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NOMENKLATUR VII

Nomenklatur

In der folgenden Auflistung werden die grundlegenden Symbole dieser Arbeit erldutert.

V/

N

R

C

K"
KTLXm

a, b, ...

Die Menge aller ganzen Zahlen.

Die Menge aller positiven ganzen Zahlen.

Die Menge aller reellen Zahlen.

Die Menge aller komplexen Zahlen.

Die Menge aller Vektoren der Ordnung n € N mit Eintrédgen aus K.

Die Menge aller n x m Matrizen mit Eintrégen aus K.

Skalare oder Vektoren mit Eintrdgen aus C werden mit kleinen
lateinischen Buchstaben gekennzeichnet.

Matrizen mit reellen Eintrdgen werden mit groflen lateinischen
Buchstaben gekennzeichnet.

Der Eintrag in der i-ten Zeile und der k-ten Spalte von der Matrix X.
Der i-te Eintrag des Vektors x.

Die Transponierte von der Matrix X.

Die Determinante einer quadratischen Matrix X.

Der absolute Betrag einer Zahl x € C

Die imaginére Einheit.

Der Realteil einer komplexen Zahl oder eines komplexen Vektors z.

Der Imaginérteil einer komplexen Zahl oder eines komplexen Vektors x.
Die Einheitsmatrix der Dimension n.

Eine Matrix, die nur den Eintrag 0 enthélt.

Symbole zu unsicheren Zahlen, Vektoren und Matrizen

mw?m e < ® + 0@

= {0}, die Menge, die nur die Null enthélt.

= {z € R|z > 0}, die Menge aller positiven reellen Zahlen.

= {z € R|z < 0}, die Menge aller negativen reellen Zahlen.

= {z € R|z > 0}, die Menge aller nicht-negativen reellen Zahlen.
= {z € R|z < 0}, die Menge aller nicht-positiven reellen Zahlen.

= {z € R|z # 0}, die Menge aller von Null verschiedenen Zahlen.
= R, die Menge aller reellen Zahlen.

= {0, +, -}, die Menge aller Vorzeichen.

={0,+,~,®,®,* ®}, die Menge aller unsicheren Zahlen.

= {0, }, die Menge aller strukturellen Zahlen.

= {Ov *, ®}'
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VIII NOMENKLATUR

A B, ... Zahlen, Vektoren oder Matrizen mit Eintridgen aus U werden mit
kaligraphischen GroBbuchstaben bezeichnet.

I, Eine nxn Matrix mit (+)-Eintrdgen auf der Diagonalen und O-Eintrigen
auf allen sonstigen Positionen.

s Eine n x n Matrix mit (x)-Eintrégen auf der Diagonalen und O-Eintréigen
auf allen sonstigen Positionen.

O Eine Matrix mit O-Eintrigen auf allen Positionen.

Symbole und Notation zu komplexen Vorzeichenvektoren

A 5B, ... Komplexe  Vorzeichenvektoren — werden mit  Frakturbuchstaben
bezeichnet.

wD, Das Vorzeichen von 7,7, cos(¢, — ¢,,), wenn ¢ =r - e/¥ € D.

“P, Das Vorzeichen von 7,7, sin(@, — ¢,,), wenn ¢ =r - e/¥ € D.

(“D,"P) Das w-te charakteristische Vorzeichenmuster eines komplexen

Vorzeichenvektors © (siche Definition 4.3 auf Seite 50).

Yq = q/qu, wenn w von Null verschieden in D ist (g, # 0).
0q(v,w) = (¢u — ) mod 7/2 > 0 ist der Abstand von w zu v in q.
0g(w) Der geringste Abstand von w in gq.

D, Das Vorzeichen von 7,7, cos(@, — @, — €) mit g (w) > € > 0.
wp, Das Vorzeichen von 7,7, sin(p, — ¢, — €) mit g,(w) > € > 0.

(YD,“P)  Vorzeichen des verdrehten w-ten charakteristischen Vorzeichenmusters.
U~ =U U {i*|i € U} fiir eine Menge U C {1,...,n}.

R Die Menge der Vorzeichenrotationsmatrizen (siche (4.4) auf Seite 54).

D Der konjugiert komplexe Vorzeichenvektoren von ®.

v Eine Funktion zur Beschreibung eines komplexen Vorzeichenvektors
(siche Satz 5.3 auf Seite 82).

K(n) Die Anzahl aller komplexen Vorzeichenvektoren der Ordnung n € N.
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KURZFASSUNG X

Kurzfassung

Das Verhalten von den meisten technischen Prozessen ldsst sich zumindest in
Arbeitspunkten hinreichend genau mit linearen zeitinvarianten Systemen der Form
dx/dt = A -z + B - u beschreiben. Zwei wichtige Eigenschaften solcher Systeme sind die
Steuerbarkeit und die Stabilisierbarkeit, welche zu den wesentlichen Voraussetzungen
modernen Methoden der Steuerungs- und Regelungstechnik zéhlen. Beide Eigenschaften
konnen anhand der Matrizen A und B numerisch untersucht werden. In den Modellen
zur Beschreibung eines technischen Prozesses basieren die Matrizen oft auf experimentell
ermittelten Daten, sodass die Eintrdge nur mit einer gewissen Genauigkeit bekannt und
die numerischen Nachweise nicht mehr anwendbar sind.

In dieser Arbeit werden algebraische Methoden zum Nachweis der Steuerbarkeit
und der Stabilisierbarkeit linearer zeitinvarianter Systeme unabhingig von konkreten
numerischen Parametern untersucht. Dafiir werden sieben Symbole zur Beschreibung
verschiedener Teilmengen der reellen Zahlen definiert und es wird der Begriff des
unsicheren Systems als Klasse linearer zeitinvarianter Systeme eingefiihrt. Allgemein
bekannte Spezialféille von unsicheren Systemen sind strukturelle Systeme, bei denen die
Eintrége der Matrizen entweder identisch Null oder von Null verschieden sind, und
Vorzeichen-Systeme, bei denen nur das Vorzeichen der Eintrége bekannt ist. Durch
diesen Ansatz wird daher der strukturelle Ansatz mit dem Ansatz tiber Vorzeichenmuster
vereint. In einem unsicheren System ist es z.B. im Gegensatz zum strukturellen Ansatz
moglich, dass manche Systemparameter sowohl den Wert Null als auch einen von Null
verschiedenen Wert annehmen konnen. Ein unsicheres System ist streng strukturell
steuerbar, vorzeichen-steuerbar, vorzeichen-stabil oder vorzeichen-stabilisierbar, wenn
jeweils jedes System der Klasse steuerbar, stabil oder stabilisierbar ist. In dieser Arbeit
werden verschiedene bekannte Resultate zu diesen Eigenschaften auf unsichere Systeme
verallgemeinert und es werden zwei bisher ungeléste Probleme, die Charakterisierung der

Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit, gelost.

Neben zahlreichen akademischen Beispielen werden die Resultate der Arbeit an bekannten
Modellen verschiedener technischer Systeme vorgefiihrt. Dabei werden z.B. jeweils die
Steuerbarkeit, die Stabilitdt und die Stabilisierbarkeit der Wankdynamik von Zweiréidern,
der Bewegung eines Satelliten, der Langsdynamik eines F-8 Strahlflugzeugs und der

Dynamik eines unbemannten Helikopters im Schwebeflug untersucht.
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X

Abstract

The behavior of most technical processes can be describe with sufficient precision with
linear time-invariant systems of the form dx/dt = A -z + B - u. Two important properties
of such systems are the controllability and stabilizability which are the preconditions of
most methods in modern control engineering. Both properties can be analyzed with the
matrices A and B by numerical tests. In the models used to describe a technical process,
the entries of the matrices are often known only with a certain accuracy, so that the

numerical tests are no longer applicable.

Hence, algebraic methods for the analysis of the controllability and the stabilizability
of linear time-invariant systems independent of numerical values are investigated in
this work. Therefore, seven symbols to describe different subsets of the real numbers
are defined and the notion of the uncertain system as a class of linear time-invariant
systems is introduced. Common special cases of uncertain systems are structural systems,
where the entries are either zero or nonzero and signed systems, where the entries are
positive, negative or zero. Thus, this new approach combines the structural and the
signed approach to describe uncertainties in linear time-invariant systems. Moreover, in
contrast to structural systems, it is possible, that some entries can be zero as well as
nonzero in an uncertain system. An uncertain system is strong structural controllable,
sign controllable, sign stable or sign stabilizable if every system in the class is controllable,
stable or stabilizable, respectively. In this work, different known results to these properties
are generalized to uncertain systems and two unsolved problems, the characterization of

sign controllability and sign stabilizability are solved.

In addition to numerous academic examples, the results of this work are demonstrated
to known models of various technical systems. Therefore, the controllability, the stability
and the stabilizability of the roll dynamic of bicycles, the motion of a satellite, the

dynamic of an F-8 jet airplane and the dynamic of an unmanned helicopter are analyzed.
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1 Einleitung

Eine typische Aufgabenstellung im Fachbereich der Steuerungs- und Regelungstechnik
beinhaltet einen technischen Prozess, der verschiedene physikalische Groflen (z.B.
Temperaturen, Geschwindigkeiten, Winkel oder elektrische Spannungen) und ein oder
mehrere StellgroBen enthélt. Jede physikalische Grofle folgt bestimmten Naturgesetzen
und eine Anderung ihres Zahlenwerts kann meist mit einer Differentialgleichung
beschrieben werden. Dadurch entstehen Systeme von Differentialgleichungen, dynamische

Systeme, welche den technischen Prozess beschreiben.

Wenn die physikalischen Grofen, deren Ableitungen und die Stellgrofien linear in die
Differentialgleichungen eines dynamischen Systems eingehen und sich kein Parameter des
Systems iiber den betrachteten Zeitraum verdndert, dann kann der technische Prozess mit
einem System von linearen Differentialgleichungen erster Ordnung, d.h. einem linearen

zeitinvarianten System der Form

d
Eac:Anx—&—Bm,, z(ty) = o, (1.1)

beschrieben werden. x ist dabei der ZustandsgréBenvektor der Dimension n, u ist der
Eingangsgrofienvektor der Dimension 7 und z, ist der Anfangszustand des Systems zum

Zeitpunkt ¢y. A und B sind jeweils n x n und n x r Matrizen mit reellen Eintrégen.

Es existiert eine etablierte Theorie zu linearen zeitinvarianten Systemen der Form (1.1)
und viele Eigenschaften eines gegebenen linearen zeitinvarianten Systems lassen sich gut
mit Algorithmen der linearen Algebra ermitteln. AuBerdem hat sich herausgestellt, dass
viele Eigenschaften nichtlinearer Systeme durch Approximationen mit linearen Systemen
bestimmt werden kénnen, und dass der Reglerentwurf fiir nichtlineare Systeme auf den

Reglerentwurf fiir lineare Systeme reduziert werden kann (siche [Hes09, S. 11]).

Der technische Prozess, den das lineare zeitinvariante System der Form (1.1)
beschreibt, soll in einer typischen Aufgabenstellung mithilfe der Stellgrofien u von
einem Anfangszustand zy zu einem gewiinschten Zustand iiberfiihrt und dort gehalten
werden. Die erste der beiden Teilaufgaben ist ein Steuerungsproblem und die zweite
ist ein Stabilisierungsproblem. Die allgemeine Losbarkeit beider Problemstellungen
wird jeweils mit dem Begriff der Steuerbarkeit und der Stabilisierbarkeit beschrieben.
Beide Eigenschaften koénnen anhand der Matrizen A und B fiir ein konkretes lineares

zeitinvariantes System der Form (1.1) numerisch bestimmt werden.
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2 1 EINLEITUNG

1.1 Einordnung der Arbeit

In vielen Systemen der Form (1.1) basieren die Eintrdge der Matrizen A und B auf
experimentell ermittelten Daten und sind nicht mit absoluter Sicherheit bekannt. ALBERT

EINSTEIN duflerte sich 1921 auch wie folgt iiber die Sicherheit mathematischer Ergebnisse:

wInsofern sich die Sitze der Mathematik auf die Wirklichkeit beziehen, sind
sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die
Wirklichkeit [Ein21].

Daher empfiehlt es sich in vielen Situationen, ein unsicheres System anstelle des
konkreten numerischen Systems zu untersuchen. Der wohl bekannteste Ansatz dafiir ist der
strukturelle Ansatz, bei dem angenommen wird, dass lediglich die Position aller Parameter
in den Matrizen A und B bekannt ist und jeder Parameter kann einen beliebigen von
Null verschiedenen Wert annehmen. Jede numerische Matrix hat dann ein bestimmtes
strukturelles Muster und eine Klasse von Systemen der Form (1.1), welche durch die
strukturellen Muster der Matrizen A und B beschrieben ist, wird als strukturelles System

bezeichnet.

Wenn mindestens ein Element eines strukturellen Systems steuerbar ist, dann ist das
strukturelle System strukturell steuerbar [Lin74] und wenn jedes Element steuerbar ist,
dann ist das strukturelle System streng strukturell steuerbar [MY79]. Die strukturelle
Steuerbarkeit und die strenge strukturelle Steuerbarkeit sind daher jeweils notwendig und
hinreichend fiir die Steuerbarkeit der linearen zeitinvarianten Systeme der Klasse.

Der strukturelle Ansatz zur Analyse linearer Systeme der Form (1.1) ist weit verbreitet
und wird in vielen Fach- und Lehrbiichern behandelt (siehe z.B. [Cas87], [Rei88], [Sil91],
[Son98], [Murl0], [Lunl0]). Eine Google Scholar Suche nach dem Begriff ,structural
controllability“ (engl. fiir strukturelle Steuerbarkeit) liefert z.B. Verweise auf 1710
Veréffentlichungen!, wovon 770 innerhalb der letzten sechs Jahre verdffentlicht wurden?.
Obwohl der Begriff der strukturellen Steuerbarkeit also schon seit mehr als 40 Jahren
existiert [Lin74] und allgemein charakterisiert ist (siche [SP76,GS76]), ist er nach wie vor
Gegenstand der aktuellen Forschung. Dabei werden nicht nur technische Systeme, sondern
auch biologische, informatische oder soziale Netzwerke auf Steuerbarkeit untersucht (siche
[LSB11]).

L http://scholar.google.de/scholar?q="structural+controllability", Stand 14.04.2015

2 http://scholar.google.de/scholar?q="structural+controllability"&as_ylo=2010
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1.1 EINORDNUNG DER ARBEIT 3

Neben der Untersuchung der Steuerbarkeit von linearen zeitinvarianten Systemen
der Form (1.1) kann mit dem strukturellen Ansatz auch die Steuerbarkeit
von Deskriptorsystemen (siche [RW97, RR00]), die Steuerbarkeit von zeitvarianten
zeitdiskreten Systemen [Pol92, HRS12] und die Steuerbarkeit von zeitvarianten
zeitkontinuierlichen Systemen [HRS13b, HRS13c] untersucht werden. AuBerdem lassen
sich verschiedene weitere Eigenschaften, wie z.B. die Struktur der unendlichen Nullstellen
[VDWO91] oder die Eingangs-Ausgangs Entkoppelbarkeit [Lin81], ermitteln. In [DCWO03]

ist eine Ubersicht zu verschiedenen Eigenschaften struktureller Systeme zu finden.

Eine Eigenschaft, welche nicht mit dem strukturellen Ansatz untersucht werden kann,
ist die Stabilitéit eines linearen zeitinvarianten Systems (siehe [DCWO03, S. 1129]).
Dafiir hat sich ein anderer Ansatz zur Beschreibung unsicherer Systeme als geeignet
erwiesen, in dem Vorzeichenmuster anstelle von strukturellen Mustern verwendet
werden. Dann sind zusétzlich die Vorzeichen aller von Null verschiedenen Eintrige
der Matrizen A und B festgelegt und eine solche Klasse von Systemen der Form
(1.1) wird als Vorzeichen-System bezeichnet. Ein Vorzeichen-System ist vorzeichen-stabil
[QR65], vorzeichen-steuerbar [JMO93] oder vorzeichen-stabilisierbar [HS14], wenn jeweils
jedes Element des Vorzeichen-Systems stabil, steuerbar oder stabilisierbar ist. Diese
Eigenschaften sind daher jeweils hinreichend fiir die Stabilitét, die Steuerbarkeit und die
Stabilisierbarkeit eines konkreten linearen zeitinvarianten Systems.

Die strukturelle Steuerbarkeit, die strenge strukturelle Steuerbarkeit und die
Vorzeichen-Stabilitédt sind vollstdndig charakterisiert und es existieren effiziente
Algorithmen, um ein System auf diese Eigenschaften zu untersuchen. Fir die
Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind dagegen bisher
lediglich hinreichende oder notwendige Bedingungen bekannt.

Die Beziehungen zwischen diesen Eigenschaften sind in Abbildung 1.1 dargestellt, wobei
angenommen wird, dass ein lineares zeitinvariantes System der Form (1.1) eine Eigenschaft
P besitzt, wenn es zu einer Klasse von Systemen gehort, welche die Eigenschaft P besitzt.
Viele der Beziehungen aus Abbildung 1.1 ergeben sich direkt aus den Definitionen der

jeweiligen Eigenschaften. Es ist daher offensichtlich,

e dass jedes streng strukturell steuerbare System auch vorzeichen-steuerbar ist,
e dass jedes vorzeichen-steuerbare System auch strukturell steuerbar ist,
e dass jedes vorzeichen-steuerbare System auch vorzeichen-stabilisierbar ist und

o dass jedes vorzeichen-stabile System auch vorzeichen-stabilisierbar ist.
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alle linearen
zeitinvarianten
Systeme

vorzeichen-steuerbar

vorzeichen-stabil /

Abbildung 1.1: Mengendiagramm zu verschiedenen Eigenschaften von Systemen der Form
(1.1) (siehe [HS14]).

Alle anderen Beziehungen, wie beispielsweise,

e dass es strukturell steuerbare Systeme gibt, die nicht stabilisierbar sind,
e dass es vorzeichen-stabilisierbare Systeme gibt, die nicht steuerbar sind oder,

e dass es vorzeichen-stabilisierbare Systeme gibt, die nicht stabil sind,
lassen sich leicht mit einfachen Beispielen zeigen (siehe z.B. [HRS13a], [HS14]).

Die Analyse eines strukturellen Systems bzw. eines Vorzeichen-Systems basiert auf der
kombinatorischen Untersuchung der zugehorigen Matrizen des Systems. Eine notwendige
Bedingung fiir die strukturelle Steuerbarkeit eines Systems ist beispielsweise, dass jede
Zustandsgrofe durch mindestens eine Eingangsgrofie beeinflusst werden kann. Wenn
dies nicht der Fall ist, dann lassen sich die System-Matrizen in die sogenannte Form I
permutieren. Die zweite Bedingung fiir die Uberpriifung der strukturelle Steuerbarkeit ist,
dass der maximale Rang einer bestimmten strukturellen Matrix gleich der Systemordnung
n ist. Wenn dieser kleiner ist, dann besitzt die strukturelle Matrix die sogenannte Form II
(siehe [GST76, S. 535]). Fiir die strenge strukturelle Steuerbarkeit muss dagegen der
minimale Rang bestimmter struktureller Matrizen ermittelt werden. Wenn dieser gleich n
ist, dann besitzt die Matrix die Form IIT (siche [RSW92, S. 207]). Es existieren effiziente

Algorithmen zum Uberpriifung jeder dieser drei Formen.

Analog zur Form IIT bei strukturellen Matrizen kann auch iiberpriift werden, ob alle
Matrizen von einem bestimmten Vorzeichenmuster vollen Rang besitzen. Ein solches

Vorzeichenmuster wird dann als L-Matrix bezeichnet (siche [BS09]). L-Matrizen sind
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besonders fiir die Uberpriifung der Losbarkeit von Gleichungssystemen interessant. Dies
wurde zuerst 1962 durch LANCASTER in [Lan62] untersucht (siche [KLM84]).

Fiir die Vorzeichen-Stabilitdt eines Vorzeichen-Systems muss jeder Eigenwert in jeder
Matrix des zugehorigen Vorzeichenmusters einen negativen Realteil besitzen. Diese
Eigenschaft ist charakterisiert (siche [Jef74]) und es existieren effiziente Algorithmen
fiir die Uberpriifung (siche [KD77]). Generell existieren bereits die verschiedensten
Resultate zur Untersuchung des Spektrums aller Matrizen von einem quadratischen
Vorzeichenmuster. In [EJ91] werden beispielsweise die Vorzeichenmatrizen charakterisiert,
die jeweils nur reelle, nur komplexe oder nur rein imaginédre Eigenwerte erlauben, in
[KMT96] werden Vorzeichenmuster untersucht, welche einen positiven Eigenwert besitzen
und in [SG03] werden Vorzeichenmuster untersucht, welche Diagonalisierbarkeit erlauben.
Eine Ubersicht weiterer spektraler Eigenschaften von Vorzeichenmustern ist in [CODO09]

zu finden.

1.2 Zielsetzung, Beitrige und Aufbau der Arbeit

In bisherigen Arbeiten existieren lediglich hinreichende oder notwendige Bedingungen fiir
die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit. In dieser Arbeit wird
erstmals eine vollstdndige Charakterisierung dieser beiden Eigenschaften vorgestellt und

ein Algorithmus fiir die Uberpriifung beschrieben.

Im Gegensatz zu vielen bisherigen Arbeiten im Bereich der Analyse von strukturellen
Systemen bzw. von Vorzeichen-Systemen werden in dieser Arbeit ausschlieBlich
algebraische und nicht graphentheoretische Methoden verwendet. Dafiir werden im
nichsten Abschnitt sieben Symbole definiert, welche verschiedene Teilmengen der reellen
Zahlen représentieren und die Menge der unsicheren Zahlen bilden. Auerdem werden in
Abschnitt 2 eine Addition, eine Multiplikation und eine Matrixmultiplikation fiir unsichere
Zahlen und Matrizen definiert und verschiedene Eigenschaften des daraus entstehenden

kommutativen Halbrings werden ermittelt.

AnschlieBend wird in Abschnitt 3 das unsichere System als eine Klasse linearer Systeme
der Form (1.1) eingefiihrt. Ein unsicheres System wird mit zwel unsicheren Matrizen
beschrieben und da strukturelle Matrizen und Vorzeichenmatrizen Spezialfélle von
unsicheren Matrizen sind, wird durch diese Methode der strukturelle Ansatz mit dem
Ansatz iiber Vorzeichenmuster vereint. In einem unsicheren System ist es im Gegensatz
zum strukturellen Ansatz moglich, dass manche Systemparameter sowohl den Wert

Null als auch einen von Null verschiedenen Wert annehmen koénnen. Auflerdem werden
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in diesem Abschnitt bereits bekannte Resultate zur strengen Surjektivitit, strengen
strukturellen Steuerbarkeit sowie Vorzeichen-Stabilitéit, Vorzeichen-Steuerbarkeit und
Vorzeichen-Stabilisierbarkeit auf diesen Ansatz iibertragen. Die daraus entstandenen
Bedingungen basieren auf der Multiplikation von unsicheren Vektoren mit der zu
untersuchenden unsicheren Matrix oder dem unsicheren System, sodass diese Bedingungen
eine Interpretation iiber die Eigenvektoren und die Elemente des Kokerns von unsicheren
Matrizen zulassen. Zudem wird in diesem Abschnitt neben verschiedenen akademischen
Beispielen auch die strenge strukturelle Steuerbarkeit der Bewegung eines Satelliten in
einer erdnahen Umlaufbahn und die Vorzeichen-Steuerbarkeit, die Vorzeichen-Stabilitéit

sowie die Vorzeichen-Stabilisierbarkeit der Wankdynamik von Fahrrédern untersucht.

Im darauffolgenden Abschnitt 4 wird der komplexe Vorzeichenvektor als eine
Aquivalenzklasse von komplexen Vektoren definiert und es wird gezeigt, dass dieser neue
Ansatz fiir die Untersuchung von Vorzeichenmatrizen geeignet ist. Wenn beispielsweise
ein komplexer Vektor im Kokern einer Matrix X ist, dann ist jeder Vektor derselben
Aquivalenzklasse im Kokern eine Matrix vom selben Vorzeichenmuster wie X und
wenn ein komplexer Vektor ein Eigenvektor zu einem rein komplexen Eigenwert von
einer quadratischen Matrix A ist, dann ist jeder Vektor derselben Aquivalenzklasse
auch ein Eigenvektor zu einem rein komplexen Eigenwert fiir eine Matrix vom
selben Vorzeichenmuster wie A. Auflerdem werden in diesem Abschnitt mehrere
neue Bedingungen vorgestellt, mit denen iiberpriift werden kann, ob ein komplexer
Vorzeichenvektor einen Eigenvektor zu einem Element einer unsicheren Matrix enthélt.
Dabei werden auch verschiedene bisher ungeloste Entscheidungsprobleme gelost, wie z.B.
ob es eine Matrix mit einem vorgegebenen Vorzeichenmuster gibt, welche einen komplexen

Eigenwert mit positivem Realteil besitzt.

Diese Resultate werden in Abschnitt 5 genutzt, um die Vorzeichen-Steuerbarkeit und
die Vorzeichen-Stabilisierbarkeit zu charakterisieren. Auflerdem wird gezeigt, dass beide
Entscheidungsprobleme NP-vollstindig sind und es wird ein rekursiver Algorithmus zur
Untersuchung der Vorzeichen-Steuerbarkeit beschrieben. Dabei wird eine Eigenschaft
genutzt, welche den Aufwand der Untersuchung deutlich reduzieren kann. AbschliefSend
werden zwei lineare zeitinvariante System der Form (1.1) auf strenge strukturelle
Steuerbarkeit, Vorzeichen-Steuerbarkeit und Vorzeichen-Stabilisierbarkeit untersucht.
Dabei handelt es sich um ein Modell der Léngsdynamik eines F-8 Strahlenflugzeugs und

ein Modell fiir die Dynamik eines unbemannten Helikopters im Schwebeflug.
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2 Mathematische Grundlagen

In diesem Abschnitt werden die grundlegenden Zusammenhénge fiir die Resultate der
folgenden Abschnitte zusammengestellt. Dafiir wird in Abschnitt 2.1 die verwendete
Notation beschrieben und es werden grundlegende mathematische Zusammenhénge
angegeben, bevor in Abschnitt 2.2 wichtige Sétze zur Stabilitdt, Steuerbarkeit und
Stabilisierbarkeit von linearen zeitinvarianten Systemen der Form (1.1) zusammengefasst

werden.

AnschlieBend werden in Abschnitt 2.3 sieben Symbole fiir verschiedene Teilmengen reeller
Zahlen eingefiithrt und es werden die Begriffe unsichere Zahl, strukturelle Zahl und
Vorzeichen sowie unsicheren Matrix, strukturelle Matrix und Vorzeichenmatrix definiert.
In Abschnitt 2.4 wird die Addition und die Multiplikation fiir diese Symbole festgelegt
und in Abschnitt 2.5 werden abschlieend grundlegenden Eigenschaften der sich daraus

ergebenden Halbgruppe ermittelt.

2.1 Notation und grundlegende Zusammenhinge

Die Mengen aller ganzen Zahlen; aller positiven, ganzen Zahlen; aller reellen Zahlen und
aller komplexen Zahlen werden mit Z, N, R und C bezeichnet. Fiir zwei a,b € R mit
b > a bezeichnen die Ausdriicke [a,b], ]a,b], [a,b] und Ja,b] jeweils geschlossene, offene
und halb-offene Intervalle in R mit den Endpunkten a und b. Die Ausdriicke [a;b], a; b],
[a; b und ]a;b] bezeichnen jeweils diskrete Intervalle, d.h. [a;b] = [a,b] N Z. Fiir zwei
Mengen N, M bezeichnet jeweils N ¢ M, N C M, N D M und N O M, dass N eine
echte Teilmenge, eine Teilmenge, eine echte Obermenge und ein Obermenge von M ist.
Der Ausdruck |N| beschreibt die Méchtigkeit der Menge N. Die imaginire Einheit, der
Realteil und der Imaginérteil einer komplexen Zahl x € C wird jeweils mit j, R(x) und

S(z) bezeichnet, sodass x = R(x) + () fiir jedes z € C gilt.

Fiir zwei n, m € N wird die Menge aller n x m Matrizen mit Eintrédgen aus einer Menge K
mit K"*™ bezeichnet. Fiir eine n x m Matrix X, bezeichnet X} ; den Eintrag in der k-ten
Zeile und der i-ten Spalte von X. Mit X7 wird die Transponierte von X beschrieben,
d.h. XT ist eine m x n Matrix und es gilt (X7);x := Xj,;. Eine Matrix aus C"*™
wird in dieser Arbeit mit einem grofien lateinischen Buchstaben und ein Skalar aus C,
oder ein Vektor aus C" mit einem kleinen lateinischen Buchstaben bezeichnet. Die n x n
Einheitsmatrix wird mit ,, und eine Matrix, die nur Null-Eintrége enthalt, wird mit 0
bezeichnet, wobei die Dimension der Matrix 0 stets aus dem Zusammenhang ersichtlich ist.

Der Ausdruck |a| beschreibt den absoluten Betrag einer Zahl @ € R und der Ausdruck |A|,
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oder det(A) bezeichnet die Determinante einer quadratischen Matrix A. Die Determinante
einer quadratischen Matrix A € K™ kann mit der Formel von LEIBNIZ ermittelt werden,
sodass n! Summanden die Determinante von A beschreiben [Fis10, S. 192]. Ein solcher
Summand wird als Term der Expansion von det(A) bezeichnet. Der Rang einer Matrix

X € R™™ mit n,m € N wird mit rang(X) bezeichnet.

Wenn eine Matrix X € R™ ™ zeilenregulir ist, d.h. rang(X) = n gilt, dann ist die lineare
Abbildung X : R™ — R" surjektiv [Fis10, S. 134] und die Matrix X wird dann als surjektiv
bezeichnet. Wenn X nicht surjektiv ist, dann gibt es einen Vektor ¢ € C™ mit g # 0, sodass
¢"X =0 gilt. Der Vektor ¢ ist dann im Kokern von der Matrix X.

Fiir eine Matrix A € R™” mit n € Nist A € C ein Eigenwert von A, wenn es einen Vektor
q € C"\ {0} gibt, fiir den

g A= \" (2.1)

gilt. Die Menge aller Vektoren ¢ € C™ \ {0}, welche Gleichung (2.1) fiir einen Eigenwert
A € C von A erfiillen, wird als Eigenraum von A beziiglich A bezeichnet und ein Element
des Eigenraums von A beziiglich X ist ein Eigenvektor von A beziiglich \. Ein Paar (X, ¢),
welches (2.1) erfiillt ist ein Eigenpaar von A. Die Menge aller Eigenwerte von A wird als

Spektrum von A bezeichnet.

Satz 2.1 : Gegeben ist eine reelle Matriz A € R™*™ mit n € N und es wird angenommen,

dass A € C und q € C" ein Eigenpaar von A ist. Die folgenden Eigenschaften sind erfillt.

(1) X=R(X) —7-S(N) ist ein Bigenwert von A und
7=R(q) — j - (q) ist ein Eigenvektor von A beziiglich X.
(1) Fir jedes a € C\ {0} ist - g ein Eigenvektor von A beziglich .

Beweis. Beide Eigenschaften sind allgemein bekannt. (i) wird beispielsweise in [HJ13, S.
145] als Aufgabe 2.5.P46 gestellt, oder in [Wat07, S. 44] und [Mey00, S. 492] beschricben.
Die Eigenschaft (i¢) folgt unmittelbar aus Gleichung (2.1). O

Fiir jede reelle Zahl @ € R und jede Zahl b € R\ {0} sind adivb=c€ Z und

amod b=d € [0, |b|] jeweils der Ganzzahlquotient und der Rest der Division, sodass
a=1"b-(adivb)+ (amod b) (2.2)

gilt. Nach EucLID’s Theorem gibt es fiir jedes Paar (a, b) genau ein eindeutiges Paar (¢, d)

mit den genannten Eigenschaften [Bou92, S. 132]. Wenn a kein Vielfaches von b ist und
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b > 0 gilt (siehe [Bou92, S. 133]), dann gilt

(—a) mod b = b — (a mod b). (2.3)

Die Sinus- und Kosinus-Funktionen werden jeweils mit sin und cos bezeichnet. Fiir zwei
reelle Zahlen a,b € R gelten die Additionstheoreme (siehe [FBO06], S. 7, 1.6),

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) und (2.4a)
cos(a + b) = cos(a) cos(b) — sin(a) sin(b) sowie (2.4b)
cos(—a) = cos(a) und sin(—a) = —sin(a). (2.4¢)

Mit tlim f(t) wird der Grenzwert der Funktion f(¢) fiir ¢ gegen oo bezeichnet, wobei das
—>00

Symbol oo das Unendlichzeichen ist.

2.2 Grundlagen zu linearen zeitinvarianten Systemen

Lineare zeitinvariante Systeme der Form (1.1) bilden die Basis fiir viele Methoden
der ,Modernen Regelungstechnik“ und sie werden seit der Mitte des 20. Jahrhunderts
in diesem Fachbereich verwendet. Bei der Analyse dieser Systeme spielen die Begriffe
der Stabilitdt, der Steuerbarkeit und der Stabilisierbarkeit eine entscheidende Rolle.
All diese Eigenschaften sind heutzutage genau untersucht und werden in den meisten
regelungstechnischen Grundlagenwerken behandelt (siche z.B. [Kai80,CF03,Dat04, WLO07,
HJS08, Hes09]). Dieser Abschnitt fasst die in dieser Arbeit benétigten Definitionen und

Sétze iiber lineare zeitinvariante Systeme der Form (1.1) zusammen.
Die Losung eines linearen zeitinvarianten Systems (1.1) zum Zeitpunkt ¢ > ¢ ist durch
t
z(t) = At gy 4 /eA(FT)Bu(T)dT (2.5)
to

beschrieben, wobei e4* die Matrix-Exponentialfunktion ist.

Definition 2.2 (Stabilitéit): Das lineare zeitinvariante System (1.1) ist asymptotisch

stabil, wenn fiir jeden Anfangszustand xo € R™, flim x(t) =0 bei u =0 gilt.
t—o0

Die Eigenwerte der Matrix A sind fiir das asymptotische Verhalten der

At

Matrix-Exponentialfunktion e verantwortlich, sodass die Stabilitdt eines linearen

System der Form (1.1) mit dem folgenden Satz untersucht werden kann.
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Satz 2.3 : Gegeben sind zwei Matrizen A € R™™ und B € R™" mit n,r € N.

Die folgenden Figenschaften sind dquivalent.

(¢) Das lineare zeitinvariante System (1.1) mit A und B ist asymptotisch stabil.

(12) Alle Eigenwerte von A haben einen negativen Realteil.

Eine weitere, wichtige Eigenschaft von einem linearen zeitinvarianten System der Form
(1.1) ist die Steuerbarkeit, welche 1960 von KALMAN [Kal60] eingefiihrt wurde. Die

Steuerbarkeit eines Systems der Form (1.1) ist wie folgt definiert.

Definition 2.4 (Steuerbarkeit): Das lineare zeitinvariante System (1.1) ist steuerbar,
wenn es fir jeden Anfangszustand xo zum Zeitpunkt ty und jeden Zustandspunkt x, zu

einem Zeitpunkt t; > to eine Steuerfunktion u: [to,t1] — R" gibt, sodass x(t1) = x1 gilt.

Die Steuerbarkeit von einem linearen zeitinvarianten System der Form (1.1) ldsst sich mit

dem folgenden Satz untersuchen.

Satz 2.5 : Gegeben sind zwei Matrizen A € R™"™ und B € R™™" mit n,r € N.

Die folgenden Eigenschaften sind dquivalent.
(1) Das lineare zeitinvariante System der Form (1.1) mit A und B ist steuerbar.
(ii) Es gilt rang (K (A, B)) =n mit K(A, B) :== (B, AB,... A""'B).

(iti) Es gilt rang <l~((A, B)) =n? mit

I, 0 B 0
A B
K(A, B) =
I,
0 A0 B

(tv) Fir jeden Wert A € C gilt rang(A — X - I,,, B) = n.
(v) Fiir jeden Eigenwert A\ von A gilt rang(A — X - I,,, B) = n.

Die Bedingung (ii) in Satz 2.5 wird als Kalman-Kriterium und die Bedingung
(v) als Popov-Belevitch-Hautus Kriterium bezeichnet. Die Popov-Belevitch-Hautus
Bedingung liefert neben der Ja/Nein Aussage zur Steuerbarkeit eines Systems noch die
Informationen iiber die Werte A € C, bei denen die Matrix (A — A - I,, B) im Falle der

Nicht-Steuerbarkeit einen Rangverlust besitzt.
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Ein Wert A € C wird als (A, B)-steuerbar bezeichnet, wenn rang (A — X - I,,, B) = n gilt.
Nach Satz 2.5.(iv) ist das System (1.1) mit A und B genau dann steuerbar, wenn alle
Jerte A € C, (4, B)-steuerbar sind.

Satz 2.6 : Gegeben sind zwei Matrizen A € R™"™ und B € R™" mit n,r € N und eine
komplexe Zahl X € C. Wenn der Wert X ist nicht (A, B)-steuerbar ist, dann ist der Wert
A =R(\) — 5S()\) nicht (A, B)-steuerbar.

Beweis. Da A nicht (A, B)-steuerbar ist, gibt es ein ¢ € C", sodass ¢TA = \¢” und
¢'B = 0 gilt. Aufgrund von Satz 2.1 gilt g7A = X - g mit § = R(q) — 53(q). AuBerdem
gilt R(¢")B = 3(¢")B = 0, sodass ' B = 0 gilt und X nicht (A, B)-steuerbar ist. O

Ein schwécherer Begriff als die Steuerbarkeit ist die Stabilisierbarkeit (auch asymptotische

Steuerbarkeit genannt), welche u.a. in [Hau70, S. 453, Theorem 4] untersucht wurde.

Definition 2.7 (Stabilisierbarkeit): Das lineare zeitinvariante System der Form
(1.1) st stabilisierbar, wenn es fir jeden Anfangszustand xo zum Zeitpunkt to eine

Steuerfunktion u: [ty, co[— R" gibt, sodass tlim x(t) = 0 gilt.
—00

Aus dieser Definition folgt unmittelbar, dass ein lineares zeitinvariantes System der Form
(1.1) stabilisierbar ist, wenn es steuerbar, oder wenn es stabil ist. Die Stabilisierbarkeit

eines System (1.1) lésst sich mit dem folgenden Satz untersuchen.

Satz 2.8 : Gegeben sind zwei Matrizen A € R™"™ und B € R™" mit n,r € N.

Die folgenden Eigenschaften sind dquivalent.
(¢) Das lineare zeitinvariante System der Form (1.1) mit A und B ist stabilisierbar.
(i1) Es existiert eine Matriz K € R™", sodass jeder Eigenwert der Matriv A+ BK einen

negativen Realteil besitzt.
(132) Jeder Wert A € C mit R(X) > 0 ist (A, B)-steuerbar.

2.3 Unsichere Zahlen, Matrizen und Vektoren

Die sign-Funktion fiir eine reelle Zahl z € R wird wie folgt definiert
+1, wenn z > 0,
sign(z) == 0, wenn z =0 und

—1, wenn z < 0.
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Die sign-Funktion teilt den Raum R auf natiirliche Weise in drei Bereiche auf, die Zahl 0,
die positiven und die negativen reellen Zahlen. Die Menge aller positiven, reellen Zahlen
wird in dieser Arbeit mit dem Symbol + und die Menge aller negativen, reellen Zahlen

mit dem Symbol - bezeichnet, d.h. es gilt

+:={z e Rlz > 0} und
~={z eRjz < 0}.

Zusétzlich wird die einelementige Menge O := {0} definiert.

Die Symbole +, — und O werden als Vorzeichen bezeichnet und die Menge aller Vorzeichen
wird mit V symbolisiert, d.h. es gilt V := {+,0,~}. Eine n x m Matrix X € vy
mit n,m € N ist eine Vorzeichenmatrix. Analog zu einem Vorzeichen beschreibt eine
Vorzeichenmatrix X € V*»*™ eine Menge von reellen n x m Matrizen, wobei fiir eine reelle
Matrix X € R™™ genau dann X € X gilt, wenn fiir jedes a € {1,...,n} und jedes
be{l,...,m}, X,p € Xy gilt. Ein Spaltenvektor mit Eintrédgen aus V ist ein Spezialfall

einer Vorzeichenmatrix und wird als Vorzeichenvektor bezeichnet.
Beispiel 2.1 : Die reelle 2 x 3 Matrix

. —1. -
X = 53 0 0 ist ein Element der Vorzeichenmatrix X = + o ,
T =17 4 AF = A

d.h. es gllt X e X € V2X37 da u.a. XLQ =0e€ O = XLQ; XQ’Q =—-17Te~-= XQ,Q und
X273 =4ec+= X273 gllt

Neben den Vorzeichen +, -~ und O werden in dieser Arbeit die folgenden Mengen definiert:

@ :=+U O als die Menge aller nicht-negativen reellen Zahlen,
@:=-~ U O als die Menge aller nicht-positiven reellen Zahlen,
* =+ U ~ als die Menge aller von Null verschiedenen reellen Zahlen und
®:=+U-UO=R.
Obwohl die Definition von dem Symbol ® durch die Existenz von R redundant ist, wurde
das Symbol ® fiir eine optische Darstellung des Zusammenhangs ® = x U O eingefiihrt.

Ein Element von der Menge S := {O, x} ist eine strukturelle Zahl und ein Element von der
Menge U := {O,+, -, ®, &, %, ®} ist eine unsichere Zahl. Analog zu Vorzeichenmatrizen
wird eine Matrix mit Eintrigen aus S als strukturelle Matrix und eine Matrix mit

Eintrdgen aus U als unsichere Matrix bezeichnet. Strukturelle und unsichere Matrizen
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sind ebenfalls Mengen von reellen Matrizen, aber wihrend es fiir eine reelle Matrix X
genau eine zugehdrige Vorzeichenmatrix und genau eine zugehorige strukturelle Matrix
gibt, gibt es mehrere unsichere Matrizen, zu denen X gehort, da jede Vorzeichenmatrix

und jede strukturelle Matrix gleichzeitig auch eine unsichere Matrix ist.

Beispiel 2.2 : X aus Beispiel 2.1 ist Element von der strukturellen Matrix X € S>3

und den unsicheren Matrizen X/, X", X" € U**® mit

=" )= (®° V(O ) maar=(® ¥ ®)
* x % + * ® * -~ + ® ® ®

Eine unsichere Matrix X ist von Null verschieden, wenn es ein a und ein b gibt, sodass
Xop # O gilt. Eine unsichere Matrix, die nur O-Eintrége enthélt, wird mit einem O-Symbol
dargestellt. Die Dimension einer solchen Matrix ist stets anhand des Zusammenhangs
ersichtlich. Z,, bezeichnet eine n x n Matrix mit (+)-Eintrdgen auf der Diagonalen und
O-Eintréigen auf allen sonstigen Positionen. Analog bezeichnet Z eine n x n Matrix mit
(%)-Eintrégen auf der Diagonalen. Unsichere Zahlen und Matrizen werden in dieser Arbeit

mit kaligraphischen Grofibuchstaben bezeichnet.

2.4 Rechnen mit unsicheren Zahlen

In dieser Arbeit werden unsichere Matrizen ausschliellich algebraisch untersucht und nicht
wie in vielen anderen Arbeiten mit graphen-theoretischen Methoden. Dafiir werden hier
zwel Verkniipfungen, die Addition und die Multiplikation, fiir die Menge der unsicheren
Zahlen U in natiirlicher Analogie zu den entsprechenden Verkniipfungen bei reelle Zahlen
definiert. Die Regeln der zweistelligen Verkniipfungen sind in den zwei Cayley-Tafeln
in Abbildung 2.2 dargestellt. Die Multiplikation hat dabei die hohere Prioritédt. Diese
beiden Verkniipfungen werden in [CF12] auf dhnlich Weise definiert (siehe auch [LHE94]
oder [Liu07]).

Beispiel 2.3 : Es gilt + + @=+, da in der linken Tabelle in Abbildung 2.2, + die
zweite Zeile und @ die fiinfte Spalte reprasentiert und der Eintrag in der zweiten Zeile
und fiinften Spalte ein + ist. Weiterhin gilt ~ + +=®; ~ - +=~ und ~ - x = *.
Auflerdem gilt ~ - (+ +® +0) =~ -+=~und ~ - (~ + Q)+ ~=+ + ~=&.

Beide Verkniipfungen sind assoziativ und kommutativ und sind genau so definiert, dass
der folgende Satz Giiltigkeit hat.
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+/O0 + - x ® © ® O+ - x ® © ®
OO0 + - « ® © ® o0l OO0 O O O O
++ + ® ® + ® & +/0 + -~ ¥ @ © &
-~ ® - ® ® - & -0 - + ¥ @ & &
Lo B S o o S B O I C R € * 1O * * * & ® &
PO + & @ O ® ® @0 ® © ® & © &
0 ® - ® ® © ® ©l0 © @ ® © ©® ®
PO ® DD ®O & & & ® ® @

Abbildung 2.2: Verkniipfungstafeln fiir Addition und Multiplikation der unsicheren Zahlen

Satz 2.9 : Gegeben sind zwei unsichere Zahlen X,) € U.
Fiir jedes x € X und jedes y € Y gilt

(i) z+yeX+Y und

(it) z-ye X Y.
Zudem sind die folgenden zwei Eigenschaften erfillt.

(t4i) Fiir jedes z € X +Y gibt es ein x € X und einy € Y, sodass z = x +y gilt.
(iv) Fliir jedes z € X - Y gibt es ein x € X und einy € Y, sodass z = x -y gilt.

Beweis. Wenn X = O, dann ist x = 0 das einzige Element in X und es gilt Z := X+Y =Y
und 2/ :=X-Y=0.Firjedesye Yglto+y=yec Zund z-y=0¢€ 2, sodass (i)
und (i7) erfiillt sind. Analog gilt fiir jedes z € Z und 2/ := 0 € Z' mit z := 0 € X und
y:=z€Y, dass z =z +yund 2/ =z -y gilt, sodass auch (44i) und (iv) erfiillt ist.

Wenn X =Y =+, danngilt ¥ +Y = XY =+=: Z. Fiir jedesz € X und jedes y € Y gilt
z+ye+=2Zund z-y € Z, sodass (i) und (i) erfiillt sind. Mit z :=2/2 ="y e X =Y
gilt z =z + y fiir jedes z € Z und mit ¢/ :=2 € Y gilt z = z - ¢/, sodass (¢ii) und (iv)

erfiillt sind. Alle anderen Fille lassen sich auf vergleichbare Art zeigen. O

Mit dem folgenden Satz wird eine weitere Eigenschaft fiir die Multiplikation von einem

Vorzeichen mit einer unsicheren Zahl beschrieben.

Satz 2.10 : Gegeben ist ein Vorzeichen X € V und eine unsichere Zahl Y € U.
Fiir jedes x € X und jedes z € X - Y gibt es einy € Y, sodass z =x -y gilt.
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Beweis. Wenn X = O gilt, dann ist z =0 und & - Y = O erfiillt. Dann gilt z=0-y € O
und die Aussage ist erfiillt. Andernfalls gilt X € {+,~};2 € XY= Z; Y =2y =X.Z
und z # 0. Mit y := z/x € Z - X gilt y € Y und die Aussage erfiillt ist. O

Satz 2.10 gilt fiir die Multiplikation von einem Vorzeichen mit einer unsicheren Zahl, kann
aber nicht allgemein auf die Multiplikation von zwei unsicheren Zahlen erweitert werden,

wie das folgende Beispiel 2.4 zeigt.

Beispiel 2.4 : Angenommen, es gilt X =~ Vund Y =€ U, dannist Z2 =X-) =@.
Nach Satz 2.10 gibt es fiir jedes 2 < 0 (z € X) und jedes z > 0 (z € Z) einy <0 (y € V),
welches z - y = z geniigt. Dies ist mit y := z/x € ) gegeben.

Wenn dagegen X' ==Y ¢ V gilt, dann gilt ebenfalls Z = X’ - Y =@. Nach Satz
2.9.(iv) gibt es fiir jedes z > 0 (z € Z£) ein 2’ <0 (2’ € X’) und ein y < 0 (y € V), sodass
z = 2’ -y erfiillt ist, aber beispielsweise fiir ' =0 € X’ und z = 1 € Z gibt es kein y € ),

sodass z = 2’ - y erfiillt ist.

Bei der Multiplikation von zwei unsicheren Zahlen X,)Y € U kann auf das
Verkniipfungssymbol verzichtet werden, d.h X - ) kann mit XY beschrieben werden.
Zudem gilt —X := (=) - X fiir jede unsichere Zahl X € U. Damit ldsst sich die Subtraktion

fiir zwei unsichere Zahlen X, € U wie folgt durchfithren
X=YV=X+(=)Y)=x+(~D).

Die Addition und die Multiplikation von unsicheren Matrizen wird analog zu den
entsprechenden Operationen bei reellen Matrizen definiert. Fiir zwei unsichere Matrizen
X, Y e U™ ist Z =X + Y eine n x m unsichere Matrix und es gilt Z,; 1= Xop + Vap
fiir jedes a € {1,...,n} und jedes b € {1, ..., m}. Die Multiplikation von einer unsicheren
Zahl X € U mit einer unsicheren Matrix J € U™™ ergibt eine n x m unsichere Matrix
Z=XYundesgilt Z,, := XY, fiir jedes a € {1,...,n} und jedes b € {1,...,m}. Die
Multiplikation von zwei unsicheren Matrizen X' € Ut und Y € Ubxe ergibt eine a X ¢
unsichere Matrix Z = XY und es gilt Z,, = S.0_ (XexVh,) fiir jedes = € {1,...,a}
und jedes y € {1,...,c}.

Beispiel 2.5 : Gegeben sind die unsicheren Matrizen A € U*3 und B € U? mit

© = ©O
A=+ O O und B=
® O O

* O +
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Es gilt CT = BT A = (®, +, ), da beispielsweise
3
=) BAi=(+ 0)+0 - H+*@=0+0+®=@
k=1

gilt. AuBerdem ergibt sich

+ © O
AA=A-A=|e + 0O und (B, AB, A’B) =
® ® O

* O +
® + O
® © +

Fir die Multiplikation von einem Vorzeichenvektor mit einer unsicheren Matrix ergibt

sich analog zu Satz 2.10 der folgende, interessante Zusammenhang.

Satz 2.11 : Gegeben sind ein Vorzeichenvektor Q@ € V™ und eine unsichere Matriz
X € U™ mit n,m € N. Fiir jedes ¢ € Q und jedes yI € QT - X gibt es eine Matrix
X € X, sodass yT = q* - X erfiillt ist.

Beweis. Wir definieren Y7 := QT - X und wir fixieren ein s € {1,...,m}. Fiir jedes
i € {1,...,n} definieren wir 2, := Q;X;,, sodass Yy = > i QX5 = >, Z; gilt.
Aufgrund von Satz 2.9 gibt es fiir jedes ys € Vs und jedes i € {1,...,n} ein z; € Z;, sodass
Ys = ory 2 gilt. Mithilfe von Satz 2.10 gibt es dann fiir jedes ¢; € Q; ein X;, € X,
sodass z; = ¢; X; s gilt und die Aussage ist erfiillt. O

7
Beispiel 2.6 : Gegeben sind drei unsichere Vektoren X = <+ ® - O) 3

T T
y:(+ + - @) unde(-— o + +) . Es gilt

XY=+ H+@ H)+(=--)+(0-®)=t++@+++0=+,
XTZ=(+--)+(@®-0)+(--+)+(0-+)=-+O0+~+0=~ und
ZY=(=H)+OH+(HF =)+ (+ - ®)=-+0+~-+8=®.
Der unsichere Vektor Z ist ein Vorzeichenvektor und es gilt 0 € ZTY. Fiir jedes
T
zz(le 0 z3 z4> € Z € V¥ mit z > 0 fiir i € {1,3,4} gibt es nach Satz 2.11 ein

T
y €Y € U4, sodass 2Ty = 0 gilt. Dies ist beispielsweise mit 3 = (i 1 L Z—i) erfiillt.

21 z3
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2.5 Algebraische Bedeutung und weitere Eigenschaften

Die algebraischen Objekte (U, +) und (U, -) sind Halbgruppen, da beide Verkniipfungen
assoziativ sind. Auflerdem sind beide Verkniipfungen kommutativ und besitzen ein
neutrales Element, sodass beide Halbgruppen abelsche Monoide sind. Die algebraischen
Objekte (U, +,-), (S U{®},+,-) und (VU{®},+,) sind kommutative Halbringe. Fiir
Grundlagen und Hintergrundinformationen zu Halbgruppen und Halbringe wird auf
[HW93] und [Haz09] verwiesen.

Die Relation C auf der Menge der unsicheren Zahlen U ist eine Halbordnung und per
Definition (siehe Abschnitt 2.3) gibt es fiir jede unsichere Zahl U € U ein Vorzeichen
Y €V, sodass V C U gilt. Die Vorzeichen V sind daher die minimalen Elemente und die
unsichere Zahl ® ist das maximale Element der Halbordnung, welche in Abbildung 2.3 in

einem Hasse-Diagramm dargestellt ist.

® * @
-~ O +
Abbildung 2.3: Hasse-Diagramm zur Darstellung der Relation C auf der Menge U.

Wird die Matrix Z8 mit einer Vorzeichenmatrix X aus V**™ multipliziert, d.h. ZS - X =
S, dann ist das Ergebnis der Multiplikation eine strukturelle Matrix aus S™* und S
beschreibt die Struktur von X'. Im allgemeineren Fall, wenn X ein Element von U™*™ ist,
dann ist S = Z% - X eine Matrix aus ™™, wobei § := {0, %,®} = S U {®} gilt. Mit dem
folgenden Satz wird gezeigt, dass S dann das ,kleinesten Element aus S™™
X C S geniigt.

ist, welches

Satz 2.12 : Gegeben ist eine unsichere Matriz X € U™ mit n,m € N.
Es gilt X C IS - X C 8 fiir jedes S € S™™ mit X C 8.

Beweis. Wir definieren S = I8 . X und wir fixieren ein a € {1,...,n}, ein

b e {l,...,m} und ein S € St*m mit X € S. Wenn Xop = O gilt, dann gilt

Sap =4 Xp=0=2X,, CSyp € {O,®} und die Aussage ist erfillt. Wenn andernfalls
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Xop € {+,~,*} gilt, dann gilt Sa,b =x-Xp=+ und S,p € {»,®}. Dann gilt
Xop C SA'a)b C S,p und die Aussage ist erfiillt. Im verbleibenden Fall X,;, € {®,©,®}
gilt X, C Sa,b =x-Xp =® und S, =®, sodass die Aussage ebenfalls erfiillt ist. |

Beispiel 2.7 : Gegeben sind vier unsichere Matrizen A, B,C, D € U3*2

+ O ® O * O ® O
A=~ 4|, B=|~ &|, C=|® =« und D= |® ®
O + © + o ® ® *

A ist eine Vorzeichenmatrix und es gilt C,D € $3*2 sowie A € B C D und A C C.
Aulerdem gilt B Z C und C € D, da z.B. B11 € C11 und Cs9 € D35 gilt. Es ergibt sich

* O O + © * O ® O
Z§A =lo x o ~ 4]l=]% x|=A4A und IEB =|x | =08
O O x O + O x ® *x

sowie Z5C = C und ISD = D. A’ ist eine strukturelle Matrix, d.h A" € $*2 und es gilt
AcC A cCund A" C B' C D. Es ergibt sich das folgende Hasse-Diagramm:

Abschlieflend werden in dem folgenden Satz einige grundlegende Eigenschaften der beiden

Verkniipfungen auf der Menge der unsicheren Zahlen aufgelistet.

Satz 2.13 : Fir jede unsichere Zahl X € U und jedes Vorzeichen Y € V gilt

)
() X-0=0-X=0
(iv) X +=+-X=X.
W) (X =) ~==X == (=X)=4X
(vi) X C (%) X.
(i) OCY-X <= YCX

Beweis. Die Beziehungen (i) bis (vi) ergeben sich unmittelbar aus der Definition der

Addition und Multiplikation. Es wird daher nur die Aussage (vii) bewiesen. Wenn Y =+
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und O C Y — X erfiillt ist, dann gilt X € {+,®,*, ®}, wenn andernfalls Y = O, dann
gilt X € {0,0,®,®} und wenn Y = ~, dann gilt X € {~, 3, x,®}. In all diesen Fillen
gilt genau dann Y C X und die Aussage ist erfiillt. O
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3 Lineare Systeme mit unsicheren Matrizen

In diesem Abschnitt wird der Begriff des unsicheren Systems definiert und es werden
verschiedene Eigenschaften unsicherer Matrizen und unsicherer Systeme untersucht.
Dazu gehoren die strenge strukturelle Surjektivitdt und die strenge Surjektivitét
in Abschnitt 3.1, die strenge strukturelle Steuerbarkeit in Abschnitt 3.2, die
Vorzeichen-Steuerbarkeit in Abschnitt 3.3, die Vorzeichen-Stabilitdt in Abschnitt 3.4 und
die Vorzeichen-Stabilisierbarkeit in Abschnitt 3.5. Die meisten Ergebnisse aus diesem
Abschnitt sind Verallgemeinerungen bekannter Ergebnisse von den Spezialféllen, bei denen
die unsichere Matrix oder das unsichere System nur aus Vorzeichen oder strukturellen
Zahlen besteht.

Abgeschlossen wird dieser Abschnitt mit einer kurzen Zusammenfassung von Ergebnissen
zur strengen strukturellen Steuerbarkeit von zeitvarianten Systemen sowie dem Bezug

zum Kalman Kriterium in Abschnitt 3.6.

3.1 Strenge Surjektivitit von unsicheren Matrizen

Die Steuerbarkeit und die Stabilisierbarkeit eines linearen Systems der Form (1.1) kann
nach Satz 2.5.(iv) und 2.8.(iii) iiber die Surjektivitét von bestimmten Matrizen ermittelt
werden. Daher wird in diesem Abschnitt zunéchst die Surjektivitdt von unsicheren

Matrizen untersucht.

Definition 3.1 (Strenge Strukturelle Surjektivitit): Fine Matric S € S™™ mit
n,m € N ist streng strukturell surjektiv (engl. strongly structrually surjective), wenn jede
reelle Matriz S € S surjektiv ist. Eine unsichere Matrix U € U™™ ist streng strukturell

surjektiv, wenn es eine streng strukturell surjektive Matriz S € S™™ mit U C S gibt.

Eine Matrix S € $™™ mit n,m € N,m > n ist daher streng strukturell surjektiv, wenn
der minimale Rang von allen Matrizen X € S gleich n ist. Diese Eigenschaft ldsst sich
mit der sogenannten Form IIT iiberpriifen (siehe z.B. [RSW92, S. 207, Def. 2], [SJA1L, S.
336, Def. 8], oder [HRS12, S. 2191, (3)]).

216.73.216.38, am 20.01.2026, 06:17:47. @ Urheberrechtlich geschiltzter Inhalt.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186247087

3.1 STRENGE SURJEKTIVITAT VON UNSICHEREN MATRIZEN 21

Definition 3.2 (Form III): Eine unsichere Matriz X € U™ mit n,m € N besitzt die
Form III, wenn zwei strukturelle Permutationsmatrizen P € S™™ und P' € S™*™ derart

ezistieren, sodass

® - ® x O - O O

® - ® ® x - O O
PXP C | : P : gilt.

® -+ ® ® ® --- x O

® - ® ® @ *

Neben der Form III existieren die Formen I und II, mit denen jeweils iiberpriift werden
kann, ob alle Zustandsgréfien mit dem Eingang eines Systems verbunden sind und ob der
maximale Rang von allen Elementen einer strukturellen Matrix gleich n ist (siehe [GS76,
S. 535]). Eine Matrix X € §**™ kann mit dem folgenden Satz auf strenge strukturelle

Surjektivitat iiberpriift werden.

Satz 3.3 : Gegeben ist eine Matriz X € S™™ mit n,m € N.

Die folgenden Eigenschaften sind dquivalent.

(i) Die Matriz X ist streng strukturell surjektiv.
(#9) Fir jeden strukturellen Vektor Q € S™ mit Q # O gilt O € oTx.
(#9i) Die Matriz X besitzt die Form III.

Beweis. Die Aquivalenz zwischen (i) und (ii4) wurde bereits in [Bru66, S. 473, Th. 2.1]
(siehe auch [HS93, S. 11, Th. 4.4.(iii)]) fiir n = m und in [HRS12, S. 2191, Prop. IIL.1] fir

X € S™™ bewiesen. Der Beweis hier verlauft dhnlich zu dem von [HRS12].

Fiir (i) = (4i) nehmen wir an, dass (i7) nicht erfiillt ist. Dann gibt es einen strukturellen
Vektor O # Q € S", sodass O C QTX gilt. Ohne Einschrinkung der Allgemeinheit
gilt Q; =  fiir die ersten £ > 0 Eintrdge von Q und Q; = O fiir die letzen (n — k)
Eintrdge von Q. Aufgrund der Annahme O C QTX kann eine Matrix X € X derart
gewéhlt werden, dass die Summe der ersten k Zeilen in jeder Spalte Null ergibt. Mit
qg:=(1,...,1,0,...,0)T € Q gilt ¢" X = 0 und X ist nicht streng strukturell surjektiv.

Fiir den Beweis (i) == (4ii) wihlen wir Q = (x,...,*)” und aufgrund der Annahme
gilt O ¢ YT = QT X, sodass fiir mindestens ein i € {1,...,m}, O € Y, = >, X, gilt.
Spalte i von X besitzt dann keinen ®-Eintrag und genau einen x-Eintrag in Zeile k. Ohne

Einschrinkungen der Allgemeinheit gilt ¢ = m und & = n und wir entfernen die letzte
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Zeile und Spalte von X. Die Eigenschaft (ii7) folgt dann aus einem Induktionsargument.
Die Beziehung (#4i) == (i) ist abschlieBend offensichtlich. O

Um eine unsichere Matrix U € U™*™ auf strenge strukturelle Surjektivitdt zu untersuchen

kann der folgende Satz verwendet werden.

Satz 3.4 : Gegeben ist eine unsichere Matrix U € U™ mit n,m € N.

Die folgenden Figenschaften sind dquivalent.

(¢) Die unsichere Matriz U ist streng strukturell surjektiv.
(#1) Die Matriz IS U € S™™ ist streng strukturell surjektiv.
(iii) Fiir jeden strukturellen Vektor @ € S® mit Q # O gilt O € QT U.

Beweis. Der Aquivalenz von (i) und (ii) folgt unmittelbar aus Definition 3.1 und
Satz 2.12. (i1) <= (iii) folgt aus Satz 3.3, da QTZE U = QT U gilt. O

Die strenge strukturelle Surjektivitdt von einer unsicheren Matrix U € U™™ ist
hinreichend, aber nicht notwendig fiir die Surjektivitit aller Matrizen U € U. Daher
kann es unsichere Matrizen U € U™™™ geben, die nicht streng strukturell surjektiv sind,
aber dennoch sind alle reellen Matrizen U € U surjektiv (siehe z.B. X’ in Beispiel 3.1
unten). Fiir diese unsicheren Matrizen gibt es dann nicht surjektive Matrizen U € R™*™
gleicher Struktur, d.h. eine Matrix U € ZS U ist nicht surjektiv, aber es gilt U ¢ U.

Nachfolgend wird die strenge Surjektivitit fiir unsichere Matrizen definiert®.

Definition 3.5 (Strenge Surjektivitéit): FEine unsichere Matriz X € U™™ mit

n,m € N ist streng surjektiv, wenn jede reelle Matriz X € X surjektiv ist.

Wenn X streng strukturell surjektiv ist, dann ist nach Definition 3.1 jedes X € X C IS X

surjektiv und X ist streng surjektiv. Dies wird in dem folgenden Satz festhalten.

Satz 3.6 : Gegeben ist eine unsichere Matriv X € U™ mit n,m € N.

Wenn X streng strukturell surjektiv ist, dann ist X streng surjektiv.

Mit dem folgenden Satz ldsst sich eine Matrix auf strenge Surjektivitiat untersuchen.

3 Eine streng surjective Vorzeichenmatrix X' € V**™ wird auch als L-Matrix bezeichnet (siche [BS09]).

216.73.216.38, am 20.01.2026, 06:17:47. @ Urheberrechtlich geschiltzter Inhalt.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186247087

3.1 STRENGE SURJEKTIVITAT VON UNSICHEREN MATRIZEN 23

Satz 3.7 : Gegeben ist eine unsichere Matriz U € U™ mit n,m € N.

Die folgenden FEigenschaften sind dquivalent.

(i) Die unsichere Matriz U ist streng surjektiv.
(1) Fiir jeden Vorzeichenvektor Q@ € V* mit Q # O gilt O € QT U.

Beweis. Fiir den Spezialfall von Vorzeichenmatrizen, U € V™™ ergibt sich der Satz
aus [KLM84, S. 133, Remark 1.1]. Im Folgenden wird ein kurzer Beweis fiir unsichere
Matrizen U € U™ dargestellt.

Wir nehmen zunichst an, dass O € QTU fiir einen Vorzeichenvektor Q € V* mit Q # O
gilt. Aus Satz 2.11 folgt, dass es dann fiir jeden Vektor ¢ € Q ein U € U gibt, sodass
q'U = 0 gilt. Die Matrix U ist dann nicht surjektiv und ¢/ ist nicht streng surjektiv.

Fiir die Umkehrung nehmen wir an, dass U nicht streng surjektiv ist. Dann gibt es eine
Matrix U € U und einen Vektor ¢ € R™ mit ¢ # 0, sodass ¢ U = 0 gilt. Der Vektor ¢ ist
Element des Vorzeichenvektors Q # O und aufgrund von Satz 2.9 gilt dann O C QT U,
sodass (i7) nicht erfillt ist. O

Vergleicht man die Bedingung (i) aus Satz 3.4 mit der Bedingung (i) aus Satz 3.7,
so kann man erkennen, dass eine unsichere Matrix & € U™*™ nicht streng (strukturell)
surjektiv ist, wenn es einen Vorzeichenvektor (bzw. einen strukturellen Vektor) Q gibt,
fir den O C QT U gilt. Dieser Vektor Q enthilt dann reelle Vektoren ¢ € R™ mit ¢ # 0,
die im Kokern von Matrizen U € U (bzw. U € Z5 U) sind, sodass genau diese Vektoren
q € Q fiir den Verlust der Surjektivitiat verantwortlich sind.

Beispiel 3.1 : Gegeben sind drei unsichere Matrizen X', X', X" und eine Matrix X mit

X:+O7X,:+®7X,,:+® I
= = = = = = —x3 X2

und es wird im Folgenden angenommen, dass x1,xs,z3 > 0 gilt. Es gilt X C X’ C X”;
XeX", X eX' wenn 4 > 0 gilt und X € X, wenn z, = 0 gilt. Zudem gilt

I§X=<* o) und I§X’=I§X”=<* ®>.

*x K * %

Die Matrix Z§ X besitzt Form III und ist daher nach Satz 3.3 streng strukturell surjektiv.
Mit Satz 3.4 ist X streng strukturell surjektiv und mit Satz 3.6 auch streng surjektiv. Die
unsicheren Matrizen Z5 X und Z$ X" besitzen nicht die Form IIT und sind aufgrund von

Satz 3.4 nicht streng strukturell surjektiv.
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Mit Q = (+,+)T gilt O € QTX” = (®, ®), sodass X" nach Satz 3.7 nicht streng surjektiv
ist. Dagegen ist O ¢ QTX’ = (®, +) erfiillt und fiir jeden Vorzeichenvektor Q +# O gilt
ebenso O ¢ QT X, Daher folgt aus Satz 3.7, dass X’ streng surjektiv ist und alle Matrizen
X € X' sind surjektiv.

Dasselbe Resultat ldsst sich in diesem Fall leicht mithilfe der Determinante von X
iiberpriifen. Diese ergibt sich zu det(X) = z129 + 2324 und wenn z4 > 0 und z; > 0
fir 7 € {1, 2,3} gilt, dann ist det(X) > 0 erfiillt und X ist surjektiv.

Wenn andernfalls 24 €~ erlaubt ist, dann gilt det(X) = 0 fiir 4 = —x129/25 und X ist
nicht surjektiv. Mit ¢ = (z3,21)T € (+, +)7 = Q gilt dann ¢" X = 0.

3.2 Strenge Strukturelle Steuerbarkeit

Die strenge strukturelle Steuerbarkeit wurde von MAYEDA und YAMADA im Jahr 1979 als
hinreichende Bedingung fiir die Steuerbarkeit linearer zeitinvarianter Systeme der Form
(1.1) anhand des Belegtheitsmusters der Matrizen A und B eingefithrt. Auferdem wurde
eine graphentheoretische Charakterisierung fiir EingroBensysteme (r = 1) vorgestellt
(siche [MY79]). Dieses Konzept wurde in [RSW92] aufgegriffen und es wurde u.a.
eine algebraische Charakterisierung fiir Mehrgroflensysteme présentiert, bei der fiir zwei
strukturelle Matrizen A € S und B € S™*" die Surjektivitit der Matrizen (A, B) und
(A — I8, B) untersucht wird.

n?
In diesem Abschnitt werden der Begriff der strengen strukturellen Steuerbarkeit und die
allgemeine Charakterisierung auf die Notation dieser Arbeit {ibertragen. Es wird mit der
Definition von unsicheren Systemen, Vorzeichen-Systemen und strukturellen Systemen

begonnen.

Definition 3.8 (Unsicheres System, Vorzeichen-System, strukturelles System):
Gegeben sind zwei unsichere Matrizen A € U™ und B € U™ mit n,r € N. Ein
unsicheres System (A, B) ist die Menge aller linearer zeitinvarianter Systeme der Form
(1.1) fir die A € A und B € B gilt. Wenn (A, B) € V™" gilt, dann wird das unsichere
System, als Vorzeichen-System (engl. signed system) bezeichnet und wenn (A, B) € SP<n+r
gilt, dann wird das unsichere System als strukturelles System (engl. structured system)

bezeichnet.

Diese Definition des strukturellen Systems unterscheidet sich wesentlich zu der Definition

der strukturellen Systeme aus bisherigen Arbeiten, in denen die Matrizen A und B
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nur Eintrdge aus der Menge S = {O,} enthalten. In dieser Arbeit sind zusétzlich
®-Eintrage in den Matrizen A und B erlaubt. Dadurch ldsst sich fiir jedes unsichere
System (A, B) € U™ ein ,groferes® strukturelles System (A’, B') finden, fiir das
(A, B) C (A, B') € ™™ gilt. Bei einer Definition des strukturellen Systems mit der
Menge S wére dies nur fiir die unsicheren Systeme mdglich, dir nur Eintrége aus der Menge
{O, ~,+,*} enthalten. Ein strukturelles System nach der herkémmlichen Definition ist

ein Spezialfall eines strukturellen Systems nach der Definition in dieser Arbeit.

Im Folgenden wird gezeigt, dass sich die Eigenschaften von strukturellen Systemen nach
der urspriinglichen Definition problemlos auf die strukturellen Systeme dieser Arbeit

erweitern lassen.

Definition 3.9 (Strenge strukturelle Steuerbarkeit): FEin strukturelles System
(A,B) mit A € S”" B € S™" und n,r € N ist streng strukturell steuerbar (engl.
strongly structurally controllable), wenn jedes lineare zeitinvariante System (1.1) mit
A € A und B € B steuerbar ist. Ein unsicheres System (A,B) mit A € U™ und
B € U™ ist streng strukturell steuerbar, wenn es ein streng strukturell steuerbares System

(A", B') mit (A, B) C (A, B') € S gibt.

Fiir die Charakterisierung der strengen strukturellen Steuerbarkeit wird der folgende Satz
zur (A, B)-Steuerbarkeit aller von Null verschiedenen Eigenwerte A € C eines strukturellen

Systems bendtigt.

Satz 3.10 : Gegeben sind die Matrizen A € S™™ und B € S™" mit n,r € N.

Die folgenden Eigenschaften sind dquivalent.

(i) Die Matriz (A — \,,, B) ist surjektiv fiir jedes A € A, B € B und X € C\ {0}.
(i1) Fiir jeden strukturellen Vektor Q € S™ mit Q # O gilt O € QT (A +I5, B).
(iii) Die Matriz (A+ IS, B) besitzt die Form III.

Beweis. Fiir strukturelle Matrizen A € $**" und B € S™” wurde die Aquivalenz zwischen
(¢) und (4i7) bereits in [RSW92] besprochen und in [HRS12, S. 2191, Prop. II1.2] bewiesen.
Hier folgt ein allgemeiner Beweis fiir (A, B) € SPm,

Fiir den Beweis (i) = (44) nehmen wir an, dass (¢) nicht erfiillt ist. Dann gibt es einen
strukturellen Vektor Q # O, sodass O C QT(A + Z5, B) gilt. Ohne Einschrinkung der
Allgemeinheit gilt Q; = * fiir die ersten k£ > 0 Eintrige und Q; = O fiir die letzen (n — k)
Eintriige von Q. Wir definieren M := (A, B) und M := (A + I%, B).
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Fiir jede Spalte von M mit dem Index s > £k gilt aufgrund der Annahme
oCcyr, Qi/\;li,s = Zle M, s, sodass wir eine zuléssige Realisierung M von M in Spalte
s definieren kénnen, fiir die Zle M, s = 0 erfiillt ist. Fiir jede Spalte s < k mit M, ;= 0O
gilt M, , = % und es gibt aufgrund der Annahme eini € {1,...,k}\{s} mit M, , € {x, ®}.
Fiir jede andere Spalte s < k vom M gilt M, s € {x, ®}. Daher kénnen wir eine zuléssige
Realisierung M von M in Spalte s < k wihlen, fiir die Z;;l M, =1 gilt.

Wir definieren A € A als die linke n x n Untermatrix von M und B als die rechte n x r
Untermatrix von M. Mit ¢ := (1,...,1,0,...,0)7 € Q gilt ¢"(A — I,, B) = 0 und (i) ist
fir A, B und A = 1 nicht erfiillt. Die Aquivalenz von (44) und (iii) folgt aus Satz 3.3 mit
X = (A+7T5, B) und (iii) = (4) ist offensichtlich. O

Mit dem folgenden Satz ldsst sich die strenge strukturelle Steuerbarkeit fiir strukturelle

Systeme charakterisieren.

Satz 3.11 : Gegeben ist ein strukturelles System (A, B) € S™ mit n,r € N,

Die folgenden Figenschaften sind dquivalent.

(2) Das strukturelle System (A, B) ist streng strukturell steuerbar.
(23) Die folgenden zwei Eigenschaften sind erfillt.
(a) Die Matriz (A, B) besitzt die Form III und
(b) die Matriz (A+ IS, B) besitzt die Form I
(t3i) Fir jeden strukturellen Vektor Q € S™ mit Q # O gilt
(a) O Z QT(A,B) und
(b) 0 Z QT(A+IE, B).

Beweis. In [RSW92, S. 207, Theorem 2] und in [HRS12, S. 2192, Corollary II1.3] wurde
die Aquivalenz von (i) und (i) unter der Annahme (A, B) € S™"*" gezeigt. Fiir den
allgemeineren Fall (A, B) € S™™*" folgt die Aquivalenz von (7), (i4) und (iii) unmittelbar
aus Satz 3.10 und Satz 3.4 mit X = (A, B), da die Matrix (A — \I,,, B) genau dann fiir
alle A€ A, B € Bund A € C surjektiv ist, wenn die Bedingung (a) und (b) erfiillt sind.
Nach Satz 2.5.(iv) ist genau dann jedes System mit A € A und B € B steuerbar und das
strukturelle System (A, B) ist nach Definition 3.9 streng strukturell steuerbar. O

In Bezug auf Eigenschaft (#i¢) in Satz 3.11 wird an dieser Stelle betont, dass die Matrizen
von einem strukturellen System zwar Eintridge aus S = {O, %, ®} enthalten diirfen,

strukturelle Vektoren oder Matrizen diirfen dagegen aber nur Eintrdge aus S = {O,x}
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besitzen. Ein unsicheres System kann mit dem folgenden Satz auf strenge strukturelle

Steuerbarkeit untersucht werden.

Satz 3.12 : Gegeben ist ein unsicheres System (A, B) € U mit n,r € N.

Die folgenden Eigenschaften sind dquivalent.

(¢) Das unsichere System (A, B) ist streng strukturell steuerbar.
(i4) Das strukturelle System IS (A, B) ist streng strukturell steuerbar.
(#i) Fiir jeden strukturellen Vektor Q € S™ mit Q # O gilt
(a) O Z QT(A,B) und
(b) OZ Q"(A+ T, B).

Beweis. Die Aquivalenz von (i) und (i) folgt aus Definition 3.8 und Satz 2.12. Die
Aquivalenz von () und (iii) folgt aus Satz 3.11 mit der Tatsache, dass QTZSM = Q" M
fir M = (A, B) oder M = (A + 75, B) gilt. O

Genau wie die strenge strukturelle Surjektivitét ist die strenge strukturelle Steuerbarkeit
hinreichend aber nicht notwendig fiir die Steuerbarkeit aller Elemente eines unsicheren
Systems. Wenn ein unsicheres System nicht streng strukturell steuerbar ist, dann kénnen
dennoch alle linearen zeitinvarianten Systeme des unsicheren Systems steuerbar sein. Fiir
solche Systeme gibt es dann lediglich nicht steuerbare Systeme der Form (1.1) vom selben

strukturellen Muster.

Beispiel 3.2 ([Bro70], S. 15; [FH77], S. 67, [HPO05], S. 94): Die Bewegung eines

Satelliten in einer erdnahen Umlaufbahn kann mit einem System der Form (1.1) mit

0O 1 0 0 O+ 0 O 00 0 0
3w 2 10

A3 0 02l 100 a8 el™ 9l=n
0O 0 0 00 O + 00 o o
0 -2 0 0 O® 0 O 01 o +

beschrieben werden, wobei angenommen wurde, dass w € R fiir die Winkelgeschwindigkeit
gilt. Das unsichere System (A, B) ist Teil des strukturellen Systems ZF (A, B) und es gilt

T(AB) = und Z5(A+Z5,B) =

O O ® O
® O O *
O O O O
O * ® O
o O * O
* O O O
O O @& *
® O * *
O * O O
x x ® O
O O * O
* O O O
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Die zwei Permutationen o = (1,3,2,4) und o' = (1,3,2,4,5,6) sind mit den zwei

strukturellen Permutationsmatrizen

* O O O O O

* O O O O O O O O

p_ O O = O und P O x O O O O

O x O O O O O x O O

O O O % O O O O « O

O O O O O =

beschrieben und es gilt
O O » O O O * O x O O O
* * *

paBP = |9 © 9 * OO wapuszsBp=|° F O * 900
® O O ® x O ® O * ® * O
O O ® O O * O O ® x O *

Diese beiden Matrizen besitzen daher die Form III. Aus den Sétzen 3.12 und 3.11 folgt,
dass das unsichere System (A, B) streng strukturell steuerbar ist. Daher sind nicht nur
alle linearen zeitinvarianten Systeme der Form (1.1) mit A € A und B € B steuerbar,
sondern es sind auch alle Systeme der Form (1.1) mit A € Z3 A und B € Z% B steuerbar.

3.3 Vorzeichen-Steuerbarkeit

Die Vorzeichen-Steuerbarkeit wurde 1993 von JOHNSON, MEHRMANN und OLESKY
als eine hinreichende Bedingung fiir die Steuerbarkeit linearer zeitinvarianter Systeme
der Form (1.1) anhand des Vorzeichenmusters der Matrizen A und B eingefithrt und
fiir nicht-negative Vorzeichenmatrizen A € V™" und positive Vorzeichenvektoren
B=(+,+,...,+)T € V* charakterisiert (siehe [JMO93]). Diese Eigenschaft wurde 1998
von TSATSOMEROS in [Tsa98] weiter untersucht und es wurden Bedingungen vorgestellt,
welche entweder hinreichend oder notwendig fiir die Vorzeichen-Steuerbarkeit sind.
In [HRS13a] wurde schlieBlich eine Charakterisierung der Vorzeichen-Steuerbarkeit fiir
Vorzeichen-Systeme vorgestellt, deren Systemmatrix A nur reelle Eigenwerte erlaubt. Eine
allgemeine Charakterisierung der Vorzeichen-Steuerbarkeit ist bisher nicht bekannt.

In diesem Abschnitt werden Teile der bereits bekannten Ergebnisse zur

Vorzeichen-Steuerbarkeit auf unsichere Systeme tibertragen.
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Definition 3.13 (Vorzeichen-Steuerbarkeit): FEin unsicheres System (A,B) mit
AeU™ B e U™ und n,r € N ist vorzeichen-steuerbar (engl. sign controllable),

wenn jedes lineare zeitinvariante System (1.1) mit A € A und B € B steuerbar ist.

Die Vorzeichen-Steuerbarkeit nach der Definition in dieser Arbeit bezieht sich auf
unsichere Systeme und ist daher allgemeiner als sie urspriinglich in [JMO93] fiir
Vorzeichen-Systeme definiert wurde. Jede unsichere Zahl ist {iber die Vereinigung von
Elementen aus V definiert (siche Abschnitt 2.3). Daher lédsst sich jede unsichere Matrix
U € U™ als Vereinigung von endlich vielen Vorzeichenmatrizen 'V, ... *V darstellen,
sodass U = 'V U ... U*Y gilt. Die Erweiterung einer Eigenschaft P von einer
Vorzeichenmatrix (oder einem Vorzeichen-System) auf eine unsichere Matrix M (oder
ein unsicheres System (A, B)) ist daher eine natiirliche Erweiterung der urspriinglichen
Eigenschaft auf jede Vorzeichenmatrix M’ mit M’ C M (oder jedes Vorzeichen-System
(A", B") mit (A", B') C (A, B)).

Mit dem folgenden Satz kann die (A, B)-Steuerbarkeit aller positiven, reellen Werte A fiir
jedes A € A und jedes B € B eines unsicheren Systems (A, B) iiberpriift werden.

Satz 3.14 : Gegeben sind die unsichere Matrizen A € U™ und B € U*" mit n,r € N.

Die folgenden Figenschaften sind dquivalent.

(¢) Die Matriz (A — M, B) ist surjektiv fir jedes A € A, B € B und X € +.

(i) Fiir jeden Vorzeichenvektor Q € V™ mit @ # O gilt O € QT (A — I, B).
(i14) Fiir jeden Vorzeichenvektor @ € V™ mit Q # O gilt 9T ¢ QT A oder O ¢ QT B.
(iv) Die Matriz (A — I, B) ist streng surjektiv.

Beweis. Die Aussage (i) <= (ii) wird in einer dhnlichen Form fiir Vorzeichen-Systeme
in [HS14, S. 148, Prop. 8] bewiesen. Es folgt ein allgemeiner Beweis fiir unsichere Systeme.
Fir (i) = (it) nehmen wir zunéchst an, dass (i¢) nicht erfillt ist. Dann gibt es
einen Vorzeichenvektor Q # O, sodass O C QT (A — Z,, B) gilt. Ohne Einschrinkungen
der Allgemeinheit gilt Q; € {+,~} fiir die ersten k£ > 0 Eintrdge von Q und Q; = O
fiir die letzten n — k Eintrdge von Q. Wir wéhlen ein beliebiges ¢ € Q, fixieren ein
s€{1,...,n+r} und definieren die Matrizen M := (A, B) und M := (A — T, B) sowie
die Vorzeichenvektoren X und Z mit X; := M, und Z; := Q;X; fiir jedes i € {1,...,n}.
Wenn s > k, dann gilt aufgrund der Annahme O C 377, Qi./\;li,s = Zle Q;X; und mit
Satz 2.11 wihlen wir ein @ € X, sodass g7z = 0 gilt. Wenn s < k und M, € {0, ©, ~},
dann gilt M.s,s =-und O C Y7, Qi./\;li,s = D en QX — Qs = > cn Zi — Qs mit
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N ={1,...,k}\{s}. Aufgrund von Satz 2.13.(vii) gibt es dann ein ¢ € N, sodass Qs C Z;
gilt und es kann ein z € Z mit Zle 21 = g5 festgelegt werden. Wenn andernfalls s < k
und M, € {+,®,x,®} gilt, dann kann cbenfalls ein z € Z festgelegt werden, sodass
Zf':l 2 = g, gilt. In beiden Fillen ist 2 € X und ¢"2 = ¢, mit z; := z/q fiir I < k und
|| ;=1 fur I > k und &) # O erfiillt.

Wir definieren M, ; := x; fiir jedes i € {1...,n}, A als die linke n x n Untermatrix und
B als die rechte n x r Untermatrix von M. Dann gilt ¢” A = ¢ und ¢" B = 0, sodass die
Aussage in (i) fiir A = 1 nicht erfiillt ist. Die Aquivalenz von (ii) und (iii) folgt aus Satz
2.13.(vii), die Aquivalenz von (ii) und (iv) aus Satz 3.7 und die Bezichung (iv) = (i)
ist offensichtlich. O

Werden die Ausdriicke A, A und A jeweils durch —A, —A und —\ in Satz 3.14 ersetzt, so

ergibt sich unmittelbar der folgende Zusammenhang.

Satz 3.15 : Gegeben sind die unsichere Matrizen A € U™ und B € U™ mit n,r € N.

Die folgenden Figenschaften sind dquivalent.

(¢) Die Matriz (A — M, B) ist surjektiv fir jedes A € A, B € B und X €~.

(i4) Fir jeden Vorzeichenvektor Q € V* mit Q # O gilt O € QT (A+ T, B).
(iii) Fiir jeden Vorzeichenvektor Q € V™ mit Q # O gilt —QT ¢ QT A oder O ¢ QTB.
(iv) Die Matriz (A+ Z,, B) ist streng surjektiv.

Wenn die unsichere Matrix A nur reelle Eigenwerte erlaubt, dann ldsst sich die

Vorzeichen-Steuerbarkeit mit dem folgenden Satz 3.16 charakterisieren.
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Satz 3.16 : Gegeben sind zwei unsichere Matrizen A € U™ und B € U™ mitn,r € N.

Die folgenden FEigenschaften sind dquivalent.

(i) Jeder Wert A € R ist (A, B)-steuerbar fiir jedes A € A und jedes B € B.
(i1) Die folgenden Eigenschaften sind erfiillt.
(a) Die unsichere Matriz (A, B) ist streng surjektiv.
(b) Die unsichere Matriz (A — T, B) ist streng surjektiv.
(¢) Die unsichere Matriz (A + T, B) ist streng surjektiv.
(#i) Fiir jeden Vorzeichenvektor @ € V™ mit Q # O gilt
(a) OZ Q"(A, B),
(b) O ¢ QT(A—1T,, B) und
(¢) OZ QT(A+1T,, B).
(tv) Fir jeden Vorzeichenvektor @ € V* mit Q # O und O C Q"B gilt

(a) O ZQTA,
(b) 9T ¢ QT A und
(c) —QT ¢ QTA

Beweis. Die Aquivalenz von (), (), (i4i) und (iv) folgt unmittelbar aus den Sitzen 3.7,
3.14 und 3.15, da genau dann alle Werte A € R = O U + U ~ fiir jedes A € A und jedes
B € B, (A, B)-steuerbar sind. O

Beispiel 3.3 : Gegeben sind die unsicheren Matrizen A € U?*3 und B € U? und mit

@1, Ty > 0; T3, 24, T5, |26] > 0 und 27 € R gilt

-2z x3 O e + O T5 +
A= s 25 0]l €|+ @ O]=A und B=|0]|€|0O]| =5
Iy 0 0 ® O O Te *

Mit @ = (5, x,%)T gilt O C QT (A, B) = (®,®, O, ®), sodass das unsichere System (A, B)
nach Satz 3.12 nicht streng strukturell steuerbar ist.

Die Eigenwerte von A sind Ay = 0 und Xoj35 = (22 — 1) £ /(@1 + 22)? + 324, sodass
fiir alle erlaubten Parameter, A;, Ao, A3 € R gilt und die unsichere Matrix A nur reelle

Eigenwerte erlaubt. Es gilt

+ ® + O
(A-I5,B) = @) und (A+Z3,B) =+ + O
s ® O +

* O +
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und fir jeden Vorzeichenvektor Q@ € V" mit Q # O gilt OZ QT(A, B);
O Z QT(A—1TI3, B) und O € QT (A + s, B). Jeder Wert A € R ist daher nach Satz 3.16
fiir jedes A € A und jedes B € B, (4, B)-steuerbar und da A nur reelle Eigenwerte erlaubt

ist das unsichere System (A, B) vorzeichen-steuerbar.

Die Bedingungen in Satz 3.16 sind notwendig fiir die Vorzeichen-Steuerbarkeit von jedem
unsicheren System (A, B). Wenn Bedingung (i2) aus Satz 3.16 fiir einen Vorzeichenvektor
Q nicht erfiillt ist, dann gibt es ein A € R, ein A € A und ein B € B, sodass A nicht
(A, B)-steuerbar ist. Genau genommen folgt aus dem Beweis von Satz 3.14, dass es fiir
jedes ¢ € Q und jedes A €+ mindestens ein A € A und ein B € B mit ¢7(A— A, B) =0
gibt, wenn Bedingung (iii.b) aus Satz 3.16 fiir einen Q # O nicht erfiillt ist.

Beispiel 3.4 : Gegeben sind die unsicheren Matrizen A € U**3 und B € U? mit

o O + (@) - O + O
A=|® O O| und B= |+ |, sodass (A—-Z3,B)=|® - O +
O - © + o~ ~ +

gilt. Mit @ = (4, ~,+)T gilt O € QT(A —T3,B) = (®,®, ®, ®). Das unsichere System
(A, B) ist daher nach Satz 3.16 nicht vorzeichen-steuerbar.

Fiir beliebige p1, pa, p3, A > 0 und p > 0 gilt mit ¢ = (p1, —p2, p3)* € 9,

0 0 (A+p2 @)
A= —)\Z—; 0 0 cA und B=|ps| €8,
0 Az P

q'(A — M3, B) = 0. Fiir jedes ¢ € Q und jedes A > 0 gibt es daher ein nicht-steuerbares
System (A, B) € (A, B) und das Eigenpaar (¢, A) der Matrix A ist dabei jeweils fiir den

Verlust der Steuerbarkeit verantwortlich.

3.4 Vorzeichen-Stabilitit

Die Frage nach der Stabilitét einer Klasse von Systemen der Form (1.1) unabhéngig von
konkreten Zahlenwerten wurde zuerst von dem Wirtschaftswissenschaftler SAMUELSON
in seinem Buch [Sam47] aus dem Jahr 1947 gestellt, da die konkreten Zahlenwerte
der in diesem Fachgebiet verwendeten Systeme der Form (1.1) sehr ungewiss und

wenn iiberhaupt nur schwer ermittelbar sind. Diese Fragestellung wurde 1965 von
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QUIRK und RUPPERT in [QR65] aufgegriffen und der Begriff der Vorzeichen-Stabilitit
wurde eingefithrt. AuBlerdem wurde eine Charakterisierung fiir Vorzeichenmatrizen
vorgestellt, deren Diagonalelemente alle von Null verschieden sind. In [Jef74]
wurde 1974 schliellich eine allgemeine graphentheoretische Charakterisierung der
Vorzeichen-Stabilitét présentiert.

In diesem Abschnitt wird eine algebraische Charakterisierung der Vorzeichen-Stabilitét
basierend auf den Ergebnissen aus [Qui81] vorgestellt. Fiir einen historischen Uberblick
zu den zahlreichen Resultaten zum Thema Vorzeichen-Stabilitdt sowie verschiedenen,
ghnlichen Stabilitits-Definitionen und deren algebraische Untersuchung wird auf den

Ubersichtsaufsatz [Qui81] verwiesen.

Definition 3.17 (Vorzeichen-Stabilitit): FEin wunsicheres System (A,B) mit
AeU™" B e U™ und n,r € N ist vorzeichen-stabil (engl. sign stable), wenn jedes
lineare zeitinvariante System (1.1) mit A € A und B € B stabil ist.

Ein Vorzeichen-System kann mit den folgenden Bedingungen auf Vorzeichen-Stabilitdt
untersucht werden. Diese Bedingungen sind #quivalent zu den graphentheoretischen
Bedingungen in [Jef74, JKD77] (siehe auch [Qui8l, S. 121f, Prop. 3.5]).

Satz 3.18 : Gegeben ist eine Vorzeichenmatrizen A € V™™ mit n € N und es sei
Z :={1,...,n}. Das Vorzeichen-System (A, -) ist genau dann vorzeichen-stabil, wenn die

folgenden Bedingungen erfillt sind.

(a) Es gilt A;; C@ fiir jedes i € Z.
(b) Es gilt A; 1, Ar; C O fir jedes i,k € Z miti # k.
(¢c) Es gilt Ap, gy Aks ks - - Ak iy = O flir jede Folge ky, ks, . .., k; verschiedener Elemente
aus Z mit [ > 2.
(d) Wenn die Menge Z in zwei Mengen B und W aufgeteilt wird, sodass
(1) Ai; 20 = i€ B;
(17) 1 € B = es gibt nicht genau ein k € W mit Ay; # O # A und
(i11) i € W => es gibt ein k € W\ {i} mit Ag; # O # Aig
gilt, dann ist B = Z erfillt.
(e) Es gibt einen Term T # O in der Ezpansion von det(A).

Die Eigenschaft Vorzeichen-Stabilitit wurde analog zur Vorzeichen-Steuerbarkeit
urspriinglich nur fiir Vorzeichen-Systeme definiert. Ein unsicheres System (A, -) ist nach

der Definition hier genau dann vorzeichen-stabil, wenn jedes Vorzeichen-System (A’ -)
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mit A’ C A vorzeichen-stabil ist. Daher folgt aus Satz 3.18 unmittelbar der folgende Satz

zur Charakterisierung der Vorzeichen-Stabilitét unsicherer Systeme.

Satz 3.19 : Gegeben ist eine unsichere Matriz A € U™ mit n € N und es sei
Z :={1,...,n}. Das unsichere System (A,-) ist genau dann vorzeichen-stabil, wenn die

folgenden Bedingungen erfillt sind.

(a) Es gilt A;; €@ fir jedesi € Z.
(b) Es gilt A; 1, Ar; C© fir jedes i,k € Z mit i # k.
(¢) Es gilt Ap gy Aoy - - - Ay = O fiir jede Folge ky, ko, . ..,k verschiedener Elemente
aus Z mit der Lange | > 2.
(d) Wenn die Menge Z in zwei Mengen B und W aufgeteilt wird, sodass
(i) O A;; = i€ B;
(i1) i € B = es gibt nicht genau ein k € W mit Ay; # O # A\, und
(t18) 1€ W = es gibt ein k € W\ {i} mit Ap; # O # Aig
gilt, dann ist B = Z erfillt.
(e) Es gibt einen Term O € T in der Ezpansion von det(A).

3.5 Vorzeichen-Stabilisierbarkeit

In [Wei94] wird die Stabilisierbarkeit von Klassen linearer Systeme der Form (1.1)
untersucht, deren Matrizen durch Intervalle beschrieben werden. Dabei wird ein zur
strukturellen Analyse &hnlicher Ansatz gewihlt und es wird gezeigt, dass alle Systeme
einer besonderen Klasse stabilisierbar sind. Die Matrizen dieser Klasse besitzen die
Form III (siehe [Wei94, S. 24, Theorem 3.1]), sodass diese Systeme gleichzeitig streng
strukturell steuerbar sind. Generell scheint der strukturelle Ansatz fiir die Untersuchung
der Stabilitéit oder der Stabilisierbarkeit eher ungeeignet zu sein, da beispielsweise fiir die
Vorzeichen-Stabilitdt nach Satz 3.19 fiir die meisten Parameter das Vorzeichen und nicht
die blofle Existenz eines von Null verschiedenen Parameters entscheidend ist. Wenn eine
unsichere Matrix A € U™*" beispielsweise einen Diagonaleintrag A;; = % besitzt, dann ist

nach Satz 3.19.(a) jedes unsichere System (A, B) mit B € U™*" nicht vorzeichen-stabil.

In [HS14] wird von HARTUNG und SVARICEK der Begriff der Vorzeichen-Stabilisierbarkeit
fir Vorzeichen-Systeme eingefiihrt. Auferdem wird eine Charakterisierung der
Vorzeichen-Stabilisierbarkeit fiir die Vorzeichen-Systeme (A, B) vorgestellt, deren
Systemmatrix A nur reelle Eigenwerte erlaubt. Diese Charakterisierung wird in diesem

Abschnitt auf unsichere Systeme erweitert.
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Definition 3.20 (Vorzeichen-Stabilisierbarkeit): FEin unsicheres System (A, B) mit
A e U™ B e U™ und n,r € N ist vorzeichen-stabilisierbar (engl. sign stabilizable),

wenn jedes lineare zeitinvariante System (1.1) mit A € A und B € B stabilisierbar ist.

Fir die Stabilisierbarkeit eines Systems der Form (1.1) miissen im Gegensatz zur
Steuerbarkeit nach Satz 2.8.(iii) lediglich alle Werte A € C mit ®(A\) > 0 (A, B)-steuerbar
sein. Wenn die unsichere Matrix A nur reelle Eigenwerte erlaubt, dann ldsst sich die

Vorzeichen-Stabilisierbarkeit wie folgt charakterisieren.

Satz 3.21 : Gegeben sind zwei unsichere Matrizen A € U™ und B € U™*" mit n,r € N.

Die folgenden Punkte sind dquivalent.

(i) Jedes A € R, X\ > 0 ist (A, B)-steuerbar fiir jedes A € A und jedes B € B.
(i) Die folgenden Eigenschaften sind erfillt.
(a) Die unsichere Matriz (A, B) ist streng surjektiv.
(b) Die unsichere Matriz (A — I, B) ist streng surjektiv.
(#i) Fiir jeden Vorzeichenvektor Q € S™ mit Q # O gilt
(a) O ¢ QF(A, B) und
(b) 0 Z Q"(A-T,, B).
(tv) Flir jeden Vorzeichenvektor @ € V™ mit Q # O und O C Q"B gilt
(a) O Z QT A und
(b) QT ¢ QT A.

Beweis. Die Aquivalenz von (i), (ii), (i) und (iv) folgt unmittelbar aus den Sétzen 3.7
und 3.14, da genau dann alle Werte A € R = O U + fiir jedes A € A und jedes B € B,
(A, B)-steuerbar sind. O

In dem folgenden Beispiel wird ein Modell der Fahrrad-Wankdynamik auf

Vorzeichen-Steuerbarkeit, -Stabilitdt und -Stabilisierbarkeit untersucht.

Beispiel 3.5 (Wankdynamik eines Fahrradmodells, siche [HS14], S. 149-150):
In [LM82] wird die Stabilitit von Fahrrddern untersucht und es wird ein einfaches
dynamisches Modell der Wankdynamik fiir Fahrrider vorgestellt. Dabei wird u.a.
angenommen, dass das Fahrrad mit Fahrer ein starrer Korper ist, dass sich dieser
Korper auf einer horizontalen Ebene bewegt und dass das Fahrrad eine konstante
Léangsgeschwindigkeit hat. In Abbildung 3.4 ist das Fahrrad mit dem Wankwinkel 6 und
Lenkwinkel S dargestellt.
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Abbildung 3.4: Die Wankdynamik eines Fahrrad-Modells

Fiir kleine Wankwinkel 6 und kleine Lenkwinkel £ sowie vereinfachenden Annahmen zur

Fahrrad-Geometrie ldsst sich das Momentengleichgewicht wie folgt beschreiben

0 = p16 + pafB + psf3. (3.1)

Die drei Parameter p;, p» und p; in (3.1) hiingen von der Geschwindigkeit, dem Gewicht
und den geometrischen Daten des Fahrrades ab (siehe [LM82], oder [AKLO05]) und alle

drei Parameter p;, p> und ps sind positiv.

Die Gleichung (3.1) kann mit dem folgenden System der Form (1.1) beschrieben werden

0 1
b= a+ P u, (3.2)
p1 O P2
~— S~—~—
A B

wobei z = (6, 6— p3B)T und u = B gilt. Daher gilt fiir jedes py, pa, p3 > 0,

AGA:(O +> und BGB:(+>.
+ O +

Es gilt A1 - A1 =+, sodass Bedingung (b) aus Satz 3.18 nicht erfiillt ist. Das
Vorzeichen-System (A, B) ist daher nicht vorzeichen-stabil. Die Eigenwerte von jedem
A" € Asind Ay, = £/A, A5 € R, sodass A nur reelle Eigenwerte erlaubt und einer
der Eigenwerte von jedem A’ € A hat einen positiv Realteil. Daher ist jedes lineare

zeitinvariante System mit A’ € A instabil. Es gilt

(A,B)-(O + *)., (A—Iz,B)_<* + *) und (A4, B) = (* + *).
TR .-

+ 0 + - + +
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Fir Q = (4, )7 gilt O € 9T(A + T,,B) = (®,®,®), sodass das Vorzeichen-System

(A, B) nach Satz 3.16 nicht vorzeichen-steuerbar ist.

Die Vorzeichenmatrizen (A, B) und (A—Z,, B) sind dagegen beide streng surjektiv, sodass
das Vorzeichen-System (A, B) nach Satz 3.21 vorzeichen-stabilisierbar ist. Jedes lineare
zeitinvariante System (A’, B') mit A’ € A und B’ € B ist daher stabilisierbar.

Das lineare zeitinvariante System (3.2) mit p; = p3/p3 ist beispielsweise nicht steuerbar.
Unter Verwendung der Notation von [AKLO5], ist dies der Fall, wenn das Fahrrad die
Geschwindigkeit v = a\/g% hat, wobei a und h Parameter des Fahrrades und g die
Gravitationskonstante ist. Demnach gibt es fiir jedes Fahrrad eine Geschwindigkeit,
sodass das System (3.2) nicht steuerbar ist. Mit ¢ = (ps, —ps)T € Q ist dann der
Wert A = —ps/ps = —v/a nicht (A, B)-steuerbar. Da aber A < 0 gilt, ist das lineare

zeitinvariante System (3.2) dennoch stabilisierbar.

Die Bedingungen (i7) und (#¢) von den Sétzen 3.16 und 3.21 sind notwendig fiir
die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit von einem unsicheren
System (A, B), aber nicht hinreichend, wenn die unsichere Matrix .4 komplexe Eigenwerte

erlaubt. Dies wird anhand des folgenden Beispiels veranschaulicht.

Beispiel 3.6 : Gegeben sind die unsicheren Matrizen A € U?*3 und B € U? mit

O + O ==
A=~ O - und B= |+
o O - aF

Die Bedingungen (4), (#4¢) und (¢v) von Satz 3.16 sind erfiillt, sodass jeder reelle Wert A
in jedem linearen zeitinvarianten System (A, B) mit A € A und B € B (A, B)-steuerbar

ist. Dennoch ist das lineare zeitinvariante System der Form (1.1) mit

0 1 0 —1
A=]-10 —-1|€A und B= 11 €eB
00 —1 2

nicht steuerbar, da die Werte ;) = %3 nicht (A, B)-steuerbar sind. Fiir den Wert A\ = j
gilt beispielsweise mit ¢ = (1 — j, —1 — j, 1)¥, ¢*(A — A\ I3, B) = 0.

Das Vorzeichen-System (A, B) wird in den Beispielen 4.4, 4.5 und 5.1 weiter untersucht.
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Wenn in einem linearen zeitinvarianten System (A, B) ein komplexer Wert A € C \ R
nicht (A, B)-steuerbar ist, dann gibt es einen komplexen Vektoren ¢ € C", fiir den
q"(A—AI,,B) =0 gilt. Da dieser Vektor ¢ komplexwertige Eintriige besitzt, ist er
kein Element von einem Vorzeichenvektor aus V". Die Bedingung (éii) von Satz 3.16
oder 3.21 ist daher nicht ausreichend fiir eine allgemeingiiltige Charakterisierung der
Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit, da in diesen Sdtzen ein

unsicheres System nur mit reellen Vektoren untersucht wird.

Aus diesem Grund wird im Abschnitt 4 der komplexe Vorzeichenvektor eingefiihrt.
Mithilfe von diesem neuen Ansatz kann das gesamte Spektrum aller Elementer einer
Vorzeichenmatrix untersucht werden. Zuvor werden jedoch im néchsten Unterabschnitt

Ergebnisse zur strengen strukturellen Steuerbarkeit fiir zeitvariante Systeme vorgestellt.

3.6 Strenge strukturelle Steuerbarkeit fiir zeitvariante Systeme

In diesem Abschnitt werden zwei aktuelle Ergebnisse zur strengen strukturellen

Steuerbarkeit von linearen zeitvarianten zeitdiskreten Systemen der Form

z(k+1) = A(k) - x(k) + B(k) - u(k), x(ko) = o, (3.3)
und linearen zeitvarianten zeitkontinuierlichen Systemen der Form

z(t) = A(t) - z(t) + B(t) - u(t), z(ty) = wo, (3.4)

vorgestellt. Dabei gilt jeweils A: K — R und B: K — R™™ mit K = Z fiir (3.3) und
K = R fiir (3.4). Ein lineares zeitinvariantes System der Form (1.1) ist ein Spezialfall von

einem linearen zeitvarianten zeitkontinuierlichen System der Form (3.4).

Definition 3.22 (Steuerbarkeit zeitvarianter zeitdiskreter Systeme): Das lineare
zeitvariante zeitdiskrete System der Form (3.3) ist steuerbar im Intervall [ko; k1], wenn es
fiir jeden Anfangszustand xo zum Zeitpunkt ko und jeden Zustandspunkt 1 zum Zeitpunkt
k1 > ko eine Steuerfunktion w: [ko; k1] — R" gibt, sodass x(k1) = x1 gilt. Das lineare
zeitvariante zeitdiskrete System der Form (3.3) ist steuerbar, wenn es ein ki > ko gibt,

sodass das System steuerbar im Intervall [ko; k1] ist.
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Definition 3.23 (Steuerbarkeit zeitvarianter zeitkontinuierlicher Systeme): Das
lineare zeitvariante zeitkontinuierliche System der Form (3.4) ist vollstdndig steuerbar im
Intervall T = [to, t1], wenn es fir jeden Anfangszustand xo zum Zeitpunkt to und jeden
Zustandspunkt xy zum Zeitpunkt t; > to eine Steuerfunktion u: T — R" gibt, sodass
x(t1) = x1 gilt. Das lineare zeitvariante zeitkontinuierliche System der Form (3.3) ist

steuerbar im Intervall T, wenn es vollstindig steuerbar in jedem Teilintervall von T ist.

Die Steuerbarkeit eines linearen zeitvarianten zeitdiskreten Systems der Form (3.3) lésst

sich mit dem folgenden Satz untersuchen.

Satz 3.24 ([HRS12], S. 2190): Gegeben sind ko, ki € Z mit ki > ko sowie
A [ko; k1] — R™™ und B [ko; k1] — R™" mit n,r € N.

Die folgenden FEigenschaften sind dquivalent.

(¢) Das System (A, B) der Form (3.3) ist steuerbar im Intervall [ko; ki].
(it) Es gilt rang (K*(A, B, ko, k1)) = n mit K%(A, B, ko, k1) :=

(B(ky — 1), Alky — 1)B(ky — 2), ..., A(ky — 1) ... A(ko + 1) B(ko)) .

(iti) Bs gilt rang (f(d(A, B, ko,kl)) = - (k1 — ko) mit K4(A, B, ko, ky) =

I, 0 B(k) 0
Alko+1) " B(ko + 1)
I, -
0 Ally—1) 0 B(k; — 1)

Die Steuerbarkeit eines linearen zeitvarianten zeitkontinuierlichen Systems der Form (3.4)

kann mit dem folgenden Satz untersuchen werden.
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Satz 3.25 ([SM67]; [HRS13c]|, S. 5896): Gegeben sind zwei ty, t; € R mitty > ty sowie
A: [to, t1] = R™" und B: [tg, t1] — R™" mit n,r € N. Auflerdem wird angenommen, dass
die Eintrige von A und B (n — 1)-fach differenzierbar sind.

Die folgenden Figenschaften sind dquivalent.

(i) Das System (A, B) der Form (3.4) ist steuerbar im Intervall T = [to,t1].
(i1) Die Matriz K°(A, B,t) hat auf jedem Teilintervall von T den Rang n. Dabei gilt

KA, B,t) = (Py(t), Pi(t), ..., Pasr(t))  mit

Py(t) := B(t) und Posq(t) :== A(t) - Pu(t) — Pe(t).
(i41) Die Matriz K°(A, B,t) hat auf jedem Teilintervall von T den Rang n®. Dabei gilt
K¢(A,B,t) ==

I, nol

0

n—2 n—1\ . n—2

0 A I, 1 B 0 B

n—2\ . n—3 X n—1\ . n—2\ -

i (594 - N5 (")

g g I, 8 g
n—2\ (-2  /p_ 3\ (n-3) — 1\ (n-1) _ 9\ (n-2)
= 1 n—3 v 0 A n—1 ' w—2 5 0 B
n—2 n—3 0 n—1 n—2 0

und (‘Z) beschreibt den Binomialkoeffizient fir a,b € Z.

Wenn die zeitvarianten Matrizen A und B in (3.3) und (3.4) konstant sind, d.h. es
gilt A(t) = Ag € R und B(t) = By € R™" fiir alle ¢ € R, dann vereinfachen sich
die Matrizen K%(A, B, ko, ko + n) aus Satz 3.24.(ii) und K¢(A, B,t) aus Satz 3.25.(ii)
zu K(Ag, By) aus Satz 2.5.(ii) und die Matrizen K%(A, B, ko, ko + n) aus Satz 3.24.(iii)
und K°(A, B,t) aus Satz 3.25.(iii) zu K(Ay, By) aus Satz 2.5.(iii). Die Bedingungen
aus den Sitzen 3.24 und 3.25 sind daher vergleichbar mit dem Kalman-Kriterium fiir
lineare zeitinvariante Systeme. Fiir die Untersuchung der Steuerbarkeit von zeitvarianten
Systemen gibt es alternativ auch Methoden, welche &hnlich dem Popov-Belevitch-Hautus
Kriterium sind (siehe z.B. [Zhu97, PI99]) oder Methoden, welche die Losung von (3.3)
bzw. (3.4) verwenden (siche [RHS14, Prop. II1.2, S. 3088]).

Wenn ein unsicheres System (A, B) streng strukturell steuerbar ist, dann ist die Matrix
(A — M, B) fiir jedes A € A, jedes B € B und jedes A\ € C surjektiv. Aus Satz 2.5 folgt,

dass dann die Steuerbarkeitsmatrix
K(A,B) = (B,AB,..., A" 'B) € K(A,B) := (B, AB,..., A" 'B) (3.5)

fiir jedes A € A und jedes B € B surjektiv ist. Es konnte daher vermutet werden, dass
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die unsichere Matrix KC(A, B), die alle Matrizen K (A, B) mit A € A und B € B enthilt,
dann streng strukturell surjektiv ist und aufgrund von Satz 3.4 die Form III besitzt. Im
Allgemeinen ist die unsichere Matrix IC(.A, B) eines streng strukturell steuerbaren Systems
(A, B) aber weder streng strukturell surjektiv noch streng surjektiv (siehe Beispiel 3.7

unten). In [HRS12] wird dagegen der folgende Zusammenhang gezeigt.

Satz 3.26 ([HRS12], S. 2193, Prop. IV.1): Gegeben ist ein strukturelles System
(A,B) mit A e S™", Be S undn,r € N. Wenn das System (A, B) streng strukturell

steuerbar ist, dann ist die strukturelle Matriz

I o B O
K(A,B) = = = 5 , e el s=l) (3.6)
O A O B

streng strukturell surjektiv.

Wenn K(A,B) aus (3.6) streng strukturell surjektiv ist, dann hat die Matrix
KA, B, ko, ko +n) € K(A,B) fiir jedes A: Z — A, jedes B: Z — B und jedes ky € Z
den Rang n? und das lineare zeitvariante zeitdiskrete System (A, B) der Form (3.3) ist

nach Satz 3.24.(iii) steuerbar. Es ergibt sich daher das folgende Resultat.

Satz 3.27 ([HRS12], S. 2193, Theorem IV.2): Gegeben sind zwei strukturelle
Matrizen A € S und B € S™*" mit n,r € N. Die folgenden Punkte sind dquivalent.

(¢) Das strukturelle System (A, B) ist streng strukturell steuerbar.
(i1) Die strukturelle Matriz K(A, B) in (3.6) ist streng strukturell surjektiv.
(#i) Jedes System der Form (3.3) mit A: Z — A und B: Z — B ist steuerbar.

Im Jahr 2012 haben HARTUNG, REISSIG und SVARICEK in [HRS12] daher erstmalig
gezeigt, dass sich der Begriff der strengen strukturellen Steuerbarkeit auf zeitvariante
zeitdiskrete Systeme der Form (3.3) erweitern ldsst und dass die Bedingungen fiir
die strenge strukturelle Steuerbarkeit zeitinvarianter Systeme der Form (1.1) sowohl
hinreichend als auch notwendig fiir die strenge strukturelle Steuerbarkeit zeitvarianter

zeitdiskreter Systeme der Form (3.3) ist.
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Beispiel 3.7 : Gegeben sind die Matrizen A € U*3, B € U? (siche Beispiel 2.5),

—ps p1 O ® + O D3 +
A= p, 0 0|le|+ O 0|=A und B=|0]|e|0O| =8B
pe 0 0 ® O O D4 *

mit py,pe, p3s > 0; py # 0; ps > 0 und pg € R. Die Matrizen

® * O * ® * O *
ZAB =[x 0 0 O und ZZA+TB) =+ » O O
® O O x ® O *x *

sind streng strukturell surjektiv, sodass das unsichere System (A, B) nach Satz 3.12 bzw.
Satz 3.11 streng strukturell steuerbar ist. Daher sind alle linearen zeitinvarianten Systeme
der Form (1.1) mit A € A und B € B steuerbar. Die Steuerbarkeitsmatrix K (A, B) aus
Satz 2.5.(ii) ergibt sich zu

ps —psps  ps(pip2 + p3) + © +
K(A,B)= 10 pops —P2pP3Ps €10 + o] =K(AB)
DPa  D3Pe —P3PsP6 * ® @

(siehe auch Beispiel 2.5). Mit Q = (+,+,+)" gilt O C QTK(A, B) = (®, ®, ®), sodass
die unsichere Matrix (A, B) nach Satz 3.7 nicht streng surjektiv ist. Die Determinante
der Matrix K (A, B) ergibt sich zu det(K (A, B)) = —p1 p3p2ps # 0. Daher ist K(A, B)
fiir jedes A € A und B € B surjektiv, obwohl die unsichere Matrix (A, B) nicht streng

surjektiv ist. Es lasst sich leicht zeigen, dass die unsichere Matrix

- OO0 000+ 0O
O~ 00000 OO0
OO0 ~00O0 * OO0
© + 0~ 000+ O
KAB =+ 0 0 0O - 00 0 O
® O OO0 -0 % O
OO0 O0®e+ 000 +
O 0O+ 0O 00O
OO0 O0O® OO0 0O O *

streng strukturell surjektiv ist. Alle zeitdiskreten Systeme der Form (3.3) mit A: Z — A
und B: Z — B sind daher steuerbar.
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Bei linearen zeitvarianten zeitkontinuierlichen Systemen diirfen sich die Parameter
dagegen nicht zeitlich verindern, ohne dass die Steuerbarkeit verloren geht. Wenn das
Systems (A, B) streng strukturell steuerbar ist, dann ist im Allgemeinen nicht jedes lineare
zeitvariante zeitkontinuierliche Systemen der Form (3.4) mit A: R - A und B: R — B
steuerbar. Dies wird mit dem folgenden Beispiel aus [HRS13c| gezeigt.

Beispiel 3.8 (siche [HRS13c], S. 5895 f.): Gegeben sind die strukturellen Matrizen
A € 22 und B € §? mit

.A—(* O) und B—<*>.
O O *

Die beiden Matrizen

(A,B)=<* © *> und (A+I2S,B)=<® © *>
O O * O *x *

sind jeweils streng strukturell surjektiv, sodass das strukturelle System (A, B) nach Satz

3.11 streng strukturell steuerbar ist. Fiir die zeitvarianten Matrizen

At) = <(1) 8) und  B(t) = (;t)

ist A(t) € A und B(t) € B fiir jedes ¢t € R erfiillt. AuBerdem gilt

KA, B,t)= (B,A B~ B) = (elt Clt> :

10 1 0
KC(AB‘”:(IQ B 0): 01 et 0
’ A B B 10 0 1

0 0 —et et

und det(K¢(A, B,t)) = det(K¢(A, B,t)) = 0. Das lineare zeitvariante zeitkontinuierliche
System (3.4) ist daher nach Satz 3.25 nicht steuerbar, obwohl lediglich ein Eintrag in den

Matrizen des streng strukturell steuerbaren Systems (A, B) zeitvariant ist.

AuBerdem wird in [HRS13c] das folgende Ergebnis vorgestellt.
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Satz 3.28 ([HRS13c|, S. 5898, Prop. 12): Gegeben sind zwei strukturelle Matrizen
A € S und B € S™" mit n,r € N. Wenn das System (A + IS, B) streng strukturell

steuerbar ist, dann ist die strukturelle Matriz

7 o B O
A - B* B
KAB) = |4 A . B B . e §aleto=1) (3.7)
L % ¢ : . B
A A . A B B .. B B

mit A* :=®-A und B* :=®-B streng strukturell surjektiv.

Wenn K°(A,B) aus (3.7) streng strukturell surjektiv ist, dann hat die Matrix
K°(A, B,t) € K¢(A, B) fiir jedes A: R — A, jedes B: R — B und jedes t € R den Rang
n? und das lineare zeitvariante zeitkontinuierliche System (A, B) der Form (3.4) ist nach
Satz 3.25.(iii) steuerbar in jedem Zeitintervall®. Die strenge strukturelle Steuerbarkeit
des Systems (A + IS, B) ist daher hinreichend fiir die Steuerbarkeit aller zeitvarianten
zeitkontinuierlichen Systeme (A4, B) der Form (3.4) mit A: R — A und B: R — B.
In [HRS13b] wird anschlieflend gezeigt, dass die hinreichende Bedingung aus Satz 3.28

auch notwendig ist.

Im Jahr 2013 haben HARTUNG, REISsIG und SVARICEK daher die strenge strukturelle
Steuerbarkeit fiir lineare zeitvariante zeitkontinuierliche Systeme charakterisiert. Die
Resultate aus [HRS12], [HRS13c] und [HRS13b] sind in [RHS14] zusammengefasst und es
wird ein allgemeiner Beweis, in dem die (n — 1)-fache Differenzierbarkeit der zeitvarianten

Eintriage nicht gefordert wird, vorgestellt.

Satz 3.29 ([RHS14], S. 3091, Theorem IIL.9): Gegeben sind zwei strukturelle
Matrizen A € S und B € S"*" mit n,r € N. Die folgenden Punkte sind dquivalent.

(i) Das strukturelle System (A + I, B) ist streng strukturell steuerbar.

(i4) Die unsichere Matriz (A+®- IS, B) ist streng strukturell surjektiv.
(t12) Jedes System der Form (3.4) mit A: R — A und B: R — B ist steuerbar, wobei die

Elemente von A und B jeweils stiickweise stetig sind.

Das folgende Beispiel orientiert sich an Beispiel 3.2.

4 Es wird dabei angenommen, dass alle Eintréige von A und B jeweils (n — 1)-fach differenzierbar sind.
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Beispiel 3.9 : Gegeben sind die strukturellen Matrizen A € S¥* und B € S* mit

O x O O O O
* * *
A= © 0 und B= ©
O O O «x O O
O x O O O *

Das unsichere System (A,B) ist streng strukturell steuerbar, sodass alle linearen
zeitinvarianten Systeme der Form (1.1) mit A € A und B € B und nach Satz 3.27
auch alle zeitdiskreten Systeme der Form (3.3) mit A: Z — A und B: Z — B steuerbar
sind. Mit den Permutationsmatrizen P und P’ aus Beispiel 3.2 gilt

O O
PA+®-I5, B)P = * O
*x K

O * O ®
O O ® O

* ® O *
* O O O

® O

sodass die Matrix (A +@®-Z5, B) die Form III besitzt und nach Satz 3.3 streng strukturell
surjektiv ist. Aufgrund von Satz 3.29 ist daher jedes lineare zeitvariante zeitkontinuierliche
System der Form (3.4) mit A: R — A und B: R — B steuerbar.
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4 Komplexe Eigenpaare von Vorzeichenmatrizen

In Abschnitt 3 wurde gezeigt, dass die Steuerbarkeit aller reellen Eigenwerte eines
unsicheren Systems mithilfe von Vorzeichenvektoren untersucht werden kann. Ein
Vorzeichenvektor ist eine Menge reeller Vektoren und wenn in einem unsicheren System
(A, B) Bedingung (i4¢) von Satz 3.16 fiir einen Vorzeichenvektor Q mnicht erfiillt ist,
dann gibt es fiir jeden Vektor ¢ € Q, ein A € A, ein B € B und ein A € R, sodass
¢T(A — XM, B) = 0 gilt. Das lineare zeitinvariante System der Form (1.1) mit A und B
ist dann nicht steuerbar und das unsichere System (A, B) ist nicht vorzeichen-steuerbar.
Eine quadratische Matrix besitzt im Allgemeinen komplexe Eigenwerte und Eigenvektoren
und wie in Beispiel 3.6 dargestellt ist, sind Vorzeichenvektoren fiir die Untersuchung
der Vorzeichen-Steuerbarkeit oder der Vorzeichen-Stabilisierbarkeit nicht ausreichend.
Daher wird in Abschnitt 4.1 der komplexe Vorzeichenvektor als eine Klasse komplexer
Vektoren eingefiihrt und in Abschnitt 4.2 werden verschiedene Eigenschaften komplexer
Vorzeichenvektoren ermittelt. In Abschnitt 4.3 wird anschliefend der Kokern von
Vorzeichenmatrizen mithilfe von komplexen Vorzeichenvektoren untersucht und es wird
u.a. gezeigt, dass, wenn ein Vektor im Kokern einer Matrix X € X ist, dann ist jedes
Element desselben komplexen Vorzeichenvektors im Kokern eines Elements von X. In
den Abschnitten 4.4 und 4.5 werden abschlieBend Bedingungen angegeben, mit denen
untersucht werden kann, ob eine Vorzeichenmatrix jeweils komplexe Eigenwerte mit

positivem, mit negativem oder ohne Realteil erlaubt.

Die Sétze dieses Abschnittes bilden die Basis fiir die Charakterisierung der

Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit in Abschnitt 5.

4.1 Der komplexe Vorzeichenvektor

Der naheliegendste Ansatz einen Vorzeichenvektor mit komplexen Eintrégen zu definieren,
ist tiber das Vorzeichenmuster der Real- und Imaginérteile eines komplexen Vektors. Dabei
wird jeder Eintrag eines Vektors mit zwei Vorzeichen beschrieben und die sich ergebenden
Paare von Vorzeichenvektoren werden als komplexe Vorzeichenmuster (engl. complex sign
pattern) bezeichnet (siehe [LSHOS, S. 2700], [LS14, S. 31]). In [EHLO8] wird dieser Ansatz
beispielsweise fiir die Untersuchung komplexer Matrizen benutzt.

Ein anderer Ansatz zur Beschreibung komplexer Vektoren oder Matrizen sind sogenannte
Strahlen-Muster (engl. ray pattern) (siche [LSHO8|). Dabei wird zu jedem von Null

verschiedenen Eintrag ein numerischer Parameter festgelegt, welcher dem Argument des
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komplexen Eintrags entspricht. Der Ansatz der Stahlen-Muster scheint fiir die Ziele dieser
Arbeit nicht geeignet zu sein, da die Anzahl der Strahlen-Muster zur Beschreibung aller
Vektoren ¢ € C" einer bestimmten Dimension n nicht endlich ist. Eine Uberpriifung einer

Vorzeichenmatrix mit jedem Stahlen-Muster wére daher nicht durchfiihrbar.

Bei komplexen Vorzeichenmustern gibt es dagegen genau neun verschiedene Moglichkeiten
fiir jeden Eintrag eines komplexen Vektors. Ein Uberpriifung mit allen Vektoren einer
Ordnung wére daher mit einer endlichen Anzahl von Tests durchfithrbar. Wenn der Vektor
q € C™ ein Eigenvektor von einer Matrix A beziiglich dem Eigenwert A € C ist, dann ist
nach Satz 2.1.(i¢) jeder Vektor § = a- ¢ € C* mit @ € C\ {0} ebenfalls ein Element
des Eigenraums von A beziiglich \. Fiir jeden Eigenwert A von einer Matrix A gibt es
daher eine Vielzahl verschiedener komplexer Vorzeichenmuster, welche alle Eigenvektoren
zu demselben Eigenwert enthalten.

Aus diesem Grund wird in dieser Arbeit wird ein neuer Ansatz zur Beschreibung einer
Klasse von komplexen Vektoren eingefiihrt. Dafiir wird zunéchst die Relation ~
zwischen zwei komplexen Vektoren 1z = (rie?' rqef®z ..., Tne-“"")T €eC" und

y = (P&, peed?2 .. pe??n)T € C wie folgt definiert

Yo,w € {1,...,n} gilt
x~y s sign (1,1 cos(py — @u)) = sign(pypw cos(9, — ¥y,))  und  (4.1)
sign(r,ry, sin(p, — @) = sign(pypw sin(d, — Vy,)).
Die Relation ~ ist eine Aquivalenzrelation, da Reflexivitit (z ~ ), Symmetrie
(x ~y =y ~ x) und Transitivitit (x ~ y und y ~ z = & ~ 2) gegeben ist. Eine wichtige

Eigenschaft dieser Aquivalenzrelation wird in dem folgenden Satz festgehalten.

Satz 4.1 : Gegeben ist ein komplexer Vektor ¢ € C™ und eine kompleze Zahl o € C\{0}.
Es gilt g ~ a - q.

Beweis. Die Vektoren r € R™ und ¢ € R™ bezeichnen jeweils den Betrag und das
Argument von ¢ und es gilt o = age’® mit ay # 0. Wir definieren § = « - ¢, sodass
der i-te Eintrag von ¢ den Betrag p; = agr; und das Argument ¢; = ¢; + 6 besitzt. Fiir
zwel v,w € {1,...,n} gilt dann ¢, — 9, = @, + 0 — @, — 0 = @, — ¢,,. Daher gilt
PoPuwf Dy — V) = Q@ryru f(Po — Pw), wobei f fiir den Sinus oder den Cosinus steht. Da
ap # 0 gilt, ist ¢ ~ § = o - ¢ aufgrund von (4.1) erfiillt. O

Die Eigenschaft aus Satz 4.1 ist fiir die Untersuchung des Eigenraums einer Matrix
geeignet, da nach Satz 2.1.(¢) viele Eigenvektoren zu einem bestimmten Eigenwert in

einer Aquivalenzklasse vereint sind.
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Definition 4.2 (komplexer Vorzeichenvektor): FEin komplexer Vorzeichenvektor
der Ordnung n ist eine Aquivalenzklasse g~ € C"/~ der Relation ~. Diese ist nach
(4.1) durch die Ausdriicke sign(ryry, cos(py, — ©w)) und sign(ryr,sin(p, — @u)) mit

v,w € {1,...,n} bestimmt.

Fiir einen komplexen Vektor ¢ = (r1€7#1, ... r,e?®")T € C" und je zwei v,w € {1,...,n}
wird im Folgenden jeweils das Vorzeichen von 7,7, cos(¢@, — ¢u,) und 7,7, sin(e, — @)
mit “D, und “P, bezeichnet, d.h.

ToTw COS(py — py) € D, und ToTw Sin(py — ) € Py

Aufgrund von (2.4c) gilt *D, = *D,, “P, = =P, und P, = O. Von den 2n?
Ausdriicken zur Beschreibung eines komplexen Vorzeichenvektors der Ordnung n in
Definition 4.2 sind daher mindestens n? der Ausdriicke redundant und maximal n?
Ausdriicke notwendig. Deshalb lisst sich ein komplexer Vorzeichenvektor © der Ordnung
n mit einer Vorzeichenmatrix aus V™" wie folgt darstellen®
“D,, wennw > v und
Do =19 W ! = (4.2)
P,, wenn w < v.

In dieser Arbeit wird ein komplexer Vorzeichenvektor stets mit einem Frakturbuchstaben
gekennzeichnet. Ein komplexer Vorzeichenvektor © der Ordnung 4 wird nach (4.2) z.B.

wie folgt beschrieben

1IDl 2Il)l 311)1 4'Z)l 1lDl 11)2 1D3 1D4

D 17;2 2D2 3D2 4D2 B _27;1 2D2 2D3 2D4
“|ip, 2p. 3p. 4p. | | 3 _3 3P, 3

Ps Py "Ds3 “Ds P =P "Dy "Dy

Py 2Py PPy Dy —1P =P Py D,

Der konkrete Betrag eines Elements von einem komplexen Vektor hat keine Bedeutung
fiir die Zugehorigkeit zu einem komplexen Vorzeichenvektor, sofern der Betrag von Null
verschieden ist. Die Zugehorigkeit wird dagegen nur durch das Verhéltnis der Argumente
der von Null verschiedenen Elemente eines Vektors bestimmt. Die Zuordnung eines

komplexen Vektors zu seiner Aquivalenzklasse ist daher nicht besonders intuitiv und kann

5 Ein komplexer Vorzeichenvektor ist eine Aquvialenzklasse auf der Menge der komplexen Vektoren und
keine Vorzeichenmatrix aus V**". Um die Notation einfacher zu halten, wird die Vorzeichenmatrix, die
einen komplexen Vorzeichenvektor ® beschreibt mit dem komplexen Vorzeichenvektor ® gleichgesetzt.

In Abschnitt 5 wird noch eine weitere Darstellung eines komplexen Vorzeichenvektors vorgestellt.
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erst nach einer genauen Untersuchung des Vektors erfolgen. Wie in dem folgenden Beispiel
gezeigt wird, konnen zwei Vektoren auch dasselbe komplexe Vorzeichenmuster besitzen

und zu unterschiedlichen komplexen Vorzeichenvektoren gehoren.

Beispiel 4.1 : Gegeben sind drei komplexe Vektoren a = (2,3¢’12)T, b = (3¢75,2¢75)T

und ¢ = (2635, 2¢73)T bzw.

2.0 2.6+ 1.5 0.3 +2.05
a = , b und c~ .
2.940.85 1.4+1.45 1.0+ 1.75
Die Real- und Imaginérteile der Elemente der Vektoren sind in Abbildung 4.5 dargestellt.

Imaginérteil &

A
| @

» Realteil R

Abbildung 4.5: Real- und Imaginérteile der komplexen Vektoren aus Beispiel 4.1.
Es gilt R(a), R(b), R(c), I(b), S(c) € (+,+)T und I(a) € (O, +)7T, sodass die Vektoren a
und b unterschiedliche komplexe Vorzeichenmuster und die Vektoren b und c¢ dasselbe
komplexe Vorzeichenmuster haben. Der Betrag von jedem Element von jedem dieser
Vektoren ist von Null verschieden und die Winkeldifferenzen der Vektoren a, b und c

ergeben sich zu %y, — %y = Yy — Sy = 15 und @y — ¢y = —7. Daher gilt

o £on
[a]Nlez[b}N:%z(+ +) und [c}N=€:<* +),

da z.B. %r%rycos(“pr —%pa) =2-3-cos({5) €E+=R1p und “rirysin(Gpy — %) =
2-2-sin(—7) € ==&y, gilt. Die beiden Vektoren a und b sind in derselben
Aquivalenzklasse a ~ b und haben verschiedene komplexe Vorzeichenmuster. Die Vektoren
b und ¢ haben das gleiche komplexe Vorzeichenmuster, gehoren aber zu verschiedenen

Aquivalenzklassen b o4 c.
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4.2 Verschiedene Eigenschaften komplexer Vorzeichenvektoren

In diesem Abschnitt werden verschiedene Begriffe und Eigenschaften fiir komplexen
Vorzeichenvektoren definiert und ermittelt. Dafiir wird angenommen, dass ein komplexer
Vektor g = (r1e7t, rye??2, ... r,e??)T mit n € N gegeben ist, welcher ein Element des
komplexen Vorzeichenvektors © := [g]. ist. Fiir zwei v,w € {1,...,n} werden dann
jeweils die Vorzeichen von 7,7y, cos(¢, — ¢w) und 7,1y, sin(p, — ¢,,) mit “D, und “P,
bezeichnet. “D und “P koénnen daher als Vorzeichenvektoren aus V* mit den Eintridgen
“D, und “P, betrachtet werden.

Wenn fiir ein w € {1,...,n}, r, # 0 gilt, dann ist das Element w von Null verschieden
in ® und es gilt “D,, = Dy = +. Wenn andererseits w nicht von Null verschieden ist,
dann gilt “D; = “P; = O fiir jedes i € {1,...,n} und die Zeile und Spalte w in D hat
nur O-Eintrige. Fiir jedes von Null verschiedene w € {1,...,n} in © wird der Vektor

g := q/q, definiert, sodass fiir den Eintag v € {1,...,n} von g,

G To ooy T Ty
wq’u === 716](¢v o) = 2 COS(V"U - Ww) +]7v Sln(@v - (/Dw)
Guw Tw Tw Tw

gilt. Aus Satz 4.1 folgt, dass “qg € ® gilt und es ist offensichtlich, dass “g, = 1 fiir den
w-ten Eintrag von “g gilt. Aulerdem gilt R(“g,) € “D, und I(“g,) € “P, bzw. R(*g) € “D
und (%) € “P.

Definition 4.3 (charakteristisches Vorzeichenmuster): Das Paar wvon
Vorzeichenvektoren “D € V" und “P € V" st das w-te charakteristische

Vorzeichenmuster des komplexen Vorzeichenvektors ©. Die Funktion
VeV x{L,...,n} - V" x V", (®,w) — (“D,"P),

bestimmt die charakteristischen Vorzeichenmuster eines komplezen Vorzeichenvektors ®.

Das w-te charakteristische Vorzeichenmuster ist durch die Eintrége in der w-ten Zeile und
Spalte des komplexen Vorzeichenvektors ® (siehe Gleichung (4.2)) bestimmt. Daher l4sst
sich der v-te Eintrag des w-ten charakteristischen Vorzeichenmusters wie folgt ermitteln
WDy = V(D W)y = { Dyw, Wenn w > v und
) Dww, Wenn w < v,
—Dyp, Wenn w > v, (4.3)
P, =V (D, W)y = O, wenn w = v und

Dyw, wenn w < v.
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Die in (4.3) beschriebene Beziehung zur Bestimmung eines charakteristischen
Vorzeichenmusters basiert auf der quadratischen Vorzeichenmatrix, welche den komplexen
Vorzeichenvektor darstellt. Nicht jede quadratische Vorzeichenmatrix beschreibt einen
komplexen Vorzeichenvektor (siche Satz 4.5), aber die in (4.3) beschriebene Funktion
kann fiir jede quadratische Vorzeichenmatrix X benutzt werden, auch wenn die Matrix X
keinen komplexen Vorzeichenvektor beschreibt.

Das w-te charakteristische Vorzeichenmuster beschreibt das komplexe Vorzeichenmuster

eines nach dem w-ten Eintrag normierten Elements von ©.

Beispiel 4.2 : Gegeben ist der komplexe Vektor ¢ = (1 + j,—1 +25,5,1 — j)T € C*,
dessen Elemente in Abbildung 4.6 dargestellt sind.

Imaginérteil

q2
q

B, Realteil %

44
Abbildung 4.6: Real- und Imaginérteile des Vektors aus Beispiel 4.2.

Da g3 € + und 3¢q = ¢q/qg3 gilt, hat 3¢ das gleiche Vorzeichenmuster wie ¢ und es gilt

aF aF 'Dy *Dy + Dy
- : + 'Py 2Dy, -~ 4D,
R(q) €3D = . S(q)edpr= und ¢ €D = : : :
+ @ -~ -+ 4
+ - I/Px 2/P1 - 1’[)|

5

AuBerdem gilt *q = q/q; = (1, % 4 gj, 5= %j, —j) bzw.

* © + + + O
R(lg) € 'D = i , S(lg) e'P = * und ¢gE€D = + "Dy - 11:3
© - - Py ~ Dy
Mit 2q = /g, = (§ — £j,1, =1 — 2j, = — }j) folgt schlieflich
+ - + + +
RCg)ep=|"|, 3¢ er= Ol wma o]t t ; -1
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sodass ‘D = (O,~,+,+)T und *P = (+,+,+,0)T gilt. Die Vorzeichenmatrix zur
Beschreibung von © kann auch iiber die Argumente von ¢ nach Gleichung (4.1) ermittelt
werden. Es gilt beispielsweise sin(p; — @) = sin(0 — Z) = —1/v2 € ~= D3, oder
cos(ps — 1) =cos(=F —5)=0€ O =Dy 4.

Fiir zwei von Null verschiedene v, w € {1,...,n} in ® berechnet sich der Abstand g,(v, w)
von w zu v in g mit g,(v, w) := (P, — Yw) mod § > 0. Wenn fiir zwei von Null verschiedene
v,we {1,...,n} und ein k € Z, ¢, = @, + k7 gilt, dann ist v abhingig von w in D und
es gilt g (v, w) = 0. Zudem gilt genau dann “D, = O oder “P, = O. Wenn v und w von
Null verschieden sind und v nicht abhéngig von w in ® ist, dann ist v unabhdngig von w
in® und es gilt “D, # O # “P, sowie g4(v,w) > 0. Wenn v von allen zu w unabhéngigen
i € {1,...,n} den kleinsten Abstand hat, d.h. g,(i,w) > o4(v,w) > 0, dann ist v ein
Nachfolger von w und g4(w) := g4(v, w) > 0 ist der geringste Abstand von w in q. Wenn
es kein zu w unabhéngiges i € {1,...,n} gibt, dann gilt g,(w) := 5. Es kann mehrere
Nachfolger von einem von Null verschiedenem w geben. Diese sind dann aber abhéngig

voneinander.

Wird der Vektor “g fiir ein von Null verschiedenes w in ® um einen Winkel 6,, ,, verdreht

d.h. %G =g - e7% dann gilt fiir den v-ten Eintrag von g,

“G = Iy pite—pu—tu) _ v cos(py — Qo — Oy) + jﬁ sin(py — Yuw — Ouw)-
Tw T Tw
Wenn der Winkel 6, positiv und hinreichend klein ist, d.h. g,(w) > 6,, > 0, dann gilt
fiir jedes von Null verschiedene v in © R(“g,) # 0 # (“Go). Fiir zwei v,w € {1,...,n}
und ein 6, mit g,(w) > 6, > 0 werden die Vorzeichen von 7,1y, cos(p, — ¢, — 6,,) und
ToTw SIn(py — 9 — 0,,) mit "D, und ¥"P, bezeichnet. Fiir jedes € mit g,(w) > € > 0 sind
dann jeweils die Vorzeichen von 7,7, cos(@, — @, — €) und r,7y, sin(p, — ¢, — €) identisch
zu "D, und “"P,. Analog zu den charakteristischen Vorzeichenmustern und der Funktion
V wird die Funktion V*: V**® x {1,...,n,1*,...,n*} = V" x V" definiert, welche neben

den charakteristischen Vorzeichenmustern auch die Vorzeichenmuster
(w ’D7 w /P) — v*(©7 w*)

ermittelt, wenn w* € {1*,...,n*} gilt. Fiir ein w* € {1*,...,n*} bezeichnet |w*| das zu
w* gehorige w € {1,...,n} und fiir eine Menge U C {1,...,n} ist U* := U U {i*|i € U}.
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Beispiel 4.3 (Fortsetzung von Beispiel 4.2): Gegeben ist der komplexe Vektor p =
re’® mit r = (v/2,2,5,v2)7 und ¢ = (Z,%,0,—%)7. Die Eintrige p1, ps und ps sind
identisch mit den Eintrédgen ¢;, g3 und g4 aus Beispiel 4.2 und lediglich der Imaginérteil
von ps ist etwas kleiner als der Imaginérteil von g,. Dennoch gehéren p und ¢ zum selben
komplexen Vorzeichenvektor 2.

Jedes Element i € {1,...,4} ist in ® von Null verschieden und es gilt ¢, = ¢, — 7, sodass
4 abhingig von 1 in @ ist. Alle anderen Paare v,w € {1,...,4}, v # w sind unabhingig

voneinander in ®. Die Absténde und geringsten Absténde ergeben sich wie folgt

QP(LZ) = ﬁﬂ—’ QP(173) = iﬂ’7 QP(174) = 07
5

0p(2,1) = 15—27r7 0p(2,3) = éw, 0,(2,4) = 3,
0p(3,1) = g7 0,(3,2) = 37, 0(3,4) = 3,
9p(47 1) =0, Qp(47 2) = 1%71-7 Qp(4= 3) = iﬂ'y

o(1) = %7": 0p(2) = Tlgﬂ—’ %3) = %m op(4) =g,

da beispielsweise 0,(2,1) = (p2 — 1) mod § = (37 — §m) mod § = r gilt. 3 hat von 1

den geringsten Abstand in ®, sodass 3 der Nachfolger von 1 in ® ist. Auflerdem ist 2 der
Nachfolger von 3 in ® und 1 und 4 sind die Nachfolger von 2 in © (siehe Beispiel 5.3).

Fiir jedes € mit g,(1) = % > ¢ > 0 gilt mit "p ='p- e~ und 'p = p/p,

e cos(—e) t
T 1
R(p) = oo —oi—9) | _ [ e -0 | | +]_ip
" cos(ps — 1 —€) % cos(—=§ —¢€) s
” L cos(pa — 1 — €) cos(—5 —¢€) ~
Lsin(pr — o1 —€) sin(—e) -~
T2 i (o o 1 g5
S(*p) = iﬁ?n(cpz 1€ = \5/5 &jm(mw 9 € o 'p.
= sin(ps — o1 — €) sin(—7 —¢) -~
o sin(py — 1 — €) sin(—% —e€) -~

Fiir e = § gilt beispielsweise T > € > 0,

0.86 — 0.50;
. 1.00 + 1.005 o 5 o o
Uy~ * ] REp) e und I(*p) € P
0.92 — 3.42j
—0.50 — 0.867
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Analog ergibt sich

+ - + - + -
rp_ [T oo | 7| o= || opo || opo | | warp= | T
~ ~ + ~ + -

Fiir jedes 7 € {1,...,4} sind alle Eintrige von *D und P von O verschieden. Beim
Vergleich von “D und “P mit *D und ‘P (siche Beispiel 4.2) ist ersichtlich, dass sich

ausschliefllich die O-Eintrage verindert haben.

Mit dem folgenden Satz wird gezeigt, dass sich das komplexe Vorzeichenmuster von
jedem Element ¢ € C" eines komplexen Vorzeichenvektors ® der Ordnung n mithilfe
der Vorzeichenmuster von V* und einer Vorzeichen-Rotationsmatrix beschreiben lasst,

wobei die Menge der Vorzeichen-Rotationsmatrizen R wie folgt definiert wird

(R E CH R S}

Satz 4.4 : Gegeben ist ein komplezer Vorzeichenvektor ® der Ordnung n € N und
R nach (4.4). Fiir jeden Vektor ¢ € D gibt es ein k € {1,...,n,1* ...,n*} und eine

Vorzeichenmatriz R € R, sodass

(*D,*P) = V*(D,k) und (qu)) ER (ig) gilt.

S(q")

Beweis. 1) Wir bezeichnen die Menge aller von Null verschiedenen Eintrdge in © mit Z
und wir nehmen zunéchst an, dass es ein k € Z mit R(gx) = 0 oder J(gx) = 0 gibt. Wenn
S(gx) = 0, dann gilt g, = a # 0 und wenn R(g,) = 0, dann gilt ¢ = ja # 0. In beiden
Féllen gilt o € R\ {0} und wir definieren S als das Vorzeichen von «. Weiterhin definieren
wir ¥q := q/qi. Es gilt R(*q) € *D und I(¥q) € *P sowie ¥q = R(*q) + j - 3(*q). Wenn
S(qe) = 0, dann gilt ¢ = *q- g, = a- R(*q) + 7 - a - I(¥q), sodass R(q) = a - R(¥q) € S*D
und S(q) = a-S(*g) € S*P gilt. Wenn andernfalls R(g;,) = 0, dann gilt ¢ = —a- (*q) +
j-a-R(*q), sodass R(q) = —a - S(Fg) € —S*P und S(q) = o - R(¥q) € S*D gilt. In
beiden Féllen ist die Aussage erfiillt.

2) Wir nehmen nun an, dass es kein k € Z mit R(g) = 0 oder I(gx) = 0 gibt. Wenn der
Vektor ¢ die Argumente von dem Vektor g bezeichnet, dann gilt

pi = (—¢;) mod g >0 fiir jedes i € Z. (4.5)
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Wir wéhlen k € Z derart, dass mi}l pi > pr gilt und wir bezeichnen die Menge aller von k
€

unabhéngigen ¢ € Z mit Z'. Wenn Z’ = (), dann gilt g4(k) = 5 > pi.
Andernfalls gilt Z’ # () und aus der Wahl von k und Z’ folgt

Pi > P fiir jedes i € Z'. (4.6)

Aufgrund von (4.5) gilt (p;mod %) > 0 bzw. (p;mod ) + pp > pp fiir jedes
i € Z'. Mit der Eigenschaft (2.3) ergibt sich daraus 7 — (p; —pxr) > pr und

zusammen mit (4.6) folgt % — (¢r — ;) mod 5 > pi. Aufgrund von (2.3) gilt dann

(i — wr) mod T = g4(i, k) > 04(k) > pg.
Wir definieren ¥q = q/q;, - e777%, sodass fiir jedes i € {1,...,n},

Kgi = ri/r cos(; — 1 — pr) + jri/Te cO8(0; — o1 — pr)

gilt. Da g, (k) > py. erfiillt ist, gilt R(*g) € D und I(*¥q) € ¥*P. Aufgrund von (2.2) mit
a = @, (2.3) und (4.5) gilt @ + pr = § - (@& div § + 1) =: , wobei a ein ganzzahliges
Vielfaches von 7 ist. Dann gilt ¢ = kq-qp- e =¥q-1;-e7*. Wenn « ein gerade Vielfaches
von 7 ist, dann wéhlen wir S nach dem Vorzeichen von cos() und es gilt ¢ = *g- 7, cos(a)
sowie R(q) € S*¥D und I(q) € S¥P. Wenn « andernfalls ein ungerades Vielfaches von
Z ist, dann wéhlen wir S nach dem Vorzeichen von sin(a) und es gilt ¢ = j*g - ry sin(«)
sowie R(g) € —S*¥P und J(q) € S¥D. O

Ein komplexer Vorzeichenvektor der Ordnung n kann mit einer Vorzeichenmatrix X
beschrieben werden, aber nicht jede Vorzeichenmatrix X beschreibt einen komplexen
Vorzeichenvektor. Mit dem folgenden Satz werden notwendige Bedingungen fiir die
Beschreibung eines komplexen Vorzeichenvektors mit einer Vorzeichenmatrix vorgestellt.
In Abschnitt 5.2 wird auf Seite 82 mit Satz 5.3 gezeigt, dass diese Bedingungen nicht nur

notwendig, sondern auch hinreichend sind.

Satz 4.5 : Gegeben ist eine Vorzeichenmatric X € V™" mit n € N und es gilt
(*D,*P) = V(X,k) fir jedes k € {1,...,n} nach (4.3). Wenn die Vorzeichenmatriz
X einen komplexen Vorzeichenvektor beschreibt, dann gilt fir jedes x,y,z € {1,...,n},
*D, € {O,+} und

€T ZD z x .
ny 7z73y sz D,

Beweis. Da die Vorzeichenmatrix X einen komplexen Vorzeichenvektor ® beschreibt,

wiéhlen wir einen Vektor ¢ € ©, wobei die Vektoren r und ¢ jeweils die Betridge und die
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Argumente von ¢ beschreiben. Dann gilt 7,1, cos(p, — ¢,) € D, und 1,7y sin(p, — ¢,) €
*P, sowie 2 € *D, € {O, +}. Aus den Additionstheoremen in (2.4) folgt

737‘1741/ COS(SDy - Wm) = 7'3"1"@ COS(((Py - @z) + (992 - ‘pt))
= 1yT, €08(py — @)z cOS(, — ©g) — Tyr.sin(p, — @.)r.rysin(p, — ¢;) und
21,y sin(o, — 0r) = 12rerysin((o, — ©2) + (0 — ©2)

= 1y7, sin(py — @ )71y coS(, — ©g) + 1yT, cos(py — @)1 sin(P, — @y).

Daher gilt *D,*D, C *D,*D. — *P,*P, und *D.*P, C *P,*D, + *D,*P.. Gleichung (4.7)
ist daher fiir jedes z,y,z € {1,...,n} erfiillt.

Jeder Vektor ¢ € C" ist ein Element von genau einem komplexen Vorzeichenvektor
der Ordnung n. Der Sonderfall ¢ € R™ ist dabei auch enthalten, wobei der zugehéorige
komplexe Vorzeichenvektor ® dann durch eine obere Dreiecksmatrix beschrieben ist, da
sin(py, — ¢u) =0 € “P, =D, = O fiir jedes v > w gilt. Aus Satz 4.5 folgt, dass dann
fiir jedes v,w € {1,...,n} der Eintrag “D, durch die Eintrdge in der ersten von Null
verschiedenen Zeile p von ® bestimmt ist, da “D, = PD,PD,, gilt, wenn ?D, # O. Ein
derartiger komplexer Vorzeichenvektor wird dann als reell darstellbar bezeichnet und ist

durch den Vorzeichenvektor PD bestimmt.

Wenn © ein komplexer Vorzeichenvektor ist, der durch die Ausdriicke *D, und “P, nach
(4.3) beschrieben werden kann, dann wird D analog zu (4.2) wie folgt definiert

Doy =

— “D,, wenn w > v und
(4.8)

—wP,, wenn w < v.

Satz 4.6 : Gegeben ist ein komplexer Vorzeichenvektor ® der Ordnung n € N und ein
qED. Esgilt g=R(q) —j-S(q) €D.

Beweis. Die Vektoren ¢ und ¢ haben dieselben Betrége, sodass wir jeweils nur die
Argumente ¢ und ¥ von ¢ und g betrachten miissen. Es gilt ¥ = —¢. Fir zwei
v,w € {1,...,n} ergibt sich daher ¥, — ¥,, = —(¢y — ). Der Cosinus ist eine gerade
Funktion, sodass cos(d,—10,,) = cos(p,—¢.) gilt und der Sinus ist eine ungerade Funktion,
sodass sin(¢, — ¥,,) = —sin(e, — @) gilt. Wenn ¢ ein Element von ® nach Gleichung
(4.2) ist, dann ist g ein Element von ® nach Gleichung (4.8). O
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4.3 Der Kokern einer Vorzeichenmatrix

In Abschnitt 3.1 wurde die strenge Surjektivitét von unsicheren Matrizen untersucht und
in Satz 3.7 wurde festgestellt, dass eine unsichere Matrix & € V™™ nicht streng surjektiv
ist, wenn es einen Vorzeichenvektor Q € V" mit Q # O gibt, sodass O C QTU gilt. Aus
dem Beweis des Satzes folgt, dass dann jeder reelle Vektor ¢ € Q im Kokern von einer
Matrix U € U ist. Wenn U andererseits streng surjektiv ist, dann enthélt der Kokern von
jeder Matrix U € U ausschliellich den Nullvektor 0 € C".

In diesem Abschnitt wird fiir eine Vorzeichenmatrix ¥V € V™™ und einen komplexen
Vorzeichenvektor © der Ordnung n € N untersucht, ob ein ¢ € ©® im Kokern von einem

V €V ist. Dafiir wird zunéchst der Kokern einer unsicheren Matrix wie folgt definiert.

Definition 4.7 (Kokern von wunsicheren Matrizen): Ein komplezer
Vorzeichenvektor © der Ordnung n € N ist im Kokern von einer unsicheren Matrix

U € U™ ", wenn es einen Vektor ¢ € ® und eine Matriz U € U gibt, sodass ¢"U = 0 gilt.

Mit dem folgenden Satz ldsst sich bestimmen, ob ein komplexer Vorzeichenvektor im
Kokern von einer Vorzeichenmatrix V ist und zugleich wird gezeigt, dass dann jedes

Element des komplexen Vorzeichenvektors im Kokern von einer Matrix V € V ist.

Satz 4.8 : Gegeben ist eine Vorzeichenmatrix V € V™™ mit n € N und ein komplexer
Vorzeichenvektor ® der Ordnung n. Die Vorzeichenvektoren (kD., kP) =V(D,k)
bezeichnen das k-te charakteristische Vorzeichenmuster von ®© und Z ist die Menge aller
ke{l,...,n}, welche in ® von Null verschiedenen sind.

Die folgenden Eigenschaften sind dquivalent.

(¢) © ist im Kokern von V.
(i) Fir jedes k € Z gilt O € *DTV und O C ¥PTV.
(iii) Fiir jeden Vektor ¢ € ® gibt es eine Matriz V € V, sodass ¢*V =0 gilt.

Beweis. (i) = (#) Wenn ® im Kokern von V ist, dann gibt esein g € D undein V € V,
sodass g7V = 0 gilt. Wir definieren *q = q/q; fiir jedes k € Z, sodass R(*q) = *d € *D
und 3(*q) = *¥p € FP gilt. Aufgrund der Annahme gilt ¢V = 0, sodass fiir alle k € Z,
kqTV = 0 bzw. *dTV = kpTV = 0 gilt. (i7) ist daher offensichtlich.

(1) = (¢ii) : Wir withlen ein ¢ € ©, wobei die Vektoren r und ¢ jeweils die Betrige und
die Argumente des Vektors g beschreiben und fiir jedes i € Z definieren wir ‘q := q/q;,
sodass iq, = - cos(r — i) +i sin(py — ;) fiir den Eintrag k € Z von iq gilt. Zusétzlich
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gilt 'q € D, R('qx) = "= cos(pr — wi) € Dy und I('qr) = Esin(py, — ¢;) € “Pp. Wir
fixieren ein s € {1,...,m} und der Vorzeichenvektor X bezeichnet die Spalte s von V,
d.h. &), =V, fiir jede Zeile k von V.

Im Folgenden werden mehrfach die Beziehungen

P, C PD. +DP,  und (4.92)
“D. C DD, — “P,"P. (4.9b)

fiir drei beliebige a,b, ¢ € Z verwendet, welche sich direkt aus Satz 4.5 ergeben, da dann

¥D, =+ gilt. Aufgrund der Bedingung in (ii) gilt fiir alle i € Z

OC ZiDle und (4.10a)
1€z

0Cy P (4.10b)
lez

Wir werden in den folgenden fiinf Schritten ein x € X wihlen, sodass fiir ein i € Z

Z rycos(or — @i)r; =0 und (4.11a)
ez
Z rysin(o; — @i)r; =0 gilt. (4.11b)
ez

1) Wenn D, &), = O fiir jedes k € Z, dann gilt &, = O fiir jedes k € Z und (4.11) ist fiir
jedes i € Z mit jedem x € X erfiillt. Der Beweis wird in Schritt 6) fortgefiihrt.

2) Wir nehmen nun an, dass es ein v € Z gibt, sodass "D, &, # O bzw. &, # O gilt. Ohne
Einschrinkungen der Allgemeinheit gilt v = 1 und aufgrund der Bedingung (4.10a) mit
i=1gibteseinw € Z\ {1}, 0.E.d.A. w = 2, sodass

Doy = —'DiX) = X #£O (4.12)

gilt.

3) Wir nehmen zuniichst an, dass !P, = O gilt. Dann kénnen aufgrund von (4.10b) mit
i=1und P, = O alle Eintrage x; mit i € Z’ = Z\ {1,2} so gewiihlt werden, dass z; € X;

und
Z rysin(p; — @1)x = Zn sin(y; — 1)z =0 (4.13)
lez’ lez
gilt. Wir definieren ¢ = > rcos(¢p; — ¢1)ar € R und wir wihlen ein 1y € )
ez’

fiir das |z > [¢]/r1 > 0 erfiillt ist. Aufgrund von (4.12) gilt X» = —'DyX), sodass mit
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Ty = —MZISZ’%, z € X und Y rycos(yp; — 1)z = 0 gilt. Zusammen mit (4.13) sind
i€z
beide Gleichungen in (4.11) fiir ¢ = 1 erfiillt. Der Beweis wird in Schritt 6) fortgefiihrt.
4) Wir nehmen nun an, dass es keine zwei v, w € Z mit *D,X,, = —X, # O und *P,, = O
gibt. Dann gilt
Py # O, wenn “D,AX, = —X&, # O gilt. (4.14)

In den Schritten 4.1) bis 4.5) wird iiber eine Rekursion gezeigt, dass es dann drei

verschiedene u, v, w € Z gibt, sodass
Xw — _’I)PuvauXu 7& 0 und Xv — _“]vaPuXu ?é e (415)

erfiillt ist. Wir definieren k = 2.
4.1) Es gilt

DX, =-X #0 fiir jedes i € {2, ..., k}, (4.16a)
'PX = 1PpX £ O fir jedes i € {2,...,k} und (4.16b)
MpX, =*PAy A0 firjedesi € {1,...,k—1}. (4.16¢)

Fir k = 2 folgt (4.16a) aus (4.12) und (4.16b) sowie (4.16c) aus (4.14); und fir k£ > 2
folgt (4.16a) aus (4.161), (4.16b) aus (4.16h) und (4.16¢) aus (4.16k) bzw. (4.16g) wenn
k = 3. Wenn k£ > 2, dann gilt zusitzlich aufgrund von (4.16j)

X, =*D;X, #+ 0 fiir jedes i € {2,...,k—1}. (4.16d)
4.2) Aus der Bedingung (4.10b) fiir i = k folgt mithilfe von (4.16c) und *P), = O, dass es
einv € Z\{L,...,k}, ohne Einschrinkungen der Allgemeinheit gilt v = k + 1, mit

MPrp1 X = —"PiXy #£ O (4.16e)
gibt.

4.3) Wir nehmen zunichst an, dass *'P; = O gilt. Aus (4.9a) mit a =k, b= 1 und ¢ =
k -+ 1 ergibt sich dann *Py, 1 = *P,' Dy, 1. Zusammen mit (4.16e) gilt *Dyy 1 Xy = — &)
und die Annahme in (4.14) ist fiir v = k& + 1 und w = 1 nicht erfiillt. Es muss daher

kp £ 0 (4.16f)

gelten.

4.4) Wir nechmen nun an, dass

FHIPX =P # O (4.16g)
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gilt. Zusammen mit (4.16¢) gilt 'PpXy = 1Py 1 X1 und mit (4.16b) ergibt sich dann
Py = "Pr Xy fiirjedes i € {2,.. .,k + 1} (4.16h)

Aus (4.92) mit a = k+1,b =1 und ¢ = k, (4.16a) fiir i = k und (4.16g) ergibt sich
k+ip € —k+1p, 4 k1D 1P Daher gilt 1P, = **1D; P, und zusammen mit (4.16e)

ergibt sich
D1 Xy = — X (4.161)

Fiir jedes ¢ € {2,...,k} ergibt sich aus (4.9b) mit a = k+1, b =1 und ¢ =4, (4.16a) und
(4.16h), *+1'D; C —*H1D X X + X1 Xi. Mit (4.161) folgt daher

MAD.X = Xy fiir jedes i € {2,..., k}. (4.16j)

Wenn k > 2 gilt, dann folgt fiir jedes ¢ € {2,...,k — 1} aus (4.9a) mita=k+1, b=k
und ¢ =i, (4.16¢), (4.16d), (4.16¢) und (4.16j) fiir k, **1P; = ¥1P, X, X;. Zusammen mit
(4.16g) ergibt sich schlieBlich

MDA, = MP A fiir jedes i € {1,...,k}. (4.16k)
Wir fithren den Beweis in Schritt 4.1) mit k + 1 fort.

4.5) AbschlieBend wir der Fall **'P.x;, = —*1P X, # O untersucht. Dann gilt
Xy = =PI X # O und aufgrund von (4.16e) auch Xy = —*Pp PP # O.
(4.15) ist mit w = k, v = 1 und v = k+ 1 erfiillt und wir fithren den Beweis im 5)
fort.

5) Wir wéhlen drei verschiedene v, w,u € Z aus, sodass die beiden Gleichungen in (4.15)

erfilllt sind. Fiir alle k € Z' = Z \ {u,v,w} definieren wir |z;| := 1 und wir definieren

G = > resin(pr — wu)zr und G = Y rpsin(pr — @,)xk. AuBerdem wihlen wir ein
kez' vez

x, € X,, sodass

G
Ty SIN(Py — Pu)
gilt. Des Weiteren definieren wir

G

Loy| > —
[l o SIN(py — ©y)

und || >

Ty Sin(@u - A}Qw)ru + <1 Ty Sin(@u - Wv)xu + CQ
Ty = — - und  x, = — - .
Ty Sin(0y — @) T S0 (P — 0
Aufgrund von (4.15) gilt X, = —*P,*P, X, und X, = =P, " P,X,, sodass © € X gilt.

Zudem gilt

Zn sin(yp; — pp)x; =0 und (4.17a)
lez
Z rysin(g; — @w)a = 0. (4.17b)
ez
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Wird (4.17b) von cos(¢, — ¢,,) multipliziert mit (4.17a) subtrahiert, so ergibt sich

Zrl (sin(p; — y) cos(y — Puw) — sin(o; — ) 2 = 0.

lez

Mithilfe von (2.4a) und sin(¢, — ¢,) # 0 gilt
Zm cos(p1 — pw)z1 = 0. (4.17¢)
lez

Aus (4.17b) und (4.17c¢) folgt, dass die beiden Gleichungen in (4.11) fiir ¢ = w erfiillt sind.

6) Da die beiden Gleichungen in (4.11) fiir ein ¢ € Z erfiillt sind, gilt ‘¢’z = 0 bzw.

qTz = 0. Wir definieren V4 s = x4, fiir alle k € {1,...,n}, sodass

Z’ql‘/b,s =0
=1

gilt und (éi7) erfiillt ist. Die Bezichung (iii) == (1) ist offensichtlich. O

Beispiel 4.4 : Gegeben ist der komplexe Vorzeichenvektor ® der Ordnung 3 und die

Vorzeichenmatrix B € V3*3 mit

+ O + - O +
D=~ + ~ und B=|+ O -~
+ + + + O -

Die charakteristischen Vorzeichenmuster von % sind

+ @ o + + =
D=]o|,'P=|[~|.D=|+|.?P=|0]|,D=[~]| wmd®*P=| ~
+ + - + + ®

Es gilt O C *DTB = "PTB = (®, 0, ®) fiir jedes i € {1,2,3}, sodass nach Satz 4.8 ® im
Kokern von B ist. 2 ist abhéngig von 1 und 3 ist unabhéngig von 1 und 2 in ®. Fiir jedes

q = (T, 19632 13e793)T € D gilt 71,79, 73 > 0, 01 — g = g und 0 < 3 — ¢y < 5. Mit

—2cos(pz—p1) 0 Ecos(ps — 1)
B = 2sin(ps — 1) 0 —sin(ps — 1)
1 0 —1
gilt zB. B € B und ¢*B = 0. Fiir den Vektor ¢ = (5, 34,2 + 27)7 gilt beispielsweise
q € © und mit
—6 0
B = 10 0 —
15 0 —

€B gilt ¢"B = 0.

= Wi Gl
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4.4 Vorzeichenmatrizen mit rein imaginiren Eigenwerten

In diesem Abschnitt wird eine Bedingung vorgestellt, mit der untersucht werden kann, ob
eine quadratische Vorzeichenmatrix A einen rein imaginiren Eigenwert erlaubt. Zusatzlich
lésst sich damit der komplexe Vorzeichenvektor bestimmen, in dem sich ein zugehoriger
Eigenvektor befindet.

Definition 4.9 (Vorzeichen-Eigenvektor): FEin komplezer Vorzeichenvektor ® # O
der Ordnung n € N ist ein Vorzeichen-Eigenvektor von einer Vorzeichenmatrix A € V<",
wenn es eine Matriz A € A, einen Vektor ¢ € ® und ein A € C gibt, sodass T A = A"
gilt. Ein Vorzeichen-Eigenvektor ® von einer Vorzeichenmatriz A wird

e in den ersten Quadranten verdreht, wenn R(A) > 0 und (X)) > 0 gilt,

o um 90 Grad verdreht, wenn R(A) = 0 und I(X\) > 0 gilt und

o in den dritten Quadranten verdreht, wenn R(X) < 0 und I(A) < 0 gilt.

Mit dem folgenden Satz ldsst sich bestimmen, ob ein komplexer Vorzeichenvektor ein
Vorzeichen-Figenvektor von einer quadratischen Vorzeichenmatrix A ist, der um 90 Grad

verdreht wird.

Satz 4.10 : Gegeben ist eine Vorzeichenmatric A € V™™ mit n € N und ein
komplexer Vorzeichenvektor ®. Die Vorzeichenvektoren (kD, k'P) = V(D,k) bezeichnen
die charakteristischen Vorzeichenmuster und Z ist die Menge aller k € {1,...,n}, welche

in ® von Null verschiedenen sind. Die folgenden Punkte sind dquivalent.

(1) ® ist ein Vorzeichen-Eigenvektor von A und ® wird um 90 Grad verdreht.
(i1) Fir jedes k € Z gilt —*PT C *DT A und ¥DT C *PT A.
(iii) Fiir jedes ¢ € ® und jedes A\; > 0 gibt es ein A € A, sodass ¢* A = jAq" gilt.

Beweis. (i) = (it) : Da ® um 90 Grad verdreht wird, gibt es nach Definition 4.9 ein
A" € A, ein ¢ € D und ein \; €+, sodass q7 A" = jA;q" gilt. Wir definieren *q = q/q;
fiir jedes k € Z, sodass R(*q) = *d € *D und S(*q) = *p € P gilt. Mit A’/ ; = A€ A
gilt aufgrund der Annahme ¢7A = jq7 bzw. F¢T A = j*¢7 fiir alle k € Z. Daraus folgt,
dass *dT A+ j*pT A = —FpT + j*dT bzw. —FpT = *dT A und #dT = FpT A gilt. (i4) ist daher
erfiillt.

(it) = (iii) : Wir definieren die Mengen Z = {1,...,n} und Z = Z\ Z und wir wiihlen
ein beliebiges ¢ € ®, wobei die Vektoren r € R™ und ¢ € R” jeweils die Betrige und die
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Argumente des Vektors ¢ enthalten. Fiir jedes i € Z definieren wir den Vektor iq = q/q¢;,
d.h. fgp = = cos(pr — @) + 5 sin(pr — ;) beschreibt das k-te Element von ‘.

Wir fixieren ein s € Z und der Vorzeichenvektor X bezeichnet die Spalte s von A, d.h.
Xy, = Ap fiir alle k € Z. In den Schritten 1)-4) des Beweises wird der Fall s € Z und im
Schritt 5) wird der Fall s € Z betrachtet.

0) Aufgrund der Annahme in (44) gilt fiir alle ¢ € Z

—'P.C Y DA, (4.18a)
lez

D, C Y P (4.18b)
lez

und im Folgenden wird fiir ¢ und ein beliebiges A; € +, ein x € X’ derart gew#hlt, sodass

n

—Arssin(ps — ;) = Zn cos(p — i)y, (4.19a)
=1

Arrs cos(ps — ;) = Zrl sin(p; — ;)@ (4.19b)
=1

fiir ein ¢ € Z gilt. Dabei werden fiir a,b, ¢ € Z die folgenden Beziehungen verwendet

P, C “PLD. + ‘D P., (4.20a)
“D, C “Dy'D, — “PP,, (4.20b)

welche sich unmittelbar aus Satz 4.5 ergeben.

1) Zunédchst wird der Fall s € Z bzw. ¥D; =+ betrachtet. Dann gibt es aufgrund von
(4.18b) mit i = sein v € Z \ {s}, 0. E. d. A. gilt v =1, mit *P; X; =+ bzw.

X, =Py £0. (4.21)

2) Wir nehmen zundchst an, dass *D; = O gilt. Dann definieren wir die
Mengen Z, = {ie€ Z|X,="D; # O}, Z_ {ie Z|X;=—"D; #0} und Z, =
{i € Z‘X, #0,i¢ 2, UZ_U {1}} Aufgrund von (4.18a) mit ¢ = s und *Ps = O gilt
entweder Z, = Z_ = 0, oder Z, # 0 # Z_. Wir definieren z; =
i€ Zyund x; = fiir alle ¢ € Z_. Dann gilt

ZiTrreontmi—py L0F alle

|Z-]ri cos(pi—ps)
Z’I'z cos(pr — ) = Z ricos(pr — )z =€e—€e=0 (4.22)
=1 lez,uz-

fiir jedes € > 0. Zusétzlich wéhlen wir z; = te abhéngig vom Vorzeichen X; fiir alle i € Zj.

Damit hédngen die von Null verschiedenen Eintrége x;, i # 1 linear von € ab und ¢ > 0
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kann hinreichend klein gewé#hlt werden, sodass

I e

/\Irs
lez\{v}

erfillt ist. Wir definieren z; = ﬁ(l—() € *Pp = X;. Dann gilt

S rsin(g; — @s)a = Arrs und zusammen mit (4.22) sind beide Gleichungen in (4.19)
=1
fiir k£ = s erfiillt. Der Beweis wird in Punkt 6) fortgefiihrt.

3) Es wird nun angenommen, dass es kein v € Z mit X, = *P, # O und *D, = O gibt.

Im Folgenden wird gezeigt, dass es dann zwei verschiedene v, w € Z mit
X, ="P,Ds £ O und Xy ="Pu,'Ds # O (4.23)

gibt. Wir definieren k := 1.
3.1) Es gilt

Pi=X;# 0O  fiir jedesi € {1,...,k} und (4.24a)
DX, = DX, #£0O  fiirjedes i € {1,...,k}. (4.24b)
Fiir k = 1 folgt die Gleichung (4.24a) aus (4.21) und (4.24b) aus den Annahmen in 3);

und fiir £ > 1 ergibt sich (4.24a) aus (4.241) und (4.24b) aus (4.24f). Wenn k > 1 gilt,
dann ergibt sich zusétzlich aus (4.24k)

D, = *PX,#0  fiirjedesi € {1,...,k—1}. (4.24c)

3.2) Aufgrund der Annahme in (4.18b) mit ¢ = k zusammen mit (4.24c) und *P, = O,
gibt esein v € Z\ {1,...,k}, o.E.d.A. gilt v =k + 1, sodass

Dy = P X £ 0O (4.24d)

gilt.

3.3) Wir nehmen zuniichst an, dass **'D, = O gilt. Dann gilt *D, = —*Py, 1P,
aufgrund von (4.20b) mit @ = k, b = k+ 1 und ¢ = s. Zusammen mit (4.24d) gilt
daher X1 = *Pgi1, sodass die Annahme in 3) nicht erfillt ist und k1D, £ O gelten

muss.

3.4) Wir nehmen nun an, dass

k+1DS _ _k+17)ka # O (4240)
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gilt. Zusammen mit (4.24d) gilt *D X, = *1D A}, und aus (4.24b) ergibt sich

DX, =""DX #0O  fiirjedes i € {1,... k+1}. (4.24f)
Aus (4.20a) mit a = s, b =k + 1 und ¢ = k zusammen mit (4.24e) und (4.24a) mit i = k
ergibt sich Ay C *Pryi" D), — Aj. Daher gilt

Prst = DX, (4.24g)

Aus (4.20b) mit a = s, b = k+1 und ¢ = k zusammen mit (4.24g) und (4.24e) ergibt sich
5Dy, = *Dy1" Dy Mithilfe von (4.24f) fiir 4 = k folgt daher

X1 = "TIDLAXG. (4.24h)
Zusammen mit (4.24g) und (4.24a) ergibt sich

“Po=X,£0  fiirjedesi € {1,... k+1}. (4.24i)
Aus (4.20b) mita =k+1,b=sund c =i firi¢ € {1,...,k + 1} zusammen mit (4.24f)
und (4.241) ergibt sich

D, = X X £ 0O fiirjedes i € {1,...,k+ 1} (4.245)
Wenn k£ > 1, dann folgt aus (4.20a) mit @ = k, b = k+ 1 und ¢ = ¢ fir i €
{1,..., k—1} zusammen mit (4.24j), (4.24d) und (4.24c), —*D,X; C *D X; + *Dy, "1 P;.
Dabher gilt *D,X; = —*Dj.1¥"1P;. Zusammen mit (4.24h) und (4.24f) fiir « = k ergibt sich
D, = P, fiiv i € {1,...,k — 1}. Mit (4.24e) folgt schlieBlich

MIp, = MIPX, £0  fiirjedesi € {1,...,k}. (4.24k)
Der Beweis wird in Punkt 3.1) mit k + 1 fortgefiihrt.

3.5) AbschlieBend nehmen wir an, dass **'D, = **1P, X}, gilt. Dann sind zusammen mit
(4.24d) die beiden Beziehungen in (4.23) fiir v = k und w = k + 1 erfiillt.

4) Wir withlen zwei v, w € Z fiir die (4.23) erfiillt ist und fiir i € Z \ {v, w} definieren wir
x; € {—¢,0, ¢} abhiingig vom Vorzeichen X;. Dabei wihlen wir ¢ > 0 hinreichend klein,

sodass

G= Z Wﬂxl<l und G = Z )\rlbm(p—l%)xl<1
lez\{v,w} ]7SCOS(<ps - pr) 1eZ\{vw ITs COS(SOS Lrgv)

erfillt ist. Aufgrund von (4.23) gilt mit

o )\ITS COS(SOS - @w)
B Ty Sin(@v - Ww)

)\17 cos(ps — py)

1— d
(I1-¢G) un T Y ——

(1 - <‘2)7
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r € X. Zudem ist

ZT’ sin(y; — @) = A1 cos(ps — @u) und (4.25a)
1€z
Z rsin(p; — @w)T = Arrs cos(ps — Quw) (4.25Db)
lez

erfiillt. Wird (4.25b) von (4.25a) multipliziert mit cos(¢, — ¢,,) subtrahiert, so ergibt sich
D ri(sin(er — o) cos(py — pu) = sin(pr — o)) 2
=

= Arr (cos(ips — pu) cos(ip, — @) — cos(p, — #u))

Mithilfe von (2.4) und sin(¢, — ¢,) # 0 gilt

Z r1c08(Q1 — Quw)T = = AT sin(ps — Qi) (4.25¢)
ez
Aus (4.25b) und (4.25¢) folgt, dass die beiden Gleichungen in (4.19) fiir k = w erfiill
sind. Der Beweis wird in Schritt 6) fortgefiihrt.

5) Es wird nun der Fall s € Z betrachtet. Dann gilt O C *DTX und O C *PT X fiir jedes
k € Z. Aus Satz 4.8 folgt, dass es fiir jedes ¢ € D ein x € X mit ¢’ = 0 gibt. Die beiden
Gleichungen in (4.19) sind fiir jedes ¢ € Z erfiillt.

6) Die beiden Gleichungen (4.19) sind fiir ein i € Z erfiillt, sodass ‘q"x = jA\;'q" baw.
q"z = jAq" gilt. Wir definieren A, , := z; fiir jedes i € Z, sodass

Z Qs = JjAigs (4.26)
1=1
gilt. Da (4.26) fiir jedes s € Z erfiillt ist, gilt ¢”A = jA;¢” und (iii) ist erfiillt.

Die Beziehung (ii7) — (i) ist offensichtlich. O

Die Eigenschaft (iii) in Satz 4.10 ist bemerkenswert, da es fiir jeden Wert A\ = jA; mit
A; > 0 und jedes ¢ € © eine Matrix A € A gibt, sodass ¢ ein Eigenvektor von A beziiglich
A ist, wenn ein ¢ € © ein Eigenvektor von einem Aec A beziiglich A= jS\I mit A; > 0
ist. Mit der Bedingung (i7) ldsst sich leicht iiberpriifen, ob es einen solchen Eigenvektor
q € D fiir gegebene A und © gibt.

Mithilfe von Satz 4.10 lassen sich Vorzeichenmatrizen charakterisieren, welche einen reinen

imaginéren Eigenwert erlauben.
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Satz 4.11 : Gegeben ist eine Vorzeichenmatriz A € V™™ mit n € N.

Die folgenden Punkte sind dquivalent.

(¢) A erlaubt einen Eigenwert A € C mit R(A) = 0 und () # 0.
(i1) FEs gibt einen komplexen Vorzeichenvektor ©, der Vorzeichen-Eigenvektor von A ist
und um 90 Grad verdreht wird.
(73i) Es gibt einen komplezen Vorzeichenvektor ®, sodass fir jedes von Null verschiedene
kin®, —*PT C*DTA und *DT C *PTA mit (*D,*P) = V(D,k) gilt.

Beweis. (i) = (i) : A erlaubt einen Eigenwert A € C mit #(\) = 0 und () # 0,
sodass es ein A € A mit dem Eigenwert A = jA; mit A\; € R\ {0} gibt. Aufgrund von Satz
2.1 gibt 0.E.d.A. A; > 0. Dann gibt es ein ¢ € C™ mit q # 0, sodass ¢ A = jA\;q” gilt und ¢
ist ein Element von einem komplexen Vorzeichenvektor ®, welcher Vorzeichen-Eigenvektor
von A ist und um 90 Grad verdreht wird. (i) == (4) ist offensichtlich und die Aquivalenz
von (74) und (z4) folgt aus Satz 4.10. O

Beispiel 4.5 (Fortsetzung von Beispiel 4.4): Gegeben ist der komplexe

Vorzeichenvektor ® aus Beispiel 4.4 und die Vorzeichenmatrix A € V3% mit

+ O + o+ O
D=~ 4+ ~ und A=~ O -
oA © 0 =
Die charakteristischen Vorzeichenmuster von % sind
4 O O aF aF -~
D=|of|,"P=|~|.D=|+]|.P=|0|,DP=|~]| md’P= |~
+ + - + - O
Es gilt
—1pT =1DTA = (O, +,-), 'DfCIPTA=(+,0,9),
—2pT ¢ 2DTA = (~,0,®), DT =*PTA= (0,4, ~),
3P C3DTA = (4, +,®) und DT = PTA=(+,-,4),

sodass die Bedingung (i7) von Satz 4.10 erfiillt ist. © ist daher ein komplexer
Vorzeichen-Eigenvektor von A, der um 90 Grad verdreht wird. Fiir jedes

q = (r1€91, 19692 r3ei?3) T € © gilt 11, 19,13 > 0, 1 — @y = 5 und 5 < 3 — o < 7.
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Fiir ein A\; €+ und

0 2Ar 0
A=|-2X 0 m/\l

cos(p3—p2)
0 0 sin(p3—p2) Ar

gilt beispielsweise A € A und ¢7A = jAq". Fiir ¢ = (5,—35,2 + 25)T € D, A\; = 15 und

0 9 0
A=1-25 0 20| €4 gilt z.B. gt A = jagt.
0 0 —15

4.5 Vorzeichenmatrizen mit komplexen Eigenwerten

In diesem Abschnitt werden Bedingungen vorgestellt, mit denen jeweils untersucht werden
kann, ob eine quadratische Vorzeichenmatrix A komplexe Eigenwerte mit positivem
oder mit negativem Realteil erlaubt. Auflerdem lassen sich mit diesen Bedingungen die
komplexen Vorzeichenvektoren bestimmen, die Elemente des zugehorigen Eigenraums

enthalten. Dafiir werden Drehungen benotigt, welche wie folgt definiert sind.

Definition 4.12 (Drehung von einem komplexen Vorzeichenvektor): Gegeben
ist ein komplexer Vorzeichenvektor © der Ordnung m € N. Die Menge aller
von Null verschiedenen k € {1,...,n} in © wird mit Z bezeichnet. Eine Funktion
Un: Z =V x V" k — (*V.*W) ist eine Drehung von ®, wenn es ein einen Vektor
q € ® und eine Zahl A € C mit R(N), I(N) # 0 gibt, sodass fir jedes k € Z,

RO - q/qx) €*V und
o S(A-q/qr) €*W gilt.

Eine Drehung Wo von einem komplexen Vorzeichenvektor ® beschreibt das komplexe
Vorzeichenmuster von dem Ergebnis der Multiplikation von einer komplexen Zahl A mit
einem Vektor ¢ € ©. Fiir jeden komplexen Vorzeichenvektor ® # O gibt es eine Vielzahl
von Drehungen, da aber nach Satz 4.4 alle komplexen Vorzeichenvektoren eines komplexen
Vorzeichenvektors mit einer Vorzeichen-Rotationsmatrix R und den Vorzeichenvektoren
von V* beschrieben werden konnen, ist die Anzahl aller moglichen Drehungen von
einem komplexen Vorzeichenvektor endlich. Drehungen werden in Abschnitt 5.2 weiter

untersucht.
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Mit dem folgenden Satz kann untersucht werden, ob ein komplexer Vorzeichenvektor ein

Vorzeichen-Eigenvektor ist, der in den ersten Quadranten verdreht wird.

Satz 4.13 : Gegeben ist eine Vorzeichenmatriz A € V" mit n € N und ein komplexer

Vorzeichenvektor ©. Die folgenden Punkte sind dquivalent.

(1) D ist ein Vorzeichen-Eigenvektor von A und © wird in den ersten Quadranten
verdreht.
(1) Fiir jedes von Null verschiedene k € {1,...,n} in © gilt
(a) VT C*DT A,
(b) FWT C *PT A,
(c) Vi = "W, =+
mit (kD, kP) =V (D, k) und (*V,*W) = U5 (k) ist eine Drehung von ®.

Beweis. (i) == (i1) : Die Menge Z bezeichnet im Folgenden die Menge aller von Null
verschiedenen k € {1,...,n} in ®. Da D ein Vorzeichen-Eigenvektor von A ist und D in
den ersten Quadranten verdreht wird, gibt es nach Definition 4.9 ein A € A, ein ¢ € ® und
ein A € C mit R(\) > 0 und I(\) > 0 und es gilt g7 A = A¢”. Wir definieren *q := q/qy
fiir jedes k € Z, sodass R(¥q) = *d € *D und I(*q) = *p € *P gilt.

Aufgrund der Annahme ist
bgTA=FdTA + j*pT A = MY qp, = %27 fiir jedes k € Z (4.27)

erfillt und wir definieren die Drehung g jeweils nach den Vorzeichen von
R(*2) = R(Aq/qr) und I(*2) = (Ag/qi,) fiir jedes k € Z.

Fiir zwei i, k € Z gilt *2; = Ag;/qx und im Besonderen ¥z, = \. Aufgrund der Annahme
gilt R(A) = R(¥2;) > 0 und S(\) = S(F21) > 0, sodass ¥V, = FW, =+ baw. (ii.c) erfiillt
ist. Aufgrund von (4.27) gilt R(*z) = *dT A und J(*2) = *¥pT A, sodass ¥VT C *DT A und
FWT C *PT A bzw. (ii.a) und (ii.b) erfiillt sind.

(ii) = (i) : Wir definieren die Mengen Z := {1,...,n} und Z := Z \ Z. Aufgrund
der Annahme gibt es ein ¢ € ® und ein \ € C, sodass fiir jedes k € Z, R(\ - ¢/qi) € *V
und S(\ - q/qx) € *W gilt. Die Vektoren r € R und ¢ € R" bezeichnen dabei jeweils die
Betriige und die Argumente der Elemente von ¢ und es gilt A = X\e/?*. Fiir jedes i € Z
definieren wir den Vektor ‘q := q/q;, d.h. ‘g, = % cos(pr — i) +j% sin(pg — ;) beschreibt
das k-te Element von ‘q.

Wi fixieren ein s € Z und der Vorzeichenvektor X' bezeichnet im Folgenden die Spalte s
von A, d.h. &) := Ay, fiir alle k € Z. In den Schritten 1)-4) des Beweises wird der Fall
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s € Z und anschliefend im Schritt 5) wird der Fall s € Z untersucht.

0) Aufgrund der Annahmen in (ii.a) und (7i.b) gilt fiir jedes ¢ € Z

V. CY DX und (4.284)
ez
lez

und aus (ii.c) folgt “V; = "W; =+. Wir werden im Folgenden einen Vektor x € X wiihlen,

sodass
Ao - 75 cos(ps + pr — i) = Zrl cos(p; — pi)ay und (4.29a)
Ao - rssin(ps + @x — ;) = Zn sin(yp; — @i)x; (4.29b)

=1
jeweils fiir ein ¢ € Z erfiillt ist. Dabei werden fir drei a, b, ¢ € Z die folgenden Beziehungen

verwendet
“P. C “PD. + ‘D" P, (4.30a)
“D, C “Dy’D. — “Py’P., (4.30b)
W, C PV, + “DPW, (4.30¢)
WV, C DV, — P, (4.30d)
Py C WLV, — VLW, (4.30¢)
Dy C VLV, + WL, (4.30f)

Die Gleichungen (4.30a) und (4.30b) folgen unmittelbar aus Satz 4.5. Da ¥y eine
Drehung von ® ist, gilt fiir jedes a € Z, R(“2z5) = Aors/ra cos(ps + ¢r — @a) € “Vs und
S(*25) = AoTs/TasIn(@s + x — @a) € “Ws. Aufgrund von (2.4) ergibt sich fiir ein b € Z
(5 = a))

+ cos(pp — @a) sin(ps +px —9p)  und

sin(ps +¢x — o) = sin ((ws + ox — @p) +
= sin(py — ¢a) cos(ps + ©x — pp)
cos(ps + @ — ¢a) = cos ((0s + @ — ¥b) + (6 — ¥a))
= cos(ipp — a) cos(ips + px — p) — sin(py — @a) sin(ips + ©x — @p).

Die Beziehungen (4.30c) und (4.30d) sind daher offensichtlich. Analog gilt

sin(py — o) = sin ((ps + ox = ) = (05 + 01 = @1))

= sin(ips + ox — @a) cos(ips + ox — p) — cos(ps + px — wa) sin(ps +ox — @),
cos(pp — Pa) = cos ((@s + ox — @a) = (05 + ©x — ¥1))

= co8(ips + ox — Pa) cO8(10s + ox — @) + sin(ps + px — wa) sinps + px — @),
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sodass die Beziehungen (4.30e) und (4.30f) ebenfalls erfiillt sind.

1) Zunichst wird der Fall s € Z bzw. D, =+ betrachtet. Aufgrund von (4.28a) mit ¢ = s
gilt +C > P und es gibt ein v € Z \ {s}, 0.E.d.A. v =1, mit

lez

Py =X, # 0. (4.31)

2) Wir nehmen zunichst an, dass "W, = O und somit sin(y, + @y — ¢1) = 0 gilt. Aus
(4.30e) mit a = s und b = 1 folgt *P; = 'V, bzw.

X =1, (4.32a)

Wir definieren die Mengen Z, = {i € Z|X;, ='P; # 0O}, Z_ = {i € Z|X; = —'P, # O}

und 7y = {z S Z’Xi #0,i¢ 2, UZ_U {1}} Aufgrund von (4.28a) mit ¢ =1 gilt

W, =0 C > P, sodass entweder Z, = Z_ = 0, oder Z, # () # Z_ gilt. Wir
lez

definieren x; :

fiir alle 7 € Z; und w; : fir alle i € Z_.

— e _ —e
T [ Zy|risin(pi—¢1) |Z~|r; sin(pi—¢1)
Damit gilt fiir jedes €

n

Zrl sin(y; — 1)@ =€ — e = 0 = Agrs sin(ps + ox — ¢1). (4.32b)
=1
Abhéngig von dem Vorzeichen X; definieren wir zusétzlich z; := +e fiir jedes i € Z.

Damit héngen die von Null verschiedenen Eintrage x;, ¢ # 1 linear von € ab und € kann

hinreichend klein gewéhlt werden, sodass

ricos(¢r — 1)

€= AoT's Cos(ps + ©x — ¢1)

lez\{1}

<1

gilt. Wir definieren z; := 22" cos(p, + @y — 01)(1 =), sodass z; € 'V, = X gilt und

1

D ricos(pr— 1) = Aors cos(ps + px — 1) (4.32¢)
=1

erfiillt ist. Aufgrund von (4.32b) und (4.32¢) sind die beiden Gleichungen in (4.29) fiir
¢ =1 erfiillt und der Beweis wird in Schritt 6) fortgefiihrt.

3) Wir nehmen nun an, dass es kein k € Z mit X}, = *P, # O und *W, = O gibt und
wir werden im Folgenden mithilfe von einer Rekursion zeigen, dass es zwei verschiedene

v,w € Z gibt fiir die dann
X, = vawWS‘ und X = U,PwUWs (433)

gilt. Wir definieren k := 1.
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3.1) Aufgrund von (4.31) mit der Annahme in 3) sowie (4.34f) gilt

WX ="Wx, #0  firalledi € {1,...,k} (4.34a)
und wenn k > 1 dann folgt aus (4.34m) (oder (4.34e), wenn k = 2) zusétzlich

MW, = kX, A0 firalleie {1,...,k—1}. (4.34D)
3.2) Aus (4.28a) mit ¢ = k folgt mit (4.34a), (4.34b) und *P, = O, dass es ein v € Z gibt,
o.E.dA. v=Fk+1, mit

"W, = P X # O. (4.34¢)

3.3) Wir nehmen zunéichst an, dass "W, = O gilt. Dann folgt *Py,1 = ¥V, aus (4.30e)
mit @ = s und b = k+ 1 sowie W, = *Pp ¥V, aus (4.30c) mit @ = k und b = k+1. Aus
diesen beiden Beziehungen zusammen mit (4.34c) folgt X1 = *Pjy1 und die Annahmen

in 3) ist nicht erfiillt. Es gilt daher

LY 2O, (4.34d)

3.4) Im Folgenden nehmen wir an, dass

MW, = PG # O (4.34e)
gilt. Aus (4.34e) zusammen mit (4.34c) folgt

kWY X = "W, A, £ 0. (4.34f)
3.4.0) Wenn k = 1, dann fithren wir den Beweis mit k& = 2 in Schritt 3.1) fort. Andernfalls
gilt k£ > 1 und wir zeigen im Folgenden, dass

MW, = MIPX £0  fiirjedesi € {1,...,k — 1} (4.34g)

erfiillt ist.

3.4.1) Zuniichst betrachten wir den Fall ?V, = X, fiir eini € {1,..., k—1}. Aus (4.30c) mit
a = kund b = i und (4.34b) ergibt sich *W, C —FW, + *D;"W;. Daher gilt *W, = *D;/W),
und aus (4.34a) folgt

X, =*D,x;. (4.34h)

Aus (4.30d) mit @ = k und b = i und (4.34h) folgt ¥V, C &), — *P,W,. Zusammen mit
(4.34b) und (4.34a) ergibt sich

"V, = . (4.34i)
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Aus (430c) mit « = k 4+ 1 und b = Fk, (4341 und (4.34e) ergibt sich
kL, C W, + FID W, Daher gilt 1 W, = *1DFW, und mit (4.34f) folgt

Xy = "Dy Xy (4.34j)

Aus (4.30a) mit ¢« = k+ 1, b = k und ¢ = 4, (4.34j) und (4.34h) ergibt
sich #+1P; C F1P XX + FPi X1 Xy, Zusammen mit (4.34e), (4.34b) und (4.34f) gilt
schlieBlich **1P; = —**1WW_X; und Gleichung (4.34g) ist erfiillt.

3.4.2) Im Falle von V, = O liisst sich die Beziehung (4.34g) dhnlich zu 3.4.1) zeigen.
Dann ergibt sich Gleichung (4.34h) direkt aus (4.30c) mit (4.34a), und Gleichung (4.34i)
aus (4.30d), (4.34b) und (4.34a). Die verbleibenden Schritte zu (4.34g) sind identisch mit
dennen in 3.4.1).

3.4.3) Es wird nun der verbleibende Fall 1V, = —X; untersucht.

3.4.3.a) Wir nehmen zunéchst an, dass ¥V, = X, gilt. Aus (4.30e) mit a = k + 1 und
b = i folgt dann **'P; C —*W, X, — "W, X}, 1. Zusammen mit (4.34a) und (4.34f) ergibt
sich ¥*1W, = —F+1P, X, sodass Gleichung (4.34g) erfiillt ist.

3.4.3.b) Wenn ¥V, = O, dann folgt die Beziechung (4.34g) direkt aus Gleichung (4.30e)
mit a=k+1und b=1.

3.4.3.c) AbschlieBend nehmen wir an, dass ¥V, = — X, gilt. Aus (4.30f) mit a =k +1
und b = 4, (4.34f) und (4.34a) ergibt sich
KD, = X X (4.34k)

Aus (4.30c) mit @ = k und b = k+ 1 und (4.34c) ergibt sich *W, C —FW, + FDy  FH1W,.
Daher gilt W, = *Dy, "' W, und mit (4.34f) ergibt sich

D1 = X Xirr. (4.341)
Aus (430a) mit ¢ = k, b = k + 1 und ¢ = 14, (434k) und (4.34])
ergibt sich *P; C ¥Ppy 1 X1 X + XXy " T1Pi. Zusammen mit (4.34c) und (4.34b) gilt

—W, X CEWLX, + XX PP bzw. —FW X = XX ¥ P Zusammen mit (4.34f)
ergibt sich Gleichung (4.34g).

3.4.4.) In jedem dieser Fille ist (4.34g) erfiillt. Zusammen mit Gleichungen (4.34¢) ergibt

sich dann
MW, = MDA £ 0 fiirjedes i € {1,...,k} (4.34m)

und wir fithren den Beweis in Schritt 3.1) mit k£ + 1 fort.
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3.5) Abschliefend betrachten wir den Fall, dass *+'W, = *1P, X, gilt. Zusammen mit
(4.34c) ist dann (4.33) mit v = k und w = k + 1 erfiillt und wir fithren den Beweis in
Punkt 4) fort.

4) Wir wiihlen zwei v, w € Z fiir die (4.33) erfiillt ist und fiir i € Z \ {v, w} definieren wir
x; € {—¢,0, e} abhingig vom Vorzeichen X;. Dabei wird € > 0 hinreichend klein gewé#hlt,

sodass
G = . n.sin(% — ¥w) 2 = . ’rl.sin(gal — Yuw) (<1,
lez\{v,w} T'sAo0 Sln((ps Tox— @w) 1e2\{vw} T'sAo Sln(@s +pa— Lr9w)
G = , 7'1.5111(% * ) o = , 'rl'sin(gpl — ©y) | co1
ey 50 sin(ps + ¢x — @) e oy "N sin(ps + ox — @)
erfiillt ist. Mit
s Ao sin(p, — Pu
N 05I(ps + 91 ~ Pu) (1-a) nd
Ty Sln((pw - 9911})
s Ao sin(ps — ©y
7y = BRI A O 0) ()
Ty SIN(Qy — ©p)
gilt dann z, € “P,"W, = &, und x,, € "P," W, = &), Zudem gilt
Zﬁ sin(p; — o)z = 15X sin(s + ox — 9u) und (4.35a)
ez
Z rysin(p; — @w) T = s Ao sin(ps + r — Pu). (4.35b)
ez

Wird (4.35b) von (4.35a) multipliziert mit cos(p, — ¢.,) subtrahiert, so ergibt sich
> mi{sin(gr = ) coslpn = pu) = sinlr = pu))
=
=750 (sin(ps + @x — @) cos(y, — Yuw) — sin(ps + ©r — Puw)) -
Daraus ergibt sich mithilfe von (2.4a) und sin(¢, — ¢,) # 0
Z 71Co8(01 — Qu)Uis = TsAo COS(Ps + O — ©y). (4.35¢)
lez

Aus (4.35a) und (4.35c¢) folgt, dass die beiden Gleichungen in (4.29) fiir ¢ = v erfiillt sind.
Der Beweis wird in Schritt 6) fortgefiihrt.

5) Wir betrachten nun den Fall, dass s ¢ Z bzw. *Dy = O gilt. Dann ist ¢, = 0 und fiir

jedes i € Z folgt ‘2z, = 0. Die Gleichungen in (4.28) vereinfachen sich zu

O C"PTxX und O C'DTX fiir jedes i € Z. (4.36)
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Mithilfe von Satz 4.8 gibt es ein x € X fiir jedes ¢ € D, sodass ¢7z = 0 = 'z, gilt. (4.29)

ist daher fiir ein beliebiges i € Z erfiillt.

6) Die beiden Gleichungen (4.29) sind fiir ein ¢ € Z erfiillt. Daher gilt
> ricos(pr = i) + jsin(ir = i)
=1
= Aors (cos(ps + ox = i) + jisin(@s + ox — i) baw.

n A~

Siqr = 2y = Mg, oder ¢Tz = AT, Wir definieren A, := x; fiir jedes i € Z, sodass
=1

qTA = A" gilt und (i) ist erfiillt. O

Beispiel 4.6 : Gegeben ist die Vorzeichenmatrix A € V**3 und der komplexe

Vorzeichenvektor ® mit

O - O + - -
A=10 O - und D=+ + -
— @ © - + +
Die charakteristischen Vorzeichenmuster von ® sind
AF @) = = = AF
p=|~|,'P=|+]|D=|+]|P=|0|.P=]|~| wmd3?P=| -
- - - + + O
Es gilt
lvT — 1DTA — (+7 4_,+) — 72DT, le _ 1PTA — (+/ 07 +) — 72,PT,
2vT — QDTA — (+7 . +) — 73DT, 2wT — 2PTA — (+7 +7O) — 73,PT,

3vT — SDTA — (+7 +,+) — 71DT und 3wT — JPTA — (07 -, +) — 71,PT.

Fiir jedes k € Z = {1,2,3} gilt "W}, = ¥V, =+ und mit q = (rl,rgcj%,rge’j%)T,
A= 75’5 und 71,79, 73,75 € + kann gezeigt werden, dass Wyg eine Drehung ist, da g € ©
und fiir jedes k € Z gilt R(Ag/qi) € ¥V sowie S(\g/qx) € "W (siehe Satz 5.4 in Abschnitt

5.2 fiir die Untersuchung von Drehungen).

Aufgrund von Satz 4.13 ist © daher ein Vorzeichen-Eigenvektor von A, der in den ersten

Quadranten verdreht wird. Der Vektor ¢ ist ein Eigenvektor von der Matrix

0 *%'I’,\ 0
A= 0 0 —Zry| €A  bezglich A
—LIT)\ 0 0

3
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Neben ® gibt es genau zwei weitere komplexe Vorzeichenvektoren ®’ und ®” mit
+ o+ 4+

D=D=|~ + ~ und D'=10 + +|,
o O +

welche Vorzeichen-Eigenvektoren von A sind. ©” ist reell darstellbar und wird z.B. mit
D" = (+,+,+)T beschrieben. Die komplexen Vorzeichenvektoren ®’ und ®” enthalten

jeweils die Eigenvektoren von A beziiglich X' = X = rye 73 und N/ = —ry.

Wenn D ein Vorzeichen-Eigenvektor von einer Vorzeichenmatrix 4 ist und ® in den ersten
Quadranten verdreht wird, dann sind im Allgemeinen im Gegensatz zu Satz 4.10 nicht
alle Elemente von ® auch Eigenvektoren einer Matrix A € A. Eine Vorzeichenmatrix
A erlaubt dagegen in den meisten Féllen nur Eigenwerte A = rye/?* mit bestimmten
Argumenten ¢,. Diese Eigenwerte und Eigenvektoren sind durch die Drehung U5 von ©
bestimmt.

Die Vorzeichenmatrix A aus Besipiel 4.6 erlaubt beispielsweise nur Eigenwerte mit den

Argumenten ¥, —% und 7 und fiir jeden Eigenvektor ¢ = (116791, 19e7%2 13¢79%)T beziiglich
A =ryel5 muss

™ T T

(p1 — ¢2) mod 5= (¢2 — ¢3) mod 5= (¢35 — ¢1) mod 5=3

gelten. Drehungen werden im néchsten Abschnitt (Satz 5.4) weiter untersucht.

Analog zu Satz 4.11 kann mithilfe von Satz 4.13 festgestellt werden, ob eine

Vorzeichenmatrix komplexe Eigenwerte mit positivem Realteil erlaubt.

Satz 4.14 : Gegeben ist eine Vorzeichenmatriz A € V™™ mit n € N.

Die folgenden Punkte sind dquivalent.

(2) A erlaubt einen Eigenwert A € C mit F(X) # 0 und R(X\) > 0.
(i1) Es gibt einen komplezen Vorzeichenvektor, der Vorzeichen-Eigenvektor von A ist
und in den ersten Quadranten verdreht wird.
(141) Es gibt einen komplexen Vorzeichenvektor ® und eine Drehung ¥o von ©, sodass
fiir jedes von Null verschiedene k € {1,...,n} in D
(a) VT C*DT A sowie
(b) *WT C*PT A und
(C) ’“Vk = ka =+
mit (*D,¥P) = V(D,k) und Up(k) = (*V,kW) gilt.
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Beweis. (i) = (i1) : A erlaubt einen komplexen Eigenwert mit positivem Realteil und
jedes Element von A ist reell. Daher gibt es mit Satz 2.1 ein A € A, ein ¢ € C" und ein
A € C mit R(\) > 0 und I(A) > 0, sodass g7 A = A¢T gilt. ¢ ist dann nach Definition 4.9
ein Element von einem Vorzeichen-Eigenvektor © von A, der in den ersten Quadranten
verdreht wird. (i) == (i) ist offensichtlich und die Aquivalenz von (i) und (i) folgt
aus Satz 4.13. O

Mit dem folgenden Satz kann untersucht werden, ob ein komplexer Vorzeichenvektor ein

Vorzeichen-Eigenvektor ist, der in den dritten Quadranten verdreht wird.

Satz 4.15 : Gegeben ist eine Vorzeichenmatriz A € V™™ mit n € N und ein komplexer

Vorzeichenvektor ©. Die folgenden Punkte sind dquivalent.

(i) © ist ein Vorzeichen-Eigenvektor von A und ® wird in den dritten Quadranten
verdreht.
(i6) Fir jedes von Null verschiedene k € {1,...,n} in® gilt mit (*D,*P) = V (D, k)
(a) VT CHDT A,
(b) kWT C kPTA,
(C) ka = ka ==
und (*V,*W) = Uq(k) ist eine Drehung von D.

Beweis. Der Beweis von (i) == (4¢) verlduft analog zu dem von Satz 4.13. Fir die
Umkehrung nehmen wir an, dass ein komplexer Vorzeichenvektor ® und eine Drehung
Up gegeben sind, sodass die Bedingungen (a) bis (c) erfiillt sind. Wir definieren A := —A
und Ug(k) == (=5V, =*W) mit (*V,*W) = Ug(k) fiir jedes von Null verschiedene k in
D. Uy ist eine Drehung von © und alle drei Bedingungen von Satz 4.13.(4%) sind fiir A,
D und ¥y erfiillt. ® ist daher ein Vorzeichen-Eigenvektor von A im ersten Quadranten
und es gibt ein A € A, ein ¢ € D und ein A € C mit (), S(A) > 0, sodass ¢7A = Ag”
gilt. Mit A:= —A und A:= =X gilt A € A, R(N\),S(A\) <0 und ¢TA = A¢”. D ist daher

ein Vorzeichen-Eigenvektor von A im dritten Quadranten und (4) ist erfiillt. O
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Aus Satz 4.15 folgt analog zu Satz 4.14 das folgende Ergebnis, mit dem festgestellt werden

kann, ob eine Vorzeichenmatrix einen komplexen Eigenwert mit negativen Realteil erlaubt.

Satz 4.16 : Gegeben ist eine Vorzeichenmatriz A € V™™ mit n € N.
Die folgenden Punkte sind dquivalent.

(2) A erlaubt einen Eigenwert A € C mit F(X) # 0 und R(X) < 0.
(i1) Es gibt einen komplezen Vorzeichenvektor, der Vorzeichen-Eigenvektor von A ist
und in den dritten Quadranten verdreht wird.
(14i) Es gibt einen komplexen Vorzeichenvektor ® und eine Drehung ¥o von ©, sodass
fiir jedes von Null verschiedene k € {1,...,n} in D
(a) VT C *DT A sowie
(b) *WT C*PT A und
(C) ’“Vk = ka ==
mit (*D,¥P) = V(D,k) und Up(k) = *V, kW) gilt.
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5 Vorzeichen-Steuerbarkeit und -Stabilisierbarkeit

In diesem Abschnitt wird mit den Sétzen 5.1 und 5.2 jeweils die Vorzeichen-Steuerbarkeit
und die Vorzeichen-Stabilisierbarkeit charakterisiert. Anschliefend wird in Abschnitt
5.2 eine alternative Darstellung eines komplexen Vorzeichenvektors © vorgestellt
und es werden FEigenschaften von Drehungen ermittelt. Beiden Resultate werden in
Abschnitt 5.3 genutzt, um die algorithmische Uberpriifung der Vorzeichen-Steuerbarkeit
bzw. Vorzeichen-Stabilisierbarkeit zu diskutieren. Zusétzlich wird ein Algorithmus zum
Test der Vorzeichen-Steuerbarkeit beschrieben. In Abschnitt 5.4 werden abschlieSend zwei

Systeme auf Steuerbarkeit und Stabilisierbarkeit untersucht.

5.1 Charakterisierung der Vorzeichen-Steuerbarkeit und der

Vorzeichen-Stabilisierbarkeit

Aus der Definition des Vorzeichen-Eigenvektors und Satz 4.8 folgt unmittelbar,
dass ein Vorzeichen-System (A, B) nicht vorzeichen-steuerbar ist, wenn es einen
Vorzeichen-Eigenvektor ® von A gibt, der gleichzeitig im Kokern von B ist. Daraus ergibt

sich die folgende Charakterisierung der Vorzeichen-Steuerbarkeit.

Satz 5.1 : Gegeben sind zwei Vorzeichenmatrizen A € V" und B € V™" mit n,r € N.
Die folgenden Punkte sind dquivalent.
(¢) Das Vorzeichen-System (A, B) ist vorzeichen-steuerbar.
(#7) Fiir jeden komplexen Vorzeichenvektor ® # O der Ordnung n gilt
(a) D ist nicht im Kokern von B oder
(b) D ist kein Vorzeichen-Eigenvektor von A.
(#2) Fiir jeden komplezen Vorzeichenvektor © # O, der im Kokern von B ist, sind die
folgenden Punkte erfiillt.
Wenn © reell darstellbar ist und © durch Q € V™ beschrieben wird, dann gilt

(a) O ZQTA,
() QT ¢ QT A und
(c) —QT ¢ QT A.

D ist kein Vorzeichen-FEigenvektor von A, der
(d) in den ersten Quadranten verdreht wird,
(€) um 90 Grad verdreht wird, oder
(f) in den dritten Quadranten verdreht wird.
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Beweis. Das  Vorzeichen-System  (A,B) ist nach Satz 2.5.(iv) genau dann
vorzeichen-steuerbar, wenn fiir jedes A € A, jedes B € B, jeden Wert A € C und
jeden Vektor ¢ € C" mit q # 0, ¢" B # 0 oder ¢" A # A\g" gilt.

Wenn ¢ A = \¢? fiir ein ¢ # 0 und ein A € C gilt, dann ist der komplexe Vorzeichenvektor
®, in dem sich ¢ befindet, nach Definition 4.9 ein Vorzeichen-Eigenvektor von .A. Wenn
® zusitzlich im Kokern von B ist, genau dann gibt es nach Satz 4.8 ein B € B, sodass
¢'B =0 gilt. Daher ist (i) <= (i) erfiillt.

Fir (i) = (ii1) folgen die Eigenschaften (a), (b) und (¢) unmittelbar aus Satz 3.16
und die Eigenschaften (d), (e) und (f) aus den Sédtzen 4.8, 4.14, 4.11 und 4.16. Fiir
die Umkehrung nehmen wir an, dass (¢) nicht erfiillt ist. Dann gibt es ein A € A,
ein B € B und ein A € C, sodass A nicht (A, B)-steuerbar ist. Wenn A € O, A €+,
oder A €~ gilt, dann folgt jeweils aus Satz 3.7, 3.14 oder 3.15, dass (a), (b) oder (c)
fiir ein Vorzeichenvektor @ nicht erfiillt ist. @ ist dann eine reelle Darstellung eines
komplexen Vorzeichenvektors ® und Q ist im Kokern von B. Andernfalls gilt A € C\ R
und aus Satz 2.6 folgt, dass ohne Einschrankungen R(X), I(A) > 0; (X)) =0,F(A) >0
oder R(A),S(N) <0 gilt. Der Vektor ¢ beschreibt einen zugehérigen Eigenvektor und
der zu ¢ gehorige komplexe Vorzeichenvektor ® ist dann im Kokern von B und ein
Vorzeichen-Eigenvektor von A, der in den ersten Quadranten, um 90 Grad oder in den
dritten Quadranten verdreht ist. Daher ist entweder (d), (e) oder (f) nicht erfiillt. O

Fiir die Vorzeichen-Stabilisierbarkeit eines Vorzeichen-Systems (A, B) ist im Gegensatz
zur  Vorzeichen-Steuerbarkeit nach Definition 3.20 und Satz 2.8.(ili) nur die
(A, B)-Steuerbarkeit von allen A € A, B € B und A € C mit ®(\) > 0 notwendig.

Es ergibt sich der folgende Zusammenhang.

Satz 5.2 : Gegeben sind die Vorzeichenmatrizen A € V" und B € V™" mit n,r € N.

Die folgenden Punkte sind dquivalent.

(2) Das Vorzeichen-System (A, B) ist vorzeichen-stabilisierbar.
(¢3) Fiir jeden komplezen Vorzeichenvektor ©, der im Kokern von B ist, sind die
folgenden Punkte erfiillt.
Wenn ® reell darstellbar ist und © durch Q € V™ beschrieben wird, dann gilt
(@) O ¢ QTA.
(b) QT ¢ QT A.
D st kein Vorzeichen-Figenvektor von A, der
(¢) in den ersten Quadranten verdreht wird.

(d) um 90 Grad verdreht wird.
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Beweis. Der Beweis verlduft analog zu dem Beweis (i) <= (it7) von Satz 5.1, wobei
Satz 3.21 anstatt von Satz 3.16 verwendet und Satz 3.15 nicht bendtigt wird. O

Beispiel 5.1 (Fortsetzung von Beispiel 3.6, 4.4 und 4.5): Gegeben sind die

Vorzeichenmatrizen A € V3*3 und B € V? mit

o + O =
A=~ O - und B= |+
o O - A

In Beispiel 3.6 wurde gezeigt, dass jeder reelle Eigenwert in jedem System (A, B) € (A, B)

steuerbar ist und in den Beispielen 4.4 und 4.5 wurde jeweils gezeigt, dass der komplexe

Vorzeichenvektor
+ O +
D=|~ + —
+ + 4+

im Kokern von B und zugleich ein Vorzeichen-Eigenvektor von A ist, der um 90
Grad verdreht wird. Daher ist das Vorzeichen-System (A,B) nach Satz 5.1 nicht
vorzeichen-steuerbar und nach Satz 5.2 auch nicht vorzeichen-stabilisierbar. Um genau
zu sein, gibt es fiir jedes Element ¢ aus ® und jedes A\; € + nach Satz 4.8 ein B € B und
nach Satz 4.10 ein A € A, sodass der Wert A = jA; nicht (A4, B)-steuerbar ist.

Die komplexen Vorzeichenvektoren ® und ® sind die einzigen Vorzeichen-Eigenvektoren
von A, welche im Kokern von B sind. Der Vektor ¢ = (1 — j, —1 — 5, 1)T (siche Beispiel

3.6) ist beispielsweise ein Element von D.

Neben ® und D gibt es genau noch einen weiteren Vorzeichen-Eigenvektor von A,

O 0 O
D=|0 0 O
o 0 +

welcher reell darstellbar ist (z.B. mit D’ = (O, O, +)T), aber nicht im Kokern von B ist.

5.2 Weitere Eigenschaften komplexer Vorzeichenvektoren

In diesem Abschnitt wird mit Satz 5.3 eine alternative Darstellung eines komplexen

Vorzeichenvektors vorgestellt und es wird gezeigt, dass die Bedingung aus Satz 4.5
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hinreichend ist. Diese neue Darstellung wird anschliefend in Satz 5.4 fiir die Untersuchung
von Drehungen benutzt. Beide Sétze bilden die Grundlage fiir die algorithmische
Uberpriifung der Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit in
Abschnitt 5.3.

Satz 5.3 : Gegeben ist eine Vorzeichenmatrix X € V™" mit n € N. Es gilt
(*D,*P) :=V(X,k) fir jedes k€ Z={1,....,n} und R bezeichnet die Menge der

Rotationsmatrizen nach (4.4). Die folgenden Punkte sind dquivalent.

(i) Die Vorzeichenmatriz X beschreibt einen komplezen Vorzeichenvektor.
(i) Fiir jedes x,y,z € Z gilt “D, € {O,+} und

ZD <I,Py> C ( ZDy ZPy) <ZPZ> .
Dy =Z1By 71Dy, *D,

(i1¢) Die Menge Z lisst sich in U, U und N aufteilen und es gibt die Abbildung
v: Z = (UU{0}) x R, k= (n(k), Ry), sodass die folgenden Punkte erfiillt sind.
(a) Wenn k € N, dann gilt (k) = 0 und “Py, = Dy, = O fiir jedes i € Z.
Wenn andernfalls k ¢ N, dann gilt *Dy, =+.

k
b) Wenn k € U, dann gilt v (k) € U und P =Ry © )
(

A0 +

(¢) Wenn k € U, dann gilt 11 (k) € U und

o o Py s
wenn zusdtzlich |U| > 1, dann gilt =Ry .
g0 +

(d) Fiir zwei verschiedene v,w € U gibt eine Folge iy,1s,...,1, sodass iy = w,
i, = v und 441 = v1(4y) fir jedes L € {1,...,k — 1} gilt.
(e) Wenni,keU mitig¢ {k,vi(k)} oderk € U undic UUU gilt,
Pk _ Py

dann gilt | . Ri | .
(lpul(k)> Dy,

Beweis. (i) = (i) wurde bereits in Satz 4.5 gezeigt. Fiir den Beweis von (i) = (iii)
gilt aufgrund der Annahme fiir alle z,y,2 € Z = {1,...,n}, "D, € {O,+},
Py D, C*D.Py + "P.*D, und (5.1a)
;nrDyzDZ g ZIDZZ,Dy _ m,PzZPy- (51}))

1) Wenn *Dy, = O fiir ein k € Z gilt, dann definieren wir & € N und vy(k) := 0. Aus
(5.1b) mit z = kund i = 2 = y € Z folgt O C "D¥D; — "P*P; baw. (‘Dy)? = —("Py)2.
Daher gilt ‘Dy, = “Pj, = O fiir alle i € Z und (iii.a) ist erfiillt.
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2) Wenn *D,, = *P,, = O fiir zwei v, w € Z gilt, dann folgt aus (5.1b) mit 2 = y = w und
z=v, "D,"D, = O und es gilt entweder v € N oder w € N. Wir definieren Z := Z \ N,
sodass fiir zwei v,w € Z entweder *D,, # O oder *P,, # O gilt. AuBlerdem teilen wir
die Menge Z in die Mengen U und U derart auf, dass U die groftmogliche Anzahl an
Elementen enthélt und *D,, # O # "P, fir je zwei verschiedene v,w € U gilt. Daraus
folgt, dass es fiir jedes k € U ein v € U gibt, sodass entweder Dy, = O oder *Py, = O gilt.
Wir definieren dann v (k) := v fiir dieses k € U und v € U. Abhéngig von YDy, und YPy,
definieren wir das Ry € R, sodass (iii.b) erfiillt ist.

3.1) Ohne Einschrankungen der Allgemeinheit gilt U = {1,...,n’}. Wenn n’ = 1, dann
definieren wir v1(1) := 1 und wenn n’ = 2, dann definieren wir v;(1) := 2 und 14(2) := 1.
AuBlerdem definieren wir zusétzlich Ry € R und R, € R derart, dass (iii.c) erfiillt ist,

wenn n’ = 2 gilt.

3.2) Wir nehmen nun an, dass n’ > 2 gilt. In den folgenden Schritten 4) - 6) wird gezeigt,
dass es dann fiir jedes w € U ein v € U \ {w} gibt, sodass fiir jedes i € U \ {v, w}

‘Dy'Dy =8'P,'P, mit S="P,"D, (5.2)
erfiillt ist. Dafiir wird fiir zwei verschiedene x,y € U die Menge ® M, wie folgt definiert

*My={keU\{x,y}| (5.2) ist mit w =2, v=y und ¢ = k erfiillt } .

4) Fiir drei z,y, z € U gilt im Allgemeinen

"D, = &czpwa (53&)
*Dy =S,°P, und (5.3b)
Dy = Su)*Py (5.3¢)

mit S;, Sy, Szy € {+, ~}. Aufgrund von (5.3a) und (5.3b) gilt *D,*D, = S, S,*P,*P,,
sodass aufgrund von (5.3c), (5.2) mit w = x, v = y und ¢ = z genau dann erfiillt ist (es gilt
z € *My), wenn Sy, = S, S, gilt. Gleichzeitig gilt aufgrund von (5.3c), YD, = —S,,YPa,
sodass (5.2) mit w =y, v =2 und i = z genau dann nicht erfiillt ist (es gilt z ¢ YM,),

wenn S,y = S, S, gilt. D.h. es gilt
Sy =SSy — z €M, — z ¢ YM,. (5.3d)

Analog ergibt sich aus (5.3a) und (5.3c), “D,"D, = —S, Sy, " P."P, und aus (5.3b),
YD, = =S, YP,. Daher ist (5.2) mit w =y, v =z und ¢ = z genau dann erfiillt (es gilt
x € YM,), wenn —S, S,y = =S, bzw. S,y = S, S, gilt, d.h.

Soy =82Sy — x €YM,. (5.3¢)
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Zusammenfassend folgt aus (5.3d) und (5.3e) fiir je drei verschiedene x,y,z € U

z€“M, — z ¢ VM, — z€YM,. (5.4)

5) Wir werden im Folgenden zeigen, dass fiir zwei verschiedene k,w € U entweder
YMy = U\ {w, k} gilt, oder es gilt

UM, U{k} C "M, fiir jedes v € U \ ({w, k} U My,).

—
ot
ot

=

5.1) Wir wéhlen zwei verschiedene w, k € U und wir nehmen an, dass “M; # U \ {w, k}
gilt. Dann gibt es ein v € U \ ({w, k} U My) und es gilt

v ¢ M, (5.6a)
Aufgrund von (5.4) gilt dann

k€M, (5.6b)

5.2) Wenn “M;, = @, dann ist die Aussage in (5.5) zusammen mit (5.6b) erfiillt. Wir

nehmen nun an, dass “Mj, # @ gilt und wir fixieren ein i € ¥ M.

5.3) Ohne Einschrinkungen der Allgmeinheit gilt mit Sk, S,, S; € {+, =}

YDy = S Py, (5.6¢)
“D, =S8, "P, und (5.6d)

Aufgrund von (5.6a) und (5.2) gilt *D,," Dy, = —Sk"Pu"Pr. Mit (5.6d) ergibt sich
"Pr = S8, "Dy (5.6f)
Da i € Y M, gilt, folgt aus (5.2), “Dy,'Dy = S Py Pr. Zusammen mit (5.6e) gilt dann
P = —SiS'Dy. (5.6g)

Aus (5.1a) mit * = w, y = k und 2z = v zusammen mit (5.6f) und (5.6d) ergibt sich
“Py, C “D,"DyS,(Sk+ +) und aus (5.1b) mit © = w, y = k und z = i zusammen mit
(5.6g) und (5.6e) ergibt sich Dy C “D;'Dy(Sp+ +). Zusammen mit (5.6¢) gilt daher
WDy, = "D, Dy S, und “D;, = YD, Dy, bzw.

DD, =D, D; S, wenn Sy, = + gilt. (5.6h)
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Analog ergibt sich aus (5.1a) mit = w, y = k und z = ¢ zusammen mit (5.6g) und (5.6e),
wPy, C YD DSi(+ — Si) und aus (5.1b) mit = w, y = k und 2 = v zusammen mit (5.6f)
und (5.6d), ¥Dy, C D, Dy(+ — Si). Zusammen mit (5.6¢) gilt daher “Dy, = —¥D;'Dy, S;
und *D, = ¥D,"D;. bzw

DDy = —UDMD; S, wenn S = - gilt. (5.61)

Auf die gleiche Weise ergeben sich aus (5.1a) mit = v, y = ¢ und z = k zusammen mit
(5.6f) und (5.6g) und aus (5.1b) mit z = v, y = ¢ und z = w zusammen mit (5.6d) und
(5.6¢),

YP; C DD, Si(S, + S5) und vD; CUDD; Sy(Sy 4+ Si) (5.6)

und aus (5.1a) mit = v, y = ¢ und z = w zusammen mit (5.6d) und (5.6e) und (5.1b)

mit © = v, y = ¢ und z = k zusammen mit (5.6f) und (5.6g),

P, CUDDi(S — Sy) und vD; € —"DpD; S, (Si — S,)- (5.6k)
5.4) Wir nehmen zunédchst an, dass S, = &; gilt. Aus (5.6j) ergibt sich dann
vP; = "DpAD; S, S, und vD; = D, D; bzw.

P, = —"Dp*D; S S,  und (5.61)

wp, =D, D,. (5.6m)

P, = —¥D,*D;. Mit (5.6e) ergibt sich ¥D, = 8,"P,P,,, sodass zusammen mit (5.6m)
und (5.6d), i € “M, gilt.

Aus (5.61) mit (5.6h), wenn S, =+ gilt und (5.6i), wenn S =~ gilt ergibt sich

5.5) Wir nehmen nun an, dass S, = —S&; gilt. Dann ergibt sich aus (5.6k), *P; = $;*D,*D;
und *D; = "Dy*D;. Mit (5.6e) ergibt sich daher

va = ilp’uipw und (5611)
D, = "D*D;. (5.60)
Aus (5.60) mit (5.6h), wenn S, =+ gilt und (5.6i), wenn Sy, =~ gilt ergibt sich ‘D, =
8,D,D; bzw. “D, = 8, "D,'D,,. Zusammen mit (5.6n) und (5.6d) gilt i € ¥ M,,.
5.6) Fiir jedes i € “ M, gilt i € “M,, sodass mit (5.6b) die Aussage in (5.5) erfiillt ist.

6) Die Aussage in 3.2) ergibt sich mit (5.5) aus einer einfachen Rekursion. Fiir ein w € U,
wihlen wir ein k € U\ {w}, 0.E.d.A. k = 1. Wenn “ M}, = U\ {w, k}, dann ist die Aussage
in 3.2) erfiillt und andernfalls gibt es ein v € U\ ({w, k} U M), 0. E.d.A. v = k+1. Dann
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gilt nach (5.5), “ M}, U{k} C *“My,1. Dieser Schritt wird wiederholt bis *M, = U \ {w, v}
fir ein v € U\ {w} gilt.

Daher gibt es fiir jedes w € U genau ein v € U, sodass (5.2) fiir jedes i € U\ {v, w} erfiillt
ist. Wir definieren 14 (w) := v und R,, abhingig von *P,, und *D,,, sodass (iii.c) erfiillt
ist.

7) Es wird nun die Aussage in (4ii.d) gezeigt. Dafiir sind zwei v, w € U mit v # w gegeben
und o.E.d.A. gilt w = 1. Wenn v = 14(1) gilt, dann ist die Aussage in (4%i.d) mit k = 2
erfiillt. Andernfalls gilt 0.E.d.A. v4(1) = 2 und v ¢ {1,2}. Der Wert v4(1) wurde in 6)
derart definiert, dass 'M, = U\ {1,2} bzw. v € M, gilt. Zusammen mit (5.4) ergibt sich

daraus 2 € YM; und wir definieren k := 2.

7.1) Es gilt v ¢ {1,...,k} und aufgrund von 7) fir £ = 2 und (5.9) fiir k > 2 gilt

ke’ M, fiir jedes ¢ € {1,...,k —1}. (5.7)

7.2) Wir nehmen zunéchst an, dass v;(k) # v gilt. Dann folgt der Definition von vy, dass
M,y = U\ {k,11(k)} bzw. v € ¥M,, ) gilt. Aufgrund von (5.4) gilt dann k ¢ "M,, ),
sodass mit (5.7) v1(k) ¢ {1,...,k — 1} gilt. O.E.d.A. gilt daher v, (k) =k + 1.

7.3) Dann gilt v € *M,,, bzw.

k+1e°M, (5.8)
und aufgrund von (5.7) gilt ¢ ¢ "M, fir jedes ¢ € {1,...,k — 1}. Mit (5.5) folgt daraus
My U {k} € "M;, sodass aus (5.8)

k+1e’M; fir jedes i € {1,...,k} (5.9)

folgt und wir fithren den Beweis bei 7.1) mit & + 1 anstelle von k fort.

7.3) Andernfalls gilt v = v (k) und die Aussage in (i4i.d) ist erfiillt.

8.1) Es wird nun die Aussage in (ii.e) gezeigt. Dafiir nehmen wir zunéchst an, dass
i,k e U;i¢ {k,vi(k)} und D, 1) = *P,,r) = S gilt. Dann gilt Ry, = ST, und aufgrund
von (5.2) mit w = k und v = (k) sowie (5.1b) mit z = k, y = v1(k) und z = 7 gilt
S = iPkiPVI(k> = i'Dki'D,,l(k). Dabher ist i'P,,l(k,) = S*P;, und iD,Jl k) = S Dy, erfiillt.

8.2) Wenn andernfalls i,k € U, i ¢ {k,v1(k)} und *P,, 1) = —*D,,) = S gilt, dann gilt
aufgrund von (5.2) mit w = k und v = v4(k) und (5.1a) mit « = k, y = vy (k) und 2z = 4,
S = —"Py'D, (g = "D'Poy ). Daher ist “P,, 1y = S Dy, und "D,y = —S “Py und erfiillt.
8.3) Wir nehmen abschliefend an, dass k € U und i € U UU gilt. Dann ergibt sich (iii.e)
direkt aus (#i2.b) und (44) mit x =4, z = k und y = vy (k).
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8.4) Die Aussage in (i7i.e) wurde gezeigt, sodass (i) = (ii7) bewiesen ist. Durch
einfache Umformungen folgt aus (iii.c) mit RTR = RRT =T, fiir ein R € R

kPi Vl(k)'Pi ) -
(’ﬁ)) =R ( fiir zwei i,k € U. (5.10)

Vl(k)Di
9) Fiir den Beweis von (ii7) = (¢) wird in 9.1) einen Vektor ¢ € C™ erzeugt, wobei die
Vektoren r und ¢ jeweils die Betrige und die Argumente der Elemente von g beschreiben.
Anschlieend wird in 9.2) bis 9.6) gezeigt, dass

rery sin(p, — ¢z) € TPy und Ty COS(py — @) € D, (5.11)

fiir jedes 2,y € Z == {1,...,n} gilt.

9.1) Ohne Einschrénkungen der Allgemeinheit gilt U = {1, ..., n’'}. Wir definieren g := 0
und @y := 0 fiir jedes k € N. Wenn U = @, dann ergibt sich U = () aus (4ii.b) und es gilt
N = Z. Andernfalls gilt n’ > 0 und fiir jedes k € Z := U U U wihlen wir cin belichiges
r €+ und wir definieren ¢; := 0. Wenn n’ > 1, dann gilt mit (¢ii.d) 0.E.d.A. v1(k) = k+1
fir jedes k € U \ {n'}. Fiir jedes k € U definieren wir ein pj, €+, sodass

n’ T
— 5.12a
;p 5 (5.12a)

erfiillt ist. Zudem definieren wir py := 0 fiir jedes k € U und

+
0, wenn Ry = ©
o +
O +
7, wenn Ry =
Wy 1= oo (5.12b)
m, wenn Ry = - O
O

w3

wenn Ry = © .
+ O

fiir jedes k € Z. Abschlieflend definieren wir

Prt1 := Qi + Wi + P fiir jedes k € U \ {n'} und (5.12¢)
Ok = Pui(k) — Wk — Pk fiir jedes k € U. (5.12d)

9.2) Fiir jedes k € N und jedes i € 7 gilt "P), = “P), = O aufgrund von (¢4i.a). AuBerdem
gilt dann r, = 0, sodass (5.11) erfiillt ist, wenn « € N oder y € N gilt.
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9.3) Fiir jedes x,y € Z mit x = y gilt r, cos(¢r — @) € *D, =+. Wenn |Z| = 1 ist daher
(5.11) erfiillt. Andernfalls folgt ¢, () — ¢ = wi + pi filr jedes k € Z \ {n'} aus (5.12c)
und (5.12d). Mit den Additionstheoremen in (2.4) ergibt sich

sin(nm =) ) _p (sl g Cof(“k) sin(wk) ) (5.12¢)
cos(Pu, (k) — Pk) cos (pr) —sin(wy) cos(wi)

Aufgrund von (5.12b) gilt Ry, € Ry, fiir jedes k € Z.

9.4) Fiir zwei verschiedene z,y € U, ohne Einschrinkungen y > =z, ergibt sich

y—1
Oy — Qo =Wy + Wep1 + ... +wy_1 + » p; aus (5.12¢). Analog zu (5.12¢) ergibt sich daher

y—1
. sin | > pi)
sin(py — @s (ij
((pJ ) = Ryfl cee Rz+le yjl
cos(py — ¢z) cos (Z pi)
y—1 n’'—1
Aufgrund von (5.12a) gilt 0 < > p; < > p; < §. Zusammen mit (z7i.c) und (44i.e) gilt
i—z i=1

S — Oy idi.c Py

sinler =2} o meaRm [(T) R, R [
y y >

cos(y — ¢Pa) + Doy1

iii.e P, p zp
(:)Ryfl...RerQ - 2 :"':Ry—l . y—1 =1, vl
',Dx+2 Dy—l Dy

Gleichung (5.11) ist daher fiir jedes z,y € U erfiillt.

9.5) Fiir jedes y € U und jedes z € U, ohne Einschrinkungen der Allgemeinheit v (y) >z,
vi(y)-1
folgt aus (5.12c) und (5.12d), @y — Yo = W + War1 + ... F Wyy—1 + Do Pi — Wy — Py

i=x

Wenn z = v;(y), dann gilt mit (4ii.b)

(Sm(% - wy)) R (sin (0)) R <o> (i (%)
cos(z — ) cos (0) + ¥D,

und (5.11) ist erfiillt. Andernfalls gilt mit (¢4i.c) und (¢4i.e)

vi(y)-1
i ) sin [ > p;
SI{Py — Pz _ pT i=x
<COS(¢ - )) =t fe n()-1
y T
cos| > p

c RTR 1. R + _ RT :L.PVI () (7‘25) «’L"Py .
y Mri(y)— T + Yy :chVl W) {I?Dy
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9.6) AbschlieBend wird der Fall x,y € U untersucht, wobei ohne Einschrinkungen

der Allgemeinheit vi(x) > w(y) gilt. Dann ergibt sich aus (5.12¢) und (5.12d),
vi(y)-1
Oy = Qo = We + Po + Wiy@) T Wiy@)a1 + - FWn—1 + D pi— wy — Py

i=v1(z)

Wenn vy (z) = v1(y) gilt, dann folgt mit (4i.b) und (dii.e)
sin(py — ¢q) _RTR, sin (0) eRIR, @) ) fﬂﬂm
COS(%/ - 9‘91) cos (0) + 1DV1(:1:)

—RT Pury) (iti.e) “Py
Y\ep zp |
vi(y) Y

Andernfalls gilt mithilfe von (izi.c), (ii.e) und (5.10)

vi(y)—-1

in( ) sin pi
sin — Qg = (z
< o @>—&ﬂmM1m&m "

cos(py — ¢z) cos Vl(yz)flpv

i=v1(z)

+\ (i) n@p, (¥)
T T
e Ra:Ry RVl(ll)*] e Rul(z) <+> = Rg;Ry ( 1Yy

. (I)DVI (v)
(ii.e) v (I)Py (.10) [ “Py
= Ra: = .
1z (Z)Dy sz

9.7) Die beiden Gleichungen in (5.11) sind fiir jedes z,y € Z erfiillt. Das heifit, ¢ ist cin
Element von dem komplexen Vorzeichenvektor ®, welcher durch die Vorzeichenmatrix X

beschrieben wird. O

Nach Satz 5.3.(ii) kann ein komplexer Vorzeichenvektor © mit drei Mengen U, U und
N und einer Abbildung v beschrieben werden. Dabei sind alle Elemente von U in ©
unabhiingig zueinander, fiir jede Element in k € U gibt es ein Element ¢ € U, welches

abhéngig von k in ® ist und jedes Element £ € N ist in ® nicht von Null verschieden.

Die Funktion v: k + (i, R) ermittelt den Nachfolger i € U von einem Element & € U oder
das zu k € U abhiingige Elemente i € U. Zudem wird die Vorzeichen-Rotationsmatrix
R € R iibergeben, welche die Orientierung des Nachfolgers bzw. des abhéngigen Elements
beschreibt. Werden die Vorzeichen-Rotationsmatrizen mit den Zahlen 0 bis 3 in der
Reihenfolge von (4.4) nummeriert, dann lidsst sich die Funktion v mit einer 2 X n Matrix
mit Eintrigen aus Z beschreiben. Die Eintréige der ersten Zeile sind dann aus U U {0}
und bezeichnen den Nachfolger von & bzw. das zu k abhéngig Element in Spalte k£ und

die Eintrége der zweiten Zeile enthélt dann den Identifier 0 bis 3 fiir die zugehorige
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Vorzeichen-Rotationsmatrix. Die Mengen U, U und N kénnen anhand der Abbildung
v identifiziert werden, sodass ein komplexer Vorzeichenvektor allein durch die Funktion v

beschrieben ist.

Wenn mehrere Elemente in einem komplexen Vorzeichenvektor abhéngig voneinander sind,
dann ist genau ein Element davon in U und die anderen sind in U. In dieser Arbeit gehort

immer das Kleinste aller voneinander abhéngigen Elemente zu U.

Mit dem folgenden Beispiel wird gezeigt, dass die Umrechnung zwischen den beiden
Darstellungen eines komplexen Vorzeichenvektors von Hand durchfithrbar ist, aber

besonders fiir grofe Vektoren nur mit Computerunterstiitzung sinnvoll ist.

Beispiel 5.2 : Gegeben ist der komplexe Vorzeichenvektor ® der Ordnung n = 7, der

mit der folgenden Funktion beschrieben ist

y_<5113350). -
2303130

Fiir k = 7 gilt v(k) = (0, Rz), sodass nach Satz 5.3.(:i7).(a), N := {7} und ‘D7 = "P; = O
fiir jedes ¢ € {1,...,7} =: Z gilt. Fiir jedes i € Z = Z \ N = {1,...,6} gilt daher
‘D; =+. Aulerdem gilt fiir jedes k € Z, v(k) = (i, Ry) mit i € {1,3,5} =: U, sodass sich
U:=Z\U={2,4,6} ergibt. Aus der zweiten Zeile von (5.13) folgt

Ri=(" 7). Ro=Ri=Re= (" 7). me= (" 9} me= (" 7).
O - + O O + - O

Es gilt v(1) = (5,R1), v(5) = (3, R5) und v(3) = (1, R1), sodass sich aus (#i).(c)

<§gl> =TR;3 + = <+) sowie
1 + -
+ 2D, + ‘D -~ D O
'p, 4+ 3D, ‘D, D, D, O
~ *Ps + Dy -~ D3 O
D=| Py Py Px + °Dy D, O ergibt.
~ Py -~ Py 4+ Dy O
"Ps *Ps *Ps ‘Ps "Ps + O
O O O O O o O
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Mit (744)(b) folgt aus v(2) = (1,R2), v(4) = (3, R4) und v(6) = (5, Rs)
27)1 O 4733 67)5 -
=R, = = =
2D1 4e 4D3 6D5 O
und aus (47).(e) mit k=4 € U und i = 3 € U sowie i = 2 € U folgt dann z.B.
3 3 3
P =R, P bzw. P :’Rg + = + sowie
3D1 3D2 3D2 + -
2, 2 2 - -
2 _r, [ bzw. Py =R = .
2D3 2D4 2D4 o e
Es ergibt sich die folgende Darstellung fiir den komplexen Vorzeichenvektor
+ 0+ 4+ - 4+ 0
++ -+ - -0
- -4+ 0~-+4+0
D=+ -+ + - -0
~ 4+ - 4+ + 00
~ « « ~ + + 0
O O O O O O O
Der komplexe Vektor ¢ := (1,e/3,e7710,e/% e73% e7915,0)7 ist beispiclsweise ein

Element von ©. Da @1 — 2 = 3 — 04 = 05 — g = —75 gilt, sind 2, 4 und 6 jeweils

abhéngig von 1, 3 und 5 in ©. AuBerdem gilt 04(5,1) = 04(1) = %, sodass 5 ein Nachfolger

von 1 ist; 04(3,5) = 04(5) = %, sodass 3 ein Nachfolger von 5 ist und g,(1,3) = 0,(3) = {5,

sodass 1 ein Nachfolger von 3 ist.

Beispiel 5.3 : Fiir die beiden komplexen Vorzeichenvektoren 2 und € aus Beispiel 4.1

gilt € = A bzw. A = €. Die beiden komplexen Vorzeichenvektoren sind mit

2 1 . 2 1
vy = un Ve =
*“lo s 30

beschrieben, wobei jeweils U = {1,2} und U = N = ) gilt.

Der komplexe Vorzeichenvektor ® aus Beispiel 4.2 und 4.3 lésst sich mit

3121
Ij:
3311

beschreiben, wobei U = {1,2,3}, U = {4} und N = () gilt.

216.73.216.38, am 20.01.2026, 06:17:47. @ Urheberrechtlich geschiltzter Inhalt.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186247087

92 5 VORZEICHEN-STEUERBARKEIT UND -STABILISIERBARKEIT

Der komplexe Vorzeichenvektor © aus Beispiel 4.4, 4.5 und 5.1 lésst sich mit

31 1
VU =
" lo1 3

beschreiben, wobei U = {1,3}, U = {2} und N = 0§ gilt. Die komplexen

Vorzeichenvektoren ® und ®’ aus Beispiel 5.1 sind durch die Funktionen

31 1 . 00 3
Vs = un Vpr =
°" 1330 oo 3

beschrieben und fiir den komplexen Vorzeichenvektor ® aus Beispiel 4.6 gilt

2 1 ~
1/53_(1 :13 1), U={1,2,3} und U=N =0.

Fiir die Untersuchung, ob ein komplexer Vorzeichenvektor © ein Vorzeichen-Eigenvektor
ist, der in den ersten oder dritten Quadranten verdreht wird, muss in den Sétzen 4.13 und
4.15 u.a. gepriift werden, ob die Funktion Vg eine Drehung von ®© ist. Dafiir kann der
folgende Satz verwendet werden.

Satz 5.4 : Gegeben ist ein komplexer Vorzeichenvektor ® der Ordnung n € N, der mit
U, U und N und der Funktion v: k — (v1(k), Ry) nach Satz 5.3.(ii1) beschrieben ist. Fiir
jedes w € U* gilt (“D,"P) := V*(D,w). Zudem ist eine Abbildung Vg: U — V" x V",
ks (*V, W) gegeben. Die folgenden Punkte sind dquivalent.

(1) Wy ist eine Drehung von D.
(ii) Es gibt ein px €+, ein wy € {=3,0,5, 7} und fir jedes k € U jeweils ein py €+,
ein v, € U* und ein T, € R, sodass die folgenden Punkte erfillt sind.
) va kaT
(a) Es gilt | = Tr wpt |-
(b) Es gilt cos(wy + px) € ¥V # O und sin(wy + py) € *Wy # O.
(c) Esgilt Y ey pi =75
(d) Wenn v, € U, dann gilt 3 ;e pi = pa-
(e) Wenn v, € U\ U, dann gilt ZiEMk\{\vk\} Pi < Px < Picar, Pi-
Dabei gilt My, := {i1,...,is} CU mit s <n/, iy = i, v1(is) = k und 4141 = 11 (1)
fiir jedes L € {1,...,s —1}.

Beweis. (i) = (ii) : ¥p ist eine Drehung von @, sodass es nach Definition 4.12 einen
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Vektor ¢ € ® und eine komplexe Zahl A = rye/?» € C mit R(N), I(\) # 0 gibt und
es gilt R(A - ¢/qx) € ¥V und (X - ¢/qi) € ¥W fiir jedes k € U. Die Vektoren r und ¢
beschreiben jeweils die Betrdge und die Argumente von ¢g. Wir fixieren ein k£ € U und
definieren ¥z := \ - ¢/q).. Aus Satz 4.1 folgt, dass ¢ ~ ¥z bzw. ¥2 € ® gilt und nach Satz
4.4 gibt es ein v, € Z*, 0.E.d.A. v, € U*, und eine Vorzeichen-Rotationsmatrix 7, € R,

sodass

%(kZT) k:vT B Uk'DT
()< () ()

gilt. Daher ist (iia) erfiillt. Wir definieren py := @5 mod § und wy := % (¢ div §), sodass
pr €+ und wy € {—5,0, %, 7} gilt und nach Gleichung (2.2) ist @wx = wx + px erfiillt. Da
k2e = qr/qp) = A gilt, ist mit (5.14) auch (iib) erfiillt.

Fir jedes w S U  definieren wir w,:=73 ((ap,,, ) — pp) div g) und

Po = (Do) — Po) mod §, sodass @, ) — Yo = Wy + py gilt. Aus Satz 5.3.(idi.c) folgt,
dass *D,, () +£0# *Pui(v) bzw.

0<p, < g fiir jedes v € U (5.15)

gilt und aus den Additionstheoremen in (2.4) ergibt sich fiir jedes v € U

sin(u, @) = o) | _ R, sin (py) mit B, — CO?(%) sin(w,) . (5.16)
c08(Pu, (v) — Pv) cos (py) —sin(w,) cos(wy)
Aufgrund von Satz 5.3.(ii.c) gilt R, € R,. Fiir je zwei verschiedene v,w € U gibt es

nach Satz 5.3.(z4i.d) eine Folge 4y,1s,...,4, mit iy = v, i, = w und 41 = v (4;) fir jedes
ip—1
le{l,...,p—1}. Daher gilt ¢, — ¢, = > (w; + p;) und aus Satz 5.3.(i7i.e) ergibt sich

l=iy

Upw Upul v
= Rip,1 .. -Riz ( ) = Rip71 - Ril + .
Dy Y Dul (v) +

Da sin(p, — @) € Py und cos(py — ©y) € "Dy und Ry € R, fiir jedes [ € U gilt, muss

iyt iyt
sin (Z pl> €+ und cos (Z pl> €+, bzw.

I=iy =iy

-

mit i; = v, i, = w # v und
0<Y p<t OO 7 (5.17)
2 Qg1 =1(ig) firge {1,....,p—1}

I=iy

erfiillt sein. Fiir ein beliebiges v € U gilt

0:9%_‘;911:S@I/l(v)+pv+wv_¢v:---:@v_Wv+Z(pi+wi)v
iU
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sodass 3, pi = — D e, wi erfilllt ist. Zusammen mit (5.17) gilt daher 7., p; = § und

die Aussage in (iic) ist erfiillt.

Wenn vy, € U gilt, dann gilt "*P,, = O und aus (5.14) folgt, dass entweder R(e?**q,, /q1.) =
0 oder S(e’**q,, /qr) = 0 gilt. Daher gilt

p—1
™ Y
(©x + v, — ¢r) mod 5= (/JA - E piz) mod 5= 0.
=1

mit i3 = vy, v1(iq) = ig41 fiir ¢ € {1,...,p— 1} und i, = k. Aus (5.17) ergibt sich daher
> iear, Pt = px und die Aussage in (iid) ist erfiillt.

Wenn anderenfalls v, € U* \ U gilt, dann gilt aufgrund der Wahl von wy,
(o + Quw —@r — ) mod § =0 mit w = v (Jvg]) und 0 < e < py,| (siche Beweis von
Satz 4.4). Daher gilt

p—1

0<er=pr—_ pi < Plu
=1

mit iy = w, v1(iy) = ig fiir ¢ € {1,...,p— 1} und i, = k. Die Aussage (iie) ist erfiillt.
Fiir die Umkehrung (44) = (¢) definieren wir mit (iic) ¢ analog zu Punkt 9) von dem
Beweis von Satz 5.3, sodass ¢ € ® gilt. Weiterhin definieren wir ¢y = wy + p) und
A =7y - €/ mit ry €+ und wir fixieren ein k € U und ein i € {1,...,n}.

Ohne Einschrankungen gilt U = {1,...,n'}, i > k, Jvi] = 1 und v4(q) = ¢ + 1 fiir alle
g€ {l,...,n —1}. Damit ergibt sich My = {1,...,k — 1} und aufgrund von (iid) und
(ile) gilt py = Zf;ll pi —€x mit €, = 0, wenn vy, € U und py,,| > € > 0, wenn v, € U*\U.
Es gilt

k-1 i1
©x+ v — i =MA+ZPI *ﬁkJFZ(WlJFPl) = + Qi — Pl — €k (5.18)
=1 =k

mit Q = wy — Z;:ll w;. Aus (5.18) mit ¢ = k, (ila) und (iib) folgt

T — ( cos(§2)  sin(S)
—sin(Q) cos()

) eTL€R, sodass

kWi

% [ COS —+ ;i — i+ [ cos(; — Q| — kaZ_
ML ) (oxt i = ¢r) = Tkr/\L . (i = Pl — €) en(,
Tk \sin(ex + @i — @) Tk \SIn(@; — Ploy| — €) P

und somit auch () erfiillt ist.
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5.3 Uberpriifung der Vorzeichen-Steuerbarkeit und der

Vorzeichen-Stabilisierbarkeit

In diesem Abschnitt wird die Losbarkeit der Entscheidungsprobleme, ob ein
Vorzeichen-System vorzeichen-steuerbar oder vorzeichen-stabilisierbar ist, untersucht,
bevor eine algorithmische Losung diskutiert wird. Dafiir wird zunéchst ein Ergebnis
von KLEE, LADNER und MANBER zur strengen Surjektivitdt von Vorzeichenmatrizen
vorgestellt. Fiir einen Uberblick zur Komplexitéitstheorie von algorithmischen

Problemstellungen wird auf das Buch [GJ79] verwiesen.

Satz 5.5 ([KLM84]|, S. 134, Theorem 1.2.): Gegeben ist eine Vorzeichenmatriz
X € V"™ mit n,m € N. Das Entscheidungsproblem, ob die Vorzeichenmatriz X nicht

streng surjektiv ist, ist NP-vollstindig.

Die strenge Surjektivitit einer unsicheren Matrix kann nach Satz 3.7 mit (3" — 1)/2 Tests®

iiberpriift werden. Aus Satz 5.5 ldsst sich der folgende Satz ableiten.

Satz 5.6 : Gegeben sind zwei Vorzeichenmatrizen A € V" und B € V™" mit n,r € N.

Die beiden Entscheidungsprobleme,

e ob das Vorzeichen-System (A, B) nicht vorzeichen-steuerbar und

e ob das Vorzeichen-System (A, B) nicht vorzeichen-stabilisierbar

ist, sind NP-vollstindig.

Beweis. Die Entscheidungsprobleme gehoren zu N P, da mit einem gegebenen komplexen
Vorzeichenvektor ® und einer Drehung W5 mit den Sétzen 3.16, 3.21, 4.8, 4.11, 4.14 und
4.16 in Polynomialzeit verifiziert werden kann, dass das Vorzeichen-System (A, B) nicht

vorzeichen-steuerbar bzw. nicht vorzeichen-stabilisierbar ist.

Um die NP-Schwere von den beiden Problemen zu zeigen, sei eine beliebige
Vorzeichenmatrix X € V™™ mit n,m € N gegeben und wir definieren A := O € V¥
Aus den Sitzen 2.5.(iv) und 2.8.(iii) mit A = 0 folgt, dass das Vorzeichen-System
(A, X) genau dann vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist, wenn die
Vorzeichenmatrix (A, X) = (O, X) streng surjektiv ist. Beide Entscheidungsprobleme

lassen sich daher auf das Entscheidungsproblem aus Satz 5.5 reduziert. O

6 Es gibt genau 3" —1 von Null verschiedene Vorzeichenvektoren und nur die Hilfte davon muss iiberpriift

werden, da ein Test fiir D und —D geniigt.
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Nach Satz 5.1 kann ein gegebenes Vorzeichen-System (A,B) auf die
Vorzeichen-Steuerbarkeit untersucht werden, indem die Bedingung (iii) fiir jeden
komplexen Vorzeichenvektor ® getestet wird. Der Aufwand einer solchen Untersuchung
héngt daher im Wesentlichen von der Anzahl der komplexen Vorzeichenvektoren einer
Ordnung n ab. Diese lisst sich mit dem Wert 37" nach oben abschétzen, da jeder komplexe
Vorzeichenvektor mit einer Vorzeichenmatrix aus V"*™ dargestellt werden kann. Die
genaue Anzahl komplexer Vorzeichenvektoren liegt deutlich unter dieser Schranke und

kann mit dem folgenden Satz ermittelt werden.

Satz 5.7 : Fir einn € N gibt es

n )
l
K(n)=1+) 47" (7) ~Z(k—1)!~{k} (5.19)

=1 k=1
verschiedene komplexe Vorzeichenvektoren der Ordnung n, wobei die Ausdriicke (’;) und

{,i} jeweils die Binomialkoeffizienten und die Stirling Nummer zweiter Art beschreiben.

Beweis. Nach Satz 5.3 ldsst sich jeder komplexe Vorzeichenvektor © mit den drei Mengen
U, U und N und einer Funktion v beschreiben. Alle Elemente in Z := U U U sind dabei
von Null verschieden und wir bezeichnen die Anzahl der Elemente von Z und U jeweils
mit [ und k, d.h. k := |U| < |Z| =: | < n. Fiir jedes der | — k Elemente in U gibt es ein
Element in U, sodass diese beiden Elemente abhingig voneinander sind. Wir gruppieren
jeweils die voneinander abhéngigen Elemente in Z, sodass genau k& Gruppen entstehen.
Aus Satz 5.3.(iiid) folgt, dass die Funktion v eine zyklische Permutation dieser k& Gruppen
beschreibt.

Die Stirling Nummer zweiter Art {Ii} mit k <[ gibt an, wie viele Moglichkeiten es gibt,
um [ Elemente in k nichtleere Gruppen zu verteilen [Bru09, S.285, Theorem 8.2.5]. Es
gibt (k — 1)! verschiedene zyklische Permutationen dieser ¥ Gruppen und es gibt (7;)
verschiedene Moglichkeiten, die verbleibenden n — [ Elemente aus N in dem komplexen
Vorzeichenvektor zu verteilen. Jedes von Null verschiedene Element ist auf eine von vier
moglichen Arten mit einem anderen von Null verschiedenen Element verbunden. Aus

diesen Uberlegungen ergibt sich unmittelbar Gleichung (5.19). O

In Tabelle 5.1 ist die Anzahl x(n) — 1 aller von Null verschiedenen komplexen

Vorzeichenvektoren der Ordnung n fiir n von 1 bis 5 sowie 10 dargestellt.

Demnach miissen im ungiinstigsten Fall deutlich mehr Tests durchgefithrt werden, um ein

Vorzeichen-System der Ordnung n = 5 auf Vorzeichen-Steuerbarkeit als eine unsichere
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Tabelle 5.1: Die Anzahl verschiedener GroBen im Vergleich.

‘nzl n=2 n=3 n=4 n=>5 n =10

Tests zum Nachweis der
strengen Surjektivitit 1 4 13 40 121 29524
= (3" 1)/2

Anzahl komplexer

8 80 728 6560 59048 ~3.5-10°
Vorzeichenmuster = 9" — 1

Anzahl komplexer "
1 10 123 2100 47765 ~4.5-10

Vorzeichenvektoren = x(n) — 1

Matrix der Dimension n = 10 auf strenge Surjektivitéit zu untersuchen.

Mit den Sétzen 5.1 und 5.2 kann ein gegebenes Vorzeichen-System (A, B) auf
Vorzeichen-Steuerbarkeit oder Vorzeichen-Stabilisierbarkeit untersucht werden, indem
gepriift wird, ob jeder komplexe Vorzeichenvektor die Bedingungen aus den Sétzen 5.1.(iii)
bzw. 5.2.(ii) erfiillt. Ein Algorithmus zur Uberpriifung der Bedingung (iii) von Satz 5.1

fiir einen konkreten komplexen Vorzeichenvektor © ist in Algorithmus 1 beschrieben.

In den Zeilen 2 bis 6 wird zunéchst iiberpriift, ob D reell darstellbar (Zeile 2), im Kokern
von B (Zeile 4) und ein Vorzeichen-Eigenvektor von A zu einem reellen Eigenwert A € R
ist (5). @ ist reell darstellbar (Zeile 2), wenn ®;; = O fiir jedes 1 < k < ¢ < n gilt
(siche Abschnitt 4.2) und die Tests in den Zeilen 4 und 5 lassen sich leicht mit den in
Abschnitt 2.4 definierten Rechenoperationen durchfithren. Wenn © nicht reell darstellbar
ist, dann wird in Zeile 7 iiberpriift, ob ® im Kokern von B ist. Dies kann mit Bedingung
(21) aus Satz 4.8 fiir jedes charakteristische Vorzeichenmuster von ® iiberpriift werden.
AnschlieBend wird in Zeile 8 getestet, ob D ein Vorzeichen-Eigenvektor von A ist, der
um 90 Grad verdreht wird, wofiir Bedingung (ii) aus Satz 4.10 verwendet werden kann.
Die Uberpriifung, ob ® ein Vorzeichen-Eigenvektor von A ist, der in den ersten oder in
den dritten Quadranten verdreht wird, kann mit den Sdtzen 4.13 bzw. 4.15 sowie 5.4
durchgefiihrt werden. Dabei wird mithilfe von Satz 5.4 zunéchst iiberpriift, ob es fiir jedes

k € U ein v, € U* und ein T aus R gibt, sodass mit

va Vg DT
w P

die Bedingungen in (4¢) von Satz 4.13 bzw. 4.15 erfiillt sind. Wenn es dann zusétzlich ein
pa, €in wy und fiir jedes k € U ein p; gibt, sodass die Bedingungen (iic) bis (iie) von
Satz 5.4 erfiillt sind, dann ist © ein Vorzeichen-Eigenvektor von A, der in den ersten bzw.

dritten Quadranten verdreht wird. Die Bedinungen (iic) bis (iie) von Satz 5.4 beschreiben
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Algorithm 1 Test, ob © im Kokern von B ist und ob eine der Bedingungen (a) bis (f)
von Satz 5.1.(iii) erfiillt ist.
require: (A, B) € V"7 D komplexer Vorzeichenvektor der Ordnung n

1: procedure is_in_cokernel and sign ev(A, B, D)
2: if ® ist reell darstellbar then

3: D := reelle Darstellung von .

4 if O C DB then

5: if (0 CDTA) Vv (DT C DTA) Vv (-DT C DT A) then

6: return 1;

7: if © ist im Kokern von B (Satz 4.8) then

8: if © wird um 90 Grad verdreht (Satz 4.10) then

9: return 1;

10: if © wird in den ersten Quadranten verdreht (Satz 4.13 und 5.4) then
11: return 1;

12: if © wird in den dritten Quadranten verdreht (Satz 4.15 und 5.4) then
13: return 1;

14: return 0O;

ein Ungleichungssystem, welches z.B. mit dem Fourier-Motzkin Algorithmus auf seine
Losbarkeit untersucht werden kann [Sch98, S. 155-156].

Ein Algorithmus zur Priifung der Bedingung (ii) von Satz 5.2 kann &hnlich zu Algorithmus
1 verlaufen, wobei der Test —DT C DT A in Zeile 5 und der Test in Zeile 12 nicht
durchgefiihrt werden darf.

Im Gegensatz zur Vorzeichen-Steuerbarkeit lassen sich die Entscheidungsprobleme, ob
eine strukturelle Matrix streng strukturell surjektiv ist und ob ein strukturelles System
streng strukturell steuerbar ist, in Polynomialzeit losen (siehe z.B. [WRS14]). Da jedes
streng strukturell steuerbare System vorzeichen-steuerbar und vorzeichen-stabilisierbar
ist, sollte in jedem Test auf Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit
eine vorherige Priifung der strengen strukturellen Steuerbarkeit stattfinden.

In physikalischen Modellen von technischen Systemen kommt es oft vor, dass die
Eingangsmatrix B in einer Spalte genau einen von Null verschiedenen Eintrag besitzt.
Mit dem folgenden Satz kann dann die Anzahl der Test bei der Vorzeichen-Steuerbarkeit

und der Vorzeichen-Stabilisierbarkeit deutlich verringert werden.
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Satz 5.8 : Gegeben sind zwei unsichere Matrizen A € U™ und B € U™*" mit n,r € N
und n > 1 und es wird angenommen, dass eine Spalte i € {1,...,r} von B genau einen
von Null verschiedenen Eintrag O ¢ By; in Zeile k € {1,...,n} besitzt.

Die folgenden Eigenschaften sind dann erfillt.

(1) Jeder komplexe Vorzeichenvektor ©® mit Dy # O ist nicht im Kokern von B.
(#5) Das unsichere System (A, B) € U™("*7) st genau dann vorzeichen-steuerbar, wenn
das unsichere System (A', B') € U=Dx(+r=1) yorzeichen-steuerbar ist.
(i33) Das unsichere System (A,B) € U7 4st genau dann vorzeichen-stabilisierbar,

wenn das unsichere System (A, B') € Un=Vx4r=1) yorzeichen-stabilisierbar ist.

Dabei ist A" eine (n—1) x (n—1) unsichere Matriz bestehend aus den Zeilen und Spalten
von A mit dem Index aus Z := {1,...,n} \ {k} und B’ ist eine (n — 1) X r unsichere
Matriz bestehened aus den Spalten von B mit dem Index aus {1,...,r} \ {i} sowie aus

der Spalte k von A und den Zeilen mit dem Index aus Z.

Beweis. (i) : Wir fixieren einen komplexen Vorzeichenvektor ® mit Dy, # O und (*D, *P)
bezeichnet das k-te charakteristische Vorzeichenmuster von ®. Die Matrix B besitzt in
der Spalte ¢ nur in Zeile k einen von Null verschiedenen Eintrag, sodass fiir den i-ten
Eintrag des Vorzeichenvektors Y7 := *DTB, Y, = >"1  *DB; = ¥DiB;, gilt. Aufgrund
der Annahme gilt O € B, und *Dj, # O, sodass O € Y; sowie O € *DTB erfiillt ist. Der

komplexe Vorzeichenvektor ® ist daher nach Satz 4.8 nicht im Kokern von B.

(2¢) : Ohne Einschrankungen der Allgemeinheit gilt ¥ = n und ¢ = r, und wir
nehmen zunéchst an, dass (A’, B') nicht vorzeichen-steuerbar ist. Dann gibt es ein System
(A", B") € (A,B'), ein X € C und einen Vektor ¢ € C", sodass jTA' = '\ und ' B’ =0
gilt. Wir definieren A € A, sodass die ersten (n — 1) Zeilen und Spalten identisch zu A’
sind und die ersten (n—1) Zeilen der letzten Spalte identisch zur letzten Spalte von B’ ist.
AuBlerdem definieren wir B € B, sodass die ersten (n — 1) Zeilen und (r — 1) Spalten von
B identisch zu den ersten (r — 1) Spalten von B’ sind. Die letzte Zeile von A und B wird
jeweils so gewihlt, dass sie eine zulissige Realisierung A bzw. B ist. Mit ¢ := (¢*, 0)7 gilt
dann ¢"A = g7\ und ¢" B = 0, sodass das System (A, B) € (A, B) nicht steuerbar ist.

Fiir die Umkehrung nehmen wir an, dass das unsichere System (A,B) nicht
vorzeichen-steuerbar ist. Nach Satz 5.1 gibt es dann einen komplexe Vorzeichenvektor
®, der im Kokern von B und zugleich Vorzeichen-Eigenvektor von A ist und aufgrund
von (4) gilt ®,,,, = O. Der komplexe Vorzeichenvektor © bestehend aus den ersten (n— 1)
Zeilen und Spalten von D ist dann im Kokern von B’ und zugleich Vorzeichen-Eigenvektor

von A’ sodass das unsichere System (A’, B') nach Satz 5.1 nicht vorzeichen-steuerbar ist.
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Der Beweis von (iii) verlduft analog zum Beweis von (7). O

Wenn ein Spalte von der Vorzeichenmatrix B eines Vorzeichen-Systems (A,B) der
Dimension n genau einen von Null verschiedenen Eintrag besitzt, dann reduziert sich mit
Satz 5.8 die Priifung der Vorzeichen-Steuerbarkeit bzw. der Vorzeichen-Stabilisierbarkeit
auf eine Priifung eines kleineren Systems der Ordnung n — 1. Fiir ein System der Ordnung
n = 5 miissen dann beispielsweise anstatt der 47765 (siche Tabelle 5.1) nur noch 2100
komplexe Vorzeichenvektoren iiberpriift werden, sodass in diesem Fall rund 96% der Tests
eingespart werden konnen. Die Methode aus Satz 5.8 kann auch auf streng surjektive

Untermatrizen von B erweitert werden (sieche Abschnitt 5.4.2).

Algorithm 2 Rekursiver Algorithmus zum Test der Vorzeichen-Steuerbarkeit.
require: A € V" B e V™" nreN

1: procedure is_sign_controllable(A, B)

2: if B hat ein Spalte ¢ mit genau einem Eintrag By ; # O then

3: if n =1 then

4: return 1;

5: else

6: N:={1,....n}\{k}; M :={1,....r}\ {i};

7: A= AN, N]; B := [BIN, M], A[N, k]J;

8: return is_sign_controllable(A, B);

9: else

10: if n =1 then

11: return 0;

12: if is_strongly structurally_controllable(A, B) then
13: return 1;

14: if not(is_structurally_controllable(A, B)) then
15: return 0;

16: for jeden komplexen Vorzeichenvektor © # O do
17: if is_in_cokernel_and_sign_ev(A, B,9) then
18: return 0;

19: return 1;

Ein rekursiver Algorithmus zur Uberpriifung der Vorzeichen-Steuerbarkeit ist in
Algorithmus 2 beschrieben. Dabei wird in den Zeilen 2 bis 8 die Methode aus Satz
5.8 umgesetzt. In Zeile 2 wird iiberpriift, ob B eine Spalte mit genau einen von
Null verschiedenen Eintrag besitzt. Wenn n = 1 gilt, dann ist das System (A, B)

vorzeichen-steuerbar und es wird in Zeile 4 der Wert 1 ausgegeben. Andernfalls ist n > 1
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und nach Satz 5.8 ist das System (A, B) genau dann vorzeichen-steuerbar, wenn das

kleinere System (A, B) der Ordnung n — 1 vorzeichen-steuerbar ist (Zeile 6 bis 8).

Falls B keine Spalte mit genau einem von Null verschiedenen Eintrag besitzt und n = 1 gilt,
dann ist das System nicht vorzeichen-steuerbar und der Algorithmus liefert in Zeile 10 eine
0. Wenn n > 1 gilt, dann wird nach der Priifung auf strenge strukturelle Steuerbarkeit
und strukturelle Steuerbarkeit in den Zeilen 12 und 14 ab Zeile 16 mit Algorithmus 1
iiberpriift, ob Bedingung (iii) von Satz 5.1 fiir jeden komplexen Vorzeichenvektoren erfiillt

ist.

Beispiel 5.4 : Gegeben ist das Vorzeichen-System (A, B) mit

-+ + - 0 O
A:++++ und B:+*
- 5 = o 0
+ -+ o +

Die Vorzeichenmatrix B hat in Spalte 1 genau einen von Null verschiedenen Eintrag in
Zeile 2, sodass nach Satz 5.8 jeder komplexe Vorzeichenvektor mit 59 # O im Kokern
von B ist. Das Vorzeichen-System (A, B) ist daher genau dann vorzeichen-steuerbar oder

vorzeichen-stabilisierbar, wenn das Vorzeichen-System (A’, B') mit

~ + - + 0
A=~ ~ + und B=|+ 0O
+ o+ o+ -~

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist. Die Vorzeichenmatrix B’ hat
wiederrum in Spalte 2 genau einen von Null verschiedenen Eintrag in Zeile 3, sodass

eine Untersuchung des Vorzeichen-Systems (A”, B”) mit

A" = (+ +> und B’ = <+ *)
- - THSY

ausreichend ist. Das Vorzeichen-System (A", B”) ist strukturell steuerbar, aber nicht
streng strukturell steuerbar, da mit @ = (x,%)T, O € QT(4,B) = (®,®,®,®) gilt
und Bedingung (¢22) von Satz 3.12 nicht erfiillt ist.

Fiir jeden Vorzeichenvektor @ € V? gilt O ¢ QTB". Die Vorzeichenmatrix B” ist daher
nach Satz 3.7 streng surjektiv und jeder komplexe Vorzeichenvektor ® # O ist somit
nicht im Kokern von B”. Das Vorzeichen-System (A", B”) ist aufgrund der Sétze 5.1 und
5.2 vorzeichen-steuerbar und vorzeichen-stabilisierbar, sodass auch das Vorzeichen-System

(A, B) mit Satz 5.8 vorzeichen-steuerbar und vorzeichen-stabilisierbar ist.
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Das Vorzeichen-System (A, B) der Ordnung n = 4 ist nicht streng strukturell steuerbar
und die Matrix A erlaubt komplexe Eigenwerte. Algorithmus 2 bestimmt jedoch mit
verhéltnismafig wenig Aufwand, dass das Vorzeichen-System (A, B) vorzeichen-steuerbar

ist.

5.4 Zwei weitere Beispiele

In diesem Abschnitt werden abschlieBend zwei anwendungsnahe Systeme der
Form (1.1) auf strenge strukturelle Steuerbarkeit, Vorzeichen-Steuerbarkeit sowie

Vorzeichen-Stabilisierbarkeit untersucht.

5.4.1 Modell eines F-8 Strahlflugzeugs

In [ElN77] wird ein lineares zeitinvariantes System der Form (1.1) fiir die Lingsdynamik
eines F-8 Strahlflugzeugs bei einer Geschwindigkeit von 620 ft/s (= 680 km/h) und einer
Héhe von 20000 ft (~ 6 km) mit den Matrizen

—0.49  0.0005 —4.8 0 -~ 4+ - O
0 —0.015 —-14 -32.2 - - -
A= cA:= © und
1 —0.00019 —0.84 0 + ~ ~ 0O
1 0 0 0 + 000
-87 0 -~ 0O
—-1.1 89 -
B= € B:= +
—-0.11 0 - O
0 0 O O

vorgestellt. Die vier Zustandsgrofien xq bis x4 beschreiben dabei jeweils die Nickwinkelrate,
die Geschwindigkeit, den Anstellwinkel und den Nickwinkel des Flugzeugs und die Gréfien
uy und ugy reprisentieren jeweils die Hohenruder- und die Gasposition. In Abbildung 5.7
ist das F-8 Strahlflugzeug aus [EN77] skizziert.

Mit dem strukturellen Vektor Q = (x,0,%,0) gilt O C QT(A4,B) = (®,®,®,0,®,0),
sodass das Vorzeichen-System (A, B) nach Satz 3.11 nicht streng strukturell steuerbar ist.
Da A - Asz - Azy =~ O gilt, ist die Vorzeichenmatrix A nach Satz 3.18.(c) nicht

vorzeichen-stabil und A erlaubt komplexe Eigenwerte.

Die Vorzeichenmatrix B besitzt in Spalte 2 genau einen von Null verschiedenen Eintrag

in Zeile 2, sodass nach Satz 5.8 jeder komplexe Vorzeichenvektor mit D50 # O
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Abbildung 5.7: Skizze eines F-8 Strahlflugzeugs (aus [EI77])

nicht im Kokern von B ist. Das Vorzeichen-System (A,B) ist daher genau dann

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar, wenn das Vorzeichen-System (A’, B')

- -0 -+
mit A=+ ~ 0O und B=|~ ~
+ O O O O

vorzeichen-steuerbar bzw. vorzeichen-stabilisierbar ist.

Die Matrix B’ setzt sich aus der streng surjektiven Teilmatrix

)

in den ersten beiden Zeilen und einer Zeile mit Null-Eintrégen zusammen. Daraus folgt
analog zu Satz 5.8, dass jeder komplexe Vorzeichenvektor mit D11 # O oder Dg9 # O
nicht im Kokern von B ist. Zudem gilt fiir jedes A € A’, jedes A € C und jeden Vektor
g€ CPmit ¢g = ¢ = 0und g3 # 0, ¢¥'(A = A\) = (g3A31,0,—)\g3) # 0, sodass
kein komplexer Vorzeichenvektor mit ©;; = ®35 = O ein Vorzeichen-Eigenvektor von
A’ ist. Die Vorzeichen-Systeme (A’, B') und (A, B) sind daher vorzeichen-steuerbar und

vorzeichen-stabilisierbar.

Wird nun angenommen, dass die Hohenruderposition nicht als Stellgrofie zur Verfiigung
steht, dann ergibt sich das Vorzeichen-System (A, B) mit

-+ -0 e
A=A= oo und B= + (5.20)
+ - -~ 0 @
+ O O O ©)
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Abbildung 5.8: Skizze des unbemannten Helikopters ,, Yamaha R-50¢ (aus [MTK99]).

Mit Q = (+,0,+,0)T gilt —Q" ¢ QTA = (®,®,~,0) und Q"B = O. Aufgrund
von Satz 3.15 gibt es ein A € A, ein B € B und cin A €~ sodass der Wert A nicht

(A, B)-steuerbar ist. Das Vorzeichen-System (A, B) ist daher nicht vorzeichen-steuerbar.

Q ist dabei eine reelle Darstellung von dem komplexen Vorzeichenvektor

+ O + O
1 1
D= 000w mit Vo = 0 0 .
O o0 + O 3000
O O O O

Die Untersuchung des Vorzeichen-Systems (A, B) mit jedem anderen komplexen
Vorzeichenvektor ergibt, dass ® der einzige komplexe Vorzeichenvektor ist, der
Vorzeichen-Eigenvektor von A und zugleich im Kokern von B ist. Alle anderen
Vorzeichen-Eigenvektoren von A sind nicht im Kokern von B und das Vorzeichen-System

(/i, B) ist nach Satz 5.2 vorzeichen-stabilisierbar.

Zusammenfassend gibt es lineare zeitinvariante Systeme (A, B) mit A € Aund B € B

nach (5.20), welche nicht steuerbar sind, aber jedes dieser Systeme ist stabilisierbar.

5.4.2 Modell eines unbemannten Helicopters

In [MTK99] wird ein lineares zeitinvariantes System der Form (1.1) zur Beschreibung
der Dynamik eines unbemannten Helikopters im Schwebeflug vorgestellt. Der untersuchte

Helikopter mit der Bezeichnung ,, Yamaha R — 50 ist in Abbildung 5.8 dargestellt.
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Das Modell des Hubschraubers hat 11 Zustands- und 4 Eingangsgroflen und gehort zu

dem Vorzeichen-System (A, B), welches mit den Vorzeichenmatrizen

- 0000+~~~ 000 O0 o O O O
o~ 00O+ OO0+ O 0 O o O O O
-+ O O O O+ + O O O o O O O
- - 0000+ - 0 0O o O O O
oo+ 00000000 o o0 O O
A=]1 0 0 O+ 0 0O O0O0OO0OO0O|, B=l 0O O0OOO
oo~ 00~ 000 O0 + - O O
oo~ 000+ - 0 0 O0 + + O O
oo o000~~~ +0 O O O +
oo~ 00000+ ~ ~ o O + +
o O O OO0 0000+ + o O O O

beschrieben ist. Fiir den Vektor

T
Q:(******OOOOO>7

gilt O € QT(A+T5,, B), sodass das Vorzeichen-System (A, B) nach Satz 3.11 nicht streng
strukturell steuerbar ist. Die Vorzeichenmatrix A erlaubt komplexe Eigenwerte und A ist

nicht vorzeichen-stabil.

Bei der direkten Anwendung von Satz 5.1 bzw. 5.2 miissen £(11) ~ 2.6 - 10* verschiedene
komplexe Vorzeichenvektoren zur Untersuchung des Systems verwendet werden. Nach
dreifacher Anwendung von Satz 5.8 ergibt sich jedoch das kleinere Vorzeichen-System
(A, B’) der Ordnung 8 mit

-~ 0000 ~~20 OO0 0O
O~ 00+ 0 0 + OO0 0O
-~ 4+ 0000 + + OO0 OO0
y_| 0000+ - wi B-|C0O0O0O
OO0+ 00000 OO0 0O
OO0 0O+ 0000 OO0 0O
OO0 0 ~00~20 + -~ 0 O
OO0 ~00O0 + ~ + 4+ 0 O

und die Anzahl der zu untersuchenden komplexen Vorzeichenvektoren reduziert sich auf
k(8) ~ 1.9 10°.
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Die Eingangsmatrix 5’ dieses Systems besteht aus der streng surjektiven Matrix

(2)

sodass analog zu Satz 5.8 (siehe auch Abschnitt 5.4.1) jeder komplexe Vorzeichenvektor
mit D77 # 0 oder Dgg # 0 nicht im Kokern von B’ ist. Die Untersuchung des
Vorzeichen-Systems (A’, B') 1dsst sich daher auf die Untersuchung des Vorzeichen-Systems

(A", B") mit

- O O O O - -~ O
o - 0 O + O o +
a—| " + O O O O und B — + +
- - O O O O + -
o O+ O O O o O
o O O + O O o O

reduzieren. Fiir die Vorzeichen-Steuerbarkeit bzw. Vorzeichen-Stabilisierbarkeit von dem
Vorzeichen-System (A", B”) miissen nur x(6) ~ 1.4 - 105 komplexe Vorzeichenvektoren
verwendet werden. Die Anzahl der Tests kann durch die Methode von Satz 5.8 in diesem
Beispiel um den Faktor x(11)/k(6) & 1.9 - 108 reduziert werden.

Eine Untersuchung des Vorzeichen-Systems (A”, B”) zeigt, dass alle reellen Eigenwerte
A € R in jedem A” € A” und jedem B” € B, (A", B")-steuerbar sind, aber z.B. der

komplexe Vorzeichenvektor © mit

+ 0 + + - +
+ o+ - -
511335 -~ - 4+ O - +
vy = bzw. D=
230313 + - + + - -
~ 4+ - 4+ + 0
Rt

(siehe Beispiel 5.2) ist im Kokern von B” und ein Vorzeichen-Eigenvektor von A, der in den
dritten Quadranten verdreht wird. Das Vorzeichen-System (A, B) ist daher nach Satz 5.1
nicht vorzeichen-steuerbar. Genau genommen gibt es aufgrund von den Sétzen 4.8 und
4.15 ein ¢ € D, ein A” € A", ein B” € B” und ein A € C mit R(A), J(A) < 0, sodass
qF(A = Mg, B) = 0 gilt und A nicht (A", B”)-steuerbar ist.

Die Priifung des Vorzeichen-Systems (A”, B”) auf Vorzeichen-Stabilisierbarkeit ergibt,

dass Bedingung (i¢) von Satz 5.2 mit jedem komplexen Vorzeichenvektor der Ordnung 6
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erfiillt ist. Das Vorzeichen-System (A, B) ist daher vorzeichen-stabilisierbar und jedes

lineare zeitinvariante System (A, B) mit A € A und B € B ist stabilisierbar.

Das lineare zeitinvariante System der Form (1.1) mit

—0.22177 0 0 0 0 —-9.81 —-0.3175 0 0 0 0
0 —0.22177 0 0 9.81 0 0 1 0 0 0
—0.01000 0.0899 0 0 O 0 0.0307 0.0315 0 0 O
—0.08996 —0.01000 0 0 0 0 0.0100 —0.0970 0 0 0
0 0 1 0 0 0 0 0 0 0 0
A= 0 0 0 1 0 0 0 0 0 0 0]€e€d
0 0 0 -1 0 0 —1 0 0 0 0
0 0 -1 0 0 0 1 -1 0 0 0
0 0 0 0 0 0 —1 -1 —1 1 0
0 0 -1 0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 1 1
0 000
0 000
0 000
0 000
0 000
und B=| 0 000 |€B
1 -100
1 100
0 001
0 011
0 000

ist z.B. nicht steuerbar, da der Wert A = e 71 ~ —0.59 — 70.81 nicht (A, B)-steuerbar
ist. Der Vektor ¢ = (1,e7%,9.81¢1,9.81¢/5 ,9.81e795,9.81¢7715,0,0,0,0,0) ist ein
Eigenvektor von A beziiglich A und zugleich im Kokern von B. ¢ ist ein Element des

komplexen Vorzeichenvektors ®, der mit

(51133500000
° 23031300000

beschrieben ist.

Algorithmus 2 wurde in Matlab R2013a implementiert. Der Test des Vorzeichen-Systems
(A", B") der Ordnung 6 hat auf einem Intel Core i5 Prozessor mit 2.67 GHz Taktfrequenz,
4 GB Arbeitsspeicher und einem 64 bit Windows 7 Professional Betriebssystem 542
Sekunden (~ 9 Minuten) gedauert. Nach 110 Sekunden wurde erkannt, dass das System
nicht vorzeichen-steuerbar ist. Die Untersuchung der beiden Vorzeichen-Systeme der

Ordnung 4 aus Abschnitt 5.4.1 dauerte auf demselben Rechner wenige Millisekunden.
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6 Zusammenfassung und Ausblick

In dieser Arbeit werden algebraische Methoden zum Nachweis der Steuerbarkeit und der
Stabilisierbarkeit linearer zeitinvarianter Systeme der Form (1.1) untersucht und es werden
zwei bisher ungeloste Probleme, die Charakterisierung der Vorzeichen-Steuerbarkeit und
der Vorzeichen-Stabilisierbarkeit, gelost. Dafiir werden in Abschnitt 2 sieben Symbole
(O, +,~,®,8,%,®), die unsicheren Zahlen, definiert, welche verschiedene Teilmengen
reeller Zahlen représentieren. Eine Matrix mit Eintrdgen aus der Menge der unsicheren
Zahlen wird als unsichere Matrix bezeichnet und beschreibt eine Klasse reeller Matrizen.
Zudem werden zwei Verkniipfungen, die Addition und die Multiplikation, fiir unsichere
Zahlen und Matrizen festgelegt.

Anschliefend wird in Abschnitt 3 die Surjektivitdt aller Elemente einer unsicheren
Matrix untersucht. Dafiir werden die Begriffe der strengen strukturellen Surjektivitéit
und der strengen Surjektivitdt definiert und die Algebra der unsicheren Zahlen wird fiir
die Charakterisierung dieser Begriffe verwendet. Zudem wird das unsichere System als
Klasse linearer zeitinvarianter Systeme der Form (1.1) eingefithrt. Allgemein bekannte
Spezialfille unsicherer Systeme sind strukturelle Systeme, bei denen die Matrizen aus den
Symbolen O und = bestehen, und Vorzeichen-Systeme, deren Matrizen die Symbole O,
+ und -~ enthalten. Ein strukturelles System ist streng strukturell steuerbar, wenn jedes
Element des strukturellen Systems steuerbar ist und ein unsicheres System ist jeweils
vorzeichen-steuerbar, vorzeichen-stabil oder vorzeichen-stabilisierbar, wenn jedes Element
des unsicheren Systems steuerbar, stabil oder stabilisierbar ist. Die strenge strukturelle
Steuerbarkeit und die Vorzeichen-Stabilitdt sind bereits genau erforscht und allgemeine
Charakterisierungen fiir strukturelle Systeme bzw. Vorzeichen-Systeme existieren. Fiir
die Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind dagegen bisher
nur hinreichende oder notwendige Bedingungen bekannt. In den Sétzen 3.12, 3.16, 3.19
und 3.21 werden jeweils bekannte Resultate zur strengen strukturellen Steuerbarkeit,
Vorzeichen-Steuerbarkeit, Vorzeichen-Stabilitit und Vorzeichen-Stabilisierbarkeit auf
unsichere Systeme verallgemeinert. In den meisten dieser Bedingungen werden jeweils
strukturelle Vektoren oder Vorzeichenvektoren mit den Matrizen des unsicheren Systems
multipliziert. Wenn ein unsicheres System eine der Eigenschaften nicht besitzt, dann
lassen sich anhand dieser Bedingungen direkt die Vorzeichen des nicht-steuerbaren
Eigenwertes und der zugehorigen Eigenvektoren ablesen. Auflerdem wird anhand
von Beispiel 3.6 veranschaulicht, dass diese Bedingungen nicht hinreichend fiir die
Vorzeichen-Steuerbarkeit und die Vorzeichen-Stabilisierbarkeit sind, da mit diesen

Bedingungen lediglich reelle Eigenpaare gefunden werden konnen.
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Deshalb wird in Abschnitt 4 der komplexe Vorzeichenvektor als eine Aquivalenzklasse
komplexer Vektoren eingefiihrt und es wird gezeigt, dass dieser neue Ansatz fiir die
Untersuchung von Vorzeichenmatrizen geeignet ist. Wenn ein komplexer Vektor ¢ € C*
beispielsweise im Kokern einer Matrix X € R™™ ist, dann ist jeder Vektor derselben
Aquivalenzklasse [g]. im Kokern einer Matrix vom selben Vorzeichenmuster wie X (siche
Satz 4.8) und wenn ein komplexer Vektor ¢ ein Eigenvektor zu einem rein komplexen
Eigenwert von einer quadratischen Matrix A € R™ ™ ist, dann ist jeder Vektor derselben
Aquivalenzklasse [q]~ auch ein Eigenvektor zu einem rein komplexen Eigenwert fiir eine
Matrix vom selben Vorzeichenmuster wie A (siche Satz 4.10). Zusétzlich werden in
Abschnitt 4 verschiedene Bedingungen vorgestellt, mit denen die moéglichen Eigenwerte
der Matrizen eines gegebenen Vorzeichenmusters ermittelt werden kénnen. Mithilfe der
Sétze 4.11, 4.14 und 4.16 werden z.B. erstmals die folgenden Entscheidungsprobleme, ob

eine Vorzeichenmatrix A € V<" jeweils

e cinen Eigenwert A € C mit R(\) = 0 und J(X) # 0 erlaubt,
o cinen Eigenwert A € C mit ®(A) > 0 und F(A) # 0 erlaubt oder
e cinen Eigenwert A € C mit R(\) < 0 und I(N) # 0 erlaubt

charakterisiert. Dabei wird mit jedem von Null verschiedenen komplexen Vorzeichenvektor
® iberpriift, ob es einen Vektor in der jeweiligen Klasse © gibt, der ein
Eigenvektor zu einem entsprechenden Eigenwert ist. Falls dem so ist, dann wird der
komplexe Vorzeichenvektor als Vorzeichen-Eigenvektor der zugehorigen Vorzeichenmatrix
bezeichnet. Da die Anzahl der komplexen Vorzeichenvektoren fiir eine Dimension n endlich

ist, ist ein solcher Test zumindest fiir kleine n durchfiihrbar.

In Abschnitt 5 wird in den Sétzen 5.1 und 5.2 jeweils eine Charakterisierung
der Vorzeichen-Steuerbarkeit und der Vorzeichen-Stabilisierbarkeit fiir beliebige
Vorzeichen-Systeme (A, B) vorgestellt. Dafiir wird mit jedem von Null verschiedenen
komplexen Vorzeichenvektor © {iberpriift, ob © ein Vorzeichen-Eigenvektor von A
und ob © im Kokern eines Elements von B ist. Das Vorzeichen-System (A, B)
ist genau dann vorzeichen-steuerbar, wenn mindestens eine der beiden Bedingungen
nicht erfiillt ist. Zudem wird gezeigt, dass die Entscheidungsprobleme, ob ein
Vorzeichen-System nicht vorzeichen-steuerbar ist und ob ein Vorzeichen-System nicht
vorzeichen-stabilisierbar ist, NP-vollstindig sind. Auferdem wird ein Algorithmus
zur Uberpriifung der Vorzeichen-Steuerbarkeit beschrieben. Dabei wird eine rekursive
Methode verwendet, welchen den Aufwand der Untersuchung deutlich reduzieren kann,
wenn die Eingangsmatrix B des untersuchten Vorzeichen-Systems eine bestimmte

Eigenschaft besitzt. AbschlieBend werden zwei anwendungsnahe lineare zeitinvariante
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Systeme der Form (1.1) auf strenge strukturelle Steuerbarkeit, Vorzeichen-Steuerbarkeit
und Vorzeichen-Stabilisierbarkeit untersucht. Dabei handelt es sich um ein Modell
der Langsdynamik eines F-8 Strahlenflugzeugs und ein Modell fir die Dynamik eines

unbemannten Helikopters im Schwebeflug.

Die in dieser Arbeit verwendete Methode zur Untersuchung des Spektrums von
Vorzeichenmatrizen unterscheidet sich deutlich zu den bisherigen Methoden, bei denen die
Nullstellen der charakteristischen Polynome untersucht werden (siche [EJ91], [CODO09]).
Viele Vorzeichenmatrizen erlauben nur bestimmte Eigenwerte und Eigenvektoren,
sodass der Ansatz mit komplexen Vorzeichenvektoren mdoglicherweise zur Klirung
weiterer ungeloster Entscheidungsprobleme, wie z.B., ob eine Vorzeichenmatrix Stabilitét
erlaubt, beitragen kann. In Beispiel 4.6 (siche auch Beispiel 5.1) wird z.B. fur eine
Vorzeichenmatrix der Ordnung n = 3 gezeigt, dass es nur genau n verschiedene komplexe
Vorzeichen-Eigenvektoren gibt. Jeder dieser Vorzeichen-Eigenvektoren gehort genau zu

einem Eigenwert eines Elements der Vorzeichenmatrix.

In [LS14] wird die strenge Surjektivitit von Matrizen mit komplexen Eintréigen untersucht.
Bei der Ermittlung dieser Eigenschaft fiir eine n x m Matrix wird eine Hilfsmatrix erzeugt,
welche die Dimension (n-m-+n) x (n-m+m) hat, wenn es keine rein imaginédren oder rein
reellen Eintrdge in der Matrix gibt. Die Methode der komplexen Vorzeichenvektoren aus
dieser Arbeit scheint ein vielversprechender Ansatz zu sein, um die Surjektivitat komplexer

Matrizen zu untersuchen und den zur Uberpriifung notwendigen Aufwand zu reduzieren.

Wenn ein unsicheres System (A, B) € U™+ vorzeichen-stabilisierbar ist, dann gibt es fiir
jedes System (A, B) € (A, B) der Klasse eine Matrix K € R™", sodass jeder Eigenwert der
Matrix A+ BK einen negativen Realteil besitzt. Interessant ist sicherlich die Untersuchung
der Vorzeichenmusters all dieser Matrizen K sowie die Fragestellung, ob es auch eine
Matrix K* € R™" gibt, sodass fiir jedes A € A und jedes B € B jeder Eigenwert von
A + BK* negativen Realteil besitzt. Jedes Element des streng strukturell steuerbaren
Vorzeichen-Systems (A, B) mit A = O und B =+ ist beispielsweise mit jedem K € ~
stabilisierbar, da der Eigenwert A\ = BK von A + BK fiir jedes A € A und jedes B € B
negativ ist. Gleichzeitig gibt es kein K € @, welches ein System aus dieser Klasse (A, B)
stabilisiert. Die Vorzeichen-Stabilisierbarkeit eines unsicheren Systems ist offensichtlich

notwendig fiir die Existenz einer Matrix K*, welche alle Systeme der Klasse stabilisiert.

Die strukturelle Steuerbarkeit und die strenge strukturelle Steuerbarkeit wurden besonders
in den letzten Jahren bei der Analyse und der Gestaltung von Netzwerken eingesetzt
(siehe z.B. [LSB11, CM13]). Oft wird dabei angenommen, dass es sich um kooperative

Netzwerke handelt, bei denen alle Systemparameter nicht-negativ sind. In zahlreichen

216.73.216.38, am 20.01.2026, 06:17:47. @ Urheberrechtlich geschiltzter Inhalt.
tersagt, m mit, fir oder in Ki-Syster



https://doi.org/10.51202/9783186247087

111

Beispielen der realen Welt gibt es aber sowohl kooperierende als auch konkurrierende
Komponenten in einem Netzwerk. Die daraus entstehenden Systeme haben sowohl positive
als auch negative Systemparameter und werden als antagonistische Netzwerke (engl.
antagonistic networks) bezeichnet [Alt13]. Die Begriffe der Vorzeichen-Steuerbarkeit
und der Vorzeichen-Stabilisierbarkeit eignen sich bestens, um die Losbarkeit klassischer
Problemstellungen wie z.B. den Konsensus in einem solchen Netzwerk mit unsicheren

Parametern zu untersuchen.

In einigen technischen Systemen sind die Parameter nicht nur ungewiss, sondern auch
zeitvariant. Daher ist die Fragestellung, wie sich jeweils die Steuerbarkeit oder die
Stabilisierbarkeit eines vorzeichen-steuerbaren oder vorzeichen-stabilisierbaren Systems
verhélt, wenn sich die Systemparameter zeitlich verdndern diirfen, interessant.

Alle Resultate zur Steuerbarkeit und Stabilisierbarkeit linearer zeitinvarianter Systeme
der Form (1.1) von dieser Arbeit lassen sich jeweils problemlos auf die Beobachtbarkeit

und die Entdeckbarkeit der dualen Systeme iibertragen.
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