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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Vom Rohmaterial zum Endprodukt am Beispiel der Blechfertigung

Optimierte Produktion durch  
KI und Quantencomputing
C. Nitsche, X. Wu, D. Brajovic, L. Lörcher, M. Roth, P. Wagner, A. Yaman, J. Schwab, H. Monke, C. Hennebold, M. F. Huber

Z U S A M M E N FA S S U N G  Für optimierte Produktionspro-
zesse und weniger Materialverschwendung in Fertigungen 
werden Künstliche Intelligenz (KI) und Quantencomputing 
 immer wichtiger. Diese Methoden kommen über die gesamte 
Prozesskette von der initialen Blechproduktion über das Blech-
schneiden und -schweißen (zum Beispiel mittels Laser) bis  
hin zum abschließenden Lackieren der gefertigten Teile zum 
Einsatz. Dazu gehören auch Ansätze wie erklärbare KI für trans-
parente Modelle, Quantencomputing zur Materialoptimierung, 
physikbasierte KI-Modelle für präzise Schneide- und Schweiß-
prozesse sowie generative KI als virtueller Assistent und zur 
Generierung synthetischer Datensätze.

Optimized manufacturing  
through AI and quantum computing 

A B ST R A C T  To optimize production processes and reduce 
material waste in the manufacturing industry, artificial intelli-
gence (AI) and quantum computing methods are getting more 
important. These methods are applied across the entire pro-
cess chain from initial sheet metal production through cutting 
and welding (e.g., using lasers) to final painting of the fabrica-
ted parts. Amongst others, there are approaches such as 
 explainable AI for transparent models, quantum computing  
for material optimization, physics-based AI models for precise 
cutting and welding processes, and generative AI as virtual 
 assistant and for generating synthetic datasets.

1 Einleitung

Die Industrie steht vor der Herausforderung, Produktionspro-
zesse effizienter, flexibler und qualitativ hochwertiger zu gestal-
ten. Künstliche Intelligenz (KI) bietet hierfür vielversprechende 
Lösungen, welche sich in der Praxis bereits bewähren. Laut einer 
Studie [1] des Fraunhofer-Zentrums für Internationales Manage-
ment und Wissensökonomie IMW nutzen bereits 45 % der 
 befragten Unternehmen KI-Anwendungen in ihren Dienstleistun-
gen. Dabei zeigt sich, dass KI-basierte Systeme nicht nur die Effi-
zienz und Qualität von Produktionsprozessen steigern können, 
sondern auch dabei helfen, die Produktionsqualität zu verbessern. 

Im Rahmen des KI-Fortschrittszentrums [2] hat das Fraun -
hofer IPA im Verbund mit dem Fraunhofer-Institut für Arbeits-
wirtschaft und Organisation IAO schon mit über 300 Firmen 
 KI-Projekte durchgeführt. Auch demonstrieren aktuelle 
 Forschungsarbeiten des Fraunhofer IPA, wie verschiedene KI-
 Methoden, so etwa Maschinelles Lernen (ML), Quantencompu-
ting, generative KI und physikbasierte Modelle, in der Blechverar-
beitung eingesetzt werden können. Vor allem beim Laserschnei-
den von Metallblechen bietet der Einsatz von KI großes Potenzial, 
um Prozesse zu optimieren und die Produktqualität zu verbes-
sern. Außerdem können Herausforderungen auf verschiedenen 
Ebenen, wie  intransparente Black-Box-Modelle oder suboptimale 
Zuschnittsplanung in der Blechproduktion, adressiert werden. Die 
Integration von KI-basierten Lösungen in die Produktion ist ein 

wichtiger Schritt, um die Wettbewerbsfähigkeit der Industrie zu 
stärken. 

Dieser Beitrag zeigt, wie KI und Quantencomputing entlang 
der gesamten Wertschöpfungskette der Blechproduktion inte-
griert werden. Folgende Produktionsschritte werden betrachtet:
• Initiale Herstellung des Blechs 
• Ausschneiden von Teilblechen
• Zusammenschweißen von Teilblechen zu einem Endprodukt
• Finaler Lackierprozess
Im ersten Kapitel wird beschrieben, wie KI die Fehler am frisch 
produzierten Blech erkennt, diese Fehler klassifiziert und das 
Klassifiziermodell in verständliche Beschreibungen umwandelt. 
Im zweiten Kapitel geht es um Quantencomputing zur Optimie-
rung der Materialausnutzung beim Zuschnitt der Bleche. Die wei-
teren Kapitel behandeln den Einsatz von KI beim Schneiden, 
Schweißen und Lackieren der Teilbleche. Abschließend wird im 
sechsten Kapitel der Einsatz von generativer KI als virtueller 
 Assistent über alle Produktionsschritte hinweg beschrieben.

2 Einsatz von KI und Quantencomputing  
 in  der Blechproduktion
2.1 Einsatz von KI und Methoden der Erklärbarkeit  
 in der Produktion des Rohbleches 

Die Herstellung von Blechteilen beginnt damit, die Metall- 
und Oberflächenqualität sicherzustellen. Durch den Einsatz von 
KI-gestützter optischer Inspektion können Hersteller Defekte wie 
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Beulen oder Kratzer früh im Produktionsprozess identifizieren 
und das Material gegebenenfalls aussortieren. Allerdings sind die 
Entscheidungen von KI-basierten Anwendungen häufig selbst für 
Experten nicht vollständig nachvollziehbar. Methoden der erklär-
baren KI (xAI: eXplainable Artificial Intelligence) machen 
 undurchsichtige Vorhersagen des KI-Modells nachvollziehbar und 
steigern so das Vertrauen in dessen Entscheidungen. Zudem wird 
xAI auch im Zuge zunehmender Regulierungsmaßnahmen immer 
wichtiger. Es stehen verschiedene xAI-Methoden zur Verfügung, 
die je nach Anwendungskontext und Zielgruppe unterschiedlich 
gut passen. Ein entsprechendes Vorgehen verdeutlicht die im Fol-
genden beschriebene xAI-Lösung [3].

Ausgangspunkt ist ein künstliches neuronales Netz (KNN), 
das darauf trainiert wird, Defekte auf Stahlplatten zu klassifizie-
ren. Dazu nehmen Sensoren verschiedene Merkmale der Fehler 
auf den Stahlplatten auf (wie Maße, Dicke oder verschiedene Hel-
ligkeitswerte der Platte), die als Eingangswerte des KNNs genutzt 
werden. Als Ausgabewert liefert das KNN den Fehlertyp. 

Das resultierende Modell klassifiziert die Stahlplatten zwar 
sehr genau, es ist aber nicht klar, wie oder anhand welcher Merk-
male das Modell seine Entscheidungen getroffen hat. Dies führt 
dazu, dass das Vertrauen in die KI-Lösung nicht besonders hoch 
ist. Um das Vertrauen zu steigern und die Entscheidungsfindung 
des Modells besser verstehen zu können, wird es durch ein Surro-
gatmodell, also ein Stellvertretermodell, das die Logik des KNNs 
abbildet, approximiert. In diesem Fall ist das Surrogatmodell ein 
einfacher Entscheidungsbaum, der anhand der Ausgabe des KNNs 
trainiert wird (Bild 1).

Die ursprünglichen Labels werden durch die Prädiktionen des 
neuronalen Netzes ersetzt. Außerdem werden beim Training zu-
sätzliche Regularisierungsterme eingesetzt, mit denen Einfluss auf 
die Struktur des Netzes genommen wird [4]. Diese beiden Maß-
nahmen stellen sicher, dass der Entscheidungsbaum zum einen 
nicht zu groß wird und damit für den Menschen überblickbar ist. 
Zum anderen ist der Baum dem neuronalen Netz möglichst ähn-
lich und hat dadurch auch eine ähnlich hohe Genauigkeit bei der 

Klassifikation. Aus dem resultierenden Entscheidungsbaum 
(Bild 2) lassen sich dann verschiedene Erklärungen extrahieren.

Erstens wird eine globale Erklärung generiert, welche durch 
Entscheidungsregeln, Merkmalswichtigkeiten und Entscheidungs-
ebenen darauf abzielt, das Modell als Ganzes zu erklären. Diese 
Entscheidungsregeln können mit bestehenden Vorgaben oder vor-
handenem Expertenwissen abgeglichen werden, sodass eine ge-
wisse Validierung des Systems möglich ist. Zweitens wird für jede 
konkrete Entscheidung eine lokale Erklärung ausgegeben, zum 
Beispiel durch Klassenverteilungen und Relevanzen in einzelnen 
Entscheidungsknoten im Baum.

Aus dem Entscheidungsbaum in Bild 2 lässt sich zum Beispiel 
schließen, dass das Merkmal „x_minimum“, das minimale Maß 
des Defekts in x-Richtung, das wichtigste Merkmal für die Klas-
seneinteilung ist, da es für die Entscheidung im ersten Knoten 
verwendet wird. Die Merkmale „stahlplattendicke“ und „sig-
moid_flaeche“ sind die zweit- und drittwichtigsten Merkmale für 
die Klassifikation. Nach Inspektion des gesamten Entscheidungs-
baums ergibt sich beispielsweise folgende Entscheidungsregel: 
„Wenn x_minimum 98,5 und stahlplattendicke > 75,0, dann wird 
der Defekt als Beule klassifiziert.“ Insgesamt steigert das Trainie-
ren eines Surrogat modells die Transparenz des Modells und das 
Vertrauen in das KI-System, was für die Akzeptanz und den er-
folgreichen Einsatz von KI in der Industrie entscheidend ist. 

Neben Surrogatmodellen gibt es zahlreiche weitere xAI-Ansät-
ze, welche die Modellentscheidung des KNNs im vorliegenden 
Anwendungsfall erklären können. Populär sind etwa SHAP (Sha-
pley Additive exPlanations) [5], ein lokales Verfahren, das auf 
spieltheoretischen Shapley-Werten basiert [6], oder Kontrafakte 
[7], ein Ansatz, der besonders menschenfreundliche Erklärungen 
generiert [8], indem er aufzeigt, welche minimalen Änderungen 
an den Eingabedaten notwendig wären, um ein anderes Vorher -
sageergebnis zu erzielen. Auf diese Weise helfen Kontrafakte, zu 
verstehen, unter welchen Bedingungen die Modellentscheidung 

Bild 1. Schematisches Vorgehen zur Erstellung eines Stellvertretermodells 
(Entscheidungsbaum) eines künstlichen neuronalen Netzes (KNN).  
Grafik: Fraunhofer IPA

Bild 2. Resultierendes Surrogatmodell (Entscheidungsbaum), das Entschei-
dungsregeln visualisiert. Der linke Ast eines Entscheidungsbaums stellt die 
Erfüllung der Bedingung im Knoten dar, der rechte Ast die Nichterfüllung. 
Jeder Knoten repräsentiert also eine Teilung der Daten und die jeweilige 
Farbe zeigt an, welche Klasse bei dieser Teilung dominiert (orange = 
 Kratzer, grün = Beule). Grafik: Fraunhofer IPA
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anders ausgefallen wäre. Insgesamt hängt der optimale xAI-
 Ansatz von vielen Faktoren wie der gewählten Modellarchitektur, 
dem betrachteten Anwendungsfall und dem Adressaten der Erklä-
rung ab. Daher ist es wichtig, die spezifischen Anforderungen und 
Ziele der Erklärung in jedem Einzelfall zu analysieren. Verschie-
dene Ansätze können unterschiedliche Aspekte der Modellvorher-
sage beleuchten und so zu einem umfassenderen Verständnis bei-
tragen.

2.2 Optimierung des Zuschnittsplans  
 für Teilbleche durch Quantencomputing

Sobald qualitativ hochwertiges Blech bereitsteht, ist die nächs-
te Herausforderung im Fertigungsprozess, kleine, unterschiedlich 
geformte Stücke mit minimalem Abfall aus den großen Blechen 
zu schneiden. Dies ist eine Optimierungsaufgabe, deren Lösung 
mit Quantencomputing untersucht wird. Quantencomputing be-
zeichnet das Rechnen mit quantenmechanischen Zweizustands-
systemen (Qubits). Unter Ausnutzung quantenmechanischer 
 Eigenschaften wie Superposition und Verschränkung können 
 Algorithmen entwickelt werden, die exponentielle Laufzeitvorteile 
gegenüber ihren klassischen Analoga aufweisen. 

Obwohl bestehende Optimierungsverfahren und Heuristiken 
bereits praktikable Lösungen bieten, können diese in komplexe-
ren Szenarien an ihre Grenzen stoßen, besonders wenn die An-
zahl der Variablen und Einschränkungen zunimmt. Quantencom-
puting bietet das Potenzial, solche hochdimensionalen Probleme 
effizienter zu lösen. Der Mehrwert liegt in der Fähigkeit, größere 
und komplexere Problemstellungen in kürzerer Zeit und mit 
 potenziell besseren Ergebnissen zu bewältigen. Ob und in welcher 
Art und Weise sich solche Vorteile tatsächlich realisieren lassen, 
wird sich erst in den kommenden Jahren mit zunehmender Reife 
der Technologie zeigen.

Auch wenn die auf derzeit verfügbaren Quantencomputern 
lauffähigen Algorithmen noch nicht diese herausragenden Vortei-
le aufweisen, lassen sie sich bereits auf reale Probleme anwenden. 
Für eine optimierte Materialausnutzung in der Blechfertigung 
wurde am Fraunhofer IPA ein heuristischer Algorithmus entwi-
ckelt, welcher das Problem in kleinere Teile zerlegt und diese mit 
quantenbasierter Optimierung löst [9]. Ziel ist es, bereits beim 
derzeitigen Technologiereifegrad Wege aufzuzeigen, wie Quan-
tencomputing in einen produktiven Kontext integriert werden 
kann.

Der Algorithmus erstellt Cluster von Teilen, die räumlich so 
orientiert werden können, dass beim Schneiden möglichst wenig 
Verschnitt entsteht. Das Auffinden der passenden Kombinationen 
wird auf das „Traveling-Sales-Person“-Problem zurückgeführt, 
welches anschließend mit einem Quantencomputer gelöst werden 
kann. Die so entstehenden Cluster werden dann materialeffizient 
angeordnet. Der Gesamtalgorithmus basiert also auf einer Kombi-
nation klassischer und quantenmechanischer Methoden. Diese 
hybride Nutzung beider Systeme ist typisch für aktuelle Quanten-
algorithmen, da zum einen derzeitige Quantencomputer noch 
fehlerbehaftet sind. Zum anderen sind auch sie zu klein, um 
 große Probleme eigenständig zu lösen. Die zugrunde liegende 
Motivation ist, hierdurch die rechnerische Robustheit der 
 bekannten Computersysteme zu nutzen und nur perspektivisch 
vielversprechende Teilaspekte auf den Quantencomputer auszu -
lagern, um so einen guten Mittelweg zwischen potenziellem 
 Vorteil durch Quantenressourcen und Stabilität zu erreichen [10].

2.3 Optimierung des Blechschneideprozesses durch KI

Nach erfolgter Zuschnittsplanung müssen die Teilbleche aus 
dem Standardblech ausgeschnitten werden. Dabei kommt immer 
häufiger die Lasertechnik zum Einsatz. Die Präzision im Laser-
schneiden von Blechteilen ist ein entscheidender Faktor in der 
modernen Fertigungstechnik. Durch fortschrittliche, von KI un-
terstützte Laserschneidmaschinen erreicht dieser Prozess eine nie 
dagewesene Genauigkeit und Effizienz. KI-Systeme steuern die 
Maschinen so, dass sie nicht nur präzise Schnitte gewährleisten, 
sondern auch die Materialausnutzung optimieren, was zu enor-
men Einsparungen an Rohstoffen und Kosten führt. In Bild 3 ist 
eine Schnittkante mit suboptimaler Qualität abgebildet. Der Grat 
der Schnittkante ist recht hoch und die Kante ist sehr rau. 

Die Verwendung von physikbasierten Modellen ermöglicht 
den KI-Systemen, die Interaktionen zwischen dem Laserstrahl 
und dem Metall genau zu simulieren, wie eine Studie des Fraun-
hofer-Instituts für Lasertechnik ILT darstellt [11]. Diese Modelle 
ermöglichen, für jeden Schnitt die optimalen Betriebsbedingun-
gen zu prognostizieren. So können Laserleistung, Schnittge-
schwindigkeit und Fokus genau justiert werden, um die Schnitt-
qualität zu maximieren und Materialverschwendung zu minimie-
ren.

Zudem verbessern adaptive KI-Algorithmen die Maschinen -
parameter kontinuierlich, indem sie aus Produktionsdaten lernen 
und auf Änderungen in der Materialbeschaffenheit oder Design -
anforderungen reagieren. Diese Algorithmen optimieren dyna-
misch die Einstellungen wie Schnittgeschwindigkeit und Laser-
leistung, um stets die besten Schnittergebnisse zu erzielen [12]. 
Das ist besonders wichtig in einer Produktionsumgebung, in der 
Flexibilität und schnelle Anpassungsfähigkeit an neue Designs ge-
fordert sind. 

Eine weitere Studie des Fraunhofer IPA [13] zeigt, dass der 
Einsatz von Faltungsnetzen (englisch: convolutional neural 
 networks) eine präzise Beurteilung der Qualität thermisch 
 geschnittener Kanten aus Bildern ermöglicht. Dieses Vorgehen 
 erlaubt  eine schnelle und genaue Vorhersage der Produktions -
qualität wie Kantenrauheit und Grathöhe, was die Effizienz des 
Fertigungsprozesses weiter verbessern und zu einer noch präzise-
ren Materialbearbeitung führen kann.

2.4 Optimierung des Blechschweißprozesses durch KI

In Szenarien, in denen alleiniges Schneiden nicht ausreicht, 
wird das Laserschweißen eingesetzt, um die geschnittenen Teile 
zu einer Endstruktur zusammenzufügen, wie etwa Autoteile. 
 Dieser Schritt umfasst oft komplexe Form- und Pressprozesse, die 

Bild 3. Schnittkante eines Stahlblechs mit hohem Grat und hoher Rauig-
keit. Foto: Trumpf Group
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weiter durch KI-Technologien optimiert werden, um Präzision 
und Festigkeit im Endprodukt zu gewährleisten.

Oft sind die genauen Wirkzusammenhänge zwischen Prozess-
parametern – wie Laserleistung, Vorschub, Brennweite, Lage des 
Fokus relativ zur Werkstückoberfläche – und Qualität der 
Schweißnaht unbekannt. So führen Prozessschwankungen und 
unbekannte Wechselwirkungen aufgrund der chaotischen Natur 
des Lasersystems zu unterschiedlichen Qualitätsstufen, etwa mit 
Fehlern wie Schweißdurchbrüchen [14]. Somit ist die Frage, wel-
cher Prozesszustand zu einem Gut-Teilfenster – die Prozesspara-
meterkombinationen, die ein OK-Teil hervorbringen – führt, um 
eine optimale und verlässliche Qualität auch bei schwankenden 
Prozessparametern zu erreichen, ohne dass es zu Schweißdurch-
brüchen kommt.

Um diese komplexen Zusammenhänge im realen Prozess auf-
zudecken, sind systematische Experimente sehr aufwendig und 
auch oftmals unzulänglich. Denn sie verursachen eine enorme 
Datenmenge durch optische und thermische Hochgeschwindig-
keitskameras, Röntgen-Computertomographie sowie akustische 
und optische Sensoren [15]. Außerdem sind Wechselwirkungen 
nur zum Teil als Domänenwissen bekannt und in weiten Teilen 
nicht oder unzureichend konkret beschrieben. Dies ist darauf 
 zurückzuführen, dass Laserschweißen ein hoch komplexer Her-
stellungsprozess ist, der durch eine Reihe von Prozessvariablen 
und andere Faktoren beeinflusst wird, wie Defekte in der Mikro-
struktur des Materials, Verunreinigungen auf der Oberfläche des 
Werkstücks und Veränderungen der Eigenschaften des Laser-
strahls [16]. 

Ein neuer Ansatz, bei dem ein ML-Verfahren auf Basis von 
Prozessdaten in konventionellen Untersuchungsprozessen zum 
Einsatz kommt, bietet Abhilfe. Dabei werden aufgezeichnete Pro-
zessdaten in Kombination mit Abschätzungen durch Finite-Ele-
mente-Simulation von lokalen oder nicht direkt zugänglichen 
Prozessgrößen, wie etwa Temperaturverläufen im Inneren des 
Materials, herangezogen und maschinelle Lernverfahren mit die-
sen trainiert, um die Schweißnahtqualität zu prädizieren. Für das 
Training werden nur ausgewählte Features genutzt, die mit einer 
Feature-Importance-Analyse ausgewählt wurden. Danach werden 
verschiedene Modelle trainiert und verglichen und dasjenige aus-
gewählt, welches eine möglichst hohe Prädiktionsgüte unter-
schiedlicher Gütekriterien auf Basis der Prozessgrößen erlaubt. 
Dieses Modell bietet eine Möglichkeit, simulativ zu überprüfen, 
inwiefern eine Änderung der Prozessparameter Auswirkungen 
auf die Qualitätsmerkmale hat. Mithilfe eines gradientenbasierten 
Suchverfahrens wird dann diejenige Parameterkombination ge-
sucht, die laut dem Modell einen möglichst guten Prozesszustand 
im Hinblick auf die Qualität ergibt. So kann durch Auslegung auf 
diesen Prozesszustand eine möglichst hohe und robuste Qualität 
erzielt werden.

2.5 Optimierung des Blechlackierprozesses durch KI

Die nahezu fertigen Blechteile durchlaufen eine letzte Trans-
formation im Lackierprozess, bei dem KI die Lackanwendung 
 optimiert, um ein perfektes Finish zu erreichen. Dies verbessert 
nicht nur die Ästhetik, sondern fügt den Metallteilen auch eine 
schützende Schicht hinzu. 

Eine Möglichkeit, um den Lackierprozess gezielt zu optimie-
ren, besteht in der Berechnung von Ursache-Wirkzusammenhän-
gen zwischen relevanten Prozessvariablen wie Lackmenge, Luft-

menge sowie Drehzahl des Glockentellers und deren Auswirkung 
auf das Endergebnis. Durch die gezielte Bestimmung kausaler 
 Effekte wird im Vorfeld gezielt mögliches Optimierungspotenzial 
offengelegt. So konnten beispielsweise Tezuka und Kuroki [17]  
 anhand eines kausalen Modells zeigen, welche Prozessvariablen 
die Transferleistung von Lack auf Autokarosserien zu welchem 
Grad beeinflussen, was bei der Schaffung eines stabilen Lackier-
prozesses sehr wichtig ist.

Einen bekannten Standardisierungsansatz zur Berechnung 
kausaler Effekte stellt die „DoWhy“-Python-Bibliothek dar [18]. 
Der Ansatz ist in einer Pipeline-Struktur in vier Schritte unter-
teilt:
1. Modellierung einer Graphenstruktur, die sowohl vorhandene 

Daten als auch Domänenwissen kombiniert.
2. Identifizieren eines Ziel-Schätzwerts, der den Zusammenhang 

zwischen Prozessvariablen und der Zielvariable beschreibt.
3. Berechnen des kausalen Effekts anhand des in Schritt 2 identi-

fizierten Ziel-Schätzwerts.
4. Durchführen statistischer Tests zur Bestimmung der Robustheit 

des berechneten Effekts.
Der berechnete kausale Effekt eignet sich zur weiteren Analyse 
gut, indem aufgezeigt wird, welche Stellschrauben im Prozess die 
größte Auswirkung auf das Ergebnis haben. Anhand der erlangten 
Erkenntnisse wird die Optimierung des Lackiervorgangs wesent-
lich zielgerichteter durchgeführt, was auf lange Sicht den Auf-
wand reduziert und somit ein wesentliche Faktor bei der Kosten-
reduktion ist.

2.6 Einsatz von generativer KI  
 im gesamten Blechfertigungsprozess

Generative KI ist eine Methode mit hoher Relevanz auch in 
der Fertigungsindustrie, bei der Modelle neue Inhalte wie realisti-
sche Bilder oder kohärente Texte generieren, während andere 
 Arten der KI basierend auf vorhandenen Daten Vorhersagen, 
Klassifizierungen oder Regressionen vornehmen. Diese Technolo-
gie, die sich auf sogenannte Transformer-Modelle stützt, nutzt 
den Mechanismus der Selbstaufmerksamkeit [19], um die Bedeu-
tung verschiedener „Tokens“ (das heißt Wörter oder Wortteile) in 
einem Text zu gewichten. Dadurch sind kontextbezogene Darstel-
lungen möglich, die in verschiedenen Bereichen wie Sprachüber-
setzung, Texterzeugung und sogar Zeitreihenvorhersage Einsatz 
finden. 

Die Entwicklung von „Generative Pre-trained Transformers“ 
[20] brachte erhebliche Fortschritte, welche die Generierung von 
Text aus Texteingaben sowie die Überbrückung von Modalitäten 
von Text zu Bildern ermöglichen. Ein prominentes Beispiel ist 
ChatGPT, das aktuell die Rolle von „Large Language Models“ 
(LLMs) in der industriellen Anwendung prägt. Diese Systeme, 
die mit Herausforderungen wie Halluzinationen und Verzerrun-
gen, also falschen oder ungenauen Aussagen, zu kämpfen haben, 
werden durch Methoden wie „Retrieval-Augmented Generation“ 
(RAG) ergänzt. Diese verbessern die Genauigkeit und Relevanz 
der Ergebnisse durch die Nutzung interner und externer Wis-
sensdatenbanken, bevor die Usereingabe in das Modell eingebun-
den wird.

Der Umfang der LLM-Anwendungen verändert die Art und 
Weise, wie Unternehmen mit Informationen und Nutzern inter -
agieren. LLMs, in Form von virtuellen Assistenten, werden zur 
Steigerung der Effizienz und zur Unterstützung in technischen 
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Bereichen eingesetzt. Zum Beispiel sind Maschinenausfälle zeit- 
und produktivitätsintensiv. Virtuelle Assistenten helfen, diese 
Ausfallzeiten zu minimieren, indem sie sofortige Lösungen zur 
Fehlerbehebung anbieten. Durch den Zugriff auf umfangreiche 
Datenbanken mit Maschinenhandbüchern und historischen Leis-
tungsdaten innerhalb eines RAG-Systems unterstützen sie techni-
sches Personal mit präzisen, kontextbezogenen Reparaturstrate-
gien, wie in Bild 4 dargestellt. Diese Integration generativer KI in 
virtuelle Assistenten rationalisiert nicht nur die Wartungsrouti-
nen, sondern verbessert auch die Fähigkeiten der Techniker, wäh-
rend sie lernen und ihr Fachwissen erweitern können.

Virtuelle Assistenten werden auch in der Blechfertigung im-
mer relevanter und unterstützen bei verschiedenen Prozessen wie 
Schneiden, Biegen, Stanzen und Zusammenfügen der Bleche in 
die gewünschten Formen. Fehler in diesen Prozessen haben meist 
mehrere Ursachen, und es kann eine Herausforderung sein, das 
Problem zu identifizieren und eine Lösung zu finden. Bei Störun-
gen in einer Blechproduktionsanlage können virtuelle Assistenten 
schnell alle relevanten Maschinenhandbücher und historischen 
Reparaturprotokolle durchforsten, um die effektivste Reparatur-
methode zu empfehlen und sicherzustellen, dass die Maschine mit 
minimaler Verzögerung wieder in Betrieb genommen wird. Auch 
nutzen sie die Analyse von Daten aus Sensoren und Nutzungs-
protokollen, um Ausfälle oder Wartungsbedarf vorherzusagen. 
Dieser Ansatz trägt dazu bei, Ausfallzeiten zu reduzieren, indem 
Wartungsarbeiten nur bei Bedarf geplant werden [21].

Bei der Auswahl eines bestimmten LLM für die Erstellung 
 eines virtuellen Assistenzsystems gibt es verschiedene Optionen 
wie „Mistral“ [22], „Llama“ [23] oder deren für einen bestimm-
ten Zweck angepassten Derivate. Sie unterscheiden sich in Größe, 
Hardwareanforderungen und Leistung. Daher muss eine sorgfälti-
ge, bedarfsorientierte Auswahl erfolgen. Für RAG-Systeme gibt es 
Open-Source-Lösungen, die als Basis für kundenspezifische Um-
setzungen verwendet werden können, wobei sowohl Offline- als 
auch Cloud-Einsätze in Betracht kommen. Auch eine zunehmen-
de Anzahl kommerzieller Angebote ist verfügbar [24, 25]. 

Während die zugrunde liegende Idee von RAG leicht zu ver-
stehen ist, ist die robuste Implementierung des Gesamtsystems 
unter Berücksichtigung aller Teilsysteme und ihrer konfigurierba-
ren Parameter sowie der Datenvorverarbeitung eine Herausforde-

rung, auch aufgrund der hohen Varianz der Datenquellen und des 
endgültigen Systemzwecks. Neben der RAG ist oft auch eine 
Feinabstimmung eines Open-Source-Modells mit einem domä-
nenspezifischen Datensatz nötig, um einen robusten virtuellen 
Assistenten zu erstellen. Dies ist mit noch mehr Herausforderun-
gen verbunden, da die Feinabstimmung das zugrunde liegende 
LLM verändert und daher zusätzliche Sorgfalt erfordert. Diese 
Aspekte führen zu einer steigenden Nachfrage nach Experten für 
generative KI und Kenntnissen in allen Branchen, um solche 
 Systeme zu erstellen, zu bewerten oder zu überwachen, selbst 
wenn ihr Kerngeschäft nicht im Bereich der generativen KI liegt.

Neben dem Einsatz generativer KI als virtuellem Assistenten 
ist auch die Fähigkeit dieser Technologie, synthetische Datensätze 
zu erzeugen (sowohl tabellarische Daten als auch Bilddaten), von 
großer Bedeutung für die Fertigungsindustrie. Dadurch können 
etwa für die automatische optische Inspektion von gefertigten 
Teilen synthetische Defektbilder erstellt werden. Diese erweitern 
den Trainingsdatensatz und verbessern somit die KI-gestützte In-
spektion [26].

3 Diskussion und Ausblick

Die Implementierung von KI und Quantencomputing in der 
Fertigungsindustrie ist vielversprechend, jedoch gehen diese mit 
Herausforderungen einher. Eine zentrale Schwierigkeit liegt in 
der Notwendigkeit großer und qualitativ hochwertiger Datensät-
ze. Oft sind die verfügbaren Daten unvollständig, verrauscht oder 
nicht für alle möglichen Produktionsszenarien repräsentativ. Zu-
künftige Arbeiten sollten sich darauf konzentrieren, Methoden 
zur Generierung synthetischer Daten weiterzuentwickeln und zu 
optimieren, um diese Lücken zu schließen.

Die Integration von KI und Quantencomputing in bestehende 
Produktionssysteme ist eine weitere Herausforderung. Die meis-
ten aktuellen Produktionssysteme sind nicht darauf ausgelegt, die 
hohen Anforderungen dieser Technologien zu erfüllen, was zu 
 erheblichen Anpassungskosten führen kann. Außerdem muss die 
Skalierbarkeit der Lösungen gewährleistet sein, um in großem 
Maßstab implementiert werden zu können. Zukünftige Arbeiten 
sollten daher auch die Entwicklung von standardisierten Schnitt-

Bild 4. RAG (Retrieval-Augmented Generation)-Systemarchitektur für einen virtuellen Assistenten. Grafik: Fraunhofer IPA
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stellen und Protokollen untersuchen, um die Integration dieser 
Technologien in bestehende Systeme zu erleichtern.

Dieser Beitrag hat die vielfältigen Anwendungsmöglichkeiten 
von KI und Quantencomputing in der modernen Fertigungs -
industrie betrachtet. Veranschaulicht wurde die Rolle dieser Tech-
nologien am Beispiel der Blechverarbeitung. Der Einsatz von KI 
und Quantencomputing hat das Potenzial, die Produktionsprozes-
se erheblich zu optimieren und die Materialverschwendung zu 
 reduzieren. Von der initialen Blechproduktion über das Schnei-
den und Schweißen bis hin zum finalen Lackieren der Teile 
 können diese Technologien signifikante Effizienzsteigerungen 
und Qualitätsverbesserungen bewirken. Besonders hervorzuheben 
sind Ansätze wie erklärbare KI für transparente Modelle, Quan-
tencomputing zur Materialoptimierung und physikbasierte KI-
Modelle für präzise Prozesse. Die Nutzung generativer KI als vir-
tuellen Assistenten und zur Erstellung synthetischer Datensätze 
trägt zusätzlich zur Verbesserung der Produktionsprozesse bei.

Die Integration dieser Technologien in die Fertigungsprozesse 
ist ein klarer Beleg für ihre transformative Kraft. Sie ermöglicht 
Herstellern, den schnell wachsenden und sich ständig ändernden 
Anforderungen der Industrie nicht nur zu begegnen, sondern die-
se Erwartungen sogar zu übertreffen. Insgesamt zeigen diese 
Technologien großes Potenzial, die Fertigungsindustrie grund -
legend zu transformieren und zukunftssicher zu gestalten. Um 
dieses Potenzial vollständig auszuschöpfen, sind jedoch weitere 
Forschungsarbeiten und technologische Entwicklungen erforder-
lich. Die kontinuierliche Zusammenarbeit zwischen Industrie und 
Wissenschaft wird dabei entscheidend sein, um nachhaltige und 
skalierbare Lösungen zu entwickeln.
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