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Nomenklatur VII

Nomenklatur

In der folgenden Auflistung werden die grundlegenden Symbole dieser Arbeit erläutert.

Z Die Menge aller ganzen Zahlen.

N Die Menge aller positiven ganzen Zahlen.

R Die Menge aller reellen Zahlen.

C Die Menge aller komplexen Zahlen.

K
n Die Menge aller Vektoren der Ordnung n ∈ N mit Einträgen aus K.

K
n×m Die Menge aller n×m Matrizen mit Einträgen aus K.

a, b, ... Skalare oder Vektoren mit Einträgen aus C werden mit kleinen

lateinischen Buchstaben gekennzeichnet.

A, B, ... Matrizen mit reellen Einträgen werden mit großen lateinischen

Buchstaben gekennzeichnet.

Xi,k Der Eintrag in der i-ten Zeile und der k-ten Spalte von der Matrix X.

xi Der i-te Eintrag des Vektors x.

XT Die Transponierte von der Matrix X.

|X|, Die Determinante einer quadratischen Matrix X.

|x| Der absolute Betrag einer Zahl x ∈ C

j Die imaginäre Einheit.

�(x) Der Realteil einer komplexen Zahl oder eines komplexen Vektors x.

�(x) Der Imaginärteil einer komplexen Zahl oder eines komplexen Vektors x.

In Die Einheitsmatrix der Dimension n.

0 Eine Matrix, die nur den Eintrag 0 enthält.

Symbole zu unsicheren Zahlen, Vektoren und Matrizen

� = {0}, die Menge, die nur die Null enthält.

+• = {x ∈ R|x > 0}, die Menge aller positiven reellen Zahlen.

−• = {x ∈ R|x < 0}, die Menge aller negativen reellen Zahlen.

�+• = {x ∈ R|x ≥ 0}, die Menge aller nicht-negativen reellen Zahlen.

�−• = {x ∈ R|x ≤ 0}, die Menge aller nicht-positiven reellen Zahlen.

� = {x ∈ R|x �= 0}, die Menge aller von Null verschiedenen Zahlen.

�� = R, die Menge aller reellen Zahlen.

V = {�,+• ,−• }, die Menge aller Vorzeichen.

U = {�,+• ,−• ,�−• ,�+• , �,��}, die Menge aller unsicheren Zahlen.

S = {�, �}, die Menge aller strukturellen Zahlen.

S̃ = {�, �,��}.
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VIII Nomenklatur

A, B, ... Zahlen, Vektoren oder Matrizen mit Einträgen aus U werden mit

kaligraphischen Großbuchstaben bezeichnet.

In Eine n×nMatrix mit (+• )-Einträgen auf der Diagonalen und �-Einträgen

auf allen sonstigen Positionen.

IS

n Eine n×n Matrix mit (�)-Einträgen auf der Diagonalen und �-Einträgen

auf allen sonstigen Positionen.

� Eine Matrix mit �-Einträgen auf allen Positionen.

Symbole und Notation zu komplexen Vorzeichenvektoren

A, B, ... Komplexe Vorzeichenvektoren werden mit Frakturbuchstaben

bezeichnet.
wDv Das Vorzeichen von rvrw cos(ϕv − ϕw), wenn q = r · ejϕ ∈ D.
wPv Das Vorzeichen von rvrw sin(ϕv − ϕw), wenn q = r · ejϕ ∈ D.

(wD, wP) Das w-te charakteristische Vorzeichenmuster eines komplexen

Vorzeichenvektors D (siehe Definition 4.3 auf Seite 50).
wq = q/qw, wenn w von Null verschieden in D ist (qw �= 0).

�q(v, w) = (ϕv − ϕw) mod π/2 ≥ 0 ist der Abstand von w zu v in q.

�q(w) Der geringste Abstand von w in q.
w∗Dv Das Vorzeichen von rvrw cos(ϕv − ϕw − ε) mit �q(w) > ε > 0.
w∗Pv Das Vorzeichen von rvrw sin(ϕv − ϕw − ε) mit �q(w) > ε > 0.

(w
∗D, w∗P) Vorzeichen des verdrehten w-ten charakteristischen Vorzeichenmusters.

U∗ = U ∪ {i∗|i ∈ U} für eine Menge U ⊆ {1, . . . , n}.
R Die Menge der Vorzeichenrotationsmatrizen (siehe (4.4) auf Seite 54).

D Der konjugiert komplexe Vorzeichenvektoren von D.

ν Eine Funktion zur Beschreibung eines komplexen Vorzeichenvektors

(siehe Satz 5.3 auf Seite 82).

κ(n) Die Anzahl aller komplexen Vorzeichenvektoren der Ordnung n ∈ N.
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Kurzfassung IX

Kurzfassung

Das Verhalten von den meisten technischen Prozessen lässt sich zumindest in

Arbeitspunkten hinreichend genau mit linearen zeitinvarianten Systemen der Form

dx/dt = A · x+ B · u beschreiben. Zwei wichtige Eigenschaften solcher Systeme sind die

Steuerbarkeit und die Stabilisierbarkeit, welche zu den wesentlichen Voraussetzungen

modernen Methoden der Steuerungs- und Regelungstechnik zählen. Beide Eigenschaften

können anhand der Matrizen A und B numerisch untersucht werden. In den Modellen

zur Beschreibung eines technischen Prozesses basieren die Matrizen oft auf experimentell

ermittelten Daten, sodass die Einträge nur mit einer gewissen Genauigkeit bekannt und

die numerischen Nachweise nicht mehr anwendbar sind.

In dieser Arbeit werden algebraische Methoden zum Nachweis der Steuerbarkeit

und der Stabilisierbarkeit linearer zeitinvarianter Systeme unabhängig von konkreten

numerischen Parametern untersucht. Dafür werden sieben Symbole zur Beschreibung

verschiedener Teilmengen der reellen Zahlen definiert und es wird der Begriff des

unsicheren Systems als Klasse linearer zeitinvarianter Systeme eingeführt. Allgemein

bekannte Spezialfälle von unsicheren Systemen sind strukturelle Systeme, bei denen die

Einträge der Matrizen entweder identisch Null oder von Null verschieden sind, und

Vorzeichen-Systeme, bei denen nur das Vorzeichen der Einträge bekannt ist. Durch

diesen Ansatz wird daher der strukturelle Ansatz mit dem Ansatz über Vorzeichenmuster

vereint. In einem unsicheren System ist es z.B. im Gegensatz zum strukturellen Ansatz

möglich, dass manche Systemparameter sowohl den Wert Null als auch einen von Null

verschiedenen Wert annehmen können. Ein unsicheres System ist streng strukturell

steuerbar, vorzeichen-steuerbar, vorzeichen-stabil oder vorzeichen-stabilisierbar, wenn

jeweils jedes System der Klasse steuerbar, stabil oder stabilisierbar ist. In dieser Arbeit

werden verschiedene bekannte Resultate zu diesen Eigenschaften auf unsichere Systeme

verallgemeinert und es werden zwei bisher ungelöste Probleme, die Charakterisierung der

Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit, gelöst.

Neben zahlreichen akademischen Beispielen werden die Resultate der Arbeit an bekannten

Modellen verschiedener technischer Systeme vorgeführt. Dabei werden z.B. jeweils die

Steuerbarkeit, die Stabilität und die Stabilisierbarkeit der Wankdynamik von Zweirädern,

der Bewegung eines Satelliten, der Längsdynamik eines F-8 Strahlflugzeugs und der

Dynamik eines unbemannten Helikopters im Schwebeflug untersucht.
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X

Abstract

The behavior of most technical processes can be describe with sufficient precision with

linear time-invariant systems of the form dx/dt = A · x+ B · u. Two important properties

of such systems are the controllability and stabilizability which are the preconditions of

most methods in modern control engineering. Both properties can be analyzed with the

matrices A and B by numerical tests. In the models used to describe a technical process,

the entries of the matrices are often known only with a certain accuracy, so that the

numerical tests are no longer applicable.

Hence, algebraic methods for the analysis of the controllability and the stabilizability

of linear time-invariant systems independent of numerical values are investigated in

this work. Therefore, seven symbols to describe different subsets of the real numbers

are defined and the notion of the uncertain system as a class of linear time-invariant

systems is introduced. Common special cases of uncertain systems are structural systems,

where the entries are either zero or nonzero and signed systems, where the entries are

positive, negative or zero. Thus, this new approach combines the structural and the

signed approach to describe uncertainties in linear time-invariant systems. Moreover, in

contrast to structural systems, it is possible, that some entries can be zero as well as

nonzero in an uncertain system. An uncertain system is strong structural controllable,

sign controllable, sign stable or sign stabilizable if every system in the class is controllable,

stable or stabilizable, respectively. In this work, different known results to these properties

are generalized to uncertain systems and two unsolved problems, the characterization of

sign controllability and sign stabilizability are solved.

In addition to numerous academic examples, the results of this work are demonstrated

to known models of various technical systems. Therefore, the controllability, the stability

and the stabilizability of the roll dynamic of bicycles, the motion of a satellite, the

dynamic of an F-8 jet airplane and the dynamic of an unmanned helicopter are analyzed.
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1

1 Einleitung

Eine typische Aufgabenstellung im Fachbereich der Steuerungs- und Regelungstechnik

beinhaltet einen technischen Prozess, der verschiedene physikalische Größen (z.B.

Temperaturen, Geschwindigkeiten, Winkel oder elektrische Spannungen) und ein oder

mehrere Stellgrößen enthält. Jede physikalische Größe folgt bestimmten Naturgesetzen

und eine Änderung ihres Zahlenwerts kann meist mit einer Differentialgleichung

beschrieben werden. Dadurch entstehen Systeme von Differentialgleichungen, dynamische

Systeme, welche den technischen Prozess beschreiben.

Wenn die physikalischen Größen, deren Ableitungen und die Stellgrößen linear in die

Differentialgleichungen eines dynamischen Systems eingehen und sich kein Parameter des

Systems über den betrachteten Zeitraum verändert, dann kann der technische Prozess mit

einem System von linearen Differentialgleichungen erster Ordnung, d.h. einem linearen

zeitinvarianten System der Form

d

dt
x = A · x+ B · u, x(t0) = x0, (1.1)

beschrieben werden. x ist dabei der Zustandsgrößenvektor der Dimension n, u ist der

Eingangsgrößenvektor der Dimension r und x0 ist der Anfangszustand des Systems zum

Zeitpunkt t0. A und B sind jeweils n× n und n× r Matrizen mit reellen Einträgen.

Es existiert eine etablierte Theorie zu linearen zeitinvarianten Systemen der Form (1.1)

und viele Eigenschaften eines gegebenen linearen zeitinvarianten Systems lassen sich gut

mit Algorithmen der linearen Algebra ermitteln. Außerdem hat sich herausgestellt, dass

viele Eigenschaften nichtlinearer Systeme durch Approximationen mit linearen Systemen

bestimmt werden können, und dass der Reglerentwurf für nichtlineare Systeme auf den

Reglerentwurf für lineare Systeme reduziert werden kann (siehe [Hes09, S. 11]).

Der technische Prozess, den das lineare zeitinvariante System der Form (1.1)

beschreibt, soll in einer typischen Aufgabenstellung mithilfe der Stellgrößen u von

einem Anfangszustand x0 zu einem gewünschten Zustand überführt und dort gehalten

werden. Die erste der beiden Teilaufgaben ist ein Steuerungsproblem und die zweite

ist ein Stabilisierungsproblem. Die allgemeine Lösbarkeit beider Problemstellungen

wird jeweils mit dem Begriff der Steuerbarkeit und der Stabilisierbarkeit beschrieben.

Beide Eigenschaften können anhand der Matrizen A und B für ein konkretes lineares

zeitinvariantes System der Form (1.1) numerisch bestimmt werden.
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2 1 Einleitung

1.1 Einordnung der Arbeit

In vielen Systemen der Form (1.1) basieren die Einträge der Matrizen A und B auf

experimentell ermittelten Daten und sind nicht mit absoluter Sicherheit bekannt. Albert

Einstein äußerte sich 1921 auch wie folgt über die Sicherheit mathematischer Ergebnisse:

”
Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind

sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die

Wirklichkeit“ [Ein21].

Daher empfiehlt es sich in vielen Situationen, ein unsicheres System anstelle des

konkreten numerischen Systems zu untersuchen. Der wohl bekannteste Ansatz dafür ist der

strukturelle Ansatz, bei dem angenommen wird, dass lediglich die Position aller Parameter

in den Matrizen A und B bekannt ist und jeder Parameter kann einen beliebigen von

Null verschiedenen Wert annehmen. Jede numerische Matrix hat dann ein bestimmtes

strukturelles Muster und eine Klasse von Systemen der Form (1.1), welche durch die

strukturellen Muster der Matrizen A und B beschrieben ist, wird als strukturelles System

bezeichnet.

Wenn mindestens ein Element eines strukturellen Systems steuerbar ist, dann ist das

strukturelle System strukturell steuerbar [Lin74] und wenn jedes Element steuerbar ist,

dann ist das strukturelle System streng strukturell steuerbar [MY79]. Die strukturelle

Steuerbarkeit und die strenge strukturelle Steuerbarkeit sind daher jeweils notwendig und

hinreichend für die Steuerbarkeit der linearen zeitinvarianten Systeme der Klasse.

Der strukturelle Ansatz zur Analyse linearer Systeme der Form (1.1) ist weit verbreitet

und wird in vielen Fach- und Lehrbüchern behandelt (siehe z.B. [Cas87], [Rei88], [Sil91],

[Son98], [Mur10], [Lun10]). Eine Google Scholar Suche nach dem Begriff
”
structural

controllability“ (engl. für strukturelle Steuerbarkeit) liefert z.B. Verweise auf 1 710

Veröffentlichungen1, wovon 770 innerhalb der letzten sechs Jahre veröffentlicht wurden2.

Obwohl der Begriff der strukturellen Steuerbarkeit also schon seit mehr als 40 Jahren

existiert [Lin74] und allgemein charakterisiert ist (siehe [SP76,GS76]), ist er nach wie vor

Gegenstand der aktuellen Forschung. Dabei werden nicht nur technische Systeme, sondern

auch biologische, informatische oder soziale Netzwerke auf Steuerbarkeit untersucht (siehe

[LSB11]).

1 http://scholar.google.de/scholar?q="structural+controllability", Stand 14.04.2015

2 http://scholar.google.de/scholar?q="structural+controllability"&as_ylo=2010
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1.1 Einordnung der Arbeit 3

Neben der Untersuchung der Steuerbarkeit von linearen zeitinvarianten Systemen

der Form (1.1) kann mit dem strukturellen Ansatz auch die Steuerbarkeit

von Deskriptorsystemen (siehe [RW97, RR00]), die Steuerbarkeit von zeitvarianten

zeitdiskreten Systemen [Pol92, HRS12] und die Steuerbarkeit von zeitvarianten

zeitkontinuierlichen Systemen [HRS13b, HRS13c] untersucht werden. Außerdem lassen

sich verschiedene weitere Eigenschaften, wie z.B. die Struktur der unendlichen Nullstellen

[VDW91] oder die Eingangs-Ausgangs Entkoppelbarkeit [Lin81], ermitteln. In [DCW03]

ist eine Übersicht zu verschiedenen Eigenschaften struktureller Systeme zu finden.

Eine Eigenschaft, welche nicht mit dem strukturellen Ansatz untersucht werden kann,

ist die Stabilität eines linearen zeitinvarianten Systems (siehe [DCW03, S. 1129]).

Dafür hat sich ein anderer Ansatz zur Beschreibung unsicherer Systeme als geeignet

erwiesen, in dem Vorzeichenmuster anstelle von strukturellen Mustern verwendet

werden. Dann sind zusätzlich die Vorzeichen aller von Null verschiedenen Einträge

der Matrizen A und B festgelegt und eine solche Klasse von Systemen der Form

(1.1) wird als Vorzeichen-System bezeichnet. Ein Vorzeichen-System ist vorzeichen-stabil

[QR65], vorzeichen-steuerbar [JMO93] oder vorzeichen-stabilisierbar [HS14], wenn jeweils

jedes Element des Vorzeichen-Systems stabil, steuerbar oder stabilisierbar ist. Diese

Eigenschaften sind daher jeweils hinreichend für die Stabilität, die Steuerbarkeit und die

Stabilisierbarkeit eines konkreten linearen zeitinvarianten Systems.

Die strukturelle Steuerbarkeit, die strenge strukturelle Steuerbarkeit und die

Vorzeichen-Stabilität sind vollständig charakterisiert und es existieren effiziente

Algorithmen, um ein System auf diese Eigenschaften zu untersuchen. Für die

Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind dagegen bisher

lediglich hinreichende oder notwendige Bedingungen bekannt.

Die Beziehungen zwischen diesen Eigenschaften sind in Abbildung 1.1 dargestellt, wobei

angenommen wird, dass ein lineares zeitinvariantes System der Form (1.1) eine Eigenschaft

P besitzt, wenn es zu einer Klasse von Systemen gehört, welche die Eigenschaft P besitzt.

Viele der Beziehungen aus Abbildung 1.1 ergeben sich direkt aus den Definitionen der

jeweiligen Eigenschaften. Es ist daher offensichtlich,

• dass jedes streng strukturell steuerbare System auch vorzeichen-steuerbar ist,

• dass jedes vorzeichen-steuerbare System auch strukturell steuerbar ist,

• dass jedes vorzeichen-steuerbare System auch vorzeichen-stabilisierbar ist und

• dass jedes vorzeichen-stabile System auch vorzeichen-stabilisierbar ist.
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alle linearen
zeitinvarianten

Systeme
strukturell steuerbar

vorzeichen-stabilisierbar

vorzeichen-steuerbar

streng strukturell
steuerbar

vorzeichen-stabil

Abbildung 1.1: Mengendiagramm zu verschiedenen Eigenschaften von Systemen der Form

(1.1) (siehe [HS14]).

Alle anderen Beziehungen, wie beispielsweise,

• dass es strukturell steuerbare Systeme gibt, die nicht stabilisierbar sind,

• dass es vorzeichen-stabilisierbare Systeme gibt, die nicht steuerbar sind oder,

• dass es vorzeichen-stabilisierbare Systeme gibt, die nicht stabil sind,

lassen sich leicht mit einfachen Beispielen zeigen (siehe z.B. [HRS13a], [HS14]).

Die Analyse eines strukturellen Systems bzw. eines Vorzeichen-Systems basiert auf der

kombinatorischen Untersuchung der zugehörigen Matrizen des Systems. Eine notwendige

Bedingung für die strukturelle Steuerbarkeit eines Systems ist beispielsweise, dass jede

Zustandsgröße durch mindestens eine Eingangsgröße beeinflusst werden kann. Wenn

dies nicht der Fall ist, dann lassen sich die System-Matrizen in die sogenannte Form I

permutieren. Die zweite Bedingung für die Überprüfung der strukturelle Steuerbarkeit ist,

dass der maximale Rang einer bestimmten strukturellen Matrix gleich der Systemordnung

n ist. Wenn dieser kleiner ist, dann besitzt die strukturelle Matrix die sogenannte Form II

(siehe [GS76, S. 535]). Für die strenge strukturelle Steuerbarkeit muss dagegen der

minimale Rang bestimmter struktureller Matrizen ermittelt werden. Wenn dieser gleich n

ist, dann besitzt die Matrix die Form III (siehe [RSW92, S. 207]). Es existieren effiziente

Algorithmen zum Überprüfung jeder dieser drei Formen.

Analog zur Form III bei strukturellen Matrizen kann auch überprüft werden, ob alle

Matrizen von einem bestimmten Vorzeichenmuster vollen Rang besitzen. Ein solches

Vorzeichenmuster wird dann als L-Matrix bezeichnet (siehe [BS09]). L-Matrizen sind
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besonders für die Überprüfung der Lösbarkeit von Gleichungssystemen interessant. Dies

wurde zuerst 1962 durch Lancaster in [Lan62] untersucht (siehe [KLM84]).

Für die Vorzeichen-Stabilität eines Vorzeichen-Systems muss jeder Eigenwert in jeder

Matrix des zugehörigen Vorzeichenmusters einen negativen Realteil besitzen. Diese

Eigenschaft ist charakterisiert (siehe [Jef74]) und es existieren effiziente Algorithmen

für die Überprüfung (siehe [KD77]). Generell existieren bereits die verschiedensten

Resultate zur Untersuchung des Spektrums aller Matrizen von einem quadratischen

Vorzeichenmuster. In [EJ91] werden beispielsweise die Vorzeichenmatrizen charakterisiert,

die jeweils nur reelle, nur komplexe oder nur rein imaginäre Eigenwerte erlauben, in

[KMT96] werden Vorzeichenmuster untersucht, welche einen positiven Eigenwert besitzen

und in [SG03] werden Vorzeichenmuster untersucht, welche Diagonalisierbarkeit erlauben.

Eine Übersicht weiterer spektraler Eigenschaften von Vorzeichenmustern ist in [COD09]

zu finden.

1.2 Zielsetzung, Beiträge und Aufbau der Arbeit

In bisherigen Arbeiten existieren lediglich hinreichende oder notwendige Bedingungen für

die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit. In dieser Arbeit wird

erstmals eine vollständige Charakterisierung dieser beiden Eigenschaften vorgestellt und

ein Algorithmus für die Überprüfung beschrieben.

Im Gegensatz zu vielen bisherigen Arbeiten im Bereich der Analyse von strukturellen

Systemen bzw. von Vorzeichen-Systemen werden in dieser Arbeit ausschließlich

algebraische und nicht graphentheoretische Methoden verwendet. Dafür werden im

nächsten Abschnitt sieben Symbole definiert, welche verschiedene Teilmengen der reellen

Zahlen repräsentieren und die Menge der unsicheren Zahlen bilden. Außerdem werden in

Abschnitt 2 eine Addition, eine Multiplikation und eine Matrixmultiplikation für unsichere

Zahlen und Matrizen definiert und verschiedene Eigenschaften des daraus entstehenden

kommutativen Halbrings werden ermittelt.

Anschließend wird in Abschnitt 3 das unsichere System als eine Klasse linearer Systeme

der Form (1.1) eingeführt. Ein unsicheres System wird mit zwei unsicheren Matrizen

beschrieben und da strukturelle Matrizen und Vorzeichenmatrizen Spezialfälle von

unsicheren Matrizen sind, wird durch diese Methode der strukturelle Ansatz mit dem

Ansatz über Vorzeichenmuster vereint. In einem unsicheren System ist es im Gegensatz

zum strukturellen Ansatz möglich, dass manche Systemparameter sowohl den Wert

Null als auch einen von Null verschiedenen Wert annehmen können. Außerdem werden
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6 1 Einleitung

in diesem Abschnitt bereits bekannte Resultate zur strengen Surjektivität, strengen

strukturellen Steuerbarkeit sowie Vorzeichen-Stabilität, Vorzeichen-Steuerbarkeit und

Vorzeichen-Stabilisierbarkeit auf diesen Ansatz übertragen. Die daraus entstandenen

Bedingungen basieren auf der Multiplikation von unsicheren Vektoren mit der zu

untersuchenden unsicheren Matrix oder dem unsicheren System, sodass diese Bedingungen

eine Interpretation über die Eigenvektoren und die Elemente des Kokerns von unsicheren

Matrizen zulassen. Zudem wird in diesem Abschnitt neben verschiedenen akademischen

Beispielen auch die strenge strukturelle Steuerbarkeit der Bewegung eines Satelliten in

einer erdnahen Umlaufbahn und die Vorzeichen-Steuerbarkeit, die Vorzeichen-Stabilität

sowie die Vorzeichen-Stabilisierbarkeit der Wankdynamik von Fahrrädern untersucht.

Im darauffolgenden Abschnitt 4 wird der komplexe Vorzeichenvektor als eine

Äquivalenzklasse von komplexen Vektoren definiert und es wird gezeigt, dass dieser neue

Ansatz für die Untersuchung von Vorzeichenmatrizen geeignet ist. Wenn beispielsweise

ein komplexer Vektor im Kokern einer Matrix X ist, dann ist jeder Vektor derselben

Äquivalenzklasse im Kokern eine Matrix vom selben Vorzeichenmuster wie X und

wenn ein komplexer Vektor ein Eigenvektor zu einem rein komplexen Eigenwert von

einer quadratischen Matrix A ist, dann ist jeder Vektor derselben Äquivalenzklasse

auch ein Eigenvektor zu einem rein komplexen Eigenwert für eine Matrix vom

selben Vorzeichenmuster wie A. Außerdem werden in diesem Abschnitt mehrere

neue Bedingungen vorgestellt, mit denen überprüft werden kann, ob ein komplexer

Vorzeichenvektor einen Eigenvektor zu einem Element einer unsicheren Matrix enthält.

Dabei werden auch verschiedene bisher ungelöste Entscheidungsprobleme gelöst, wie z.B.

ob es eine Matrix mit einem vorgegebenen Vorzeichenmuster gibt, welche einen komplexen

Eigenwert mit positivem Realteil besitzt.

Diese Resultate werden in Abschnitt 5 genutzt, um die Vorzeichen-Steuerbarkeit und

die Vorzeichen-Stabilisierbarkeit zu charakterisieren. Außerdem wird gezeigt, dass beide

Entscheidungsprobleme NP-vollständig sind und es wird ein rekursiver Algorithmus zur

Untersuchung der Vorzeichen-Steuerbarkeit beschrieben. Dabei wird eine Eigenschaft

genutzt, welche den Aufwand der Untersuchung deutlich reduzieren kann. Abschließend

werden zwei lineare zeitinvariante System der Form (1.1) auf strenge strukturelle

Steuerbarkeit, Vorzeichen-Steuerbarkeit und Vorzeichen-Stabilisierbarkeit untersucht.

Dabei handelt es sich um ein Modell der Längsdynamik eines F-8 Strahlenflugzeugs und

ein Modell für die Dynamik eines unbemannten Helikopters im Schwebeflug.
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2 Mathematische Grundlagen

In diesem Abschnitt werden die grundlegenden Zusammenhänge für die Resultate der

folgenden Abschnitte zusammengestellt. Dafür wird in Abschnitt 2.1 die verwendete

Notation beschrieben und es werden grundlegende mathematische Zusammenhänge

angegeben, bevor in Abschnitt 2.2 wichtige Sätze zur Stabilität, Steuerbarkeit und

Stabilisierbarkeit von linearen zeitinvarianten Systemen der Form (1.1) zusammengefasst

werden.

Anschließend werden in Abschnitt 2.3 sieben Symbole für verschiedene Teilmengen reeller

Zahlen eingeführt und es werden die Begriffe unsichere Zahl, strukturelle Zahl und

Vorzeichen sowie unsicheren Matrix, strukturelle Matrix und Vorzeichenmatrix definiert.

In Abschnitt 2.4 wird die Addition und die Multiplikation für diese Symbole festgelegt

und in Abschnitt 2.5 werden abschließend grundlegenden Eigenschaften der sich daraus

ergebenden Halbgruppe ermittelt.

2.1 Notation und grundlegende Zusammenhänge

Die Mengen aller ganzen Zahlen; aller positiven, ganzen Zahlen; aller reellen Zahlen und

aller komplexen Zahlen werden mit Z, N, R und C bezeichnet. Für zwei a, b ∈ R mit

b > a bezeichnen die Ausdrücke [a, b], ]a, b[, [a, b[ und ]a, b] jeweils geschlossene, offene

und halb-offene Intervalle in R mit den Endpunkten a und b. Die Ausdrücke [a; b], ]a; b[,

[a; b[ und ]a; b] bezeichnen jeweils diskrete Intervalle, d.h. [a; b] = [a, b] ∩ Z. Für zwei

Mengen N,M bezeichnet jeweils N ⊂ M , N ⊆ M , N ⊃ M und N ⊇ M , dass N eine

echte Teilmenge, eine Teilmenge, eine echte Obermenge und ein Obermenge von M ist.

Der Ausdruck |N | beschreibt die Mächtigkeit der Menge N . Die imaginäre Einheit, der

Realteil und der Imaginärteil einer komplexen Zahl x ∈ C wird jeweils mit j, �(x) und

�(x) bezeichnet, sodass x = �(x) + j�(x) für jedes x ∈ C gilt.

Für zwei n,m ∈ N wird die Menge aller n×m Matrizen mit Einträgen aus einer Menge K

mit Kn×m bezeichnet. Für eine n×m Matrix X, bezeichnet Xk,i den Eintrag in der k-ten

Zeile und der i-ten Spalte von X. Mit XT wird die Transponierte von X beschrieben,

d.h. XT ist eine m × n Matrix und es gilt (XT )i,k := Xk,i. Eine Matrix aus C
n×m

wird in dieser Arbeit mit einem großen lateinischen Buchstaben und ein Skalar aus C,

oder ein Vektor aus Cn mit einem kleinen lateinischen Buchstaben bezeichnet. Die n× n

Einheitsmatrix wird mit In und eine Matrix, die nur Null-Einträge enthält, wird mit 0

bezeichnet, wobei die Dimension der Matrix 0 stets aus dem Zusammenhang ersichtlich ist.

Der Ausdruck |a| beschreibt den absoluten Betrag einer Zahl a ∈ R und der Ausdruck |A|,
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oder det(A) bezeichnet die Determinante einer quadratischen Matrix A. Die Determinante

einer quadratischen Matrix A ∈ K
n×n kann mit der Formel von Leibniz ermittelt werden,

sodass n! Summanden die Determinante von A beschreiben [Fis10, S. 192]. Ein solcher

Summand wird als Term der Expansion von det(A) bezeichnet. Der Rang einer Matrix

X ∈ R
n×m mit n,m ∈ N wird mit rang(X) bezeichnet.

Wenn eine Matrix X ∈ R
n×m zeilenregulär ist, d.h. rang(X) = n gilt, dann ist die lineare

AbbildungX : Rm → R
n surjektiv [Fis10, S. 134] und die MatrixX wird dann als surjektiv

bezeichnet. Wenn X nicht surjektiv ist, dann gibt es einen Vektor q ∈ C
n mit q �= 0, sodass

qTX = 0 gilt. Der Vektor q ist dann im Kokern von der Matrix X.

Für eine Matrix A ∈ R
n×n mit n ∈ N ist λ ∈ C ein Eigenwert von A, wenn es einen Vektor

q ∈ C
n \ {0} gibt, für den

qTA = λqT (2.1)

gilt. Die Menge aller Vektoren q ∈ C
n \ {0}, welche Gleichung (2.1) für einen Eigenwert

λ ∈ C von A erfüllen, wird als Eigenraum von A bezüglich λ bezeichnet und ein Element

des Eigenraums von A bezüglich λ ist ein Eigenvektor von A bezüglich λ. Ein Paar (λ, q),

welches (2.1) erfüllt ist ein Eigenpaar von A. Die Menge aller Eigenwerte von A wird als

Spektrum von A bezeichnet.

Satz 2.1 : Gegeben ist eine reelle Matrix A ∈ R
n×n mit n ∈ N und es wird angenommen,

dass λ ∈ C und q ∈ C
n ein Eigenpaar von A ist. Die folgenden Eigenschaften sind erfüllt.

(i) λ = �(λ)− j · �(λ) ist ein Eigenwert von A und

q = �(q)− j · �(q) ist ein Eigenvektor von A bezüglich λ.

(ii) Für jedes α ∈ C \ {0} ist α · q ein Eigenvektor von A bezüglich λ.

Beweis. Beide Eigenschaften sind allgemein bekannt. (i) wird beispielsweise in [HJ13, S.

145] als Aufgabe 2.5.P46 gestellt, oder in [Wat07, S. 44] und [Mey00, S. 492] beschrieben.

Die Eigenschaft (ii) folgt unmittelbar aus Gleichung (2.1).

Für jede reelle Zahl a ∈ R und jede Zahl b ∈ R \ {0} sind a div b = c ∈ Z und

a mod b = d ∈ [0, |b|[ jeweils der Ganzzahlquotient und der Rest der Division, sodass

a = b · (a div b) + (a mod b) (2.2)

gilt. Nach Euclid’s Theorem gibt es für jedes Paar (a, b) genau ein eindeutiges Paar (c, d)

mit den genannten Eigenschaften [Bou92, S. 132]. Wenn a kein Vielfaches von b ist und
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b > 0 gilt (siehe [Bou92, S. 133]), dann gilt

(−a) mod b = b− (a mod b). (2.3)

Die Sinus- und Kosinus-Funktionen werden jeweils mit sin und cos bezeichnet. Für zwei

reelle Zahlen a, b ∈ R gelten die Additionstheoreme (siehe [FB06], S. 7, 1.6),

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) und (2.4a)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b) sowie (2.4b)

cos(−a) = cos(a) und sin(−a) = − sin(a). (2.4c)

Mit lim
t→∞

f(t) wird der Grenzwert der Funktion f(t) für t gegen ∞ bezeichnet, wobei das

Symbol ∞ das Unendlichzeichen ist.

2.2 Grundlagen zu linearen zeitinvarianten Systemen

Lineare zeitinvariante Systeme der Form (1.1) bilden die Basis für viele Methoden

der
”
Modernen Regelungstechnik“ und sie werden seit der Mitte des 20. Jahrhunderts

in diesem Fachbereich verwendet. Bei der Analyse dieser Systeme spielen die Begriffe

der Stabilität, der Steuerbarkeit und der Stabilisierbarkeit eine entscheidende Rolle.

All diese Eigenschaften sind heutzutage genau untersucht und werden in den meisten

regelungstechnischen Grundlagenwerken behandelt (siehe z.B. [Kai80,CF03,Dat04,WL07,

HJS08,Hes09]). Dieser Abschnitt fasst die in dieser Arbeit benötigten Definitionen und

Sätze über lineare zeitinvariante Systeme der Form (1.1) zusammen.

Die Lösung eines linearen zeitinvarianten Systems (1.1) zum Zeitpunkt t ≥ t0 ist durch

x(t) = eA(t−t0) · x0 +

t∫
t0

eA(t−τ)Bu(τ)dτ (2.5)

beschrieben, wobei eAt die Matrix-Exponentialfunktion ist.

Definition 2.2 (Stabilität): Das lineare zeitinvariante System (1.1) ist asymptotisch

stabil, wenn für jeden Anfangszustand x0 ∈ R
n, lim

t→∞
x(t) = 0 bei u = 0 gilt.

Die Eigenwerte der Matrix A sind für das asymptotische Verhalten der

Matrix-Exponentialfunktion eAt verantwortlich, sodass die Stabilität eines linearen

System der Form (1.1) mit dem folgenden Satz untersucht werden kann.
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10 2 Mathematische Grundlagen

Satz 2.3 : Gegeben sind zwei Matrizen A ∈ R
n×n und B ∈ R

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das lineare zeitinvariante System (1.1) mit A und B ist asymptotisch stabil.

(ii) Alle Eigenwerte von A haben einen negativen Realteil.

Eine weitere, wichtige Eigenschaft von einem linearen zeitinvarianten System der Form

(1.1) ist die Steuerbarkeit, welche 1960 von Kalman [Kal60] eingeführt wurde. Die

Steuerbarkeit eines Systems der Form (1.1) ist wie folgt definiert.

Definition 2.4 (Steuerbarkeit): Das lineare zeitinvariante System (1.1) ist steuerbar,

wenn es für jeden Anfangszustand x0 zum Zeitpunkt t0 und jeden Zustandspunkt x1 zu

einem Zeitpunkt t1 > t0 eine Steuerfunktion u : [t0, t1]→ R
r gibt, sodass x(t1) = x1 gilt.

Die Steuerbarkeit von einem linearen zeitinvarianten System der Form (1.1) lässt sich mit

dem folgenden Satz untersuchen.

Satz 2.5 : Gegeben sind zwei Matrizen A ∈ R
n×n und B ∈ R

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das lineare zeitinvariante System der Form (1.1) mit A und B ist steuerbar.

(ii) Es gilt rang (K(A,B)) = n mit K(A,B) := (B,AB, . . . An−1B).

(iii) Es gilt rang
(
K̃(A,B)

)
= n2 mit

K̃(A,B) :=

⎛
⎜⎜⎜⎜⎜⎝
In 0 B 0

A
. . . B
. . . In

. . .

0 A 0 B

⎞
⎟⎟⎟⎟⎟⎠ .

(iv) Für jeden Wert λ ∈ C gilt rang (A− λ · In, B) = n.

(v) Für jeden Eigenwert λ von A gilt rang (A− λ · In, B) = n.

Die Bedingung (ii) in Satz 2.5 wird als Kalman-Kriterium und die Bedingung

(v) als Popov-Belevitch-Hautus Kriterium bezeichnet. Die Popov-Belevitch-Hautus

Bedingung liefert neben der Ja/Nein Aussage zur Steuerbarkeit eines Systems noch die

Informationen über die Werte λ ∈ C, bei denen die Matrix (A− λ · In, B) im Falle der

Nicht-Steuerbarkeit einen Rangverlust besitzt.
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Ein Wert λ ∈ C wird als (A,B)-steuerbar bezeichnet, wenn rang (A− λ · In, B) = n gilt.

Nach Satz 2.5.(iv) ist das System (1.1) mit A und B genau dann steuerbar, wenn alle

Werte λ ∈ C, (A,B)-steuerbar sind.

Satz 2.6 : Gegeben sind zwei Matrizen A ∈ R
n×n und B ∈ R

n×r mit n, r ∈ N und eine

komplexe Zahl λ ∈ C. Wenn der Wert λ ist nicht (A,B)-steuerbar ist, dann ist der Wert

λ = �(λ)− j�(λ) nicht (A,B)-steuerbar.

Beweis. Da λ nicht (A,B)-steuerbar ist, gibt es ein q ∈ C
n, sodass qTA = λqT und

qTB = 0 gilt. Aufgrund von Satz 2.1 gilt qTA = λ · qT mit q = �(q) − j�(q). Außerdem
gilt �(qT )B = �(qT )B = 0, sodass qTB = 0 gilt und λ nicht (A,B)-steuerbar ist.

Ein schwächerer Begriff als die Steuerbarkeit ist die Stabilisierbarkeit (auch asymptotische

Steuerbarkeit genannt), welche u.a. in [Hau70, S. 453, Theorem 4] untersucht wurde.

Definition 2.7 (Stabilisierbarkeit): Das lineare zeitinvariante System der Form

(1.1) ist stabilisierbar, wenn es für jeden Anfangszustand x0 zum Zeitpunkt t0 eine

Steuerfunktion u : [t0,∞[→ R
r gibt, sodass lim

t→∞
x(t) = 0 gilt.

Aus dieser Definition folgt unmittelbar, dass ein lineares zeitinvariantes System der Form

(1.1) stabilisierbar ist, wenn es steuerbar, oder wenn es stabil ist. Die Stabilisierbarkeit

eines System (1.1) lässt sich mit dem folgenden Satz untersuchen.

Satz 2.8 : Gegeben sind zwei Matrizen A ∈ R
n×n und B ∈ R

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das lineare zeitinvariante System der Form (1.1) mit A und B ist stabilisierbar.

(ii) Es existiert eine Matrix K ∈ R
r×n, sodass jeder Eigenwert der Matrix A+BK einen

negativen Realteil besitzt.

(iii) Jeder Wert λ ∈ C mit �(λ) ≥ 0 ist (A,B)-steuerbar.

2.3 Unsichere Zahlen, Matrizen und Vektoren

Die sign-Funktion für eine reelle Zahl x ∈ R wird wie folgt definiert

sign(x) :=

⎧⎪⎨
⎪⎩

+1, wenn x > 0,

0, wenn x = 0 und

−1, wenn x < 0.
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Die sign-Funktion teilt den Raum R auf natürliche Weise in drei Bereiche auf, die Zahl 0,

die positiven und die negativen reellen Zahlen. Die Menge aller positiven, reellen Zahlen

wird in dieser Arbeit mit dem Symbol +• und die Menge aller negativen, reellen Zahlen

mit dem Symbol −• bezeichnet, d.h. es gilt

+• := {x ∈ R|x > 0} und

−• := {x ∈ R|x < 0} .

Zusätzlich wird die einelementige Menge � := {0} definiert.

Die Symbole +• , −• und � werden als Vorzeichen bezeichnet und die Menge aller Vorzeichen

wird mit V symbolisiert, d.h. es gilt V := {+• ,�,−• }. Eine n × m Matrix X ∈ V
n×m

mit n,m ∈ N ist eine Vorzeichenmatrix. Analog zu einem Vorzeichen beschreibt eine

Vorzeichenmatrix X ∈ V
n×m eine Menge von reellen n×m Matrizen, wobei für eine reelle

Matrix X ∈ R
n×m genau dann X ∈ X gilt, wenn für jedes a ∈ {1, . . . , n} und jedes

b ∈ {1, . . . ,m}, Xa,b ∈ Xa,b gilt. Ein Spaltenvektor mit Einträgen aus V ist ein Spezialfall

einer Vorzeichenmatrix und wird als Vorzeichenvektor bezeichnet.

Beispiel 2.1 : Die reelle 2× 3 Matrix

X =

(
5.3 0 −1.6
π −17 4

)
ist ein Element der Vorzeichenmatrix X =

(
+• � −•
+• −• +•

)
,

d.h. es gilt X ∈ X ∈ V
2×3, da u.a. X1,2 = 0 ∈ � = X1,2; X2,2 = −17 ∈−• = X2,2 und

X2,3 = 4 ∈+• = X2,3 gilt.

Neben den Vorzeichen +• , −• und � werden in dieser Arbeit die folgenden Mengen definiert:

�+• :=+• ∪ � als die Menge aller nicht-negativen reellen Zahlen,

�−• :=−• ∪ � als die Menge aller nicht-positiven reellen Zahlen,

� :=+• ∪ −• als die Menge aller von Null verschiedenen reellen Zahlen und

�� :=+• ∪ −• ∪ � = R.

Obwohl die Definition von dem Symbol �� durch die Existenz von R redundant ist, wurde

das Symbol �� für eine optische Darstellung des Zusammenhangs �� = � ∪� eingeführt.

Ein Element von der Menge S := {�, �} ist eine strukturelle Zahl und ein Element von der

Menge U := {�,+• ,−• ,�+• ,�−• , �,��} ist eine unsichere Zahl. Analog zu Vorzeichenmatrizen

wird eine Matrix mit Einträgen aus S als strukturelle Matrix und eine Matrix mit

Einträgen aus U als unsichere Matrix bezeichnet. Strukturelle und unsichere Matrizen
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sind ebenfalls Mengen von reellen Matrizen, aber während es für eine reelle Matrix X

genau eine zugehörige Vorzeichenmatrix und genau eine zugehörige strukturelle Matrix

gibt, gibt es mehrere unsichere Matrizen, zu denen X gehört, da jede Vorzeichenmatrix

und jede strukturelle Matrix gleichzeitig auch eine unsichere Matrix ist.

Beispiel 2.2 : X aus Beispiel 2.1 ist Element von der strukturellen Matrix X ∈ S
2×3

und den unsicheren Matrizen X ′,X ′′,X ′′′ ∈ U
2×3 mit

X =

(
� � �

� � �

)
,X ′ =

(�+• � −•
+• � ��

)
,X ′′ =

(
+• �−• �

� −• +•

)
und X ′′′ =

(�� �� ��
�� �� ��

)
.

Eine unsichere Matrix X ist von Null verschieden, wenn es ein a und ein b gibt, sodass

Xa,b �= � gilt. Eine unsichere Matrix, die nur �-Einträge enthält, wird mit einem �-Symbol

dargestellt. Die Dimension einer solchen Matrix ist stets anhand des Zusammenhangs

ersichtlich. In bezeichnet eine n × n Matrix mit (+• )-Einträgen auf der Diagonalen und

�-Einträgen auf allen sonstigen Positionen. Analog bezeichnet IS

n eine n× n Matrix mit

(�)-Einträgen auf der Diagonalen. Unsichere Zahlen und Matrizen werden in dieser Arbeit

mit kaligraphischen Großbuchstaben bezeichnet.

2.4 Rechnen mit unsicheren Zahlen

In dieser Arbeit werden unsichere Matrizen ausschließlich algebraisch untersucht und nicht

wie in vielen anderen Arbeiten mit graphen-theoretischen Methoden. Dafür werden hier

zwei Verknüpfungen, die Addition und die Multiplikation, für die Menge der unsicheren

Zahlen U in natürlicher Analogie zu den entsprechenden Verknüpfungen bei reelle Zahlen

definiert. Die Regeln der zweistelligen Verknüpfungen sind in den zwei Cayley-Tafeln

in Abbildung 2.2 dargestellt. Die Multiplikation hat dabei die höhere Priorität. Diese

beiden Verknüpfungen werden in [CF12] auf ähnlich Weise definiert (siehe auch [LHE94]

oder [Liu07]).

Beispiel 2.3 : Es gilt +• + �+• =+• , da in der linken Tabelle in Abbildung 2.2, +• die

zweite Zeile und �+• die fünfte Spalte repräsentiert und der Eintrag in der zweiten Zeile

und fünften Spalte ein +• ist. Weiterhin gilt −• + +• =�� ; −• · +• =−• und −• · � = �.

Außerdem gilt −• · (+• + �+• +�) =−• · +• =−• und −• · (−• + �−• )+ −• =+• + −• =�� .
Beide Verknüpfungen sind assoziativ und kommutativ und sind genau so definiert, dass

der folgende Satz Gültigkeit hat.
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14 2 Mathematische Grundlagen

+ � +• −• � �+• �−• ��
� � +• −• � �+• �−• ��
+• +• +• �� �� +• �� ��
−• −• �� −• �� �� −• ��
� � �� �� �� �� �� ��
�+• �+• +• �� �� �+• �� ��
�−• �−• �� −• �� �� �−• ��
�� �� �� �� �� �� �� ��

· � +• −• � �+• �−• ��
� � � � � � � �
+• � +• −• � �+• �−• ��
−• � −• +• � �−• �+• ��
� � � � � �� �� ��
�+• � �+• �−• �� �+• �−• ��
�−• � �−• �+• �� �−• �+• ��
�� � �� �� �� �� �� ��

Abbildung 2.2: Verknüpfungstafeln für Addition und Multiplikation der unsicheren Zahlen

Satz 2.9 : Gegeben sind zwei unsichere Zahlen X ,Y ∈ U.

Für jedes x ∈ X und jedes y ∈ Y gilt

(i) x+ y ∈ X + Y und

(ii) x · y ∈ X · Y.

Zudem sind die folgenden zwei Eigenschaften erfüllt.

(iii) Für jedes z ∈ X + Y gibt es ein x ∈ X und ein y ∈ Y, sodass z = x+ y gilt.

(iv) Für jedes z ∈ X · Y gibt es ein x ∈ X und ein y ∈ Y, sodass z = x · y gilt.

Beweis. Wenn X = �, dann ist x = 0 das einzige Element in X und es gilt Z := X+Y = Y
und Z ′ := X · Y = �. Für jedes y ∈ Y gilt x + y = y ∈ Z und x · y = 0 ∈ Z ′, sodass (i)

und (ii) erfüllt sind. Analog gilt für jedes z ∈ Z und z′ := 0 ∈ Z ′ mit x := 0 ∈ X und

y := z ∈ Y , dass z = x+ y und z′ = x · y gilt, sodass auch (iii) und (iv) erfüllt ist.

Wenn X = Y =+• , dann gilt X+Y = X ·Y =+• =: Z. Für jedes x ∈ X und jedes y ∈ Y gilt

x+ y ∈+• = Z und x · y ∈ Z, sodass (i) und (ii) erfüllt sind. Mit x := z/2 =: y ∈ X = Y
gilt z = x + y für jedes z ∈ Z und mit y′ := 2 ∈ Y gilt z = x · y′, sodass (iii) und (iv)

erfüllt sind. Alle anderen Fälle lassen sich auf vergleichbare Art zeigen.

Mit dem folgenden Satz wird eine weitere Eigenschaft für die Multiplikation von einem

Vorzeichen mit einer unsicheren Zahl beschrieben.

Satz 2.10 : Gegeben ist ein Vorzeichen X ∈ V und eine unsichere Zahl Y ∈ U.

Für jedes x ∈ X und jedes z ∈ X · Y gibt es ein y ∈ Y, sodass z = x · y gilt.
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Beweis. Wenn X = � gilt, dann ist x = 0 und X · Y = � erfüllt. Dann gilt z = 0 · y ∈ �
und die Aussage ist erfüllt. Andernfalls gilt X ∈ {+• ,−• }; z ∈ X ·Y =: Z; Y = X 2·Y = X ·Z
und x �= 0. Mit y := z/x ∈ Z · X gilt y ∈ Y und die Aussage erfüllt ist.

Satz 2.10 gilt für die Multiplikation von einem Vorzeichen mit einer unsicheren Zahl, kann

aber nicht allgemein auf die Multiplikation von zwei unsicheren Zahlen erweitert werden,

wie das folgende Beispiel 2.4 zeigt.

Beispiel 2.4 : Angenommen, es gilt X =−• ∈ V und Y =�−• ∈ U, dann ist Z = X ·Y =�+• .
Nach Satz 2.10 gibt es für jedes x < 0 (x ∈ X ) und jedes z ≥ 0 (z ∈ Z) ein y ≤ 0 (y ∈ Y),
welches x · y = z genügt. Dies ist mit y := z/x ∈ Y gegeben.

Wenn dagegen X ′ =�−• = Y /∈ V gilt, dann gilt ebenfalls Z = X ′ · Y =�+• . Nach Satz

2.9.(iv) gibt es für jedes z ≥ 0 (z ∈ Z) ein x′ ≤ 0 (x′ ∈ X ′) und ein y ≤ 0 (y ∈ Y), sodass
z = x′ · y erfüllt ist, aber beispielsweise für x′ = 0 ∈ X ′ und z = 1 ∈ Z gibt es kein y ∈ Y ,
sodass z = x′ · y erfüllt ist.

Bei der Multiplikation von zwei unsicheren Zahlen X ,Y ∈ U kann auf das

Verknüpfungssymbol verzichtet werden, d.h X · Y kann mit XY beschrieben werden.

Zudem gilt −X := (−• ) · X für jede unsichere Zahl X ∈ U. Damit lässt sich die Subtraktion

für zwei unsichere Zahlen X ,Y ∈ U wie folgt durchführen

X − Y = X + (−Y) = X + (−• Y).

Die Addition und die Multiplikation von unsicheren Matrizen wird analog zu den

entsprechenden Operationen bei reellen Matrizen definiert. Für zwei unsichere Matrizen

X ,Y ∈ U
n×m ist Z = X + Y eine n ×m unsichere Matrix und es gilt Za,b := Xa,b + Ya,b

für jedes a ∈ {1, . . . , n} und jedes b ∈ {1, . . . ,m}. Die Multiplikation von einer unsicheren

Zahl X ∈ U mit einer unsicheren Matrix Y ∈ U
n×m ergibt eine n ×m unsichere Matrix

Z = XY und es gilt Za,b := X ·Ya,b für jedes a ∈ {1, . . . , n} und jedes b ∈ {1, . . . ,m}. Die
Multiplikation von zwei unsicheren Matrizen X ∈ U

a×b und Y ∈ U
b×c ergibt eine a × c

unsichere Matrix Z = XY und es gilt Zx,y :=
∑b

k=1(Xx,kYk,y) für jedes x ∈ {1, . . . , a}
und jedes y ∈ {1, . . . , c}.

Beispiel 2.5 : Gegeben sind die unsicheren Matrizen A ∈ U
3×3 und B ∈ U

3 mit

A =

⎛
⎜⎝�−• +• �
+• � �
�� � �

⎞
⎟⎠ und B =

⎛
⎜⎝+•

�
�

⎞
⎟⎠ .
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Es gilt CT = BTA = (�� ,+• ,�), da beispielsweise

C1 =
3∑

k=1

BkAk,1 = (+• · �−• ) + (� · +• ) + (� · �� ) = �−• + � + �� = ��
gilt. Außerdem ergibt sich

A2 = A · A =

⎛
⎜⎝+• �−• �

�−• +• �
�� �� �

⎞
⎟⎠ und (B,AB,A2B) =

⎛
⎜⎝+• �−• +•

� +• �−•
� �� ��

⎞
⎟⎠ .

Für die Multiplikation von einem Vorzeichenvektor mit einer unsicheren Matrix ergibt

sich analog zu Satz 2.10 der folgende, interessante Zusammenhang.

Satz 2.11 : Gegeben sind ein Vorzeichenvektor Q ∈ V
n und eine unsichere Matrix

X ∈ U
n×m mit n,m ∈ N. Für jedes q ∈ Q und jedes yT ∈ QT · X gibt es eine Matrix

X ∈ X , sodass yT = qT ·X erfüllt ist.

Beweis. Wir definieren YT := QT · X und wir fixieren ein s ∈ {1, . . . ,m}. Für jedes

i ∈ {1, . . . , n} definieren wir Zi := QiXi,s, sodass Ys =
∑n

i=1QiXi,s =
∑n

i=1Zi gilt.

Aufgrund von Satz 2.9 gibt es für jedes ys ∈ Ys und jedes i ∈ {1, . . . , n} ein zi ∈ Zi, sodass

ys =
∑n

i=1 zi gilt. Mithilfe von Satz 2.10 gibt es dann für jedes qi ∈ Qi ein Xi,s ∈ Xi,s,

sodass zi = qiXi,s gilt und die Aussage ist erfüllt.

Beispiel 2.6 : Gegeben sind drei unsichere Vektoren X =
(
+• �+• −• �)T

,

Y =
(
+• +• −• ��)T

und Z =
(
−• � +• +•

)T

. Es gilt

X TY = (+• · +• ) + (�+• · +• ) + (−• · −• ) + (� · �� ) =+• + �+• + +• +� =+• ,

X TZ = (+• · −• ) + (�+• ·�) + (−• · +• ) + (� · +• ) =−• + � + −• +� =−• und

ZTY = (−• · +• ) + (� · +• ) + (+• · −• ) + (+• · �� ) =−• + � + −• + �� =�� .

Der unsichere Vektor Z ist ein Vorzeichenvektor und es gilt 0 ∈ ZTY . Für jedes

z =
(
−z1 0 z3 z4

)T

∈ Z ∈ V
4 mit zi > 0 für i ∈ {1, 3, 4} gibt es nach Satz 2.11 ein

y ∈ Y ∈ U
4, sodass zTy = 0 gilt. Dies ist beispielsweise mit y =

(
1
z1

1 − 1
z3

2
z4

)T

erfüllt.
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2.5 Algebraische Bedeutung und weitere Eigenschaften

Die algebraischen Objekte (U,+) und (U, ·) sind Halbgruppen, da beide Verknüpfungen

assoziativ sind. Außerdem sind beide Verknüpfungen kommutativ und besitzen ein

neutrales Element, sodass beide Halbgruppen abelsche Monoide sind. Die algebraischen

Objekte (U,+, ·), (S ∪ {��},+, ·) und (V ∪ {��},+, ·) sind kommutative Halbringe. Für

Grundlagen und Hintergrundinformationen zu Halbgruppen und Halbringe wird auf

[HW93] und [Haz09] verwiesen.

Die Relation ⊆ auf der Menge der unsicheren Zahlen U ist eine Halbordnung und per

Definition (siehe Abschnitt 2.3) gibt es für jede unsichere Zahl U ∈ U ein Vorzeichen

V ∈ V, sodass V ⊆ U gilt. Die Vorzeichen V sind daher die minimalen Elemente und die

unsichere Zahl �� ist das maximale Element der Halbordnung, welche in Abbildung 2.3 in

einem Hasse-Diagramm dargestellt ist.

��

�−• � �+•

−• � +•

Abbildung 2.3: Hasse-Diagramm zur Darstellung der Relation ⊆ auf der Menge U.

Wird die Matrix IS

n mit einer Vorzeichenmatrix X aus Vn×m multipliziert, d.h. IS

n · X :=

S, dann ist das Ergebnis der Multiplikation eine strukturelle Matrix aus S
n×m und S

beschreibt die Struktur von X . Im allgemeineren Fall, wenn X ein Element von U
n×m ist,

dann ist S = IS

n · X eine Matrix aus S̃n×m, wobei S̃ := {�, �,��} = S ∪ {��} gilt. Mit dem

folgenden Satz wird gezeigt, dass S dann das
”
kleinesten“ Element aus S̃n×m ist, welches

X ⊆ S genügt.

Satz 2.12 : Gegeben ist eine unsichere Matrix X ∈ U
n×m mit n,m ∈ N.

Es gilt X ⊆ IS

n · X ⊆ S für jedes S ∈ S̃
n×m mit X ⊆ S.

Beweis. Wir definieren Ŝ := IS

n · X und wir fixieren ein a ∈ {1, . . . , n}, ein

b ∈ {1, . . . ,m} und ein S ∈ S̃
n×m mit X ⊆ S. Wenn Xa,b = � gilt, dann gilt

Ŝa,b = � · Xa,b = � = Xa,b ⊆ Sa,b ∈ {�,��} und die Aussage ist erfüllt. Wenn andernfalls
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18 2 Mathematische Grundlagen

Xa,b ∈ {+• ,−• , �} gilt, dann gilt Ŝa,b = � · Xa,b = � und Sa,b ∈ {�,��}. Dann gilt

Xa,b ⊆ Ŝa,b ⊆ Sa,b und die Aussage ist erfüllt. Im verbleibenden Fall Xa,b ∈ {�+• ,�−• ,��}
gilt Xa,b ⊆ Ŝa,b = � · Xa,b =�� und Sa,b =�� , sodass die Aussage ebenfalls erfüllt ist.

Beispiel 2.7 : Gegeben sind vier unsichere Matrizen A,B, C,D ∈ U
3×2

A =

⎛
⎜⎝+• �
−• +•

� +•

⎞
⎟⎠ , B =

⎛
⎜⎝�+• �
−• ��
�−• +•

⎞
⎟⎠ , C =

⎛
⎜⎝� �

�� �

� ��

⎞
⎟⎠ und D =

⎛
⎜⎝�� �

�� ��
�� �

⎞
⎟⎠ .

A ist eine Vorzeichenmatrix und es gilt C,D ∈ S̃
3×2 sowie A ⊂ B ⊂ D und A ⊂ C.

Außerdem gilt B �⊆ C und C �⊆ D, da z.B. B1,1 �⊆ C1,1 und C3,2 �⊆ D3,2 gilt. Es ergibt sich

IS

3A =

⎛
⎜⎝� � �

� � �
� � �

⎞
⎟⎠
⎛
⎜⎝+• �
−• +•

� +•

⎞
⎟⎠ =

⎛
⎜⎝� �

� �

� �

⎞
⎟⎠ =: A′ und IS

3B =

⎛
⎜⎝�� �

� ��
�� �

⎞
⎟⎠ =: B′

sowie IS

3C = C und IS

3D = D. A′ ist eine strukturelle Matrix, d.h A′ ∈ S
3×2 und es gilt

A ⊂ A′ ⊂ C und A′ ⊂ B′ ⊂ D. Es ergibt sich das folgende Hasse-Diagramm:

A
B A′

B′ C
D

Abschließend werden in dem folgenden Satz einige grundlegende Eigenschaften der beiden

Verknüpfungen auf der Menge der unsicheren Zahlen aufgelistet.

Satz 2.13 : Für jede unsichere Zahl X ∈ U und jedes Vorzeichen Y ∈ V gilt

(i) X + � = � + X = X .

(ii) X + �� =�� +X =�� .
(iii) X ·� = � · X = �.

(iv) X · +• =+• · X = X .

(v) (X −• ) −• =−• X −• =−• (−• X ) = X .

(vi) X ⊆ (�) · X .

(vii) � ⊆ Y − X ⇐⇒ Y ⊆ X .

Beweis. Die Beziehungen (i) bis (vi) ergeben sich unmittelbar aus der Definition der

Addition und Multiplikation. Es wird daher nur die Aussage (vii) bewiesen. Wenn Y =+•
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und � ⊆ Y − X erfüllt ist, dann gilt X ∈ {+• ,�+• , �,��}, wenn andernfalls Y = �, dann

gilt X ∈ {�,�−• ,�+• ,��} und wenn Y =−• , dann gilt X ∈ {−• ,�−• , �,��}. In all diesen Fällen

gilt genau dann Y ⊆ X und die Aussage ist erfüllt.
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3 Lineare Systeme mit unsicheren Matrizen

In diesem Abschnitt wird der Begriff des unsicheren Systems definiert und es werden

verschiedene Eigenschaften unsicherer Matrizen und unsicherer Systeme untersucht.

Dazu gehören die strenge strukturelle Surjektivität und die strenge Surjektivität

in Abschnitt 3.1, die strenge strukturelle Steuerbarkeit in Abschnitt 3.2, die

Vorzeichen-Steuerbarkeit in Abschnitt 3.3, die Vorzeichen-Stabilität in Abschnitt 3.4 und

die Vorzeichen-Stabilisierbarkeit in Abschnitt 3.5. Die meisten Ergebnisse aus diesem

Abschnitt sind Verallgemeinerungen bekannter Ergebnisse von den Spezialfällen, bei denen

die unsichere Matrix oder das unsichere System nur aus Vorzeichen oder strukturellen

Zahlen besteht.

Abgeschlossen wird dieser Abschnitt mit einer kurzen Zusammenfassung von Ergebnissen

zur strengen strukturellen Steuerbarkeit von zeitvarianten Systemen sowie dem Bezug

zum Kalman Kriterium in Abschnitt 3.6.

3.1 Strenge Surjektivität von unsicheren Matrizen

Die Steuerbarkeit und die Stabilisierbarkeit eines linearen Systems der Form (1.1) kann

nach Satz 2.5.(iv) und 2.8.(iii) über die Surjektivität von bestimmten Matrizen ermittelt

werden. Daher wird in diesem Abschnitt zunächst die Surjektivität von unsicheren

Matrizen untersucht.

Definition 3.1 (Strenge Strukturelle Surjektivität): Eine Matrix S ∈ S̃
n×m mit

n,m ∈ N ist streng strukturell surjektiv (engl. strongly structrually surjective), wenn jede

reelle Matrix S ∈ S surjektiv ist. Eine unsichere Matrix U ∈ U
n×m ist streng strukturell

surjektiv, wenn es eine streng strukturell surjektive Matrix S ∈ S̃
n×m mit U ⊆ S gibt.

Eine Matrix S ∈ S̃
n×m mit n,m ∈ N,m ≥ n ist daher streng strukturell surjektiv, wenn

der minimale Rang von allen Matrizen X ∈ S gleich n ist. Diese Eigenschaft lässt sich

mit der sogenannten Form III überprüfen (siehe z.B. [RSW92, S. 207, Def. 2], [SJA11, S.

336, Def. 8], oder [HRS12, S. 2191, (3)]).
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3.1 Strenge Surjektivität von unsicheren Matrizen 21

Definition 3.2 (Form III): Eine unsichere Matrix X ∈ U
n×m mit n,m ∈ N besitzt die

Form III, wenn zwei strukturelle Permutationsmatrizen P ∈ S
n×n und P ′ ∈ S

m×m derart

existieren, sodass

PXP ′ ⊆

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�� · · · �� � � · · · � �
�� · · · �� �� � · · · � �
...

...
...

. . .
...

�� · · · �� �� �� · · · � �
�� · · · �� �� �� · · · �� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

gilt.

Neben der Form III existieren die Formen I und II, mit denen jeweils überprüft werden

kann, ob alle Zustandsgrößen mit dem Eingang eines Systems verbunden sind und ob der

maximale Rang von allen Elementen einer strukturellen Matrix gleich n ist (siehe [GS76,

S. 535]). Eine Matrix X ∈ S̃
n×m kann mit dem folgenden Satz auf strenge strukturelle

Surjektivität überprüft werden.

Satz 3.3 : Gegeben ist eine Matrix X ∈ S̃
n×m mit n,m ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die Matrix X ist streng strukturell surjektiv.

(ii) Für jeden strukturellen Vektor Q ∈ S
n mit Q �= � gilt � �⊆ QTX .

(iii) Die Matrix X besitzt die Form III.

Beweis. Die Äquivalenz zwischen (i) und (iii) wurde bereits in [Bru66, S. 473, Th. 2.1]

(siehe auch [HS93, S. 11, Th. 4.4.(iii)]) für n = m und in [HRS12, S. 2191, Prop. III.1] für

X ∈ S
n×m bewiesen. Der Beweis hier verläuft ähnlich zu dem von [HRS12].

Für (i) =⇒ (ii) nehmen wir an, dass (ii) nicht erfüllt ist. Dann gibt es einen strukturellen

Vektor � �= Q ∈ S
n, sodass � ⊆ QTX gilt. Ohne Einschränkung der Allgemeinheit

gilt Qi = � für die ersten k > 0 Einträge von Q und Qi = � für die letzen (n − k)

Einträge von Q. Aufgrund der Annahme � ⊆ QTX kann eine Matrix X ∈ X derart

gewählt werden, dass die Summe der ersten k Zeilen in jeder Spalte Null ergibt. Mit

q := (1, . . . , 1, 0, . . . , 0)T ∈ Q gilt qTX = 0 und X ist nicht streng strukturell surjektiv.

Für den Beweis (ii) =⇒ (iii) wählen wir Q = (�, . . . , �)T und aufgrund der Annahme

gilt � �⊆ YT = QTX , sodass für mindestens ein i ∈ {1, . . . ,m}, � �⊆ Yi =
∑n

l=1Xl,i gilt.

Spalte i von X besitzt dann keinen �� -Eintrag und genau einen �-Eintrag in Zeile k. Ohne

Einschränkungen der Allgemeinheit gilt i = m und k = n und wir entfernen die letzte
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Zeile und Spalte von X . Die Eigenschaft (iii) folgt dann aus einem Induktionsargument.

Die Beziehung (iii) =⇒ (i) ist abschließend offensichtlich.

Um eine unsichere Matrix U ∈ U
n×m auf strenge strukturelle Surjektivität zu untersuchen

kann der folgende Satz verwendet werden.

Satz 3.4 : Gegeben ist eine unsichere Matrix U ∈ U
n×m mit n,m ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die unsichere Matrix U ist streng strukturell surjektiv.

(ii) Die Matrix IS

n U ∈ S̃
n×m ist streng strukturell surjektiv.

(iii) Für jeden strukturellen Vektor Q ∈ S
n mit Q �= � gilt � �⊆ QT U .

Beweis. Der Äquivalenz von (i) und (ii) folgt unmittelbar aus Definition 3.1 und

Satz 2.12. (ii) ⇐⇒ (iii) folgt aus Satz 3.3, da QTIS

n U = QT U gilt.

Die strenge strukturelle Surjektivität von einer unsicheren Matrix U ∈ U
n×m ist

hinreichend, aber nicht notwendig für die Surjektivität aller Matrizen U ∈ U . Daher
kann es unsichere Matrizen U ∈ U

n×m geben, die nicht streng strukturell surjektiv sind,

aber dennoch sind alle reellen Matrizen U ∈ U surjektiv (siehe z.B. X ′ in Beispiel 3.1

unten). Für diese unsicheren Matrizen gibt es dann nicht surjektive Matrizen U ∈ R
n×m

gleicher Struktur, d.h. eine Matrix U ∈ IS

n U ist nicht surjektiv, aber es gilt U /∈ U .

Nachfolgend wird die strenge Surjektivität für unsichere Matrizen definiert3.

Definition 3.5 (Strenge Surjektivität): Eine unsichere Matrix X ∈ U
n×m mit

n,m ∈ N ist streng surjektiv, wenn jede reelle Matrix X ∈ X surjektiv ist.

Wenn X streng strukturell surjektiv ist, dann ist nach Definition 3.1 jedes X ∈ X ⊆ IS

n X
surjektiv und X ist streng surjektiv. Dies wird in dem folgenden Satz festhalten.

Satz 3.6 : Gegeben ist eine unsichere Matrix X ∈ U
n×m mit n,m ∈ N.

Wenn X streng strukturell surjektiv ist, dann ist X streng surjektiv.

Mit dem folgenden Satz lässt sich eine Matrix auf strenge Surjektivität untersuchen.

3 Eine streng surjective Vorzeichenmatrix X ∈ V
n×m wird auch als L-Matrix bezeichnet (siehe [BS09]).
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Satz 3.7 : Gegeben ist eine unsichere Matrix U ∈ U
n×m mit n,m ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die unsichere Matrix U ist streng surjektiv.

(ii) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � gilt � �⊆ QT U .

Beweis. Für den Spezialfall von Vorzeichenmatrizen, U ∈ V
n×m, ergibt sich der Satz

aus [KLM84, S. 133, Remark 1.1]. Im Folgenden wird ein kurzer Beweis für unsichere

Matrizen U ∈ U
n×m dargestellt.

Wir nehmen zunächst an, dass � ⊆ QTU für einen Vorzeichenvektor Q ∈ V
n mit Q �= �

gilt. Aus Satz 2.11 folgt, dass es dann für jeden Vektor q ∈ Q ein U ∈ U gibt, sodass

qTU = 0 gilt. Die Matrix U ist dann nicht surjektiv und U ist nicht streng surjektiv.

Für die Umkehrung nehmen wir an, dass U nicht streng surjektiv ist. Dann gibt es eine

Matrix U ∈ U und einen Vektor q ∈ R
n mit q �= 0, sodass qTU = 0 gilt. Der Vektor q ist

Element des Vorzeichenvektors Q �= � und aufgrund von Satz 2.9 gilt dann � ⊆ QT U ,
sodass (ii) nicht erfüllt ist.

Vergleicht man die Bedingung (iii) aus Satz 3.4 mit der Bedingung (ii) aus Satz 3.7,

so kann man erkennen, dass eine unsichere Matrix U ∈ U
n×m nicht streng (strukturell)

surjektiv ist, wenn es einen Vorzeichenvektor (bzw. einen strukturellen Vektor) Q gibt,

für den � ⊆ QT U gilt. Dieser Vektor Q enthält dann reelle Vektoren q ∈ R
n mit q �= 0,

die im Kokern von Matrizen U ∈ U (bzw. U ∈ IS

n U) sind, sodass genau diese Vektoren

q ∈ Q für den Verlust der Surjektivität verantwortlich sind.

Beispiel 3.1 : Gegeben sind drei unsichere Matrizen X ,X ′,X ′′ und eine Matrix X mit

X =

(
+• �
−• +•

)
, X ′ =

(
+• �+•
−• +•

)
, X ′′ =

(
+• ��
−• +•

)
und X =

(
x1 x4

−x3 x2

)

und es wird im Folgenden angenommen, dass x1, x2, x3 > 0 gilt. Es gilt X ⊂ X ′ ⊂ X ′′;

X ∈ X ′′; X ∈ X ′, wenn x4 ≥ 0 gilt und X ∈ X , wenn x4 = 0 gilt. Zudem gilt

IS

2 X =

(
� �
� �

)
und IS

2 X ′ = IS

2 X ′′ =

(
� ��
� �

)
.

Die Matrix IS

2 X besitzt Form III und ist daher nach Satz 3.3 streng strukturell surjektiv.

Mit Satz 3.4 ist X streng strukturell surjektiv und mit Satz 3.6 auch streng surjektiv. Die

unsicheren Matrizen IS

2 X ′ und IS

2 X ′′ besitzen nicht die Form III und sind aufgrund von

Satz 3.4 nicht streng strukturell surjektiv.
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24 3 Lineare Systeme mit unsicheren Matrizen

Mit Q = (+• ,+• )T gilt � ⊂ QTX ′′ = (�� ,�� ), sodass X ′′ nach Satz 3.7 nicht streng surjektiv

ist. Dagegen ist � �⊆ QTX ′ = (�� ,+• ) erfüllt und für jeden Vorzeichenvektor Q̃ �= � gilt

ebenso � �⊆ Q̃TX ′. Daher folgt aus Satz 3.7, dass X ′ streng surjektiv ist und alle Matrizen

X ∈ X ′ sind surjektiv.

Dasselbe Resultat lässt sich in diesem Fall leicht mithilfe der Determinante von X

überprüfen. Diese ergibt sich zu det(X) = x1x2 + x3x4 und wenn x4 ≥ 0 und xi > 0

für i ∈ {1, 2, 3} gilt, dann ist det(X) > 0 erfüllt und X ist surjektiv.

Wenn andernfalls x4 ∈−• erlaubt ist, dann gilt det(X) = 0 für x4 = −x1x2/x3 und X ist

nicht surjektiv. Mit q = (x3, x1)
T ∈ (+• ,+• )T = Q gilt dann qTX = 0.

3.2 Strenge Strukturelle Steuerbarkeit

Die strenge strukturelle Steuerbarkeit wurde von Mayeda und Yamada im Jahr 1979 als

hinreichende Bedingung für die Steuerbarkeit linearer zeitinvarianter Systeme der Form

(1.1) anhand des Belegtheitsmusters der Matrizen A und B eingeführt. Außerdem wurde

eine graphentheoretische Charakterisierung für Eingrößensysteme (r = 1) vorgestellt

(siehe [MY79]). Dieses Konzept wurde in [RSW92] aufgegriffen und es wurde u.a.

eine algebraische Charakterisierung für Mehrgrößensysteme präsentiert, bei der für zwei

strukturelle Matrizen A ∈ S
n×n und B ∈ S

n×r die Surjektivität der Matrizen (A,B) und
(A− IS

n,B) untersucht wird.

In diesem Abschnitt werden der Begriff der strengen strukturellen Steuerbarkeit und die

allgemeine Charakterisierung auf die Notation dieser Arbeit übertragen. Es wird mit der

Definition von unsicheren Systemen, Vorzeichen-Systemen und strukturellen Systemen

begonnen.

Definition 3.8 (Unsicheres System, Vorzeichen-System, strukturelles System):

Gegeben sind zwei unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N . Ein

unsicheres System (A,B) ist die Menge aller linearer zeitinvarianter Systeme der Form

(1.1) für die A ∈ A und B ∈ B gilt. Wenn (A,B) ∈ V
n×n+r gilt, dann wird das unsichere

System als Vorzeichen-System (engl. signed system) bezeichnet und wenn (A,B) ∈ S̃
n×n+r

gilt, dann wird das unsichere System als strukturelles System (engl. structured system)

bezeichnet.

Diese Definition des strukturellen Systems unterscheidet sich wesentlich zu der Definition

der strukturellen Systeme aus bisherigen Arbeiten, in denen die Matrizen A und B
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nur Einträge aus der Menge S = {�, �} enthalten. In dieser Arbeit sind zusätzlich

�� -Einträge in den Matrizen A und B erlaubt. Dadurch lässt sich für jedes unsichere

System (A,B) ∈ U
n×n+r ein

”
größeres“ strukturelles System (A′,B′) finden, für das

(A,B) ⊆ (A′,B′) ∈ S̃
n×n+r gilt. Bei einer Definition des strukturellen Systems mit der

Menge S wäre dies nur für die unsicheren Systeme möglich, dir nur Einträge aus der Menge

{�,−• ,+• , �} enthalten. Ein strukturelles System nach der herkömmlichen Definition ist

ein Spezialfall eines strukturellen Systems nach der Definition in dieser Arbeit.

Im Folgenden wird gezeigt, dass sich die Eigenschaften von strukturellen Systemen nach

der ursprünglichen Definition problemlos auf die strukturellen Systeme dieser Arbeit

erweitern lassen.

Definition 3.9 (Strenge strukturelle Steuerbarkeit): Ein strukturelles System

(A,B) mit A ∈ S̃
n×n, B ∈ S̃

n×r und n, r ∈ N ist streng strukturell steuerbar (engl.

strongly structurally controllable), wenn jedes lineare zeitinvariante System (1.1) mit

A ∈ A und B ∈ B steuerbar ist. Ein unsicheres System (A,B) mit A ∈ U
n×n und

B ∈ U
n×r ist streng strukturell steuerbar, wenn es ein streng strukturell steuerbares System

(A′,B′) mit (A,B) ⊆ (A′,B′) ∈ S̃
n×n+r gibt.

Für die Charakterisierung der strengen strukturellen Steuerbarkeit wird der folgende Satz

zur (A,B)-Steuerbarkeit aller von Null verschiedenen Eigenwerte λ ∈ C eines strukturellen

Systems benötigt.

Satz 3.10 : Gegeben sind die Matrizen A ∈ S̃
n×n und B ∈ S̃

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die Matrix (A− λIn, B) ist surjektiv für jedes A ∈ A, B ∈ B und λ ∈ C \ {0}.
(ii) Für jeden strukturellen Vektor Q ∈ S

n mit Q �= � gilt � �⊆ QT (A+ IS

n, B).
(iii) Die Matrix (A+ IS

n, B) besitzt die Form III.

Beweis. Für strukturelle Matrizen A ∈ S
n×n und B ∈ S

n×r wurde die Äquivalenz zwischen

(i) und (iii) bereits in [RSW92] besprochen und in [HRS12, S. 2191, Prop. III.2] bewiesen.

Hier folgt ein allgemeiner Beweis für (A,B) ∈ S̃
n×n+r.

Für den Beweis (i) =⇒ (ii) nehmen wir an, dass (ii) nicht erfüllt ist. Dann gibt es einen

strukturellen Vektor Q �= �, sodass � ⊆ QT (A + IS

n, B) gilt. Ohne Einschränkung der

Allgemeinheit gilt Qi = � für die ersten k > 0 Einträge und Qi = � für die letzen (n− k)

Einträge von Q. Wir definieren M := (A,B) und M̃ := (A+ IS

n, B).
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Für jede Spalte von M mit dem Index s > k gilt aufgrund der Annahme

� ⊆
∑n

i=1QiM̃i,s =
∑k

i=1Mi,s, sodass wir eine zulässige RealisierungM vonM in Spalte

s definieren können, für die
∑k

i=1Mi,s = 0 erfüllt ist. Für jede Spalte s ≤ k mitMs,s = �
gilt M̃s,s = � und es gibt aufgrund der Annahme ein i ∈ {1, . . . , k}\{s}mitMi,s ∈ {�,��}.
Für jede andere Spalte s ≤ k vomM giltMs,s ∈ {�,��}. Daher können wir eine zulässige

Realisierung M von M in Spalte s ≤ k wählen, für die
∑k

l=1 Ml,s = 1 gilt.

Wir definieren A ∈ A als die linke n× n Untermatrix von M und B als die rechte n× r

Untermatrix von M . Mit q := (1, . . . , 1, 0, . . . , 0)T ∈ Q gilt qT (A− In, B) = 0 und (i) ist

für A, B und λ = 1 nicht erfüllt. Die Äquivalenz von (ii) und (iii) folgt aus Satz 3.3 mit

X = (A+ IS

n, B) und (iii) =⇒ (i) ist offensichtlich.

Mit dem folgenden Satz lässt sich die strenge strukturelle Steuerbarkeit für strukturelle

Systeme charakterisieren.

Satz 3.11 : Gegeben ist ein strukturelles System (A,B) ∈ S̃
n×n+r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das strukturelle System (A,B) ist streng strukturell steuerbar.

(ii) Die folgenden zwei Eigenschaften sind erfüllt.

(a) Die Matrix (A,B) besitzt die Form III und

(b) die Matrix (A+ IS

n, B) besitzt die Form III.

(iii) Für jeden strukturellen Vektor Q ∈ S
n mit Q �= � gilt

(a) � �⊆ QT (A,B) und
(b) � �⊆ QT (A+ IS

n, B).

Beweis. In [RSW92, S. 207, Theorem 2] und in [HRS12, S. 2192, Corollary III.3] wurde

die Äquivalenz von (i) und (ii) unter der Annahme (A,B) ∈ S
n×n+r gezeigt. Für den

allgemeineren Fall (A,B) ∈ S̃
n×n+r folgt die Äquivalenz von (i), (ii) und (iii) unmittelbar

aus Satz 3.10 und Satz 3.4 mit X = (A,B), da die Matrix (A − λIn, B) genau dann für

alle A ∈ A, B ∈ B und λ ∈ C surjektiv ist, wenn die Bedingung (a) und (b) erfüllt sind.

Nach Satz 2.5.(iv) ist genau dann jedes System mit A ∈ A und B ∈ B steuerbar und das

strukturelle System (A,B) ist nach Definition 3.9 streng strukturell steuerbar.

In Bezug auf Eigenschaft (iii) in Satz 3.11 wird an dieser Stelle betont, dass die Matrizen

von einem strukturellen System zwar Einträge aus S̃ = {�, �,��} enthalten dürfen,

strukturelle Vektoren oder Matrizen dürfen dagegen aber nur Einträge aus S = {�, �}
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besitzen. Ein unsicheres System kann mit dem folgenden Satz auf strenge strukturelle

Steuerbarkeit untersucht werden.

Satz 3.12 : Gegeben ist ein unsicheres System (A,B) ∈ U
n×n+r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das unsichere System (A,B) ist streng strukturell steuerbar.

(ii) Das strukturelle System IS

n (A,B) ist streng strukturell steuerbar.

(iii) Für jeden strukturellen Vektor Q ∈ S
n mit Q �= � gilt

(a) � �⊆ QT (A,B) und
(b) � �⊆ QT (A+ IS

n, B).

Beweis. Die Äquivalenz von (i) und (ii) folgt aus Definition 3.8 und Satz 2.12. Die

Äquivalenz von (ii) und (iii) folgt aus Satz 3.11 mit der Tatsache, dass QTIS

nM = QTM
für M = (A,B) oder M = (A+ IS

n,B) gilt.

Genau wie die strenge strukturelle Surjektivität ist die strenge strukturelle Steuerbarkeit

hinreichend aber nicht notwendig für die Steuerbarkeit aller Elemente eines unsicheren

Systems. Wenn ein unsicheres System nicht streng strukturell steuerbar ist, dann können

dennoch alle linearen zeitinvarianten Systeme des unsicheren Systems steuerbar sein. Für

solche Systeme gibt es dann lediglich nicht steuerbare Systeme der Form (1.1) vom selben

strukturellen Muster.

Beispiel 3.2 ([Bro70], S. 15; [FH77], S. 67, [HP05], S. 94): Die Bewegung eines

Satelliten in einer erdnahen Umlaufbahn kann mit einem System der Form (1.1) mit

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0

⎞
⎟⎟⎟⎟⎠ ∈

⎛
⎜⎜⎜⎜⎝

� +• � �
�+• � � ��
� � � +•

� �� � �

⎞
⎟⎟⎟⎟⎠ = A und B =

⎛
⎜⎜⎜⎜⎝
0 0

1 0

0 0

0 1

⎞
⎟⎟⎟⎟⎠ ∈

⎛
⎜⎜⎜⎜⎝

� �
+• �
� �
� +•

⎞
⎟⎟⎟⎟⎠ = B

beschrieben werden, wobei angenommen wurde, dass ω ∈ R für die Winkelgeschwindigkeit

gilt. Das unsichere System (A,B) ist Teil des strukturellen Systems IS

4 (A,B) und es gilt

IS

4 (A,B) =

⎛
⎜⎜⎜⎜⎝

� � � � � �
�� � � �� � �
� � � � � �
� �� � � � �

⎞
⎟⎟⎟⎟⎠ und IS

4 (A+IS

4 ,B) =

⎛
⎜⎜⎜⎜⎝

� � � � � �
�� � � �� � �
� � � � � �
� �� � � � �

⎞
⎟⎟⎟⎟⎠ .
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Die zwei Permutationen σ = (1, 3, 2, 4) und σ′ = (1, 3, 2, 4, 5, 6) sind mit den zwei

strukturellen Permutationsmatrizen

P =

⎛
⎜⎜⎜⎜⎝

� � � �
� � � �
� � � �
� � � �

⎞
⎟⎟⎟⎟⎠ und P ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

beschrieben und es gilt

P(A,B)P ′ =

⎛
⎜⎜⎜⎜⎝

� � � � � �
� � � � � �
�� � � �� � �
� � �� � � �

⎞
⎟⎟⎟⎟⎠ und P(A+IS

4 ,B)P ′ =

⎛
⎜⎜⎜⎜⎝

� � � � � �
� � � � � �
�� � � �� � �
� � �� � � �

⎞
⎟⎟⎟⎟⎠ .

Diese beiden Matrizen besitzen daher die Form III. Aus den Sätzen 3.12 und 3.11 folgt,

dass das unsichere System (A,B) streng strukturell steuerbar ist. Daher sind nicht nur

alle linearen zeitinvarianten Systeme der Form (1.1) mit A ∈ A und B ∈ B steuerbar,

sondern es sind auch alle Systeme der Form (1.1) mit A ∈ IS

4A und B ∈ IS

4 B steuerbar.

3.3 Vorzeichen-Steuerbarkeit

Die Vorzeichen-Steuerbarkeit wurde 1993 von Johnson, Mehrmann und Olesky

als eine hinreichende Bedingung für die Steuerbarkeit linearer zeitinvarianter Systeme

der Form (1.1) anhand des Vorzeichenmusters der Matrizen A und B eingeführt und

für nicht-negative Vorzeichenmatrizen A ∈ V
n×n und positive Vorzeichenvektoren

B = (+• ,+• , . . . ,+• )T ∈ V
n charakterisiert (siehe [JMO93]). Diese Eigenschaft wurde 1998

von Tsatsomeros in [Tsa98] weiter untersucht und es wurden Bedingungen vorgestellt,

welche entweder hinreichend oder notwendig für die Vorzeichen-Steuerbarkeit sind.

In [HRS13a] wurde schließlich eine Charakterisierung der Vorzeichen-Steuerbarkeit für

Vorzeichen-Systeme vorgestellt, deren Systemmatrix A nur reelle Eigenwerte erlaubt. Eine

allgemeine Charakterisierung der Vorzeichen-Steuerbarkeit ist bisher nicht bekannt.

In diesem Abschnitt werden Teile der bereits bekannten Ergebnisse zur

Vorzeichen-Steuerbarkeit auf unsichere Systeme übertragen.
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Definition 3.13 (Vorzeichen-Steuerbarkeit): Ein unsicheres System (A,B) mit

A ∈ U
n×n, B ∈ U

n×r und n, r ∈ N ist vorzeichen-steuerbar (engl. sign controllable),

wenn jedes lineare zeitinvariante System (1.1) mit A ∈ A und B ∈ B steuerbar ist.

Die Vorzeichen-Steuerbarkeit nach der Definition in dieser Arbeit bezieht sich auf

unsichere Systeme und ist daher allgemeiner als sie ursprünglich in [JMO93] für

Vorzeichen-Systeme definiert wurde. Jede unsichere Zahl ist über die Vereinigung von

Elementen aus V definiert (siehe Abschnitt 2.3). Daher lässt sich jede unsichere Matrix

U ∈ U
n×m als Vereinigung von endlich vielen Vorzeichenmatrizen 1V , . . . , kV darstellen,

sodass U = 1V ∪ . . . ∪ kV gilt. Die Erweiterung einer Eigenschaft P von einer

Vorzeichenmatrix (oder einem Vorzeichen-System) auf eine unsichere Matrix M (oder

ein unsicheres System (A,B)) ist daher eine natürliche Erweiterung der ursprünglichen

Eigenschaft auf jede Vorzeichenmatrix M′ mit M′ ⊆ M (oder jedes Vorzeichen-System

(A′,B′) mit (A′,B′) ⊆ (A,B)).

Mit dem folgenden Satz kann die (A,B)-Steuerbarkeit aller positiven, reellen Werte λ für

jedes A ∈ A und jedes B ∈ B eines unsicheren Systems (A,B) überprüft werden.

Satz 3.14 : Gegeben sind die unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die Matrix (A− λIn, B) ist surjektiv für jedes A ∈ A, B ∈ B und λ ∈+• .

(ii) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � gilt � �⊆ QT (A− In, B).

(iii) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � gilt QT �⊆ QTA oder � �⊆ QTB.

(iv) Die Matrix (A− In, B) ist streng surjektiv.

Beweis. Die Aussage (i) ⇐⇒ (ii) wird in einer ähnlichen Form für Vorzeichen-Systeme

in [HS14, S. 148, Prop. 8] bewiesen. Es folgt ein allgemeiner Beweis für unsichere Systeme.

Für (i) =⇒ (ii) nehmen wir zunächst an, dass (ii) nicht erfüllt ist. Dann gibt es

einen Vorzeichenvektor Q �= �, sodass � ⊆ QT (A − In, B) gilt. Ohne Einschränkungen

der Allgemeinheit gilt Qi ∈ {+• ,−• } für die ersten k > 0 Einträge von Q und Qi = �
für die letzten n − k Einträge von Q. Wir wählen ein beliebiges q ∈ Q, fixieren ein

s ∈ {1, . . . , n+ r} und definieren die MatrizenM := (A, B) und M̃ := (A− In, B) sowie
die Vorzeichenvektoren X und Z mit Xi :=Mi,s und Zi := QiXi für jedes i ∈ {1, . . . , n}.

Wenn s > k, dann gilt aufgrund der Annahme � ⊆
∑n

i=1QiM̃i,s =
∑k

i=1QiXi und mit

Satz 2.11 wählen wir ein x ∈ X , sodass qTx = 0 gilt. Wenn s ≤ k und Ms,s ∈ {�,�−• ,−• },
dann gilt M̃s,s =−• und � ⊆

∑n
i=1QiM̃i,s =

∑
i∈N QiXi − Qs =

∑
i∈N Zi − Qs mit
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N = {1, . . . , k}\{s}. Aufgrund von Satz 2.13.(vii) gibt es dann ein i ∈ N , sodass Qs ⊆ Zi

gilt und es kann ein z ∈ Z mit
∑k

l=1 zl = qs festgelegt werden. Wenn andernfalls s ≤ k

und Ms,s ∈ {+• ,�+• , �,��} gilt, dann kann ebenfalls ein z ∈ Z festgelegt werden, sodass∑k
l=1 zl = qs gilt. In beiden Fällen ist x ∈ X und qTx = qs mit xl := zl/ql für l ≤ k und

|xl| := 1 für l > k und Xl �= � erfüllt.

Wir definieren Mi,s := xi für jedes i ∈ {1 . . . , n}, A als die linke n × n Untermatrix und

B als die rechte n× r Untermatrix von M . Dann gilt qTA = qT und qTB = 0, sodass die

Aussage in (i) für λ = 1 nicht erfüllt ist. Die Äquivalenz von (ii) und (iii) folgt aus Satz

2.13.(vii), die Äquivalenz von (ii) und (iv) aus Satz 3.7 und die Beziehung (iv) =⇒ (i)

ist offensichtlich.

Werden die Ausdrücke A, A und λ jeweils durch −A, −A und −λ in Satz 3.14 ersetzt, so

ergibt sich unmittelbar der folgende Zusammenhang.

Satz 3.15 : Gegeben sind die unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Die Matrix (A− λIn, B) ist surjektiv für jedes A ∈ A, B ∈ B und λ ∈−• .
(ii) Für jeden Vorzeichenvektor Q ∈ V

n mit Q �= � gilt � �⊆ QT (A+ In, B).
(iii) Für jeden Vorzeichenvektor Q ∈ V

n mit Q �= � gilt −QT �⊆ QTA oder � �⊆ QTB.
(iv) Die Matrix (A+ In, B) ist streng surjektiv.

Wenn die unsichere Matrix A nur reelle Eigenwerte erlaubt, dann lässt sich die

Vorzeichen-Steuerbarkeit mit dem folgenden Satz 3.16 charakterisieren.
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Satz 3.16 : Gegeben sind zwei unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Jeder Wert λ ∈ R ist (A,B)-steuerbar für jedes A ∈ A und jedes B ∈ B.
(ii) Die folgenden Eigenschaften sind erfüllt.

(a) Die unsichere Matrix (A,B) ist streng surjektiv.

(b) Die unsichere Matrix (A− In,B) ist streng surjektiv.

(c) Die unsichere Matrix (A+ In,B) ist streng surjektiv.

(iii) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � gilt

(a) � �⊆ QT (A, B),
(b) � �⊆ QT (A− In, B) und
(c) � �⊆ QT (A+ In, B).

(iv) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � und � ⊆ QTB gilt

(a) � �⊆ QTA,
(b) QT �⊆ QTA und

(c) −QT �⊆ QTA

Beweis. Die Äquivalenz von (i), (ii), (iii) und (iv) folgt unmittelbar aus den Sätzen 3.7,

3.14 und 3.15, da genau dann alle Werte λ ∈ R = � ∪ +• ∪ −• für jedes A ∈ A und jedes

B ∈ B, (A,B)-steuerbar sind.

Beispiel 3.3 : Gegeben sind die unsicheren Matrizen A ∈ U
3×3 und B ∈ U

3 und mit

x1, x2 ≥ 0; x3, x4, x5, |x6| > 0 und x7 ∈ R gilt

A =

⎛
⎜⎝−2x1 x3 0

x4 2x2 0

x7 0 0

⎞
⎟⎠ ∈

⎛
⎜⎝�−• +• �
+• �+• �
�� � �

⎞
⎟⎠ = A und B =

⎛
⎜⎝x5

0

x6

⎞
⎟⎠ ∈

⎛
⎜⎝+•

�
�

⎞
⎟⎠ = B.

Mit Q = (�, �, �)T gilt � ⊂ QT (A,B) = (�� ,�� ,�,�� ), sodass das unsichere System (A,B)
nach Satz 3.12 nicht streng strukturell steuerbar ist.

Die Eigenwerte von A sind λ1 = 0 und λ2/3 = (x2 − x1) ±
√
(x1 + x2)2 + x3x4, sodass

für alle erlaubten Parameter, λ1, λ2, λ3 ∈ R gilt und die unsichere Matrix A nur reelle

Eigenwerte erlaubt. Es gilt

(A− I3,B) =

⎛
⎜⎝−

• +• � +•

+• �� � �
�� � −• �

⎞
⎟⎠ und (A+ I3,B) =

⎛
⎜⎝�� +• � +•

+• +• � �
�� � +• �

⎞
⎟⎠
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und für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � gilt � �⊆ QT (A, B);

� �⊆ QT (A− I3, B) und � �⊆ QT (A+ I3, B). Jeder Wert λ ∈ R ist daher nach Satz 3.16

für jedes A ∈ A und jedes B ∈ B, (A,B)-steuerbar und da A nur reelle Eigenwerte erlaubt

ist das unsichere System (A,B) vorzeichen-steuerbar.

Die Bedingungen in Satz 3.16 sind notwendig für die Vorzeichen-Steuerbarkeit von jedem

unsicheren System (A,B). Wenn Bedingung (iii) aus Satz 3.16 für einen Vorzeichenvektor

Q nicht erfüllt ist, dann gibt es ein λ ∈ R, ein A ∈ A und ein B ∈ B, sodass λ nicht

(A,B)-steuerbar ist. Genau genommen folgt aus dem Beweis von Satz 3.14, dass es für

jedes q ∈ Q und jedes λ ∈+• mindestens ein A ∈ A und ein B ∈ B mit qT (A−λIn, B) = 0

gibt, wenn Bedingung (iii.b) aus Satz 3.16 für einen Q �= � nicht erfüllt ist.

Beispiel 3.4 : Gegeben sind die unsicheren Matrizen A ∈ U
3×3 und B ∈ U

3 mit

A =

⎛
⎜⎝� � +•

�� � �
� −• �−•

⎞
⎟⎠ und B =

⎛
⎜⎝�
+•

+•

⎞
⎟⎠ , sodass (A− I3,B) =

⎛
⎜⎝−

• � +• �
�� −• � +•

� −• −• +•

⎞
⎟⎠

gilt. Mit Q = (+• ,−• ,+• )T gilt � ⊂ QT (A − I3,B) = (�� ,�� ,�� ,�� ). Das unsichere System

(A,B) ist daher nach Satz 3.16 nicht vorzeichen-steuerbar.

Für beliebige p1, p2, p3, λ > 0 und ρ ≥ 0 gilt mit q = (p1,−p2, p3)T ∈ Q,

A =

⎛
⎜⎝ 0 0 (λ+ ρ)p3

p1

−λp1
p2

0 0

0 −λp2
p3

−ρ

⎞
⎟⎠ ∈ A und B =

⎛
⎜⎝�
p3

p2

⎞
⎟⎠ ∈ B,

qT (A− λI3, B) = 0. Für jedes q ∈ Q und jedes λ > 0 gibt es daher ein nicht-steuerbares

System (A,B) ∈ (A,B) und das Eigenpaar (q, λ) der Matrix A ist dabei jeweils für den

Verlust der Steuerbarkeit verantwortlich.

3.4 Vorzeichen-Stabilität

Die Frage nach der Stabilität einer Klasse von Systemen der Form (1.1) unabhängig von

konkreten Zahlenwerten wurde zuerst von dem Wirtschaftswissenschaftler Samuelson

in seinem Buch [Sam47] aus dem Jahr 1947 gestellt, da die konkreten Zahlenwerte

der in diesem Fachgebiet verwendeten Systeme der Form (1.1) sehr ungewiss und

wenn überhaupt nur schwer ermittelbar sind. Diese Fragestellung wurde 1965 von
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Quirk und Ruppert in [QR65] aufgegriffen und der Begriff der Vorzeichen-Stabilität

wurde eingeführt. Außerdem wurde eine Charakterisierung für Vorzeichenmatrizen

vorgestellt, deren Diagonalelemente alle von Null verschieden sind. In [Jef74]

wurde 1974 schließlich eine allgemeine graphentheoretische Charakterisierung der

Vorzeichen-Stabilität präsentiert.

In diesem Abschnitt wird eine algebraische Charakterisierung der Vorzeichen-Stabilität

basierend auf den Ergebnissen aus [Qui81] vorgestellt. Für einen historischen Überblick

zu den zahlreichen Resultaten zum Thema Vorzeichen-Stabilität sowie verschiedenen,

ähnlichen Stabilitäts-Definitionen und deren algebraische Untersuchung wird auf den

Übersichtsaufsatz [Qui81] verwiesen.

Definition 3.17 (Vorzeichen-Stabilität): Ein unsicheres System (A,B) mit

A ∈ U
n×n, B ∈ U

n×r und n, r ∈ N ist vorzeichen-stabil (engl. sign stable), wenn jedes

lineare zeitinvariante System (1.1) mit A ∈ A und B ∈ B stabil ist.

Ein Vorzeichen-System kann mit den folgenden Bedingungen auf Vorzeichen-Stabilität

untersucht werden. Diese Bedingungen sind äquivalent zu den graphentheoretischen

Bedingungen in [Jef74,JKD77] (siehe auch [Qui81, S. 121f, Prop. 3.5]).

Satz 3.18 : Gegeben ist eine Vorzeichenmatrizen A ∈ V
n×n mit n ∈ N und es sei

Z := {1, . . . , n}. Das Vorzeichen-System (A, ·) ist genau dann vorzeichen-stabil, wenn die

folgenden Bedingungen erfüllt sind.

(a) Es gilt Ai,i ⊂�−• für jedes i ∈ Z.

(b) Es gilt Ai,kAk,i ⊂�−• für jedes i, k ∈ Z mit i �= k.

(c) Es gilt Ak1,k2Ak2,k3 . . .Akl,k1 = � für jede Folge k1, k2, . . . , kl verschiedener Elemente

aus Z mit l > 2.

(d) Wenn die Menge Z in zwei Mengen B und W aufgeteilt wird, sodass

(i) Ai,i �= � =⇒ i ∈ B;

(ii) i ∈ B =⇒ es gibt nicht genau ein k ∈ W mit Ak,i �= � �= Ai,k und

(iii) i ∈ W =⇒ es gibt ein k ∈ W \ {i} mit Ak,i �= � �= Ai,k

gilt, dann ist B = Z erfüllt.

(e) Es gibt einen Term T �= � in der Expansion von det(A).

Die Eigenschaft Vorzeichen-Stabilität wurde analog zur Vorzeichen-Steuerbarkeit

ursprünglich nur für Vorzeichen-Systeme definiert. Ein unsicheres System (A, ·) ist nach
der Definition hier genau dann vorzeichen-stabil, wenn jedes Vorzeichen-System (A′, ·)
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34 3 Lineare Systeme mit unsicheren Matrizen

mit A′ ⊆ A vorzeichen-stabil ist. Daher folgt aus Satz 3.18 unmittelbar der folgende Satz

zur Charakterisierung der Vorzeichen-Stabilität unsicherer Systeme.

Satz 3.19 : Gegeben ist eine unsichere Matrix A ∈ U
n×n mit n ∈ N und es sei

Z := {1, . . . , n}. Das unsichere System (A, ·) ist genau dann vorzeichen-stabil, wenn die

folgenden Bedingungen erfüllt sind.

(a) Es gilt Ai,i ⊆�−• für jedes i ∈ Z.

(b) Es gilt Ai,kAk,i ⊆�−• für jedes i, k ∈ Z mit i �= k.

(c) Es gilt Ak1,k2Ak2,k3 . . .Akl,k1 = � für jede Folge k1, k2, . . . , kl verschiedener Elemente

aus Z mit der Länge l > 2.

(d) Wenn die Menge Z in zwei Mengen B und W aufgeteilt wird, sodass

(i) � �⊆ Ai,i =⇒ i ∈ B;

(ii) i ∈ B =⇒ es gibt nicht genau ein k ∈ W mit Ak,i �= � �= Ai,k und

(iii) i ∈ W =⇒ es gibt ein k ∈ W \ {i} mit Ak,i �= � �= Ai,k

gilt, dann ist B = Z erfüllt.

(e) Es gibt einen Term � �⊆ T in der Expansion von det(A).

3.5 Vorzeichen-Stabilisierbarkeit

In [Wei94] wird die Stabilisierbarkeit von Klassen linearer Systeme der Form (1.1)

untersucht, deren Matrizen durch Intervalle beschrieben werden. Dabei wird ein zur

strukturellen Analyse ähnlicher Ansatz gewählt und es wird gezeigt, dass alle Systeme

einer besonderen Klasse stabilisierbar sind. Die Matrizen dieser Klasse besitzen die

Form III (siehe [Wei94, S. 24, Theorem 3.1]), sodass diese Systeme gleichzeitig streng

strukturell steuerbar sind. Generell scheint der strukturelle Ansatz für die Untersuchung

der Stabilität oder der Stabilisierbarkeit eher ungeeignet zu sein, da beispielsweise für die

Vorzeichen-Stabilität nach Satz 3.19 für die meisten Parameter das Vorzeichen und nicht

die bloße Existenz eines von Null verschiedenen Parameters entscheidend ist. Wenn eine

unsichere Matrix A ∈ U
n×n beispielsweise einen Diagonaleintrag Ai,i = � besitzt, dann ist

nach Satz 3.19.(a) jedes unsichere System (A,B) mit B ∈ U
n×r nicht vorzeichen-stabil.

In [HS14] wird von Hartung und Svaricek der Begriff der Vorzeichen-Stabilisierbarkeit

für Vorzeichen-Systeme eingeführt. Außerdem wird eine Charakterisierung der

Vorzeichen-Stabilisierbarkeit für die Vorzeichen-Systeme (A,B) vorgestellt, deren

Systemmatrix A nur reelle Eigenwerte erlaubt. Diese Charakterisierung wird in diesem

Abschnitt auf unsichere Systeme erweitert.
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Definition 3.20 (Vorzeichen-Stabilisierbarkeit): Ein unsicheres System (A,B) mit

A ∈ U
n×n, B ∈ U

n×r und n, r ∈ N ist vorzeichen-stabilisierbar (engl. sign stabilizable),

wenn jedes lineare zeitinvariante System (1.1) mit A ∈ A und B ∈ B stabilisierbar ist.

Für die Stabilisierbarkeit eines Systems der Form (1.1) müssen im Gegensatz zur

Steuerbarkeit nach Satz 2.8.(iii) lediglich alle Werte λ ∈ C mit �(λ) ≥ 0 (A,B)-steuerbar

sein. Wenn die unsichere Matrix A nur reelle Eigenwerte erlaubt, dann lässt sich die

Vorzeichen-Stabilisierbarkeit wie folgt charakterisieren.

Satz 3.21 : Gegeben sind zwei unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N.

Die folgenden Punkte sind äquivalent.

(i) Jedes λ ∈ R, λ ≥ 0 ist (A,B)-steuerbar für jedes A ∈ A und jedes B ∈ B.
(ii) Die folgenden Eigenschaften sind erfüllt.

(a) Die unsichere Matrix (A,B) ist streng surjektiv.

(b) Die unsichere Matrix (A− In,B) ist streng surjektiv.

(iii) Für jeden Vorzeichenvektor Q ∈ S
n mit Q �= � gilt

(a) � �⊆ QT (A, B) und
(b) � �⊆ QT (A− In, B).

(iv) Für jeden Vorzeichenvektor Q ∈ V
n mit Q �= � und � ⊆ QTB gilt

(a) � �⊆ QTA und

(b) QT �⊆ QTA.

Beweis. Die Äquivalenz von (i), (ii), (iii) und (iv) folgt unmittelbar aus den Sätzen 3.7

und 3.14, da genau dann alle Werte λ ∈ R = � ∪ +• für jedes A ∈ A und jedes B ∈ B,
(A,B)-steuerbar sind.

In dem folgenden Beispiel wird ein Modell der Fahrrad-Wankdynamik auf

Vorzeichen-Steuerbarkeit, -Stabilität und -Stabilisierbarkeit untersucht.

Beispiel 3.5 (Wankdynamik eines Fahrradmodells, siehe [HS14], S. 149-150):

In [LM82] wird die Stabilität von Fahrrädern untersucht und es wird ein einfaches

dynamisches Modell der Wankdynamik für Fahrräder vorgestellt. Dabei wird u.a.

angenommen, dass das Fahrrad mit Fahrer ein starrer Körper ist, dass sich dieser

Körper auf einer horizontalen Ebene bewegt und dass das Fahrrad eine konstante

Längsgeschwindigkeit hat. In Abbildung 3.4 ist das Fahrrad mit dem Wankwinkel θ und

Lenkwinkel β dargestellt.
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Abbildung 3.4: Die Wankdynamik eines Fahrrad-Modells

Für kleine Wankwinkel θ und kleine Lenkwinkel β sowie vereinfachenden Annahmen zur

Fahrrad-Geometrie lässt sich das Momentengleichgewicht wie folgt beschreiben

θ̈ = p1θ + p2β + p3β̇. (3.1)

Die drei Parameter p1, p2 und p3 in (3.1) hängen von der Geschwindigkeit, dem Gewicht

und den geometrischen Daten des Fahrrades ab (siehe [LM82], oder [AKL05]) und alle

drei Parameter p1, p2 und p3 sind positiv.

Die Gleichung (3.1) kann mit dem folgenden System der Form (1.1) beschrieben werden

ẋ =

(
0 1

p1 0

)
︸ ︷︷ ︸

A

x+

(
p3

p2

)
︸ ︷︷ ︸

B

u, (3.2)

wobei x = (θ, θ̇ − p3β)
T und u = β gilt. Daher gilt für jedes p1, p2, p3 > 0,

A ∈ A :=

(� +•

+• �
)

und B ∈ B :=

(
+•

+•

)
.

Es gilt A1,2 · A2,1 =+• , sodass Bedingung (b) aus Satz 3.18 nicht erfüllt ist. Das

Vorzeichen-System (A,B) ist daher nicht vorzeichen-stabil. Die Eigenwerte von jedem

A′ ∈ A sind λ1/2 = ±
√
A′

12A
′
21 ∈ R, sodass A nur reelle Eigenwerte erlaubt und einer

der Eigenwerte von jedem A′ ∈ A hat einen positiv Realteil. Daher ist jedes lineare

zeitinvariante System mit A′ ∈ A instabil. Es gilt

(A,B) =
(� +• +•

+• � +•

)
, (A−I2,B) =

(
−• +• +•

+• −• +•

)
und (A+I2,B) =

(
+• +• +•

+• +• +•

)
.
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Für Q = (+• ,−• )T gilt � ⊂ QT (A + I2,B) = (�� ,�� ,�� ), sodass das Vorzeichen-System

(A,B) nach Satz 3.16 nicht vorzeichen-steuerbar ist.

Die Vorzeichenmatrizen (A,B) und (A−I2,B) sind dagegen beide streng surjektiv, sodass

das Vorzeichen-System (A,B) nach Satz 3.21 vorzeichen-stabilisierbar ist. Jedes lineare

zeitinvariante System (A′, B′) mit A′ ∈ A und B′ ∈ B ist daher stabilisierbar.

Das lineare zeitinvariante System (3.2) mit p1 = p22/p
2
3 ist beispielsweise nicht steuerbar.

Unter Verwendung der Notation von [AKL05], ist dies der Fall, wenn das Fahrrad die

Geschwindigkeit v = a
√
g/h hat, wobei a und h Parameter des Fahrrades und g die

Gravitationskonstante ist. Demnach gibt es für jedes Fahrrad eine Geschwindigkeit,

sodass das System (3.2) nicht steuerbar ist. Mit q = (p2,−p3)T ∈ Q ist dann der

Wert λ = −p2/p3 = −v/a nicht (A,B)-steuerbar. Da aber λ < 0 gilt, ist das lineare

zeitinvariante System (3.2) dennoch stabilisierbar.

Die Bedingungen (ii) und (iii) von den Sätzen 3.16 und 3.21 sind notwendig für

die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit von einem unsicheren

System (A,B), aber nicht hinreichend, wenn die unsichere Matrix A komplexe Eigenwerte

erlaubt. Dies wird anhand des folgenden Beispiels veranschaulicht.

Beispiel 3.6 : Gegeben sind die unsicheren Matrizen A ∈ U
3×3 und B ∈ U

3 mit

A =

⎛
⎜⎝� +• �
−• � −•
� � −•

⎞
⎟⎠ und B =

⎛
⎜⎝−

•

+•

+•

⎞
⎟⎠ .

Die Bedingungen (ii), (iii) und (iv) von Satz 3.16 sind erfüllt, sodass jeder reelle Wert λ

in jedem linearen zeitinvarianten System (A,B) mit A ∈ A und B ∈ B (A,B)-steuerbar

ist. Dennoch ist das lineare zeitinvariante System der Form (1.1) mit

A =

⎛
⎜⎝ 0 1 0

−1 0 −1
0 0 −1

⎞
⎟⎠ ∈ A und B =

⎛
⎜⎝−11

2

⎞
⎟⎠ ∈ B

nicht steuerbar, da die Werte λ1/2 = ±j nicht (A,B)-steuerbar sind. Für den Wert λ = j

gilt beispielsweise mit q = (1− j,−1− j, 1)T , qT (A− λI3, B) = 0.

Das Vorzeichen-System (A,B) wird in den Beispielen 4.4, 4.5 und 5.1 weiter untersucht.
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Wenn in einem linearen zeitinvarianten System (A,B) ein komplexer Wert λ ∈ C \ R
nicht (A,B)-steuerbar ist, dann gibt es einen komplexen Vektoren q ∈ C

n, für den

qT (A− λIn, B) = 0 gilt. Da dieser Vektor q komplexwertige Einträge besitzt, ist er

kein Element von einem Vorzeichenvektor aus V
n. Die Bedingung (iii) von Satz 3.16

oder 3.21 ist daher nicht ausreichend für eine allgemeingültige Charakterisierung der

Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit, da in diesen Sätzen ein

unsicheres System nur mit reellen Vektoren untersucht wird.

Aus diesem Grund wird im Abschnitt 4 der komplexe Vorzeichenvektor eingeführt.

Mithilfe von diesem neuen Ansatz kann das gesamte Spektrum aller Elementer einer

Vorzeichenmatrix untersucht werden. Zuvor werden jedoch im nächsten Unterabschnitt

Ergebnisse zur strengen strukturellen Steuerbarkeit für zeitvariante Systeme vorgestellt.

3.6 Strenge strukturelle Steuerbarkeit für zeitvariante Systeme

In diesem Abschnitt werden zwei aktuelle Ergebnisse zur strengen strukturellen

Steuerbarkeit von linearen zeitvarianten zeitdiskreten Systemen der Form

x(k + 1) = A(k) · x(k) +B(k) · u(k), x(k0) = x0, (3.3)

und linearen zeitvarianten zeitkontinuierlichen Systemen der Form

ẋ(t) = A(t) · x(t) +B(t) · u(t), x(t0) = x0, (3.4)

vorgestellt. Dabei gilt jeweils A : K→ R
n×n und B : K→ R

n×m mit K = Z für (3.3) und

K = R für (3.4). Ein lineares zeitinvariantes System der Form (1.1) ist ein Spezialfall von

einem linearen zeitvarianten zeitkontinuierlichen System der Form (3.4).

Definition 3.22 (Steuerbarkeit zeitvarianter zeitdiskreter Systeme): Das lineare

zeitvariante zeitdiskrete System der Form (3.3) ist steuerbar im Intervall [k0; k1], wenn es

für jeden Anfangszustand x0 zum Zeitpunkt k0 und jeden Zustandspunkt x1 zum Zeitpunkt

k1 > k0 eine Steuerfunktion u : [k0; k1] → R
r gibt, sodass x(k1) = x1 gilt. Das lineare

zeitvariante zeitdiskrete System der Form (3.3) ist steuerbar, wenn es ein k1 > k0 gibt,

sodass das System steuerbar im Intervall [k0; k1] ist.
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Definition 3.23 (Steuerbarkeit zeitvarianter zeitkontinuierlicher Systeme): Das

lineare zeitvariante zeitkontinuierliche System der Form (3.4) ist vollständig steuerbar im

Intervall T = [t0, t1], wenn es für jeden Anfangszustand x0 zum Zeitpunkt t0 und jeden

Zustandspunkt x1 zum Zeitpunkt t1 > t0 eine Steuerfunktion u : T → R
r gibt, sodass

x(t1) = x1 gilt. Das lineare zeitvariante zeitkontinuierliche System der Form (3.3) ist

steuerbar im Intervall T, wenn es vollständig steuerbar in jedem Teilintervall von T ist.

Die Steuerbarkeit eines linearen zeitvarianten zeitdiskreten Systems der Form (3.3) lässt

sich mit dem folgenden Satz untersuchen.

Satz 3.24 ([HRS12], S. 2190): Gegeben sind k0, k1 ∈ Z mit k1 > k0 sowie

A : [k0; k1]→ R
n×n und B : [k0; k1]→ R

n×r mit n, r ∈ N.

Die folgenden Eigenschaften sind äquivalent.

(i) Das System (A,B) der Form (3.3) ist steuerbar im Intervall [k0; k1].

(ii) Es gilt rang
(
Kd(A,B, k0, k1)

)
= n mit Kd(A,B, k0, k1) :=

(B(k1 − 1), A(k1 − 1)B(k1 − 2), . . . , A(k1 − 1) . . . A(k0 + 1)B(k0)) .

(iii) Es gilt rang
(
K̃d(A,B, k0, k1)

)
= n · (k1 − k0) mit K̃d(A,B, k0, k1) :=⎛

⎜⎜⎜⎜⎜⎝
In 0 B(k0) 0

A(k0 + 1)
. . . B(k0 + 1)
. . . In

. . .

0 A(k1 − 1) 0 B(k1 − 1)

⎞
⎟⎟⎟⎟⎟⎠ .

Die Steuerbarkeit eines linearen zeitvarianten zeitkontinuierlichen Systems der Form (3.4)

kann mit dem folgenden Satz untersuchen werden.
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Satz 3.25 ([SM67]; [HRS13c], S. 5896): Gegeben sind zwei t0, t1 ∈ R mit t1 > t0 sowie

A : [t0, t1]→ R
n×n und B : [t0, t1]→ R

n×r mit n, r ∈ N. Außerdem wird angenommen, dass

die Einträge von A und B (n− 1)-fach differenzierbar sind.

Die folgenden Eigenschaften sind äquivalent.

(i) Das System (A,B) der Form (3.4) ist steuerbar im Intervall T = [t0, t1].

(ii) Die Matrix Kc(A,B, t) hat auf jedem Teilintervall von T den Rang n. Dabei gilt

Kc(A,B, t) := (P0(t), P1(t), . . . , Pn−1(t)) mit

P0(t) := B(t) und Pk+1(t) := A(t) · Pk(t)− Ṗk(t).

(iii) Die Matrix K̃c(A,B, t) hat auf jedem Teilintervall von T den Rang n2. Dabei gilt

K̃c(A,B, t) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In

(
n− 1

0

)
B(

n− 2

0

)
A In

(
n− 1

1

)
Ḃ

(
n− 2

0

)
B(

n− 2

1

)
Ȧ

(
n− 3

0

)
A

. . .

(
n− 1

2

)
B̈

(
n− 2

1

)
Ḃ

. . .

...
...

. . . In
...

...
. . .(

n− 2

n− 2

)
(n−2)

A

(
n− 3

n− 3

)
(n−3)

A . . .

(
0

0

)
A

(
n− 1

n− 1

)
(n−1)

B

(
n− 2

n− 2

)
(n−2)

B . . . . . .

(
0

0

)
B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

und
(
a
b

)
beschreibt den Binomialkoeffizient für a, b ∈ Z.

Wenn die zeitvarianten Matrizen A und B in (3.3) und (3.4) konstant sind, d.h. es

gilt A(t) = A0 ∈ R
n×n und B(t) = B0 ∈ R

n×r für alle t ∈ R, dann vereinfachen sich

die Matrizen Kd(A,B, k0, k0 + n) aus Satz 3.24.(ii) und Kc(A,B, t) aus Satz 3.25.(ii)

zu K(A0, B0) aus Satz 2.5.(ii) und die Matrizen K̃d(A,B, k0, k0 + n) aus Satz 3.24.(iii)

und K̃c(A,B, t) aus Satz 3.25.(iii) zu K̃(A0, B0) aus Satz 2.5.(iii). Die Bedingungen

aus den Sätzen 3.24 und 3.25 sind daher vergleichbar mit dem Kalman-Kriterium für

lineare zeitinvariante Systeme. Für die Untersuchung der Steuerbarkeit von zeitvarianten

Systemen gibt es alternativ auch Methoden, welche ähnlich dem Popov-Belevitch-Hautus

Kriterium sind (siehe z.B. [Zhu97, PI99]) oder Methoden, welche die Lösung von (3.3)

bzw. (3.4) verwenden (siehe [RHS14, Prop. III.2, S. 3088]).

Wenn ein unsicheres System (A,B) streng strukturell steuerbar ist, dann ist die Matrix

(A− λIn, B) für jedes A ∈ A, jedes B ∈ B und jedes λ ∈ C surjektiv. Aus Satz 2.5 folgt,

dass dann die Steuerbarkeitsmatrix

K(A,B) = (B,AB, . . . , An−1B) ∈ K(A,B) := (B,AB, . . . ,An−1B) (3.5)

für jedes A ∈ A und jedes B ∈ B surjektiv ist. Es könnte daher vermutet werden, dass
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die unsichere Matrix K(A,B), die alle Matrizen K(A,B) mit A ∈ A und B ∈ B enthält,

dann streng strukturell surjektiv ist und aufgrund von Satz 3.4 die Form III besitzt. Im

Allgemeinen ist die unsichere Matrix K(A,B) eines streng strukturell steuerbaren Systems

(A,B) aber weder streng strukturell surjektiv noch streng surjektiv (siehe Beispiel 3.7

unten). In [HRS12] wird dagegen der folgende Zusammenhang gezeigt.

Satz 3.26 ( [HRS12], S. 2193, Prop. IV.1): Gegeben ist ein strukturelles System

(A,B) mit A ∈ S
n×n, B ∈ S

n×r und n, r ∈ N. Wenn das System (A,B) streng strukturell

steuerbar ist, dann ist die strukturelle Matrix

K̃(A,B) :=

⎛
⎜⎜⎜⎜⎜⎝
IS

n � B �
A . . . B

. . . IS

n
. . .

� A � B

⎞
⎟⎟⎟⎟⎟⎠ ∈ U

n2×n(n+r−1) (3.6)

streng strukturell surjektiv.

Wenn K̃(A,B) aus (3.6) streng strukturell surjektiv ist, dann hat die Matrix

K̃d(A,B, k0, k0 + n) ∈ K̃(A,B) für jedes A : Z → A, jedes B : Z → B und jedes k0 ∈ Z

den Rang n2 und das lineare zeitvariante zeitdiskrete System (A,B) der Form (3.3) ist

nach Satz 3.24.(iii) steuerbar. Es ergibt sich daher das folgende Resultat.

Satz 3.27 ([HRS12], S. 2193, Theorem IV.2): Gegeben sind zwei strukturelle

Matrizen A ∈ S
n×n und B ∈ S

n×r mit n, r ∈ N. Die folgenden Punkte sind äquivalent.

(i) Das strukturelle System (A,B) ist streng strukturell steuerbar.

(ii) Die strukturelle Matrix K̃(A,B) in (3.6) ist streng strukturell surjektiv.

(iii) Jedes System der Form (3.3) mit A : Z→ A und B : Z→ B ist steuerbar.

Im Jahr 2012 haben Hartung, Reissig und Svaricek in [HRS12] daher erstmalig

gezeigt, dass sich der Begriff der strengen strukturellen Steuerbarkeit auf zeitvariante

zeitdiskrete Systeme der Form (3.3) erweitern lässt und dass die Bedingungen für

die strenge strukturelle Steuerbarkeit zeitinvarianter Systeme der Form (1.1) sowohl

hinreichend als auch notwendig für die strenge strukturelle Steuerbarkeit zeitvarianter

zeitdiskreter Systeme der Form (3.3) ist.
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Beispiel 3.7 : Gegeben sind die Matrizen A ∈ U
3×3, B ∈ U

3 (siehe Beispiel 2.5),

A =

⎛
⎜⎝−p5 p1 0

p2 0 0

p6 0 0

⎞
⎟⎠ ∈

⎛
⎜⎝�−• +• �
+• � �
�� � �

⎞
⎟⎠ = A und B =

⎛
⎜⎝p3

0

p4

⎞
⎟⎠ ∈

⎛
⎜⎝+•

�
�

⎞
⎟⎠ = B

mit p1, p2, p3 > 0; p4 �= 0; p5 ≥ 0 und p6 ∈ R. Die Matrizen

IS

3 (A,B) =

⎛
⎜⎝�� � � �

� � � �
�� � � �

⎞
⎟⎠ und IS

3 (A+ IS

3 ,B) =

⎛
⎜⎝�� � � �

� � � �
�� � � �

⎞
⎟⎠

sind streng strukturell surjektiv, sodass das unsichere System (A,B) nach Satz 3.12 bzw.

Satz 3.11 streng strukturell steuerbar ist. Daher sind alle linearen zeitinvarianten Systeme

der Form (1.1) mit A ∈ A und B ∈ B steuerbar. Die Steuerbarkeitsmatrix K(A,B) aus

Satz 2.5.(ii) ergibt sich zu

K(A,B) =

⎛
⎜⎝p3 −p3p5 p3(p1p2 + p25)

0 p2p3 −p2p3p5
p4 p3p6 −p3p5p6

⎞
⎟⎠ ∈

⎛
⎜⎝+• �−• +•

� +• �−•
� �� ��

⎞
⎟⎠ = K(A,B)

(siehe auch Beispiel 2.5). Mit Q = (+• ,+• ,+• )T gilt � ⊂ QTK(A,B) = (�� ,�� ,�� ), sodass
die unsichere Matrix K(A,B) nach Satz 3.7 nicht streng surjektiv ist. Die Determinante

der Matrix K(A,B) ergibt sich zu det(K(A,B)) = −p1 p22 p23 p4 �= 0. Daher ist K(A,B)

für jedes A ∈ A und B ∈ B surjektiv, obwohl die unsichere Matrix K(A,B) nicht streng
surjektiv ist. Es lässt sich leicht zeigen, dass die unsichere Matrix

K̃(A,B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−• � � � � � +• � �
� −• � � � � � � �
� � −• � � � � � �
�−• +• � −• � � � +• �
+• � � � −• � � � �
�� � � � � −• � � �
� � � �−• +• � � � +•

� � � +• � � � � �
� � � �� � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

streng strukturell surjektiv ist. Alle zeitdiskreten Systeme der Form (3.3) mit A : Z→ A
und B : Z→ B sind daher steuerbar.
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Bei linearen zeitvarianten zeitkontinuierlichen Systemen dürfen sich die Parameter

dagegen nicht zeitlich verändern, ohne dass die Steuerbarkeit verloren geht. Wenn das

Systems (A,B) streng strukturell steuerbar ist, dann ist im Allgemeinen nicht jedes lineare

zeitvariante zeitkontinuierliche Systemen der Form (3.4) mit A : R → A und B : R → B
steuerbar. Dies wird mit dem folgenden Beispiel aus [HRS13c] gezeigt.

Beispiel 3.8 (siehe [HRS13c], S. 5895 f.): Gegeben sind die strukturellen Matrizen

A ∈ S
2×2 und B ∈ S

2 mit

A =

(
� �
� �

)
und B =

(
�

�

)
.

Die beiden Matrizen

(A,B) =
(
� � �

� � �

)
und (A+ IS

2 ,B) =
(�� � �

� � �

)

sind jeweils streng strukturell surjektiv, sodass das strukturelle System (A,B) nach Satz

3.11 streng strukturell steuerbar ist. Für die zeitvarianten Matrizen

A(t) :=

(
1 0

0 0

)
und B(t) :=

(
1

e−t

)

ist A(t) ∈ A und B(t) ∈ B für jedes t ∈ R erfüllt. Außerdem gilt

Kc(A,B, t) =
(
B,A · B − Ḃ

)
=

(
1 1

e−t e−t

)
,

K̃c(A,B, t) =

(
I2 B 0

A Ḃ B

)
=

⎛
⎜⎜⎜⎜⎝
1 0 1 0

0 1 e−t 0

1 0 0 1

0 0 −e−t e−t

⎞
⎟⎟⎟⎟⎠

und det(Kc(A,B, t)) = det(K̃c(A,B, t)) = 0. Das lineare zeitvariante zeitkontinuierliche

System (3.4) ist daher nach Satz 3.25 nicht steuerbar, obwohl lediglich ein Eintrag in den

Matrizen des streng strukturell steuerbaren Systems (A,B) zeitvariant ist.

Außerdem wird in [HRS13c] das folgende Ergebnis vorgestellt.
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Satz 3.28 ([HRS13c], S. 5898, Prop. 12): Gegeben sind zwei strukturelle Matrizen

A ∈ S
n×n und B ∈ S

n×r mit n, r ∈ N. Wenn das System (A + IS

n,B) streng strukturell

steuerbar ist, dann ist die strukturelle Matrix

K̃c(A,B) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

IS

n � B �
A . . . B∗ B
A∗ A . . . B∗ B∗ . . .
...

...
. . . IS

n

...
...

. . . B
A∗ A∗ · · · A B∗ B∗ · · · B∗ B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
∈ S̃

n2×n(n+r−1) (3.7)

mit A∗ :=�� ·A und B∗ :=�� ·B streng strukturell surjektiv.

Wenn K̃c(A,B) aus (3.7) streng strukturell surjektiv ist, dann hat die Matrix

K̃c(A,B, t) ∈ K̃c(A,B) für jedes A : R → A, jedes B : R → B und jedes t ∈ R den Rang

n2 und das lineare zeitvariante zeitkontinuierliche System (A,B) der Form (3.4) ist nach

Satz 3.25.(iii) steuerbar in jedem Zeitintervall4. Die strenge strukturelle Steuerbarkeit

des Systems (A + IS

n,B) ist daher hinreichend für die Steuerbarkeit aller zeitvarianten

zeitkontinuierlichen Systeme (A,B) der Form (3.4) mit A : R → A und B : R → B.
In [HRS13b] wird anschließend gezeigt, dass die hinreichende Bedingung aus Satz 3.28

auch notwendig ist.

Im Jahr 2013 haben Hartung, Reissig und Svaricek daher die strenge strukturelle

Steuerbarkeit für lineare zeitvariante zeitkontinuierliche Systeme charakterisiert. Die

Resultate aus [HRS12], [HRS13c] und [HRS13b] sind in [RHS14] zusammengefasst und es

wird ein allgemeiner Beweis, in dem die (n−1)-fache Differenzierbarkeit der zeitvarianten

Einträge nicht gefordert wird, vorgestellt.

Satz 3.29 ([RHS14], S. 3091, Theorem III.9): Gegeben sind zwei strukturelle

Matrizen A ∈ S
n×n und B ∈ S

n×r mit n, r ∈ N. Die folgenden Punkte sind äquivalent.

(i) Das strukturelle System (A+ IS

n,B) ist streng strukturell steuerbar.

(ii) Die unsichere Matrix (A+�� · IS

n, B) ist streng strukturell surjektiv.

(iii) Jedes System der Form (3.4) mit A : R→ A und B : R→ B ist steuerbar, wobei die

Elemente von A und B jeweils stückweise stetig sind.

Das folgende Beispiel orientiert sich an Beispiel 3.2.

4 Es wird dabei angenommen, dass alle Einträge von A und B jeweils (n− 1)-fach differenzierbar sind.
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Beispiel 3.9 : Gegeben sind die strukturellen Matrizen A ∈ S
4×4 und B ∈ S

4 mit

A =

⎛
⎜⎜⎜⎜⎝

� � � �
� � � �

� � � �

� � � �

⎞
⎟⎟⎟⎟⎠ und B =

⎛
⎜⎜⎜⎜⎝

� �
� �
� �
� �

⎞
⎟⎟⎟⎟⎠ .

Das unsichere System (A,B) ist streng strukturell steuerbar, sodass alle linearen

zeitinvarianten Systeme der Form (1.1) mit A ∈ A und B ∈ B und nach Satz 3.27

auch alle zeitdiskreten Systeme der Form (3.3) mit A : Z → A und B : Z → B steuerbar

sind. Mit den Permutationsmatrizen P und P ′ aus Beispiel 3.2 gilt

P (A+ �� · IS

4 , B)P ′ =

⎛
⎜⎜⎜⎜⎝

�� � � � � �
� �� � � � �
� � �� � � �
� � � �� � �

⎞
⎟⎟⎟⎟⎠ ,

sodass die Matrix (A+�� · IS

4 ,B) die Form III besitzt und nach Satz 3.3 streng strukturell

surjektiv ist. Aufgrund von Satz 3.29 ist daher jedes lineare zeitvariante zeitkontinuierliche

System der Form (3.4) mit A : R→ A und B : R→ B steuerbar.
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4 Komplexe Eigenpaare von Vorzeichenmatrizen

In Abschnitt 3 wurde gezeigt, dass die Steuerbarkeit aller reellen Eigenwerte eines

unsicheren Systems mithilfe von Vorzeichenvektoren untersucht werden kann. Ein

Vorzeichenvektor ist eine Menge reeller Vektoren und wenn in einem unsicheren System

(A,B) Bedingung (iii) von Satz 3.16 für einen Vorzeichenvektor Q nicht erfüllt ist,

dann gibt es für jeden Vektor q ∈ Q, ein A ∈ A, ein B ∈ B und ein λ ∈ R, sodass

qT (A − λIn, B) = 0 gilt. Das lineare zeitinvariante System der Form (1.1) mit A und B

ist dann nicht steuerbar und das unsichere System (A,B) ist nicht vorzeichen-steuerbar.

Eine quadratische Matrix besitzt im Allgemeinen komplexe Eigenwerte und Eigenvektoren

und wie in Beispiel 3.6 dargestellt ist, sind Vorzeichenvektoren für die Untersuchung

der Vorzeichen-Steuerbarkeit oder der Vorzeichen-Stabilisierbarkeit nicht ausreichend.

Daher wird in Abschnitt 4.1 der komplexe Vorzeichenvektor als eine Klasse komplexer

Vektoren eingeführt und in Abschnitt 4.2 werden verschiedene Eigenschaften komplexer

Vorzeichenvektoren ermittelt. In Abschnitt 4.3 wird anschließend der Kokern von

Vorzeichenmatrizen mithilfe von komplexen Vorzeichenvektoren untersucht und es wird

u.a. gezeigt, dass, wenn ein Vektor im Kokern einer Matrix X ∈ X ist, dann ist jedes

Element desselben komplexen Vorzeichenvektors im Kokern eines Elements von X . In

den Abschnitten 4.4 und 4.5 werden abschließend Bedingungen angegeben, mit denen

untersucht werden kann, ob eine Vorzeichenmatrix jeweils komplexe Eigenwerte mit

positivem, mit negativem oder ohne Realteil erlaubt.

Die Sätze dieses Abschnittes bilden die Basis für die Charakterisierung der

Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit in Abschnitt 5.

4.1 Der komplexe Vorzeichenvektor

Der naheliegendste Ansatz einen Vorzeichenvektor mit komplexen Einträgen zu definieren,

ist über das Vorzeichenmuster der Real- und Imaginärteile eines komplexen Vektors. Dabei

wird jeder Eintrag eines Vektors mit zwei Vorzeichen beschrieben und die sich ergebenden

Paare von Vorzeichenvektoren werden als komplexe Vorzeichenmuster (engl. complex sign

pattern) bezeichnet (siehe [LSH08, S. 2700], [LS14, S. 31]). In [EHL98] wird dieser Ansatz

beispielsweise für die Untersuchung komplexer Matrizen benutzt.

Ein anderer Ansatz zur Beschreibung komplexer Vektoren oder Matrizen sind sogenannte

Strahlen-Muster (engl. ray pattern) (siehe [LSH08]). Dabei wird zu jedem von Null

verschiedenen Eintrag ein numerischer Parameter festgelegt, welcher dem Argument des
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komplexen Eintrags entspricht. Der Ansatz der Stahlen-Muster scheint für die Ziele dieser

Arbeit nicht geeignet zu sein, da die Anzahl der Strahlen-Muster zur Beschreibung aller

Vektoren q ∈ C
n einer bestimmten Dimension n nicht endlich ist. Eine Überprüfung einer

Vorzeichenmatrix mit jedem Stahlen-Muster wäre daher nicht durchführbar.

Bei komplexen Vorzeichenmustern gibt es dagegen genau neun verschiedene Möglichkeiten

für jeden Eintrag eines komplexen Vektors. Ein Überprüfung mit allen Vektoren einer

Ordnung wäre daher mit einer endlichen Anzahl von Tests durchführbar. Wenn der Vektor

q ∈ C
n ein Eigenvektor von einer Matrix A bezüglich dem Eigenwert λ ∈ C ist, dann ist

nach Satz 2.1.(ii) jeder Vektor q̃ = α · q ∈ C
n mit α ∈ C \ {0} ebenfalls ein Element

des Eigenraums von A bezüglich λ. Für jeden Eigenwert λ von einer Matrix A gibt es

daher eine Vielzahl verschiedener komplexer Vorzeichenmuster, welche alle Eigenvektoren

zu demselben Eigenwert enthalten.

Aus diesem Grund wird in dieser Arbeit wird ein neuer Ansatz zur Beschreibung einer

Klasse von komplexen Vektoren eingeführt. Dafür wird zunächst die Relation ∼
zwischen zwei komplexen Vektoren x = (r1e

jϕ1 , r2e
jϕ2 , . . . , rne

jϕn)T ∈ C
n und

y = (p1e
jϑ1 , p2e

jϑ2 , . . . , pne
jϑn)T ∈ C

n wie folgt definiert

x ∼ y :⇔

⎧⎪⎨
⎪⎩
∀v, w ∈ {1, . . . , n} gilt

sign(rvrw cos(ϕv − ϕw)) = sign(pvpw cos(ϑv − ϑw)) und

sign(rvrw sin(ϕv − ϕw)) = sign(pvpw sin(ϑv − ϑw)).

(4.1)

Die Relation ∼ ist eine Äquivalenzrelation, da Reflexivität (x ∼ x), Symmetrie

(x ∼ y ⇒ y ∼ x) und Transitivität (x ∼ y und y ∼ z ⇒ x ∼ z) gegeben ist. Eine wichtige

Eigenschaft dieser Äquivalenzrelation wird in dem folgenden Satz festgehalten.

Satz 4.1 : Gegeben ist ein komplexer Vektor q ∈ C
n und eine komplexe Zahl α ∈ C\{0}.

Es gilt q ∼ α · q.

Beweis. Die Vektoren r ∈ R
n und ϕ ∈ R

n bezeichnen jeweils den Betrag und das

Argument von q und es gilt α = α0e
jθ mit α0 �= 0. Wir definieren q̃ = α · q, sodass

der i-te Eintrag von q̃ den Betrag pi = α0ri und das Argument ϑi = ϕi + θ besitzt. Für

zwei v, w ∈ {1, . . . , n} gilt dann ϑv − ϑw = ϕv + θ − ϕw − θ = ϕv − ϕw. Daher gilt

pvpwf(ϑv − ϑw) = α2
0rvrwf(ϕv − ϕw), wobei f für den Sinus oder den Cosinus steht. Da

α0 �= 0 gilt, ist q ∼ q̃ = α · q aufgrund von (4.1) erfüllt.

Die Eigenschaft aus Satz 4.1 ist für die Untersuchung des Eigenraums einer Matrix

geeignet, da nach Satz 2.1.(ii) viele Eigenvektoren zu einem bestimmten Eigenwert in

einer Äquivalenzklasse vereint sind.
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Definition 4.2 (komplexer Vorzeichenvektor): Ein komplexer Vorzeichenvektor

der Ordnung n ist eine Äquivalenzklasse [q]∼ ∈ C
n/∼ der Relation ∼. Diese ist nach

(4.1) durch die Ausdrücke sign(rvrw cos(ϕv − ϕw)) und sign(rvrw sin(ϕv − ϕw)) mit

v, w ∈ {1, . . . , n} bestimmt.

Für einen komplexen Vektor q = (r1e
jϕ1 , . . . , rne

jϕn)T ∈ C
n und je zwei v, w ∈ {1, . . . , n}

wird im Folgenden jeweils das Vorzeichen von rvrw cos(ϕv − ϕw) und rvrw sin(ϕv − ϕw)

mit wDv und wPv bezeichnet, d.h.

rvrw cos(ϕv − ϕw) ∈ wDv und rvrw sin(ϕv − ϕw) ∈ wPv

Aufgrund von (2.4c) gilt wDv = vDw,
wPv = −vPw und vPv = �. Von den 2n2

Ausdrücken zur Beschreibung eines komplexen Vorzeichenvektors der Ordnung n in

Definition 4.2 sind daher mindestens n2 der Ausdrücke redundant und maximal n2

Ausdrücke notwendig. Deshalb lässt sich ein komplexer Vorzeichenvektor D der Ordnung

n mit einer Vorzeichenmatrix aus Vn×n wie folgt darstellen5

Dv,w :=

{
wDv, wenn w ≥ v und
wPv, wenn w < v.

(4.2)

In dieser Arbeit wird ein komplexer Vorzeichenvektor stets mit einem Frakturbuchstaben

gekennzeichnet. Ein komplexer Vorzeichenvektor D der Ordnung 4 wird nach (4.2) z.B.

wie folgt beschrieben

D =

⎛
⎜⎜⎜⎜⎝

1D1
2D1

3D1
4D1

1P2
2D2

3D2
4D2

1P3
2P3

3D3
4D3

1P4
2P4

3P4
4D4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1D1
1D2

1D3
1D4

−2P1
2D2

2D3
2D4

−3P1 −3P2
3D3

3D4

−4P1 −4P2 −4P3
4D4

⎞
⎟⎟⎟⎟⎠ .

Der konkrete Betrag eines Elements von einem komplexen Vektor hat keine Bedeutung

für die Zugehörigkeit zu einem komplexen Vorzeichenvektor, sofern der Betrag von Null

verschieden ist. Die Zugehörigkeit wird dagegen nur durch das Verhältnis der Argumente

der von Null verschiedenen Elemente eines Vektors bestimmt. Die Zuordnung eines

komplexen Vektors zu seiner Äquivalenzklasse ist daher nicht besonders intuitiv und kann

5 Ein komplexer Vorzeichenvektor ist eine Äquvialenzklasse auf der Menge der komplexen Vektoren und

keine Vorzeichenmatrix aus Vn×n. Um die Notation einfacher zu halten, wird die Vorzeichenmatrix, die

einen komplexen Vorzeichenvektor D beschreibt mit dem komplexen Vorzeichenvektor D gleichgesetzt.

In Abschnitt 5 wird noch eine weitere Darstellung eines komplexen Vorzeichenvektors vorgestellt.
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erst nach einer genauen Untersuchung des Vektors erfolgen. Wie in dem folgenden Beispiel

gezeigt wird, können zwei Vektoren auch dasselbe komplexe Vorzeichenmuster besitzen

und zu unterschiedlichen komplexen Vorzeichenvektoren gehören.

Beispiel 4.1 : Gegeben sind drei komplexe Vektoren a = (2, 3ej
π
12 )T , b = (3ej

π
6 , 2ej

π
4 )T

und c = (2ej
4π
9 , 2ej

π
3 )T bzw.

a ≈
(

2.0

2.9 + 0.8j

)
, b ≈

(
2.6 + 1.5j

1.4 + 1.4j

)
und c ≈

(
0.3 + 2.0j

1.0 + 1.7j

)
.

Die Real- und Imaginärteile der Elemente der Vektoren sind in Abbildung 4.5 dargestellt.

Realteil �

Imaginärteil �

c1
c2

b2 b1

a2

a1

Abbildung 4.5: Real- und Imaginärteile der komplexen Vektoren aus Beispiel 4.1.

Es gilt �(a),�(b),�(c),�(b),�(c) ∈ (+• ,+• )T und �(a) ∈ (�,+• )T , sodass die Vektoren a

und b unterschiedliche komplexe Vorzeichenmuster und die Vektoren b und c dasselbe

komplexe Vorzeichenmuster haben. Der Betrag von jedem Element von jedem dieser

Vektoren ist von Null verschieden und die Winkeldifferenzen der Vektoren a, b und c

ergeben sich zu aϕ2 − aϕ1 =
bϕ2 − cϕ1 =

π
12

und cϕ2 − cϕ1 = −π
9
. Daher gilt

[a]∼ = A = [b]∼ = B =

(
+• +•

+• +•

)
und [c]∼ = C =

(
+• +•

−• +•

)
,

da z.B. ar1
ar2 cos(

aϕ1 − aϕ2) = 2 · 3 · cos( π
12
) ∈+• = A1,2 und cr1

cr2 sin(
cϕ2 − cϕ1) =

2 · 2 · sin(−π
9
) ∈−• = C2,1 gilt. Die beiden Vektoren a und b sind in derselben

Äquivalenzklasse a ∼ b und haben verschiedene komplexe Vorzeichenmuster. Die Vektoren

b und c haben das gleiche komplexe Vorzeichenmuster, gehören aber zu verschiedenen

Äquivalenzklassen b �∼ c.
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4.2 Verschiedene Eigenschaften komplexer Vorzeichenvektoren

In diesem Abschnitt werden verschiedene Begriffe und Eigenschaften für komplexen

Vorzeichenvektoren definiert und ermittelt. Dafür wird angenommen, dass ein komplexer

Vektor q = (r1e
jϕ1 , r2e

jϕ2 , . . . , rne
jϕn)T mit n ∈ N gegeben ist, welcher ein Element des

komplexen Vorzeichenvektors D := [q]∼ ist. Für zwei v, w ∈ {1, . . . , n} werden dann

jeweils die Vorzeichen von rvrw cos(ϕv − ϕw) und rvrw sin(ϕv − ϕw) mit wDv und wPv

bezeichnet. wD und wP können daher als Vorzeichenvektoren aus Vn mit den Einträgen
wDv und wPv betrachtet werden.

Wenn für ein w ∈ {1, . . . , n}, rw �= 0 gilt, dann ist das Element w von Null verschieden

in D und es gilt wDw = Dw,w = +• . Wenn andererseits w nicht von Null verschieden ist,

dann gilt wDi =
wPi = � für jedes i ∈ {1, . . . , n} und die Zeile und Spalte w in D hat

nur �-Einträge. Für jedes von Null verschiedene w ∈ {1, . . . , n} in D wird der Vektor
wq := q/qw definiert, sodass für den Eintag v ∈ {1, . . . , n} von wq,

wqv =
qv
qw

=
rv
rw

ej(ϕv−ϕw) =
rv
rw

cos(ϕv − ϕw) + j
rv
rw

sin(ϕv − ϕw)

gilt. Aus Satz 4.1 folgt, dass wq ∈ D gilt und es ist offensichtlich, dass wqw = 1 für den

w-ten Eintrag von wq gilt. Außerdem gilt �(wqv) ∈ wDv und �(wqv) ∈ wPv bzw. �(wq) ∈ wD
und �(wq) ∈ wP .

Definition 4.3 (charakteristisches Vorzeichenmuster): Das Paar von

Vorzeichenvektoren wD ∈ V
n und wP ∈ V

n ist das w-te charakteristische

Vorzeichenmuster des komplexen Vorzeichenvektors D. Die Funktion

V : Vn×n × {1, . . . , n} → V
n × V

n, (D, w) �→ (wD, wP),

bestimmt die charakteristischen Vorzeichenmuster eines komplexen Vorzeichenvektors D.

Das w-te charakteristische Vorzeichenmuster ist durch die Einträge in der w-ten Zeile und

Spalte des komplexen Vorzeichenvektors D (siehe Gleichung (4.2)) bestimmt. Daher lässt

sich der v-te Eintrag des w-ten charakteristischen Vorzeichenmusters wie folgt ermitteln

wDv = V (D, w)v,1 :=

{
Dv,w, wenn w ≥ v und

Dw,v, wenn w < v,

wPv = V (D, w)v,2 :=

⎧⎪⎨
⎪⎩
−Dw,v, wenn w > v,

�, wenn w = v und

Dv,w, wenn w < v.

(4.3)
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Die in (4.3) beschriebene Beziehung zur Bestimmung eines charakteristischen

Vorzeichenmusters basiert auf der quadratischen Vorzeichenmatrix, welche den komplexen

Vorzeichenvektor darstellt. Nicht jede quadratische Vorzeichenmatrix beschreibt einen

komplexen Vorzeichenvektor (siehe Satz 4.5), aber die in (4.3) beschriebene Funktion

kann für jede quadratische Vorzeichenmatrix X benutzt werden, auch wenn die Matrix X
keinen komplexen Vorzeichenvektor beschreibt.

Das w-te charakteristische Vorzeichenmuster beschreibt das komplexe Vorzeichenmuster

eines nach dem w-ten Eintrag normierten Elements von D.

Beispiel 4.2 : Gegeben ist der komplexe Vektor q = (1 + j,−1 + 2j, 5, 1 − j)T ∈ C
4,

dessen Elemente in Abbildung 4.6 dargestellt sind.

Realteil �

Imaginärteil �

q1
q2

q3

q4

Abbildung 4.6: Real- und Imaginärteile des Vektors aus Beispiel 4.2.

Da q3 ∈+• und 3q = q/q3 gilt, hat 3q das gleiche Vorzeichenmuster wie q und es gilt

�( q) ∈ 3D =

⎛
⎜⎜⎜⎜⎝
+•

−•
+•

+•

⎞
⎟⎟⎟⎟⎠ , �( q) ∈ 3P =

⎛
⎜⎜⎜⎜⎝
+•

+•

�
−•

⎞
⎟⎟⎟⎟⎠ und q ∈ D =

⎛
⎜⎜⎜⎜⎝

1D1
2D1 +• 4D1

1P2
2D2 −• 4D2

−• −• +• +•

1P4
2P4 −• 4D4

⎞
⎟⎟⎟⎟⎠ .

Außerdem gilt 1q = q/q1 = (1, 1
2
+ 3

2
j, 5

2
− 5

2
j,−j) bzw.

�(1q) ∈ 1D =

⎛
⎜⎜⎜⎜⎝
+•

+•

+•

�

⎞
⎟⎟⎟⎟⎠ , �(1q) ∈ 1P =

⎛
⎜⎜⎜⎜⎝

�
+•

−•
−•

⎞
⎟⎟⎟⎟⎠ und q ∈ D =

⎛
⎜⎜⎜⎜⎝
+• +• +• �
+• 2D2 −• 4D2

−• −• +• +•

−• 2P4 −• 4D4

⎞
⎟⎟⎟⎟⎠ .

Mit 2q = q/q2 = (1
5
− 3

5
j, 1,−1− 2j,−3

5
− 1

5
j) folgt schließlich

�(2q) ∈ 2D =

⎛
⎜⎜⎜⎜⎝
+•

+•

−•
−•

⎞
⎟⎟⎟⎟⎠ , �(2q) ∈ 2P =

⎛
⎜⎜⎜⎜⎝
−•
�
−•
−•

⎞
⎟⎟⎟⎟⎠ und D =

⎛
⎜⎜⎜⎜⎝
+• +• +• �
+• +• −• −•
−• −• +• +•

−• −• −• +•

⎞
⎟⎟⎟⎟⎠ ,
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sodass 4D = (�,−• ,+• ,+• )T und 4P = (+• ,+• ,+• ,�)T gilt. Die Vorzeichenmatrix zur

Beschreibung von D kann auch über die Argumente von q nach Gleichung (4.1) ermittelt

werden. Es gilt beispielsweise sin(ϕ3 − ϕ1) = sin(0 − π
4
) = −1/

√
2 ∈−• = D3,1, oder

cos(ϕ4 − ϕ1) = cos(−π
4
− π

4
) = 0 ∈ � = D1,4.

Für zwei von Null verschiedene v, w ∈ {1, . . . , n} in D berechnet sich der Abstand �q(v, w)

von w zu v in q mit �q(v, w) := (ϕv − ϕw) mod π
2
≥ 0. Wenn für zwei von Null verschiedene

v, w ∈ {1, . . . , n} und ein k ∈ Z, ϕv = ϕw + k π
2
gilt, dann ist v abhängig von w in D und

es gilt �q(v, w) = 0. Zudem gilt genau dann wDv = � oder wPv = �. Wenn v und w von

Null verschieden sind und v nicht abhängig von w in D ist, dann ist v unabhängig von w

in D und es gilt wDv �= � �= wPv sowie �q(v, w) > 0. Wenn v von allen zu w unabhängigen

i ∈ {1, . . . , n} den kleinsten Abstand hat, d.h. �q(i, w) ≥ �q(v, w) > 0, dann ist v ein

Nachfolger von w und �q(w) := �q(v, w) > 0 ist der geringste Abstand von w in q. Wenn

es kein zu w unabhängiges i ∈ {1, . . . , n} gibt, dann gilt �q(w) := π
2
. Es kann mehrere

Nachfolger von einem von Null verschiedenem w geben. Diese sind dann aber abhängig

voneinander.

Wird der Vektor wq für ein von Null verschiedenes w in D um einen Winkel θw ”
verdreht“,

d.h. wq̃ = wq · e−jθw , dann gilt für den v-ten Eintrag von wq̃,

wq̃v =
rv
rw

ej(ϕv−ϕw−θw) =
rv
rw

cos(ϕv − ϕw − θw) + j
rv
rw

sin(ϕv − ϕw − θw).

Wenn der Winkel θw positiv und hinreichend klein ist, d.h. �q(w) > θw > 0, dann gilt

für jedes von Null verschiedene v in D �(wq̃v) �= 0 �= �(wq̃v). Für zwei v, w ∈ {1, . . . , n}
und ein θw mit �q(w) > θw > 0 werden die Vorzeichen von rvrw cos(ϕv − ϕw − θw) und

rvrw sin(ϕv − ϕw − θw) mit w∗Dv und w∗Pv bezeichnet. Für jedes ε mit �q(w) > ε > 0 sind

dann jeweils die Vorzeichen von rvrw cos(ϕv −ϕw − ε) und rvrw sin(ϕv −ϕw − ε) identisch

zu w∗Dv und
w∗Pv. Analog zu den charakteristischen Vorzeichenmustern und der Funktion

V wird die Funktion V ∗ : Vn×n × {1, . . . , n, 1∗, . . . , n∗} → V
n × V

n definiert, welche neben

den charakteristischen Vorzeichenmustern auch die Vorzeichenmuster

(w
∗D, w∗P) = V ∗(D, w∗)

ermittelt, wenn w∗ ∈ {1∗, . . . , n∗} gilt. Für ein w∗ ∈ {1∗, . . . , n∗} bezeichnet |w∗| das zu

w∗ gehörige w ∈ {1, . . . , n} und für eine Menge U ⊆ {1, . . . , n} ist U∗ := U ∪ {i∗|i ∈ U}.
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Beispiel 4.3 (Fortsetzung von Beispiel 4.2): Gegeben ist der komplexe Vektor p =

rejϕ mit r = (
√
2, 2, 5,

√
2)T und ϕ = (π

4
, 2π

3
, 0,−π

4
)T . Die Einträge p1, p3 und p4 sind

identisch mit den Einträgen q1, q3 und q4 aus Beispiel 4.2 und lediglich der Imaginärteil

von p2 ist etwas kleiner als der Imaginärteil von q2. Dennoch gehören p und q zum selben

komplexen Vorzeichenvektor D.

Jedes Element i ∈ {1, . . . , 4} ist in D von Null verschieden und es gilt ϕ4 = ϕ1− π
2
, sodass

4 abhängig von 1 in D ist. Alle anderen Paare v, w ∈ {1, . . . , 4}, v �= w sind unabhängig

voneinander in D. Die Abstände und geringsten Abstände ergeben sich wie folgt

�p(1, 2) =
1
12
π, �p(1, 3) =

1
4
π, �p(1, 4) = 0,

�p(2, 1) =
5
12
π, �p(2, 3) =

1
6
π, �p(2, 4) =

5
12
π,

�p(3, 1) =
1
4
π, �p(3, 2) =

1
3
π, �p(3, 4) =

1
4
π,

�p(4, 1) = 0, �p(4, 2) =
1
12
π, �p(4, 3) =

1
4
π,

�p(1) = 1
4
π, �p(2) = 1

12
π, �p(3) = 1

6
π, �p(4) = 1

4
π,

da beispielsweise �p(2, 1) = (ϕ2 − ϕ1) mod π
2
= (2

3
π − 1

4
π) mod π

2
= 5

12
π gilt. 3 hat von 1

den geringsten Abstand in D, sodass 3 der Nachfolger von 1 in D ist. Außerdem ist 2 der

Nachfolger von 3 in D und 1 und 4 sind die Nachfolger von 2 in D (siehe Beispiel 5.3).

Für jedes ε mit �p(1) =
π
4
> ε > 0 gilt mit 1∗p = 1p · e−jε und 1p = p/p1,

�(1∗p) =

⎛
⎜⎜⎜⎜⎝

r1
r1
cos(ϕ1 − ϕ1 − ε)

r2
r1
cos(ϕ2 − ϕ1 − ε)

r3
r1
cos(ϕ3 − ϕ1 − ε)

r4
r1
cos(ϕ4 − ϕ1 − ε)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos(−ε)
1√
2
cos(5π

12
− ε)

5√
2
cos(−π

4
− ε)

cos(−π
2
− ε)

⎞
⎟⎟⎟⎟⎠ ∈

⎛
⎜⎜⎜⎜⎝
+•

+•

+•

−•

⎞
⎟⎟⎟⎟⎠ = 1∗D und

�(1∗p) =

⎛
⎜⎜⎜⎜⎝

r1
r1
sin(ϕ1 − ϕ1 − ε)

r2
r1
sin(ϕ2 − ϕ1 − ε)

r3
r1
sin(ϕ3 − ϕ1 − ε)

r4
r1
sin(ϕ4 − ϕ1 − ε)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

sin(−ε)
1√
2
sin(5π

12
− ε)

5√
2
sin(−π

4
− ε)

sin(−π
2
− ε)

⎞
⎟⎟⎟⎟⎠ ∈

⎛
⎜⎜⎜⎜⎝
−•
+•

−•
−•

⎞
⎟⎟⎟⎟⎠ = 1∗P .

Für ε = π
6
gilt beispielsweise π

4
> ε > 0,

1∗p ≈

⎛
⎜⎜⎜⎜⎝

0.86− 0.50j

1.00 + 1.00j

0.92− 3.42j

−0.50− 0.86j

⎞
⎟⎟⎟⎟⎠ , �(1∗p) ∈ 1∗D und �(1∗p) ∈ 1∗P .
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Analog ergibt sich

2∗D =

⎛
⎜⎜⎜⎜⎝
+•

+•

−•
−•

⎞
⎟⎟⎟⎟⎠ , 2∗P =

⎛
⎜⎜⎜⎜⎝
−•
−•
−•
−•

⎞
⎟⎟⎟⎟⎠ , 3∗D =

⎛
⎜⎜⎜⎜⎝
+•

−•
+•

+•

⎞
⎟⎟⎟⎟⎠ , 3∗P =

⎛
⎜⎜⎜⎜⎝
+•

+•

−•
−•

⎞
⎟⎟⎟⎟⎠ , 4∗D =

⎛
⎜⎜⎜⎜⎝
+•

−•
+•

+•

⎞
⎟⎟⎟⎟⎠ und 4∗P =

⎛
⎜⎜⎜⎜⎝
+•

+•

+•

−•

⎞
⎟⎟⎟⎟⎠ .

Für jedes i ∈ {1, . . . , 4} sind alle Einträge von i∗D und i∗P von � verschieden. Beim

Vergleich von i∗D und i∗P mit iD und iP (siehe Beispiel 4.2) ist ersichtlich, dass sich

ausschließlich die �-Einträge verändert haben.

Mit dem folgenden Satz wird gezeigt, dass sich das komplexe Vorzeichenmuster von

jedem Element q ∈ C
n eines komplexen Vorzeichenvektors D der Ordnung n mithilfe

der Vorzeichenmuster von V ∗ und einer Vorzeichen-Rotationsmatrix beschreiben lässt,

wobei die Menge der Vorzeichen-Rotationsmatrizen R wie folgt definiert wird

R =

{(
+• �
� +•

)
,

(� +•

−• �
)
,

(
−• �
� −•

)
,

(� −•
+• �

)}
. (4.4)

Satz 4.4 : Gegeben ist ein komplexer Vorzeichenvektor D der Ordnung n ∈ N und

R nach (4.4). Für jeden Vektor q ∈ D gibt es ein k ∈ {1, . . . , n, 1∗, . . . , n∗} und eine

Vorzeichenmatrix R ∈ R, sodass

(kD, kP) = V ∗(D, k) und

(
�(qT )
�(qT )

)
∈ R

(
kDT

kPT

)
gilt.

Beweis. 1) Wir bezeichnen die Menge aller von Null verschiedenen Einträge in D mit Z

und wir nehmen zunächst an, dass es ein k ∈ Z mit �(qk) = 0 oder �(qk) = 0 gibt. Wenn

�(qk) = 0, dann gilt qk = α �= 0 und wenn �(qk) = 0, dann gilt qk = jα �= 0. In beiden

Fällen gilt α ∈ R\{0} und wir definieren S als das Vorzeichen von α. Weiterhin definieren

wir kq := q/qk. Es gilt �(kq) ∈ kD und �(kq) ∈ kP sowie kq = �(kq) + j · �(kq). Wenn

�(qk) = 0, dann gilt q = kq · qk = α · �(kq) + j · α · �(kq), sodass �(q) = α · �(kq) ∈ S kD
und �(q) = α · �(kq) ∈ S kP gilt. Wenn andernfalls �(qk) = 0, dann gilt q = −α · �(kq)+
j · α · �(kq), sodass �(q) = −α · �(kq) ∈ −S kP und �(q) = α · �(kq) ∈ S kD gilt. In

beiden Fällen ist die Aussage erfüllt.

2) Wir nehmen nun an, dass es kein k ∈ Z mit �(qk) = 0 oder �(qk) = 0 gibt. Wenn der

Vektor ϕ die Argumente von dem Vektor q bezeichnet, dann gilt

ρi := (−ϕi) mod
π

2
> 0 für jedes i ∈ Z. (4.5)
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Wir wählen k ∈ Z derart, dass min
i∈Z

ρi ≥ ρk gilt und wir bezeichnen die Menge aller von k

unabhängigen i ∈ Z mit Z ′. Wenn Z ′ = ∅, dann gilt �q(k) =
π
2
> ρk.

Andernfalls gilt Z ′ �= ∅ und aus der Wahl von k und Z ′ folgt

ρi > ρk für jedes i ∈ Z ′. (4.6)

Aufgrund von (4.5) gilt (ϕi mod π
2
) > 0 bzw. (ϕi mod π

2
) + ρk > ρk für jedes

i ∈ Z ′. Mit der Eigenschaft (2.3) ergibt sich daraus π
2
− (ρi − ρk) > ρk und

zusammen mit (4.6) folgt π
2
− (ϕk − ϕi) mod π

2
> ρk. Aufgrund von (2.3) gilt dann

(ϕi − ϕk) mod π
2
= �q(i, k) ≥ �q(k) > ρk.

Wir definieren k∗q = q/qk · e−jρk , sodass für jedes i ∈ {1, . . . , n},
k∗qi = ri/rk cos(ϕi − ϕk − ρk) + jri/rv cos(ϕi − ϕk − ρk)

gilt. Da �q(k) > ρk erfüllt ist, gilt �(k∗q) ∈ k∗D und �(k∗q) ∈ k∗P . Aufgrund von (2.2) mit

a = ϕk, (2.3) und (4.5) gilt ϕk + ρk =
π
2
· (ϕk div

π
2
+ 1) =: α, wobei α ein ganzzahliges

Vielfaches von π
2
ist. Dann gilt q = k∗q · qk · ejρk = k∗q · rk · ejα. Wenn α ein gerade Vielfaches

von π
2
ist, dann wählen wir S nach dem Vorzeichen von cos(α) und es gilt q = k∗q ·rk cos(α)

sowie �(q) ∈ S k∗D und �(q) ∈ S k∗P . Wenn α andernfalls ein ungerades Vielfaches von
π
2
ist, dann wählen wir S nach dem Vorzeichen von sin(α) und es gilt q = jk

∗
q · rk sin(α)

sowie �(q) ∈ −S k∗P und �(q) ∈ S k∗D.

Ein komplexer Vorzeichenvektor der Ordnung n kann mit einer Vorzeichenmatrix X
beschrieben werden, aber nicht jede Vorzeichenmatrix X beschreibt einen komplexen

Vorzeichenvektor. Mit dem folgenden Satz werden notwendige Bedingungen für die

Beschreibung eines komplexen Vorzeichenvektors mit einer Vorzeichenmatrix vorgestellt.

In Abschnitt 5.2 wird auf Seite 82 mit Satz 5.3 gezeigt, dass diese Bedingungen nicht nur

notwendig, sondern auch hinreichend sind.

Satz 4.5 : Gegeben ist eine Vorzeichenmatrix X ∈ V
n×n mit n ∈ N und es gilt(

kD, kP
)
= V (X , k) für jedes k ∈ {1, . . . , n} nach (4.3). Wenn die Vorzeichenmatrix

X einen komplexen Vorzeichenvektor beschreibt, dann gilt für jedes x, y, z ∈ {1, . . . , n},
zDz ∈ {�,+• } und

zDz

(
xPy

xDy

)
⊆
(

zDy
zPy

−zPy
zDy

)(
xPz

xDz

)
. (4.7)

Beweis. Da die Vorzeichenmatrix X einen komplexen Vorzeichenvektor D beschreibt,

wählen wir einen Vektor q ∈ D, wobei die Vektoren r und ϕ jeweils die Beträge und die
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Argumente von q beschreiben. Dann gilt rxry cos(ϕy −ϕx) ∈ xDy und rxry sin(ϕy −ϕx) ∈
xPy sowie r2z ∈ zDz ∈ {�,+• }. Aus den Additionstheoremen in (2.4) folgt

r2zrxry cos(ϕy − ϕx) = r2zrxry cos((ϕy − ϕz) + (ϕz − ϕx))

= ryrz cos(ϕy − ϕz)rzrx cos(ϕz − ϕx)− ryrz sin(ϕy − ϕz)rzrx sin(ϕz − ϕx) und

r2zrxry sin(ϕy − ϕx) = r2zrxry sin((ϕy − ϕz) + (ϕz − ϕx))

= ryrz sin(ϕy − ϕz)rzrx cos(ϕz − ϕx) + ryrz cos(ϕy − ϕz)rzrx sin(ϕz − ϕx).

Daher gilt zDz
xDy ⊆ zDy

xDz − zPy
xPz und zDz

xPy ⊆ zPy
xDz +

zDy
xPz. Gleichung (4.7)

ist daher für jedes x, y, z ∈ {1, . . . , n} erfüllt.

Jeder Vektor q ∈ C
n ist ein Element von genau einem komplexen Vorzeichenvektor

der Ordnung n. Der Sonderfall q ∈ R
n ist dabei auch enthalten, wobei der zugehörige

komplexe Vorzeichenvektor D dann durch eine obere Dreiecksmatrix beschrieben ist, da

sin(ϕv − ϕw) = 0 ∈ wPv = Dv,w = � für jedes v > w gilt. Aus Satz 4.5 folgt, dass dann

für jedes v, w ∈ {1, . . . , n} der Eintrag wDv durch die Einträge in der ersten von Null

verschiedenen Zeile p von D bestimmt ist, da wDv = pDv
pDw gilt, wenn pDp �= �. Ein

derartiger komplexer Vorzeichenvektor wird dann als reell darstellbar bezeichnet und ist

durch den Vorzeichenvektor pD bestimmt.

Wenn D ein komplexer Vorzeichenvektor ist, der durch die Ausdrücke wDv und wPv nach

(4.3) beschrieben werden kann, dann wird D analog zu (4.2) wie folgt definiert

Dv,w :=

{
wDv, wenn w ≥ v und

−wPv, wenn w < v.
(4.8)

Satz 4.6 : Gegeben ist ein komplexer Vorzeichenvektor D der Ordnung n ∈ N und ein

q ∈ D. Es gilt q = �(q)− j · �(q) ∈ D.

Beweis. Die Vektoren q und q haben dieselben Beträge, sodass wir jeweils nur die

Argumente ϕ und ϑ von q und q betrachten müssen. Es gilt ϑ = −ϕ. Für zwei

v, w ∈ {1, . . . , n} ergibt sich daher ϑv − ϑw = −(ϕv − ϕw). Der Cosinus ist eine gerade

Funktion, sodass cos(ϑv−ϑw) = cos(ϕv−ϕw) gilt und der Sinus ist eine ungerade Funktion,

sodass sin(ϑv − ϑw) = − sin(ϕv − ϕw) gilt. Wenn q ein Element von D nach Gleichung

(4.2) ist, dann ist q ein Element von D nach Gleichung (4.8).
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4.3 Der Kokern einer Vorzeichenmatrix

In Abschnitt 3.1 wurde die strenge Surjektivität von unsicheren Matrizen untersucht und

in Satz 3.7 wurde festgestellt, dass eine unsichere Matrix U ∈ V
n×m nicht streng surjektiv

ist, wenn es einen Vorzeichenvektor Q ∈ V
n mit Q �= � gibt, sodass � ⊂ QTU gilt. Aus

dem Beweis des Satzes folgt, dass dann jeder reelle Vektor q ∈ Q im Kokern von einer

Matrix U ∈ U ist. Wenn U andererseits streng surjektiv ist, dann enthält der Kokern von

jeder Matrix U ∈ U ausschließlich den Nullvektor 0 ∈ C
n.

In diesem Abschnitt wird für eine Vorzeichenmatrix V ∈ V
n×n und einen komplexen

Vorzeichenvektor D der Ordnung n ∈ N untersucht, ob ein q ∈ D im Kokern von einem

V ∈ V ist. Dafür wird zunächst der Kokern einer unsicheren Matrix wie folgt definiert.

Definition 4.7 (Kokern von unsicheren Matrizen): Ein komplexer

Vorzeichenvektor D der Ordnung n ∈ N ist im Kokern von einer unsicheren Matrix

U ∈ U
n×n, wenn es einen Vektor q ∈ D und eine Matrix U ∈ U gibt, sodass qTU = 0 gilt.

Mit dem folgenden Satz lässt sich bestimmen, ob ein komplexer Vorzeichenvektor im

Kokern von einer Vorzeichenmatrix V ist und zugleich wird gezeigt, dass dann jedes

Element des komplexen Vorzeichenvektors im Kokern von einer Matrix V ∈ V ist.

Satz 4.8 : Gegeben ist eine Vorzeichenmatrix V ∈ V
n×m mit n ∈ N und ein komplexer

Vorzeichenvektor D der Ordnung n. Die Vorzeichenvektoren
(
kD, kP

)
= V (D, k)

bezeichnen das k-te charakteristische Vorzeichenmuster von D und Z ist die Menge aller

k ∈ {1, . . . , n}, welche in D von Null verschiedenen sind.

Die folgenden Eigenschaften sind äquivalent.

(i) D ist im Kokern von V.
(ii) Für jedes k ∈ Z gilt � ⊆ kDTV und � ⊆ kPTV.
(iii) Für jeden Vektor q ∈ D gibt es eine Matrix V ∈ V, sodass qTV = 0 gilt.

Beweis. (i) =⇒ (ii) Wenn D im Kokern von V ist, dann gibt es ein q ∈ D und ein V ∈ V ,
sodass qTV = 0 gilt. Wir definieren kq = q/qk für jedes k ∈ Z, sodass �(kq) = kd ∈ kD
und �(kq) = kp ∈ kP gilt. Aufgrund der Annahme gilt qTV = 0, sodass für alle k ∈ Z,
kqTV = 0 bzw. kdTV = kpTV = 0 gilt. (ii) ist daher offensichtlich.

(ii) =⇒ (iii) : Wir wählen ein q ∈ D, wobei die Vektoren r und ϕ jeweils die Beträge und

die Argumente des Vektors q beschreiben und für jedes i ∈ Z definieren wir iq := q/qi,

sodass iqk =
rk
ri
cos(ϕk−ϕi)+j rk

ri
sin(ϕk−ϕi) für den Eintrag k ∈ Z von iq gilt. Zusätzlich
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gilt iq ∈ D, �(iqk) = rk
ri
cos(ϕk − ϕi) ∈ iDk und �(iqk) = rk

ri
sin(ϕk − ϕi) ∈ iPk. Wir

fixieren ein s ∈ {1, . . . ,m} und der Vorzeichenvektor X bezeichnet die Spalte s von V ,
d.h. Xk := Vk,s für jede Zeile k von V .

Im Folgenden werden mehrfach die Beziehungen

aPc ⊆ aPb
bDc +

aDb
bPc und (4.9a)

aDc ⊆ aDb
bDc − aPb

bPc (4.9b)

für drei beliebige a, b, c ∈ Z verwendet, welche sich direkt aus Satz 4.5 ergeben, da dann
bDb =+• gilt. Aufgrund der Bedingung in (ii) gilt für alle i ∈ Z

� ⊆
∑
l∈Z

iDlXl und (4.10a)

� ⊆
∑
l∈Z

iPlXl. (4.10b)

Wir werden in den folgenden fünf Schritten ein x ∈ X wählen, sodass für ein i ∈ Z∑
l∈Z

rl cos(ϕl − ϕi)xl = 0 und (4.11a)

∑
l∈Z

rl sin(ϕl − ϕi)xl = 0 gilt. (4.11b)

1) Wenn kDkXk = � für jedes k ∈ Z, dann gilt Xk = � für jedes k ∈ Z und (4.11) ist für

jedes i ∈ Z mit jedem x ∈ X erfüllt. Der Beweis wird in Schritt 6) fortgeführt.

2) Wir nehmen nun an, dass es ein v ∈ Z gibt, sodass vDvXv �= � bzw. Xv �= � gilt. Ohne

Einschränkungen der Allgemeinheit gilt v = 1 und aufgrund der Bedingung (4.10a) mit

i = 1 gibt es ein w ∈ Z \ {1}, o.E.d.A. w = 2, sodass

1D2X2 = −1D1X1 = −X1 �= � (4.12)

gilt.

3) Wir nehmen zunächst an, dass 1P2 = � gilt. Dann können aufgrund von (4.10b) mit

i = 1 und 1P1 = � alle Eintrage xi mit i ∈ Z ′ = Z \{1, 2} so gewählt werden, dass xi ∈ Xi

und ∑
l∈Z′

rl sin(ϕl − ϕ1)xl =
∑
l∈Z

rl sin(ϕl − ϕ1)xl = 0 (4.13)

gilt. Wir definieren ζ =
∑
l∈Z′

rl cos(ϕl − ϕ1)xl ∈ R und wir wählen ein x1 ∈ X1

für das |x1| > |ζ|/r1 ≥ 0 erfüllt ist. Aufgrund von (4.12) gilt X2 = −1D2X1, sodass mit
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x2 = − r1x1+ζ
r2 cos(ϕ2−ϕ1)

, x ∈ X und
∑
l∈Z

rl cos(ϕl − ϕ1)xl = 0 gilt. Zusammen mit (4.13) sind

beide Gleichungen in (4.11) für i = 1 erfüllt. Der Beweis wird in Schritt 6) fortgeführt.

4) Wir nehmen nun an, dass es keine zwei v, w ∈ Z mit vDwXw = −Xv �= � und vPw = �
gibt. Dann gilt

vPw �= �, wenn vDwXw = −Xv �= � gilt. (4.14)

In den Schritten 4.1) bis 4.5) wird über eine Rekursion gezeigt, dass es dann drei

verschiedene u, v, w ∈ Z gibt, sodass

Xw = −vPw
vPuXu �= � und Xv = −wPv

wPuXu �= � (4.15)

erfüllt ist. Wir definieren k = 2.

4.1) Es gilt

1DiXi = −X1 �= � für jedes i ∈ {2, . . . , k}, (4.16a)

1PiXi =
1PkXk �= � für jedes i ∈ {2, . . . , k} und (4.16b)

kPiXi =
kP1X1 �= � für jedes i ∈ {1, . . . , k − 1}. (4.16c)

Für k = 2 folgt (4.16a) aus (4.12) und (4.16b) sowie (4.16c) aus (4.14); und für k > 2

folgt (4.16a) aus (4.16i), (4.16b) aus (4.16h) und (4.16c) aus (4.16k) bzw. (4.16g) wenn

k = 3. Wenn k > 2, dann gilt zusätzlich aufgrund von (4.16j)

Xk =
kDiXi �= � für jedes i ∈ {2, . . . , k − 1}. (4.16d)

4.2) Aus der Bedingung (4.10b) für i = k folgt mithilfe von (4.16c) und kPk = �, dass es

ein v ∈ Z \ {1, . . . , k}, ohne Einschränkungen der Allgemeinheit gilt v = k + 1, mit

kPk+1Xk+1 = −kP1X1 �= � (4.16e)

gibt.

4.3) Wir nehmen zunächst an, dass k+1P1 = � gilt. Aus (4.9a) mit a = k, b = 1 und c =

k + 1 ergibt sich dann kPk+1 =
kP1

1Dk+1. Zusammen mit (4.16e) gilt 1Dk+1Xk+1 = −X1

und die Annahme in (4.14) ist für v = k + 1 und w = 1 nicht erfüllt. Es muss daher

k+1P1 �= � (4.16f)

gelten.

4.4) Wir nehmen nun an, dass

k+1PkXk =
k+1P1X1 �= � (4.16g)
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gilt. Zusammen mit (4.16e) gilt 1PkXk =
1Pk+1Xk+1 und mit (4.16b) ergibt sich dann

1PiXi =
1Pk+1Xk+1 für jedes i ∈ {2, . . . , k + 1}. (4.16h)

Aus (4.9a) mit a = k + 1, b = 1 und c = k, (4.16a) für i = k und (4.16g) ergibt sich
k+1Pk ⊆ −k+1Pk +

k+1D1
1Pk. Daher gilt k+1Pk = k+1D1

1Pk und zusammen mit (4.16e)

ergibt sich

1Dk+1Xk+1 = −X1. (4.16i)

Für jedes i ∈ {2, . . . , k} ergibt sich aus (4.9b) mit a = k+1, b = 1 und c = i, (4.16a) und

(4.16h), k+1Di ⊆ −k+1D1X1Xi + Xk+1Xi. Mit (4.16i) folgt daher

k+1DiXi = Xk+1 für jedes i ∈ {2, . . . , k}. (4.16j)

Wenn k > 2 gilt, dann folgt für jedes i ∈ {2, . . . , k − 1} aus (4.9a) mit a = k + 1, b = k

und c = i, (4.16c), (4.16d), (4.16e) und (4.16j) für k, k+1Pi =
k+1PkXkXi. Zusammen mit

(4.16g) ergibt sich schließlich

k+1PiXi =
k+1P1X1 für jedes i ∈ {1, . . . , k}. (4.16k)

Wir führen den Beweis in Schritt 4.1) mit k + 1 fort.

4.5) Abschließend wir der Fall k+1PkXk = −k+1P1X1 �= � untersucht. Dann gilt

Xk = −k+1Pk
k+1P1X1 �= � und aufgrund von (4.16e) auch Xk+1 = −kPk+1

kP1X1 �= �.

(4.15) ist mit w = k, u = 1 und v = k + 1 erfüllt und wir führen den Beweis im 5)

fort.

5) Wir wählen drei verschiedene v, w, u ∈ Z aus, sodass die beiden Gleichungen in (4.15)

erfüllt sind. Für alle k ∈ Z ′ = Z \ {u, v, w} definieren wir |xk| := 1 und wir definieren

ζ1 :=
∑
k∈Z′

rk sin(ϕk − ϕw)xk und ζ2 :=
∑
k∈Z′

rk sin(ϕk − ϕv)xk. Außerdem wählen wir ein

xu ∈ Xu, sodass

|xu| >
∣∣∣∣ ζ1
ru sin(ϕu − ϕw)

∣∣∣∣ und |xu| >
∣∣∣∣ ζ2
ru sin(ϕu − ϕv)

∣∣∣∣
gilt. Des Weiteren definieren wir

xv := −
ru sin(ϕu − ϕw)xu + ζ1

rv sin(ϕv − ϕw)
und xw := −ru sin(ϕu − ϕv)xu + ζ2

rw sin(ϕw − ϕv)
.

Aufgrund von (4.15) gilt Xv = −wPu
wPvXu und Xw = −vPu

vPwXu, sodass x ∈ X gilt.

Zudem gilt∑
l∈Z

rl sin(ϕl − ϕv)xl = 0 und (4.17a)

∑
l∈Z

rl sin(ϕl − ϕw)xl = 0. (4.17b)
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Wird (4.17b) von cos(ϕv − ϕw) multipliziert mit (4.17a) subtrahiert, so ergibt sich∑
l∈Z

rl (sin(ϕl − ϕv) cos(ϕv − ϕw)− sin(ϕl − ϕw)) xl = 0.

Mithilfe von (2.4a) und sin(ϕw − ϕv) �= 0 gilt∑
l∈Z

rl cos(ϕl − ϕw)xl = 0. (4.17c)

Aus (4.17b) und (4.17c) folgt, dass die beiden Gleichungen in (4.11) für i = w erfüllt sind.

6) Da die beiden Gleichungen in (4.11) für ein i ∈ Z erfüllt sind, gilt iqTx = 0 bzw.

qTx = 0. Wir definieren Vk,s = xk für alle k ∈ {1, . . . , n}, sodass
n∑

l=1

qlVl,s = 0

gilt und (iii) erfüllt ist. Die Beziehung (iii) =⇒ (i) ist offensichtlich.

Beispiel 4.4 : Gegeben ist der komplexe Vorzeichenvektor D der Ordnung 3 und die

Vorzeichenmatrix B ∈ V
3×3 mit

D =

⎛
⎜⎝+• � +•

−• +• −•
+• +• +•

⎞
⎟⎠ und B =

⎛
⎜⎝−

• � +•

+• � −•
+• � −•

⎞
⎟⎠ .

Die charakteristischen Vorzeichenmuster von D sind

1D =

⎛
⎜⎝+•

�
+•

⎞
⎟⎠ , 1P =

⎛
⎜⎝�
−•
+•

⎞
⎟⎠ , 2D =

⎛
⎜⎝�
+•

−•

⎞
⎟⎠ , 2P =

⎛
⎜⎝+•

�
+•

⎞
⎟⎠ , 3D =

⎛
⎜⎝+•

−•
+•

⎞
⎟⎠ und 3P =

⎛
⎜⎝−

•

−•
�

⎞
⎟⎠ .

Es gilt � ⊂ iDTB = iPTB = (�� ,�,�� ) für jedes i ∈ {1, 2, 3}, sodass nach Satz 4.8 D im

Kokern von B ist. 2 ist abhängig von 1 und 3 ist unabhängig von 1 und 2 in D. Für jedes

q = (r1e
jϕ1 , r2e

jϕ2 , r3e
jϕ3)T ∈ D gilt r1, r2, r3 > 0, ϕ1 − ϕ2 =

π
2
und 0 < ϕ3 − ϕ1 <

π
2
. Mit

B =

⎛
⎜⎝−

r3
r1
cos(ϕ3 − ϕ1) 0 r3

r1
cos(ϕ3 − ϕ1)

r3
r2
sin(ϕ3 − ϕ1) 0 − r3

r2
sin(ϕ3 − ϕ1)

1 0 −1

⎞
⎟⎠

gilt z.B. B ∈ B und qTB = 0. Für den Vektor q = (5,−3j, 2 + 2j)T gilt beispielsweise

q ∈ D und mit

B =

⎛
⎜⎝ −6 0 2

5

10 0 −2
3

15 0 −1

⎞
⎟⎠ ∈ B gilt qTB = 0.
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4.4 Vorzeichenmatrizen mit rein imaginären Eigenwerten

In diesem Abschnitt wird eine Bedingung vorgestellt, mit der untersucht werden kann, ob

eine quadratische Vorzeichenmatrix A einen rein imaginären Eigenwert erlaubt. Zusätzlich

lässt sich damit der komplexe Vorzeichenvektor bestimmen, in dem sich ein zugehöriger

Eigenvektor befindet.

Definition 4.9 (Vorzeichen-Eigenvektor): Ein komplexer Vorzeichenvektor D �= �
der Ordnung n ∈ N ist ein Vorzeichen-Eigenvektor von einer Vorzeichenmatrix A ∈ V

n×n,

wenn es eine Matrix A ∈ A, einen Vektor q ∈ D und ein λ ∈ C gibt, sodass qTA = λqT

gilt. Ein Vorzeichen-Eigenvektor D von einer Vorzeichenmatrix A wird

• in den ersten Quadranten verdreht, wenn �(λ) > 0 und �(λ) > 0 gilt,

• um 90 Grad verdreht, wenn �(λ) = 0 und �(λ) > 0 gilt und

• in den dritten Quadranten verdreht, wenn �(λ) < 0 und �(λ) < 0 gilt.

Mit dem folgenden Satz lässt sich bestimmen, ob ein komplexer Vorzeichenvektor ein

Vorzeichen-Eigenvektor von einer quadratischen Vorzeichenmatrix A ist, der um 90 Grad

verdreht wird.

Satz 4.10 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N und ein

komplexer Vorzeichenvektor D. Die Vorzeichenvektoren
(
kD, kP

)
= V (D, k) bezeichnen

die charakteristischen Vorzeichenmuster und Z ist die Menge aller k ∈ {1, . . . , n}, welche
in D von Null verschiedenen sind. Die folgenden Punkte sind äquivalent.

(i) D ist ein Vorzeichen-Eigenvektor von A und D wird um 90 Grad verdreht.

(ii) Für jedes k ∈ Z gilt −kPT ⊆ kDTA und kDT ⊆ kPTA.
(iii) Für jedes q ∈ D und jedes λI > 0 gibt es ein A ∈ A, sodass qTA = jλIq

T gilt.

Beweis. (i) =⇒ (ii) : Da D um 90 Grad verdreht wird, gibt es nach Definition 4.9 ein

A′ ∈ A, ein q ∈ D und ein λI ∈+• , sodass qTA′ = jλIq
T gilt. Wir definieren kq = q/qk

für jedes k ∈ Z, sodass �(kq) = kd ∈ kD und �(kq) = kp ∈ kP gilt. Mit A′/λI =: A ∈ A
gilt aufgrund der Annahme qTA = jqT bzw. kqTA = jkqT für alle k ∈ Z. Daraus folgt,

dass kdTA+ jkpTA = −kpT + jkdT bzw. −kpT = kdTA und kdT = kpTA gilt. (ii) ist daher

erfüllt.

(ii) =⇒ (iii) : Wir definieren die Mengen Ẑ = {1, . . . , n} und Z = Ẑ \Z und wir wählen

ein beliebiges q ∈ D, wobei die Vektoren r ∈ R
n und ϕ ∈ R

n jeweils die Beträge und die
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Argumente des Vektors q enthalten. Für jedes i ∈ Z definieren wir den Vektor iq = q/qi,

d.h. iqk =
rk
ri
cos(ϕk − ϕi) + j rk

ri
sin(ϕk − ϕi) beschreibt das k-te Element von iq.

Wir fixieren ein s ∈ Ẑ und der Vorzeichenvektor X bezeichnet die Spalte s von A, d.h.
Xk := Ak,s für alle k ∈ Ẑ. In den Schritten 1)-4) des Beweises wird der Fall s ∈ Z und im

Schritt 5) wird der Fall s ∈ Z betrachtet.

0) Aufgrund der Annahme in (ii) gilt für alle i ∈ Z

−iPs ⊆
∑
l∈Z

iDlXl, (4.18a)

iDs ⊆
∑
l∈Z

iPlXl (4.18b)

und im Folgenden wird für q und ein beliebiges λI ∈+• , ein x ∈ X derart gewählt, sodass

−λIrs sin(ϕs − ϕi) =
n∑

l=1

rl cos(ϕl − ϕi)xl, (4.19a)

λIrs cos(ϕs − ϕi) =
n∑

l=1

rl sin(ϕl − ϕi)xl (4.19b)

für ein i ∈ Z gilt. Dabei werden für a, b, c ∈ Z die folgenden Beziehungen verwendet

aPc ⊆ aPb
bDc +

aDb
bPc, (4.20a)

aDc ⊆ aDb
bDc − aPb

bPc, (4.20b)

welche sich unmittelbar aus Satz 4.5 ergeben.

1) Zunächst wird der Fall s ∈ Z bzw. sDs =+• betrachtet. Dann gibt es aufgrund von

(4.18b) mit i = s ein v ∈ Z \ {s}, o. E. d. A. gilt v = 1, mit sP1X1 =+• bzw.

X1 =
sP1 �= �. (4.21)

2) Wir nehmen zunächst an, dass sD1 = � gilt. Dann definieren wir die

Mengen Z+ = {i ∈ Z|Xi =
sDi �= �}, Z− = {i ∈ Z|Xi = −sDi �= �} und Z0 ={

i ∈ Ẑ
∣∣∣Xi �= �, i /∈ Z+ ∪ Z− ∪ {1}

}
. Aufgrund von (4.18a) mit i = s und sPs = � gilt

entweder Z+ = Z− = ∅, oder Z+ �= ∅ �= Z−. Wir definieren xi =
ε

|Z+|ri cos(ϕi−ϕs)
für alle

i ∈ Z+ und xi =
−ε

|Z−|ri cos(ϕi−ϕs)
für alle i ∈ Z−. Dann gilt

n∑
l=1

rl cos(ϕl − ϕs)xl =
∑

l∈Z+∪Z−

rl cos(ϕl − ϕs)xl = ε− ε = 0 (4.22)

für jedes ε > 0. Zusätzlich wählen wir xi = ±ε abhängig vom Vorzeichen Xi für alle i ∈ Z0.

Damit hängen die von Null verschiedenen Einträge xi, i �= 1 linear von ε ab und ε > 0
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kann hinreichend klein gewählt werden, sodass

ζ =
∑

l∈Z\{v}

rl sin(ϕl − ϕs)

λIrs
xl < 1

erfüllt ist. Wir definieren x1 = λIrs
r1 sin(ϕ1−ϕs)

(1− ζ) ∈ sP1 = X1. Dann gilt
n∑

l=1

rl sin(ϕl − ϕs)xl = λIrs und zusammen mit (4.22) sind beide Gleichungen in (4.19)

für k = s erfüllt. Der Beweis wird in Punkt 6) fortgeführt.

3) Es wird nun angenommen, dass es kein v ∈ Z mit Xv = sPv �= � und sDv = � gibt.

Im Folgenden wird gezeigt, dass es dann zwei verschiedene v, w ∈ Z mit

Xv =
wPv

wDs �= � und Xw = vPw
vDs �= � (4.23)

gibt. Wir definieren k := 1.

3.1) Es gilt

sPi = Xi �= � für jedes i ∈ {1, . . . , k} und (4.24a)

iDsXi =
kDsXk �= � für jedes i ∈ {1, . . . , k}. (4.24b)

Für k = 1 folgt die Gleichung (4.24a) aus (4.21) und (4.24b) aus den Annahmen in 3);

und für k > 1 ergibt sich (4.24a) aus (4.24i) und (4.24b) aus (4.24f). Wenn k > 1 gilt,

dann ergibt sich zusätzlich aus (4.24k)

kDs = −kPiXi �= � für jedes i ∈ {1, . . . , k − 1}. (4.24c)

3.2) Aufgrund der Annahme in (4.18b) mit i = k zusammen mit (4.24c) und kPk = �,

gibt es ein v ∈ Z \ {1, . . . , k}, o.E.d.A. gilt v = k + 1, sodass

kDs =
kPk+1Xk+1 �= � (4.24d)

gilt.

3.3) Wir nehmen zunächst an, dass k+1Ds = � gilt. Dann gilt kDs = −kPk+1
k+1Ps

aufgrund von (4.20b) mit a = k, b = k + 1 und c = s. Zusammen mit (4.24d) gilt

daher Xk+1 = sPk+1, sodass die Annahme in 3) nicht erfüllt ist und k+1Ds �= � gelten

muss.

3.4) Wir nehmen nun an, dass

k+1Ds = −k+1PkXk �= � (4.24e)
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gilt. Zusammen mit (4.24d) gilt kDsXk =
k+1DsXk+1 und aus (4.24b) ergibt sich

iDsXi =
k+1DsXk+1 �= � für jedes i ∈ {1, . . . , k + 1}. (4.24f)

Aus (4.20a) mit a = s, b = k + 1 und c = k zusammen mit (4.24e) und (4.24a) mit i = k

ergibt sich Xk ⊆ sPk+1
k+1Dk −Xk. Daher gilt

sPk+1 =
k+1DkXk. (4.24g)

Aus (4.20b) mit a = s, b = k+1 und c = k zusammen mit (4.24g) und (4.24e) ergibt sich
sDk =

sDk+1
k+1Dk. Mithilfe von (4.24f) für i = k folgt daher

Xk+1 =
k+1DkXk. (4.24h)

Zusammen mit (4.24g) und (4.24a) ergibt sich

sPi = Xi �= � für jedes i ∈ {1, . . . , k + 1}. (4.24i)

Aus (4.20b) mit a = k + 1, b = s und c = i für i ∈ {1, . . . , k + 1} zusammen mit (4.24f)

und (4.24i) ergibt sich

k+1Di = Xk+1Xi �= � für jedes i ∈ {1, . . . , k + 1}. (4.24j)

Wenn k > 1, dann folgt aus (4.20a) mit a = k, b = k + 1 und c = i für i ∈
{1, . . . , k−1} zusammen mit (4.24j), (4.24d) und (4.24c), −kDsXi ⊆ kDsXi +

kDk+1
k+1Pi.

Daher gilt kDsXi = −kDk+1
k+1Pi. Zusammen mit (4.24h) und (4.24f) für i = k ergibt sich

k+1Ds = −k+1PiXi für i ∈ {1, . . . , k − 1}. Mit (4.24e) folgt schließlich

k+1Ds = −k+1PiXi �= � für jedes i ∈ {1, . . . , k}. (4.24k)

Der Beweis wird in Punkt 3.1) mit k + 1 fortgeführt.

3.5) Abschließend nehmen wir an, dass k+1Ds =
k+1PkXk gilt. Dann sind zusammen mit

(4.24d) die beiden Beziehungen in (4.23) für v = k und w = k + 1 erfüllt.

4) Wir wählen zwei v, w ∈ Z für die (4.23) erfüllt ist und für i ∈ Ẑ \ {v, w} definieren wir

xi ∈ {−ε, 0, ε} abhängig vom Vorzeichen Xi. Dabei wählen wir ε > 0 hinreichend klein,

sodass

ζ1 =
∑

l∈Z\{v,w}

rl sin(ϕl − ϕw)

λIrs cos(ϕs − ϕw)
xl < 1 und ζ2 =

∑
l∈Z\{v,w}

rl sin(ϕl − ϕv)

λIrs cos(ϕs − ϕv)
xl < 1

erfüllt ist. Aufgrund von (4.23) gilt mit

xv =
λIrs cos(ϕs − ϕw)

rv sin(ϕv − ϕw)
(1− ζ1) und xw =

λIrs cos(ϕs − ϕv)

rw sin(ϕw − ϕv)
(1− ζ2) ,
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x ∈ X . Zudem ist∑
l∈Z

rl sin(ϕl − ϕv)xl = λIrs cos(ϕs − ϕv) und (4.25a)

∑
l∈Z

rl sin(ϕl − ϕw)xl = λIrs cos(ϕs − ϕw) (4.25b)

erfüllt. Wird (4.25b) von (4.25a) multipliziert mit cos(ϕv−ϕw) subtrahiert, so ergibt sich∑
l∈Z

rl (sin(ϕl − ϕv) cos(ϕv − ϕw)− sin(ϕl − ϕw)) xl

= λIrs (cos(ϕs − ϕv) cos(ϕv − ϕw)− cos(ϕs − ϕw)) .

Mithilfe von (2.4) und sin(ϕw − ϕv) �= 0 gilt∑
l∈Z

rl cos(ϕl − ϕw)xl = −λIrs sin(ϕs − ϕw). (4.25c)

Aus (4.25b) und (4.25c) folgt, dass die beiden Gleichungen in (4.19) für k = w erfüllt

sind. Der Beweis wird in Schritt 6) fortgeführt.

5) Es wird nun der Fall s ∈ Z betrachtet. Dann gilt � ⊆ kDTX und � ⊆ kPTX für jedes

k ∈ Z. Aus Satz 4.8 folgt, dass es für jedes q ∈ D ein x ∈ X mit qTx = 0 gibt. Die beiden

Gleichungen in (4.19) sind für jedes i ∈ Z erfüllt.

6) Die beiden Gleichungen (4.19) sind für ein i ∈ Z erfüllt, sodass iqTx = jλI
iqT bzw.

qTx = jλIq
T gilt. Wir definieren Ai,s := xi für jedes i ∈ Ẑ, sodass

n∑
l=1

qlAl,s = jλIqs (4.26)

gilt. Da (4.26) für jedes s ∈ Ẑ erfüllt ist, gilt qTA = jλIq
T und (iii) ist erfüllt.

Die Beziehung (iii)→ (i) ist offensichtlich.

Die Eigenschaft (iii) in Satz 4.10 ist bemerkenswert, da es für jeden Wert λ = jλI mit

λI > 0 und jedes q ∈ D eine Matrix A ∈ A gibt, sodass q ein Eigenvektor von A bezüglich

λ ist, wenn ein q̃ ∈ D ein Eigenvektor von einem Ã ∈ A bezüglich λ̃ = jλ̃I mit λ̃I > 0

ist. Mit der Bedingung (ii) lässt sich leicht überprüfen, ob es einen solchen Eigenvektor

q ∈ D für gegebene A und D gibt.

Mithilfe von Satz 4.10 lassen sich Vorzeichenmatrizen charakterisieren, welche einen reinen

imaginären Eigenwert erlauben.
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Satz 4.11 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N.

Die folgenden Punkte sind äquivalent.

(i) A erlaubt einen Eigenwert λ ∈ C mit �(λ) = 0 und �(λ) �= 0.

(ii) Es gibt einen komplexen Vorzeichenvektor D, der Vorzeichen-Eigenvektor von A ist

und um 90 Grad verdreht wird.

(iii) Es gibt einen komplexen Vorzeichenvektor D, sodass für jedes von Null verschiedene

k in D, −kPT ⊆ kDTA und kDT ⊆ kPTA mit
(
kD, kP

)
= V (D, k) gilt.

Beweis. (i) =⇒ (ii) : A erlaubt einen Eigenwert λ ∈ C mit �(λ) = 0 und �(λ) �= 0,

sodass es ein A ∈ A mit dem Eigenwert λ = jλI mit λI ∈ R\{0} gibt. Aufgrund von Satz

2.1 gibt o.E.d.A. λI > 0. Dann gibt es ein q ∈ C
n mit q �= 0, sodass qTA = jλIq

T gilt und q

ist ein Element von einem komplexen VorzeichenvektorD, welcher Vorzeichen-Eigenvektor

von A ist und um 90 Grad verdreht wird. (ii) =⇒ (i) ist offensichtlich und die Äquivalenz

von (ii) und (iii) folgt aus Satz 4.10.

Beispiel 4.5 (Fortsetzung von Beispiel 4.4): Gegeben ist der komplexe

Vorzeichenvektor D aus Beispiel 4.4 und die Vorzeichenmatrix A ∈ V
3×3 mit

D =

⎛
⎜⎝+• � +•

−• +• −•
+• +• +•

⎞
⎟⎠ und A =

⎛
⎜⎝� +• �
−• � −•
� � −•

⎞
⎟⎠ .

Die charakteristischen Vorzeichenmuster von D sind

1D =

⎛
⎜⎝+•

�
+•

⎞
⎟⎠ , 1P =

⎛
⎜⎝�
−•
+•

⎞
⎟⎠ , 2D =

⎛
⎜⎝�
+•

−•

⎞
⎟⎠ , 2P =

⎛
⎜⎝+•

�
+•

⎞
⎟⎠ , 3D =

⎛
⎜⎝+•

−•
+•

⎞
⎟⎠ und 3P =

⎛
⎜⎝−

•

−•
�

⎞
⎟⎠ .

Es gilt

−1PT = 1DTA = (�,+• ,−• ), 1DT ⊂ 1PTA = (+• ,�,�� ),
−2PT ⊂ 2DTA = (−• ,�,�� ), 2DT = 2PTA = (�,+• ,−• ),
−3PT ⊂ 3DTA = (+• ,+• ,�� ) und 3DT = 3PTA = (+• ,−• ,+• ),

sodass die Bedingung (ii) von Satz 4.10 erfüllt ist. D ist daher ein komplexer

Vorzeichen-Eigenvektor von A, der um 90 Grad verdreht wird. Für jedes

q = (r1e
jϕ1 , r2e

jϕ2 , r3e
jϕ3)T ∈ D gilt r1, r2, r3 > 0, ϕ1 − ϕ2 =

π
2
und π

2
< ϕ3 − ϕ2 < π.
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Für ein λI ∈+• und

A =

⎛
⎜⎜⎝

0 r2
r1
λI 0

− r1
r2
λI 0 r3

r2 sin(ϕ2−ϕ3)
λI

0 0 cos(ϕ3−ϕ2)
sin(ϕ3−ϕ2)

λI

⎞
⎟⎟⎠

gilt beispielsweise A ∈ A und qTA = jλIq
T . Für q = (5,−3j, 2 + 2j)T ∈ D, λI = 15 und

A =

⎛
⎜⎝ 0 9 0

−25 0 −20
0 0 −15

⎞
⎟⎠ ∈ A gilt z.B. qTA = jλIq

T .

4.5 Vorzeichenmatrizen mit komplexen Eigenwerten

In diesem Abschnitt werden Bedingungen vorgestellt, mit denen jeweils untersucht werden

kann, ob eine quadratische Vorzeichenmatrix A komplexe Eigenwerte mit positivem

oder mit negativem Realteil erlaubt. Außerdem lassen sich mit diesen Bedingungen die

komplexen Vorzeichenvektoren bestimmen, die Elemente des zugehörigen Eigenraums

enthalten. Dafür werden Drehungen benötigt, welche wie folgt definiert sind.

Definition 4.12 (Drehung von einem komplexen Vorzeichenvektor): Gegeben

ist ein komplexer Vorzeichenvektor D der Ordnung n ∈ N. Die Menge aller

von Null verschiedenen k ∈ {1, . . . , n} in D wird mit Z bezeichnet. Eine Funktion

ΨD : Z → V
n × V

n, k �→ (kV , kW) ist eine Drehung von D, wenn es ein einen Vektor

q ∈ D und eine Zahl λ ∈ C mit �(λ),�(λ) �= 0 gibt, sodass für jedes k ∈ Z,

• �(λ · q/qk) ∈ kV und

• �(λ · q/qk) ∈ kW gilt.

Eine Drehung ΨD von einem komplexen Vorzeichenvektor D beschreibt das komplexe

Vorzeichenmuster von dem Ergebnis der Multiplikation von einer komplexen Zahl λ mit

einem Vektor q ∈ D. Für jeden komplexen Vorzeichenvektor D �= � gibt es eine Vielzahl

von Drehungen, da aber nach Satz 4.4 alle komplexen Vorzeichenvektoren eines komplexen

Vorzeichenvektors mit einer Vorzeichen-Rotationsmatrix R und den Vorzeichenvektoren

von V ∗ beschrieben werden können, ist die Anzahl aller möglichen Drehungen von

einem komplexen Vorzeichenvektor endlich. Drehungen werden in Abschnitt 5.2 weiter

untersucht.
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Mit dem folgenden Satz kann untersucht werden, ob ein komplexer Vorzeichenvektor ein

Vorzeichen-Eigenvektor ist, der in den ersten Quadranten verdreht wird.

Satz 4.13 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N und ein komplexer

Vorzeichenvektor D. Die folgenden Punkte sind äquivalent.

(i) D ist ein Vorzeichen-Eigenvektor von A und D wird in den ersten Quadranten

verdreht.

(ii) Für jedes von Null verschiedene k ∈ {1, . . . , n} in D gilt

(a) kVT ⊆ kDT A ,

(b) kWT ⊆ kPT A ,

(c) kVk =
kWk =+•

mit
(
kD, kP

)
= V (D, k) und (kV , kW) = ΨD(k) ist eine Drehung von D.

Beweis. (i) =⇒ (ii) : Die Menge Z bezeichnet im Folgenden die Menge aller von Null

verschiedenen k ∈ {1, . . . , n} in D. Da D ein Vorzeichen-Eigenvektor von A ist und D in

den ersten Quadranten verdreht wird, gibt es nach Definition 4.9 ein A ∈ A, ein q ∈ D und

ein λ ∈ C mit �(λ) > 0 und �(λ) > 0 und es gilt qTA = λqT . Wir definieren kq := q/qk

für jedes k ∈ Z, sodass �(kq) = kd ∈ kD und �(kq) = kp ∈ kP gilt.

Aufgrund der Annahme ist

kqTA = kdTA+ jkpTA = λqT/qk =: kzT für jedes k ∈ Z (4.27)

erfüllt und wir definieren die Drehung ΨD jeweils nach den Vorzeichen von

�(kz) = �(λq/qk) und �(kz) = �(λq/qk) für jedes k ∈ Z.

Für zwei i, k ∈ Z gilt kzi = λqi/qk und im Besonderen kzk = λ. Aufgrund der Annahme

gilt �(λ) = �(kzk) > 0 und �(λ) = �(kzk) > 0, sodass kVk = kWk =+• bzw. (ii.c) erfüllt

ist. Aufgrund von (4.27) gilt �(kz) = kdTA und �(kz) = kpTA, sodass kVT ⊆ kDTA und
kWT ⊆ kPTA bzw. (ii.a) und (ii.b) erfüllt sind.

(ii) =⇒ (i) : Wir definieren die Mengen Ẑ := {1, . . . , n} und Z := Ẑ \ Z. Aufgrund
der Annahme gibt es ein q ∈ D und ein λ ∈ C, sodass für jedes k ∈ Z, �(λ · q/qk) ∈ kV
und �(λ · q/qk) ∈ kW gilt. Die Vektoren r ∈ R

n und ϕ ∈ R
n bezeichnen dabei jeweils die

Beträge und die Argumente der Elemente von q und es gilt λ = λ0e
jϕλ . Für jedes i ∈ Z

definieren wir den Vektor iq := q/qi, d.h.
iqk =

rk
ri
cos(ϕk−ϕi)+j rk

ri
sin(ϕk−ϕi) beschreibt

das k-te Element von iq.

Wir fixieren ein s ∈ Ẑ und der Vorzeichenvektor X bezeichnet im Folgenden die Spalte s

von A, d.h. Xk := Ak,s für alle k ∈ Ẑ. In den Schritten 1)-4) des Beweises wird der Fall

https://doi.org/10.51202/9783186247087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:17:47. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186247087


70 4 Komplexe Eigenpaare von Vorzeichenmatrizen

s ∈ Z und anschließend im Schritt 5) wird der Fall s ∈ Z untersucht.

0) Aufgrund der Annahmen in (ii.a) und (ii.b) gilt für jedes i ∈ Z

iVs ⊆
∑
l∈Z

iDlXl und (4.28a)

iWs ⊆
∑
l∈Z

iPlXl (4.28b)

und aus (ii.c) folgt iVi =
iWi =+• . Wir werden im Folgenden einen Vektor x ∈ X wählen,

sodass

λ0 · rs cos(ϕs + ϕλ − ϕi) =
n∑

l=1

rl cos(ϕl − ϕi)xl und (4.29a)

λ0 · rs sin(ϕs + ϕλ − ϕi) =
n∑

l=1

rl sin(ϕl − ϕi)xl (4.29b)

jeweils für ein i ∈ Z erfüllt ist. Dabei werden für drei a, b, c ∈ Z die folgenden Beziehungen

verwendet

aPc ⊆ aPb
bDc +

aDb
bPc, (4.30a)

aDc ⊆ aDb
bDc − aPb

bPc, (4.30b)

aWs ⊆ aPb
bVs +

aDb
bWs, (4.30c)

aVs ⊆ aDb
bVs − aPb

bWs, (4.30d)

aPb ⊆ aWs
bVs − aVs

bWs, (4.30e)

aDb ⊆ aVs
bVs +

aWs
bWs. (4.30f)

Die Gleichungen (4.30a) und (4.30b) folgen unmittelbar aus Satz 4.5. Da ΨD eine

Drehung von D ist, gilt für jedes a ∈ Z, �(azs) = λ0rs/ra cos(ϕs + ϕλ − ϕa) ∈ aVs und

�(azs) = λ0rs/ra sin(ϕs + ϕλ − ϕa) ∈ aWs. Aufgrund von (2.4) ergibt sich für ein b ∈ Z

sin(ϕs + ϕλ − ϕa) = sin ((ϕs + ϕλ − ϕb) + (ϕb − ϕa))

= sin(ϕb − ϕa) cos(ϕs + ϕλ − ϕb) + cos(ϕb − ϕa) sin(ϕs + ϕλ − ϕb) und

cos(ϕs + ϕλ − ϕa) = cos ((ϕs + ϕλ − ϕb) + (ϕb − ϕa))

= cos(ϕb − ϕa) cos(ϕs + ϕλ − ϕb)− sin(ϕb − ϕa) sin(ϕs + ϕλ − ϕb).

Die Beziehungen (4.30c) und (4.30d) sind daher offensichtlich. Analog gilt

sin(ϕb − ϕa) = sin ((ϕs + ϕλ − ϕa)− (ϕs + ϕλ − ϕb))

= sin(ϕs + ϕλ − ϕa) cos(ϕs + ϕλ − ϕb)− cos(ϕs + ϕλ − ϕa) sin(ϕs + ϕλ − ϕb),

cos(ϕb − ϕa) = cos ((ϕs + ϕλ − ϕa)− (ϕs + ϕλ − ϕb))

= cos(ϕs + ϕλ − ϕa) cos(ϕs + ϕλ − ϕb) + sin(ϕs + ϕλ − ϕa) sin(ϕs + ϕλ − ϕb),
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sodass die Beziehungen (4.30e) und (4.30f) ebenfalls erfüllt sind.

1) Zunächst wird der Fall s ∈ Z bzw. sDs =+• betrachtet. Aufgrund von (4.28a) mit i = s

gilt +• ⊆
∑
l∈Z

sPlXl und es gibt ein v ∈ Z \ {s}, o.E.d.A. v = 1, mit

sP1 = X1 �= �. (4.31)

2) Wir nehmen zunächst an, dass 1Ws = � und somit sin(ϕs + ϕλ − ϕ1) = 0 gilt. Aus

(4.30e) mit a = s und b = 1 folgt sP1 =
1Vs bzw.

X1 =
1Vs. (4.32a)

Wir definieren die Mengen Z+ = {i ∈ Z|Xi =
1Pi �= �}, Z− = {i ∈ Z|Xi = −1Pi �= �}

und Z0 =
{
i ∈ Ẑ

∣∣∣Xi �= �, i /∈ Z+ ∪ Z− ∪ {1}
}
. Aufgrund von (4.28a) mit i = 1 gilt

1Ws = � ⊆
∑
l∈Z

1PlXl, sodass entweder Z+ = Z− = ∅, oder Z+ �= ∅ �= Z− gilt. Wir

definieren xi :=
ε

|Z+|ri sin(ϕi−ϕ1)
für alle i ∈ Z+ und xi :=

−ε
|Z−|ri sin(ϕi−ϕ1)

für alle i ∈ Z−.

Damit gilt für jedes ε

n∑
l=1

rl sin(ϕl − ϕ1)xl = ε− ε = 0 = λ0rs sin(ϕs + ϕλ − ϕ1). (4.32b)

Abhängig von dem Vorzeichen Xi definieren wir zusätzlich xi := ±ε für jedes i ∈ Z0.

Damit hängen die von Null verschiedenen Einträge xi, i �= 1 linear von ε ab und ε kann

hinreichend klein gewählt werden, sodass

ζ =
∑

l∈Z\{1}

rl cos(ϕl − ϕ1)

λ0rs cos(ϕs + ϕλ − ϕ1)
xl < 1

gilt. Wir definieren x1 :=
λ0rs
r1

cos(ϕs + ϕλ − ϕ1)(1− ζ), sodass x1 ∈ 1Vs = X1 gilt und

n∑
l=1

rl cos(ϕl − ϕ1)xl = λ0rs cos(ϕs + ϕλ − ϕ1) (4.32c)

erfüllt ist. Aufgrund von (4.32b) und (4.32c) sind die beiden Gleichungen in (4.29) für

i = 1 erfüllt und der Beweis wird in Schritt 6) fortgeführt.

3) Wir nehmen nun an, dass es kein k ∈ Z mit Xk = sPk �= � und kWs = � gibt und

wir werden im Folgenden mithilfe von einer Rekursion zeigen, dass es zwei verschiedene

v, w ∈ Z gibt für die dann

Xv =
wPv

wWs und Xw = vPw
vWs (4.33)

gilt. Wir definieren k := 1.
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3.1) Aufgrund von (4.31) mit der Annahme in 3) sowie (4.34f) gilt

iWsXi =
kWsXk �= � für alle i ∈ {1, . . . , k} (4.34a)

und wenn k > 1 dann folgt aus (4.34m) (oder (4.34e), wenn k = 2) zusätzlich

kWs = −kPiXi �= � für alle i ∈ {1, . . . , k − 1}. (4.34b)

3.2) Aus (4.28a) mit i = k folgt mit (4.34a), (4.34b) und kPk = �, dass es ein v ∈ Z gibt,

o.E.d.A. v = k + 1, mit

kWs =
kPk+1Xk+1 �= �. (4.34c)

3.3) Wir nehmen zunächst an, dass k+1Ws = � gilt. Dann folgt sPk+1 =
k+1Vs aus (4.30e)

mit a = s und b = k+1 sowie kWs =
kPk+1

k+1Vs aus (4.30c) mit a = k und b = k+1. Aus

diesen beiden Beziehungen zusammen mit (4.34c) folgt Xk+1 =
sPk+1 und die Annahmen

in 3) ist nicht erfüllt. Es gilt daher

k+1Ws �= �. (4.34d)

3.4) Im Folgenden nehmen wir an, dass

k+1Ws = −k+1PkXk �= � (4.34e)

gilt. Aus (4.34e) zusammen mit (4.34c) folgt

k+1WsXk+1 =
kWsXk �= �. (4.34f)

3.4.0) Wenn k = 1, dann führen wir den Beweis mit k = 2 in Schritt 3.1) fort. Andernfalls

gilt k > 1 und wir zeigen im Folgenden, dass

k+1Ws = −k+1PiXi �= � für jedes i ∈ {1, . . . , k − 1} (4.34g)

erfüllt ist.

3.4.1) Zunächst betrachten wir den Fall iVs = Xi für ein i ∈ {1, . . . , k−1}. Aus (4.30c) mit

a = k und b = i und (4.34b) ergibt sich kWs ⊆ −kWs +
kDi

iWs. Daher gilt
kWs =

kDi
iWs

und aus (4.34a) folgt

Xk =
kDiXi. (4.34h)

Aus (4.30d) mit a = k und b = i und (4.34h) folgt kVs ⊆ Xk − kPi
iWs. Zusammen mit

(4.34b) und (4.34a) ergibt sich

kVs = Xk. (4.34i)
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Aus (4.30c) mit a = k + 1 und b = k, (4.34i) und (4.34e) ergibt sich
k+1Ws ⊆ −k+1Ws +

k+1Dk
kWs. Daher gilt

k+1Ws =
k+1Dk

kWs und mit (4.34f) folgt

Xk+1 =
k+1DkXk. (4.34j)

Aus (4.30a) mit a = k + 1, b = k und c = i, (4.34j) und (4.34h) ergibt

sich k+1Pi ⊆ k+1PkXkXi +
kPiXk+1Xk. Zusammen mit (4.34e), (4.34b) und (4.34f) gilt

schließlich k+1Pi = −k+1WsXi und Gleichung (4.34g) ist erfüllt.

3.4.2) Im Falle von iVs = � lässt sich die Beziehung (4.34g) ähnlich zu 3.4.1) zeigen.

Dann ergibt sich Gleichung (4.34h) direkt aus (4.30c) mit (4.34a), und Gleichung (4.34i)

aus (4.30d), (4.34b) und (4.34a). Die verbleibenden Schritte zu (4.34g) sind identisch mit

dennen in 3.4.1).

3.4.3) Es wird nun der verbleibende Fall iVs = −Xi untersucht.

3.4.3.a) Wir nehmen zunächst an, dass k+1Vs = Xk+1 gilt. Aus (4.30e) mit a = k + 1 und

b = i folgt dann k+1Pi ⊆ −k+1WsXi − iWsXk+1. Zusammen mit (4.34a) und (4.34f) ergibt

sich k+1Ws = −k+1PiXi, sodass Gleichung (4.34g) erfüllt ist.

3.4.3.b) Wenn k+1Vs = �, dann folgt die Beziehung (4.34g) direkt aus Gleichung (4.30e)

mit a = k + 1 und b = i.

3.4.3.c) Abschließend nehmen wir an, dass k+1Vs = −Xk+1 gilt. Aus (4.30f) mit a = k+ 1

und b = i, (4.34f) und (4.34a) ergibt sich

k+1Di = Xk+1Xi. (4.34k)

Aus (4.30c) mit a = k und b = k+1 und (4.34c) ergibt sich kWs ⊆ −kWs +
kDk+1

k+1Ws.

Daher gilt kWs =
kDk+1

k+1Ws und mit (4.34f) ergibt sich

kDk+1 = XkXk+1. (4.34l)

Aus (4.30a) mit a = k, b = k + 1 und c = i, (4.34k) und (4.34l)

ergibt sich kPi ⊆ kPk+1Xk+1Xi + XkXk+1
k+1Pi. Zusammen mit (4.34c) und (4.34b) gilt

−kWsXi ⊆ kWsXi + XkXk+1
k+1Pi bzw. −kWsXi = XkXk+1

k+1Pi. Zusammen mit (4.34f)

ergibt sich Gleichung (4.34g).

3.4.4.) In jedem dieser Fälle ist (4.34g) erfüllt. Zusammen mit Gleichungen (4.34e) ergibt

sich dann

k+1Ws = −k+1PiXi �= � für jedes i ∈ {1, . . . , k} (4.34m)

und wir führen den Beweis in Schritt 3.1) mit k + 1 fort.
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3.5) Abschließend betrachten wir den Fall, dass k+1Ws = k+1PkXk gilt. Zusammen mit

(4.34c) ist dann (4.33) mit v = k und w = k + 1 erfüllt und wir führen den Beweis in

Punkt 4) fort.

4) Wir wählen zwei v, w ∈ Z für die (4.33) erfüllt ist und für i ∈ Ẑ \ {v, w} definieren wir

xi ∈ {−ε, 0, ε} abhängig vom Vorzeichen Xi. Dabei wird ε > 0 hinreichend klein gewählt,

sodass

ζ1 =
∑

l∈Z\{v,w}

rl sin(ϕl − ϕw)

rsλ0 sin(ϕs + ϕλ − ϕw)
xl =

⎛
⎝ ∑

l∈Z\{v,w}

rl sin(ϕl − ϕw)

rsλ0 sin(ϕs + ϕλ − ϕw)

⎞
⎠ ε < 1,

ζ2 =
∑

l∈Z\{v,w}

rl sin(ϕl − ϕv)

rsλ0 sin(ϕs + ϕλ − ϕv)
xl =

⎛
⎝ ∑

l∈Z\{v,w}

rl sin(ϕl − ϕv)

rsλ0 sin(ϕs + ϕλ − ϕv)

⎞
⎠ ε < 1

erfüllt ist. Mit

xv :=
rsλ0 sin(ϕs + ϕλ − ϕw)

rv sin(ϕv − ϕw)
(1− ζ1) und

xw :=
rsλ0 sin(ϕs + ϕλ − ϕv)

rw sin(ϕw − ϕv)
(1− ζ2)

gilt dann xv ∈ wPv
wWs = Xv und xw ∈ vPw

vWs = Xw. Zudem gilt∑
l∈Z

rl sin(ϕl − ϕv)xl = rsλ0 sin(ϕs + ϕλ − ϕv) und (4.35a)

∑
l∈Z

rl sin(ϕl − ϕw)xl = rsλ0 sin(ϕs + ϕλ − ϕw). (4.35b)

Wird (4.35b) von (4.35a) multipliziert mit cos(ϕv − ϕw) subtrahiert, so ergibt sich∑
l∈Z

rl (sin(ϕl − ϕv) cos(ϕv − ϕw)− sin(ϕl − ϕw)) xl

= rsλ0 (sin(ϕs + ϕλ − ϕv) cos(ϕv − ϕw)− sin(ϕs + ϕλ − ϕw)) .

Daraus ergibt sich mithilfe von (2.4a) und sin(ϕw − ϕv) �= 0∑
l∈Z

rl cos(ϕl − ϕw)vl,s = rsλ0 cos(ϕs + ϕλ − ϕv). (4.35c)

Aus (4.35a) und (4.35c) folgt, dass die beiden Gleichungen in (4.29) für i = v erfüllt sind.

Der Beweis wird in Schritt 6) fortgeführt.

5) Wir betrachten nun den Fall, dass s /∈ Z bzw. sDs = � gilt. Dann ist qs = 0 und für

jedes i ∈ Z folgt izs = 0. Die Gleichungen in (4.28) vereinfachen sich zu

� ⊆ iPTX und � ⊆ iDTX für jedes i ∈ Z. (4.36)
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Mithilfe von Satz 4.8 gibt es ein x ∈ X für jedes q ∈ D, sodass qTx = 0 = izs gilt. (4.29)

ist daher für ein beliebiges i ∈ Z erfüllt.

6) Die beiden Gleichungen (4.29) sind für ein i ∈ Z erfüllt. Daher gilt

n∑
l=1

rl (cos(ϕl − ϕi) + j sin(ϕl − ϕi)) xl

= λ0rs (cos(ϕs + ϕλ − ϕi) + j sin(ϕs + ϕλ − ϕi)) bzw.

n∑
l=1

iqlxl =
izs = λiqs oder qTx = λqT . Wir definieren Ai,s := xi für jedes i ∈ Ẑ, sodass

qTA = λqT gilt und (i) ist erfüllt.

Beispiel 4.6 : Gegeben ist die Vorzeichenmatrix A ∈ V
3×3 und der komplexe

Vorzeichenvektor D mit

A =

⎛
⎜⎝� −• �

� � −•
−• � �

⎞
⎟⎠ und D =

⎛
⎜⎝+• −• −•
+• +• −•
−• +• +•

⎞
⎟⎠ .

Die charakteristischen Vorzeichenmuster von D sind

1D =

⎛
⎜⎝+•

−•
−•

⎞
⎟⎠, 1P =

⎛
⎜⎝�
+•

−•

⎞
⎟⎠, 2D =

⎛
⎜⎝−

•

+•

−•

⎞
⎟⎠, 2P =

⎛
⎜⎝−

•

�
+•

⎞
⎟⎠, 3D =

⎛
⎜⎝−

•

−•
+•

⎞
⎟⎠ und 3P =

⎛
⎜⎝+•

−•
�

⎞
⎟⎠.

Es gilt

1VT = 1DTA = (+• ,−• ,+• ) = −2DT , 1WT = 1PTA = (+• ,�,−• ) = −2PT ,

2VT = 2DTA = (+• ,+• ,−• ) = −3DT , 2WT = 2PTA = (−• ,+• ,�) = −3PT ,

3VT = 3DTA = (−• ,+• ,+• ) = −1DT und 3WT = 3PTA = (�,−• ,+• ) = −1PT .

Für jedes k ∈ Z := {1, 2, 3} gilt kWk = kVk =+• und mit q := (r1, r2e
j 2π

3 , r3e
−j 2π

3 )T ,

λ := rλe
j π
3 und r1, r2, r3, rλ ∈+• kann gezeigt werden, dass ΨD eine Drehung ist, da q ∈ D

und für jedes k ∈ Z gilt �(λq/qk) ∈ kV sowie �(λq/qk) ∈ kW (siehe Satz 5.4 in Abschnitt

5.2 für die Untersuchung von Drehungen).

Aufgrund von Satz 4.13 ist D daher ein Vorzeichen-Eigenvektor von A, der in den ersten

Quadranten verdreht wird. Der Vektor q ist ein Eigenvektor von der Matrix

A :=

⎛
⎜⎝ 0 − r2

r1
rλ 0

0 0 − r3
r2
rλ

− r1
r3
rλ 0 0

⎞
⎟⎠ ∈ A bezüglich λ.
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Neben D gibt es genau zwei weitere komplexe Vorzeichenvektoren D′ und D′′ mit

D′ = D =

⎛
⎜⎝+• −• −•
−• +• −•
+• −• +•

⎞
⎟⎠ und D′′ =

⎛
⎜⎝+• +• +•

� +• +•

� � +•

⎞
⎟⎠ ,

welche Vorzeichen-Eigenvektoren von A sind. D′′ ist reell darstellbar und wird z.B. mit

D′′ = (+• ,+• ,+• )T beschrieben. Die komplexen Vorzeichenvektoren D′ und D′′ enthalten

jeweils die Eigenvektoren von A bezüglich λ′ = λ = rλe
−j π

3 und λ′′ = −rλ.

WennD ein Vorzeichen-Eigenvektor von einer Vorzeichenmatrix A ist undD in den ersten

Quadranten verdreht wird, dann sind im Allgemeinen im Gegensatz zu Satz 4.10 nicht

alle Elemente von D auch Eigenvektoren einer Matrix A ∈ A. Eine Vorzeichenmatrix

A erlaubt dagegen in den meisten Fällen nur Eigenwerte λ = rλe
jϕλ mit bestimmten

Argumenten ϕλ. Diese Eigenwerte und Eigenvektoren sind durch die Drehung ΨD von D

bestimmt.

Die Vorzeichenmatrix A aus Besipiel 4.6 erlaubt beispielsweise nur Eigenwerte mit den

Argumenten π
3
, −π

3
und π und für jeden Eigenvektor q = (r1e

jϕ1 , r2e
jϕ2 , r3e

jϕ3)T bezüglich

λ = rλe
j π
3 muss

(ϕ1 − ϕ2) mod
π

2
= (ϕ2 − ϕ3) mod

π

2
= (ϕ3 − ϕ1) mod

π

2
=

π

3

gelten. Drehungen werden im nächsten Abschnitt (Satz 5.4) weiter untersucht.

Analog zu Satz 4.11 kann mithilfe von Satz 4.13 festgestellt werden, ob eine

Vorzeichenmatrix komplexe Eigenwerte mit positivem Realteil erlaubt.

Satz 4.14 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N.

Die folgenden Punkte sind äquivalent.

(i) A erlaubt einen Eigenwert λ ∈ C mit �(λ) �= 0 und �(λ) > 0.

(ii) Es gibt einen komplexen Vorzeichenvektor, der Vorzeichen-Eigenvektor von A ist

und in den ersten Quadranten verdreht wird.

(iii) Es gibt einen komplexen Vorzeichenvektor D und eine Drehung ΨD von D, sodass

für jedes von Null verschiedene k ∈ {1, . . . , n} in D

(a) kVT ⊆ kDT A sowie

(b) kWT ⊆ kPT A und

(c) kVk =
kWk =+•

mit
(
kD, kP

)
= V (D, k) und ΨD(k) = (kV , kW) gilt.
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Beweis. (i) =⇒ (ii) : A erlaubt einen komplexen Eigenwert mit positivem Realteil und

jedes Element von A ist reell. Daher gibt es mit Satz 2.1 ein A ∈ A, ein q ∈ C
n und ein

λ ∈ C mit �(λ) > 0 und �(λ) > 0, sodass qTA = λqT gilt. q ist dann nach Definition 4.9

ein Element von einem Vorzeichen-Eigenvektor D von A, der in den ersten Quadranten

verdreht wird. (ii) =⇒ (i) ist offensichtlich und die Äquivalenz von (ii) und (iii) folgt

aus Satz 4.13.

Mit dem folgenden Satz kann untersucht werden, ob ein komplexer Vorzeichenvektor ein

Vorzeichen-Eigenvektor ist, der in den dritten Quadranten verdreht wird.

Satz 4.15 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N und ein komplexer

Vorzeichenvektor D. Die folgenden Punkte sind äquivalent.

(i) D ist ein Vorzeichen-Eigenvektor von A und D wird in den dritten Quadranten

verdreht.

(ii) Für jedes von Null verschiedene k ∈ {1, . . . , n} in D gilt mit
(
kD, kP

)
= V (D, k)

(a) kVT ⊆ kDT A ,

(b) kWT ⊆ kPT A ,

(c) kVk =
kWk =−•

und (kV , kW) = ΨD(k) ist eine Drehung von D.

Beweis. Der Beweis von (i) =⇒ (ii) verläuft analog zu dem von Satz 4.13. Für die

Umkehrung nehmen wir an, dass ein komplexer Vorzeichenvektor D und eine Drehung

ΨD gegeben sind, sodass die Bedingungen (a) bis (c) erfüllt sind. Wir definieren Ã := −A
und Ψ̃D(k) := (−kV ,−kW) mit (kV , kW) = ΨD(k) für jedes von Null verschiedene k in

D. Ψ̃D ist eine Drehung von D und alle drei Bedingungen von Satz 4.13.(ii) sind für Ã,
D und Ψ̃D erfüllt. D ist daher ein Vorzeichen-Eigenvektor von Ã im ersten Quadranten

und es gibt ein Ã ∈ Ã, ein q ∈ D und ein λ̃ ∈ C mit �(λ̃),�(λ̃) > 0, sodass qT Ã = λ̃qT

gilt. Mit A := −Ã und λ := −λ̃ gilt A ∈ A, �(λ),�(λ) < 0 und qTA = λqT . D ist daher

ein Vorzeichen-Eigenvektor von A im dritten Quadranten und (i) ist erfüllt.

https://doi.org/10.51202/9783186247087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:17:47. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186247087


78 4 Komplexe Eigenpaare von Vorzeichenmatrizen

Aus Satz 4.15 folgt analog zu Satz 4.14 das folgende Ergebnis, mit dem festgestellt werden

kann, ob eine Vorzeichenmatrix einen komplexen Eigenwert mit negativen Realteil erlaubt.

Satz 4.16 : Gegeben ist eine Vorzeichenmatrix A ∈ V
n×n mit n ∈ N.

Die folgenden Punkte sind äquivalent.

(i) A erlaubt einen Eigenwert λ ∈ C mit �(λ) �= 0 und �(λ) < 0.

(ii) Es gibt einen komplexen Vorzeichenvektor, der Vorzeichen-Eigenvektor von A ist

und in den dritten Quadranten verdreht wird.

(iii) Es gibt einen komplexen Vorzeichenvektor D und eine Drehung ΨD von D, sodass

für jedes von Null verschiedene k ∈ {1, . . . , n} in D

(a) kVT ⊆ kDT A sowie

(b) kWT ⊆ kPT A und

(c) kVk =
kWk =−•

mit
(
kD, kP

)
= V (D, k) und ΨD(k) = (kV , kW) gilt.
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5 Vorzeichen-Steuerbarkeit und -Stabilisierbarkeit

In diesem Abschnitt wird mit den Sätzen 5.1 und 5.2 jeweils die Vorzeichen-Steuerbarkeit

und die Vorzeichen-Stabilisierbarkeit charakterisiert. Anschließend wird in Abschnitt

5.2 eine alternative Darstellung eines komplexen Vorzeichenvektors D vorgestellt

und es werden Eigenschaften von Drehungen ermittelt. Beiden Resultate werden in

Abschnitt 5.3 genutzt, um die algorithmische Überprüfung der Vorzeichen-Steuerbarkeit

bzw. Vorzeichen-Stabilisierbarkeit zu diskutieren. Zusätzlich wird ein Algorithmus zum

Test der Vorzeichen-Steuerbarkeit beschrieben. In Abschnitt 5.4 werden abschließend zwei

Systeme auf Steuerbarkeit und Stabilisierbarkeit untersucht.

5.1 Charakterisierung der Vorzeichen-Steuerbarkeit und der

Vorzeichen-Stabilisierbarkeit

Aus der Definition des Vorzeichen-Eigenvektors und Satz 4.8 folgt unmittelbar,

dass ein Vorzeichen-System (A,B) nicht vorzeichen-steuerbar ist, wenn es einen

Vorzeichen-Eigenvektor D von A gibt, der gleichzeitig im Kokern von B ist. Daraus ergibt

sich die folgende Charakterisierung der Vorzeichen-Steuerbarkeit.

Satz 5.1 : Gegeben sind zwei Vorzeichenmatrizen A ∈ V
n×n und B ∈ V

n×r mit n, r ∈ N.

Die folgenden Punkte sind äquivalent.

(i) Das Vorzeichen-System (A,B) ist vorzeichen-steuerbar.
(ii) Für jeden komplexen Vorzeichenvektor D �= � der Ordnung n gilt

(a) D ist nicht im Kokern von B oder

(b) D ist kein Vorzeichen-Eigenvektor von A.
(iii) Für jeden komplexen Vorzeichenvektor D �= �, der im Kokern von B ist, sind die

folgenden Punkte erfüllt.

Wenn D reell darstellbar ist und D durch Q ∈ V
n beschrieben wird, dann gilt

(a) � �⊆ QTA,
(b) QT �⊆ QTA und

(c) −QT �⊆ QTA.
D ist kein Vorzeichen-Eigenvektor von A, der
(d) in den ersten Quadranten verdreht wird,

(e) um 90 Grad verdreht wird, oder

(f) in den dritten Quadranten verdreht wird.
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Beweis. Das Vorzeichen-System (A,B) ist nach Satz 2.5.(iv) genau dann

vorzeichen-steuerbar, wenn für jedes A ∈ A, jedes B ∈ B, jeden Wert λ ∈ C und

jeden Vektor q ∈ C
n mit q �= 0, qTB �= 0 oder qTA �= λqT gilt.

Wenn qTA = λqT für ein q �= 0 und ein λ ∈ C gilt, dann ist der komplexe Vorzeichenvektor

D, in dem sich q befindet, nach Definition 4.9 ein Vorzeichen-Eigenvektor von A. Wenn

D zusätzlich im Kokern von B ist, genau dann gibt es nach Satz 4.8 ein B ∈ B, sodass
qTB = 0 gilt. Daher ist (i) ⇐⇒ (ii) erfüllt.

Für (i) =⇒ (iii) folgen die Eigenschaften (a), (b) und (c) unmittelbar aus Satz 3.16

und die Eigenschaften (d), (e) und (f) aus den Sätzen 4.8, 4.14, 4.11 und 4.16. Für

die Umkehrung nehmen wir an, dass (i) nicht erfüllt ist. Dann gibt es ein A ∈ A,
ein B ∈ B und ein λ ∈ C, sodass λ nicht (A,B)-steuerbar ist. Wenn λ ∈ �, λ ∈+• ,
oder λ ∈−• gilt, dann folgt jeweils aus Satz 3.7, 3.14 oder 3.15, dass (a), (b) oder (c)

für ein Vorzeichenvektor Q nicht erfüllt ist. Q ist dann eine reelle Darstellung eines

komplexen Vorzeichenvektors D und Q ist im Kokern von B. Andernfalls gilt λ ∈ C \ R
und aus Satz 2.6 folgt, dass ohne Einschränkungen �(λ),�(λ) > 0; �(λ) = 0,�(λ) > 0

oder �(λ),�(λ) < 0 gilt. Der Vektor q beschreibt einen zugehörigen Eigenvektor und

der zu q gehörige komplexe Vorzeichenvektor D ist dann im Kokern von B und ein

Vorzeichen-Eigenvektor von A, der in den ersten Quadranten, um 90 Grad oder in den

dritten Quadranten verdreht ist. Daher ist entweder (d), (e) oder (f) nicht erfüllt.

Für die Vorzeichen-Stabilisierbarkeit eines Vorzeichen-Systems (A,B) ist im Gegensatz

zur Vorzeichen-Steuerbarkeit nach Definition 3.20 und Satz 2.8.(iii) nur die

(A,B)-Steuerbarkeit von allen A ∈ A, B ∈ B und λ ∈ C mit �(λ) ≥ 0 notwendig.

Es ergibt sich der folgende Zusammenhang.

Satz 5.2 : Gegeben sind die Vorzeichenmatrizen A ∈ V
n×n und B ∈ V

n×r mit n, r ∈ N.

Die folgenden Punkte sind äquivalent.

(i) Das Vorzeichen-System (A,B) ist vorzeichen-stabilisierbar.
(ii) Für jeden komplexen Vorzeichenvektor D, der im Kokern von B ist, sind die

folgenden Punkte erfüllt.

Wenn D reell darstellbar ist und D durch Q ∈ V
n beschrieben wird, dann gilt

(a) � �⊆ QTA.
(b) QT �⊆ QTA.
D ist kein Vorzeichen-Eigenvektor von A, der
(c) in den ersten Quadranten verdreht wird.

(d) um 90 Grad verdreht wird.
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Beweis. Der Beweis verläuft analog zu dem Beweis (i) ⇐⇒ (iii) von Satz 5.1, wobei

Satz 3.21 anstatt von Satz 3.16 verwendet und Satz 3.15 nicht benötigt wird.

Beispiel 5.1 (Fortsetzung von Beispiel 3.6, 4.4 und 4.5): Gegeben sind die

Vorzeichenmatrizen A ∈ V
3×3 und B ∈ V

3 mit

A =

⎛
⎜⎝� +• �
−• � −•
� � −•

⎞
⎟⎠ und B =

⎛
⎜⎝−

•

+•

+•

⎞
⎟⎠ .

In Beispiel 3.6 wurde gezeigt, dass jeder reelle Eigenwert in jedem System (A,B) ∈ (A,B)
steuerbar ist und in den Beispielen 4.4 und 4.5 wurde jeweils gezeigt, dass der komplexe

Vorzeichenvektor

D =

⎛
⎜⎝+• � +•

−• +• −•
+• +• +•

⎞
⎟⎠

im Kokern von B und zugleich ein Vorzeichen-Eigenvektor von A ist, der um 90

Grad verdreht wird. Daher ist das Vorzeichen-System (A,B) nach Satz 5.1 nicht

vorzeichen-steuerbar und nach Satz 5.2 auch nicht vorzeichen-stabilisierbar. Um genau

zu sein, gibt es für jedes Element q aus D und jedes λI ∈+• nach Satz 4.8 ein B ∈ B und

nach Satz 4.10 ein A ∈ A, sodass der Wert λ = jλI nicht (A,B)-steuerbar ist.

Die komplexen Vorzeichenvektoren D und D sind die einzigen Vorzeichen-Eigenvektoren

von A, welche im Kokern von B sind. Der Vektor q = (1 − j,−1 − j, 1)T (siehe Beispiel

3.6) ist beispielsweise ein Element von D.

Neben D und D gibt es genau noch einen weiteren Vorzeichen-Eigenvektor von A,

D′ =

⎛
⎜⎝� � �

� � �
� � +•

⎞
⎟⎠ ,

welcher reell darstellbar ist (z.B. mit D′ = (�,�,+• )T ), aber nicht im Kokern von B ist.

5.2 Weitere Eigenschaften komplexer Vorzeichenvektoren

In diesem Abschnitt wird mit Satz 5.3 eine alternative Darstellung eines komplexen

Vorzeichenvektors vorgestellt und es wird gezeigt, dass die Bedingung aus Satz 4.5
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hinreichend ist. Diese neue Darstellung wird anschließend in Satz 5.4 für die Untersuchung

von Drehungen benutzt. Beide Sätze bilden die Grundlage für die algorithmische

Überprüfung der Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit in

Abschnitt 5.3.

Satz 5.3 : Gegeben ist eine Vorzeichenmatrix X ∈ V
n×n mit n ∈ N. Es gilt(

kD, kP
)
:= V (X , k) für jedes k ∈ Ẑ = {1, . . . , n} und R bezeichnet die Menge der

Rotationsmatrizen nach (4.4). Die folgenden Punkte sind äquivalent.

(i) Die Vorzeichenmatrix X beschreibt einen komplexen Vorzeichenvektor.

(ii) Für jedes x, y, z ∈ Ẑ gilt zDz ∈ {�,+• } und

zDz

(
xPy

xDy

)
⊆
(

zDy
zPy

−zPy
zDy

)(
xPz

xDz

)
.

(iii) Die Menge Ẑ lässt sich in U , Ũ und N aufteilen und es gibt die Abbildung

ν : Ẑ → (U ∪ {0})×R, k �→ (ν1(k),Rk), sodass die folgenden Punkte erfüllt sind.

(a) Wenn k ∈ N , dann gilt ν1(k) = 0 und iPk =
iDk = � für jedes i ∈ Ẑ.

Wenn andernfalls k /∈ N , dann gilt kDk =+• .

(b) Wenn k ∈ Ũ , dann gilt ν1(k) ∈ U und

(
kPν1(k)

kDν1(k)

)
= Rk

(�
+•

)
.

(c) Wenn k ∈ U , dann gilt ν1(k) ∈ U und

wenn zusätzlich |U | > 1, dann gilt

(
kPν1(k)

kDν1(k)

)
= Rk

(
+•

+•

)
.

(d) Für zwei verschiedene v, w ∈ U gibt eine Folge i1, i2, . . . , ik, sodass i1 = w,

ik = v und il+1 = ν1(il) für jedes l ∈ {1, . . . , k − 1} gilt.

(e) Wenn i, k ∈ U mit i /∈ {k, ν1(k)} oder k ∈ Ũ und i ∈ U ∪ Ũ gilt,

dann gilt

(
iPν1(k)

iDν1(k)

)
= Rk

(
iPk

iDk

)
.

Beweis. (i) =⇒ (ii) wurde bereits in Satz 4.5 gezeigt. Für den Beweis von (ii) =⇒ (iii)

gilt aufgrund der Annahme für alle x, y, z ∈ Ẑ = {1, . . . , n}, zDz ∈ {�,+• },

xPy
zDz ⊆ xDz

zPy +
xPz

zDy und (5.1a)

xDy
zDz ⊆ xDz

zDy − xPz
zPy. (5.1b)

1) Wenn kDk = � für ein k ∈ Ẑ gilt, dann definieren wir k ∈ N und ν1(k) := 0. Aus

(5.1b) mit z = k und i = x = y ∈ Ẑ folgt � ⊆ iDk
kDi − iPk

kPi bzw. (
iDk)

2 = −(iPk)
2.

Daher gilt iDk =
iPk = � für alle i ∈ Ẑ und (iii.a) ist erfüllt.
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2) Wenn vDw = vPw = � für zwei v, w ∈ Ẑ gilt, dann folgt aus (5.1b) mit x = y = w und

z = v, wDw
vDv = � und es gilt entweder v ∈ N oder w ∈ N . Wir definieren Z := Ẑ \N ,

sodass für zwei v, w ∈ Z entweder vDw �= � oder vPw �= � gilt. Außerdem teilen wir

die Menge Z in die Mengen U und Ũ derart auf, dass U die größtmögliche Anzahl an

Elementen enthält und vDw �= � �= vPw für je zwei verschiedene v, w ∈ U gilt. Daraus

folgt, dass es für jedes k ∈ Ũ ein v ∈ U gibt, sodass entweder vDk = � oder vPk = � gilt.

Wir definieren dann ν1(k) := v für dieses k ∈ Ũ und v ∈ U . Abhängig von vDk und vPk

definieren wir das Rk ∈ R, sodass (iii.b) erfüllt ist.

3.1) Ohne Einschränkungen der Allgemeinheit gilt U = {1, . . . , n′}. Wenn n′ = 1, dann

definieren wir ν1(1) := 1 und wenn n′ = 2, dann definieren wir ν1(1) := 2 und ν1(2) := 1.

Außerdem definieren wir zusätzlich R1 ∈ R und R2 ∈ R derart, dass (iii.c) erfüllt ist,

wenn n′ = 2 gilt.

3.2) Wir nehmen nun an, dass n′ > 2 gilt. In den folgenden Schritten 4) - 6) wird gezeigt,

dass es dann für jedes w ∈ U ein v ∈ U \ {w} gibt, sodass für jedes i ∈ U \ {v, w}

iDw
iDv = S iPw

iPv mit S = wPv
wDv (5.2)

erfüllt ist. Dafür wird für zwei verschiedene x, y ∈ U die Menge xMy wie folgt definiert

xMy = { k ∈ U \ {x, y} | (5.2) ist mit w = x, v = y und i = k erfüllt } .

4) Für drei x, y, z ∈ U gilt im Allgemeinen

zDx = SxzPx, (5.3a)

zDy = SyzPy und (5.3b)

xDy = SxyxPy (5.3c)

mit Sx,Sy,Sxy ∈ {+• ,−• }. Aufgrund von (5.3a) und (5.3b) gilt zDx
zDy = Sx SyzPx

zPy,

sodass aufgrund von (5.3c), (5.2) mit w = x, v = y und i = z genau dann erfüllt ist (es gilt

z ∈ xMy), wenn Sxy = Sx Sy gilt. Gleichzeitig gilt aufgrund von (5.3c), yDx = −SxyyPx,

sodass (5.2) mit w = y, v = x und i = z genau dann nicht erfüllt ist (es gilt z /∈ yMx),

wenn Sxy = Sx Sy gilt. D.h. es gilt

Sxy = Sx Sy ⇐⇒ z ∈ xMy ⇐⇒ z /∈ yMx. (5.3d)

Analog ergibt sich aus (5.3a) und (5.3c), xDz
xDy = −Sx SxyxPz

xPy und aus (5.3b),
yDz = −Sy yPz. Daher ist (5.2) mit w = y, v = z und i = x genau dann erfüllt (es gilt

x ∈ yMz), wenn −Sx Sxy = −Sy bzw. Sxy = Sx Sy gilt, d.h.

Sxy = Sx Sy ⇐⇒ x ∈ yMz. (5.3e)
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Zusammenfassend folgt aus (5.3d) und (5.3e) für je drei verschiedene x, y, z ∈ U

z ∈ xMy ⇐⇒ z /∈ yMx ⇐⇒ x ∈ yMz. (5.4)

5) Wir werden im Folgenden zeigen, dass für zwei verschiedene k, w ∈ U entweder
wMk = U \ {w, k} gilt, oder es gilt

wMk ∪ {k} ⊆ wMv für jedes v ∈ U \ ({w, k} ∪ wMk). (5.5)

5.1) Wir wählen zwei verschiedene w, k ∈ U und wir nehmen an, dass wMk �= U \ {w, k}
gilt. Dann gibt es ein v ∈ U \ ({w, k} ∪ wMk) und es gilt

v /∈ wMk. (5.6a)

Aufgrund von (5.4) gilt dann

k ∈ wMv. (5.6b)

5.2) Wenn wMk = ∅, dann ist die Aussage in (5.5) zusammen mit (5.6b) erfüllt. Wir

nehmen nun an, dass wMk �= ∅ gilt und wir fixieren ein i ∈ wMk.

5.3) Ohne Einschränkungen der Allgmeinheit gilt mit Sk,Sv,Si ∈ {+• ,−• }.

wDk = Sk wPk, (5.6c)

wDv = Sv wPv und (5.6d)

wDi = Si wPi. (5.6e)

Aufgrund von (5.6a) und (5.2) gilt vDw
vDk = −SkvPw

vPk. Mit (5.6d) ergibt sich

vPk = SkSvvDk (5.6f)

Da i ∈ wMk gilt, folgt aus (5.2), iDw
iDk = SkiPw

iPk. Zusammen mit (5.6e) gilt dann

iPk = −SkSiiDk. (5.6g)

Aus (5.1a) mit x = w, y = k und z = v zusammen mit (5.6f) und (5.6d) ergibt sich
wPk ⊆ wDv

vDkSv(Sk+ +• ) und aus (5.1b) mit x = w, y = k und z = i zusammen mit

(5.6g) und (5.6e) ergibt sich wDk ⊆ wDi
iDk(Sk+ +• ). Zusammen mit (5.6c) gilt daher

wDk =
wDv

vDk Sv und wDk =
wDi

iDk bzw.

vDk
kDi =

wDv
wDi Sv, wenn Sk =+• gilt. (5.6h)
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Analog ergibt sich aus (5.1a) mit x = w, y = k und z = i zusammen mit (5.6g) und (5.6e),
wPk ⊆ wDi

iDkSi(+• − Sk) und aus (5.1b) mit x = w, y = k und z = v zusammen mit (5.6f)

und (5.6d), wDk ⊆ wDv
vDk(+• − Sk). Zusammen mit (5.6c) gilt daher wDk = −wDi

iDk Si
und wDk =

wDv
vDk bzw

vDk
kDi = −wDv

wDi Si, wenn Sk =−• gilt. (5.6i)

Auf die gleiche Weise ergeben sich aus (5.1a) mit x = v, y = i und z = k zusammen mit

(5.6f) und (5.6g) und aus (5.1b) mit x = v, y = i und z = w zusammen mit (5.6d) und

(5.6e),

vPi ⊆ vDk
kDi Sk(Sv + Si) und vDi ⊆ wDv

wDi Sv(Sv + Si) (5.6j)

und aus (5.1a) mit x = v, y = i und z = w zusammen mit (5.6d) und (5.6e) und (5.1b)

mit x = v, y = i und z = k zusammen mit (5.6f) und (5.6g),

vPi ⊆ wDv
wDi(Si − Sv) und vDi ⊆ −vDk

kDi Sv(Si − Sv). (5.6k)

5.4) Wir nehmen zunächst an, dass Sv = Si gilt. Aus (5.6j) ergibt sich dann
vPi =

vDk
kDiSkSv und vDi =

wDv
wDi bzw.

iPv = −vDk
kDi Sk Sv und (5.6l)

wDv =
iDw

iDv. (5.6m)

Aus (5.6l) mit (5.6h), wenn Sk =+• gilt und (5.6i), wenn Sk =−• gilt ergibt sich
iPv = −wDv

wDi. Mit (5.6e) ergibt sich wDv = SviPv
iPw, sodass zusammen mit (5.6m)

und (5.6d), i ∈ wMv gilt.

5.5) Wir nehmen nun an, dass Sv = −Si gilt. Dann ergibt sich aus (5.6k), vPi = SiwDv
wDi

und vDi =
vDk

kDi. Mit (5.6e) ergibt sich daher

wDv =
iPv

iPw und (5.6n)

iDv =
vDk

kDi. (5.6o)

Aus (5.6o) mit (5.6h), wenn Sk =+• gilt und (5.6i), wenn Sk =−• gilt ergibt sich iDv =

Sv wDv
wDi bzw.

wDv = Sv iDv
iDw. Zusammen mit (5.6n) und (5.6d) gilt i ∈ wMv.

5.6) Für jedes i ∈ wMk gilt i ∈ wMv, sodass mit (5.6b) die Aussage in (5.5) erfüllt ist.

6) Die Aussage in 3.2) ergibt sich mit (5.5) aus einer einfachen Rekursion. Für ein w ∈ U ,

wählen wir ein k ∈ U \{w}, o.E.d.A. k = 1. Wenn wMk = U \{w, k}, dann ist die Aussage

in 3.2) erfüllt und andernfalls gibt es ein v ∈ U \ ({w, k}∪wMk), o.E.d.A. v = k+1. Dann
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gilt nach (5.5), wMk ∪{k} ⊆ wMk+1. Dieser Schritt wird wiederholt bis wMv = U \ {w, v}
für ein v ∈ U \ {w} gilt.

Daher gibt es für jedes w ∈ U genau ein v ∈ U , sodass (5.2) für jedes i ∈ U \{v, w} erfüllt
ist. Wir definieren ν1(w) := v und Rw abhängig von vPw und vDw, sodass (iii.c) erfüllt

ist.

7) Es wird nun die Aussage in (iii.d) gezeigt. Dafür sind zwei v, w ∈ U mit v �= w gegeben

und o.E.d.A. gilt w = 1. Wenn v = ν1(1) gilt, dann ist die Aussage in (iii.d) mit k = 2

erfüllt. Andernfalls gilt o.E.d.A. ν1(1) = 2 und v /∈ {1, 2}. Der Wert ν1(1) wurde in 6)

derart definiert, dass 1M2 = U \ {1, 2} bzw. v ∈ 1M2 gilt. Zusammen mit (5.4) ergibt sich

daraus 2 ∈ vM1 und wir definieren k := 2.

7.1) Es gilt v /∈ {1, . . . , k} und aufgrund von 7) für k = 2 und (5.9) für k > 2 gilt

k ∈ vMi für jedes i ∈ {1, . . . , k − 1}. (5.7)

7.2) Wir nehmen zunächst an, dass ν1(k) �= v gilt. Dann folgt der Definition von ν1, dass
kMν1(k) = U \ {k, ν1(k)} bzw. v ∈ kMν1(k) gilt. Aufgrund von (5.4) gilt dann k /∈ vMν1(k),

sodass mit (5.7) ν1(k) /∈ {1, . . . , k − 1} gilt. O.E.d.A. gilt daher ν1(k) = k + 1.

7.3) Dann gilt v ∈ kMk+1 bzw.

k + 1 ∈ vMk (5.8)

und aufgrund von (5.7) gilt i /∈ vMk für jedes i ∈ {1, . . . , k − 1}. Mit (5.5) folgt daraus
vMk ∪ {k} ∈ vMi, sodass aus (5.8)

k + 1 ∈ vMi für jedes i ∈ {1, . . . , k} (5.9)

folgt und wir führen den Beweis bei 7.1) mit k + 1 anstelle von k fort.

7.3) Andernfalls gilt v = ν1(k) und die Aussage in (iii.d) ist erfüllt.

8.1) Es wird nun die Aussage in (iii.e) gezeigt. Dafür nehmen wir zunächst an, dass

i, k ∈ U ; i /∈ {k, ν1(k)} und kDν1(k) =
kPν1(k) = S gilt. Dann gilt Rk = SI2 und aufgrund

von (5.2) mit w = k und v = ν1(k) sowie (5.1b) mit x = k, y = ν1(k) und z = i gilt

S = iPk
iPν1(k) =

iDk
iDν1(k). Daher ist

iPν1(k) = S iPk und iDν1(k) = S iDk erfüllt.

8.2) Wenn andernfalls i, k ∈ U , i /∈ {k, ν1(k)} und kPν1(k) = −kDν1(k) = S gilt, dann gilt

aufgrund von (5.2) mit w = k und v = ν1(k) und (5.1a) mit x = k, y = ν1(k) und z = i,

S = −iPk
iDν1(q) =

iDk
iPν1(k). Daher ist

iPν1(k) = S iDk und iDν1(k) = −S iPk und erfüllt.

8.3) Wir nehmen abschließend an, dass k ∈ Ũ und i ∈ U ∪ Ũ gilt. Dann ergibt sich (iii.e)

direkt aus (iii.b) und (ii) mit x = i, z = k und y = ν1(k).
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8.4) Die Aussage in (iii.e) wurde gezeigt, sodass (ii) =⇒ (iii) bewiesen ist. Durch

einfache Umformungen folgt aus (iii.e) mit RTR = RRT = I2 für ein R ∈ R(
kPi

kDi

)
= Rk

(
ν1(k)Pi

ν1(k)Di

)
für zwei i, k ∈ Ũ . (5.10)

9) Für den Beweis von (iii) =⇒ (i) wird in 9.1) einen Vektor q ∈ C
n erzeugt, wobei die

Vektoren r und ϕ jeweils die Beträge und die Argumente der Elemente von q beschreiben.

Anschließend wird in 9.2) bis 9.6) gezeigt, dass

rxry sin(ϕy − ϕx) ∈ xPy und rxry cos(ϕy − ϕx) ∈ xDy (5.11)

für jedes x, y ∈ Ẑ := {1, . . . , n} gilt.

9.1) Ohne Einschränkungen der Allgemeinheit gilt U = {1, . . . , n′}. Wir definieren rk := 0

und ϕk := 0 für jedes k ∈ N . Wenn U = ∅, dann ergibt sich Ũ = ∅ aus (iii.b) und es gilt

N = Ẑ. Andernfalls gilt n′ > 0 und für jedes k ∈ Z := U ∪ Ũ wählen wir ein beliebiges

rk ∈+• und wir definieren ϕ1 := 0. Wenn n′ > 1, dann gilt mit (iii.d) o.E.d.A. ν1(k) = k+1

für jedes k ∈ U \ {n′}. Für jedes k ∈ U definieren wir ein ρk ∈+• , sodass

n′∑
i=1

ρi =
π

2
(5.12a)

erfüllt ist. Zudem definieren wir ρk := 0 für jedes k ∈ Ũ und

ωk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, wenn Rk =

(
+• �
� +•

)
,

π
2
, wenn Rk =

(� +•

−• �
)
,

π, wenn Rk =

(
−• �
� −•

)
,

−π
2
, wenn Rk =

(� −•
+• �

)
.

(5.12b)

für jedes k ∈ Z. Abschließend definieren wir

ϕk+1 := ϕk + ωk + ρk für jedes k ∈ U \ {n′} und (5.12c)

ϕk := ϕν1(k) − ωk − ρk für jedes k ∈ Ũ . (5.12d)

9.2) Für jedes k ∈ N und jedes i ∈ Ẑ gilt iPk =
iPk = � aufgrund von (iii.a). Außerdem

gilt dann rk = 0, sodass (5.11) erfüllt ist, wenn x ∈ N oder y ∈ N gilt.
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9.3) Für jedes x, y ∈ Z mit x = y gilt rx cos(ϕx − ϕx) ∈ xDx =+• . Wenn |Z| = 1 ist daher

(5.11) erfüllt. Andernfalls folgt ϕν1(k) − ϕk = ωk + ρk für jedes k ∈ Z \ {n′} aus (5.12c)

und (5.12d). Mit den Additionstheoremen in (2.4) ergibt sich(
sin(ϕν1(k) − ϕk)

cos(ϕν1(k) − ϕk)

)
= Rk

(
sin (ρk)

cos (ρk)

)
mit Rk =

(
cos(ωk) sin(ωk)

− sin(ωk) cos(ωk)

)
. (5.12e)

Aufgrund von (5.12b) gilt Rk ∈ Rk für jedes k ∈ Z.

9.4) Für zwei verschiedene x, y ∈ U , ohne Einschränkungen y > x, ergibt sich

ϕy − ϕx = ωx + ωx+1 + . . .+ ωy−1 +
y−1∑
i=x

ρi aus (5.12c). Analog zu (5.12e) ergibt sich daher

(
sin(ϕy − ϕx)

cos(ϕy − ϕx)

)
= Ry−1 . . . Rx+1Rx

⎛
⎜⎜⎝sin

(
y−1∑
i=x

ρi

)
cos

(
y−1∑
i=x

ρi

)
⎞
⎟⎟⎠ .

Aufgrund von (5.12a) gilt 0 <
y−1∑
i=x

ρi ≤
n′−1∑
i=1

ρi <
π
2
. Zusammen mit (iii.c) und (iii.e) gilt

(
sin(ϕy − ϕx)

cos(ϕy − ϕx)

)
∈ Ry−1 . . .Rx+1Rx

(
+•

+•

)
(iii.c)
= Ry−1 . . .Rx+1

(
xPx+1

xDx+1

)

(iii.e)
= Ry−1 . . .Rx+2

(
xPx+2

xDx+2

)
= . . . = Ry−1

(
xPy−1

xDy−1

)
=

(
xPy

xDy

)
.

Gleichung (5.11) ist daher für jedes x, y ∈ U erfüllt.

9.5) Für jedes y ∈ Ũ und jedes x ∈ U , ohne Einschränkungen der Allgemeinheit ν1(y) ≥ x,

folgt aus (5.12c) und (5.12d), ϕy − ϕx = ωx + ωx+1 + . . .+ ων1(y)−1 +
ν1(y)−1∑

i=x

ρi − ωy − ρy.

Wenn x = ν1(y), dann gilt mit (iii.b)(
sin(ϕx − ϕy)

cos(ϕx − ϕy)

)
= Rx

(
sin (0)

cos (0)

)
∈ Rx

(�
+•

)
(iii.b)
=

(
yPx

yDx

)

und (5.11) ist erfüllt. Andernfalls gilt mit (iii.c) und (iii.e)

(
sin(ϕy − ϕx)

cos(ϕy − ϕx)

)
= RT

y Rν1(y)−1 . . . Rx

⎛
⎜⎜⎜⎜⎝
sin

(
ν1(y)−1∑

i=x

ρi

)

cos

(
ν1(y)−1∑

i=x

ρi

)
⎞
⎟⎟⎟⎟⎠

∈ RT
yRν1(y)−1 . . .Rx

(
+•

+•

)
= RT

y

(
xPν1(y)

xDν1(y)

)
(iii.e)
=

(
xPy

xDy

)
.
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9.6) Abschließend wird der Fall x, y ∈ Ũ untersucht, wobei ohne Einschränkungen

der Allgemeinheit ν1(x) ≥ ν1(y) gilt. Dann ergibt sich aus (5.12c) und (5.12d),

ϕy − ϕx = ωx + ρx + ων1(x) + ων1(x)+1 + . . .+ ων1(y)−1 +
ν1(y)−1∑
i=ν1(x)

ρi − ωy − ρy.

Wenn ν1(x) = ν1(y) gilt, dann folgt mit (iii.b) und (iii.e)(
sin(ϕy − ϕx)

cos(ϕy − ϕx)

)
= RT

y Rx

(
sin (0)

cos (0)

)
∈ RT

yRx

(�
+•

)
(iii.b)
= RT

y

(
xPν1(x)

xDν1(x)

)

= RT
y

(
xPν1(y)

xDν1(y)

)
(iii.e)
=

(
xPy

xDy

)
.

Andernfalls gilt mithilfe von (iii.c), (iii.e) und (5.10)

(
sin(ϕy − ϕx)

cos(ϕy − ϕx)

)
= RxR

T
y Rν1(y)−1 . . . Rν1(x)

⎛
⎜⎜⎜⎜⎝
sin

(
ν1(y)−1∑
i=ν1(x)

ρi

)

cos

(
ν1(y)−1∑
i=ν1(x)

ρi

)
⎞
⎟⎟⎟⎟⎠

∈ RxRT
yRν1(y)−1 . . .Rν1(x)

(
+•

+•

)
(iii.c)
= RxRT

y

(
ν1(x)Pν1(y)

ν1(x)Dν1(y)

)

(iii.e)
= Rx

(
ν1(x)Py

ν1(x)Dy

)
(5.10)
=

(
xPy

xDy

)
.

9.7) Die beiden Gleichungen in (5.11) sind für jedes x, y ∈ Ẑ erfüllt. Das heißt, q ist ein

Element von dem komplexen Vorzeichenvektor D, welcher durch die Vorzeichenmatrix X
beschrieben wird.

Nach Satz 5.3.(iii) kann ein komplexer Vorzeichenvektor D mit drei Mengen U, Ũ und

N und einer Abbildung ν beschrieben werden. Dabei sind alle Elemente von U in D

unabhängig zueinander, für jede Element in k ∈ Ũ gibt es ein Element i ∈ U , welches

abhängig von k in D ist und jedes Element k ∈ N ist in D nicht von Null verschieden.

Die Funktion ν : k �→ (i,R) ermittelt den Nachfolger i ∈ U von einem Element k ∈ U oder

das zu k ∈ Ũ abhängige Elemente i ∈ U . Zudem wird die Vorzeichen-Rotationsmatrix

R ∈ R übergeben, welche die Orientierung des Nachfolgers bzw. des abhängigen Elements

beschreibt. Werden die Vorzeichen-Rotationsmatrizen mit den Zahlen 0 bis 3 in der

Reihenfolge von (4.4) nummeriert, dann lässt sich die Funktion ν mit einer 2× n Matrix

mit Einträgen aus Z beschreiben. Die Einträge der ersten Zeile sind dann aus U ∪ {0}
und bezeichnen den Nachfolger von k bzw. das zu k abhängig Element in Spalte k und

die Einträge der zweiten Zeile enthält dann den Identifier 0 bis 3 für die zugehörige
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Vorzeichen-Rotationsmatrix. Die Mengen U , Ũ und N können anhand der Abbildung

ν identifiziert werden, sodass ein komplexer Vorzeichenvektor allein durch die Funktion ν

beschrieben ist.

Wenn mehrere Elemente in einem komplexen Vorzeichenvektor abhängig voneinander sind,

dann ist genau ein Element davon in U und die anderen sind in Ũ . In dieser Arbeit gehört

immer das Kleinste aller voneinander abhängigen Elemente zu U .

Mit dem folgenden Beispiel wird gezeigt, dass die Umrechnung zwischen den beiden

Darstellungen eines komplexen Vorzeichenvektors von Hand durchführbar ist, aber

besonders für große Vektoren nur mit Computerunterstützung sinnvoll ist.

Beispiel 5.2 : Gegeben ist der komplexe Vorzeichenvektor D der Ordnung n = 7, der

mit der folgenden Funktion beschrieben ist

ν =

(
5 1 1 3 3 5 0

2 3 0 3 1 3 0

)
. (5.13)

Für k = 7 gilt ν(k) = (0,R7), sodass nach Satz 5.3.(iii).(a), N := {7} und iD7 =
iP7 = �

für jedes i ∈ {1, . . . , 7} =: Ẑ gilt. Für jedes i ∈ Z := Ẑ \ N = {1, . . . , 6} gilt daher
iDi =+• . Außerdem gilt für jedes k ∈ Z, ν(k) = (i,Rk) mit i ∈ {1, 3, 5} =: U , sodass sich

Ũ := Z \ U = {2, 4, 6} ergibt. Aus der zweiten Zeile von (5.13) folgt

R1 =

(
−• �
� −•

)
, R2 = R4 = R6 =

(� −•
+• �

)
, R3 =

(
+• �
� +•

)
, R5 =

(� +•

−• �
)
.

Es gilt ν(1) = (5,R1), ν(5) = (3,R5) und ν(3) = (1,R1), sodass sich aus (iii).(c)(
1P5

1D5

)
= R1

(
+•

+•

)
=

(
−•
−•

)
,

(
5P3

5D3

)
= R5

(
+•

+•

)
=

(
+•

−•

)
und(

3P1

3D1

)
= R3

(
+•

+•

)
=

(
+•

+•

)
sowie

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+• 2D1 +• 4D1 −• 6D1 �
1P2 +• 3D2

4D2
5D2

6D2 �
−• 2P3 +• 4D3 −• 6D3 �

1P4
2P4

3P4 +• 5D4
6D4 �

−• 2P5 −• 4P5 +• 6D5 �
1P6

2P6
3P6

4P6
5P6 +• �

� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ergibt.
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Mit (iii)(b) folgt aus ν(2) = (1,R2), ν(4) = (3,R4) und ν(6) = (5,R6)(
2P1

2D1

)
= R2

(�
+•

)
=

(
4P3

4D3

)
=

(
6P5

6D5

)
=

(
−•
�
)

und aus (iii).(e) mit k = 4 ∈ Ũ und i = 3 ∈ U sowie i = 2 ∈ Ũ folgt dann z.B.(
3P1

3D1

)
= R2

(
3P2

3D2

)
bzw.

(
3P2

3D2

)
= RT

2

(
+•

+•

)
=

(
+•

−•

)
sowie(

2P3

2D3

)
= R4

(
2P4

2D4

)
bzw.

(
2P4

2D4

)
= RT

4

(
−•
−•

)
=

(
−•
+•

)
.

Es ergibt sich die folgende Darstellung für den komplexen Vorzeichenvektor

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+• � +• +• −• +• �
+• +• −• +• −• −• �
−• −• +• � −• +• �
+• −• +• +• −• −• �
−• +• −• +• +• � �
−• −• −• −• +• +• �
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Der komplexe Vektor q := (1, ej
π
2 , e−j π

10 , ej
2π
5 , e−j 4π

5 , e−j 3π
10 , 0)T ist beispielsweise ein

Element von D. Da ϕ1 − ϕ2 = ϕ3 − ϕ4 = ϕ5 − ϕ6 = −π
2
gilt, sind 2, 4 und 6 jeweils

abhängig von 1, 3 und 5 in D. Außerdem gilt �q(5, 1) = �q(1) =
π
5
, sodass 5 ein Nachfolger

von 1 ist; �q(3, 5) = �q(5) =
π
5
, sodass 3 ein Nachfolger von 5 ist und �q(1, 3) = �q(3) =

π
10
,

sodass 1 ein Nachfolger von 3 ist.

Beispiel 5.3 : Für die beiden komplexen Vorzeichenvektoren A und C aus Beispiel 4.1

gilt C = A bzw. A = C. Die beiden komplexen Vorzeichenvektoren sind mit

νA =

(
2 1

0 3

)
und νC =

(
2 1

3 0

)

beschrieben, wobei jeweils U = {1, 2} und Ũ = N = ∅ gilt.

Der komplexe Vorzeichenvektor D aus Beispiel 4.2 und 4.3 lässt sich mit

νD =

(
3 1 2 1

3 3 1 1

)

beschreiben, wobei U = {1, 2, 3}, Ũ = {4} und N = ∅ gilt.
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Der komplexe Vorzeichenvektor D aus Beispiel 4.4, 4.5 und 5.1 lässt sich mit

νD =

(
3 1 1

0 1 3

)

beschreiben, wobei U = {1, 3}, Ũ = {2} und N = ∅ gilt. Die komplexen

Vorzeichenvektoren D und D′ aus Beispiel 5.1 sind durch die Funktionen

νD =

(
3 1 1

3 3 0

)
und νD′ =

(
0 0 3

0 0 3

)

beschrieben und für den komplexen Vorzeichenvektor D aus Beispiel 4.6 gilt

νD =

(
2 3 1

1 1 1

)
, U = {1, 2, 3} und Ũ = N = ∅.

Für die Untersuchung, ob ein komplexer Vorzeichenvektor D ein Vorzeichen-Eigenvektor

ist, der in den ersten oder dritten Quadranten verdreht wird, muss in den Sätzen 4.13 und

4.15 u.a. geprüft werden, ob die Funktion ΨD eine Drehung von D ist. Dafür kann der

folgende Satz verwendet werden.

Satz 5.4 : Gegeben ist ein komplexer Vorzeichenvektor D der Ordnung n ∈ N, der mit

U , Ũ und N und der Funktion ν : k �→ (ν1(k),Rk) nach Satz 5.3.(iii) beschrieben ist. Für

jedes w ∈ U∗ gilt (wD, wP) := V ∗(D, w). Zudem ist eine Abbildung ΨD : U → V
n × V

n,

k �→ (kV , kW) gegeben. Die folgenden Punkte sind äquivalent.

(i) ΨD ist eine Drehung von D.

(ii) Es gibt ein ρλ ∈+• , ein ωλ ∈ {−π
2
, 0, π

2
, π} und für jedes k ∈ U jeweils ein ρk ∈+• ,

ein vk ∈ U∗ und ein Tk ∈ R, sodass die folgenden Punkte erfüllt sind.

(a) Es gilt

(
kVT

kWT

)
= Tk

(
vkDT

vkPT

)
.

(b) Es gilt cos(ωλ + ρλ) ∈ kVk �= � und sin(ωλ + ρλ) ∈ kWk �= �.

(c) Es gilt
∑

i∈U ρi =
π
2
.

(d) Wenn vk ∈ U , dann gilt
∑

i∈Mk
ρi = ρλ.

(e) Wenn vk ∈ U∗ \ U , dann gilt
∑

i∈Mk\{|vk|} ρi < ρλ <
∑

i∈Mk
ρi.

Dabei gilt Mk := {i1, . . . , is} ⊆ U mit s < n′, i1 = |vk|, ν1(is) = k und il+1 = ν1(l)

für jedes l ∈ {1, . . . , s− 1}.

Beweis. (i) =⇒ (ii) : ΨD ist eine Drehung von D, sodass es nach Definition 4.12 einen

https://doi.org/10.51202/9783186247087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:17:47. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186247087


5.2 Weitere Eigenschaften komplexer Vorzeichenvektoren 93

Vektor q ∈ D und eine komplexe Zahl λ = rλe
jϕλ ∈ C mit �(λ),�(λ) �= 0 gibt und

es gilt �(λ · q/qk) ∈ kV und �(λ · q/qk) ∈ kW für jedes k ∈ U . Die Vektoren r und ϕ

beschreiben jeweils die Beträge und die Argumente von q. Wir fixieren ein k ∈ U und

definieren kz := λ · q/qk. Aus Satz 4.1 folgt, dass q ∼ kz bzw. kz ∈ D gilt und nach Satz

4.4 gibt es ein vk ∈ Z∗, o.E.d.A. vk ∈ U∗, und eine Vorzeichen-Rotationsmatrix Tk ∈ R,

sodass(
�(kzT )
�(kzT )

)
∈
(

kVT

kWT

)
= Tk

(
vkDT

vkPT

)
(5.14)

gilt. Daher ist (iia) erfüllt. Wir definieren ρλ := ϕλ mod π
2
und ωλ := π

2
·(ϕλ div π

2
), sodass

ρλ ∈+• und ωλ ∈ {−π
2
, 0, π

2
, π} gilt und nach Gleichung (2.2) ist ϕλ = ωλ + ρλ erfüllt. Da

kzk = qk/qkλ = λ gilt, ist mit (5.14) auch (iib) erfüllt.

Für jedes v ∈ U definieren wir ωv :=
π
2

(
(ϕν1(v) − ϕv) div

π
2

)
und

ρv := (ϕν1(v) − ϕv) mod π
2
, sodass ϕν1(v) − ϕv = ωv + ρv gilt. Aus Satz 5.3.(iii.c) folgt,

dass vDν1(v) �= � �= vPν1(v) bzw.

0 < ρv <
π

2
für jedes v ∈ U (5.15)

gilt und aus den Additionstheoremen in (2.4) ergibt sich für jedes v ∈ U(
sin(ϕν1(v) − ϕv)

cos(ϕν1(v) − ϕv)

)
= Rv

(
sin (ρv)

cos (ρv)

)
mit Rv =

(
cos(ωv) sin(ωv)

− sin(ωv) cos(ωv)

)
. (5.16)

Aufgrund von Satz 5.3.(iii.c) gilt Rv ∈ Rv. Für je zwei verschiedene v, w ∈ U gibt es

nach Satz 5.3.(iii.d) eine Folge i1, i2, . . . , ip mit i1 = v, ip = w und il+1 = ν1(il) für jedes

l ∈ {1, . . . , p− 1}. Daher gilt ϕw − ϕv =
ip−1∑
l=i1

(ωl + ρl) und aus Satz 5.3.(iii.e) ergibt sich

(
vPw

vDw

)
= Rip−1 . . .Ri2

(
vPν1(v)

vDν1(v)

)
= Rip−1 . . .Ri1

(
+•

+•

)
.

Da sin(ϕw − ϕv) ∈ vPw und cos(ϕw − ϕv) ∈ vDw und Rl ∈ Rl für jedes l ∈ U gilt, muss

sin

(
ip−1∑
l=i1

ρl

)
∈+• und cos

(
ip−1∑
l=i1

ρl

)
∈+• , bzw.

0 <

ip−1∑
l=i1

ρl <
π

2

mit i1 = v, ip = w �= v und

iq+1 = ν1(iq) für q ∈ {1, . . . , p− 1}
(5.17)

erfüllt sein. Für ein beliebiges v ∈ U gilt

0 = ϕv − ϕv = ϕν1(v) + ρv + ωv − ϕv = . . . = ϕv − ϕv +
∑
i∈U

(ρi + ωi),
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sodass
∑

i∈U ρi = −
∑

i∈Z ωi erfüllt ist. Zusammen mit (5.17) gilt daher
∑

i∈U ρi =
π
2
und

die Aussage in (iic) ist erfüllt.

Wenn vk ∈ U gilt, dann gilt vkPvk = � und aus (5.14) folgt, dass entweder �(ejϕλqvk/qk) =

0 oder �(ejϕλqvk/qk) = 0 gilt. Daher gilt

(ϕλ + ϕvk − ϕk) mod
π

2
=

(
ρλ −

p−1∑
l=1

ρil

)
mod

π

2
= 0.

mit i1 = vk, ν1(iq) = iq+1 für q ∈ {1, . . . , p − 1} und ip = k. Aus (5.17) ergibt sich daher∑
l∈Mk

ρl = ρλ und die Aussage in (iid) ist erfüllt.

Wenn anderenfalls vk ∈ U∗ \ U gilt, dann gilt aufgrund der Wahl von vk,

(ϕλ + ϕw − ϕk − εk) mod π
2
= 0 mit w = ν1(|vk|) und 0 < εk < ρ|vk| (siehe Beweis von

Satz 4.4). Daher gilt

0 < εk = ρλ −
p−1∑
l=1

ρil < ρ|vk|

mit i1 = w, ν1(iq) = iq+1 für q ∈ {1, . . . , p− 1} und ip = k. Die Aussage (iie) ist erfüllt.

Für die Umkehrung (ii) =⇒ (i) definieren wir mit (iic) q analog zu Punkt 9) von dem

Beweis von Satz 5.3, sodass q ∈ D gilt. Weiterhin definieren wir ϕλ := ωλ + ρλ und

λ := rλ · ejϕλ mit rλ ∈+• und wir fixieren ein k ∈ U und ein i ∈ {1, . . . , n}.

Ohne Einschränkungen gilt U = {1, . . . , n′}, i ≥ k, |vk| = 1 und ν1(q) = q + 1 für alle

q ∈ {1, . . . , n′ − 1}. Damit ergibt sich Mk = {1, . . . , k − 1} und aufgrund von (iid) und

(iie) gilt ρλ =
∑k−1

i=1 ρi− εk mit εk = 0, wenn vk ∈ U und ρ|vk| > εk > 0, wenn vk ∈ U∗ \U .

Es gilt

ϕλ + ϕi − ϕk = ωλ +
k−1∑
l=1

ρl − εk +
i−1∑
l=k

(ωl + ρl) = Ωk + ϕi − ϕ|vk| − εk (5.18)

mit Ωk = ωλ −
∑k−1

l=1 ωl. Aus (5.18) mit i = k, (iia) und (iib) folgt

Tk =

(
cos(Ωk) sin(Ωk)

− sin(Ωk) cos(Ωk)

)
∈ Tk ∈ R, sodass

rλ
ri
rk

(
cos(ϕλ + ϕi − ϕk)

sin(ϕλ + ϕi − ϕk)

)
= Tkrλ

ri
rk

(
cos(ϕi − ϕ|vk| − εk)

sin(ϕi − ϕ|vk| − εk)

)
∈ Tk

(
vkDi

vkPi

)
=

(
kVi

kWi

)

und somit auch (i) erfüllt ist.
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5.3 Überprüfung der Vorzeichen-Steuerbarkeit und der

Vorzeichen-Stabilisierbarkeit

In diesem Abschnitt wird die Lösbarkeit der Entscheidungsprobleme, ob ein

Vorzeichen-System vorzeichen-steuerbar oder vorzeichen-stabilisierbar ist, untersucht,

bevor eine algorithmische Lösung diskutiert wird. Dafür wird zunächst ein Ergebnis

von Klee, Ladner und Manber zur strengen Surjektivität von Vorzeichenmatrizen

vorgestellt. Für einen Überblick zur Komplexitätstheorie von algorithmischen

Problemstellungen wird auf das Buch [GJ79] verwiesen.

Satz 5.5 ( [KLM84], S. 134, Theorem 1.2.): Gegeben ist eine Vorzeichenmatrix

X ∈ V
n×m mit n,m ∈ N. Das Entscheidungsproblem, ob die Vorzeichenmatrix X nicht

streng surjektiv ist, ist NP-vollständig.

Die strenge Surjektivität einer unsicheren Matrix kann nach Satz 3.7 mit (3n − 1)/2 Tests6

überprüft werden. Aus Satz 5.5 lässt sich der folgende Satz ableiten.

Satz 5.6 : Gegeben sind zwei Vorzeichenmatrizen A ∈ V
n×n und B ∈ V

n×r mit n, r ∈ N.

Die beiden Entscheidungsprobleme,

• ob das Vorzeichen-System (A,B) nicht vorzeichen-steuerbar und

• ob das Vorzeichen-System (A,B) nicht vorzeichen-stabilisierbar

ist, sind NP-vollständig.

Beweis. Die Entscheidungsprobleme gehören zu NP , da mit einem gegebenen komplexen

Vorzeichenvektor D und einer Drehung ΨD mit den Sätzen 3.16, 3.21, 4.8, 4.11, 4.14 und

4.16 in Polynomialzeit verifiziert werden kann, dass das Vorzeichen-System (A,B) nicht

vorzeichen-steuerbar bzw. nicht vorzeichen-stabilisierbar ist.

Um die NP-Schwere von den beiden Problemen zu zeigen, sei eine beliebige

Vorzeichenmatrix X ∈ V
n×m mit n,m ∈ N gegeben und wir definieren A := � ∈ V

n×n.

Aus den Sätzen 2.5.(iv) und 2.8.(iii) mit λ = 0 folgt, dass das Vorzeichen-System

(A,X ) genau dann vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist, wenn die

Vorzeichenmatrix (A,X ) = (�,X ) streng surjektiv ist. Beide Entscheidungsprobleme

lassen sich daher auf das Entscheidungsproblem aus Satz 5.5 reduziert.

6 Es gibt genau 3n−1 von Null verschiedene Vorzeichenvektoren und nur die Hälfte davon muss überprüft

werden, da ein Test für D und −D genügt.
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Nach Satz 5.1 kann ein gegebenes Vorzeichen-System (A,B) auf die

Vorzeichen-Steuerbarkeit untersucht werden, indem die Bedingung (iii) für jeden

komplexen Vorzeichenvektor D getestet wird. Der Aufwand einer solchen Untersuchung

hängt daher im Wesentlichen von der Anzahl der komplexen Vorzeichenvektoren einer

Ordnung n ab. Diese lässt sich mit dem Wert 3n
2
nach oben abschätzen, da jeder komplexe

Vorzeichenvektor mit einer Vorzeichenmatrix aus V
n×n dargestellt werden kann. Die

genaue Anzahl komplexer Vorzeichenvektoren liegt deutlich unter dieser Schranke und

kann mit dem folgenden Satz ermittelt werden.

Satz 5.7 : Für ein n ∈ N gibt es

κ(n) = 1 +
n∑

l=1

4l−1 ·
(
n

l

)
·

l∑
k=1

(k − 1)! ·
{
l

k

}
(5.19)

verschiedene komplexe Vorzeichenvektoren der Ordnung n, wobei die Ausdrücke
(
n
l

)
und{

l
k

}
jeweils die Binomialkoeffizienten und die Stirling Nummer zweiter Art beschreiben.

Beweis. Nach Satz 5.3 lässt sich jeder komplexe Vorzeichenvektor D mit den drei Mengen

U , Ũ und N und einer Funktion ν beschreiben. Alle Elemente in Z := U ∪ Ũ sind dabei

von Null verschieden und wir bezeichnen die Anzahl der Elemente von Z und U jeweils

mit l und k, d.h. k := |U | ≤ |Z| =: l ≤ n. Für jedes der l − k Elemente in Ũ gibt es ein

Element in U , sodass diese beiden Elemente abhängig voneinander sind. Wir gruppieren

jeweils die voneinander abhängigen Elemente in Z, sodass genau k Gruppen entstehen.

Aus Satz 5.3.(iiid) folgt, dass die Funktion ν eine zyklische Permutation dieser k Gruppen

beschreibt.

Die Stirling Nummer zweiter Art
{

l
k

}
mit k ≤ l gibt an, wie viele Möglichkeiten es gibt,

um l Elemente in k nichtleere Gruppen zu verteilen [Bru09, S.285, Theorem 8.2.5]. Es

gibt (k − 1)! verschiedene zyklische Permutationen dieser k Gruppen und es gibt
(
n
l

)
verschiedene Möglichkeiten, die verbleibenden n − l Elemente aus N in dem komplexen

Vorzeichenvektor zu verteilen. Jedes von Null verschiedene Element ist auf eine von vier

möglichen Arten mit einem anderen von Null verschiedenen Element verbunden. Aus

diesen Überlegungen ergibt sich unmittelbar Gleichung (5.19).

In Tabelle 5.1 ist die Anzahl κ(n) − 1 aller von Null verschiedenen komplexen

Vorzeichenvektoren der Ordnung n für n von 1 bis 5 sowie 10 dargestellt.

Demnach müssen im ungünstigsten Fall deutlich mehr Tests durchgeführt werden, um ein

Vorzeichen-System der Ordnung n = 5 auf Vorzeichen-Steuerbarkeit als eine unsichere
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Tabelle 5.1: Die Anzahl verschiedener Größen im Vergleich.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 10

Tests zum Nachweis der

strengen Surjektivität

= (3n − 1)/2

1 4 13 40 121 29524

Anzahl komplexer

Vorzeichenmuster = 9n − 1
8 80 728 6560 59048 ≈ 3.5 · 109

Anzahl komplexer

Vorzeichenvektoren = κ(n)− 1
1 10 123 2100 47765 ≈ 4.5 · 1012

Matrix der Dimension n = 10 auf strenge Surjektivität zu untersuchen.

Mit den Sätzen 5.1 und 5.2 kann ein gegebenes Vorzeichen-System (A,B) auf

Vorzeichen-Steuerbarkeit oder Vorzeichen-Stabilisierbarkeit untersucht werden, indem

geprüft wird, ob jeder komplexe Vorzeichenvektor die Bedingungen aus den Sätzen 5.1.(iii)

bzw. 5.2.(ii) erfüllt. Ein Algorithmus zur Überprüfung der Bedingung (iii) von Satz 5.1

für einen konkreten komplexen Vorzeichenvektor D ist in Algorithmus 1 beschrieben.

In den Zeilen 2 bis 6 wird zunächst überprüft, ob D reell darstellbar (Zeile 2), im Kokern

von B (Zeile 4) und ein Vorzeichen-Eigenvektor von A zu einem reellen Eigenwert λ ∈ R

ist (5). D ist reell darstellbar (Zeile 2), wenn Di,k = � für jedes 1 ≤ k < i ≤ n gilt

(siehe Abschnitt 4.2) und die Tests in den Zeilen 4 und 5 lassen sich leicht mit den in

Abschnitt 2.4 definierten Rechenoperationen durchführen. Wenn D nicht reell darstellbar

ist, dann wird in Zeile 7 überprüft, ob D im Kokern von B ist. Dies kann mit Bedingung

(ii) aus Satz 4.8 für jedes charakteristische Vorzeichenmuster von D überprüft werden.

Anschließend wird in Zeile 8 getestet, ob D ein Vorzeichen-Eigenvektor von A ist, der

um 90 Grad verdreht wird, wofür Bedingung (ii) aus Satz 4.10 verwendet werden kann.

Die Überprüfung, ob D ein Vorzeichen-Eigenvektor von A ist, der in den ersten oder in

den dritten Quadranten verdreht wird, kann mit den Sätzen 4.13 bzw. 4.15 sowie 5.4

durchgeführt werden. Dabei wird mithilfe von Satz 5.4 zunächst überprüft, ob es für jedes

k ∈ U ein vk ∈ U∗ und ein Tk aus R gibt, sodass mit(
kVT

kWT

)
= Tk

(
vkDT

vkPT

)

die Bedingungen in (ii) von Satz 4.13 bzw. 4.15 erfüllt sind. Wenn es dann zusätzlich ein

ρλ, ein ωλ und für jedes k ∈ U ein ρk gibt, sodass die Bedingungen (iic) bis (iie) von

Satz 5.4 erfüllt sind, dann ist D ein Vorzeichen-Eigenvektor von A, der in den ersten bzw.

dritten Quadranten verdreht wird. Die Bedinungen (iic) bis (iie) von Satz 5.4 beschreiben
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Algorithm 1 Test, ob D im Kokern von B ist und ob eine der Bedingungen (a) bis (f)

von Satz 5.1.(iii) erfüllt ist.

require: (A, B) ∈ V
n×n+r, D komplexer Vorzeichenvektor der Ordnung n

1: procedure is in cokernel and sign ev(A, B, D)

2: if D ist reell darstellbar then

3: D := reelle Darstellung von D.

4: if � ⊆ DTB then

5: if (� ⊆ DTA) ∨ (DT ⊆ DTA) ∨ (−DT ⊆ DTA) then
6: return 1;

7: if D ist im Kokern von B (Satz 4.8) then

8: if D wird um 90 Grad verdreht (Satz 4.10) then

9: return 1;

10: if D wird in den ersten Quadranten verdreht (Satz 4.13 und 5.4) then

11: return 1;

12: if D wird in den dritten Quadranten verdreht (Satz 4.15 und 5.4) then

13: return 1;

14: return 0;

ein Ungleichungssystem, welches z.B. mit dem Fourier-Motzkin Algorithmus auf seine

Lösbarkeit untersucht werden kann [Sch98, S. 155-156].

Ein Algorithmus zur Prüfung der Bedingung (ii) von Satz 5.2 kann ähnlich zu Algorithmus

1 verlaufen, wobei der Test −DT ⊆ DTA in Zeile 5 und der Test in Zeile 12 nicht

durchgeführt werden darf.

Im Gegensatz zur Vorzeichen-Steuerbarkeit lassen sich die Entscheidungsprobleme, ob

eine strukturelle Matrix streng strukturell surjektiv ist und ob ein strukturelles System

streng strukturell steuerbar ist, in Polynomialzeit lösen (siehe z.B. [WRS14]). Da jedes

streng strukturell steuerbare System vorzeichen-steuerbar und vorzeichen-stabilisierbar

ist, sollte in jedem Test auf Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit

eine vorherige Prüfung der strengen strukturellen Steuerbarkeit stattfinden.

In physikalischen Modellen von technischen Systemen kommt es oft vor, dass die

Eingangsmatrix B in einer Spalte genau einen von Null verschiedenen Eintrag besitzt.

Mit dem folgenden Satz kann dann die Anzahl der Test bei der Vorzeichen-Steuerbarkeit

und der Vorzeichen-Stabilisierbarkeit deutlich verringert werden.
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Satz 5.8 : Gegeben sind zwei unsichere Matrizen A ∈ U
n×n und B ∈ U

n×r mit n, r ∈ N

und n > 1 und es wird angenommen, dass eine Spalte i ∈ {1, . . . , r} von B genau einen

von Null verschiedenen Eintrag � �⊂ Bk,i in Zeile k ∈ {1, . . . , n} besitzt.

Die folgenden Eigenschaften sind dann erfüllt.

(i) Jeder komplexe Vorzeichenvektor D mit Dk,k �= � ist nicht im Kokern von B.
(ii) Das unsichere System (A,B) ∈ U

n×(n+r) ist genau dann vorzeichen-steuerbar, wenn

das unsichere System (A′,B′) ∈ U
(n−1)×(n+r−1) vorzeichen-steuerbar ist.

(iii) Das unsichere System (A,B) ∈ U
n×(n+r) ist genau dann vorzeichen-stabilisierbar,

wenn das unsichere System (A′,B′) ∈ U
(n−1)×(n+r−1) vorzeichen-stabilisierbar ist.

Dabei ist A′ eine (n− 1)× (n− 1) unsichere Matrix bestehend aus den Zeilen und Spalten

von A mit dem Index aus Z := {1, . . . , n} \ {k} und B′ ist eine (n − 1) × r unsichere

Matrix bestehened aus den Spalten von B mit dem Index aus {1, . . . , r} \ {i} sowie aus

der Spalte k von A und den Zeilen mit dem Index aus Z.

Beweis. (i) : Wir fixieren einen komplexen VorzeichenvektorDmitDk,k �= � und (kD, kP)
bezeichnet das k-te charakteristische Vorzeichenmuster von D. Die Matrix B besitzt in

der Spalte i nur in Zeile k einen von Null verschiedenen Eintrag, sodass für den i-ten

Eintrag des Vorzeichenvektors YT := kDTB, Yi =
∑n

l=1
kDlBl,i =

kDkBi,k gilt. Aufgrund

der Annahme gilt � �⊆ Bi,k und kDk �= �, sodass � �⊆ Yi sowie � �⊆ kDTB erfüllt ist. Der

komplexe Vorzeichenvektor D ist daher nach Satz 4.8 nicht im Kokern von B.

(ii) : Ohne Einschränkungen der Allgemeinheit gilt k = n und i = r, und wir

nehmen zunächst an, dass (A′,B′) nicht vorzeichen-steuerbar ist. Dann gibt es ein System

(A′, B′) ∈ (A′,B′), ein λ ∈ C und einen Vektor q̃ ∈ C
n, sodass q̃TA′ = q̃Tλ und q̃TB′ = 0

gilt. Wir definieren A ∈ A, sodass die ersten (n − 1) Zeilen und Spalten identisch zu A′

sind und die ersten (n−1) Zeilen der letzten Spalte identisch zur letzten Spalte von B′ ist.

Außerdem definieren wir B ∈ B, sodass die ersten (n− 1) Zeilen und (r− 1) Spalten von

B identisch zu den ersten (r− 1) Spalten von B′ sind. Die letzte Zeile von A und B wird

jeweils so gewählt, dass sie eine zulässige Realisierung A bzw. B ist. Mit q := (q̃T , 0)T gilt

dann qTA = qTλ und qTB = 0, sodass das System (A,B) ∈ (A,B) nicht steuerbar ist.

Für die Umkehrung nehmen wir an, dass das unsichere System (A,B) nicht

vorzeichen-steuerbar ist. Nach Satz 5.1 gibt es dann einen komplexe Vorzeichenvektor

D, der im Kokern von B und zugleich Vorzeichen-Eigenvektor von A ist und aufgrund

von (i) gilt Dn,n = �. Der komplexe Vorzeichenvektor D̃ bestehend aus den ersten (n−1)

Zeilen und Spalten von D ist dann im Kokern von B′ und zugleich Vorzeichen-Eigenvektor

von A′, sodass das unsichere System (A′,B′) nach Satz 5.1 nicht vorzeichen-steuerbar ist.

https://doi.org/10.51202/9783186247087 - Generiert durch IP 216.73.216.36, am 20.01.2026, 06:17:47. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186247087


100 5 Vorzeichen-Steuerbarkeit und -Stabilisierbarkeit

Der Beweis von (iii) verläuft analog zum Beweis von (ii).

Wenn ein Spalte von der Vorzeichenmatrix B eines Vorzeichen-Systems (A,B) der

Dimension n genau einen von Null verschiedenen Eintrag besitzt, dann reduziert sich mit

Satz 5.8 die Prüfung der Vorzeichen-Steuerbarkeit bzw. der Vorzeichen-Stabilisierbarkeit

auf eine Prüfung eines kleineren Systems der Ordnung n−1. Für ein System der Ordnung

n = 5 müssen dann beispielsweise anstatt der 47765 (siehe Tabelle 5.1) nur noch 2100

komplexe Vorzeichenvektoren überprüft werden, sodass in diesem Fall rund 96% der Tests

eingespart werden können. Die Methode aus Satz 5.8 kann auch auf streng surjektive

Untermatrizen von B erweitert werden (siehe Abschnitt 5.4.2).

Algorithm 2 Rekursiver Algorithmus zum Test der Vorzeichen-Steuerbarkeit.

require: A ∈ V
n×n, B ∈ V

n×r, n, r ∈ N

1: procedure is sign controllable(A, B)
2: if B hat ein Spalte i mit genau einem Eintrag Bk,i �= � then

3: if n = 1 then

4: return 1;

5: else

6: N := {1, . . . , n} \ {k}; M := {1, . . . , r} \ {i};
7: Ã := A[N,N ]; B̃ := [B[N,M ],A[N, k]];

8: return is sign controllable(Ã, B̃);

9: else

10: if n = 1 then

11: return 0;

12: if is strongly structurally controllable(A,B) then
13: return 1;

14: if not(is structurally controllable(A,B)) then
15: return 0;

16: for jeden komplexen Vorzeichenvektor D �= � do

17: if is in cokernel and sign ev(A,B,D) then

18: return 0;

19: return 1;

Ein rekursiver Algorithmus zur Überprüfung der Vorzeichen-Steuerbarkeit ist in

Algorithmus 2 beschrieben. Dabei wird in den Zeilen 2 bis 8 die Methode aus Satz

5.8 umgesetzt. In Zeile 2 wird überprüft, ob B eine Spalte mit genau einen von

Null verschiedenen Eintrag besitzt. Wenn n = 1 gilt, dann ist das System (A,B)
vorzeichen-steuerbar und es wird in Zeile 4 der Wert 1 ausgegeben. Andernfalls ist n > 1
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und nach Satz 5.8 ist das System (A,B) genau dann vorzeichen-steuerbar, wenn das

kleinere System (Ã, B̃) der Ordnung n− 1 vorzeichen-steuerbar ist (Zeile 6 bis 8).

Falls B keine Spalte mit genau einem von Null verschiedenen Eintrag besitzt und n = 1 gilt,

dann ist das System nicht vorzeichen-steuerbar und der Algorithmus liefert in Zeile 10 eine

0. Wenn n > 1 gilt, dann wird nach der Prüfung auf strenge strukturelle Steuerbarkeit

und strukturelle Steuerbarkeit in den Zeilen 12 und 14 ab Zeile 16 mit Algorithmus 1

überprüft, ob Bedingung (iii) von Satz 5.1 für jeden komplexen Vorzeichenvektoren erfüllt

ist.

Beispiel 5.4 : Gegeben ist das Vorzeichen-System (A,B) mit

A =

⎛
⎜⎜⎜⎜⎝
−• +• +• −•
+• +• −• +•

−• +• −• +•

+• −• +• +•

⎞
⎟⎟⎟⎟⎠ und B =

⎛
⎜⎜⎜⎜⎝

� �
+• −•
� �
� +•

⎞
⎟⎟⎟⎟⎠ .

Die Vorzeichenmatrix B hat in Spalte 1 genau einen von Null verschiedenen Eintrag in

Zeile 2, sodass nach Satz 5.8 jeder komplexe Vorzeichenvektor mit D2,2 �= � im Kokern

von B ist. Das Vorzeichen-System (A,B) ist daher genau dann vorzeichen-steuerbar oder

vorzeichen-stabilisierbar, wenn das Vorzeichen-System (A′,B′) mit

A′ =

⎛
⎜⎝−

• +• −•
−• −• +•

+• +• +•

⎞
⎟⎠ und B′ =

⎛
⎜⎝+• �
+• �
−• +•

⎞
⎟⎠

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist. Die Vorzeichenmatrix B′ hat

wiederrum in Spalte 2 genau einen von Null verschiedenen Eintrag in Zeile 3, sodass

eine Untersuchung des Vorzeichen-Systems (A′′,B′′) mit

A′′ =

(
−• +•

−• −•

)
und B′′ =

(
+• −•
+• +•

)

ausreichend ist. Das Vorzeichen-System (A′′,B′′) ist strukturell steuerbar, aber nicht

streng strukturell steuerbar, da mit Q = (�, �)T , � ⊂ QT (A,B) = (�� ,�� ,�� ,�� ) gilt

und Bedingung (iii) von Satz 3.12 nicht erfüllt ist.

Für jeden Vorzeichenvektor Q ∈ V
2 gilt � �⊆ QTB′′. Die Vorzeichenmatrix B′′ ist daher

nach Satz 3.7 streng surjektiv und jeder komplexe Vorzeichenvektor D �= � ist somit

nicht im Kokern von B′′. Das Vorzeichen-System (A′′,B′′) ist aufgrund der Sätze 5.1 und

5.2 vorzeichen-steuerbar und vorzeichen-stabilisierbar, sodass auch das Vorzeichen-System

(A,B) mit Satz 5.8 vorzeichen-steuerbar und vorzeichen-stabilisierbar ist.
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Das Vorzeichen-System (A,B) der Ordnung n = 4 ist nicht streng strukturell steuerbar

und die Matrix A erlaubt komplexe Eigenwerte. Algorithmus 2 bestimmt jedoch mit

verhältnismäßig wenig Aufwand, dass das Vorzeichen-System (A,B) vorzeichen-steuerbar
ist.

5.4 Zwei weitere Beispiele

In diesem Abschnitt werden abschließend zwei anwendungsnahe Systeme der

Form (1.1) auf strenge strukturelle Steuerbarkeit, Vorzeichen-Steuerbarkeit sowie

Vorzeichen-Stabilisierbarkeit untersucht.

5.4.1 Modell eines F-8 Strahlflugzeugs

In [Ell77] wird ein lineares zeitinvariantes System der Form (1.1) für die Längsdynamik

eines F-8 Strahlflugzeugs bei einer Geschwindigkeit von 620 ft/s (≈ 680 km/h) und einer

Höhe von 20000 ft (≈ 6 km) mit den Matrizen

A =

⎛
⎜⎜⎜⎜⎝
−0.49 0.0005 −4.8 0

0 −0.015 −14 −32.2
1 −0.00019 −0.84 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠ ∈ A :=

⎛
⎜⎜⎜⎜⎝
−• +• −• �
� −• −• −•
+• −• −• �
+• � � �

⎞
⎟⎟⎟⎟⎠ und

B =

⎛
⎜⎜⎜⎜⎝
−8.7 0

−1.1 8.9

−0.11 0

0 0

⎞
⎟⎟⎟⎟⎠ ∈ B :=

⎛
⎜⎜⎜⎜⎝
−• �
−• +•

−• �
� �

⎞
⎟⎟⎟⎟⎠

vorgestellt. Die vier Zustandsgrößen x1 bis x4 beschreiben dabei jeweils die Nickwinkelrate,

die Geschwindigkeit, den Anstellwinkel und den Nickwinkel des Flugzeugs und die Größen

u1 und u2 repräsentieren jeweils die Höhenruder- und die Gasposition. In Abbildung 5.7

ist das F-8 Strahlflugzeug aus [Ell77] skizziert.

Mit dem strukturellen Vektor Q = (�,�, �,�)T gilt � ⊂ QT (A,B) = (�� ,�� ,�� ,�,�� ,�),

sodass das Vorzeichen-System (A,B) nach Satz 3.11 nicht streng strukturell steuerbar ist.

Da A1,2 · A2,3 · A3,1 =−• �= � gilt, ist die Vorzeichenmatrix A nach Satz 3.18.(c) nicht

vorzeichen-stabil und A erlaubt komplexe Eigenwerte.

Die Vorzeichenmatrix B besitzt in Spalte 2 genau einen von Null verschiedenen Eintrag

in Zeile 2, sodass nach Satz 5.8 jeder komplexe Vorzeichenvektor mit D2,2 �= �
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Abbildung 5.7: Skizze eines F-8 Strahlflugzeugs (aus [Ell77])

nicht im Kokern von B ist. Das Vorzeichen-System (A,B) ist daher genau dann

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar, wenn das Vorzeichen-System (A′,B′)

mit A′ =

⎛
⎜⎝−

• −• �
+• −• �
+• � �

⎞
⎟⎠ und B′ =

⎛
⎜⎝−

• +•

−• −•
� �

⎞
⎟⎠

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist.

Die Matrix B′ setzt sich aus der streng surjektiven Teilmatrix(
−• +•

−• −•

)

in den ersten beiden Zeilen und einer Zeile mit Null-Einträgen zusammen. Daraus folgt

analog zu Satz 5.8, dass jeder komplexe Vorzeichenvektor mit D1,1 �= � oder D2,2 �= �
nicht im Kokern von B ist. Zudem gilt für jedes A ∈ A′, jedes λ ∈ C und jeden Vektor

q ∈ C
3 mit q1 = q2 = 0 und q3 �= 0, qT (A − λI3) = (q3A3,1, 0,−λq3) �= 0, sodass

kein komplexer Vorzeichenvektor mit D1,1 = D2,2 = � ein Vorzeichen-Eigenvektor von

A′ ist. Die Vorzeichen-Systeme (A′,B′) und (A,B) sind daher vorzeichen-steuerbar und

vorzeichen-stabilisierbar.

Wird nun angenommen, dass die Höhenruderposition nicht als Stellgröße zur Verfügung

steht, dann ergibt sich das Vorzeichen-System (Ã, B̃) mit

Ã = A =

⎛
⎜⎜⎜⎜⎝
−• +• −• �
� −• −• −•
+• −• −• �
+• � � �

⎞
⎟⎟⎟⎟⎠ und B̃ =

⎛
⎜⎜⎜⎜⎝

�
+•

�
�

⎞
⎟⎟⎟⎟⎠ . (5.20)
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Abbildung 5.8: Skizze des unbemannten Helikopters
”
Yamaha R-50“ (aus [MTK99]).

Mit Q = (+• ,�,+• ,�)T gilt −QT ⊂ QT Ã = (�� ,�� ,−• ,�) und QT B̃ = �. Aufgrund

von Satz 3.15 gibt es ein Ã ∈ Ã, ein B̃ ∈ B̃ und ein λ ∈−• , sodass der Wert λ nicht

(Ã, B̃)-steuerbar ist. Das Vorzeichen-System (Ã, B̃) ist daher nicht vorzeichen-steuerbar.

Q ist dabei eine reelle Darstellung von dem komplexen Vorzeichenvektor

D =

⎛
⎜⎜⎜⎜⎝
+• � +• �
� � � �
� � +• �
� � � �

⎞
⎟⎟⎟⎟⎠ mit νD =

(
1 0 1 0

3 0 0 0

)
.

Die Untersuchung des Vorzeichen-Systems (Ã, B̃) mit jedem anderen komplexen

Vorzeichenvektor ergibt, dass D der einzige komplexe Vorzeichenvektor ist, der

Vorzeichen-Eigenvektor von Ã und zugleich im Kokern von B̃ ist. Alle anderen

Vorzeichen-Eigenvektoren von Ã sind nicht im Kokern von B̃ und das Vorzeichen-System

(Ã, B̃) ist nach Satz 5.2 vorzeichen-stabilisierbar.

Zusammenfassend gibt es lineare zeitinvariante Systeme (A,B) mit A ∈ Ã und B ∈ B̃
nach (5.20), welche nicht steuerbar sind, aber jedes dieser Systeme ist stabilisierbar.

5.4.2 Modell eines unbemannten Helicopters

In [MTK99] wird ein lineares zeitinvariantes System der Form (1.1) zur Beschreibung

der Dynamik eines unbemannten Helikopters im Schwebeflug vorgestellt. Der untersuchte

Helikopter mit der Bezeichnung
”
Yamaha R− 50“ ist in Abbildung 5.8 dargestellt.
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Das Modell des Hubschraubers hat 11 Zustands- und 4 Eingangsgrößen und gehört zu

dem Vorzeichen-System (A,B), welches mit den Vorzeichenmatrizen

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−• � � � � −• −• � � � �
� −• � � +• � � +• � � �
−• +• � � � � +• +• � � �
−• −• � � � � +• −• � � �
� � +• � � � � � � � �
� � � +• � � � � � � �
� � � −• � � −• � � � �
� � −• � � � +• −• � � �
� � � � � � −• −• −• +• �
� � −• � � � � � +• −• −•
� � � � � � � � � +• +•

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
+• −• � �
+• +• � �
� � � +•

� � +• +•

� � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

beschrieben ist. Für den Vektor

Q =
(

� � � � � � � � � � � )T

,

gilt � ⊂ QT (A+IS

11,B), sodass das Vorzeichen-System (A,B) nach Satz 3.11 nicht streng

strukturell steuerbar ist. Die Vorzeichenmatrix A erlaubt komplexe Eigenwerte und A ist

nicht vorzeichen-stabil.

Bei der direkten Anwendung von Satz 5.1 bzw. 5.2 müssen κ(11) ≈ 2.6 · 1014 verschiedene
komplexe Vorzeichenvektoren zur Untersuchung des Systems verwendet werden. Nach

dreifacher Anwendung von Satz 5.8 ergibt sich jedoch das kleinere Vorzeichen-System

(A′,B′) der Ordnung 8 mit

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−• � � � � −• −• �
� −• � � +• � � +•

−• +• � � � � +• +•

−• −• � � � � +• −•
� � +• � � � � �
� � � +• � � � �
� � � −• � � −• �
� � −• � � � +• −•

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

und B′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
+• −• � �
+• +• � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

und die Anzahl der zu untersuchenden komplexen Vorzeichenvektoren reduziert sich auf

κ(8) ≈ 1.9 · 109.
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Die Eingangsmatrix B′ dieses Systems besteht aus der streng surjektiven Matrix(
+• −•
+• +•

)
,

sodass analog zu Satz 5.8 (siehe auch Abschnitt 5.4.1) jeder komplexe Vorzeichenvektor

mit D7,7 �= 0 oder D8,8 �= 0 nicht im Kokern von B′ ist. Die Untersuchung des

Vorzeichen-Systems (A′,B′) lässt sich daher auf die Untersuchung des Vorzeichen-Systems

(A′′,B′′) mit

A′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−• � � � � −•
� −• � � +• �
−• +• � � � �
−• −• � � � �
� � +• � � �
� � � +• � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

und B′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−• �
� +•

+• +•

+• −•
� �
� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

reduzieren. Für die Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit von dem

Vorzeichen-System (A′′,B′′) müssen nur κ(6) ≈ 1.4 · 106 komplexe Vorzeichenvektoren

verwendet werden. Die Anzahl der Tests kann durch die Methode von Satz 5.8 in diesem

Beispiel um den Faktor κ(11)/κ(6) ≈ 1.9 · 108 reduziert werden.

Eine Untersuchung des Vorzeichen-Systems (A′′,B′′) zeigt, dass alle reellen Eigenwerte

λ ∈ R in jedem A′′ ∈ A′′ und jedem B′′ ∈ B′′, (A′′, B′′)-steuerbar sind, aber z.B. der

komplexe Vorzeichenvektor D mit

νD =

(
5 1 1 3 3 5

2 3 0 3 1 3

)
bzw. D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+• � +• +• −• +•

+• +• −• +• −• −•
−• −• +• � −• +•

+• −• +• +• −• −•
−• +• −• +• +• �
−• −• −• −• +• +•

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(siehe Beispiel 5.2) ist im Kokern von B′′ und ein Vorzeichen-Eigenvektor von A, der in den

dritten Quadranten verdreht wird. Das Vorzeichen-System (A,B) ist daher nach Satz 5.1

nicht vorzeichen-steuerbar. Genau genommen gibt es aufgrund von den Sätzen 4.8 und

4.15 ein q ∈ D, ein A′′ ∈ A′′, ein B′′ ∈ B′′ und ein λ ∈ C mit �(λ),�(λ) < 0, sodass

qT (A− λI6, B) = 0 gilt und λ nicht (A′′, B′′)-steuerbar ist.

Die Prüfung des Vorzeichen-Systems (A′′,B′′) auf Vorzeichen-Stabilisierbarkeit ergibt,

dass Bedingung (ii) von Satz 5.2 mit jedem komplexen Vorzeichenvektor der Ordnung 6
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erfüllt ist. Das Vorzeichen-System (A,B) ist daher vorzeichen-stabilisierbar und jedes

lineare zeitinvariante System (A,B) mit A ∈ A und B ∈ B ist stabilisierbar.

Das lineare zeitinvariante System der Form (1.1) mit

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.22177 0 0 0 0 −9.81 −0.3175 0 0 0 0

0 −0.22177 0 0 9.81 0 0 1 0 0 0

−0.01000 0.08996 0 0 0 0 0.0307 0.0315 0 0 0

−0.08996 −0.01000 0 0 0 0 0.0100 −0.0970 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 −1 0 0 0 0

0 0 −1 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 −1 −1 −1 1 0

0 0 −1 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ A

und B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 −1 0 0

1 1 0 0

0 0 0 1

0 0 1 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ B

ist z.B. nicht steuerbar, da der Wert λ = e−j 7π
10 ≈ −0.59 − j0.81 nicht (A,B)-steuerbar

ist. Der Vektor q := (1, ej
π
2 , 9.81e−j π

10 , 9.81ej
2π
5 , 9.81e−j 4π

5 , 9.81e−j 3π
10 , 0, 0, 0, 0, 0) ist ein

Eigenvektor von A bezüglich λ und zugleich im Kokern von B. q ist ein Element des

komplexen Vorzeichenvektors D, der mit

νD =

(
5 1 1 3 3 5 0 0 0 0 0

2 3 0 3 1 3 0 0 0 0 0

)

beschrieben ist.

Algorithmus 2 wurde in Matlab R2013a implementiert. Der Test des Vorzeichen-Systems

(A′′,B′′) der Ordnung 6 hat auf einem Intel Core i5 Prozessor mit 2.67 GHz Taktfrequenz,

4 GB Arbeitsspeicher und einem 64 bit Windows 7 Professional Betriebssystem 542

Sekunden (≈ 9 Minuten) gedauert. Nach 110 Sekunden wurde erkannt, dass das System

nicht vorzeichen-steuerbar ist. Die Untersuchung der beiden Vorzeichen-Systeme der

Ordnung 4 aus Abschnitt 5.4.1 dauerte auf demselben Rechner wenige Millisekunden.
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6 Zusammenfassung und Ausblick

In dieser Arbeit werden algebraische Methoden zum Nachweis der Steuerbarkeit und der

Stabilisierbarkeit linearer zeitinvarianter Systeme der Form (1.1) untersucht und es werden

zwei bisher ungelöste Probleme, die Charakterisierung der Vorzeichen-Steuerbarkeit und

der Vorzeichen-Stabilisierbarkeit, gelöst. Dafür werden in Abschnitt 2 sieben Symbole

(�,+• ,−• ,�+• ,�−• , �,�� ), die unsicheren Zahlen, definiert, welche verschiedene Teilmengen

reeller Zahlen repräsentieren. Eine Matrix mit Einträgen aus der Menge der unsicheren

Zahlen wird als unsichere Matrix bezeichnet und beschreibt eine Klasse reeller Matrizen.

Zudem werden zwei Verknüpfungen, die Addition und die Multiplikation, für unsichere

Zahlen und Matrizen festgelegt.

Anschließend wird in Abschnitt 3 die Surjektivität aller Elemente einer unsicheren

Matrix untersucht. Dafür werden die Begriffe der strengen strukturellen Surjektivität

und der strengen Surjektivität definiert und die Algebra der unsicheren Zahlen wird für

die Charakterisierung dieser Begriffe verwendet. Zudem wird das unsichere System als

Klasse linearer zeitinvarianter Systeme der Form (1.1) eingeführt. Allgemein bekannte

Spezialfälle unsicherer Systeme sind strukturelle Systeme, bei denen die Matrizen aus den

Symbolen � und � bestehen, und Vorzeichen-Systeme, deren Matrizen die Symbole �,

+• und −• enthalten. Ein strukturelles System ist streng strukturell steuerbar, wenn jedes

Element des strukturellen Systems steuerbar ist und ein unsicheres System ist jeweils

vorzeichen-steuerbar, vorzeichen-stabil oder vorzeichen-stabilisierbar, wenn jedes Element

des unsicheren Systems steuerbar, stabil oder stabilisierbar ist. Die strenge strukturelle

Steuerbarkeit und die Vorzeichen-Stabilität sind bereits genau erforscht und allgemeine

Charakterisierungen für strukturelle Systeme bzw. Vorzeichen-Systeme existieren. Für

die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind dagegen bisher

nur hinreichende oder notwendige Bedingungen bekannt. In den Sätzen 3.12, 3.16, 3.19

und 3.21 werden jeweils bekannte Resultate zur strengen strukturellen Steuerbarkeit,

Vorzeichen-Steuerbarkeit, Vorzeichen-Stabilität und Vorzeichen-Stabilisierbarkeit auf

unsichere Systeme verallgemeinert. In den meisten dieser Bedingungen werden jeweils

strukturelle Vektoren oder Vorzeichenvektoren mit den Matrizen des unsicheren Systems

multipliziert. Wenn ein unsicheres System eine der Eigenschaften nicht besitzt, dann

lassen sich anhand dieser Bedingungen direkt die Vorzeichen des nicht-steuerbaren

Eigenwertes und der zugehörigen Eigenvektoren ablesen. Außerdem wird anhand

von Beispiel 3.6 veranschaulicht, dass diese Bedingungen nicht hinreichend für die

Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind, da mit diesen

Bedingungen lediglich reelle Eigenpaare gefunden werden können.
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Deshalb wird in Abschnitt 4 der komplexe Vorzeichenvektor als eine Äquivalenzklasse

komplexer Vektoren eingeführt und es wird gezeigt, dass dieser neue Ansatz für die

Untersuchung von Vorzeichenmatrizen geeignet ist. Wenn ein komplexer Vektor q ∈ C
n

beispielsweise im Kokern einer Matrix X ∈ R
n×m ist, dann ist jeder Vektor derselben

Äquivalenzklasse [q]∼ im Kokern einer Matrix vom selben Vorzeichenmuster wie X (siehe

Satz 4.8) und wenn ein komplexer Vektor q ein Eigenvektor zu einem rein komplexen

Eigenwert von einer quadratischen Matrix A ∈ R
n×n ist, dann ist jeder Vektor derselben

Äquivalenzklasse [q]∼ auch ein Eigenvektor zu einem rein komplexen Eigenwert für eine

Matrix vom selben Vorzeichenmuster wie A (siehe Satz 4.10). Zusätzlich werden in

Abschnitt 4 verschiedene Bedingungen vorgestellt, mit denen die möglichen Eigenwerte

der Matrizen eines gegebenen Vorzeichenmusters ermittelt werden können. Mithilfe der

Sätze 4.11, 4.14 und 4.16 werden z.B. erstmals die folgenden Entscheidungsprobleme, ob

eine Vorzeichenmatrix A ∈ V
n×n jeweils

• einen Eigenwert λ ∈ C mit �(λ) = 0 und �(λ) �= 0 erlaubt,

• einen Eigenwert λ ∈ C mit �(λ) > 0 und �(λ) �= 0 erlaubt oder

• einen Eigenwert λ ∈ C mit �(λ) < 0 und �(λ) �= 0 erlaubt

charakterisiert. Dabei wird mit jedem von Null verschiedenen komplexen Vorzeichenvektor

D überprüft, ob es einen Vektor in der jeweiligen Klasse D gibt, der ein

Eigenvektor zu einem entsprechenden Eigenwert ist. Falls dem so ist, dann wird der

komplexe Vorzeichenvektor als Vorzeichen-Eigenvektor der zugehörigen Vorzeichenmatrix

bezeichnet. Da die Anzahl der komplexen Vorzeichenvektoren für eine Dimension n endlich

ist, ist ein solcher Test zumindest für kleine n durchführbar.

In Abschnitt 5 wird in den Sätzen 5.1 und 5.2 jeweils eine Charakterisierung

der Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit für beliebige

Vorzeichen-Systeme (A,B) vorgestellt. Dafür wird mit jedem von Null verschiedenen

komplexen Vorzeichenvektor D überprüft, ob D ein Vorzeichen-Eigenvektor von A
und ob D im Kokern eines Elements von B ist. Das Vorzeichen-System (A,B)
ist genau dann vorzeichen-steuerbar, wenn mindestens eine der beiden Bedingungen

nicht erfüllt ist. Zudem wird gezeigt, dass die Entscheidungsprobleme, ob ein

Vorzeichen-System nicht vorzeichen-steuerbar ist und ob ein Vorzeichen-System nicht

vorzeichen-stabilisierbar ist, NP-vollständig sind. Außerdem wird ein Algorithmus

zur Überprüfung der Vorzeichen-Steuerbarkeit beschrieben. Dabei wird eine rekursive

Methode verwendet, welchen den Aufwand der Untersuchung deutlich reduzieren kann,

wenn die Eingangsmatrix B des untersuchten Vorzeichen-Systems eine bestimmte

Eigenschaft besitzt. Abschließend werden zwei anwendungsnahe lineare zeitinvariante
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110 6 Zusammenfassung und Ausblick

Systeme der Form (1.1) auf strenge strukturelle Steuerbarkeit, Vorzeichen-Steuerbarkeit

und Vorzeichen-Stabilisierbarkeit untersucht. Dabei handelt es sich um ein Modell

der Längsdynamik eines F-8 Strahlenflugzeugs und ein Modell für die Dynamik eines

unbemannten Helikopters im Schwebeflug.

Die in dieser Arbeit verwendete Methode zur Untersuchung des Spektrums von

Vorzeichenmatrizen unterscheidet sich deutlich zu den bisherigen Methoden, bei denen die

Nullstellen der charakteristischen Polynome untersucht werden (siehe [EJ91], [COD09]).

Viele Vorzeichenmatrizen erlauben nur bestimmte Eigenwerte und Eigenvektoren,

sodass der Ansatz mit komplexen Vorzeichenvektoren möglicherweise zur Klärung

weiterer ungelöster Entscheidungsprobleme, wie z.B., ob eine Vorzeichenmatrix Stabilität

erlaubt, beitragen kann. In Beispiel 4.6 (siehe auch Beispiel 5.1) wird z.B. für eine

Vorzeichenmatrix der Ordnung n = 3 gezeigt, dass es nur genau n verschiedene komplexe

Vorzeichen-Eigenvektoren gibt. Jeder dieser Vorzeichen-Eigenvektoren gehört genau zu

einem Eigenwert eines Elements der Vorzeichenmatrix.

In [LS14] wird die strenge Surjektivität von Matrizen mit komplexen Einträgen untersucht.

Bei der Ermittlung dieser Eigenschaft für eine n×m Matrix wird eine Hilfsmatrix erzeugt,

welche die Dimension (n ·m+n)×(n ·m+m) hat, wenn es keine rein imaginären oder rein

reellen Einträge in der Matrix gibt. Die Methode der komplexen Vorzeichenvektoren aus

dieser Arbeit scheint ein vielversprechender Ansatz zu sein, um die Surjektivität komplexer

Matrizen zu untersuchen und den zur Überprüfung notwendigen Aufwand zu reduzieren.

Wenn ein unsicheres System (A,B) ∈ U
n×n+r vorzeichen-stabilisierbar ist, dann gibt es für

jedes System (A,B) ∈ (A,B) der Klasse eine MatrixK ∈ R
r×n, sodass jeder Eigenwert der

Matrix A+BK einen negativen Realteil besitzt. Interessant ist sicherlich die Untersuchung

der Vorzeichenmusters all dieser Matrizen K sowie die Fragestellung, ob es auch eine

Matrix K∗ ∈ R
r×n gibt, sodass für jedes A ∈ A und jedes B ∈ B jeder Eigenwert von

A + BK∗ negativen Realteil besitzt. Jedes Element des streng strukturell steuerbaren

Vorzeichen-Systems (A,B) mit A = � und B =+• ist beispielsweise mit jedem K ∈−•
stabilisierbar, da der Eigenwert λ = BK von A + BK für jedes A ∈ A und jedes B ∈ B
negativ ist. Gleichzeitig gibt es kein K ∈�+• , welches ein System aus dieser Klasse (A,B)
stabilisiert. Die Vorzeichen-Stabilisierbarkeit eines unsicheren Systems ist offensichtlich

notwendig für die Existenz einer Matrix K∗, welche alle Systeme der Klasse stabilisiert.

Die strukturelle Steuerbarkeit und die strenge strukturelle Steuerbarkeit wurden besonders

in den letzten Jahren bei der Analyse und der Gestaltung von Netzwerken eingesetzt

(siehe z.B. [LSB11, CM13]). Oft wird dabei angenommen, dass es sich um kooperative

Netzwerke handelt, bei denen alle Systemparameter nicht-negativ sind. In zahlreichen
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Beispielen der realen Welt gibt es aber sowohl kooperierende als auch konkurrierende

Komponenten in einem Netzwerk. Die daraus entstehenden Systeme haben sowohl positive

als auch negative Systemparameter und werden als antagonistische Netzwerke (engl.

antagonistic networks) bezeichnet [Alt13]. Die Begriffe der Vorzeichen-Steuerbarkeit

und der Vorzeichen-Stabilisierbarkeit eignen sich bestens, um die Lösbarkeit klassischer

Problemstellungen wie z.B. den Konsensus in einem solchen Netzwerk mit unsicheren

Parametern zu untersuchen.

In einigen technischen Systemen sind die Parameter nicht nur ungewiss, sondern auch

zeitvariant. Daher ist die Fragestellung, wie sich jeweils die Steuerbarkeit oder die

Stabilisierbarkeit eines vorzeichen-steuerbaren oder vorzeichen-stabilisierbaren Systems

verhält, wenn sich die Systemparameter zeitlich verändern dürfen, interessant.

Alle Resultate zur Steuerbarkeit und Stabilisierbarkeit linearer zeitinvarianter Systeme

der Form (1.1) von dieser Arbeit lassen sich jeweils problemlos auf die Beobachtbarkeit

und die Entdeckbarkeit der dualen Systeme übertragen.
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