other and can therefore be calculated in 5 + 1 = 6 clock cycles. The additions take additional 
3 + 3 = 6 clock cycles, so that the entire expression is computed in 12 clock cycles, which is 4 
times longer than the latency of an addition.
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For the mathematical operations that are performed by compiler specific math libraries, such 
as power functions, exponential functions, and logarithms, the latencies are operand dependent 
and no definite values are provided in the literature. In order to provide average values for these 
functions, the computing times of their implementations as Intel Intrinsic Functions [55] have 
been measured. Profilers, as provided with many compilers, are unsuitable for such 
measurements. This is because the computing times of the expressions considered here are often 
smaller than the time resolution a profiler permits. Therefore, a program has been developed in 
this work to determine the latencies of mathematical operations. For verification, the reference 
values for the latencies given in Table 7 have been reproduced and the theoretical value for the 
latency of 4 a  has been confirmed. The average latencies for ba , ae , and ln( )a with  randomly 
distributed values for the operands a and b in the ranges described in Table 8 have been 
determined. 

Table 8: Ranges for operands a and b in ba , ae , and ln( )a for latency measurements 

Operation min maxa a a   min maxb b b   

ba  0.1 10a   0.001 10a   

ae  0.001 100a   - 

ln( )a  0.001 1000a   - 

 

The computing time required for branch predictions of conditional constructs, such as “if-
then-else” or “switch” statements, depends on their predictability. Whereas the correct 
prediction of a branch adds 0-2 additional clock cycles, a branch misprediction adds 12-25 clock 
cycles [52]. Loops with a low and fixed number of repetitions can be predicted perfectly. It is 
less efficient if the number of repetitions depends on calculations in the loop, but for some tasks, 
such as iteration methods, this cannot be avoided. More detailed information on branch 
prediction is provided in [56].  

The computational speed of memory access operations depends on the location of the 
affected variable. If the variable is stored in the CPU’s register already, the computing time of 
a read operation is ≤ 1 clock cycle. If the variable has to be fetched from the random access 
memory (RAM) this may require more than 100 clock cycles. To accelerate memory access 
operations, modern CPUs are equipped with caches. Fetching data from the cache memory is 
much faster than from the RAM. Since the sizes of the different cache levels are rather small, 
modern CPUs automatically prefetch data to the cache. If a variable cannot be fetched from the 
cache, this is called a “cache miss”. To minimize cache misses, data that is used together should 
be stored together. Since memory access latencies depend on core frequency, RAM speed, etc., 
no definite values are provided in the literature. Table 9 provides rough approximations of 
memory access latencies for the Intel® Xeon® Processor 5500 Series, as reported in [57]. 
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Table 9: Memory access latencies for the Intel® Xeon® Processor 5500 Series as given in [57] 

Data source Latency [clock cycles] (rough approximation) 

Level 1 cache 4 

Level 2 cache 10 

Level 3 cache 40 

RAM 100-150 

 

The computational costs of mathematical operations dominate for thermodynamic and 
transport property equations. For complex cell-search algorithms in table look-up methods, 
branch mispredictions can have a considerable influence on computing times. While the 
computing-time consumption of memory access can be neglected for the computation of 
thermodynamic and transport property equations, it can become noticeable when using table 
look-up methods with a large amount of data. The actual effect of cache misses must be tested 
in the process simulation where the property calculation algorithms are applied. 

 

2.5.2 Computationally Efficient Implementation of Property Formulations 

The computing time of an algorithm in a specific hardware and software environment 
depends on the way it is implemented. In many situations, several different implementations of 
the same algorithm are possible, leading to very different computing times. Some examples for 
computationally efficient implementations are discussed in this section. 

As described in Table 7 in the previous section, the power function ba  is comparatively slow 
and should therefore be avoided if possible. For integer exponents b, ba  should therefore be 
calculated as 

1

b
b

i

a a


 . (2.88) 

This optimization will be performed automatically by some compilers if b is known at compile 
time. Similarly, the implementation of polynomial equations can take advantage of Horner’s 
method, which can be written as 

  0 1 2
0

... ...
I

i
i I

i

a x a x a x a xa


     . (2.89) 

The factorized expression on the right hand side is computationally more efficient than the 
calculation with power functions shown on the left hand side. Thus, Horner’s method can be 
advantageously used for calculating the polynomial for the isobaric heat capacity of the ideal-
gas given by Eq. (2.2) for instance. In simple cases, the factorization will be performed by the 
compiler if the exponents are known at compile time. Trübenbach [58] has developed an 
algorithm to efficiently factorize more complex polynomial equations such as the basic equation 
for region 2 of IAPWS-IF97, Eq. (2.27). Analogously, Horner’s method can also be applied to 
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the residual part of the short fundamental equation of state for water, Eq. (2.24). In this equation, 
all exponents of the inverse reduced temperature   are multiples of 1/8. Therefore, if 8   
is calculated once, the equation can be rewritten as a polynomial function in terms of   and   
and Horner’s method can be applied. However, the natural exponential function in the terms 
i = 8,…,16 in Eq. (2.24) would have to be calculated in advance. 

For the more general case with rational exponents of  and , a combination of logarithm 
rules is applied in REFPROP [59] to calculate the residual terms of the Helmholtz free energy 
of the form 

   r , exp ( , )i id t
i i in f       . (2.90) 

The natural logarithms of  and  are calculated once and each term is then computed from 

      r , exp ln ln ( , )i i i i in d t f         . (2.91) 

The non-analytical terms i = 55,56 in Eq. (2.22) are computed in a similar manner. It is often 
useful to store the values of the terms r

i  along with some other expressions dependent on  
and  for later use. 

For many thermodynamic properties, several derivatives of the fundamental equation of state 
are required. It is advantageous to express the derivatives of each term r

i  as a product of r
i  

itself and a factor  n
iF  or  m

iF  for the considered derivative, where the superscripts  n  
and  m  denote the n-th derivative with respect to  and the m-th derivative with respect to . 
As shown in Appendix A2, the factors  n

iF  and  m
iF  can be determined recursively from 

( ) ( 1) ( 1)
, ( 1)n n n

ii iiF F F F n   
         , (2.92) 

( ) ( 1) ( 1)
, ( 1)m m m

ii i iF F F F m   
         , (2.93) 

with 
(0) 1iF  , (2.94) 

(0) 1iF  , (2.95) 

  ( 1) ( 1) ( 1)
,, ,, 2n n n

i iii i
n

iF F F F n F F   
            , (2.96) 

and 
  ( 1) ( 1) ( 1)

,, ,, 2m m m
i ii i i

m
iF F F F m F F    

            . (2.97) 

The derivatives of the terms are then calculated from 

( )r r
, ( )

nn
i n i iF
     (2.98) 

and 
( )r r

, ( )
mm

i m i iF
    . (2.99) 

If the factor  1
iF  is independent from  and  1

iF  is independent from , then the crossed 
derivatives can simply be calculated from 
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( ) ( )r r
, ( ), ( )

n mn m
i n m i i iF F 
      . (2.100) 

Eq. (2.100) can be used for all term forms appearing in Eq. (2.22) except for the non-analytical 
terms i = 55,56, where the product rule for higher order derivatives must be employed. 

The calculation scheme presented above can also be used for other types of equations of 
state or transport property equations. 

To calculate fluid properties from input variables other than temperature and density, 
efficient iteration procedures need to be applied. If analytical derivatives are available, the 
required property function can be calculated by iteration using Newton’s or Halley’s method. 
Using Newton’s method, the root of a one-dimensional function  f x  is determined by the 
iteration procedure 

 
 1

k
k k

k

f x
x x

f x  


. (2.101) 

This procedure begins with a starting value 0x  and is repeated until  kf x TOL . The 
iteration procedure of Halley’s second order method reads 

   
     

1 2

2

2

k k
k k

k k k

f x f x
x x

f x f x f x



 

    
. (2.102) 

Both methods are applicable to multi-dimensional problems as well. For example, the iteration 
procedure of Newton’s method for a system of non-linear equations F(X) is written as 

   k k k J X X F X  (2.103) 

and 

1k k k   X X X , (2.104) 

where F is the vector of functions if  and X is vector of unknowns jx .  In each iteration step k 
the Jacobian matrix  kJ X  must be determined, before the system of linear equations Eq. 
(2.103) is solved. The element of the Jacobian matrix in the i-th row and the j-th column reads 

 ,
i

i j k
j

f

x





J X . 

In the Appendices A3 and A4, computationally efficient formulations of Newton’s method for 
two and three non-linear equations are given. 

The linearization of the iterated function through the use of variable transformations can 
drastically reduce the required number of iterations. Neither Newton’s nor Halley’s method 
guarantees convergence. Therefore, sufficiently accurate starting values need to be provided. 
As an alternative, the Dekker-Brent algorithm [60] is recommended for one-dimensional 
iterations. For this method, convergence is guaranteed if the root is located in the given interval 
and the function is continuous. The Dekker-Brent algorithm does not require analytical 
derivatives of the function to be iterated and provides an at least linear rate of convergence. 
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2.5.3 Computing-Time Comparisons 

In this section, the computing times of the ideal-gas model, the Peng-Robinson equation of 
state [14] (PR-EOS), IAPWS-95 [2], the short fundamental equation of state (ShortFEOS) for 
water by Kunz et al. [21], IAPWS-IF97 [4], IAPWS-IF97 backward equations [4] (IF97-BWE), 
and the TTSE method [10] (see Secs. 2.1 – 2.4) are compared with each other. In order to do 
so, the computing times of the property functions for p(v,u), T(v,u), T(p,h), and v(p,h) have been 
determined and compared with those of the iterative calculations from the Peng-Robinson 
equation of state. For this purpose, the so-called Computing-Time Ratio (CTR) has been 
determined, which is defined as 

Computing time for the iterative calculation from the PR-EOS

Computing time for the calculation from the considered algorithm
CTR  . 

The considered property calculation algorithms have been optimized for computing speed as 
described in Sec. 2.5.2. For the isobaric heat capacity of the ideal gas o

pc , Eq. (2.2), as well as 
its integrals used in conjunction with the ideal-gas equation, Eq. (2.1), and the Peng-Robinson 
equation, Eq. (2.7), Horner’s method is applied. The IAPWS-IF97 basic functions and their 
derivatives are also implemented using this method. The derivatives of the Helmholtz free 
energy equation of IAPWS-95 [2] and the short fundamental equation of state of Kunz et al. 
[21] are computed with the well optimized internal routines of REFPROP [59]. REFPROP’s 
internal iteration procedures for functions of (v,u) or (p,h) are implemented to ensure 
convergence for all calculable fluids. The determination of starting values has a more general 
nature and the iteration procedure relies on an algorithm with bisection. For the test calculations 
presented here, Newton’s method for either one or two dimensions (see Sec. 2.5.2) with 
analytical derivatives is applied instead. The stopping criteria for these iterative calculations 
with regard to the independent variables are as follows: 

v: 
610

v

v


 , 

u < 1 kJ/kg: 610 kJ/kgu   , u ≥ 1 kJ/kg: 
610

u

u


 , 

p: 610
p

p


 , 

h < 1 kJ/kg: 610 kJ/kgh   , h ≥ 1 kJ/kg: 
610

h

h


 . 

The starting values for T(p,h) and v(p,h) of IAPWS-IF97 are determined from the corresponding 
backward equations [4]. For all other cases, the starting values are determined from simple 
approximations, for instance from the ideal-gas model with constant heat capacities. Since the 
independent variables of the various equations of state are either (T,v) or (p,T), the 
determination of the starting values differs among the tested property calculation algorithms. 
To consider the influence of the different algorithms for the starting values, the average number 
of iterations (ANI) has been determined in addition to the CTR values. It is assumed that the 
phase that corresponds to the given inputs is known for all calculations. Otherwise, the 
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saturation properties at vapor-liquid equilibrium would have to be determined first. If these 
properties are calculated from the Maxwell criterion, the computing time of the phase test is 
considerably higher than that of the actual property calculation. 

The computing times were measured by means of a software similar to NIFBENCH [4] with 
100,000 randomly distributed state points in the corresponding region of IAPWS-IF97. The test 
calculations were carried out for the liquid region 1 and the vapor region 2 (see Fig. 7). The 
employed compiler to build the test programs and the computer to run the test calculations are 
described at the beginning of Sec. 2.5. The results of the computing-time comparisons are 
summarized in Tables 10, 11, 12, and 13. These tables also show the average number of 
iterations it takes for each algorithm to converge for the given starting values and the defined 
stopping criteria. The tested property calculation algorithms have been conscientiously 
implemented. However, it must be noted that the results of computing-time comparisons are 
always implementation dependent and should be considered as such. 

The computing times of the Peng-Robinson equation of state may be considered as just 
acceptable for extensive process simulations, such as CFD. In the vapor phase, the (v,u) 
property functions calculated from IAPWS-95 are at least 100 times slower than those 
calculated from the Peng-Robinson equation of state. With regard to the property functions of 
(p,h), IAPWS-95 is at least 45 times slower than the Peng-Robinson equation. Although 
calculations from the short fundamental equation of state for water are roughly 4 times faster 
than those from IAPWS-95, this equation is still much too slow for extensive process 
simulations. The example of T(p,h) shows that the IAPWS-IF97 backward equations are at least 
7 times faster than the iterative calculations from the Peng-Robinson equation. However, the 
numerical inconsistencies between the backward equations and the basic equations of IAPWS-
IF97 may lead to convergence problems in simulations with very small spatial or time 
discretization. In these situations, inverse property functions must be calculated by iteration 
from the basic equations of IAPWS-IF97 with starting values determined from the available 
backward equations. The computing speeds of the resulting property functions for T(p,h) are 
similar to those of the Peng-Robinson equation of state. In order to provide high accuracy, short 
computing times, and numerically consistent inverse functions, table look-up methods can be 
applied to accurate fundamental equations of state. In some process simulation codes, such as 
in ANSYS CFX [51], a simple table look-up method is applied even to the Peng-Robinson 
equation to reduce the computing times. The computing-time comparisons show that the 
IAPWS-95 based TTSE property functions for T(p,h) are at least 4 times faster than those of 
the Peng-Robinson equation. Due to the discontinuous behavior of the TTSE property 
functions, the TTSE method cannot be used for simulations with small spatial or time 
discretizations. 
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Table 10: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state 
along with the average number of iterations (ANI) for p(v,u) computed from various 
property calculation algorithms in the liquid region 1 and the vapor region 2 of 
IAPWS-IF97 

p(v,u) 

Algorithm 

IAPWS-IF97 Region 1 (liquid) IAPWS-IF97 Region 2 (vapor) 

ANI CTR ANI CTR 

Ideal gas - - 3.83 1.48 

Peng-Robinson 3 1.00 3.08 1.00 

IAPWS-IF97 2.94 1/6.08 3.64 1/11.1 

Short FEOS 2.99 1/20.1 3.63 1/23.3 

IAPWS-95 2.94 1/76.9 3.68 1/93.0 

 

Table 11: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state 
along with the average number of iterations (ANI) for T(v,u) computed from various 
property calculation algorithms in the liquid region 1 and the vapor region 2 of 
IAPWS-IF97 

T(v,u) 

Algorithm 

IAPWS-IF97 Region 1 (liquid) IAPWS-IF97 Region 2 (vapor) 

ANI CTR ANI CTR 

Ideal gas - - 3.83 1.48 

Peng-Robinson 3 1.00 3.08 1.00 

IAPWS-IF97 2.94 1/6.18 3.64 1/11.3 

Short FEOS 2.99 1/20.1 3.63 1/23.3 

IAPWS-95 2.94 1/76.9 3.68 1/93.0 
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Table 12: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state 
along with the average number of iterations (ANI) for T(p,h) computed from various 
property calculation algorithms in the liquid region 1 and the vapor region 2 of 
IAPWS-IF97 

T(p,h) 

Algorithm 

IAPWS-IF97 region 1 (liquid) IAPWS-IF97 region 2 (vapor) 

ANI CTR ANI CTR 

Ideal gas - - 3.68 3.66 

Peng-Robinson 5.72 1.00 3.47 1.00 

IF97-BWE - 31.0 - 7.83 

IAPWS-IF97 1.99 a 2.51 a 2.02 a 1.01 a 

Short FEOS 4.56 1/10.0 3.63 1/13.2 

IAPWS-95 4.2 1/33.9 3.62 1/47.4 

TTSE - 7.33 - 4.61 

a The starting values for the iteration from the IAPWS-IF97 basic equations are obtained from 
the corresponding backward equations for T(p,h). 

 

Table 13: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state 
along with the average number of iterations (ANI) for v(p,h) computed from various 
property calculation algorithms in the liquid region 1 and the vapor region 2 of 
IAPWS-IF97 

v(p,h) 

Algorithm 

IAPWS-IF97 region 1 (liquid) IAPWS-IF97 region 2 (vapor) 

ANI CTR ANI CTR 

Ideal gas - - 3.68 3.64 

Peng-Robinson 5.72 1.00 3.47 1.00 

IF97-BWE - 7.05 a - 2.53 a 

IAPWS-IF97 1.99 a 1.86 a 2.02 a 1/1.28 a 

Short FEOS 4.56 1/10.2 3.63 1/13.3 

IAPWS-95 4.2 1/33.8 3.62 1/47.8 

TTSE - 7.46 - 4.48 

a The starting values for the iteration from the IAPWS-IF97 basic equations are obtained from 
the corresponding backward equations for T(p,h). 
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2.6 Conclusions for the Development of a Fast and Accurate Property 
Calculation Method for Extensive Process Simulations 

The fluid property functions applied in extensive process simulations, such as transient CFD 
or heat cycle calculations, need to meet the contradictory demands regarding high accuracy and 
very short computing times. Moreover, these property functions need to be thermodynamically 
and numerically consistent with each other. 

The discussion of the available property calculation algorithms in the previous sections 
shows that the calculation of fluid properties from equations of state is always a trade-off 
between accuracy and computing speed. While reference equations of state, e.g., IAPWS-95 
for water and steam, provide the highest accuracy and reasonable extrapolation behavior, their 
computing speed is very slow. Short fundamental equations of state are sufficiently accurate 
for industrial calculations and certainly faster than reference equations of state. However, they 
are still too slow for a direct application in extensive process simulations such as CFD. The 
fastest thermodynamically consistent approach is given by fundamental equations of state for 
separate regions in conjunction with backward equations. The development of such equations 
is a very time consuming task. Therefore, this was realized for the industrial formulation 
IAPWS-IF97 for water and steam only. To meet the high demands regarding the numerical 
consistency in numerical process simulations with small spatial and time discretizations, 
inverse functions of (v,u), (p,h), (p,s), and (h,s) must be calculated by iteration. For calculations 
from (p,h), (p,s), and (h,s) inputs, the available backward equations should be used to compute 
the starting values. Backward equations for other pairs of variables, such as (v,u) or (p,v), are 
not available. Due to the necessity of iterative procedures for property functions of these pairs 
of variables, even IAPWS-IF97 is too slow for a direct application in CFD. 

Table look-up methods provide an alternative for fast and accurate property calculations. 
These methods can be flexibly applied to any existing equation of state or transport property 
equation. Therefore, the development of an advanced table look-up method for property 
calculations in CFD and other extensive process simulations is pursued in this work. The 
capabilities and limitations of different table look-up methods have been discussed in Sec. 2.4. 
Generally, the accuracy of these methods is determined by the number and the distribution of 
the tabulated data points, the so called nodes, and the applied algorithm to interpolate or 
approximate the values between them. In order to enhance the accuracy of a table look-up 
method, the function to be interpolated should be linearized by means of suitable variable 
transformations. If the fluid properties are calculated from separate look-up tables rather than 
from a tabulated thermodynamic potential, then the accuracy of the resulting fluid property 
functions must not only meet the requirements of the process simulation, but also needs to 
ensure a certain thermodynamic consistency (see Sec. 2.4.3). 

The computing time of a table look-up method largely depends on the desired search 
algorithm to identify the interval or cell, which corresponds to the given variables. To simplify 
these algorithms for two-dimensional functions, the nodes are often ordered in rectangular grids 
with rectangular cells. For some of the table look-up methods currently applied, for instance in 
[10] and in [25], the nodes in these grids are clustered in regions with strong curvature to 
achieve the required accuracy. For some other methods, for instance in [37] and in [50], the 
look-up tables are not prepared for the independent variables that are actually used most often 
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for property calculations. For all these methods iterative cell search algorithms are required, 
which suffer from branch mispredictions (see Sec. 2.5.1) and prolong the computing times. To 
further simplify the search algorithms, equidistant nodes are preferable. To meet the 
requirements of extensive process simulations, the computational speed of the newly developed 
table look-up method should be comparable to or less than that of the IAPWS-IF97 backward 
equations. 

Some of the discussed table look-up methods do not fulfill the requirements regarding the 
differentiability of the provided property functions and are therefore not recommended for 
extensive process simulations. As discussed in Secs. 2.4.1.3 and 2.4.2.3, spline interpolation 
algorithms are capable of representing property functions continuously. A polynomial spline 
function of N-th degree can be (N  1) times continuously differentiable. The spline polynomials 
can be computed with very low computational effort and are therefore very fast. Moreover, 
spline polynomials of a degree lower than five can be solved analytically for their independent 
variables. This enables numerically consistent inverse functions. However, the analytical 
solution of third or higher order polynomials involves the evaluation of some transcendental 
functions, which are computationally expensive. Second order polynomials can be solved very 
efficiently and fulfill the differentiability requirements of most process simulations. Therefore, 
the newly developed table look-up method should employ spline interpolation methods, 
preferably with second order polynomials. 

Many two-dimensional spline interpolation methods require the definition of a rectangular 
grid of nodes over a rectangular domain. This rectangular domain must include the range of 
validity, which is irregularly shaped in the general case. In some cases it is sufficient to 
extrapolate the nodes beyond the range of validity appropriately. For other cases, efficient 
algorithms are required to transform the range of validity into a rectangular shape and to control 
the local node density. 

In order to make the new table look-up method applicable to any one- or two-dimensional 
property function, a suitable software tool needs to be developed. 
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3 The Spline-Based Table Look-Up Method (SBTL) 

The Spline-Based Table Look-Up method (SBTL) applies polynomial spline interpolation 
techniques to approximate the results of existing equations of state, with high accuracy and low 
computing time. The accuracy, computing time, and memory storage advantages are enabled 
with specialized coordinate transformations and simplified search algorithms as described 
below. The properties in the single-phase regions, such as T(p,h), are represented by two-
dimensional spline functions in the common form SPL

1 2( , )z x x , whereas the phase boundaries, 
such as s ( )T p , are represented by one-dimensional spline functions SPL

1( )z x . Algorithms for 
calculating properties in the two-phase region that are consistent with those of the single-phase 
regions are also provided. The explanations given in this section are similar to those already 
published in [61], but are extended for the sake of completeness. 

3.1 One-Dimensional Spline Functions 

3.1.1 Spline Functions 

A one-dimensional polynomial spline function SPL
1( )z x  is a continuous, piecewise-defined 

function consisting of several spline polynomials. The spline function interpolates values 
between a series of discrete data points, the so-called nodes (see Fig. 26). The number I and the 
location 1,ix  of the nodes are chosen to ensure the desired accuracy. The 1,( )i iz x  values of the 
nodes are calculated from the underlying function 1( )z x . The spline polynomials are connected 
at knots, which can either be equal or unequal to the nodes. For the SBTL method, the knots 
are located at the midpoint between the nodes along 1x , which results in symmetric boundary 
conditions leading to superior accuracy [23]. A spline polynomial ranges over the interval {i} 
between two knots and intersects the node (i) within. The z positions of the knots result from 
the spline algorithm as explained below. 

In most numerical process simulations, fluid property functions need to be continuously 
differentiable once. The quadratic spline function is the simplest approach to continuously 
represent a one-dimensional function and its first derivative. Furthermore, the quadratic spline 
polynomial can easily be inverted. This enables the calculation of numerically consistent 
backward functions, which are the so-called inverse spline functions. Therefore, in this 
document the calculation of properties with the SBTL method is carried out through the use of 
quadratic spline polynomials, as opposed to higher order polynomials, to create a spline 
function SPL

1( )z x  from the underlying function 1( )z x . 

In order to increase the accuracy of the spline function, both the independent variable 1x  and 
the dependent variable z are transformed into 1x  and z , respectively, so that the transformed 
spline function yields SPL

1( )z x . A description of the transformations for one-dimensional 
spline functions can be found in Sec. 3.1.2. 

The spline function is created in transformed coordinates through the use of quadratic spline 
polynomials 

     
3 1

1 1 1,
1

k
ik ii

k

z x a x x



  , (3.1a) 
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where 1x  is the transformed independent variable and { }iz  is the transformed dependent variable 
in the interval {i}. In Eq. (3.1a), 1,ix  is the transformed value of the independent variable at the 
node (i), and ika  are the three coefficients of the quadratic spline polynomial valid in the 
interval {i}. Eq. (3.1a) can also be written as 

       21 1 2 1 1, 3 1 1,i i i i iiz x a a x x a x x     . (3.1b) 

The I polynomials are connected at knots aligned as shown in Fig. 26, where I denotes the 
number of nodes along 1x . Each polynomial    1iz x  is used in an interval {i} and intersects 
the node (i) at 1,( )i iz x . 

Figure 26: Series of nodes and series of knots with interval {i} and spline polynomial    1iz x . 

 
The K

1,ix  values of the I + 1 knots are located at the midpoint between the nodes along 1x , so 
that 

 K
1, 1 1, 1, 1

1

2i i ix x x   , 1, ... , 1i I   (3.2) 

 K
1,1 1,1 1,2 1,1

1

2
x x x x   , and   K

1, 1 1, 1, 1, 1
1

2I I I Ix x x x    . (3.3, 3.4) 

The number of nodes I is chosen to ensure the required accuracy of the spline function over 
its full domain of definition    1,1 1 1,min 1, 1 1,max, Ix x x x x x    . The nodes are distributed 
equidistantly along 1x  so that a simple search algorithm can be used to determine the 
interval {i} in the series of knots that fulfills K K

1, 1 1, 1i ix x x    for a given transformed variable 

1x . For equidistant nodes, and therefore equidistant knots, i can easily be calculated from 

z
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K
1 1,1

K
1

floor
x x

i
x

 
 
  

. (3.5) 

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes, 
in ranges for which 1 1, 1 1,i ix x x    is constant. Furthermore, the node spacing along 1x  
depends on the transformation  1 1x x . Basic principles of transformation techniques are 
outlined in Sec. 3.1.2. 

The 3I coefficients ika  of the I spline polynomials are obtained from the following 
conditions. Each of the I polynomials    1iz x  must intersect the node (i) 

     1, 1,i i iiz x z x  1, ... , i I . (3.6) 

Furthermore, the z  values at the inner I  1 knots have to be equal for the adjacent polynomials 

       K K
1, 1 1, 11i ii iz x z x   1, ... , 1i I  . (3.7) 

The derivative  1d dz x  at each of these knots must also be equal 

 
 

 
 K K

1, 1 1, 1
1 1 1

d d

d di i
i i

z z
x x

x x 


  1, ... , 1i I  . (3.8) 

At the outer knots, these derivatives are to be calculated from the underlying function  1z x  
with 

 
   K K

1,1 1,1
1 11

d d

d d
i

z z
x x

x x

  and 
 

   K K
1, 1 1, 1

1 1

d d

d dI I
i I

z z
x x

x x 


 , (3.9, 3.10) 

where 

1

1 1 1

dd d d

d d d d

xz z z

x z x x
 . 

A comprehensive description of the method along with a computationally efficient 
implementation is given by Späth [23], where the function values at the outer knots are given 
instead of the derivatives, Eqs. (3.9) and (3.10). The linear system of 3I equations, Eqs. (3.6) – 
(3.10), is reduced to the I  1 equations 

   
K K

1,2

1,1 1,1 1,2 1 1,1 1,2 12 3

K
2 1 1,12

1,1 11,1

1 5 d 1 d

2 d d

4 1 d
                           

2 d

i i

i i

x z z

x x x x x x x

z
z z x

x xx
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          

  


,  (3.11) 
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1, 1, 1 1, 1, 1, 1 1 1
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
 
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 2, ... , 2i I  , (3.12) 

and 
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   
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1, 2 1, 1 1 1, 1 1, 2 1, 1 11
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.  (3.13) 

The variables 1,ix  in the equations above are defined as 

1, 1, 1 1,i i ix x x   .  (3.14) 

The Eqs. (3.11) – (3.13) are solved for the unknown derivatives K1d d
i

z x  at the knots 
K 2, ... , i I . The coefficients ika  are then obtained from 

 1 1,i i ia z x  1, ... , i I , (3.15) 

K K
2 1, 1 1,

1, 1 1, 1 11

1 d d

d di i i
i i i i

z z
a x x

x x x x
 

 
         

 1, ... , i I , (3.16) 

and 

K K
3

1, 1 1, 1 11

1 d d

d di
i i i i

z z
a

x x x x 

 
       

 1, ... , i I . (3.17) 

In Eqs. (3.16) and (3.17), the values of 1,0x  and 1,Ix  are 

1,0 1,1x x    and 1, 1, 1I Ix x    . (3.18, 3.19) 

Once all the coefficients ika  are determined, they are stored together with the values of the 
nodes and knots in a look-up table. In order to calculate SPL

1( )z x , the variable 1x  is first 
transformed into 1x  with the transformation function 1 1( )x x . From Eq. (3.5), the index i of the 
interval is then determined. Finally, the transformed variable z  is calculated from the spline 
polynomial   1( )iz x , Eq. (3.1), and converted to z with the inverse transformation function 

( )z z . 

3.1.2 Transformations 

In order to increase the accuracy of a quadratic spline function, the coordinates are 
transformed in such a way that the third derivative, i.e., the change in curvature, is reduced. 
Both the independent variable 1x  and the dependent variable z can be transformed with 
functions of the form 1 1( )x x  and ( )z z . If ( )z z  is nearly proportional to 1 1( )x x , then the change 
in curvature of the transformed function 1( )z x  is smaller than that of 1( )z x . 

The transformation functions are continuous and monotonic. An analytic solution for the 
inverse transformation function ( )z z  is provided. For the inverse spline function INV

1 ( )x z , the 
inverse transformation function 1 1( )x x  should also be analytical. 

The effect of variable transformations is illustrated in Figs. 27 and 28. The untransformed 
function, see Fig. 27, exhibits a non-zero third derivative, which cannot be described with a 
quadratic function. If, for instance, z is nearly proportional to 1 1( )x x , see Fig. 28, the accuracy 
of the interpolation between the nodes increases because the spline polynomial can better 
reproduce the transformed function. 
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Figure 27: Untransformed function 1( )z x  with 
nodes equidistant in 1x , rather than 
in 1x . 

Figure 28: Transformed function 1( )z x  with 
nodes equidistant in 1x .

In many cases, several alternatives of analogous transformations of z and 1x  are feasible. 
Due to more suitable node distributions, the transformation of 1x  into 1x  is usually superior to 
the transformation of z. Another useful approach to efficiently reduce the change in curvature 
is a transformation of the form 1( , )z z x . If required, the accuracy and computing time of the 
spline function itself, and its inverse spline function, must be assessed for the different 
transformation approaches to determine the trade-off between these criteria. 

The concepts explained above offer several alternatives to create a spline function, and can 
be combined. Considering the requirements for accuracy, computing speed, range of validity, 
and memory consumption, different transformation techniques must be assessed and the most 
suitable variant must be chosen. 

3.1.3 Inverse Spline Functions 

From the spline function  SPL
1z x , the inverse spline function INV

1 ( )x z  can be calculated 
with complete numerical consistency. The transformed variable 1x  is obtained by inverting the 
polynomial    1iz x , Eq. (3.1), in the interval {i}, which results in 

   
  2

INV
1,1,

4

2

i i i i

ii
i

B B A C z
x z x

A

  
   (3.20) 

with 

3i iA a , 

2i iB a , and 

  1i iC z a z  . 

For a monotonic spline polynomial    1iz x  in the interval {i}, the sign () in Eq. (3.20) is 
negative if    2 2

1 1sgn d d d d 0iA z x z x  , otherwise it is positive. The inequality yields 

Node

� �1z x

1,1x 1,Ix 1x

z

1x�

� � 11I x� � �
1x

z

1,Ix1,1x

Node
� �1z x
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0iB  . Therefore, the sign () in Eq. (3.20) equals sgn( )iB  if the spline polynomial is 
monotonic in the interval {i}. 

In order to determine the interval index i from Eq. (3.5) along 1x  for a given z , an auxiliary 
spline function AUX

1 ( )x z  is used to calculate an estimate for 1x . 

The procedure for calculating INV
1 ( )x z  is as follows. First, the variable z is transformed into 

z . The index i of the interval that belongs to z  is determined with the auxiliary spline function 
AUX

1 ( )x z  and Eq. (3.5). The inverse spline polynomial    INV
1, ix z , Eq. (3.20), is then evaluated. 

The result must fulfill the condition K K
1, 1 1, 1i ix x x   ; otherwise, the index i needs to be 

incremented or decremented, and the calculation repeated. Eventually, 1x  is converted to 1x  
with the inverse transformation function 1 1( )x x . 

Non-monotonic functions have two valid solutions in the interval {i} where the extremum 
of  SPL

1z x  is located. This extremum is calculated from 

  1,1,
ˆ

2
i

ii
i

B
x x

A
    and        2

3 1, 2 1, 11, 1,
ˆ ˆˆ

i i i i ii i iz a x x a x x a     . (3.21, 3.22) 

The coefficients of the AUX
1 ( )x z  and  SPL

1z x  spline polynomials along with values of 
nodes and knots are stored together in a look-up table. This table, and the associated algorithm 
for calculating the inverse spline function, is written to a source code file for application in 
computer programs (see Sec. 4). 

3.1.4 Derivatives 

The first derivative of the spline function SPL
1( )z x  with respect to the independent variable 

1x  is calculated analytically from 

   

1

1

1 1 1

d d d

d d d

i i

x

z z xz

x x z x

                      
, (3.23) 

where the derivative of the spline function with the transformed variables, Eq. (3.1), within 
interval  i  is calculated from 

   2 3 1 1,
1

d
2

d

i
i i i

z
a a x x

x

 
    

 
. (3.24) 

The derivative of the general transformation function 1( , )z z x  is simplified to 

1

d

dx

z z

z z

         
 (3.25) 

if the transformation of z  is independent of 1x , i.e., ( )z z z . 
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3.2 Two-Dimensional Spline Functions 

3.2.1 Spline Functions 

A two-dimensional polynomial spline function SPL
1 2( , )z x x  is a continuous, piecewise-

defined function consisting of several spline polynomials. The spline function interpolates 
values between a set of discrete data points, the so-called grid of nodes (see Fig. 29). The 
number of nodes IJ and their  1, 2,,i jx x  locations are chosen to ensure the desired accuracy. 
The 1, 2,( , )ij i jz x x  values of the nodes are calculated from the underlying function 1 2( , )z x x . 
The spline polynomials are connected at knots, which can either be equal or unequal to the 
nodes. For the SBTL method, the knots are located at the midpoint between the nodes along 1x  
and 2x  respectively, which results in symmetric boundary conditions leading to superior 
accuracy [36]. A spline polynomial ranges over a rectangular cell {i,j} between four knots and 
intersects the node within. The z positions of the knots result from the spline algorithm as 
explained below. 

In most numerical process simulations, fluid property functions need to be continuously 
differentiable once. The biquadratic spline polynomial is the simplest approach that is capable 
of fulfilling this requirement. Furthermore, the biquadratic spline polynomial can easily be 
inverted. This enables the calculation of numerically consistent backward functions, the so-
called inverse spline functions. Therefore, in this document the SBTL method is carried out 
through the use of biquadratic spline polynomials as opposed to higher order polynomials to 
create a spline function SPL

1 2( , )z x x  from the underlying function 1 2( , )z x x . 

In order to increase the accuracy of the spline function, both the independent variables 1x  
and 2x , as well as the dependent variable z, are transformed into 1x , 2x , and z  so that the 
transformed spline function yields SPL

1 2( , )z x x . The biquadratic spline interpolation across 
rectangular cells with continuous first derivatives requires a rectangular grid of nodes in the 

1 2( , )x x  projection. Through the use of transformations, the irregularly shaped domain of 
validity of a function can be transformed into a rectangle, and the distribution of nodes can be 
controlled more effectively. Alternatively, the function 1 2( , )z x x  must be extrapolated. A 
description of the transformations for two-dimensional spline functions can be found in 
Sec. 3.2.2. 

The spline function is created in transformed coordinates through the use of biquadratic 
spline polynomials 

       
3 3 11

1 2 1 1, 2 2,,
1 1

,
lk

ijkl i ji j
k l

z x x a x x x x


 
   , (3.26a) 

where 1x  and 2x  represent the transformed independent variables,  ,i jz  is the transformed 
dependent variable in the cell {i,j}, 1,ix  and 2, jx  are the transformed values of the independent 
variables at the node (i,j), and ijkla  are the nine coefficients of the spline polynomial valid in 
the cell {i,j}. Equation (3.26a) can also be written as 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


3.2 Two-Dimensional Spline Functions 57 

 

       
     

     

2
1 2 11 21 1 1, 31 1 1,,

2
12 22 1 1, 32 1 1, 2 2,

22
13 23 1 1, 33 1 1, 2 2,

,

                   

                   

ij ij i ij ii j

ij ij i ij i j

ij ij i ij i j

z x x a a x x a x x

a a x x a x x x x

a a x x a x x x x

    

        
        

. (3.26b) 

It is preferable to connect IJ polynomials at knots aligned as shown in the 1 2( , )x x  projection 
of Fig. 29, where I and J denote the number of grid lines along 1x  and 2x  in the grid of nodes. 
Each polynomial is used in a cell {i,j} and intersects the node   1, 2,, ( , )i ji jz x x  therein. The K

1,ix  
and K

2, jx  values of the (I + 1)(J + 1) knots are located at the midpoint between the nodes along 

1x  and 2x , so that 

 K
1, 1 1, 1, 1

1

2i i ix x x   , 1, ... , 1i I   (3.27) 

 K
2, 1 2, 2, 1

1

2j j jx x x   , 1, ... , 1j J   (3.28) 

 K
1,1 1,1 1,2 1,1

1

2
x x x x   ,  K

1, 1 1, 1, 1, 1
1

2I I I Ix x x x    , (3.29, 3.30) 

 K
2,1 2,1 2,2 2,1

1

2
x x x x   , and  K

2, 1 2, 2, 2, 1
1

2J J J Jx x x x    . (3.31, 3.32) 

Figure 29: Grid of nodes and grid of knots in the  1 2,x x  projection with cell {i,j}, where the 
spline polynomial    1 2, ,i jz x x  is valid. 

The number of nodes IJ is chosen to ensure the required accuracy of the spline function over 
its full domain    1,1 1 1,min 1, 1 1,max, Ix x x x x x     and    2,1 2 2,min 2, 2 2,max, Jx x x x x x    . 
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The nodes are distributed equidistantly along 1x  and 2x , so that a simple search algorithm can 
be used to determine the cell {i,j} in the rectangular grid of knots that fulfills K K

1, 1 1, 1i ix x x    
and K K

2, 2 2, 1j jx x x    for a given pair of transformed variables 1 2( , )x x . For equidistant nodes, 
and therefore equidistant knots, the indices i and j can easily be calculated from 

K
1 1,1

K
1

floor
x x

i
x

 
 
  

 and 
K

2 2,1
K
2

floor
x x

j
x

 
 
  

. (3.33, 3.34) 

The distribution of nodes and knots can also be manipulated by piecewise equidistant nodes, 
in ranges for which 1 1, 1 1,i ix x x    and 2 2, 1 2,j jx x x   , respectively, are constant. 
Furthermore, the node spacing along 1x  and 2x  depends on the transformations  1 1x x  and 

 2 2x x . Basic principles of these transformations are outlined in Sec. 3.2.2. 

The 9IJ coefficients ijkla  of all spline polynomials are determined as explained by Späth 
[36]. Figure 30 illustrates the boundary conditions at a cell, where the superscript K denotes the 
grid of knots. Each of the IJ polynomials    1 2, ,i jz x x  intersects the node (i,j). The z  values 
at the midpoints of the cell boundaries  K ,i j ,  K 1,i j ,  K,i j , and  K, 1i j  , marked with 
gray circles in Fig. 30, are equal to the corresponding values of the adjacent cells. Furthermore, 
the derivatives  

2
1 x

z x   at  K ,i j  and  K 1,i j , as well as  
1

2 x
z x   at  K,i j  and 

 K, 1i j  , are equal to the corresponding derivatives of the adjacent cells. In addition, the z  
values and the crossed derivatives   2

1 2z x x    at the four knots at the corners  K K,i j , 
 K K, 1i j  ,  K K1,i j , and  K K1, 1i j   are equal to the corresponding values of the 
neighboring cells. For these conditions, the required derivatives at the cell boundaries are 
calculated considering the requirement that the resulting biquadratic spline function is 
continuously differentiable once. 

Figure 30: Locations of points where boundary conditions are defined for a cell. 
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The variables 1,ix  and 2, jx  in the equations below are defined as 

1, 1, 1 1,i i ix x x    and 2, 2, 1 2,j j jx x x   . (3.35) 

For given derivatives  
2

1 x
z x   at the left and right boundaries of the grid of knots 

 
K2 2

K
1, 2,

1 1
,

,i j
x xi j

z z
x x

x x

    
       

 K 1, 1i I  , 1, ... ,j J , (3.36) 

the derivatives at the remaining knots  K ,i j , with K 2, ... ,i I  and 1, ... ,j J , are obtained 
by solving for each grid line j, with 1, ... ,j J , 

 

K K2 2

K2

1,2

1,1 1,1 1,2 1 1,1 1,2 1
2, 3,

2, 1,2
1,1 11,1 1,

1 5 1

2

4 1
                                  

2

x xi j i j

i j i j
x i j

x z z

x x x x x x x

z
z z

x xx

 

 



      
                  

 
       

,  (3.37) 

 

 

K2

K2

K2

1, 1 1, 1
,

1, 1 1, 1

1, 1, 1 1, 1, 1, 1 1
1,

1, ,2
1, 1, 1 1 1,2,

1

1
2

1 4

i i x i j

i i

i i i i i x i j

i j i j
i i ix i j

z

x x x

x x z

x x x x x x

z
z z

x x x x



 

 







 
     

    
              

 
        

 2, ... , 2i I  , (3.38) 

and 

 

K K2 2

K2

1, 2

1, 2 1, 1 1 1, 1 1, 2 1, 1 1
1, ,

, 1,2
1, 1 11, 1 1,

1 1 5

2

4 1
                                        

2

I

I I I I Ix xi I j i I j

i I j i I j
II x i I j

xz z

x x x x x x x

z
z z

x xx



    
  

  
  

     
                  

 
       

.  (3.39) 

 
Analogously, for given derivatives  

1
2 x

z x   at the lower and upper boundaries of the grid of 
knots 

 
K1 1

K
1, 2,

2 2
,

,i j
x xi j

z z
x x

x x

    
       

 1, ... ,i I , K 1, 1j J  , (3.40) 

the derivatives at the remaining knots   K,i j , with 1, ... ,i I  and K 2, ... ,j J , are obtained 
by solving for each grid line i, with 1, ... ,i I , 
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 

K K1 1

K1

2,2

2,1 2,1 2,2 2 2,1 2,2 2
, 2 , 3

, 2 , 12
2,1 22,1 , 1

1 5 1

2

4 1
                                    

2

x xi j i j

i j i j
x i j

x z z

x x x x x x x

z
z z

x xx

 

 



      
                  

 
       

,  (3.41) 
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j j
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j j jx i j
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x x x

x x z
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z
z z

x x x x



 

 







 
     

    
              

 
        

 2, ... , 2j J  , (3.42) 

and 
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          

 
       

.  (3.43) 

Now, for given derivatives   2
1 2z x x    at the four corners of the grid of knots 

 
K K

2 2
K K

1, 2,
1 2 1 2,

,i j

i j

z z
x x

x x x x

    
            

 K 1, 1i I  , K 1, 1j J  , (3.44) 

the derivatives at the remaining knots  K K,i j , with K 2, ... ,i I  and K 1, 1j J  , are 
obtained by solving for each grid line K 1j   and K 1j J   

K K K K
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2 2
1,2

1,1 1,1 1,2 1 2 1,1 1,2 1 22, 3,
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      
                       

                               

,  (3.45) 

 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


3.2 Two-Dimensional Spline Functions 61 

 

K K

K K

K K

2

1, 1 1, 1 2 ,

2
1, 1 1, 1

1, 1, 1 1, 1, 1, 1 1 2 1,

2

1, 1, 1 1 2 2,

2
1,

1

1
2

1

4
                               

i i i j

i i

i i i i i i j

i i i j

i

z

x x x x

x x z

x x x x x x x

z

x x x x

z

xx



 

  

 

 
       

    
                

 
        
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             

 2, ... , 2i I  , (3.46) 

and 
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            

                               
K1, j

.  (3.47) 

 
Now, all derivatives   2

1 2z x x    at the knots  K K,i j , with K 1, ... , 1i I   and 
K 1, 1j J  , are known. At the remaining knots  K K,i j , with K 1, ... , 1i I   and 
K 2, ... ,j J , these derivatives are obtained by solving for each grid line K 1, ... , 1i I   

K K K K
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                       

                               

,  (3.48) 
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 2, ... , 2j J  , (3.49) 

and 
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K 1J 

.  (3.50) 

Each set of equations, Eqs. (3.37) – (3.39), (3.41) – (3.43), and (3.48) – (3.50), provides a 
symmetric tridiagonal coefficient matrix. Such sets of equations can be solved through the use 
of simplified algorithms as discussed in [36]. 

Now, the 9 coefficients for each of the IJ cells {i,j} are calculated from 
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V C V ,  (3.51) 
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,  (3.52) 
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V .  (3.54) 

In Eqs. (3.53) and (3.54), the values of 1,0x , 1,Ix , 2,0x , and 2,Jx  are 

1,0 1,1x x   ,  1, 1, 1I Ix x    , (3.55, 3.56) 

2,0 2,1x x   , and 2, 2, 1J Jx x    . (3.57, 3.58) 

The continuous behavior of the resulting spline function and its first derivatives at the 
boundaries between the cells is mathematically proven in [36]. The number and distribution of 
nodes is optimized to ensure the required accuracy of SPL

1 2( , )z x x  over the whole range of 
validity. Once all the coefficients ijkla  are determined, they are stored together with the values 
of the nodes and knots in a look-up table. This table and the associated algorithm for calculating 
the spline function is written to a source code file for application in computer programs (see 
Sec. 4). 

In order to calculate SPL
1 2( , )z x x , the variables 1x  and 2x  are first transformed into 1x  and 

2x  with the corresponding transformation functions. Equations (3.33, 3.34) give the indices i 
and j of the corresponding cell. The transformed variable z  is then calculated from the spline 
polynomial   1 2, ( , )i jz x x , Eq. (3.26), and is converted to z with the inverse transformation 
function ( )z z . 

3.2.2 Transformations 

In order to increase the accuracy of a biquadratic spline function, the coordinates are 
transformed in such a way that the third derivatives, i.e., the change in curvature, is reduced. 
Both independent variables 1x  and 2x , as well as the dependent variable z, can be transformed 
with functions of the form 1 1( )x x , 2 2( )x x , and ( )z z . If ( )z z  is nearly proportional to 1 1( )x x  
at constant 2x  and ( )z z  is nearly proportional to 2 2( )x x  at constant 1x , then the change in 
curvature of the transformed function 1 2( , )z x x  is reduced as compared to that of 1 2( , )z x x . 

The transformation functions must be continuous and monotonic. An analytic solution for 
the inverse transformation function ( )z z  is needed. For the inverse spline functions 

INV
1 2( , )x z x  and INV

2 1( , )x x z , the inverse transformation functions 1 1( )x x  and 2 2( )x x  should 
also be analytical. 
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In Secs. 5 and 6, where the SBTL method is applied to several property functions, the 
increased accuracy resulting from transformations is demonstrated. In many cases, several 
alternative analogous transformations of z, 1x , and 2x  are feasible. Due to more suitable node 
distributions, transformations of 1x  and 2x  into 1x  and 2x  are usually superior to the 
transformation of z. If required, accuracy and computing time of the spline function itself and 
its inverse spline functions must be assessed for the different transformation approaches to 
determine the trade-off between these criteria. 

Fast, non-iterative algorithms to determine the cell {i,j} for a given pair of transformed 
variables 1 2( , )x x  require a rectangular cell structure. In combination with the demands for the 
continuity of the biquadratic spline function and its first derivatives, this leads to a grid of nodes 
with a rectangular outer boundary in the 1 2( , )x x  plane. This rectangle must include the required 
range of validity. States beyond the range of validity must be extrapolated from the equation of 
state or with suitable extrapolation techniques. 

In order to avoid extrapolations and to more efficiently control the node distribution across 
the grid within the range of validity, additional variable transformations can be applied. 
Through the use of these so-called scaling transformations of the form 1 1 2( , )x x x  and/or 

2 2 1( , )x x x , the irregular shaped range of validity is converted into a rectangle. For this purpose, 
the boundaries of the range of validity are described with auxiliary spline functions of the form 

1,min 2( )x x , 1,max 2( )x x , 2,min 1( )x x , and 2,max 1( )x x . 

If, for instance, the variable 1x  is to be scaled between the boundary curves 1,min 2( )x x  and 

1,max 2( )x x , see Fig. 31, the form of the scaled variable transformation reads 

 1 1 2 1 1 1,min 2 1,max 2( , ) , ( ), ( )x x x x x x x x x . (3.59) 

For example, Eq. (3.59) could be expressed as a linear scaling function for 1x  between 

1,min 2( )x x  and 1,max 2( )x x  with 

 1,max 1,min
1 1 2 1 1,min 2 1,min

1,max 2 1,min 2

( , ) ( )
( ) ( )

x x
x x x x x x x

x x x x


  


, (3.60) 

where 1,minx  and 1,maxx  are free parameters chosen appropriately as the minimum and 
maximum values of the transformed coordinate. Figure 32 shows the range of validity and the 
grid of nodes in transformed coordinates. 

The spline functions for the liquid phase in the (v,u) plane (see Sec. 5.1) are insightful 
examples for these transformation techniques. Another useful transformation approach results 
from the combination of the dependent variable z and the independent variables 1x  and/or 2x . 
A transformation of the form 1 2( , , )z z x x  can be used in some cases to efficiently reduce the 
change in curvature. If, for instance, the specific volume in the gas phase is calculated from the 
pressure p and another property 2x , i.e., 1 2( , )v x p x , the transformed specific volume 

( , )v v p pv  is preferably used as the dependent variable. In Sec. 5.2, the spline-based property 
function G ( , )v p h  shows how this variable transformation technique is applied. 

The concepts explained above offer several alternatives to create a spline function, and can 
be combined. Considering the requirements for accuracy, computing speed, range of validity, 
and memory consumption, transformation techniques must be assessed and the most suitable 
variant must be chosen. 
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Figure 31: Projection of the grid of nodes 
in untransfomed coordinates. 

 Figure 32: Projection of the grid of nodes 
in the 1 2( , )x x  plane for a 

1 1 2( , )x x x  transformation. 

3.2.3 Inverse Spline Functions 

From the spline function SPL
1 2( , )z x x , the inverse spline functions INV

1 2( , )x z x  and 
INV
2 1( , )x x z  can be calculated with complete numerical consistency. This is demonstrated for 
INV
1 2( , )x z x . The transformed variable 1x  is obtained by solving the polynomial    1 2, ,i jz x x , 

Eq. (3.26), which results in 

   
  2

INV
2 1,1, ,

4
,

2

ij ij ij ij

ii j
ij

B B A C z
x z x x

A

  
   (3.61) 

with 

    31 2 2, 32 33 2 2,ij ij j ij ij jA a x x a a x x     , 

    21 2 2, 22 23 2 2,ij ij j ij ij jB a x x a a x x     , and 

      11 2 2, 12 13 2 2,ij ij j ij ij jC z a x x a a x x z      . 

For a monotonic function    
21,i j xz x  in the cell {i,j}, the sign () in Eq. (3.61) is negative if

    
22

2 2
1 1sgn 0ij xxA z x z x     , otherwise it is positive. The inequality yields 0ijB  . 

Therefore, the sign () in Eq. (3.61) equals sgn( )ijB  if the spline polynomial is monotonic in 
the cell {i,j} for fixed values of 2x . 

In order to determine the cell indices i and j from Eqs. (3.33) and (3.34) in the 1 2( , )x x  plane 
for given values of z  and 2x , an auxiliary spline function AUX

1 2( , )x z x  is used to calculate an 
estimate for 1x . 

Grid of nodes

Range of state

2,maxx

2,minx

� �1,min 2x x

� �1,max 2x x

2x

1x

2,maxx

2,minx

2x

1x1,minx 1,maxx

Range of stateGrid of nodes
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To calculate the inverse spline function INV
1 2( , )x z x , z and 2x  are first transformed into z  

and 2x . The cell indices i and j that belong to the given values for 2( , )z x  are then determined 
with the auxiliary spline function AUX

1 2( , )x z x  and Eqs. (3.33) and (3.34). Then, the inverse 
spline polynomial    INV

21, , ,i jx z x , Eq. (3.61), is calculated. The result must fulfill the condition 
K K

1, 1 1, 1i ix x x   ; otherwise, the index i needs to be incremented or decremented and the 
calculation repeated. Eventually, 1x  is converted to 1x  with the inverse transformation function 

1 1( )x x . 

Non-monotonic functions have two valid solutions in the cell {i,j} where the extremum of 

   
2

1,i j x
z x  is located. This extremum is calculated from 

  1,1, ,
ˆ

2
ij

ii j
ij

B
x x

A
    (3.62) 

and 

       
    

2

1, 1,, 1, , 1, ,

11 2 2, 12 13 2 2,

ˆ ˆˆ

        

ij i ij ii j i j i j

ij j ij ij j

z A x x B x x

a x x a a x x

   

    
 (3.63) 

If a scaling transformation (see Sec. 3.2.2) is applied with the dependent variable of the 
inverse spline function, e.g., 1x , where 2x  is scaled with 2 2 1( , )x x x , an analytic solution of the 
inverse spline function cannot be provided. Instead, a one-dimensional Newton iteration should 
be applied to solve 

2

SPL
1 1( ) 0 ( )xf x z x z    (3.64) 

with the following procedure 

1,
1, 1 1,

1,
1

( )

d
( )

d

k
k k

k

f x
x x

f
x

x

   , (3.65) 

where 

2

1, 1,
1 1

d
( ) ( )

d k k
x

f z
x x

x x

 
   

. (3.66) 

The calculation of derivatives of spline functions is explained in Sec. 3.2.4. 

The coefficients of the AUX
1 2( , )x z x  and  SPL

1 2,z x x  spline polynomials along with values 
of nodes and knots are stored together in a look-up table. This table, and the associated 
algorithm for calculating the inverse spline function, is written to a source code file for 
application in computer programs (see Sec. 4). 

The inverse spline function INV
2 1( , )x x z  can be calculated in a similar manner with the 

equation 

   
  2

INV
1 2,2, ,

4
,

2

ij ij ij ij

ji j
ij

B B A C z
x x z x

A

  
   (3.67) 

where 

    13 1 1, 23 33 1 1,ij ij i ij ij iA a x x a a x x     , 
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    12 1 1, 22 32 1 1,ij ij i ij ij iB a x x a a x x     , and 

      11 1 1, 21 31 1 1,ij ij i ij ij iC z a x x a a x x z      . 

For monotonic functions    
1

2,i j x
z x  in the cell {i,j}, the sign () in Eq. (3.67) equals sgn( )ijB , 

as described earlier in this section. 

Algorithms for the calculation of inverse functions in the two-phase region depend on the 
formulation of the equilibrium condition. Practical examples are given in the Appendix. 

3.2.4 Derivatives 

The first derivatives of the spline function SPL
1 2( , )z x x  with respect to the independent 

variables 1x and 2x  are calculated analytically from 

 

   

1 22 1

2

2 1 1 2

, ,2 2

1 2 2 1,

1 1 2 1 2

1 2 2 1

i j i j

x xi j x x

x

x x x x

z zx x

x x x xz

x x x x x

x x x x

        
                     

                                

 (3.68) 

and 

 

   

2 11 2

1

1 2 2 1

, ,1 1

2 1 1 2,

2 2 1 2 1

2 1 1 2

i j i j

x xi j x x

x

x x x x

z zx x

x x x xz

x x x x x

x x x x

        
                     

                                

, (3.69) 

where 

   

22 2

, ,

1 1

i j i j

xx x

z z z

x x z

                    
 and (3.70) 

   

11 1

, ,

2 2

i j i j

xx x

z z z

x x z

                    
. (3.71) 

The derivatives of the general transformation functions 1 2( , , )z z x x  are simplified to 

1

d

dx

z z

z z

         
 and (3.72) 

2

d

dx

z z

z z

         
 (3.73) 

if the transformation of z  is independent of 1x  and 2x , i.e., ( )z z . 

If no scaling transformations are applied, i.e., if 1x  is independent of 2x  and 2x  is 
independent of 1x , the derivatives of the inverse transformation functions 

1

1

2 x

x

x

 
  

 and 

2

2

1 x

x

x

 
  

 

become zero, and Eqs. (3.68) and (3.69) are simplified to 
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   

2 2

, , 1

1 1 1

d

d

i j i j

x x

z z x

x x x

      
              

 (3.74) 

and 

   

1 1

, , 2

2 2 2

d

d

i j i j

x x

z z x

x x x

      
              

. (3.75) 

The derivatives of the spline function with transformed variables, Eq. (3.26), within cell {i,j} 
are calculated from 

     

   
   

2

,
1 2 21 31 1 1,

1

22 32 1 1, 2 2,

2
23 33 1 1, 2 2,

, 2

                         2

                         2

i j
ij ij i

x

ij ij i j

ij ij i j

z
x x a a x x

x

a a x x x x

a a x x x x

 
     

     

     

 (3.76) 

and 

     

   
   

1

,
1 2 12 13 2 2,

2

22 23 2 2, 1 1,

2
32 33 2 2, 1 1,

, 2

                         2

                         2

i j
ij ij j

x

ij ij j i

ij ij j i

z
x x a a x x

x

a a x x x x

a a x x x x

 
     

     

     

. (3.77) 

 

3.2.5 Calculations in the Two-Phase Region 

In order to calculate properties in the fluid two-phase region, the equilibrium condition must 
be described in a suitable manner. The saturation states could be calculated from the Maxwell 
criterion, i.e., equal pressures and specific Gibbs energies at constant temperature for both 
phases; but for the sake of simplicity, a function for the relationship of pressure and temperature 
at saturation should be used instead. 

If one of the variables 1x  or 2x  represents either pressure or temperature, the saturation curve 
can be described with the saturation temperature s ( )T p  or the saturation pressure s ( )p T , 
respectively. For example, if spline functions are needed for the 1 2( , )x x  plane, where 1x  is the 
pressure p and 2x  is not the temperature, the saturation curve is described by s ( )T p . 
Additionally, spline functions for both the liquid and the vapor phases, L

1 2( , )T x p x  and 
G

1 2( , )T x p x , must be provided. With their inverse spline functions L
2 1( , )x x p T  and 

G
2 1( , )x x p T , the saturated properties in the liquid phase 2x  and in the vapor phase 2x  are 

calculated. Then, the desired mass-specific properties 1 2( , )z x p x  in the two-phase region can 
be calculated with the relation 

   2 2
1 2

2 2

,
x x

z x x z z z
x x

    
 

, (3.78) 

where 1x p , L
1 2 2( , )z z x p x x    , and G

1 2 2( , )z z x p x x    . 
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Consequently, the calculation of 1 2( , )z x x  in the two-phase region is numerically consistent 
with values in the single-phase regions, and a phase test to determine if a given state 1 2( , )x x  is 
located either in the single-phase region or in the two-phase region is distinct and simple. As 
an example, an algorithm for calculating the properties in the two-phase region from (p,h) is 
given in Appendix A5. The inverse calculations from (p,s) and (h,s) are given in Appendices 
A6 and A7. 

If 1x  and 2x  are neither pressure nor temperature, the properties in the two-phase region 
must be calculated by iteration. Again, the relationship between pressure and temperature at 
saturation can be described with a function s ( )T p . Then, for given properties 1x  and 2x , the 
set of equations F(X), Eqs. (3.79) – (3.83), 

  L
1 1 2 s0 ( , )p x x p   F X , (3.79) 

  G
2 1 2 s0 ( , )p x x p   F X , (3.80) 

  L
3 1 2 s s0 ( , ) ( )T x x T p   F X , (3.81) 

   G
4 1 2 s s0 ( , )T x x T p   F X , and (3.82) 

  1 1 2 2
5

1 1 2 2

0
x x x x

x x x x

  
  

    
F X  (3.83) 

must be solved for the vector of unknowns  s 1 2
T

1 2, , , ,p x x x x   X . This can be done through 
the use of Newton’s method for non-linear systems of equations by solving 

   k k k J X X F X  and (3.84) 

1k k k   X X X  (3.85) 

in each iteration step k until convergence is reached. The Jacobian matrix J(X) is given as 

J(X) = (3.86) 

   

   

     

 

2 1

2 1

2 1

2

L L

1 2 1 2
1 2

G G

1 2 1 2
1 2

L L
s

s 1 2 1 2
1 2

G
s

s
1

1 , , 0 0

1 0 0 , ,

d
, , 0 0

d

d
0 0

d

x x

x x

x x

x

p p
x x x x

x x

p p
x x x x

x x

T T T
p x x x x

p x x

T T
p

p x

                  

                  

                        

            
   

   
 

   
 

 
 

 
 

1

G

1 2 1 2
2

1 1 1 1 2 2 2 2 1 1 2 2
2 2 2 2

1 1 2 2 1 1 2 2

.

, ,

0  

x

T
x x x x

x

x x x x x x x x x x x x

x x x x x x x x

 
 
 
 
 
 
 
 
 
 
 
 

         
                             
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The derivatives in the Jacobian matrix are provided analytically as given in Sec. 3.2.4. Auxiliary 
spline functions for  s 1 2,p x x  and for 1x , 1x , 2x , and 2x  as functions of either temperature T 
or pressure p are recommended to provide initial values of the unknown variables. With the 
saturation properties, L

1 2( , )z z x x    and G
1 2( , )z z x x   , 1 2( , )z x x  is calculated from 

Eq. (3.78). 

In situations where state points are calculated in the vapor region and the two-phase region 
only, such as in CFD simulations of steam turbines, or where small inconsistencies at the 
saturated liquid line are tolerable, the following additional phase boundary conditions are 
recommended. Instead of using s ( )T p , the properties at saturation are described with spline 
functions for 

1( )x p , (3.87) 

1 2( )x x , and (3.88) 

2 ( )x T . (3.89) 

With this approach, the phase test at the saturation curves for a given state point 1 2( , )x x  can 
be performed without iteration while the numerical consistency at the saturated vapor line is 
preserved. 

Through the use of the inverse spline functions G
2 1( , )x x p  and s 1( )p x , obtained from 

G
1 2( , )p x x  and Eq. (3.87), with 

G
2 1 2 1 s 1( ) ( , ( ))x x x x p p x   , (3.90) 

it can be determined if the state point is located in the vapor phase or in the two-phase region. 

The properties in the two-phase region are calculated by solving 

G
s 1 2( , )p p x x  , (3.91) 

G
s 1 2( , )T T x x  , and (3.92) 

1 1 2 2

1 1 2 2

x x x x

x x x x

  


    
 (3.93) 

along with Eqs. (3.87) – (3.89). This can be carried out efficiently with Newton’s iterative 
procedure for one-dimensional problems as shown for calculations from (v,u) in Appendix A8. 
The corresponding algorithms for the inverse functions of (p,v) and (u,s) are given in 
Appendices A9 and A10. 

Alternatively, explicit spline functions for the desired properties in the two-phase region can 
be generated. This is the fastest approach, but will produce small inconsistencies at the phase 
boundaries. 
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4 FluidSplines – Software for Generating SBTL Property Functions 

In order to apply the SBTL method to property functions of any fluid, the software 
FluidSplines [62] has been developed. This software implements all features of the SBTL 
method (see Sec. 3) and assists the user in generating spline functions for a given range of 
validity with a user-specified agreement with the underlying property formulations. For 
calculations from these underlying property formulations, an appropriate external property 
library must be connected to FluidSplines. For this purpose, FluidSplines provides an extensible 
low level interface. Currently, REFPROP [59] and the property libraries from the Zittau/Görlitz 
University of Applied Sciences can be used with FluidSplines. 

4.1 Basic Structure 

FluidSplines is written in C++. Its graphical user interface is based on the Microsoft 
Foundation Classes (MFC) and follows the classical document-view architecture with a single 
document interface (SDI). The drawing capabilities for two- and three dimensional diagrams 
are implemented through the use of the Microsoft Windows Graphics Device Interface (GDI) 
and OpenGL. Since MFC and GDI are Microsoft proprietary libraries, FluidSplines does not 
run on operating systems other than Microsoft Windows to date. However, FluidSplines 
produces pure C source code for the generated spline functions which is platform independent. 
Figure 33 gives a brief overview of the architecture of FluidSplines and its interfaces to external 
property libraries. As for every other MFC-SDI program, Windows creates the global 
application object (CFluidSplinesApp), which is derived from CWinAppEx, and starts the main 
function WinMain, which is part of the MFC library. WinMain calls a member function of 
CFluidSplinesApp to initialize the frame window (CMainFrame), the document 
(CFluidSplinesDoc), and one or more views derived from the CView base class. The frame 
window (CMainFrame) contains the menu bar, the toolbars, and the status bar. Its base class 
CFrameWndEx also implements dockable windows. In FluidSplines such dockable windows 
are used to display project information and error messages. All relevant data is stored in the 
document (CFluidSplinesDoc). The common base class of all objects in the document is 
CObject, which implements serialization and run-time class information. Depending on the 
chosen external property library, an instance of a CFluid-derived class is created. CFluid 
encapsulates property functions and other fluid-specific information and interfaces to the 
corresponding dynamic-link library (*.dll) of the external property library. The data related to 
the SBTL property function and the applied unit system are kept in an instance of CProjectData. 
One- and two-dimensional diagrams are represented by classes derived from CDiagram2D or 
CDiagram3D, respectively. These classes contain the relevant information to be depicted in the 
diagrams and provide functionalities to prepare the drawing elements, such as axes, curves, 
surfaces, text, markers, etc. Libraries for these drawing elements have been developed 
specifically for FluidSplines. The diagrams are drawn in the corresponding view. Instances of 
CFluidSplinesView show customizable two-dimensional diagrams for the SBTL property 
function to be generated. For two-dimensional SBTL property functions, these diagrams also 
allow for a flexible definition of the range of validity as described in Sec. 4.3. To visualize the 
grid of nodes in a three-dimensional view, an instance of CFluidSplinesView3D is created. The 
graphical user interface of FluidSplines is shown in Fig. 34. 
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Figure 33: Brief overview of the architecture of FluidSplines and its interfaces to external 
property libraries. Class names begin with the character “C”, the “:” operator 
separates the class from the base class it is derived from. The asterisk “*” denotes 
a pointer to an object. 

In order to create an SBTL property function with FluidSplines, the underlying fluid property 
formulation must be chosen first. For this purpose, the external property library and the required 
fluid is selected first using the “Fluid” dialog box in the “Project” menu. If the external property 
library provides several equations of state for the selected fluid, then the relevant equation can 
be chosen by the user. Similarly, the reference state can be specified in the same dialog box. 
The unit system for the SBTL property functions to be generated can be defined using the 
“Units” dialog in the “Project” menu. The generation of one- and two-dimensional SBTL 
property functions is outlined in Secs. 4.2 and 4.3.   

CFluidSplinesApp : CWinAppEx

CMainFrame : CFrameWndEx

CView*

CFluidSplinesView : CScrollView

CFluidSplinesView3D : CView
CFluidSplinesDoc : CDocument
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CRefpropFluid : CFluid : CObject

CPureFluid : CFluid : CObject

CProjectData : CObject

CSplineData : CObject

CUnitSettings : CObject

CDiagram2D*

CDiagram3D*

REFPROP.dll (REFPROP )©

LibIF97IT.dll (IAPWS-IF97)

...
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Figure 34: Graphical user interface of FluidSplines showing a u-v diagram with the deviations 
of the created spline function from the underlying formulation as a color plot.
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4.2 Generation of One-Dimensional SBTL Property Functions 

The generation of one-dimensional SBTL property functions in FluidSplines is demonstrated 
using the example of Ts(p) based on IAPWS-95. The function to be interpolated, i.e., Ts(p) can 
be selected from the “Function” dialog in the “Spline” menu. Once the function is selected, 
FluidSplines will automatically prepare the corresponding T-p diagram as shown in the upper 
section of Fig. 35. The diagram can be customized using the “Diagram” menu items. For a one-
dimensional property function, the desired range of validity min maxp p p   can simply be 
entered into the program through the use of the “Spline”/”Region” dialog box. In this example, 
the pressure ranges between 4

min 6.11 10  MPap    and max 22.064 MPap  . The spline 
interpolation algorithm, either quadratic or cubic, is chosen from the corresponding dialog 
under the “Spline”/”Interpolation” menu item. In the same dialog box, the coordinate 
transformations and the series of nodes are specified. In this example, a quadratic spline 
function is prepared, where the pressure p is transformed into  p p p . 

Figure 35: Spline function Ts(p) and its deviations from IAPWS-95. 
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The series of piecewise equidistant nodes is created in transformed coordinates as follows: 

   46.11 10  MPa     0.1 MPap p p   : 200 nodes , 

   0.1 MPa     22.064 MPap p p  : 200 nodes . 

The generation of the spline function is then started from the “Interpolation” dialog box. The 
computation is carried out by a worker thread. In this way, the graphical user interface operates 
without delays and the spline generation can be stopped on user’s demand. The spline 
generation process is multi-threaded to minimize its duration. During the spline generation, 
status and error messages are displayed in the “Output” window. A progress bar shows the 
progress of the spline generation. If the external property library fails to provide a required 
value, then this value is interpolated automatically within FluidSplines and a message is added 
to the “Output” window. Once a spline function is successfully generated, it can be used to 
provide starting values for the external property library. The accuracy test of the spline function 
can also be started from the “Interpolation” dialog box. For the example described here, a 
deviation diagram is added below the T-p diagram for Ts(p) as shown in Fig. 35. The generated 
spline function can be exported from FluidSplines as pure C code.

4.3 Generation of Two-Dimensional SBTL Property Functions 

The generation of two-dimensional SBTL property functions in FluidSplines is 
demonstrated using the example of p(v,u) for the gas phase based on IAPWS-95. Upon the 
selection of this function in FluidSplines, a u-v diagram is created automatically. This diagram 
includes the isobars and isotherms bounding the range of validity of the underlying equation of 
state and the phase envelopes. Other isolines for p, T, v, x, u, h, or s, as well as spinodals and 
melting curves can be added using the “Contents” dialog from the “Diagram” menu. The curves 
in the diagram can be used to determine the required region, where the property function to be 
generated should be valid. In this example, the spline function is defined in the gas phase and 
is bounded by the isobars at 611.212 Pa and 1000 MPa, as well as by the isotherm at 1273.15 K 
and a constant internal energy of 2015.735 kJ/kg. The region determination is started from the 
“Region” dialog in the “Spline” menu. Messages in the “Output” window guide the user 
through the process. The bounding curves of the range of validity need to be selected one after 
another from the diagram. For every newly added curve, FluidSplines calculates the intersection 
with the previous curve. If two functions intersect more than once, the intended intersection can 
be picked from the diagram. Once the region is determined, FluidSplines automatically 
determines all local extreme values at the boundaries. If no scaling transformations are applied 
(see Sec. 3.2.2), the bounding rectangle of all intersections and extreme values defines the outer 
boundaries of the grid of nodes as shown in Fig. 36. 

In many cases it is necessary to determine whether a point lies in the selected region or not. 
For polygons, the ray casting algorithm [63] can be used to determine whether a point lies inside 
or not. The intersections of a ray casted from the point in an arbitrary direction are counted. If 
the number of intersections is odd, then the point is located inside the polygon. For all other 
cases it is outside the polygon. The ray casting algorithm can also be used if the segments of 
the boundary are monotonic curves instead of straight lines. For this purpose, the selected region 
boundaries are decomposed into monotonic sub-boundaries (see Fig. 36). The intersections of 
the ray with the monotonic sub-boundaries must be determined by iteration. 
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Figure 36: Determination of outer boundary of the rectangular grid of nodes and division of 
region boundaries into monotonic sub-boundaries for the region determination 
process. 

Figure 37: Inner and outer polygon for a larger number of monotonic sub-boundaries. 
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To minimize the calculation of intersections by iteration, the following procedure is applied. 
From the bounding rectangles of the monotonic sub-boundaries an inner polygon and an outer 
polygon are created as shown in Fig. 36. In some situations an inner polygon cannot be created 
this way. In other situations, the resulting inner polygon is self-intersecting and must be split 
into non-self-intersecting polygons. If the inner polygon exists, any point inside this polygon is 
also inside the selected region. Any point outside of the outer polygon is outside of the region. 
For all other cases, the ray casting algorithm for monotonic curves is applied. In order to 
increase the area of the inner polynomial, the monotonic sections of each boundary are divided 
into a larger number of sub-boundaries as shown in Fig. 37. 

As for the generation of one-dimensional spline functions, the spline interpolation algorithm, 
the coordinate transformations, and the grid of nodes can be specified in the “Interpolation” 
dialog box. In this example, a biquadratic spline function is prepared, where the specific volume 
v is transformed into    lnv v v . The grid of piecewise equidistant nodes is created in 
transformed coordinates as follows: 

   3 3 3 31.05272 10  m /kg     8 10  m /kgv v v     : 200 nodes , 

   3 3 38 10  m /kg     961.341 m /kgv v v   : 200 nodes , 

2015.735 kJ/kg    2650 kJ/kgu  : 100 nodes , 

2650 kJ/kg     4055.26 kJ/kgu  : 100 nodes . 

The generation of the spline function and the accuracy test are started as described in Sec. 4.2. 
For the example described here, the deviations of the spline function for p(v,u) from the 
underlying equation of state, are displayed as a color plot in the u-v diagram (see Fig. 38). 

Figure 38: Deviations of the spline function for p(v,u) from IAPWS-95. 
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The nodes are depicted in a three-dimensional diagram as shown in Fig. 39. In this way, the 
calculation of the nodes can be verified. Moreover, the effect of variable transformations on the 
property surface can be seen. The corresponding view is activated through the “Spline-3D” 
button as shown in Fig. 34. 

Figure 39: All nodes for the p(v,u) spline function in a v u p  diagram. The linear u-axis is 
hidden behind the nodes and ranges from 2015 kJ/kg to 4055 kJ/kg. 

The nodes outside the range of validity of IAPWS-95 have been extrapolated from its 
equation of state. In some situations it is not possible to do so. For these situations the user may 
introduce extrapolation rules by picking curves in the 2D diagram and selecting extrapolation 
methods for the nodes beyond these curves. Extrapolations from a lower order Taylor series or 
mirroring the property surface at the specified curve are useful tools to obtain the required nodes 
beyond the range of validity. These techniques are only intended to provide suitable nodes for 
the spline interpolation algorithm but the resulting property functions may not produce 
reasonable values in the extrapolated areas. 

The generated spline function can be exported from FluidSplines as pure C code. 
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5 SBTL Property Functions Based on IAPWS-IF97 for Water and Steam 

The SBTL method has been applied to the industrial formulation IAPWS-IF97 through the 
use of FluidSplines (see Sec. 4). The documentation of the resulting SBTL property functions 
given in this section was originally published in [61]. 

5.1 Spline Functions of (v,u) and Inverse Functions 

In order to provide fast and accurate property functions for extensive process simulations, 
where water and steam properties are frequently calculated from (v,u), the SBTL method has 
been applied to IAPWS-IF97. Spline functions have been created for the calculation of 

, , , , ( , )p T s w f v u   in the single-phase region. Furthermore, numerically consistent property 
functions of (p,v) and (u,s) are calculable through the use of inverse spline functions as 
described in Sec. 3.2.3. The relationships between the spline and inverse spline functions are 
illustrated in Fig. 40. The properties in the two-phase region are calculated as explained in 
Sec. 5.1.3. 

Figure 40: Property calculations from (v,u), (p,v), and (u,s). 

5.1.1 Range of Validity 

The range of validity is bounded as follows: 

273.15 K    1073.15 KT   611.212 Pa    100 MPap  , 

1073.15 K    2273.15 KT   611.212 Pa    50 MPap  . 

This range of validity corresponds to that of IAPWS-IF97, except for the lower pressure limit, 
which is set to s (273.15 K) 611.212 Pa.p   Figure 41 shows the range of validity and the 
defined regions of the spline functions with the variables (v,u). The single phase is divided into 
the liquid region L, the gas region G, and the high-temperature region HT. With regard to 
regions defined in IAPWS-IF97, the current liquid region L covers region 1 and a part of region 
3. Region 2 and the remaining part of region 3 are included in the gas region G. The spline 
functions are smoothed at the IF97 region boundaries 1-3 and 2-3. The two-phase region TP 
corresponds to region 4 of IAPWS-IF97 and the high temperature region HT matches region 5 
of IAPWS-IF97. 

The specific internal energy at the critical point uc = 2019.025 106 kJ/kg is used to define the 
boundary between the L and G single-phase regions for supercritical state points. At the region 
boundaries L-G and G-HT in the single-phase region, small inconsistencies are unavoidable 

f

f
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(see Sec. 5.1.6). These should be negligible for most purposes, but if needed the transition at 
these boundaries can be smoothed with simple interpolation equations. 

Figure 41: Range of validity in the (u,v) plane for spline functions based on IAPWS-IF97. 

Note: For temperatures between 273.15 K and 273.16 K, the part of the range of validity of 
region L between the pressures on the melting line and on the saturation-pressure line 
corresponds to metastable liquid states. In the same temperature range, the part of the 
range of validity of region G between the pressures on the saturation-pressure line and 
on the sublimation line corresponds to metastable vapor states. 

5.1.2 Spline Functions for the Single-Phase Regions 

In each of the three single-phase regions, L, G, and HT, spline functions with the variables 
(v,u) are created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific 
volume v with the boundary curves    min max 100 MPa,v u v p u   and    maxv u v u  is 
applied, so that 

 max min
min min

max min

( , ) ( )
( ) ( )

v v
v v u v v u v

v u v u


  


, 

where the free parameters are set to min 1v   and max 100v  . Thus, the shape of the grid of 
nodes corresponds to the shape of the liquid region L (see Fig. 41). In the single-phase regions 
G and HT, the specific volume is transformed as ln( )v v . The grid dimensions of each (v,u) 
spline function are given in Tables A1, A2, and A3 in Appendix A11. Nodes outside the range 
of validity needed for the construction of a rectangular grid of nodes are obtained by appropriate 
extrapolation. 
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From the single-phase spline functions SPL ( , )p v u  and SPL ( , )s v u , the inverse spline 
functions INV ( , )u p v  and INV ( , )v u s  are determined as described in Sec. 3.2.3. With these 
inverse spline functions, all remaining properties are calculated from (p,v) and (u,s), as 
illustrated in Fig. 40. 

5.1.3 Calculations in the Two-Phase Region 

The properties in the two-phase region TP are calculated with the spline functions in the 
single-phase regions L and G, along with additional constraints for the phase equilibrium. For 
process simulations where the range of states does not include the liquid region L or where 
small inconsistencies at the saturated liquid line are tolerable, the calculation can be simplified 
with spline functions for ( )v p , ( )v u , and ( )u T  as discussed in Sec. 3.2.5. This simplification 
is applied to the spline functions of (v,u) and their inverse functions of (p,v) and (u,s) for the 
two-phase region TP described in this document. The algorithms are described in Appendices 
A8, A9, and A10. Auxiliary spline functions AUX

s ( , )p v u  and AUX
s ( , )p u s  were created to 

provide initial guesses for the calculations from (v,u) and (u,s). 

5.1.4 Derivatives 

The following derivatives are frequently required in CFD: 
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. 

These derivatives are calculated analytically from SPL ( , )p v u  and SPL ( , )T v u . The 
derivatives are continuous and can therefore be applied in numerical calculations, e.g., to 
prepare a Jacobian matrix in CFD. However, any thermodynamic property where high accuracy 
is required should be obtained from a dedicated spline function, rather than using derivatives 
of other spline functions. A description of the calculation of derivatives is given in Sec. 3.2.4. 

5.1.5 Deviations from IAPWS-IF97 

The maximum (max) and root-mean-square (RMS) deviations between the spline functions 
implemented as discussed in Secs. 5.1.2 and 5.1.3 and IAPWS-IF97, along with the permissible 
values (perm), are given in Tables 14 through 18. The permissible values were set by the 
IAPWS Task Group “CFD Steam Property Formulation” to ensure that the differences in the 
results of process simulations with the SBTL method from those obtained with the direct 
application of IAPWS-IF97 are negligible. The permissible values are less than or equal to the 
required numerical consistencies for the IAPWS-IF97 backward equations [3, 5, 6, 7, 8]. The 
values given in Tables 14 through 18 do not include the deviations caused by the inconsistencies 
of the IAPWS-IF97 basic equations at the IF97 region boundaries 1-3 and 2-3. The deviations 
of the SBTL property functions for p(v,u), T(v,u), and s(v,u) from IAPWS-IF97 in the liquid 
region L and the gas region G are depicted in Appendix A12, Figs. A5-A10. 
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Table 14: Deviations in pressure p(v,u) from IAPWS-IF97 

IF97 Region perm
p  

max
p   RMS

p  

1 
2.5MPap   0.6 % 0.12 % 0.012 % 

2.5MPap   15 kPa 0.61 kPa 0.0044 kPa 

2 0.001 % 0.000 48 % 0.000 12 % 

3 0.001 % 0.000 95 % 0.000 04 % 

4 0.0035 % 0.0035 % 0.000 28 % 

5 0.001 % 0.000 53 % 0.000 15 % 

 

Table 15: Deviations in temperature T(v,u) from IAPWS-IF97 

IF97 Region  perm
mKT   max

mKT     RMS
mKT  

1 1 0.27 0.015 

2 1 0.43 0.018 

3 1 0.53 0.032 

4 1 0.69 a 0.30 a 

5 1 0.38 0.018 
a Except for near-critical temperatures [(Tc  T) < 1.5 K]. 

 

Table 16: Deviations in specific entropy s(v,u) from IAPWS-IF97 

IF97 Region 
 

m

6

per

10 kJ/ kg K

s





 
 

 
 
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10 kJ/ kg K

s





 
 

 
 

 
S

6

RM

10 kJ/ kg K

s





 
 

 

1 1 0.74 0.049 

2 1 0.34 0.045 

3 1 0.52 0.022 

4 1 0.34 0.044 

5 1 0.87 0.056 
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Table 17: Deviations in speed of sound w(v,u) from IAPWS-IF97 

IF97 Region perm
w  

max
w   RMS

w  

1 0.001 % 0.000 92 % 0.000 007 % 

2 0.001 % 0.000 77 % 0.000 008 % 

3 0.001 % 0.000 56 % a 0.000 031 % a 

5 0.001 % 0.000 42 % 0.000 005 % 
a In the vicinity of the critical point, the deviations of w are larger (< 0.02 %). 
 

Table 18: Deviations in dynamic viscosity (v,u) from IAPWS-IF97 and the IAPWS 
viscosity release with recommendations for industrial use [65] 

IF97 Region perm
  

max
   RMS

  

1 0.001 % 0.000 41 % 0.000 068 % 

2 0.001 % 0.000 15 % 0.000 010 % 

3 0.001 % 0.000 32 % 0.000 019 % 

5.1.6 Numerical Consistency at Region Boundaries 

The specific internal energy at the critical point uc = 2019.025 106 kJ/kg defines the region 
boundary between the liquid region L and the gas region G for supercritical state points (see 
Fig. 41). This boundary is within IAPWS-IF97 region 3. The numerical inconsistencies of the 
adjacent spline functions at the region boundary L-G result from the deviations between the 
spline functions and the basic equation of IAPWS-IF97 region 3 (see Sec. 5.1.5), and are given 
in Table 19. 

Table 19: Numerical inconsistencies at the region boundaries L-G and G-HT 

Region 

boundary max
p  

max
T  

max
s  

max
w  

max
  

L-G a 0.0011 % 0.38 mK 4.8×107 kJ kg1 K1 0.000 46 % 0.000 27 % 

G-HT b 0.023 % 82 mK 8.2×105 kJ kg1 K1 0.050 % - c 
a  These values were obtained from the corresponding (v,u)-spline functions for regions L and 

G at constant specific internal energy uc = 2019.025 106 kJ/kg. 

b These values were obtained from the corresponding (v,u)-spline functions for regions G and 
HT at constant temperature T = 1073.15 K. 

c Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline 
function for the dynamic viscosity  in the high-temperature region is not provided. 
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The region boundary between the gas region G and the high-temperature region HT is 
identical to the IAPWS-IF97 region boundary 2-5 and follows the isotherm T = 1073.15 K. The 
underlying IAPWS-IF97 property functions have small discontinuities at the region boundary 
2-5. The spline functions reproduce the results of the IAPWS-IF97 basic equations 2 and 5 with 
high accuracy. Thus, at the region boundary G-HT, the numerical inconsistencies of the 
IAPWS-IF97 basic equations (see [3]) are dominant; these are given in Table 19. 

5.2 Spline Functions of (p,h) and Inverse Functions 

In heat cycle calculations, water and steam properties are frequently calculated from (p,h). 
Therefore, another set of spline functions has been created for the calculation of 

, , , , ( , )T v s w f p h   in the single-phase region. Furthermore, numerically consistent property 
functions of (p,T), (p,s), and (h,s) are required. These are calculated through the use of inverse 
spline functions as described in Sec. 3.2.3. The relationships between the spline and inverse 
spline functions are illustrated in Fig. 42. The properties in the two-phase region are calculated 
as explained in Sec. 5.2.3. 

Figure 42: Property calculations from (p,h), (p,T), (p,s), and (h,s). 

5.2.1 Range of Validity 

The range of validity is bounded as follows: 

273.15 K    1073.15 KT   611.212 Pa    100 MPap  , 

1073.15 K    2273.15 KT   611.212 Pa    50 MPap  . 

This range of validity corresponds to IAPWS-IF97, except the lower pressure limit, which is 
set to s (273.15 K) 611.212 Pa.p   Figure 43 shows the range of validity and the defined regions 
of the spline functions with the variables (p,h). The single phase is divided into the liquid region 
L, the gas region G, and the high temperature region HT. With regard to IAPWS-IF97, the 
liquid region L covers region 1 and a part of region 3. Region 2 and the remaining part of region 
3 are included in the gas region G. The spline functions are smoothed at the IF97 region 
boundaries 1-3 and 2-3. The two-phase region TP corresponds to region 4 of IAPWS-IF97, and 
the high-temperature region HT matches region 5 of IAPWS-IF97. 
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The specific enthalpy at the critical point hc = 2087.546 845 kJ/kg is used to describe the 
boundary between the L and G single-phase regions for supercritical state points. At the region 
boundaries L-G and G-HT in the single-phase region, small inconsistencies are unavoidable 
(see Sec. 5.2.6). These should be negligible for most purposes, but if needed, the transition at 
these boundaries can be smoothed with simple interpolation equations. 

Figure 43: Range of validity in the (p,h) plane for spline functions based on IAPWS-IF97. 

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1. 

5.2.2 Spline Functions for the Single-Phase Regions 

In each of the three single-phase regions, L, G, and HT, spline functions with the variables 
(p,h) are created. These spline functions are constructed on rectangular grids without scaling 
transformations. Variable transformations have been applied to v(p,h), s(p,h), and w(p,h). The 
variable transformations and grid dimensions of each (p,h) spline function are given in Tables 
A4, A5, and A6 in Appendix A11. Nodes outside the range of validity needed for the 
construction of a rectangular grid of nodes are obtained by appropriate extrapolation. 

From the spline functions SPL ( , )T p h  and SPL ( , )s p h  for the single phase, the inverse spline 
functions INV ( , )h p T , INV ( , )h p s , and INV ( , )p h s  are determined as described in Sec. 3.2.3. 
With these inverse spline functions, all remaining properties are calculated from (p,T), (p,s), 
and (h,s), as illustrated in Fig. 42. 
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5.2.3 Calculations in the Two-Phase Region 

The properties in the two-phase region TP are calculated with the spline functions in the 
single-phase regions L and G, along with additional constraints for phase equilibrium. For 
property calculations from (p,h) and (p,s) in the two-phase region, the saturation temperature 

sT  is calculated from a spline function s ( )T p  based on the corresponding equation of IAPWS-
IF97. The enthalpies of the saturated liquid and the saturated vapor are determined from the 
inverse spline functions L ( , )h p T  and G ( , )h p T . The corresponding algorithms are described 
in Appendices A5 and A6. For a given enthalpy and entropy (h,s), fluid properties in the two-
phase region must be determined by iteration as shown in Appendix A7. For this purpose, an 
auxiliary spline function AUX

s ( , )p h s  was created to provide an initial guess. 

5.2.4 Derivatives 

In heat cycle simulations, derivatives such as: 
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are frequently used. These derivatives are calculated analytically from SPL ( , )T p h . The 
derivatives are continuous and can therefore be applied in numerical calculations, e.g., to 
prepare a Jacobian matrix in heat cycle simulation software. However, any thermodynamic 
property, where high accuracy is required, should be obtained from a dedicated spline function. 
A description of the calculation of derivatives is given in Sec. 3.2.4. 

5.2.5 Deviations from IAPWS-IF97 

The maximum (max) and root-mean-square (RMS) deviations between the spline functions 
and IAPWS-IF97, along with the permissible values (perm), are given in Tables 20 through 24. 
The permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation” 
to ensure that the differences in the results of process simulations with the SBTL method from 
those obtained with the direct application of IAPWS-IF97 are negligible. The permissible 
values are less than or equal to the required numerical consistencies for the IAPWS-IF97 
backward equations [3, 5, 6, 7, 8]. The values given in Tables 20 through 24 do not include the 
deviations caused by the inconsistencies of the IAPWS-IF97 basic equations at the IF97 region 
boundaries 1-3 and 2-3. The deviations of the SBTL property functions T(p,h), v(p,h), and s(p,h) 
from IAPWS-IF97 in the liquid region L and the gas region G are depicted in Appendix A12, 
Figs. A11-A13. 

Table 20: Deviations in temperature T(p,h) from IAPWS-IF97 

IF97 Region  perm
mKT   max

mKT     RMS
mKT  

1 25 0.63 0.073 

2 10 0.81 0.026 

3 25 0.65 0.045 

5 10 0.34 0.042 
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Table 21: Deviations in specific volume v(p,h) from IAPWS-IF97 

IF97 Region perm
v  

max
v   RMS

v  

1 0.001 % 0.000 93 % 0.000 14 % 

2 0.001 % 0.000 63 % 0.000 010 % 

3 0.001 % 0.000 61 % 0.000 044 % 

4 0.001 % 0.000 96 % a 0.000 10 % a 

5 0.001 % 0.000 037 % 0.000 005 % 
a Except for near-critical temperatures [(Tc  T) < 4 K] and for states near the saturated liquid 

curve (0 ≤ x < 0.17) at pressures p < 0.1 MPa where small deviations in the calculated vapor 
fraction result in larger deviations in the calculated specific volume. 

 

Table 22: Deviations in specific entropy s(p,h) from IAPWS-IF97 

IF97 Region 
 
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s
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1 1 0.78 0.021 

2 1 0.78 0.062 

3 1 0.81 0.039 

4 1 0.81 0.12 

5 1 0.37 0.024 

 

Table 23: Deviations in speed of sound w(p,h) from IAPWS-IF97 

IF97 Region perm
w  

max
w   RMS

w  

1 0.001 % 0.000 32 % 0.000 038 % 

2 0.001 % 0.000 78 % 0.000 013 % 

3 0.001 % 0.000 78 % 0.000 054 % 

5 0.001 % 0.000 052 % 0.000 007 % 
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Table 24: Deviations in dynamic viscosity (p,h) from IAPWS-IF97 and the IAPWS 
viscosity release with recommendations for industrial use [65] 

IF97 Region perm
  

max
   RMS

  

1 0.001 % 0.000 63 % 0.000 077 % 

2 0.001 % 0.000 77 % 0.000 014 % 

3 0.001 % 0.000 80 % 0.000 033 % 

5.2.6 Numerical Consistency at Region Boundaries 

The specific enthalpy at the critical point hc = 2087.546 845 kJ/kg defines the boundary 
between the liquid region L and the gas region G above the critical pressure (see Fig. 43). This 
boundary is within IAPWS-IF97 region 3. The numerical inconsistencies of the adjacent spline 
functions at the region boundary L-G result from the deviations between the spline functions 
and the basic equation of IAPWS-IF97 region 3 (see Sec. 5.2.5) and are given in Table 25. 

The region boundary between the gas region G and the high-temperature region HT is 
identical to the IAPWS-IF97 region boundary 2-5 and follows the isotherm T = 1073.15 K. The 
underlying IAPWS-IF97 property functions have small discontinuities at the region boundary 
2-5. The spline functions reproduce the results of the IAPWS-IF97 basic equations 2 and 5 with 
high accuracy. Thus, at the region boundary G-HT, the numerical inconsistencies of the 
IAPWS-IF97 basic equations (see [3]) are dominant; these are given in Table 25 and are in 
agreement with those from the IAPWS-IF97 basic equations at the region boundary 2-5. 

Table 25: Numerical inconsistencies at the region boundaries L-G and G-HT 

Region 

boundary max
T  or 

max
h  

max
v  

max
s  

max
w  

max
  

L-G a max
T = 0.30 mK 0.000 7 % 3.9×108 kJ kg1 K1 0.000 51 % 0.000 33 % 

G-HT b max
h = 0.096 kJ kg1 0.012 % 1.4×104 kJ kg1 K1 0.046 % - c 

a  These values were obtained from the corresponding (p,h)-spline functions for regions L and 
G at constant specific enthalpy hc = 2087.546 845 kJ/kg. 

b These values were obtained from the inverse spline functions G ( , )h p T  and HT ( , )h p T  and 
the corresponding (p,h)-spline functions at constant temperature T = 1073.15 K. 

c Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline 
function for the dynamic viscosity  in the high-temperature region is not provided. 
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5.3 Spline Functions for the Metastable-Vapor Region 

The industrial formulation IAPWS-IF97 [3, 4] provides a supplementary equation for part 
of the metastable-vapor region. This equation is valid from the saturated vapor curve to the 5% 
equilibrium moisture line (determined from the equilibrium h  and h  values) at pressures from 
the triple-point pressure up to 10 MPa. 

Spline-based property functions of (v,u) and (p,h) have been developed for calculations in 
the metastable-vapor region described above. In order to avoid discontinuities at the saturated 
vapor curve, the range of validity of these spline functions has been extended to the gas region 
G as shown in Figs. 41 and 43. The spline functions described in this section are recommended 
for use in non-equilibrium process simulations. For simulating equilibrium processes, the spline 
functions described in Secs. 5.1 and 5.2 should be used. 

5.3.1 Spline Functions of (v,u) 

Spline-based property functions for calculating , , , , ( , )p T s w f v u   in both the metastable-
vapor region and the gas region G (see Fig. 41) have been created. For every spline-based 
property function of (v,u), the specific volume is transformed as ln( )v v . The grid dimensions 
of these functions are equal to those given for the gas region G in Sec. 5.1.2 (see Table A2 in 
Appendix A11). Nodes outside the range of validity needed for the construction of a rectangular 
grid of nodes are obtained by appropriate extrapolation. 

5.3.2 Spline Functions of (p,h) 

Spline-based property functions for calculating , , , , ( , )T v s w f p h   in both the metastable-
vapor region and the gas region G (see Fig. 43) have been created. Variable transformations 
have been applied to v(p,h), s(p,h), and w(p,h). The variable transformations and grid 
dimensions of each (p,h) spline function are given in Table A7 in Appendix A11. Nodes outside 
the range of validity needed for the construction of a rectangular grid of nodes are obtained by 
appropriate extrapolation. 

5.3.3 Deviations from IAPWS-IF97 

The deviations of the developed spline-based property functions from the IAPWS-IF97 
supplementary equation for the metastable-vapor region and from the IAPWS-IF97 basic 
equation for region 2, along with the permissible (perm) values, are given in Tables 26 and 27. 
The values given in these tables do not include the deviations caused by the inconsistencies of 
the IAPWS-IF97 basic equations at the IF97 region boundary 2-3. At the saturated vapor curve 
for pressures p < 10 MPa, increased deviations due to the small inconsistency between the 
IAPWS-IF97 supplementary equation for the metastable-vapor region and the IAPWS-IF97 
basic equation for region 2 cannot be avoided. The maximum deviations (max) in the 
metastable-vapor region and in region 2 of IAPWS-IF97 outside the temperature ranges 

 sT T p  and the maximum deviations (max, sat) within these ranges are given in Tables 26 
and 27. The root-mean-square deviations (RMS) of the spline-based property functions from 
the IAPWS-IF97 supplementary equation for the metastable-vapor region and from the 
IAPWS-IF97 basic equation for region 2 are also given in Tables 26 and 27. 

 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


 

T
ab

le
 2

6:
 D

ev
ia

ti
on

s 
in

 p
re

ss
ur

e 
p(

v,
u)

, 
te

m
pe

ra
tu

re
 T

(v
,u

),
 s

pe
ci

fi
c 

en
tr

op
y 

s(
v,

u)
, 

sp
ee

d 
of

 s
ou

nd
 w

(v
,u

),
 a

nd
 d

yn
am

ic
 v

is
co

si
ty

 
(v

,u
) 

fr
om

 t
he

 
su

pp
le

m
en

ta
ry

 e
qu

at
io

n 
fo

r 
th

e 
m

et
as

ta
bl

e-
va

po
r 

re
gi

on
 a

nd
 t

he
 b

as
ic

 e
qu

at
io

n 
fo

r 
re

gi
on

 2
 o

f 
IA

P
W

S
-I

F
97

 a
nd

 t
he

 I
A

P
W

S
 v

is
co

si
ty

 
re

le
as

e 
w

it
h 

re
co

m
m

en
da

ti
on

s 
fo

r 
in

du
st

ri
al

 u
se

 [
65

] 
 

S
pl

in
e 

fu
nc

ti
on

 
P

er
m

is
si

bl
e 

de
vi

at
io

n 

M
ax

im
um

 d
ev

ia
ti

on
 

in
 th

e 
m

et
as

ta
bl

e-
va

po
r 

re
gi

on
 

an
d 

in
 r

eg
io

n 
2 

of
 I

A
P

W
S

-I
F

97
 

ou
ts

id
e 

th
e 

ra
ng

e 



s

T
T

p


de
fi

ne
d 

in
 th

e 
ne

xt
 c

ol
um

n 

R
an

ge
 




s
T

T
p


 a

lo
ng

 th
e 

sa
tu

ra
te

d 
va

po
r 

cu
rv

e 
fo

r 
p 

<
 1

0 
M

Pa
 

R
M

S
 d

ev
ia

ti
on

 
in

 th
e 

m
et

as
ta

bl
e-

va
po

r 
re

gi
on

 a
nd

 in
 r

eg
io

n 
2 

of
 

IA
P

W
S

-I
F

97
 




s
T

T
p


 

M
ax

im
um

 d
ev

ia
ti

on
 

p(
v,

u)
  

pe
rm

0.
00

1
%

p


 
m

ax
0.

00
0

97
 %

p


 
7 

K
 

m
ax

, s
at

0.
01

6 
%

p


 


 R
M

S
0.

00
0

34
 %

p


 

T
(v

,u
) 

pe
rm

1
m

K
T


 

m
ax

0.
60

 m
K

T


 
10

 K
 

m
ax

, s
at

25
.2

 m
K

T


 


 R
M

S
1

 m
K

.1
T


 

s(
v,

u)
 




m

6

pe
r

1
10

kJ
/

kg
K

s 




 




x

6m
a

0.
45

10
kJ

/
kg

K

s 





 
12

 K
 




m
ax

,

4

 s
at

0.
81

10
kJ

/
kg

K

s






 







S

6R
M

0.
83

10
kJ

/
kg

K

s 





 

w
(v

,u
) 

pe
rm

0.
00

1
%

w


 
m

ax
0.

00
0

88
 %

w


 
10

 K
 

m
ax

, s
at

0.
05

 %
w


 


 R

M
S

0.
00

17
 %

w


 

(
v,

u)
 

pe
rm

0.
00

1
%




 
m

ax
0.

00
0

96
%




 
6 

K
 

m
ax

, s
at

0.
00

82
%




 


 R
M

S
0.

00
0

31
%




 

 

 

90 5 SBTL Property Functions Based on IAPWS-IF97 for Water and Steam 

 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


 

 

T
ab

le
 2

7:
 D

ev
ia

ti
on

s 
in

 te
m

pe
ra

tu
re

 T
(p

,h
),

 s
pe

ci
fi

c 
vo

lu
m

e 
v(

p,
h)

, s
pe

ci
fi

c 
en

tr
op

y 
s(

p,
h)

, s
pe

ed
 o

f 
so

un
d 

w
(p

,h
),

 a
nd

 d
yn

am
ic

 v
is

co
si

ty
 

(p
,h

) 
fr

om
 

th
e 

su
pp

le
m

en
ta

ry
 e

qu
at

io
n 

fo
r 

th
e 

m
et

as
ta

bl
e-

va
po

r 
re

gi
on

 a
nd

 th
e 

ba
si

c 
eq

ua
ti

on
 f

or
 r

eg
io

n 
2 

of
 I

A
P

W
S

-I
F

97
 a

nd
 th

e 
IA

P
W

S
 v

is
co

si
ty

 
re

le
as

e 
w

it
h 

re
co

m
m

en
da

ti
on

s 
fo

r 
in

du
st

ri
al

 u
se

 [
65

] 

S
pl

in
e 

fu
nc

ti
on

 
P

er
m

is
si

bl
e 

de
vi

at
io

n 

M
ax

im
um

 d
ev

ia
ti

on
 

in
 th

e 
m

et
as

ta
bl

e-
va

po
r 

re
gi

on
 

an
d 

in
 r

eg
io

n 
2 

of
 I

A
P

W
S

-I
F

97
 

ou
ts

id
e 

th
e 

ra
ng

e 



s

T
T

p


de
fi

ne
d 

in
 th

e 
ne

xt
 c

ol
um

n 

R
an

ge
 




s
T

T
p


 a

lo
ng

 th
e 

sa
tu

ra
te

d 
va

po
r 

cu
rv

e 
fo

r 
p 

<
 1

0 
M

Pa
 

R
M

S
 d

ev
ia

ti
on

 
in

 th
e 

m
et

as
ta

bl
e-

va
po

r 
re

gi
on

 a
nd

 in
 r

eg
io

n 
2 

of
 

IA
P

W
S

-I
F

97
 




s
T

T
p


 

M
ax

im
um

 d
ev

ia
ti

on
 

T
(p

,h
) 

pe
rm

1
m

K
T


 

m
ax

0.
90

 m
K

T


 
8 

K
 

m
ax

, s
at

18
.4

 m
K

T


 


 R
M

S
0.

6
 m

K
8

T


 

v(
p,

h)
 

pe
rm

0.
00

1
%

v


 
m

ax
0.

00
0

60
 %

v


 
10

 K
 

m
ax

, s
at

0.
01

8 
%

v


 


 R
M

S
0.

00
0

28
 %

v


 

s(
p,

h)
 




m

6

pe
r

1
10

kJ
/

kg
K

s 




 




x

6m
a

0.
54

10
kJ

/
kg

K

s 





 
16

 K
 




m
ax

,

4

 s
at

0.
84

10
kJ

/
kg

K

s







 







S

6R
M

0.
85

10
kJ

/
kg

K

s 





 

w
(p

,h
)  

pe
rm

0.
00

1
%

w


 
m

ax
0.

00
0

89
 %

w


 
13

 K
 

m
ax

, s
at

0.
04

5 
%

w


 


 R
M

S
0.

00
11

 %
w


 

(
p,

h)
 

pe
rm

0.
00

1
%




 
m

ax
0.

00
0

80
%




 
6 

K
 

m
ax

, s
at

0.
00

61
%




 


 R
M

S
0.

00
0

15
%




 

 

 

5.3 Spline Functions for the Metastable-Vapor Region 91 

 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


92 5 SBTL Property Functions Based on IAPWS-IF97 for Water and Steam 

5.4 Computing-Time Comparisons 

The computing times of the SBTL property functions have been evaluated and compared 
with those of IAPWS-IF97, where these functions are calculated from the basic equations, or, 
where available, from backward equations. The Computing-Time Ratio (CTR) is defined as: 

Computing time of the calculation from IAPWS-IF97 basic eq. or backward eq.

Computing time of the calculation from the SBTL property function
CTR  . 

The IAPWS-IF97 property functions were computed from the Extended IAPWS-IF97 Steam 
Tables software [66]. Since the region definitions of the SBTL functions (see Figs. 41 and 43) 
are different from the regions of IAPWS-IF97 (see Fig. 7), the computing times of both 
formulations include the determination of the region that corresponds to the given state point. 
Neither IAPWS-IF97 nor the SBTL implementation takes advantage of information from 
previously calculated state points. The computing times were measured by means of software 
similar to NIFBENCH [3] with 100,000 randomly distributed state points in the corresponding 
region. All algorithms have been compiled into single-threaded software with the Intel 
Composer 2011 with default options. The tests were carried out on a Windows 8 computer 
equipped with an Intel Core i7-4500U CPU with 2.39 GHz and 8 GB RAM. 

The results of the computing-time comparisons between the SBTL property functions of 
(v,u) presented in Sec. 5.1 and the iterative calculations from the IAPWS-IF97 basic equations 
are summarized in Table 28. In the single-phase region, the SBTL functions of (v,u) are between 
130 and 471 times faster than those of the IAPWS-IF97 implementation. Computations from 
the inverse spline functions u(p,v) and v(u,s) with are between 2 and 134 times faster than those 
from the IAPWS-IF97 implementation. 

Table 28:  Computing-time ratios (CTR) of spline-based property functions of (v,u) and their 
inverse functions of (p,v) and (u,s) in comparison to the iterative calculations from 
the IAPWS-IF97 basic equations 

IAPWS-IF97 Region 

SBTL function 1 2 3 4 5 

p(v,u)  130 271 161 19 470 

T(v,u)  161 250 158 20 442 

s(v,u)  164 261 160 17 449 

w(v,u)  199 310 234 - a 471 

(v,u)  197 309 239 - a - b 

u(p,v)  2.0 6.4 2.8 5.6 3.2 

v(u,s)  43 66 78 16 134 
a Speed of sound w and dynamic viscosity  are not defined in the two-phase region. 

b Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline 
function for the dynamic viscosity  in the high-temperature region is not provided. 
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The computing times of the SBTL property functions of (p,h) presented in Sec. 5.2 have 
been determined and compared to those of the iterative calculations from the IAPWS-IF97 basic 
equations that meet the demands for extremely high numerical consistency. As described in 
Sec. 2.3, backward equations are used to determine suitable starting values for these iterative 
calculations. The results of the computing-time comparisons are summarized in Table 29. In 
the single-phase region, the SBTL functions of (p,h) are between 17 and 1290 times faster than 
those of the IAPWS-IF97 implementation. 

Table 29: Computing-time ratios (CTR) of SBTL property functions of (p,h) and their inverse 
functions of (p,T), (p,s), and (h,s) in comparison to the calculation from IAPWS-
IF97 basic equations or backward equations (in parentheses) 

SBTL 

function 

IAPWS-IF97 Region 

1 2 3 4 5 

T(p,h)   17 (2.9)  23 (4.7)  580 (3.0)  17 (4.4)  53 (26) 

v(p,h)   18 (3.8)  23 (6.1)  655 (5.1)  5.5 (2.6)  46 (25) 

s(p,h)   28 (3.8)  31 (5.7)  918 (5.7)  9.0 (2.9)  39 (12) 

w(p,h)   32 (5.0)  47 (10)  1160 (8.2) -a  90 (30) 

(p,h)   31 (5.6)  45 (9.2)  1290 (7.9) -a -b 

h(p,T)   0.94  0.71  1.5 (4.7) -c  0.34 

h(p,s)   4.6 (0.74)  8.1 (1.2)  88.1 (1.4)  5.2 (1.9)  9.3 (4.6) 

T(p,s)   2.1 (0.50)  3.8 (0.94)  43 (0.76)  2.8 (1.0)  4.9 (3.8) 

p(h,s)   36 (2.2)  207 (11)  474 (1.8)  25 (5.6)  396 (64) 

T(h,s)   15 (2.0)  71 (8.6)  433 (1.7)  12 (5.8)  146 (52) 
a Speed of sound w and dynamic viscosity  are not defined in the two-phase region. 

b Since the upper temperature limit of the IAPWS viscosity release [65] is 1173.15 K, a spline 
function for the dynamic viscosity  in the high-temperature region is not provided. 

c State points in the two-phase region are not uniquely defined with (p,T) inputs. 

With the SBTL method, the specific enthalpy h(p,T) is computed as an inverse spline 
function of T(p,h), thus being numerically consistent with this function. This procedure is 
slower than the calculation of h(p,T) in IAPWS-IF97 regions 1, 2, and 5, where the basic 
equations are directly applied. In heat cycle simulations, property functions are generally less 
frequently calculated from (p,T). The SBTL function h(p,s) is computed as an inverse spline 
function of s(p,h), and T(p,s) is calculated from T(p,h(p,s)). Therefore, these property functions 
are also numerically consistent with each other. Analogously, the SBTL function p(h,s) is 
computed as an inverse spline function of s(p,h), and T(h,s) is calculated from T(p(h,s),h). For 
the IAPWS-IF97 implementation, the region boundaries are calculated by iteration from their 
original definitions in the (p,T) plane. The starting values for these calculations are obtained 
from the available region-boundary equations. Again, the property functions of (p,s) and (h,s) 
are calculated from the IAPWS-IF97 basic equations by iteration with starting values obtained 
from the available backward equations. The CTR values of the inverse spline functions of (p,T), 
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(p,s), and (h,s) with regard to computations from the IAPWS-IF97 basic equations are given in 
Table 29. 

For the sake of completeness, the computing times of the SBTL functions have been 
compared to those obtained through the direct application of backward, auxiliary, and region-
boundary equations. A suitable implementation of IAPWS-IF97 functions without iterative 
procedures is also available in [66]. The resulting CTR values are given in parentheses in Table 
29. More details on computing-time comparisons between calculations from backward 
equations and iterative calculations from the IAPWS-IF97 basic equations can be found in [67]. 

The results of the computing-time comparisons for SBTL functions of (v,u) and (p,h) for the 
metastable-vapor region presented in Sec. 5.3 are summarized in Tables 30 and 31. 

Table 30: Computing-time ratios (CTR) of SBTL property functions of (v,u) compared to the 
iterative calculations from the IAPWS-IF97 supplementary equation for the 
metastable-vapor region 

SBTL function 

 p(v,u) T(v,u) s(v,u) w(v,u) (v,u) 

CTR 88.3 86.4 89.5 87.0 90.0 

 

Table 31: Computing-time ratios (CTR) of SBTL property functions of (p,h) compared to the 
iterative calculations from the IAPWS-IF97 supplementary equation for the 
metastable-vapor region 

SBTL function 

 T(p,h) v(p,h) s(p,h) w(p,h) (p,h) 

CTR 16.0 16.0 12.1 15.7 19.0 

As discussed in Sec. 2.5.3, the results of computing-time comparisons are always 
implementation dependent. In order to compare the computing times of the SBTL property 
functions with fast implementations of the Peng-Robinson equation of state [14] (PR-EOS), 
IAPWS-95 [2], the short fundamental equation of state for water by Kunz et al. [21], IAPWS-
IF97 [4], IAPWS-IF97 backward equations [4], and the TTSE method [10], the CTR values as 
defined in Sec. 2.5.3 are given in Table 32. For these comparisons it is assumed that the phase 
that corresponds to the given inputs is known for all calculations. 

Table 32: Computing-time ratios (CTR) with regard to the Peng-Robinson equation of state 
for SBTL property functions of (v,u) and (p,h) 

 CTR values as defined in Sec. 2.5.3 for SBTL functions 

IAPWS-IF97 Region p(v,u) T(v,u) T(p,h) v(p,h) 

1 1.84 2.29 19.0 19.0 

2 2.91 2.93 10.4 10.4 
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6 SBTL Property Functions Based on IAPWS-95 for Water and Steam 

The IAPWS-95 formulation for general and scientific use [1, 2] is the most accurate 
representation of the thermodynamic properties of water and steam. The IAPWS-IF97 
formulation for industrial use [3, 4] and the supplementary releases [5, 6, 7, 8] were developed 
based on IAPWS-95 to meet specific needs for higher computing speeds in many industrial 
applications, particularly for the steam power industry. The range of validity of IAPWS-IF97 
is divided into five regions, resulting in small inconsistencies at the region boundaries. In 
situations where these inconsistencies cannot be tolerated, and/or for general and scientific use 
where the more accurate IAPWS-95 formulation is preferred, it may be useful to apply the 
SBTL method to IAPWS-95. In order to demonstrate the applicability of the SBTL method to 
IAPWS-95, several spline-based property functions for calculations from (v,u) and (p,h) have 
been developed. For simplicity in developing this example, spline functions covering the region 
of temperatures from 273.15 K to 1273.15 K and pressures up to 1000 MPa are described. This 
excludes a small portion of the range of validity of IAPWS-95 at high pressures and low 
temperatures, but application of the SBTL method in that region would be a straightforward 
extension. The SBTL method has been applied to the industrial formulation IAPWS-IF97 
through the use of FluidSplines (see Sec. 4). The documentation of the SBTL property functions 
based on IAPWS-95 given in this section was originally published in [61]. 

6.1 Spline Functions of (v,u) 

Spline functions based on IAPWS-95 for the calculation of , , , ( , )p T s w f v u  in the single-
phase region were created analogously to those based on IAPWS-IF97 (see Sec. 5.1). The 
results of the computing-time comparisons are summarized in Sec. 6.3. 

6.1.1 Range of Validity 

The range of validity covers the fluid range of state bounded as follows: 

273.15 K    1273.15 KT   611.212 Pa    1000 MPap  . 

This range of validity corresponds to that of IAPWS-95, except for the lower temperature limit, 
which is 273.15 K, and the lower pressure limit, which is s (273.15 K) 611.212 Pa.p   
Figure 44 shows the range of validity and the defined regions of the spline functions with the 
variables (v,u). The range of validity is divided into the liquid region L, the gas region G, and 
the two-phase region TP. This division is similar to the division for IAPWS-IF97 shown in Fig. 
41, except that no separate high-temperature region HT is needed. 

The specific internal energy at the critical point uc = 2015.734 524 kJ/kg is used to define the 
boundary between regions L and G for supercritical state points. At the region boundary in the 
single-phase region, small inconsistencies are unavoidable. These should be negligible for most 
purposes, but if needed the transition at this boundary can be smoothed using simple 
interpolation equations. 
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Figure 44: Range of validity in the (u,v) plane for spline functions based on IAPWS-95. 

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1. 

6.1.2 Spline Functions for the Single-Phase Region 

In each of the single-phase regions L and G, spline functions with the variables (v,u) were 
created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific volume 
v with the boundary curves    min max 1000 MPa,v u v p u   and    maxv u v u  is applied, 
so that 

      max min
min min

max min

( , )
v v

v v u v v u v
v u v u


  


, 

where the free parameters are set to min 1v   and max 100v  . Thus, the shape of the grid of 
nodes corresponds to the shape of the liquid region L (see Fig. 44). In the gas region G, the 
specific volume is transformed as ln( )v v . The grid dimensions of each (v,u) spline function 
are given in Tables A8 and A9 in Appendix A11. Nodes outside the range of validity needed 
for the construction of a rectangular grid of nodes are obtained by appropriate extrapolation. 

6.1.3 Deviations from IAPWS-95 

The maximum (max) and root-mean-square (RMS) deviations between the spline functions 
and IAPWS-95, along with the permissible values (perm), are given in Tables 33 through 36. 
The permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation” 
to ensure that the differences in the results of process simulations with the SBTL method from 
those obtained with the direct application of IAPWS-95 are negligible. The permissible values 
are less than or equal to the required numerical consistencies for the IAPWS-IF97 backward 
equations [3, 5, 6, 7, 8]. The deviations in p(v,u), T(v,u), and s(v,u) of the SBTL property 
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functions from IAPWS-95 in the liquid region L and the gas region G are depicted in Appendix 
A13, Figs. A14-A19. 

Table 33: Deviations in pressure p(v,u) from IAPWS-95 

Region perm
p  

max
p   RMS

p  

L
2.5MPap   0.6 % 0.092 % 0.0080 % 

2.5MPap   15 kPa 2.74 kPa 0.0090 kPa 

G 0.001 % 0.001 % a 0.000 12 % 
a Except for near-critical states, where 

max
0.01%p  . 

Table 34: Deviations in temperature T(v,u) from IAPWS-95 

Region  perm
mKT   max

mKT     RMS
mKT  

L 1 0.34 0.029 

G 1  1 a 0.017 
a Except for near-critical states, where 

max
10 mKT  . 

Table 35: Deviations in specific entropy s(v,u) from IAPWS-95 

Region 
 

m

6

per

10 kJ/ kg K

s





 
 

 
 

x

6

ma

10 kJ/ kg K

s





 
 

 
 

 
S

6

RM

10 kJ/ kg K

s





 
 

 

L 1 0.53 0.017 

G 1 0.26 0.045 

 

Table 36: Deviations in speed of sound w(v,u) from IAPWS-95 

Region perm
w  

max
w   RMS

w  

L 0.001 % 0.001 % a 0.000 92 % 

G 0.001 % 0.001 % b 0.000 039 % 
a In the vicinity of the critical point, the deviations of w are larger but less than 0.4 %. 
b In the vicinity of the critical point, the deviations of w are larger but less than 5 %. 
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6.2 Spline Functions of (p,h) 

Spline functions based on IAPWS-95 for the calculation of , ( , )T v f p h  in the single-phase 
region were created analogously to those based on IAPWS-IF97 (see Sec. 5.2). The results of 
the computing-time comparisons are summarized in Sec. 6.3. 

6.2.1 Range of Validity 

The range of validity covers the fluid range of state bounded as follows: 

273.15 K    1273.15 KT   611.212 Pa    1000 MPap  . 

This range of validity corresponds to that of IAPWS-95, except for the lower temperature limit, 
which is 273.15 K, and the lower pressure limit, which is s (273.15 K) 611.212 Pa.p   
Figure 45 shows the range of validity and the defined regions of the spline functions with the 
variables (p,h). The range of validity is divided into the liquid region L, the gas region G, and 
the two-phase region TP. This division is similar to the division for IAPWS-IF97 shown in 
Fig. 43, except that no separate high-temperature region HT is needed. 

The specific enthalpy at the critical point hc = 2084.256 263 kJ/kg is used to define the 
boundary between regions L and G for supercritical state points. At the region boundary in the 
single-phase region, small inconsistencies are unavoidable. These should be negligible for most 
purposes, but if needed the transition at this boundary can be smoothed using simple 
interpolation equations. 

Figure 45: Range of validity in the (p,h) plane for spline functions based on IAPWS-95. 

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1. 
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6.2.2 Spline Functions for the Single-Phase Region 

In each of the single-phase regions L and G, spline functions with the variables (p,h) were 
created. In the gas region G, a transformation for the specific volume v of the form v pv  is 
applied. The grid dimensions of each (p,h) spline function are given in Table A10 in Appendix 
A11. Nodes outside the range of validity needed for the construction of a rectangular grid of 
nodes are obtained by appropriate extrapolation. 

6.2.3 Deviations from IAPWS-95 

The maximum (max) and root-mean-square (RMS) deviations between the spline functions 
and IAPWS-95, along with the permissible values (perm), are given in Tables 37 and 38. The 
permissible values were set by the IAPWS Task Group “CFD Steam Property Formulation” to 
ensure that the differences in the results of process simulations with the SBTL method from 
those obtained with the direct application of IAPWS-95 are negligible. The permissible values 
are less than or equal to the required numerical consistencies for the IAPWS-IF97 backward 
equations [3, 5, 6, 7, 8]. The deviations in T(p,h) and v(p,h) of the SBTL property functions 
from IAPWS-95 in the liquid region L and the gas region G are depicted in Appendix A13, 
Figs. A20 and A21. 

Table 37: Deviations in temperature T(p,h) from IAPWS-95 

Region  perm
mKT   max

mKT     RMS
mKT  

L 1 1 a 0.033 

G 1 1 a 0.025 
a Except for near-critical states, where 

max
10 mKT  . 

Table 38: Deviations in specific volume v(p,h) from IAPWS-95 

Region perm
v  

max
v   RMS

v  

L 0.001 % 0.001 % a 0.000 062 % 

G 0.001 % 0.001 % a 0.000 016 % 
a Except for near-critical states, where 

max
0.03 %v  .

6.3 Computing-Time Comparisons 

The computing times of the spline functions described in Secs. 6.1 and 6.2 have been 
evaluated and compared with those of IAPWS-95. The Computing-Time Ratio (CTR) is: 

Computing time of the calculation from IAPWS-95

Computing time of the calculation from the SBTL algorithms
CTR  . 

The IAPWS-95 property functions were computed from the internal routines of 
REFPROP [59] where the phase (liquid or vapor) is known and no phase tests are performed. 
Calculations from the IAPWS-95 fundamental equation and its derivatives are computationally 
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expensive. In addition, depending on the considered property function, one- or two-dimensional 
iteration procedures are used in the REFPROP software. The resulting computing times are 
more than 100 times longer than for computations from SBTL functions. The computing times 
were measured by means of software similar to NIFBENCH [3] with 100,000 randomly 
distributed state points in the corresponding region. The compiler to build the test programs and 
the computer to run the test calculations are described in Sec. 5.4. The results of the computing-
time comparisons are summarized in Table 39. 

Table 39:  Computing-time ratios (CTR) of spline-based property functions compared to 
calculations from IAPWS-95 

Region 

SBTL function L G 

p(v,u)  243 434 

T(v,u)  251 410 

T(p,h)  ≈15 000 6760 

v(p,h)  ≈14 500 6900 
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7 Bicubic Spline Functions for the Thermodynamic Potential s(v,u) 
for Water and Steam 

The biquadratic spline functions described in Secs. 5 and 6 represent the underlying property 
formulations with high accuracy. Therefore, such functions can be considered as quasi 
thermodynamically consistent, as discussed in Sec. 2.4.3. Table look-up methods providing full 
thermodynamic consistency have been described for instance by Schot [31], Herbst [44], 
Swesty [41], and Pini [37] (see Sec. 2.4.2). For comparisons, bicubic spline functions for the 
thermodynamic potential s(v,u) have been prepared based on IAPWS-95 through the use of 
FluidSplines (see Sec. 4). 

7.1 Range of Validity 

Similarly to the SBTL property functions described in Sec. 6.1, the range of validity covers 
the fluid range of state bounded as follows: 

273.15 K    1273.15 KT   611.212 Pa    1000 MPap  . 

Again, the range of validity is divided into the liquid region L, the gas region G, and the two-
phase region TP. The metastable-liquid and the metastable-vapor regions at the vapor-liquid 
phase transition are included in the liquid region L and the gas region G, respectively. For the 
metastable-vapor region no experimental data are available. IAPWS-95 produces reasonable 
values close to the saturation line. For calculations further away from the saturation line, the 
so-called gas equation [2] is recommended in [1]. Since the upper density limit of the gas 
equation is 55 kg/m3, this equation cannot be applied to generate the nodes for the entire gas 
region G. To ensure a continuous property surface, all nodes were calculated solely from 
IAPWS-95. In the metastable-vapor region, the gas region G is bounded by the vapor spinodal 
and u = 2000 kJ/kg. The range of validity is shown in Fig. 46. 

The specific internal energy at the critical point uc = 2015.734 524 kJ/kg is used to define the 
boundary between regions L and G for supercritical state points. At the region boundary in the 
single-phase region, small inconsistencies are unavoidable. These should be negligible for most 
purposes, but if needed the transition at this boundary can be smoothed using simple 
interpolation equations. 
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Figure 46: Range of validity in the (u,v) plane for s(v,u) based on IAPWS-95. 

Note: For temperatures between 273.15 K and 273.16 K, see the note at the end of Sec. 5.1.1. 

7.2 Property Calculations in the Single-Phase Region 

In each of the single-phase regions L and G, a bicubic spline function for the thermodynamic 
potential s(v,u) was created. In the liquid region L, a scaling transformation (see Sec. 3.2.2) for 
the specific volume v between the 1000 MPa isobar    min max 1000 MPa,v u v p u   and the 
liquid spinodal    max liq_spinv u v u  is applied, so that 

      max min
min min

max min

( , )
v v

v v u v v u v
v u v u


  


, 

where the free parameters are set to min 1v   and max 100v  . Thus, the shape of the grid of 
nodes corresponds to the shape of the liquid region L (see Fig. 46). In the gas region G, the 
specific volume is transformed as ln( )v v . The grid dimensions of the s(v,u) spline functions 
are given in Tables A11 and A12 in Appendix A11. Nodes outside the range of validity needed 
for the construction of a rectangular grid of nodes are obtained by appropriate extrapolation. 
The relationships between the thermodynamic potential s(v,u) and the remaining thermo-
dynamic properties are given in Table 40. 
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Table 40: Relationships of thermodynamic properties to specific entropy s(v,u) and its 
derivatives 

Property Relationship 

Pressure p 

 sp u v      
1

,
u v

s s
p v u

v u

            
 

Temperature T 

 vT u s     
1

,
v

s
T v u

u

    
 

Gibbs free energy g 

g u pv Ts     
1

,
u v

s s
g v u u v s

v u

                
 

Specific enthalpy h 

h u pv    
1

,
u v

s s
h v u u v

v u

             
 

Specific isochoric heat capacity vc  

 v v
c u T    

 
12 2

2
,v

v v

s s
c v u

u u


            

 

Specific isobaric heat capacity pc  

 p p
c h T    

 , u v v u
p

u v v u

h s h s
v u u v

c v u
T s T s
v u u v

                           
                           

 

 

Speed of sound w 

 sw v p v     

 

 2 2

2 2

,

s s

w v u p u

vv v

             
 

 

The derivatives of s(v,u) with respect to the independent variables v and u are derived from 
the bicubic spline polynomial, Eq. (2.61) and the corresponding transformation functions. The 
remaining derivatives required for the relationships given in Table 40 read 

1 22 2

2
u u v v u vu

h s s s s s s s
v

v v u u v v u uv

                                                                   
, 

22 2

2
1

v v u vv

h s s s s s
v

u v u u v uu

                                                  
, 
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22

u v

T s s

v v u u

                   
, 

22

2
v vv

T s s

u uu

                  
, 

and 
12 2 2

2 2

2

2
v u u vu v

s

v

s s s s s s s
u v v u v uv up

v s
u

                                                                  
  

. 

 

7.3 Deviations from IAPWS-95 

The maximum (max) and root-mean-square (RMS) deviations of the bicubic spline functions 
for s(v,u) and the derived property functions for p(v,u), T(v,u), and cv(v,u) from IAPWS-95 are 
given in Tables 41 through 44. In addition, the deviations are depicted in Appendix A14, Figs. 
A22-A29. 

 

Table 41: Deviations in specific entropy s(v,u) from IAPWS-95 

Region 
 

max

kJ/ kg K

s

  
 

 
 

RMS

kJ/ kg K

s

  
 

L 0.97 × 109 0.21 × 109 

G 1.00 × 108 a 0.67 × 109 

a Except for near-critical states, where 8
max

5 10 kJ/(kg K)s    . 

 

Table 42: Deviations in pressure p(v,u) from IAPWS-95 

Region max
p   RMS

p  

 L 
2.5MPap   2.22 % 0.40 % 

2.5MPap   0.81 kPa 0.023 kPa 

 G 0.001 % a 0.000 011 % 
a Except for near-critical states, where 

max
0.012 %p  . 
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Table 43: Deviations in temperature T(v,u) from IAPWS-95 

Region  max
mKT     RMS

mKT  

L 0.79 0.0081 

G 1 a 0.044 
a Except for near-critical states, where 

max
5 mKT  . 

Table 44: Deviations in specific isochoric heat capacity cv(v,u) from IAPWS-95 

Region maxvc   RMSvc  

L 0.067 % a 0.0018 % 

G 0.1 % b 0.0035 % 
a For c1900 kJ/kg u u  , the maximum deviations of cv are larger but less than 4 %. 
b In the vicinity of the critical point, the deviations of cv are larger but less than 7 %. 

Properties, which depend on the first derivatives of s(v,u) only, such as p and T, exhibit 
comparatively small deviations from the underlying IAPWS-95 formulation. Other properties, 
which depend on higher order derivatives, such as cv, show increased deviations. These 
deviations exceed the permissible values described in Sec. 6.1.3, but are smaller than the 
uncertainties of the underlying IAPWS-95 formulation. 

7.4 Computing-Time Comparisons 

The computing times of the bicubic spline functions for s(v,u) and the derived property 
functions for p(v,u), T(v,u) have been evaluated and compared with those of IAPWS-95. The 
IAPWS-95 implementation, the definition of the Computing-Time Ratio (CTR), and the test 
procedure are equal to those described in Sec. 6.3. The computing times have been measured 
in the stable single-phase regions only. The spline functions are implemented to return p, T, and 
s at the same time. The resulting CTR values for the liquid region L and the gas region G are 
given in Table 45. Similarly, such functions can be implemented to efficiently compute other 
sets of thermodynamic properties at once (see Table 40). For inverse functions, the analytical 
solution of bicubic polynomials is computationally much more expensive than that of 
biquadratic polynomials. 

 

Table 45:  Computing-time ratios (CTR) of property functions derived from the bicubic spline 
functions for s(v,u) compared to calculations from IAPWS-95 

Region 

SBTL function L G 

p,T,s = f(v,u)  96 159 
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7.5 Property Calculations in the Two-Phase Region 

To calculate the properties in the two-phase region, the set of equations F(X), namely 

  L G
1 0 ( , ) ( , )p v u p v u     F X , (3.94) 

  L G
2 0 ( , ) ( , )T v u T v u     F X , (3.95) 

  L G
3 0 ( , ) ( , )g v u g v u     F X , and (3.96) 

 4 0
v v u u

v v u u

  
  

    
F X . (3.97) 

must be solved for the vector of unknowns  T, , ,v u v u   X . This can be done through the 
use of Newton’s method for non-linear systems of equations by solving 

   k k k J X X F X  and (3.98) 

1k k k   X X X  (3.99) 

in each iteration step k until convergence is reached. The Jacobian matrix J(X) is given as 

J(X) = (3.100) 

       

       

 

L L G G

L L G G

L L

, , , ,

, , , ,

, ,

u v u v

u v u v

u v

p p p p
v u v u v u v u

v u v u

T T T T
v u v u v u v u

v u v u

g g
v u v

v u

                                          

                                          
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8 Application of the SBTL Method in Computationally Expensive Process 
Simulations 

8.1 Computational Fluid Dynamics 

To consider the real-fluid behavior of water and steam in Computational Fluid Dynamics 
(CFD), SBTL property functions of (v,u) based on IAPWS-IF97 (see Sec. 5.1) have been 
implemented into the density-based CFD software TRACE [68, 69]. This part of the work was 
carried out in a joint project with the German Aerospace Center (DLR), where TRACE is being 
developed and maintained. The implementation was verified through the use of several test 
cases by di Mare [70]. As one of these test cases, the condensing steam flow around a fixed 
blade in a low-pressure turbine stage was simulated. The geometry and the boundary conditions 
were taken from a publication of White et al. [71], which also provides a detailed description 
of measurements for verification. The simulations with TRACE were carried out for three 
different property calculation algorithms, namely the existing IAPWS-IF97 implementation, 
the newly developed SBTL property functions of (v,u) based on IAPWS-IF97, and the ideal-
gas model. The IAPWS-IF97 implementation is based on [66] and is extended for property 
functions of (v,u). The computation of these property functions is carried out by iteration from 
the IAPWS-IF97 basic equations. Starting values for property calculations at the current volume 
element are provided from the previous iteration step in TRACE. For the ideal-gas model, 
constant specific isobaric heat capacity is assumed. The findings obtained from the comparison 
of the simulations with the three different property calculation algorithms regarding their 
numerical results, computing times, and convergence behavior are published in [72]. In 
comparison to the direct IAPWS-IF97 implementation, the computing times of the CFD 
simulations were reduced by factors between 6 and 10 through the use of the SBTL functions. 
With regard to CFD calculations where steam is considered to be an ideal gas, the computing-
time consumption with the SBTL functions is increased by a factor of only 1.4. The numerical 
results show negligible differences from those obtained from simulations with the direct 
IAPWS-IF97 implementation. 

More recently, the flow solver applied in TRACE has been further modified by Post [73] to 
enhance its capabilities for simulations considering real fluid properties. To compare the 
different property calculation algorithms, the de Laval nozzle described by Moore et al. [74], 
see Fig. 47, was simulated [75] using the IAPWS-IF97 implementation, the SBTL functions, 
and the ideal gas model. The governing equations as well as the spatial discretization of the 
nozzle geometry and the solution scheme are described in [73]. At the inlet, the total pressure 
pt is 500 kPa and the total temperature Tt is 520 K. Since the flow is supersonic at the outlet, 
the flow through the nozzle is fully determined. The nozzle height at the throat hthroat is 
0.0315 m. For the different simulations using IAPWS-IF97 and the SBTL property functions, 
homogeneous two-phase flow with condensation at equilibrium conditions is assumed. 
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Figure 47: Computational grid for the de Laval nozzle with only every third grid line in each 
direction shown. 

The nozzle height and the axial distribution of area averaged pressure ratio and liquid mass 
fraction are shown in Fig. 48. The results of the simulation using the SBTL property functions 
are practically equal to those obtained through the direct application of IAPWS-IF97. 

 

Figure 48: Nozzle height h and area averaged axial distributions of pressure p and liquid 
fraction along x. 

The L1 residuals for the different simulations using the SBTL property functions, the 
IAPWS-IF97 implementation, and the ideal-gas model are shown in Fig. 49. Convergence is 
reached for all three property calculation methods after approximately 500 iteration steps. Due 
to the numerical consistency of the SBTL property functions with their inverse functions, the 
computation is very stable using this approach. With regard to the direct application of IAPWS-
IF97, the overall computing times for flow simulations through the de Laval nozzle using the 
SBTL property functions are reduced by a factor of 5. In comparison to the ideal-gas model, 
the computing times of simulations with the SBTL property functions increased by a factor of 
2.5. It seems likely that the numerical consistency of the property functions of the IAPWS-IF97 
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implementation causes the residuals to be larger. For some test calculations, the simulations 
using the IAPWS-IF97 even failed to converge. This could be avoided by decreasing the 
tolerances for the iterative calculations from the IAPWS-IF97 basic equations. Of course, this 
would extend the computing times even further. Currently, the tolerances for the internal energy 
u and the specific volume v are set to 0.001 kJ/kgu   and -610v v  . 

Figure 49: L1 residuals for the different simulations using the SBTL property functions, the 
IAPWS-IF97 implementation, and the ideal-gas model.

8.2 Heat Cycle Simulations 

In software tools for heat cycle simulations, the balance equations of mass, energy, and 
entropy often lead to (p,h), (p,s), and (h,s) input variable combinations. To reduce the overall 
computing times of heat cycle simulations, the SBTL property functions of (p,h) based on 
IAPWS-IF97 and their inverse functions (see Sec. 5.2) have been implemented in two different 
software tools for heat cycle simulations. 

The heat cycle simulation software KRAWAL-modular is being developed and maintained 
by SIEMENS PG. This software is primarily used as an in-house tool for power plant design 
calculations. In a first study performed by Bennoit [76], the computing times of T(p,h), s(p,h), 
h(p,s), and p(h,s) computed from IAPWS-IF97 and from the SBTL property functions were 
compared. In KRAWAL-modular, the industrial formulation IAPWS-IF97 is computed from 
the Extended Steam Tables software package [66]. The IAPWS-IF97 property functions of 
(p,h), (p,s), and (h,s) are calculated by iteration from the IAPWS-IF97 basic equations, where 
the starting values are determined from the available backward equations [3, 4, 5, 6, 7]. The 
region boundaries are calculated from their original definitions in the (p,T) plane, which 
requires iterative procedures in some cases (see Sec. 2.3). The iterative calculations from the 
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IAPWS-IF97 basic equations and region boundaries are required to ensure high numerical 
consistency of forward and backward functions, as pointed out in Sec. 2.3. As described in [76], 
computations of T(p,h), s(p,h), h(p,s), and p(h,s) from the SBTL functions are at least 10 times 
faster than those from the IAPWS-IF97 implementation [66]. It must be noted, that the 
computing times reported in [66] are given as averaged values for each property function but 
no distinction is made in what region these functions are called. Through the use of the complete 
set of SBTL property functions of (p,h) based on IAPWS-IF97 and their inverse functions (see 
Sec. 5.2) in KRAWAL-modular [77], the overall computing times are reduced on average by 
50 % with regard to the direct application of IAPWS-IF97. The observed differences in the 
engineering design parameters are less than 0.02 % and therefore negligible. 

The SBTL property functions of (p,h) based on IAPWS-IF97 and their inverse functions 
have also been implemented in the commercial heat cycle simulation software EBSILON® 
Professional [78]. In this software, the direct implementation of IAPWS-IF97 is derived from 
the LibIF97 property library [79] with a few modifications. In the original version of LibIF97, 
the backward functions are calculated from the available backward equations to avoid time 
consuming calculations from the IAPWS-IF97 basic equations by iteration. Where applicable, 
the region boundaries are calculated from the region-boundary equations (see Sec. 2.3). Since 
the numerical consistency of the backward equations for T(p,h) with the IAPWS-IF97 basic 
equations does not meet the requirements in EBSILON® Professional, this property function is 
calculated by iteration from the corresponding basic equation. In contrast to KRAWAL-
modular, some components, such as turbine stage groups and steam generators, are described 
with a lower level of detail in EBSILON® Professional. Thus, the calculation of fluid properties 
consumes a smaller share of the overall computing time in EBSILON® Professional. To 
compare the SBTL property functions with the direct application of IAPWS-IF97, a 
conventional steam power plant was simulated with both implementations independently [80]. 
For the direct application of IAPWS-IF97, 25% of the overall computing time were spent on 
property calculations for water and steam. With the SBTL property functions, the share of 
property calculations in the overall computing time is reduced to 8% and the overall computing 
times are reduced by 17% with regard to the direct application of IAPWS-IF97. 

The practical application of SBTL property functions in software tools for heat cycle 
simulations demonstrates their usefulness for this kind of numerical process simulations. While 
the numerical results for the engineering design parameters obtained from simulations using 
the SBTL method differ negligibly from those obtained through the direct application of 
IAPWS-IF97, the overall computing times can be reduced significantly. The reduction of the 
overall computing times depends on the computing-time share of the previously implemented 
property functions and their computational speed. If the industrial formulation IAPWS-IF97 
and its supplementary backward equations are in use, then the savings in computing time when 
switching to the SBTL property functions are relatively small. In cases where backward 
functions are calculated by iteration from the IAPWS-IF97 basic equations, the application of 
SBTL property functions leads to more significant computing-time savings. With regard to 
process simulations with IAPWS-95 or property formulations for other fluids, the overall 
computing times can be drastically reduced through the use of the SBTL method.
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8.3 Nuclear Reactor System Safety Analysis 

In RELAP-7 (Reactor Excursion and Leak Analysis Program) [81], the nuclear reactor 
system safety analysis code currently being developed at the Idaho National Laboratory (INL), 
the solution of the balance equations of mass, momentum, and total energy requires fluid 
property calculations from (v,u). For fully non-equilibrium, fully compressible, two-phase 
flows a novel 7-equation two-phase flow model is in use. This model describes both phases, 
liquid and vapor, independently. Each phase may be in a stable or in a metastable state. If both 
phases are in equilibrium (equal pressures, temperatures, Gibbs free energies, and velocities), 
the 7-equation two-phase flow model reduces to the 3-equation homogeneous equilibrium 
model. To consider the real fluid behavior of water and steam consistently for both models, the 
SBTL method has been applied to IAPWS-95 [1] and the latest IAPWS standards on viscosity 
[65] and thermal conductivity [82]. Differing from the SBTL property functions described in 
Sec. 6.1, the range of validity is bounded by: 

273.15 K    1273.15 KT   611.212 Pa    100 MPap  . 

The single-phase region is divided into the liquid region L (see Fig. 50) and the gas region G 
(see Fig. 51), where the corresponding metastable regions are included. For supercritical state 
points, the boundary between the liquid region L and the gas region G is defined by the specific 
internal energy at the critical point uc = 2015.734 524 kJ/kg. 

In each of the regions L and G, spline functions for the calculation of , , , , , ( , )p T s w f v u    
were created based on IAPWS-95 and the current IAPWS standards on viscosity [65] and 
thermal conductivity [82]. As recommended in [1], metastable-vapor properties further away 
from the saturation line should be calculated from the so-called gas equation [2], rather than 
from IAPWS-95. Since the transition from IAPWS-95 to the gas equation along its maximum 
density of 55 kg/m3 is not smooth in the metastable region, all nodes were calculated from 
IAPWS-95. The correlating equations for the dynamic viscosity  [65] and the thermal 
conductivity  [82] contain critical enhancement terms to describe the behavior of these 
properties in the critical region. The critical enhancement terms depend on the derivative 

 Tv p  , which is infinite along the spinodals. This causes numerical difficulties and 
therefore, the critical enhancement terms were omitted for the generation of the (v,u) and 
(v,u) spline functions. For the dynamic viscosity , the critical enhancement is significant in 
a very small region around the critical point only and its omission is recommended in [65] to 
simplify the calculation for industrial use. For the thermal conductivity , the critical 
enhancement is significant in a larger range around the critical point as discussed in [82]. 

In the liquid region L, a scaling transformation (see Sec. 3.2.2) for the specific volume v 
with the boundary curves    min max 100 MPa,v u v p u   and    max liq_spinv u v u  is 
applied, so that 

      max min
min min

max min

( , )
v v

v v u v v u v
v u v u


  


, 

where the free parameters are set to min 1v   and max 100v  . Thus, the shape of the grid of 
nodes corresponds to the shape of the liquid region L (see Fig. 50). In the gas region G, the 
specific volume is transformed as ln( )v v . A detailed description of the (v,u) spline functions 
regarding their grid dimensions and the achieved accuracy is given in [83]. 
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Figure 50: Liquid region L in the (u,v) 
plane. 

Figure 51: Gas region G in the (u,v) plane. 

 

The specific enthalpy h and the specific Gibbs free energy g are calculated from h = u + pv 
and g = h  Ts. Since the calculation of g(v,u) involves the evaluation of p(v,u), T(v,u), and 
s(v,u), additional spline functions are provided for even faster computations of g(v,u). The 
isobaric and isochoric heat capacities are calculated from p(v,u) and T(v,u) according to their 
definitions 
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Since pc  and vc  contain the first derivatives of the biquadratic spline functions for p(v,u) and 
T(v,u), the first derivatives of pc  and vc  are discontinuous. In many process simulations, these 
derivatives are not required. For all other cases, additional spline functions for the calculation 
of  ,pc v u  and  ,vc v u  are provided. 

For calculations in the stable or metastable single-phase regions, inverse functions of (p,T), 
(p,v), (p,h), (p,s), and (h,s) are provided. In the gas phase, the inverse function (p,v) can be 
calculated without any iterations as an inverse spline function (see Sec. 3.2.3). For all other 
cases, the inverse functions are calculated by iteration from the (v,u) spline functions using 
Newton’s method (see Appendix A3) and accurate auxiliary spline functions for the starting 
values. The saturation states could be calculated from the Maxwell criterion, i.e., equal 
pressures, temperatures, and specific Gibbs free energies for both phases; but for the sake of 
simplicity, a spline function for Ts(p) is used instead. For this function, the pressure p is 
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transformed as p p . For given (v,u), the properties at saturation are calculated by solving 
the set of Eqs. (3.79) – (3.83) in Sec. 3.2.5 for the vector of unknowns  s

T
, , , ,p v u v u   X . 

The variables 1x  and 2x  in Eq. (3.83) are v and u. Calculations in the two-phase region for 
given (h,s) are performed in a similar fashion, but  the variables 1x , 1x , 1x , 2x , 2x , and 2x  in 
Eq. (3.83) are h , sh u p v    , sh u p v    , s ,  L ,s s v u   , and  G ,s s v u   . For 
given (p,v), (p,h), or (p,s), the properties at saturation are determined from the inverse functions 
of (p,T), where  sT T p . The property functions described above have been implemented 
into the newly developed property library LibSBTL_vu_95 [84]. An overview of calculable 
functions and analytical derivatives is given in Table 46. 

The property library LibSBTL_vu_95 has been implemented into the nuclear reactor system 
safety analysis code RELAP-7 as reported in [81]. In this way, the thermodynamic and transport 
properties of water and steam are calculated with high accuracy and short computing times in 
the 7-equation two-phase flow model and in the 3-equation homogeneous equilibrium model. 
The test calculations documented in [83] show, that simulations using the SBTL property 
functions are only 2% slower than those with the stiffened gas equation of state, which was 
implemented in RELAP-7 during its development process. 

 

Table 46:  Property functions and derivatives exported from LibSBTL_vu_95 [84] 

Independent  

variables 
Dependent variables z Derivatives 

(v,u)  p, T, x, g, h, s, cp, cv, w, ,  
u

z

v

 
  

, 
v

z

u

 
  

, 
z

u

v

 
  

 

(p,T)  v, u, h 
T

z

p

 
  

, 
p

z

T

 
  

, 
z

p

T

 
  

 

(p,v)  u 
v

z

p

 
  

, 
p

z

v

 
  

, 
z

p

v

 
  

 

(p,h)  T, x, v, u 
h

z

p

 
  

, 
p

z

h

 
  

, 
z

p

h

 
  

 

(p,s)  v, u 
s

z

p

 
  

, 
p

z

s

 
  

, 
z

p

s

 
  

 

(h,s)  p, T, x, v, u 
s

z

h

 
  

, 
h

z

s

 
  

, 
z

h

s

 
  
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9 Summary and Outlook 

The aim of this work was the development of suitable property calculation algorithms for 
complex process simulations, such as flow analysis with Computational Fluid Dynamics 
(CFD), power-plant design with heat cycle calculations, and real-time process optimizations. 
In order to achieve the best possible results with these simulations, the applied property 
functions must be very accurate. Since these functions are called extremely often during the 
process simulation, their computing times must be very low. To ensure convergence, the 
property functions need to be continuously differentiable once. Furthermore, simulations with 
small spatial and time discretizations require the property functions to be numerically and 
thermodynamically consistent. 

In order to find a suitable approach which meets the requirements, the currently available 
algorithms for calculating the properties of water and steam were compared with regard to their 
accuracy and their computing time. The attainable accuracy of an equation of state is 
determined by its functional form. The computing time required for evaluating the equation of 
state results from the necessary mathematical operations. Property functions of (v,u) and (p,h), 
which are frequently used in CFD and in heat cycle calculations, must be calculated by iteration 
from the equation of state, which typically depends on (T,v) or (p,T), respectively. This leads 
to extended computing times. Because of their comparatively short computing times, simple 
thermal equations of state, such as the ideal-gas equation or the Peng-Robinson equation, 
combined with an equation for the isobaric heat capacity of the ideal gas, are often used in CFD. 
However, depending on the range of state, these equations may be very inaccurate, which in 
turn leads to errors in the simulation results. 

Many fundamental equations of state, such as IAPWS-95, contain numerous transcendental 
terms, such as exponential functions and logarithms. As the computation of these terms is very 
expensive, the property functions calculated from IAPWS-95 are between 30 and 100 times 
slower than those calculated from the Peng-Robinson equation. Therefore, such equations of 
state are inapplicable in extensive process simulations. This is also true for short equations of 
state for industrial applications, such as the equation of Kunz et al., whose property functions 
are between 10 to 26 times slower than those from the Peng-Robinson equation. 

The industrial formulation IAPWS-IF97 enables fast and sufficiently accurate property 
calculations by combining fundamental equations of state for separate regions with backward 
equations, which are all optimized for computing speed. For example, property functions of 
(p,h) are calculated by iteration from the IAPWS-IF97 basic equations with starting values from 
the corresponding backward equation. Such calculations are numerically consistent and the 
computing times are comparable to those of calculations from the Peng-Robinson equation.  
Due to the absence of suitable backward equations, the IAPWS-IF97 property functions of (v,u) 
are up to 11 times slower than those of the Peng-Robinson equation. Thus, even IAPWS-IF97 
is too slow for extensive process simulations, where the independent variables of the applied 
property functions are different from those of the basic equations and backward equations. The 
development of fast fundamental equations of state for separate regions and suitable backward 
equations is very time consuming and was therefore not pursued in this work. 
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Table look-up methods are a fast and accurate alternative for property calculations. The 
accuracy of a table look-up method can be controlled by the number and the distribution of the 
tabulated data points. Furthermore, table look-up methods can be flexibly applied to various 
property functions. The computing times of such methods are essentially dependent on the 
algorithms used for interval or cell search. With the TTSE method, which was studied as an 
example, property functions of (p,h) are more than 4 times faster than those of the Peng-
Robinson equation. However, the discontinuities along the TTSE property functions lead to 
numerical problems in process simulations with very small spatial and time discretizations. The 
advantages and disadvantages of different table look-up methods have been studied and 
conclusions have been drawn for the development of an advanced table look-up method based 
on spline interpolation. 

The newly developed Spline-Based Table Look-Up method (SBTL) approximates the results 
of existing equations of state or transport property equations, with high accuracy and low 
computing time. This is enabled by the combination of polynomial spline interpolation 
techniques, specialized variable transformations, and piecewise equidistant nodes for simplified 
search algorithms. Second order polynomial spline functions are continuously differentiable 
once and enable the fast calculation of numerically consistent inverse functions. Therefore, 
quadratic and biquadratic spline functions are preferred, but the method can also be extended 
to employ third or higher order polynomials. The mathematical details of the SBTL method are 
described comprehensively in this work. 

The software tool FluidSplines has been developed to enable the fast application of the SBTL 
method to one- and two-dimensional property functions of any fluid. For this purpose, the 
software provides an extensible interface to calculate the underlying property functions from 
external property libraries, such as REFPROP for instance. Through the use of FluidSplines, 
SBTL property functions can be generated for the range of validity and the desired accuracy 
specified by the user. Currently, FluidSplines implements second- and third-order polynomial 
spline interpolation methods only, but it may be extended to other methods as well. For two-
dimensional functions, an algorithm has been developed to determine whether or not a given 
state point is located in a region arbitrarily described by a set of bounding curves. Furthermore, 
several algorithms have been implemented to extrapolate nodes beyond the range of validity, if 
this is required during the spline-generation process. The calculated nodes and the deviations 
of the generated SBTL property function from the underlying property function can be assessed 
in detail by means of suitable two- and three dimensional diagrams. The generated SBTL 
property functions can be exported from FluidSplines as pure C source code, which is optimized 
regarding its computational speed. 

To provide fast and accurate property functions for water and steam, the SBTL method has 
been applied to the industrial formulation IAPWS-IF97 and to the IAPWS-95 formulation for 
general and scientific use. For each of these formulations, two different sets of SBTL functions 
have been generated. The SBTL functions of (v,u) can be used for instance in CFD, whereas 
the SBTL functions of (p,h) are useful in heat cycle calculations, for example. The maximum 
deviations of these functions from their underlying property formulations are less than the 
permissible values. The permissible deviations in the single-phase region are 0.001 % for p, v, 
w, and , except for the liquid region, where |p|perm = 0.6 % for p ≤ 2.5 MPa and |p|perm = 15 kPa 
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for p > 2.5 MPa. The permissible deviations for T and s are 10 mK and 106
 kJ/(kg K). These 

values were set by the IAPWS Task Group “CFD Steam Property Formulation” to ensure that 
the differences in the results of process simulations with the SBTL method from those obtained 
with the direct application of the corresponding IAPWS formulation are negligible. 
Furthermore, a certain thermodynamic consistency is ensured in this way. In addition to the 
SBTL functions of (v,u) based on IAPWS-IF97, numerically consistent inverse functions of 
(p,v) and (u,s) are provided. Similarly, numerically consistent inverse functions of (p,T), (p,s), 
and (h,s) are provided for the SBTL functions of (p,h) based on IAPWS-IF97. 

The computing times of the SBTL functions have been evaluated and compared with those 
of the IAPWS-IF97 implementation given in [66]. Since the region definitions of the SBTL 
functions are different from those of IAPWS-IF97, the computing times of both formulations 
include the determination of the region that corresponds to the given state point. In the single-
phase region, the SBTL functions of (v,u) are between 130 and 471 times faster than those of 
the IAPWS-IF97 implementation. The SBTL functions of (p,h) are at least 17 times faster than 
the corresponding functions of the IAPWS-IF97 implementation, in which backward and 
boundary equations are used to determine the starting values for the iterative calculations from 
the basic equations. With regard to computations from (p,h), where backward and boundary 
equations are directly applied, the SBTL functions are between 3 and 30 times faster. 

The SBTL method has also been applied to the thermodynamic potential s(v,u). For this 
purpose, bicubic spline functions have been generated for the liquid and the vapor phase based 
on IAPWS-95. From s(v,u), the properties p, T, g, h, cp, cv, and w can be calculated consistently 
from their thermodynamic definitions. The resulting property functions were compared to the 
underlying IAPWS-95 formulation. In the gas phase, the maximum deviations in p and T are 
less than 0.001 % and 1 mK. The maximum deviation in cv is 0.1 %, which is less than the 
uncertainty of the underlying IAPWS-95 formulation. Simultaneous computations of p, T, and 
s from the bicubic spline functions for s(v,u) are between 100 and 160 times faster than those 
from IAPWS-95. 

The applicability of the SBTL method in extensive process simulations has also been 
demonstrated in this work. In a joint project with the German Aerospace Center (DLR), SBTL 
functions of (v,u) and the corresponding inverse functions based on IAPWS-IF97 have been 
implemented into the CFD software TRACE. Several test simulations were carried out for three 
different property calculation algorithms, namely the existing IAPWS-IF97 implementation, 
the newly developed SBTL functions of (v,u) based on IAPWS-IF97, and the ideal-gas model. 
In comparison to simulations with the direct implementation of IAPWS-IF97, the computing 
times were reduced by factors between 5 and 10 through the use of the SBTL functions. With 
regard to simulations where steam is considered to be an ideal gas, the computing times are 
increased by factors between 1.4 and 2.5. The numerical results show negligible differences 
from those obtained through the direct application of the IAPWS-IF97 implementation in 
TRACE. 

The SBTL functions of (p,h) and their corresponding inverse functions based on IAPWS-
IF97 have been implemented into two different heat cycle simulation codes. In this way, the 
overall computing times of simulations with KRAWAL-modular, the heat cycle simulation 
software developed by SIEMENS PG, are reduced on average by 50 % with regard to the direct 
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application of IAPWS-IF97. The observed differences in the engineering design parameters are 
less than 0.02 % and therefore negligible. Similarly, the overall computing times of simulations 
with EBSILON® Professional, the heat cycle simulation software developed by STEAG Energy 
Services GmbH, are reduced by 17% with regard to the direct application of IAPWS-IF97. 

For RELAP-7, the nuclear reactor system safety analysis code currently being developed at 
the Idaho National Laboratory (INL), SBTL functions of (v,u) and inverse functions of (p,T), 
(p,v), (p,h), (p,s), and (h,s) were developed based on IAPWS-95. The range of validity of these 
property functions includes the metastable-liquid and metastable-vapor regions at the vapor-
liquid phase transition. Through the use of the SBTL property functions, the real fluid behavior 
of water and steam can be considered and the application of a novel 7-equation non-equilibrium 
two-phase flow model is enabled. Simulations using the SBTL functions based on IAPWS-95 
are only 2% slower than those with the stiffened gas equation of state. 

This work contributes to the activities within the IAPWS Task Group “CFD Steam Property 
Formulation”. The newly developed Spline-Based Table Look-up method (SBTL) has been 
adopted as an IAPWS-Guideline [61]. 

The application of the SBTL method to pure fluids, such as heavy water, carbon dioxide, 
helium, and others, is currently in progress. Future activities focus on the extension of the SBTL 
method to mixtures, such as humid air, humid combustion gas mixtures, etc. 
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Appendix 

A1 Grid Optimization Algorithm of Kretzschmar et al. 

The grid optimization algorithm proposed by Kretzschmar et al. [46, 47] is illustrated in 
Figs. A1-A4. Starting from the coarse grid depicted in Fig. A1, the accuracy is tested in each 
cell {i,j}. If the maximum deviation in each cell exceeds the required accuracy, the node density 
in both directions is increased independently and the resulting accuracy in each cell is tested 
again for both cases. This is illustrated in Figs. A2 and A3. In Fig. A2, at each grid line at 
constant 2x , an additional node is inserted. The nodes along each of these grid lines are kept 
equidistant. Then, instead of inserting a node at each grid line at constant 2x , the number of 
grid lines is increased by one as shown in Fig. A3. Again, the new grid lines are aligned 
equidistantly. The grid with the lowest maximum deviation in z(x1,x2) is selected. If a range of 
cells meets the required accuracy, it is excluded from the optimization. If, for instance, the cells 
{1,1} and {2,1} in the grid depicted in Fig. A3 are sufficiently accurate, then the node density 
in the remaining grid is increased independently. This is shown for the grid of nodes in Fig. A4, 
where additional nodes are only inserted at those grid lines at constant 2x , that bound the cells 
with higher deviations. 

 

Figure A1: Initial grid of nodes for grid 
optimization. 

Figure A2: Grid of nodes with an 
additional node along 1x  at 
each grid line at constant 2x . 
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Figure A3: Grid of nodes with an additional 
grid line at constant 2x . 

Figure A4: Grid of nodes with locally 
increased node density. 

A2 Relationships between the Derivatives of the Residual Helmholtz Free Energy 

The calculation of thermodynamic properties from a Helmholtz free energy equation often 
requires the computation of several derivatives. The residual part of the Helmholtz free energy 
equation  r ,   and its derivatives with respect to  and , namely r

( )n  and r
( )m , can 

often be expressed as 

   r r, ,i
i

      , (A2.1) 

     ( )r r
( ) , , ,nn
n i i

i

F
         , (A2.2) 

and 

     ( )r r
( ) , , ,mm
m i i

i

F
         . (A2.3) 

The n-th derivative with respect to   and the m-th derivative with respect to   are multiplied 
by their respective powers n  and m  since the resulting expressions are frequently used for 
property calculations as can be seen in Table 3 in Sec. 2.2.1. In Eqs. (A2.2) and (A2.3), these 
expressions are calculated from the products of the term r

i  itself and a factor  n
iF  or  m

iF , 
respectively. 

For instance, the (n  1)-th derivative with respect to  can be written as 

( 1)r 1 r
, ( 1)

nn
i n i iF
  

   . (A2.4) 

The derivative of Eq. (A2.4) with respect to  leads to the n-th derivative 

 ( 1) ( 1) ( 1)r 1 r r 1
, ( ) , , 1n n nn n n

i n i ii iiF F n F  
               . (A2.5) 

Inserting r 1 r
,i i iF
      and rearranging for  

r
,

n
i n   yields 

 ( 1) ( 1)r r
, ( ) , ( 1)n nn

i n i iiiF F F n  
             . (A2.6) 
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Analogously, the expression 

 ( 1) ( 1)r r
, ( ) , ( 1)m mm

i m i ii iF F F m  
             . (A2.7) 

can be derived. The expressions in braces are the factors  n
iF  and  m

iF , namely 

  ( 1) ( 1)
, ( 1)n

ii
n

ii
n F FF F n  


           (A2.8) 

and 

( ) ( 1) ( 1)
, ( 1)m m m

ii i iF F F F m   
         . (A2.9) 

Considering that (0) 1iF  , (0) 1iF  , 

  ( 1) ( 1) ( 1)
,, ,, 2n n n

i iii i
n

iF F F F n F F   
             (A2.10) 

and 

  ( 1) ( 1) ( 1)
,, ,, 2m m m

i ii i i
m

iF F F F m F F    
             (A2.11) 

the factors  n
iF  and  m

iF  can be determined recursively.

 

A3 Newton’s Method for Two Dimensions 

The iteration procedure for Newton’s method to solve two non-linear equations 
simultaneously reads  

1 1

1 2
2 1

2 2
1, 1 1, 1

x x
k k

f f
f f

x x
x x
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    
       

   (A3.1) 

and 

2 2
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x x
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   (A3.2) 

with 

1 2 2 1

1 2 1 2

2 1 1 2x x x x

f f f f
DEN

x x x x

          
                  

. (A3.3) 
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A4 Newton’s Method for Three Dimensions 

The iteration procedure for Newton’s method to solve three non-linear equations 
simultaneously reads  
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, (A4.1) 
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and 
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 (A4.3) 
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. (A4.4) 
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A5 Property Calculations in the Two-Phase Region from (p,h) 

In order to calculate the properties in the two-phase region from (p,h), the following 
algorithm is recommended. In addition to the (p,h) spline functions in the liquid region L and 
gas region G, a function for s ( )T p  and the inverse spline functions L ( , )h p T  and G ( , )h p T  are 
provided. From these functions, s s ( )T T p , L

s( , )h h p T  , and G
s( , )h h p T   are determined 

without iteration. The vapor fraction x is calculated from ( ) / ( )x h h h h      and the desired 
mass-specific properties are calculated from  z z x z z     . 

 

A6 Property Calculations in the Two-Phase Region from (p,s) 

In order to calculate the properties in the two-phase region from (p,s), the following 
algorithm is recommended. In addition to the (p,h) spline functions in the liquid region L and 
gas region G, a function for s ( )T p  and the inverse spline functions L ( , )h p T  and G ( , )h p T  are 
provided. From these functions s s ( )T T p , L

s( , )h h p T  , G
s( , )h h p T  , L ( , )s s p h  , and 

G ( , )s s p h   are determined without iteration. The vapor fraction x is calculated from 
( ) / ( )x s s s s      and the desired mass-specific properties are calculated from 

 z z x z z     .

 

A7 Property Calculations in the Two-Phase Region from (h,s) 

In order to calculate the properties in the two-phase region from (h,s), the following 
algorithm is recommended. In addition to the (p,h) spline functions in the liquid region L and 
gas region G, a function for s ( )T p  and the inverse spline functions L ( , )h p T  and G ( , )h p T  are 
provided. 

With the use of a one-dimensional Newton iteration scheme, the equation 

     0 h sf p x p x p    (A7.1) 

is solved for the pressure p, where 

   
   h
h h p

x p
h p h p




 
 and    

   s
s s p

x p
s p s p




 
. (A7.2, A7.3) 

The iteration procedure is 

 
 

1 d
d

k
k k

k

f p
p p

f
p

p

   , (A7.4) 

where 

     d dd

d d d
h s

k k k
x xf

p p p
p p p

  . (A7.5) 

In each iteration step k, s, s ( )k kT T p  is calculated with the corresponding spline function. From 
the inverse spline functions L ( , )h p T  and G ( , )h p T , ( )kh p  and ( )kh p  are determined as 

L
s,( ) ( , )k k kh p h p T   and G

s,( ) ( , )k k kh p h p T  . Then, L( ) ( , ( ))k k ks p s p h p   and
G( ) ( , ( ))k k ks p s p h p   are subsequently calculated. 
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The derivatives in Eq. (A7.5) are calculated from 
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d d d
d d dd
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h
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d d d
d d dd
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s
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 (A7.6, A7.7) 

where 
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d dpT

Th h h

p p T p

           
, sdd

d dpT

Th h h

p p T p

           
, (A7.8, A7.9) 

d d

d dph

s s s h

p p h p

           
, and 

d d

d dph

s s s h

p p h p

           
. (A7.10, A7.11) 

In Eqs. (A7.8) – (A7.11), the derivatives 
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p
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, 
p

h
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 
  

, 
h

s

p

 
  

, and 
p

s

h

 
  

 

are determined in the corresponding phase from L ( , )T p h , G ( , )T p h , L ( , )s p h , and G ( , )s p h . 
The temperature gradient along the saturation curve is derived from s ( )T p . The iteration 
procedure is repeated until f TOL  and s kp p , sT , x, h , h , s , and s  are determined. 
A spline function for s ( , )p h s  is used to initialize kp .

 

A8 Property Calculations in the Two-Phase Region from (v,u) 

For property calculations where small inconsistencies at the saturated liquid line are 
tolerable, the following additional phase boundary conditions are recommended. In addition to 
the (v,u) spline functions in the liquid region L and the gas region G, spline functions for the 
properties at saturation ( )v p , ( )v u , and ( )u T  are required. With the use of a one-dimensional 
Newton iteration scheme, the equation 

     0 v uf p x p x p    (A8.1) 

is solved for the pressure p, where 

   
   v
v v p

x p
v p v p



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   u
u u p

x p
u p u p



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. (A8.2, A8.3) 

The iteration procedure is 
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1 d
d

k
k k
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f p
p p

f
p
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   , (A8.4) 

where 

     d dd

d d d
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k k k
x xf

p p p
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  . (A8.5) 
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In each iteration step k, ( )kv p  is calculated with the corresponding spline function. From the 
inverse spline function G ( , )u p v , ( )ku p  is determined as G( ) ( , ( ))k k ku p u p v p  . Then,

G
s ( ) ( ( ), ( ))k k kT p T v p u p  , s( ) ( ( ))k ku p u T p  , and ( ) ( ( ))k kv p v u p    are subsequently 

calculated. The derivatives in Eq. (A8.5) are calculated from 
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, (A8.6, A8.7) 

where 
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The derivatives 

d
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
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s

d

d

u

T


 

in Eqs. (A8.8) and (A8.9) are derived from the spline functions ( )v u  and ( )u T . 

The saturation temperature gradient is calculated from 

sd d d

d d du v
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, (A8.10) 

where 
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 and 
v

T
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 
  

 

are determined in the gas phase from G ( , )T v u . The derivative 

d

d

v

p


 

is derived from ( )v p , and 

d d

d dpv

u u u v

p p v p
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 (A8.11) 

is calculated with 

v

u

p

 
  

 and 
p

u

v

 
  

, 

which are derived from G ( , )p v u  in the gas phase. The iteration procedure is repeated until 
f TOL  and s kp p , sT , x, v , v , u , and u  are determined. A spline function for s ( , )p v u  

is used to initialize kp .
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A9 Property Calculations in the Two-Phase Region from (p,v) 

In order to calculate the properties in the two-phase region from (p,v) consistently with the 
calculations from (v,u) described in Appendix A8, the following algorithm is recommended. 
From the spline and inverse spline functions ( )v p , G ( , )u p v , G ( , )T v u , ( )u T , and ( )v u , the 
saturation properties are subsequently calculated from 

( )v v p  , G ( , )u u p v  , G
s ( , )T T v u  , s( )u u T  , and ( )v v u    

without iteration. The vapor fraction x is calculated from ( ) / ( )x v v v v     , and the desired 
mass-specific properties are calculated from  z z x z z     . 

 

A10 Property Calculations in the Two-Phase Region from (u,s) 

In order to calculate the properties in the two-phase region from (u,s) consistently with the 
calculations from (v,u) described in Appendix A8, the following algorithm is recommended. 
With the use of a one-dimensional Newton iteration scheme, the equation 

     0 u sf p x p x p    (A10.1) 

is solved for the pressure p, where 

   
   u
u u p

x p
u p u p




 
 and    

   s
s s p

x p
s p s p




 
. (A10.2, A10.3) 

The iteration procedure is 

 
 

1 d
d

k
k k

k

f p
p p

f
p

p

   , (A10.4) 

where 

     d dd

d d d
u s

k k k
x xf

p p p
p p p

  . (A10.5) 

In each iteration step k, ( )kv p  is calculated from the corresponding spline function. From the 
inverse spline function G ( , )u p v , s,( )ku p  is determined as G

s, s, s,( ) ( , ( ))k k ku p u p v p  . Then, 
G

s, s, s,( ) ( ( ), ( ))k k ks p s v p u p   , G
s s, s, s,( ) ( ( ), ( ))k k kT p T v p u p  , s, s s,( ) ( ( ))k ku p u T p  , 

s, s,( ) ( ( ))k kv p v u p   , and L
s, s, s,( ) ( ( ), ( ))k k ks p s v p u p    are subsequently calculated. The 

derivatives in Eq. (A10.5) are calculated from 

 

d d d
d d dd

d

u
u

u u u
x

p p px

p u u

   
   

 
 

 and 
 

d d d
d d dd

d

s
s

s s s
x

p p px

p s s

   
   

 
 

 (A10.6, A10.7) 

where 

s

s

dd d

d d d

Tu u

p T p

 
  and 

d d d

d d dv u

s s u s v

p u p v p

              
. (A10.8, A10.9) 
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In Eqn. (A10.8), the derivative 

s

d

d

u

T


 

is derived from the spline functions ( )u T . The derivative 

s

s

dd d d

d d d d

Tv v u

p u T p

  



 (A10.10) 

is calculated with  

d

d

v

u



,  

which is derived from ( )v u . The temperature gradient at the saturation curve is calculated from 

sd d d

d d du v

T T v T u

p v p u p

             
, (A10.11) 

where 

u

T

v

 
  

 and 
v

T

u

 
  

 

are determined in the gas phase from G ( , )T v u . The derivative 

d

d

v

p


 

is derived from ( )v p , and 

d d

d dpv

u u u v

p p v p

           
 (A10.12) 

is calculated with 

v

u

p

 
  

 and 
p

u

v

 
  

, 

which are derived from G ( , )p v u  in the gas phase. The iteration procedure is repeated until 
f TOL  and s kp p , sT , x, v , v , u , u , s , and s  are determined. A spline function for 

s ( , )p u s  is used to initialize kp . 
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A11 Transformations and Grid Dimensions 

For each spline function described in Secs. 5.1, 5.2, 5.3, 6.1, 6.2, and 7, the transformations 
and dimensions of the grid of nodes are given in the tables below. For piecewise equidistant 
nodes, the domain of the considered transformed variable min maxx x x   is subdivided in 
several intervals with equidistant nodes. In the tables below, this is described with 

min

max

nodes
...

...
...

nodes

x

x

 
  
  
  
    

 
, 

where the boundaries of the intervals are given in the column on the left and the number of 
equidistant nodes between them is given in the column on the right. 
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Table A1: Transformations and dimensions of the grid of nodes of each (v,u) spline function 
for the liquid region L based on IAPWS-IF97 and the IAPWS viscosity release with 
recommendations for industrial use [13] (see Sec. 5.1) 

Spline 
function 

v [m3/kg]  u [kJ/kg]  

 max min
min min

max min

( , ) ( )
( ) ( )

v v
v v u v v u v

v u v u


  


 

 

min 1v          max 100v   

 

min

max

nodes
...

...
...

nodes

v

v

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

u

u

 
  
  
  
    

 

 

 L ,p v u  

1
100

95
200

100

 
  
      

 

8.489 68

250

204

30

0. 1

0

2
0

25

 
 



      

 

 L ,T v u   1
100

100

 
 
 

  8.489 68

2040.
2

01
00

 







 

 L ,s v u   1
100

100

 
 
 

 

8.489 68

2040.0

1
1

0
1

0
0

2 0

 
 



      

 

 L ,w v u  

1
100

90
50

100

 
  
      

 

8.489 68

2040.0

1
1

0
1

0
0

2 0

 
 



      

 

 L ,v u   1
100

100

 
 
 

 

8.489 68

2040.01

75
300

150

 
  
      


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Table A2: Transformations and dimensions of the grid of nodes of each (v,u) spline function 
for the gas region G based on IAPWS-IF97 and the IAPWS viscosity release with 
recommendations for industrial use [13] (see Sec. 5.1) 

Spline 
function 

v [m3/kg] u [kJ/kg] 

( ) ln( )v v v   

min

max

nodes
...

...
...

nodes

v

v

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

u

u

 
  
  
  
    

 

 

 G ,p v u  

 G ,T v u  

 G ,s v u  

 G ,w v u  

 G ,v u  

 
 
 

3

3

1.698 44 10

150
8 10

200
1004.42

v

v

v





 
 

        
  

 

2009.99

2650

3693.67

100

75

 
  
      

 

 

Table A3: Transformations and dimensions of the grid of nodes of each (v,u) spline function 
for the high-temperature region HT based on IAPWS-IF97 (see Sec. 5.1) 

Spline 
function 

v [m3/kg] u [kJ/kg] 

( ) ln( )v v v   

min

max

nodes
...

...
...

nodes

v

v

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

u

u

 
  
  
  
    

 

 

 HT ,p v u  

 HT ,T v u  

 HT ,w v u  

 
 

 
37.456 81 10

200
2212.94

v

v

 
 
  

  3432.75
75

6518.9

 
 
 

 

 HT ,s v u  
 

 
 

-37.344 62 10
200

2112.08

v

v

 
 
  

  3408.16
100

6364.93

 
 
 
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Table A4: Transformations and dimensions of the grid of nodes of each (p,h) spline function 
for the liquid region L based on IAPWS-IF97 and the IAPWS viscosity release with 
recommendations for industrial use [13] (see Sec. 5.2) 

Spline 
function 

p [MPa] h [kJ/kg] 

( )p p  

min

max

nodes
...

...
...

nodes

p

p

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

h

h

 
  
  
  
    

 

 

 L ,T p h  p 

-4

-2

5 10
100

1 10 75
20 100

105

 
   
   
   
    
  

  
214

12.71 2
1 5

0

9
2

 
 
 


 

 L ,v p h  p 

-4

-2

5 10
100

1 10 75
20 125

105

 
   
   
   
    
  

  
214

12.71 2
1 5

0

9
2

 
 
 


 

 L ,s p h  p  

-4

-2

(5 10 )
150

(1 10 ) 100
(20) 100
(105)

p

p

p

p

 
   
   
   
    
  

 

12.7192
100

200
150

2140

 
  
    






 

 L ,w p h  p 

4

2

5 10
100

1 10 75
20 25
25 75

105





 
   
   
   
   
   

  
 

 

12.7192
25

200
125

1700
50

2140

 
  
  
  
    







 

 L ,p h  p 

-4

-2

5 10
100

1 10 75
20 100

105

 
   
   
   
    
  

 

12.7192
75

300
125

2140

 
  
    





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Table A5: Transformations and dimensions of the grid of nodes of each (p,h) spline function 
for the gas region G based on IAPWS-IF97 and the IAPWS viscosity release with 
recommendations for industrial use [13] (see Sec. 5.2) 

Spline 
function 

p [MPa] h [kJ/kg] 

( )p p  

min

max

nodes
...

...
...

nodes

p

p

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

h

h

 
  
  
  
    

 

 

 G ,T p h  p 

-4

-2

5 10
150

3 10 75
0.5 100
20 75

105

 
   
   
   
   
   

  
 

 

2040
75

2850
75

4195.88

 
  
      

 

 G

G

,

( , )

v p h

v p h

p



 

p 

-4

-2

5 10
125

3 10 50
0.5 50
20 75

105

 
   
   
   
   
   

  
 

 

2040
75

2850
50

4195.88

 
  
      

 

 G ,s p h  ln(p) 

-4(5 10 )
150

(20)
75

(110)

p

p

p

 
   
   

  
 

 

2040
75

2850
75

4219.44

 
  
      

 

 G ,w p h  p  

-4

-2

(5 10 )
100

(5 10 ) 75
(20) 100
(105)

p

p

p

p

 
   
   
   
    
  

 

2040
150

2850
50

4195.88

 
  
      
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2 10 75
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   
   
   
   
   

  
 
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2850
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4195.88

 
  
      
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Table A6: Transformations and dimensions of the grid of nodes of each (p,h) spline function 
for the high-temperature region HT based on IAPWS-IF97 (see Sec. 5.2) 

Spline 
function 

p [MPa] h [kJ/kg] 

( )p p  

min

max

nodes
...

...
...

nodes

p

p

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

h

h

 
  
  
  
    

 

 

 HT ,T p h  p  
-45 10

100
60

 
 
 

  3833.08
100

7420.98

 
 
 

 

 HT

HT

,

( , )

v p h

v p h

p


 p  

-45 10
100

60

 
 
 

  3833.08
75

7420.98

 
 
 

 

 HT ,s p h  ln(p)  
-4ln(5 10 )

125
ln(60)

 
 
 

  3817.25
125

7450.34

 
 
 

 

 HT ,w p h  p  
-45 10

100
60

 
 
 

  3817.25
75

7420.98

 
 
 
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Table A7: Transformations and dimensions of the grid of nodes of each (p,h) spline function 
for the metastable-vapor and gas region MG based on IAPWS-IF97 and the IAPWS 
viscosity release with recommendations for industrial use [13] (see Sec. 5.3) 

Spline 
function 

p [MPa] h [kJ/kg] 

( )p p  

min

max

nodes
...

...
...

nodes

p

p

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

h

h

 
  
  
  
    

 

 

 MG ,T p h  p 

-4

-3

5 10
150

9 10 125
0.2 75
2 100

20 75
105

 
   
   
   
   
   
   
      

 

2040
100

2850
75

4195.88

 
  
      

 

 MG

MG

,

( , )

v p h

v p h

p



 

p 

-4

-3

5 10
125

9 10 75
0.2 50
2 75

20 75
105

 
   
   
   
   
   
   
      

 

2040
100

2850
50

4195.88

 
  
      

 

 MG ,s p h  ln(p) 

-4(5 10 )
125

(8)
75

(20)
75

(105)

p

p

p

p

 
  
  
  
    

  

 

2040
75

2850
75

4219.44

 
  
      

 

 MG ,w p h  p  

-4

-2

(5 10 )
100

(5 10 ) 100
(20) 125
(105)

p

p

p

p

 
   
   
   
    
  

 

2040
150

2850
50

4195.88

 
  
      

 

 MG ,p h  p 

-4

-2

5 10
150

2 10 75
0.7 100
20 75

105

 
   
   
   
   
   

  
 

 

2040
100

2850
50

4195.88

 
  
      
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Table A8: Transformations and dimensions of the grid of nodes of each (v,u) spline function 
for the liquid region L based on IAPWS-95 (see Sec. 6.1) 

Spline 
function 

v [m3/kg] u [kJ/kg] 

 max min
min min

max min

( , ) ( )
( ) ( )

v v
v v u v v u v

v u v u


  


 

 

min 1v          max 100v   

 

min

max

nodes
...

...
...

nodes

v

v

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

u

u

 
  
  
  
    

 

 

 L ,p v u  

1
150

98
200

100

 
  
      

 

20

250

204

3

0

50

225

 
  
      


 

 L ,T v u  

 L ,s v u  

1
150

98
50

100

 
  
      

 

20

10

20

2

0
40

0

25

 
  
     






 

 L ,w v u  

1
150

98
50

100

 
  
      

 

20
20

10
150

1750
100

2040

 
     
  
    

 
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Table A9: Transformations and dimensions of the grid of nodes of each (v,u) spline function 
for the gas region G based on IAPWS-95 (see Sec. 6.1) 

Spline 
function 

v [m3/kg] u [kJ/kg] 

( ) ln( )v v v   

min

max

nodes
...

...
...

nodes

v

v

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

u

u

 
  
  
  
    

 

 

 G ,p v u  

 G ,T v u  

 G ,s v u  

 G ,w v u  

 
 
 

3

3

1.027 96 10

200
8 10

200
1188.87

v

v

v





 
 

        
  

 

2005

2650

4085.27

100

100

 
  
      
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Table A10: Transformations and dimensions of the grid of nodes of each (p,h) spline function 
for the liquid region L and the gas region G based on IAPWS-95 (see Sec. 6.2) 

Spline 
function 

p [MPa]  h [kJ/kg] 

( )p p  

min

max

nodes
...

...
...

nodes

p

p

 
  
  
  
    

 

 

min

max

nodes
...

...
...

nodes

h

h

 
  
  
  
    

 

 

 L ,T p h  p 

-4

-2

4.84693 10
100

1 10 75
20 100

100 125
1100

 
   
   
   
   
   

  
 

  
214

13.35 3
1 0

0

3
5

 
 
 


 

 G ,T p h  p 

-4

-2

5 10
150

3 10 75
0.5 100
20 100

120 150
1100

 
   
   
   
   
   
   
      

 

2040
75

2850
100

4679.71

 
  
      

 

 L ,v p h  p 

-4

-2

4.84693 10
100

1 10 75
20 100

100 125
1100

 
   
   
   
   
   

  
 

  
214

13.35 3
1 0

0

3
5

 
 
 


 

 G

G

,

( , )

v p h

v p h

p



 

p 

-4

-2

5 10
125

3 10 50
0.5 50
20 85

120 90
1100

 
   
   
   
   
   
   
      

 

2040
75

2850
75

4679.71

 
  
      
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Table A11: Transformations and dimensions of the grid of nodes of the bicubic spline function 
s(v,u) for the liquid region L based on IAPWS-95 (see Sec. 7) 

v [m3/kg] u [kJ/kg] 

 max min
min min

max min

( , ) ( )
( ) ( )

v v
v v u v v u v

v u v u


  


 

 

min 1v          max 100v   
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nodes
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...
...

nodes

v

v

 
  
  
  
    

 

 

min
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nodes
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nodes

u

u

 
  
  
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    

 

 

1
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20
150
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100

 
  
  
  
  
  
   

 

12.356

250

1650

200

200

200

200

50
0

2020

 
  
  
  
  
  
  





 

 

Table A12: Transformations and dimensions of the grid of nodes of the bicubic spline function 
s(v,u) for the gas region G based on IAPWS-95 (see Sec. 7) 

v [m3/kg] u [kJ/kg] 

( ) ln( )v v v   
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max
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nodes

v
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 
 
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200
8 10

200
961.672

v

v

v


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 
 

        
  
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2650

4055.26

100

100

 
  
      
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Figure A11: Deviations in temperature T(p,h) from IAPWS-IF97 in the liquid region L and 
the gas region G. 
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Figure A12: Deviations in specific volume v(p,h) from IAPWS-IF97 in the liquid region L 
and the gas region G. 
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Figure A13: Deviations in specific entropy s(p,h) from IAPWS-IF97 in the liquid region L 
and the gas region G.

10
2

10
1

10
0

10
-1

10
-2

10
-3

10
2

10
1

10
0

10
-1

10
-2

10
-3

0 1000 2000 3000 4000

Specific enthalpy [kJ/kg]h

P
re

s
s
u

re
[M

P
a
]

p

0 1000 2000 3000 40001500 2500 3500500

500 1500 2500 3500

T
=

1
0

7
3

.1
5

K
x

=
0

x
=

0
.2

x
=

0
.4

x
=

0
.6

x
=

0
.8

x
=

1

h
c

T
=

2
7

3
.1

5
K

�s [kJ/(kg K)]

10
-6

10
-7

10
-8

≤10
-9

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


A
13

 
D

ev
ia

ti
on

s 
of

 (
v,

u
) 

an
d

 (
p,

h
) 

S
p

li
n

e 
F

u
n

ct
io

n
s 

fr
om

 I
A

P
W

S
-9

5 

F
ig

u
re

 A
14

: D
ev

ia
ti

on
s 

in
 p

re
ss

ur
e 

p(
v,

u)
 fr

om
 IA

P
W

S
-9

5 
in

 th
e 

liq
ui

d 
re

gi
on

 L
. 

F
ig

u
re

 A
15

: 
D

ev
ia

ti
on

s 
in

 p
re

ss
ur

e 
p(

v,
u)

 f
ro

m
 I

A
P

W
S

-9
5 

in
 th

e 
ga

s 
re

gi
on

 G
. 

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

2
0

0
0 0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

02
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

0
.0

0
3

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
1

0
.0

0
2

x=0

p=1000MPa

T
=

2
7

3
.1

5
K

u
c

T
=

1
2

7
3

.1
5

K

p=1000MPa

p=611.212Pa

x=0

x
=

1

0
.8

0
.6

0.4

0.2

u
c

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

�
p

p/
[-

]

1
0

-5

1
0

-6

1
0

-7

≤
1

0
-8

144 Appendix 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


F
ig

u
re

 A
16

: 
D

ev
ia

ti
on

s 
in

 te
m

pe
ra

tu
re

 T
(v

,u
) 

fr
om

 I
A

P
W

S
-9

5 
in

 th
e 

li
qu

id
 r

eg
io

n 
L

. 
F

ig
u

re
 A

17
: 

D
ev

ia
ti

on
s 

in
 te

m
pe

ra
tu

re
 T

(v
,u

) 
fr

om
 I

A
P

W
S

-9
5 

in
 th

e 
ga

s 
re

gi
on

 G
. 

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

2
0

0
0 0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

02
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

0
.0

0
3

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
1

0
.0

0
2

x=0

p=1000MPa

T
=

2
7

3
.1

5
K

u
c

T
=

1
2

7
3

.1
5

K

p=1000MPa

p=611.212Pa

x=0

x
=

1

0
.8

0
.6

0.4

0.2

u
c

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

�
T

[K
] 1
0

-3

1
0

-4

1
0

-5

≤
1

0
-6

A13 Deviations of (v,u) and (p,h) Spline Functions from IAPWS-95 145 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


F
ig

u
re

 A
18

: 
D

ev
ia

ti
on

s 
in

 s
pe

ci
fi

c 
en

tr
op

y 
s(

v,
u)

 f
ro

m
 I

A
P

W
S

-9
5 

in
 

th
e 

li
qu

id
 r

eg
io

n 
L

. 
F

ig
u

re
 A

19
: 

D
ev

ia
ti

on
s 

in
 s

pe
ci

fi
c 

en
tr

op
y 

s(
v,

u)
 f

ro
m

 I
A

P
W

S
-9

5 
in

 
th

e 
ga

s 
re

gi
on

 G
. 

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

2
0

0
0 0

2
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

02
5

0

5
0

0

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

0
.0

0
3

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
1

0
.0

0
2

x=0

p=1000MPa

T
=

2
7

3
.1

5
K

u
c

T
=

1
2

7
3

.1
5

K

p=1000MPa

p=611.212Pa

x=0

x
=

1

0
.8

0
.6

0.4

0.2

u
c

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

4
2

5
0

1
7

5
0

2
0

0
0

2
2

5
0

2
5

0
0

2
7

5
0

3
0

0
0

3
2

5
0

3
5

0
0

3
7

5
0

4
0

0
0

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

-3

1
0

3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

Specificinternalenergy[kJ/kg] u

S
p

e
c
if

ic
v

o
lu

m
e

[m
/k

g
]

v
3

�
s

[k
J
/(

k
g

K
)]

1
0

-6

1
0

-7

1
0

-8

≤
1

0
-9

146 Appendix 

https://doi.org/10.51202/9783186618061 - Generiert durch IP 216.73.216.60, am 24.01.2026, 08:35:59. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186618061


A13 Deviations of (v,u) and (p,h) Spline Functions from IAPWS-95 147 

Figure A20: Deviations in temperature T(p,h) from IAPWS-95 in the liquid region L and the 
gas region G. 
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Figure A21: Deviations in specific volume v(p,h) from IAPWS-95 in the liquid region L and 
the gas region G. 
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