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Vom Rohmaterial zum Endprodukt am Beispiel der Blechfertigung

Optimierte Produktion durch
Kl und Quantencomputing

C. Nitsche, X. Wu, D. Brajovic, L. Lorcher, M. Roth, P. Wagner, A. Yaman, J. Schwab, H. Monke, C. Hennebold, M. F. Huber

ZUSAMMENFASSUNG Fir optimierte Produktionspro-
zesse und weniger Materialverschwendung in Fertigungen
werden Kiinstliche Intelligenz (KI) und Quantencomputing
immer wichtiger. Diese Methoden kommen (liber die gesamte
Prozesskette von der initialen Blechproduktion tiber das Blech-
schneiden und -schweilRen (zum Beispiel mittels Laser) bis

hin zum abschlieBenden Lackieren der gefertigten Teile zum
Einsatz. Dazu gehdren auch Ansatze wie erklarbare Kl flr trans-
parente Modelle, Quantencomputing zur Materialoptimierung,
physikbasierte KI-Modelle fiir prazise Schneide- und Schweil3-
prozesse sowie generative Kl als virtueller Assistent und zur
Generierung synthetischer Datensatze.
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1 Einleitung

Die Industrie steht vor der Herausforderung, Produktionspro-
zesse effizienter, flexibler und qualitativ hochwertiger zu gestal-
ten. Kiinstliche Tntelligenz (KI) bietet hierfiir vielversprechende
Ldsungen, welche sich in der Praxis bereits bewidhren. Laut einer
Studie [1] des Fraunhofer-Zentrums fiir Internationales Manage-
ment und Wissensokonomie IMW nutzen bereits 45% der
befragten Unternehmen KI-Anwendungen in ihren Dienstleistun-
gen. Dabei zeigt sich, dass KI-basierte Systeme nicht nur die Effi-
zienz und Qualitit von Produktionsprozessen steigern konnen,
sondern auch dabei helfen, die Produktionsqualitit zu verbessern.

Im Rahmen des KI-Fortschrittszentrums [2] hat das Fraun-
hofer IPA im Verbund mit dem Fraunhofer-Institut fiir Arbeits-
wirtschaft und Organisation IAO schon mit {iber 300 Firmen
KI-Projekte  durchgefithrt.  Auch aktuelle
Forschungsarbeiten des Fraunhofer IPA, wie verschiedene KI-
Methoden, so etwa Maschinelles Lernen (ML), Quantencompu-
ting, generative KI und physikbasierte Modelle, in der Blechverar-

demonstrieren

beitung eingesetzt werden konnen. Vor allem beim Laserschnei-
den von Metallblechen bietet der Einsatz von KI grofles Potenzial,
um Prozesse zu optimieren und die Produktqualitit zu verbes-
sern. Auflerdem koénnen Herausforderungen auf verschiedenen
Ebenen, wie intransparente Black-Box-Modelle oder suboptimale
Zuschnittsplanung in der Blechproduktion, adressiert werden. Die
Integration von Kl-basierten Losungen in die Produktion ist ein
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Optimized manufacturing
through Al and quantum computing

ABSTRACT To optimize production processes and reduce
material waste in the manufacturing industry, artificial intelli-
gence (Al) and quantum computing methods are getting more
important. These methods are applied across the entire pro-
cess chain from initial sheet metal production through cutting
and welding (e.g., using lasers) to final painting of the fabrica-
ted parts. Amongst others, there are approaches such as
explainable Al for transparent models, quantum computing
for material optimization, physics-based Al models for precise
cutting and welding processes, and generative Al as virtual
assistant and for generating synthetic datasets.

wichtiger Schritt, um die Wettbewerbsfihigkeit der Industrie zu
starken.

Dieser Beitrag zeigt, wie KI und Quantencomputing entlang
der gesamten Wertschopfungskette der Blechproduktion inte-
griert werden. Folgende Produktionsschritte werden betrachtet:

« Initiale Herstellung des Blechs

+ Ausschneiden von Teilblechen

+ Zusammenschweiflen von Teilblechen zu einem Endprodukt

+ Finaler Lackierprozess

Im ersten Kapitel wird beschrieben, wie KI die Fehler am frisch
produzierten Blech erkennt, diese Fehler klassifiziert und das
Klassifiziermodell in verstindliche Beschreibungen umwandelt.
Im zweiten Kapitel geht es um Quantencomputing zur Optimie-
rung der Materialausnutzung beim Zuschnitt der Bleche. Die wei-
teren Kapitel behandeln den Einsatz von KI beim Schneiden,
Schweilen und Lackieren der Teilbleche. Abschliefend wird im
sechsten Kapitel der Einsatz von generativer KI als virtueller
Assistent iiber alle Produktionsschritte hinweg beschrieben.

2 Einsatz von Kl und Quantencomputing
in der Blechproduktion
2.1 Einsatz von Kl und Methoden der Erklarbarkeit
in der Produktion des Rohbleches

Die Herstellung von Blechteilen beginnt damit, die Metall-

und Oberflichenqualitit sicherzustellen. Durch den Einsatz von
KI-gestiitzter optischer Inspektion konnen Hersteller Defekte wie
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Bild 1. Schematisches Vorgehen zur Erstellung eines Stellvertretermodells
(Entscheidungsbaum) eines kiinstlichen neuronalen Netzes (KNN).
Grafik: Fraunhofer IPA

Beulen oder Kratzer frith im Produktionsprozess identifizieren
und das Material gegebenenfalls aussortieren. Allerdings sind die
Entscheidungen von Kl-basierten Anwendungen haufig selbst fiir
Experten nicht vollstindig nachvollziehbar. Methoden der erklar-
baren KI (xAl: eXplainable Artificial Intelligence) machen
undurchsichtige Vorhersagen des KI-Modells nachvollziehbar und
steigern so das Vertrauen in dessen Entscheidungen. Zudem wird
xAl auch im Zuge zunehmender Regulierungsmaffnahmen immer
wichtiger. Es stehen verschiedene xAI-Methoden zur Verfiigung,
die je nach Anwendungskontext und Zielgruppe unterschiedlich
gut passen. Ein entsprechendes Vorgehen verdeutlicht die im Fol-
genden beschriebene xAl-Losung [3].

Ausgangspunkt ist ein kiinstliches neuronales Netz (KNN),
das darauf trainiert wird, Defekte auf Stahlplatten zu klassifizie-
ren. Dazu nehmen Sensoren verschiedene Merkmale der Fehler
auf den Stahlplatten auf (wie Mafe, Dicke oder verschiedene Hel-
ligkeitswerte der Platte), die als Eingangswerte des KNNs genutzt
werden. Als Ausgabewert liefert das KNN den Fehlertyp.

Das resultierende Modell klassifiziert die Stahlplatten zwar
sehr genau, es ist aber nicht klar, wie oder anhand welcher Merk-
male das Modell seine Entscheidungen getroffen hat. Dies fiihrt
dazu, dass das Vertrauen in die KI-Losung nicht besonders hoch
ist. Um das Vertrauen zu steigern und die Entscheidungsfindung
des Modells besser verstehen zu kénnen, wird es durch ein Surro-
gatmodell, also ein Stellvertretermodell, das die Logik des KNNs
abbildet, approximiert. In diesem Fall ist das Surrogatmodell ein
einfacher Entscheidungsbaum, der anhand der Ausgabe des KNNs
trainiert wird (Bild 1).

Die urspriinglichen Labels werden durch die Pradiktionen des
neuronalen Netzes ersetzt. Auferdem werden beim Training zu-
sitzliche Regularisierungsterme eingesetzt, mit denen Einfluss auf
die Struktur des Netzes genommen wird [4]. Diese beiden Mafi-
nahmen stellen sicher, dass der Entscheidungsbaum zum einen
nicht zu groff wird und damit fiir den Menschen tiberblickbar ist.
Zum anderen ist der Baum dem neuronalen Netz mdglichst dhn-
lich und hat dadurch auch eine dhnlich hohe Genauigkeit bei der
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Bild 2. Resultierendes Surrogatmodell (Entscheidungsbaum), das Entschei-
dungsregeln visualisiert. Der linke Ast eines Entscheidungsbaums stellt die
Erfillung der Bedingung im Knoten dar, der rechte Ast die Nichterfiillung.
Jeder Knoten représentiert also eine Teilung der Daten und die jeweilige
Farbe zeigt an, welche Klasse bei dieser Teilung dominiert (orange =
Kratzer, griin = Beule). Grafik: Fraunhofer IPA

Klassifikation. Aus dem resultierenden Entscheidungsbaum
(Bild 2) lassen sich dann verschiedene Erklarungen extrahieren.

Erstens wird eine globale Erklirung generiert, welche durch
Entscheidungsregeln, Merkmalswichtigkeiten und Entscheidungs-
ebenen darauf abzielt, das Modell als Ganzes zu erkliren. Diese
Entscheidungsregeln konnen mit bestehenden Vorgaben oder vor-
handenem Expertenwissen abgeglichen werden, sodass eine ge-
wisse Validierung des Systems moglich ist. Zweitens wird fiir jede
konkrete Entscheidung eine lokale Erklirung ausgegeben, zum
Beispiel durch Klassenverteilungen und Relevanzen in einzelnen
Entscheidungsknoten im Baum.

Aus dem Entscheidungsbaum in Bild 2 ldsst sich zum Beispiel
schlieRen, dass das Merkmal ,x_minimum® das minimale Maf
des Defekts in x-Richtung, das wichtigste Merkmal fiir die Klas-
seneinteilung ist, da es fiir die Entscheidung im ersten Knoten
verwendet wird. Die Merkmale ,stahlplattendicke und ,sig-
moid_flaeche” sind die zweit- und drittwichtigsten Merkmale fiir
die Klassifikation. Nach Inspektion des gesamten Entscheidungs-
baums ergibt sich beispielsweise folgende Entscheidungsregel:
»Wenn x_minimum 98,5 und stahlplattendicke > 75,0, dann wird
der Defekt als Beule klassifiziert“ Insgesamt steigert das Trainie-
ren eines Surrogatmodells die Transparenz des Modells und das
Vertrauen in das KI-System, was fiir die Akzeptanz und den er-
folgreichen Einsatz von KI in der Industrie entscheidend ist.

Neben Surrogatmodellen gibt es zahlreiche weitere xAl-Ansit-
ze, welche die Modellentscheidung des KNNs im vorliegenden
Anwendungsfall erkliren konnen. Popular sind etwa SHAP (Sha-
pley Additive exPlanations) [5], ein lokales Verfahren, das auf
spieltheoretischen Shapley-Werten basiert [6], oder Kontrafakte
[7], ein Ansatz, der besonders menschenfreundliche Erklirungen
generiert [8], indem er aufzeigt, welche minimalen Anderungen
an den Eingabedaten notwendig wiren, um ein anderes Vorher-
sageergebnis zu erzielen. Auf diese Weise helfen Kontrafakte, zu
verstehen, unter welchen Bedingungen die Modellentscheidung
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anders ausgefallen wire. Insgesamt hingt der optimale xAl-
Ansatz von vielen Faktoren wie der gewihlten Modellarchitektur,
dem betrachteten Anwendungsfall und dem Adressaten der Erkla-
rung ab. Daher ist es wichtig, die spezifischen Anforderungen und
Ziele der Erklirung in jedem Einzelfall zu analysieren. Verschie-
dene Ansitze konnen unterschiedliche Aspekte der Modellvorher-
sage beleuchten und so zu einem umfassenderen Verstindnis bei-
tragen.

2.2 Optimierung des Zuschnittsplans
fiir Teilbleche durch Quantencomputing

Sobald qualitativ hochwertiges Blech bereitsteht, ist die nichs-
te Herausforderung im Fertigungsprozess, kleine, unterschiedlich
geformte Stiicke mit minimalem Abfall aus den groflen Blechen
zu schneiden. Dies ist eine Optimierungsaufgabe, deren Losung
mit Quantencomputing untersucht wird. Quantencomputing be-
zeichnet das Rechnen mit quantenmechanischen Zweizustands-
systemen (Qubits). Unter Ausnutzung quantenmechanischer
Eigenschaften wie Superposition und Verschrinkung konnen
Algorithmen entwickelt werden, die exponentielle Laufzeitvorteile
gegeniiber ihren klassischen Analoga aufweisen.

Obwohl bestehende Optimierungsverfahren und Heuristiken
bereits praktikable Losungen bieten, konnen diese in komplexe-
ren Szenarien an ihre Grenzen stofen, besonders wenn die An-
zahl der Variablen und Einschrinkungen zunimmt. Quantencom-
puting bietet das Potenzial, solche hochdimensionalen Probleme
effizienter zu l6sen. Der Mehrwert liegt in der Fihigkeit, grofRere
und komplexere Problemstellungen in kiirzerer Zeit und mit
potenziell besseren Ergebnissen zu bewiltigen. Ob und in welcher
Art und Weise sich solche Vorteile tatsichlich realisieren lassen,
wird sich erst in den kommenden Jahren mit zunehmender Reife
der Technologie zeigen.

Auch wenn die auf derzeit verfiigbaren Quantencomputern
lauffihigen Algorithmen noch nicht diese herausragenden Vortei-
le aufweisen, lassen sie sich bereits auf reale Probleme anwenden.
Fiir eine optimierte Materialausnutzung in der Blechfertigung
wurde am Fraunhofer IPA ein heuristischer Algorithmus entwi-
ckelt, welcher das Problem in kleinere Teile zerlegt und diese mit
quantenbasierter Optimierung 16st [9]. Ziel ist es, bereits beim
derzeitigen Technologiereifegrad Wege aufzuzeigen, wie Quan-
tencomputing in einen produktiven Kontext integriert werden
kann.

Der Algorithmus erstellt Cluster von Teilen, die rdumlich so
orientiert werden kdnnen, dass beim Schneiden moglichst wenig
Verschnitt entsteht. Das Auffinden der passenden Kombinationen
wird auf das ,Traveling-Sales-Person“-Problem zuriickgefiihrt,
welches anschliefend mit einem Quantencomputer gelost werden
kann. Die so entstehenden Cluster werden dann materialeffizient
angeordnet. Der Gesamtalgorithmus basiert also auf einer Kombi-
nation klassischer und quantenmechanischer Methoden. Diese
hybride Nutzung beider Systeme ist typisch fiir aktuelle Quanten-
algorithmen, da zum einen derzeitige Quantencomputer noch
fehlerbehaftet sind. Zum anderen sind auch sie zu klein, um
grofle Probleme eigenstindig zu l6sen. Die zugrunde liegende
Robustheit der
bekannten Computersysteme zu nutzen und nur perspektivisch
vielversprechende Teilaspekte auf den Quantencomputer auszu-
lagern, um so einen guten Mittelweg zwischen potenziellem
Vorteil durch Quantenressourcen und Stabilitit zu erreichen [10].

Motivation ist, hierdurch die rechnerische
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Bild 3. Schnittkante eines Stahlblechs mit hohem Grat und hoher Rauig-
keit. Foto: Trumpf Group

2.3 Optimierung des Blechschneideprozesses durch Kl

Nach erfolgter Zuschnittsplanung miissen die Teilbleche aus
dem Standardblech ausgeschnitten werden. Dabei kommt immer
hiufiger die Lasertechnik zum Einsatz. Die Prazision im Laser-
schneiden von Blechteilen ist ein entscheidender Faktor in der
modernen Fertigungstechnik. Durch fortschrittliche, von KI un-
terstiitzte Laserschneidmaschinen erreicht dieser Prozess eine nie
dagewesene Genauigkeit und Effizienz. KI-Systeme steuern die
Maschinen so, dass sie nicht nur prizise Schnitte gewihrleisten,
sondern auch die Materialausnutzung optimieren, was zu enor-
men Einsparungen an Rohstoffen und Kosten fiihrt. In Bild 3 ist
eine Schnittkante mit suboptimaler Qualitdt abgebildet. Der Grat
der Schnittkante ist recht hoch und die Kante ist sehr rau.

Die Verwendung von physikbasierten Modellen erméglicht
den KI-Systemen, die Interaktionen zwischen dem Laserstrahl
und dem Metall genau zu simulieren, wie eine Studie des Fraun-
hofer-Instituts fiir Lasertechnik ILT darstellt [11]. Diese Modelle
ermoglichen, fiir jeden Schnitt die optimalen Betriebsbedingun-
gen zu prognostizieren. So konnen Laserleistung, Schnittge-
schwindigkeit und Fokus genau justiert werden, um die Schnitt-
qualitit zu maximieren und Materialverschwendung zu minimie-
ren.

Zudem verbessern adaptive KI-Algorithmen die Maschinen-
parameter kontinuierlich, indem sie aus Produktionsdaten lernen
und auf Anderungen in der Materialbeschaffenheit oder Design-
anforderungen reagieren. Diese Algorithmen optimieren dyna-
misch die Einstellungen wie Schnittgeschwindigkeit und Laser-
leistung, um stets die besten Schnittergebnisse zu erzielen [12].
Das ist besonders wichtig in einer Produktionsumgebung, in der
Flexibilitat und schnelle Anpassungsfahigkeit an neue Designs ge-
fordert sind.

Eine weitere Studie des Fraunhofer IPA [13] zeigt, dass der
Einsatz von Faltungsnetzen (englisch: convolutional neural
networks) eine prizise Beurteilung der Qualitit thermisch
geschnittener Kanten aus Bildern ermdglicht. Dieses Vorgehen
erlaubt eine schnelle und genaue Vorhersage der Produktions-
qualitidt wie Kantenrauheit und Grathohe, was die Effizienz des
Fertigungsprozesses weiter verbessern und zu einer noch prizise-
ren Materialbearbeitung fithren kann.

2.4 Optimierung des BlechschweiRprozesses durch Ki
In Szenarien, in denen alleiniges Schneiden nicht ausreicht,
wird das Laserschweiflen eingesetzt, um die geschnittenen Teile

zu einer Endstruktur zusammenzufiigen, wie etwa Autoteile.
Dieser Schritt umfasst oft komplexe Form- und Pressprozesse, die
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weiter durch KI-Technologien optimiert werden, um Prazision
und Festigkeit im Endprodukt zu gewiéhrleisten.

Oft sind die genauen Wirkzusammenhinge zwischen Prozess-
parametern — wie Laserleistung, Vorschub, Brennweite, Lage des
Fokus relativ zur Werkstiickoberfliche - und Qualitit der
Schweifinaht unbekannt. So fithren Prozessschwankungen und
unbekannte Wechselwirkungen aufgrund der chaotischen Natur
des Lasersystems zu unterschiedlichen Qualititsstufen, etwa mit
Fehlern wie Schweifldurchbriichen [14]. Somit ist die Frage, wel-
cher Prozesszustand zu einem Gut-Teilfenster — die Prozesspara-
meterkombinationen, die ein OK-Teil hervorbringen - fithrt, um
eine optimale und verlissliche Qualitit auch bei schwankenden
Prozessparametern zu erreichen, ohne dass es zu Schweifdurch-
briichen kommt.

Um diese komplexen Zusammenhinge im realen Prozess auf-
zudecken, sind systematische Experimente sehr aufwendig und
auch oftmals unzulinglich. Denn sie verursachen eine enorme
Datenmenge durch optische und thermische Hochgeschwindig-
keitskameras, Rontgen-Computertomographie sowie akustische
und optische Sensoren [15]. Aufferdem sind Wechselwirkungen
nur zum Teil als Domdnenwissen bekannt und in weiten Teilen
nicht oder unzureichend konkret beschrieben. Dies ist darauf
zuriickzufiihren, dass Laserschweiflen ein hoch komplexer Her-
stellungsprozess ist, der durch eine Reihe von Prozessvariablen
und andere Faktoren beeinflusst wird, wie Defekte in der Mikro-
struktur des Materials, Verunreinigungen auf der Oberfldche des
Werkstiicks und Verinderungen der Eigenschaften des Laser-
strahls [16].

Ein neuer Ansatz, bei dem ein ML-Verfahren auf Basis von
Prozessdaten in konventionellen Untersuchungsprozessen zum
Einsatz kommt, bietet Abhilfe. Dabei werden aufgezeichnete Pro-
zessdaten in Kombination mit Abschitzungen durch Finite-Ele-
mente-Simulation von lokalen oder nicht direkt zuginglichen
Prozessgroflen, wie etwa Temperaturverliufen im Inneren des
Materials, herangezogen und maschinelle Lernverfahren mit die-
sen trainiert, um die Schweifnahtqualitit zu pradizieren. Fir das
Training werden nur ausgewihlte Features genutzt, die mit einer
Feature-Importance-Analyse ausgew#hlt wurden. Danach werden
verschiedene Modelle trainiert und verglichen und dasjenige aus-
gewihlt, welches eine moglichst hohe Pradiktionsgiite unter-
schiedlicher Giitekriterien auf Basis der Prozessgrofen erlaubt.
Dieses Modell bietet eine Moglichkeit, simulativ zu iiberpriifen,
inwiefern eine Anderung der Prozessparameter Auswirkungen
auf die Qualitdtsmerkmale hat. Mithilfe eines gradientenbasierten
Suchverfahrens wird dann diejenige Parameterkombination ge-
sucht, die laut dem Modell einen moglichst guten Prozesszustand
im Hinblick auf die Qualitit ergibt. So kann durch Auslegung auf
diesen Prozesszustand eine moglichst hohe und robuste Qualitit
erzielt werden.

2.5 Optimierung des Blechlackierprozesses durch KI

Die nahezu fertigen Blechteile durchlaufen eine letzte Trans-
formation im Lackierprozess, bei dem KI die Lackanwendung
optimiert, um ein perfektes Finish zu erreichen. Dies verbessert
nicht nur die Asthetik, sondern fiigt den Metallteilen auch eine
schiitzende Schicht hinzu.

Eine Moglichkeit, um den Lackierprozess gezielt zu optimie-
ren, besteht in der Berechnung von Ursache-Wirkzusammenhin-
gen zwischen relevanten Prozessvariablen wie Lackmenge, Luft-
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menge sowie Drehzahl des Glockentellers und deren Auswirkung
auf das Endergebnis. Durch die gezielte Bestimmung kausaler
Effekte wird im Vorfeld gezielt mogliches Optimierungspotenzial
offengelegt. So konnten beispielsweise Tezuka und Kuroki [17]
anhand eines kausalen Modells zeigen, welche Prozessvariablen
die Transferleistung von Lack auf Autokarosserien zu welchem
Grad beeinflussen, was bei der Schaffung eines stabilen Lackier-
prozesses sehr wichtig ist.

Einen bekannten Standardisierungsansatz zur Berechnung
kausaler Effekte stellt die ,DoWhy“-Python-Bibliothek dar [18].
Der Ansatz ist in einer Pipeline-Struktur in vier Schritte unter-
teilt:

1. Modellierung einer Graphenstruktur, die sowohl vorhandene

Daten als auch Doménenwissen kombiniert.

2. Identifizieren eines Ziel-Schitzwerts, der den Zusammenhang
zwischen Prozessvariablen und der Zielvariable beschreibt.

3. Berechnen des kausalen Effekts anhand des in Schritt 2 identi-
fizierten Ziel-Schitzwerts.

4. Durchfiihren statistischer Tests zur Bestimmung der Robustheit
des berechneten Effekts.

Der berechnete kausale Effekt eignet sich zur weiteren Analyse

gut, indem aufgezeigt wird, welche Stellschrauben im Prozess die

grofite Auswirkung auf das Ergebnis haben. Anhand der erlangten

Erkenntnisse wird die Optimierung des Lackiervorgangs wesent-

lich zielgerichteter durchgefiihrt, was auf lange Sicht den Auf-

wand reduziert und somit ein wesentliche Faktor bei der Kosten-

reduktion ist.

2.6 Einsatz von generativer Kl
im gesamten Blechfertigungsprozess

Generative KI ist eine Methode mit hoher Relevanz auch in
der Fertigungsindustrie, bei der Modelle neue Inhalte wie realisti-
sche Bilder oder kohirente Texte generieren, wihrend andere
Arten der KI basierend auf vorhandenen Daten Vorhersagen,
Klassifizierungen oder Regressionen vornehmen. Diese Technolo-
gie, die sich auf sogenannte Transformer-Modelle stiitzt, nutzt
den Mechanismus der Selbstaufmerksamkeit [1 9], um die Bedeu-
tung verschiedener ,Tokens” (das heift Worter oder Wortteile) in
einem Text zu gewichten. Dadurch sind kontextbezogene Darstel-
lungen moglich, die in verschiedenen Bereichen wie Sprachiiber-
setzung, Texterzeugung und sogar Zeitreihenvorhersage Einsatz
finden.

Die Entwicklung von ,Generative Pre-trained Transformers®
[20] brachte erhebliche Fortschritte, welche die Generierung von
Text aus Texteingaben sowie die Uberbriickung von Modalititen
von Text zu Bildern ermoglichen. Ein prominentes Beispiel ist
ChatGPT, das aktuell die Rolle von ,Large Language Models“
(LLMs) in der industriellen Anwendung prigt. Diese Systeme,
die mit Herausforderungen wie Halluzinationen und Verzerrun-
gen, also falschen oder ungenauen Aussagen, zu kdmpfen haben,
werden durch Methoden wie ,Retrieval-Augmented Generation®
(RAG) erginzt. Diese verbessern die Genauigkeit und Relevanz
der Ergebnisse durch die Nutzung interner und externer Wis-
sensdatenbanken, bevor die Usereingabe in das Modell eingebun-
den wird.

Der Umfang der LLM-Anwendungen veridndert die Art und
Weise, wie Unternehmen mit Informationen und Nutzern inter-
agieren. LLMs, in Form von virtuellen Assistenten, werden zur
Steigerung der Effizienz und zur Unterstiitzung in technischen
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Bild 4. RAG (Retrieval-Augmented Generation)-Systemarchitektur flr einen virtuellen Assistenten. Grafik: Fraunhofer IPA

Bereichen eingesetzt. Zum Beispiel sind Maschinenausfille zeit-
und produktivititsintensiv. Virtuelle Assistenten helfen, diese
Ausfallzeiten zu minimieren, indem sie sofortige Losungen zur
Fehlerbehebung anbieten. Durch den Zugriff auf umfangreiche
Datenbanken mit Maschinenhandbiichern und historischen Leis-
tungsdaten innerhalb eines RAG-Systems unterstiitzen sie techni-
sches Personal mit prizisen, kontextbezogenen Reparaturstrate-
gien, wie in Bild 4 dargestellt. Diese Integration generativer KI in
virtuelle Assistenten rationalisiert nicht nur die Wartungsrouti-
nen, sondern verbessert auch die Fahigkeiten der Techniker, wih-
rend sie lernen und ihr Fachwissen erweitern kénnen.

Virtuelle Assistenten werden auch in der Blechfertigung im-
mer relevanter und unterstiitzen bei verschiedenen Prozessen wie
Schneiden, Biegen, Stanzen und Zusammenfiigen der Bleche in
die gewiinschten Formen. Fehler in diesen Prozessen haben meist
mehrere Ursachen, und es kann eine Herausforderung sein, das
Problem zu identifizieren und eine Losung zu finden. Bei Stérun-
gen in einer Blechproduktionsanlage konnen virtuelle Assistenten
schnell alle relevanten Maschinenhandbiicher und historischen
Reparaturprotokolle durchforsten, um die effektivste Reparatur-
methode zu empfehlen und sicherzustellen, dass die Maschine mit
minimaler Verzdgerung wieder in Betrieb genommen wird. Auch
nutzen sie die Analyse von Daten aus Sensoren und Nutzungs-
protokollen, um Ausfille oder Wartungsbedarf vorherzusagen.
Dieser Ansatz trigt dazu bei, Ausfallzeiten zu reduzieren, indem
Wartungsarbeiten nur bei Bedarf geplant werden [21].

Bei der Auswahl eines bestimmten LLM fiir die Erstellung
eines virtuellen Assistenzsystems gibt es verschiedene Optionen
wie ,Mistral® [22}, ,Llama“ [23} oder deren fiir einen bestimm-
ten Zweck angepassten Derivate. Sie unterscheiden sich in Grofle,
Hardwareanforderungen und Leistung. Daher muss eine sorgfalti-
ge, bedarfsorientierte Auswahl erfolgen. Fiir RAG-Systeme gibt es
Open-Source-Losungen, die als Basis fiir kundenspezifische Um-
setzungen verwendet werden konnen, wobei sowohl Offline- als
auch Cloud-Einsitze in Betracht kommen. Auch eine zunehmen-
de Anzahl kommerzieller Angebote ist verfiigbar [24, 25].

Wihrend die zugrunde liegende Idee von RAG leicht zu ver-
stehen ist, ist die robuste Implementierung des Gesamtsystems
unter Beriicksichtigung aller Teilsysteme und ihrer konfigurierba-
ren Parameter sowie der Datenvorverarbeitung eine Herausforde-
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rung, auch aufgrund der hohen Varianz der Datenquellen und des
endgiiltigen Systemzwecks. Neben der RAG ist oft auch eine
Feinabstimmung eines Open-Source-Modells mit einem domi-
nenspezifischen Datensatz notig, um einen robusten virtuellen
Assistenten zu erstellen. Dies ist mit noch mehr Herausforderun-
gen verbunden, da die Feinabstimmung das zugrunde liegende
LLM verdndert und daher zusitzliche Sorgfalt erfordert. Diese
Aspekte fiihren zu einer steigenden Nachfrage nach Experten fiir
generative KI und Kenntnissen in allen Branchen, um solche
Systeme zu erstellen, zu bewerten oder zu iiberwachen, selbst
wenn ihr Kerngeschift nicht im Bereich der generativen KI liegt.

Neben dem Einsatz generativer KI als virtuellem Assistenten
ist auch die Fihigkeit dieser Technologie, synthetische Datensitze
zu erzeugen (sowohl tabellarische Daten als auch Bilddaten), von
grofler Bedeutung fiir die Fertigungsindustrie. Dadurch kénnen
etwa fir die automatische optische Inspektion von gefertigten
Teilen synthetische Defektbilder erstellt werden. Diese erweitern
den Trainingsdatensatz und verbessern somit die KI-gestiitzte In-
spektion [26].

3 Diskussion und Ausblick

Die Implementierung von KI und Quantencomputing in der
Fertigungsindustrie ist vielversprechend, jedoch gehen diese mit
Herausforderungen einher. Eine zentrale Schwierigkeit liegt in
der Notwendigkeit grofler und qualitativ hochwertiger Datensit-
ze. Oft sind die verfiigbaren Daten unvollstindig, verrauscht oder
nicht fiir alle moglichen Produktionsszenarien reprisentativ. Zu-
kiinftige Arbeiten sollten sich darauf konzentrieren, Methoden
zur Generierung synthetischer Daten weiterzuentwickeln und zu
optimieren, um diese Liicken zu schlieflen.

Die Integration von KI und Quantencomputing in bestehende
Produktionssysteme ist eine weitere Herausforderung. Die meis-
ten aktuellen Produktionssysteme sind nicht darauf ausgelegt, die
hohen Anforderungen dieser Technologien zu erfiillen, was zu
erheblichen Anpassungskosten fithren kann. Auflerdem muss die
Skalierbarkeit der Losungen gewihrleistet sein, um in groflem
Mafstab implementiert werden zu konnen. Zukiinftige Arbeiten
sollten daher auch die Entwicklung von standardisierten Schnitt-
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stellen und Protokollen untersuchen, um die Integration dieser
Technologien in bestehende Systeme zu erleichtern.

Dieser Beitrag hat die vielfiltigen Anwendungsmdoglichkeiten
von KI und Quantencomputing in der modernen Fertigungs-
industrie betrachtet. Veranschaulicht wurde die Rolle dieser Tech-
nologien am Beispiel der Blechverarbeitung. Der Einsatz von KI
und Quantencomputing hat das Potenzial, die Produktionsprozes-
se erheblich zu optimieren und die Materialverschwendung zu
reduzieren. Von der initialen Blechproduktion iiber das Schnei-
den und Schweiflen bis hin zum finalen Lackieren der Teile
konnen diese Technologien signifikante Effizienzsteigerungen
und Qualititsverbesserungen bewirken. Besonders hervorzuheben
sind Ansitze wie erklirbare KI fiir transparente Modelle, Quan-
tencomputing zur Materialoptimierung und physikbasierte KI-
Modelle fiir prizise Prozesse. Die Nutzung generativer KI als vir-
tuellen Assistenten und zur Erstellung synthetischer Datensitze
tragt zusitzlich zur Verbesserung der Produktionsprozesse bei.

Die Integration dieser Technologien in die Fertigungsprozesse
ist ein klarer Beleg fiir ihre transformative Kraft. Sie ermoglicht
Herstellern, den schnell wachsenden und sich stindig dndernden
Anforderungen der Industrie nicht nur zu begegnen, sondern die-
se Erwartungen sogar zu tibertreffen. Insgesamt zeigen diese
Technologien grofles Potenzial, die Fertigungsindustrie grund-
legend zu transformieren und zukunftssicher zu gestalten. Um
dieses Potenzial vollstindig auszuschopfen, sind jedoch weitere
Forschungsarbeiten und technologische Entwicklungen erforder-
lich. Die kontinuierliche Zusammenarbeit zwischen Industrie und
Wissenschaft wird dabei entscheidend sein, um nachhaltige und
skalierbare Losungen zu entwickeln.
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