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Ox geschätzter Zustandsvektor
xE laterale Position m
Y Sigma-Partikel durch die Ausgangsfunktion transformiert
y Systemausgang
yE longitudinale Position m
z Messvektor
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Griechische Symbole und Formelzeichen

Symbol Beschreibung Einheit

˛ Schräglaufwinkel rad
˛crit Schräglaufwinkel bei dem die maximale Querkraft entsteht rad
˛f Schräglaufwinkel an der Vorderachse rad
˛ij Schräglaufwinkel rad
˛r Schräglaufwinkel an der Hinterachse rad
ˇ Schwimmwinkel in Aufbau-Koordinaten (DIN-ISO-8855:2013-11

(2013) bezieht sich auf die Ebene)
rad

P̌ Schwimmwinkelgeschwindigkeit in Aufbau-Koordinaten (DIN-ISO-
8855:2013-11 (2013) bezieht sich auf die Ebene)

rad=s

ıf mittlerer Lenkwinkel an der Vorderachse rad
ıH Lenkradwinkel rad
ır mittlerer Lenkwinkel an der Hinterachse rad
� Parametervektor
� Nickwinkel des Aufbaus relativ zur horizontalen Ebene rad
�K Nickwinkel des Aufbaus relativ zur Fahrbahnebene rad
�T Nickwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad
� Parameter des Achsquerkraftmodells zur Parametrierung des Längs-

schlupfeinflusses
�ij resultierender Kraftschlussbeiwert am Rad ij, ij 2 ffl;fr;rl;rrg
�max;i maximaler Kraftschlussbeiwert an Achse i, i 2 ff;rg
� Regressionsvektor
� Luftdichte kg=m3

� Standartabweichung
' Wankwinkel des Aufbaus relativ zur horizontalen Ebene rad
'K Wankwinkel des Aufbaus relativ zur Fahrbahnebene rad
'T Wankwinkel der Fahrbahnebene relativ zur horizontalen Ebene rad
‰ Vektor der Eulerwinkel rad
 Gierwinkel zum erdfesten Koordinatensystem rad
P Gierrate in der Ebene rad=s
R Gierbeschleunigung in der Ebene rad=s2

!ij Raddrehgeschwindigkeit rad=s
!X gemessene Winkelgeschwindigkeit um die Fahzeuglängsachse (Wank-

rate)
rad=s

!Z gemessene Winkelgeschwindigkeit um die Fahrzeughochachse (Gier-
rate)

rad=s

P!X gemessene Wankwinkelbeschleunigung rad=s2

P!Z Gierbeschleunigung um die Fahrzeughochachse rad=s2
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Indizes

Indize Beschreibung

Corr Correvit
E im erdfesten Koordinatensystem
f an der Vorderachse
fl Vorderachse links
fr Vorderachse rechts
r an der Hinterachse
rl Hinterachse links
rr Hinterachse rechts
S im Sensorkoordinatensystem
V im Fahrzeugkoordinatensystem
X in X-Richtung im jeweiligen Koordinatensystem
Y in Y-Richtung im jeweiligen Koordinatensystem
Z in Z-Richtung im jeweiligen Koordinatensystem
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XII

Abkürzungen

Kürzel vollständige Bezeichnung

ABS Antiblockiersystem
ATP Automotiv Testcenter Papenburg
CG Center of Gravity (Schwerpunkt)
EG Eigenlenkgradient
EKF erweitertes Kalman-Filter
ESC Electronic Stability Control
ESM Einspurmodell
ESP elektronisches Stabilisierungsprogramm
FDM Fahrdynamikmodell
GPS Global-Positioning-System
HA Hinterachse
HK Handlingkurs
IMU Inertial-Measurement-Unit
KIN kinematisches Modell
KF Kalman-Filter
LS Least-Square
max maximal
min minimal
NLB nichtlinearer Beobachter
PT1 Verzögerungsglied 1. Ordnung
PT2 Verzögerungsglied zweiter Ordnung
PZB Prüfzentrum Boxberg
RC Rollcenter (Wankpol)
RLS Recursive-Least-Square
STM Single Track Model
rms root mean square
SG Schwimmwinkelgradient
SR Sommerreifen
UKF Unscented Kalman-Filter
WG Wankwinkelgradient
WI Wankindex
WR Winterreifen
VA Vorderachse
ZVF Zustandsvariablenfilter
ZSM Zweispurmodell
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Kurzfassung

Ziel dieser Arbeit war die Entwicklung einer Methode zur Schätzung der wichtigsten Bewegungs-
größen Schwerpunktgeschwindigkeit und Schwimmwinkel, um diese einer Fahrdynamikregelung
zur Verfügung zu stellen. Dazu sollte lediglich die Sensorik der Electronic Stability Control (ESC)
genutzt werden. Damit eine modellbasierte Steuerung oder ein Führungsmodell auf Veränderung
des querdynamischen Fahrverhaltens reagieren kann, sollten zusätzlich die fahrdynamisch wich-
tigsten Parameter, wie die Schräglaufsteifigkeiten und der maximale Reibwert während des Fahr-
betriebs geschätzt werden.

Fahrdynamische Modelle wurden auf Basis der Starrkörperbewegung im Raum entwickelt, die
alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physikalischen Grenz-
bereich auf Hoch- und Niedrigreibwert genau genug modellieren. Dabei wurde ein optimaler Kom-
promiss aus Komplexität und Genauigkeit gefunden.

Die fahrzeug- und reifenabhängigen Parameter dieser nichtlinearen Schlupf-Kraftmodelle wur-
den durch Fahrversuche und einer neu entwickelten Referenzsensorik-Konfiguration bestehend
aus 6D-IMU, GPS und Correvit-Sensor identifiziert. Dabei wurden erstmals auch Manöver mit
gleichzeitigem Längs- und Querschlupf (Kurvenbremsungen) verwendet, um die Querkraftab-
schwächung in Abhängigkeit des Längsschlupfes zu parametrieren. Die Validierung mit einer Kur-
venbremsung bei maximaler Querbeschleunigung zeigt die Leistungsfähigkeit des resultierenden
Fahrdynamikmodells auf.

Die Schätzung der fahrdynamischen Zustände und Parameter mit ESC-Sensorik wurde auf Basis
von erweiterten und Unscented Kalman-Filtern entwickelt. Die Prädiktion der Zustände erfolgte
wie in der Luft- und Raumfahrt üblich mit einem kinematischen Modell, d.h. durch Integration der
Längs- und Querbeschleunigungsensorsignale, sowie der Gierrate. Die Korrektur dieser instabilen
Integration erfolgte durch die Geschwindigkeiten der Vorderräder und mit den (aus Sensorgrößen
geschätzten) Längs- und Querkräften der Vorder- und Hinterachse. Durch Berücksichtigung des
maximalen Reibwerts in den Achslängs- und Querkraftmodellen wird dieser bei genügend Schlupf
beobachtbar.
Es konnte gezeigt und erstmals begründet werden, warum der hier zur Zustandsschätzung einge-
setzte Unscented Kalman-Filter im fahrdynamischen Grenzbereich durch die Berücksichtigung
der Nichtlinearität den Schwimmwinkel robuster als der erweiterte Kalman-Filter schätzt.

Die Schwimmwinkelschätzung wurde mittels 355 unterschiedlicher, vom Autor selbst durchge-
führter Testfahrten auf Fahrdynamikflächen, Steilkurven, Handlingkursen und auf Schnee vali-
diert. Der Algorithmus lieferte auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdy-
namisch relevanten Situationen robuste Ergebnisse. Im Mittel betrug der maximale Schwimm-
winkelfehler während einer Testfahrt 2,7ı. Der entwickelte Schwimmwinkelschätzer kann daher
einen entscheidenden Beitrag bei der Weiterentwicklung des ESC leisten, indem insbesondere
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kritische Situationen frühzeitig erkannt werden. Die Reibwertschätzung reagierte sehr schnell, so-
dass bereits bei ca. 80-85% der maximalen Querbeschleunigung der maximale Reibwert richtig
eingeschätzt wurde. Die Schräglaufsteifigkeiten konnten während einer Landstraßenfahrt mit mitt-
leren Querbeschleunigungen robust geschätzt werden. Der Unterschied zwischen einer Winter-
und Sommerbereifung wurde deutlich.

Um das Zusammenspiel des entwickelten Schätzalgorithmus mit einer Fahrdynamikregelung zu
demonstrieren, wurde eine Modellfolgesteuerung einer aktiven Vorder- und Hinterachslenkung
zur Verbesserung der Gierdynamik in einer IPG-Carmaker-Simulation implementiert. Durch die
Rückführung des geschätzten Schwimmwinkels und einem einfachen P-Regler konnte das Fahr-
zeug durch Bremseingriffe auch bei einem langsam anwachsenden Schwimmwinkeln frühzeitig
stabilisiert werden, was durch eine Gierratenrückführung nicht möglich war.
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1 Einführung

In der Automobilindustrie haben sich in den letzten Jahren zwei große Entwicklungsziele her-
vorgehoben: Die Reduktion der Schadstoffemissionen, sowie die weitere Verbesserung der Fahr-
sicherheit. In Europa wird die Messung der "real-driving emissions"(RDE) ab September 2017
eingeführt. Ziel ist es die Bewertung der Schadstoffemissionen vom Prüfstand auf die Straße zu
verlagern. Zudem sollen die CO2-Grenzwerte für die Fahrzeugflotten weiter abgesenkt werden,
Bargende u. a. (2017).
Die Verbesserung der Fahrsicherheit und darüber hinaus ein deutlicher Komfortgewinn soll durch
die (Teil-)Automatisierung der Fahrzeugführung stattfinden. Teilautomatisierte Fahrfunktionen,
wie das selbstständige Spurhalten, das Einregeln des Abstandes zum vorausfahrenden Fahrzeug
und das Fahrspurwechseln sind bereits in der aktuellen Mercedes S-Klasse verfügbar, Daimler
(2017). Die S-Klasse war auch vor gut 20 Jahren Vorreiter bei dem Thema Fahrsicherheit: Das
elektronische Stabilitätsprogramm (Electronic Stability Control, ESC) verhindert seit 1995 mit-
tels Bremseingriffen Schleuderunfälle und ist seit November 2014 europaweit für alle Neuwagen
Pflicht, Van Zanten (2006).
Um nicht nur die Fahrsicherheit, sondern allgemein die fahrdynamischen Leistungen eines Fahr-
zeugs weiter zu entwickeln, werden zusätzlich zu den Bremseingriffen z.B. auch aktive Hinter-
achslenkungen eingesetzt. Die Reaktion eines passiven Fahrzeugs ist stark geschwindigkeitsab-
hängig. Der Lenkaufwand ist bei niedriger Geschwindigkeit sehr groß und die Fahrzeugreaktion
gut gedämpft. Bei hoher Geschwindigkeiten ist sie weniger stark gedämpft und der Lenkaufwand
sehr gering, sodass das Fahrverhalten als „nervös“ beschrieben wird, Heißing und Ersoy (2008).
Aktive Hinterachslenkung können diesen Zielkonflikt zwischen Agilität und Stabilität auflösen,
Obermüller (2012). Weitere eingesetzte Aktoren zur Beeinflussung der fahrdynamischen Eigen-
schaften sind z.B. aktive Differentiale, Stabilisatoren, Dämpfer und Überlagerungslenkung an der
Vorderachse. Z.B. lassen sich durch Bremseingriffe, aktives Differential und Zugriff auf die Mo-
torsteuerung das Fahrverhalten bei maximaler Querbeschleunigung und die Gierdämpfung von
Sportfahrzeugen gleichzeitig verbessern, König u. a. (2014).
Um die Vorteile der zusätzlichen Aktoren optimal nutzbar zu machen und den Applikationsprozess
der Fahrdynamikregelung schlank zu halten, werden integrierte modellbasierte Ansätze notwen-
dig. Informationsplattformen mit Sensorüberwachungen und Schätzalgorithmen berechnen aus
Sensorgrößen Bewegungszustände und Parameter von Fahrdynamikmodellen, die sich nicht di-
rekt messen lassen, und stellen sie der Fahrdynamikregelung zur Verfügung, Halbe (2008). Diese
können sich dann optimal an die Fahrsituation anzupassen.
Es wird klar, dass aktive Systeme mit den entsprechenden intelligenten Regelungen zusätzliche
Freiheitsgrade in der Fahrwerksentwicklung schaffen und eine zunehmende Entkopplung und ge-
zielte Beeinflussung spezifischer Fahreigenschaften erlauben, sodass sie eine immer größere Rolle
bei der zukünftigen KFZ-Entwicklung spielen, König u. a. (2014). Isermann (2006) spricht in die-
sem Zusammenhang vom „mechatronischen Kraftfahrzeug“ und hebt dabei das wichtige Zusam-
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2 1 Einführung

menspiel aus Aktorik, Mechanik, Sensorik und Informationsverarbeitung im Fahrwerksbereich
hervor.

1.1 Problemstellung

Die vorliegende Arbeit entstand zum Teil im Rahmen des Kooperationsprojekts „Verbesserung
einer modellbasierten Fahrdynamikregelung“ mit der Bosch Engineering GmbH (BEG). Ziel des
Projekts war die Entwicklung eines Schätzalgorithmus, der die wichtigsten Bewegungsgrößen
Schwerpunktgeschwindigkeit und Schwimmwinkel schätzt und einer modellbasierten Fahrdyna-
mikregelung zur Verfügung stellt, um diese zu verbessern und neue Möglichkeiten zu schaffen.
Dazu soll lediglich die vorhandene ESC-Sensorik zur Erfassung von Raddrehzahlen, Lenkradwin-
kel, Gierrate, Quer- und Längsbeschleunigung für eine Sensordatenfusion genutzt werden. Die
drei Messgrößen Gierrate, Quer- und Längsbeschleunigung werden von einer inertialen Messein-
heit (Inertial Measurement Unit, IMU) erfasst, siehe Anhang 9.3. Im Folgenden wird von einer
3D-IMU gesprochen. Damit eine flachheitsbasierte Steuerung oder ein Führungsmodell auf Ver-
änderungen des querdynamischen Fahrverhaltens reagieren kann, sollen außerdem die fahrdyna-
misch wichtigsten Parameter, die Schräglaufsteifigkeiten und die maximalen Reibwerte in Quer-
richtung an der Vorder- und Hinterachse, im Fahrbetrieb geschätzt werden. Eine besondere Her-
ausforderung ist der Anspruch, dass insbesondere die Schätzung des Schwimmwinkels in allen
erdenklichen Situationen robuste Ergebnisse liefern muss.

1.2 Zielsetzung und Stand der Technik

Die zu schätzenden Größen werden in den folgenden Unterpunkten noch einmal motiviert, die
Anforderung an die Schätzgüte formuliert und der Stand der Technik bzgl. der jeweiligen Schätz-
größe dargestellt. Methoden, die zusätzliche Sensoren im Vergleich zur typischen ESC-Sensorik
verwenden, sollen hier nur bei sehr ähnlicher Sensorikkonfiguration genannt werden. Arbeiten, die
zusätzlich GPS-Messgrößen (Global-Positioning-System) verwenden, sind z.B. Bevly u. a. (2000),
Ryu (2004), Bevly und Cobb (2010) und Bauer (2015). In Reina u. a. (2008) wird eine kameraba-
sierte Schwimmwinkelschätzung entwickelt.

1.2.1 Übergrundgeschwindigkeit

Das Antiblockiersystem (ABS) verhindert bereits seit 1978 das Blockieren einzelner Räder und
stellt so die Lenkbarkeit eines Fahrzeugs auch bei großem Schlupf und damit auch bei Vollbrem-
sungen sicher. Die wichtigste Regelgröße ist dabei der Schlupf jedes Rades, der zwischen 5% und
20% stabil gehalten werden muss, um minimale Bremswege und eine ausreichende Lenkbarkeit
zu erzielen, siehe Breuer und Bill (2012). Um den Schlupf aus der Raddrehzahl zu berechnen,
muss die Übergrundgeschwindigkeit des Fahrzeugs geschätzt werden. Die Übergrundgeschwin-
digkeit soll daher unabhängig von den Antriebs- und Bremsschlupfregelsystemen funktionieren,
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1.2 Zielsetzung und Stand der Technik 3

d.h. auch dann, wenn sich einige Räder in hohen Schlupfbereichen befinden, wie z.B. bei Voll-
bremsung oder Driftmanöver.

Die Querdynamik des Fahrzeugs ist zudem stark abhängig von der Geschwindigkeit, sodass die
Fahrzeuggeschwindigkeit zur Parametrierung der meisten Fahrdynamikregelsysteme herangezo-
gen werden muss.

Stand der Technik

Van Zanten (2006) stellt einen Geschwindigkeitsschätzer vor, der von der sogenannten Anpas-
sungsphase profitiert. Dazu werden während einer ABS-Bremsung einzelne Räder kurz „unter-
bremst“ und mit der Radwinkelgeschwindigkeit !, dem dynamischen Reifenhalbmesser rdyn, der
Reifenlängssteifigkeit csX und der momentanen Reifenlängskraft FTX die freirollende Radgeschwin-
digkeit

vT;frei D ! � rdyn

.FTX=csX/C 1
(1.1)

berechnet. Über Gierrate, Lenkwinkel und Schwimmwinkel wird diese Geschwindigkeit in den
Fahrzeugschwerpunkt transformiert. Diese „virtuelle“ Geschwindigkeit wird dann einem Kalman-
Filter als Messgröße bereitgestellt. Der Kalman-Filter prädiziert die Längsgeschwindigkeit

PvX � 1

m
� ŒFTX;fl C FTX;fr C FTX;rl C FTX;rl � FAir � PvX;Offset� ; RvX;Offset D 0 ; (1.2)

durch Integration1 der berechneten Reifenlängskräfte FTX, den Luftwiderstand FAir und einem
Offset PvX;Offset, der ebenfalls im Kalman-Filter als „Random-Walk“, siehe Grewal u. a. (2001),
mitgeschätzt wird und eine langsam veränderliche Straßensteigung kompensieren kann. Über eine
Fuzzy-Logik werden abhängig von der Raddrehbeschleunigung und dem Raddrehzahlvergleich
aller vier Räder die einzelnen virtuellen Messungen gewichtet. Der Einfluss des Schwimmwinkels
wird bei der Integration vernachlässigt.

Würtenberger (1997) nutzt ebenfalls einen Kalman-Filter zur Geschwindigkeitsschätzung. Ein-
gänge zur Prädiktion der Geschwindigkeit (z.B. Längsbeschleunigung) werden nicht benutzt. Der
Längsbeschleunigungssensor wird allerdings als Messgröße zur Korrektur im Kalman-Filter ver-
wendet. Je nach Fahrsituation wird der Kalman-Filter regelbasiert, ähnlich wie in Van Zanten
(2006), umparametriert. Eine Berücksichtigung eines linearen Schlupf-Kraft-Verhaltens erfolgt
nicht. Der Schwimmwinkel wird ebenfalls nicht berücksichtigt. Daiss und Kiencke (1995), Schorn
(2007) und Halbe (2008) verwenden ein sehr ähnliches Konzept. Ergebnisse werden jeweils bei
ABS-Geradeausbremsungen auf Hochreibwert gezeigt.

Semmler (2006) berechnet parallel die Schwerpunktgeschwindigkeit aus den Raddrehzahlen durch
Integration der Längsbeschleunigung und durch Integration der Summe der Brems- und Luftkräf-
te. Eine aufwändige Fuzzy-Logik, die zwischen vielen verschiedenen Situationen entscheidet, ge-
wichtet dann die einzelnen Schätzungen. Die Fahrbahnsteigung wird bei frei rollenden Rädern

1in Van Zanten (2006) Extrapolation genannt
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4 1 Einführung

durch Ableiten der geschätzten Geschwindigkeit und Vergleich mit dem Längsbeschleunigungs-
sensor geschätzt. Der Schätzer liefert gute Ergebnisse bei Vollbremsungen auf Schnee und Asphalt.
Messungen bei größeren Schwimmwinkeln und Fahrbahnsteigungen werden nicht gezeigt.

Die angesprochenen Ansätze bedienen sich vieler heuristischer Zusatzfunktionen, um die Schät-
zung an die Fahrsituation anzupassen. Der Mehraufwand zur Parametrierung dieser Zusatzfunk-
tionen soll durch einen stärker modellbasierten Ansatz vermieden werden.

1.2.2 Schwimmwinkel

Der Schwimmwinkel ˇ beschreibt den Winkel zwischen der Fahrzeuglängsachse und dem Ge-
schwindigkeitsvektor des Schwerpunktes mit der Länge v in der Ebene. Der Gierwinkel  ist der
Winkel zwischen Fahrzeuglängsachse und dem erdfesten Koordinatensystem XE,YE. Die Gierrate
P beschreibt die Änderung des Gierwinkels und somit die Drehrate um die Fahrzeug-Hochachse,

siehe Bild 1.1.

P 

ˇ

v

vX

vY

Krümmungs
-mittelpunkt

R

XE

YE

 

du

ˇC  

d.ˇ C  /v

ac

Bild 1.1: Darstellung von Schwimmwinkel ˇ, Gierrate P , Schwerpunkts- v, Längs- vX und

Quergeschwindigkeit vY, Krümmungsradius R, Zentripetalbeschleunigung aC, Gierwinkel  ,

Kurswinkel ˇ+ und Bogenlängenänderung du

Er lässt sich auch aus der Längs- und Quergeschwindigkeit zu

ˇ D arctan
�
vY

vX

�
(1.3)

bestimmen. Die Differentialgleichung der Schwimmwinkeländerung lässt sich durch den Rezi-
prokwert des Krümmungsradius R

1

R
D d.ˇ C  /

du
(1.4)
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1.2 Zielsetzung und Stand der Technik 5

mit der Kurswinkeländerung d.ˇ C  / und der Bogenlängenänderung du, siehe Bild 1.1 nach
Mitschke (2013), herleiten. Mit der Geschwindigkeit

v D
q
v2

X C v2
Y D du

dt
(1.5)

lässt sich Gl. (1.4) in die Zentripetalbeschleunigung

ac D v2

R
D v2 �

P̌ C P 
v

D v � . P̌ C P / (1.6)

mit der Änderung des Gierwinkels P umformen und nach der Schwimmwinkeländerung

P̌ D ac

v
� P (1.7)

auflösen. Die detaillierte Modellbildung von Fahrdynamikmodellen ist in Kapitel 2 beschrieben.
Die Grundgleichungen sollen hier nur zum weiteren Verständnis für den Stand der Technik der
Schwimmwinkelschätzung dienen.

Neben der Gierrate P ist der Schwimmwinkel ˇ ein wichtiger Zustand in Fahrdynamikmodellen
zur Beschreibung der Horizontaldynamik und wird herangezogen, um die Schräglaufwinkel an der
Vorder- und der Hinterachse zu berechnen und um zu beurteilen, ob sich das Fahrzeug in einem
stabilen oder instabilen Zustand befindet, siehe Van Zanten (2006). Klier u. a. (2008) nutzt den
geschätzten Schwimmwinkel für eine Schwimmwinkelregelung und kann gegenüber einer reinen
Gierratenregelung Vorteile bei der Stabilisierung des Fahrzeugs während eines Doppelspurwech-
sels zeigen.

Für Versuchsfahrten wird üblicherweise ein Schwimmwinkelsensor (Correvit-Sensor) montiert,
der auf der Erkennung von Texturverschiebungen mittels 2-phasigen optischen Gittersystemen
basiert, siehe Anhang 9.3. Auch Systeme basierend auf der Fusion von Inertialmesstechnik mit
(D)-GPS werden häufig bei Testfahrten eingesetzt, siehe GeneSys Elektronik GmbH (2015). Für
ein Serienfahrzeug sind diese Messsysteme allerdings aufgrund sehr hoher Kosten nicht einsetz-
bar. In der Praxis werden daher bereits seit Einführung des ESC Methoden erforscht, wie der
Schwimmwinkel nur aus der für das ESC benötigten Sensoren zu schätzen ist. Robuste Schätzun-
gen des Schwimmwinkels nur mit der ESC-Sensorik in allen erdenklichen Situationen konnten
allerdings bis heute nicht erzielt werden.

Eine besondere Herausforderung ist es, den Schwimmwinkel robust in allen Fahrsituationen, auf
allen Fahrbahnbelägen und unter Einfluss von Parametervariationen des Fahrzeugs zu schätzen.
Z.B. soll die Schätzung in der Lage sein, sich an niedrige maximale Reibwerte bis �max D 0;25

auf Schnee zu adaptieren, trotzdem sollen Steilkurvendurchfahrten mit Steilkurvenwinkeln bis
' D 30ı nicht fälschlicherweise als ein langsames Übersteuern auf Niedrigreibwert interpretiert
werden. Das Manöver wird durch einen Lastwechsel bei maximaler Querbeschleunigung einge-
leitet. Der Schwimmwinkel wächst langsam an, das Fahrzeug übersteuert stark und wird instabil.
Dabei unterscheidet sich die gemessene Gierrate kaum von der Gierrate, die man aufgrund des
aktuellen Lenkwinkels (ohne gegen zu lenken) vermuten würde. Nach Van Zanten (2006) stellt
daher das Erkennen des langsamen Übersteuern auf Niedrigreibwert und Unterscheidung von ei-
ner Steilkurve eine besondere Schwierigkeit dar.
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6 1 Einführung

Stand der Technik

Die Methoden der Schwimmwinkelschätzung werden in drei Untergruppen eingeteilt

� Methoden mit einem Fahrdynamikmodell als Systemmodell,

� kinematische Methoden und

� datengetriebene Methoden ohne physikalisch motivierte Modelle.

Die einzelnen Veröffentlichungen werden nun detailliert erörtert und die Ergebnisse grafisch zu-
geordnet.

Fahrdynamik-
modell

ǑvOıH

z D Œ PaY

u D Œ

K

Z
Sensormodell

PǑPǑ
y D Œ PaYO O

Systemmodell Ausgangsmodell

Bild 1.2: Signalflussplan eines Schwimmwinkelschätzers mit einem Fahrdynamikmodell als

Systemmodell und einem Sensormodell als Ausgangsmodell

Schwimmwinkelschätzung mit einem Fahrdynamikmodell als Systemmodell: Bild 1.2 zeigt ein
Beispiel eines Schwimmwinkelschätzers, der als Systemmodell ein semi-physikalisches Fahrdy-
namikmodell nach Gl. (1.7)

PǑ� D Oac

Ov � P (1.8)

nutzt. Die prädizierte geschätzte Schwimmwinkeländerung PǑ� wird mittels der Rückführverstär-
kung K und dem Ausgangsschätzfehler e D z � y zu der geschätzten korrigierten Schwimmwin-

keländerung PǑ. Für die Zentripetalbeschleunigung Oac wird vereinfacht die „Modellquerbeschleu-
nigung“

Oac � OaY D FYT;f.ıH; Ǒ; OP ; Ov/C FYT;r. Ǒ; OP ; Ov/
m

; (1.9)

verwendet, welche mit einem linearen oder nichtlinearen Modell der Querkraftkennlinien an der
Vorderachse FYT;f und Hinterachse FYT;r in Abhängigkeit der geschätzten Zustände Schwimm-

winkel Ǒ, Gierrate OP und Geschwindigkeit Ov, sowie dem Eingang Lenkradwinkel ıH berechnet
wird. Die Größen Geschwindigkeit und Gierrate werden innerhalb des selben Filters geschätzt
oder separat in eigenen Schätzalgorithmen. Um gute Ergebnisse zu erhalten, müssen die Quer-
kraftkennlinien offline mittels Testfahrten identifiziert werden. Die Messgrößen des Beobachters
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sind meistens die Querbeschleunigung und die Gierrate. Durch die Rückführung des Ausgangs-
schätzfehlers e D z � y mit der Rückführverstärkung K soll bei einem Luenberger-Beobachter
eine bestimmte Fehlerdynamik erfüllt werden, während beim Einsatz eines Kalman-Filters die
quadratischen Zustandsschätzfehler minimiert werden. Bei Einsatz von diskreten Zustandsschät-
zern spricht man auch von der „Korrektur“ der prädizierten Zustände durch die Messung z, siehe
Grewal u. a. (2001).

Kiencke und Daiß (1997) schätzt die Zustände x D Œv;ˇ; P � eines Zweispurmodells mit einem auf
nichtlineare Systeme erweiterten Luenenberger-Beobachter. Es wird ein lineares Reifenmodell
verwendet, welches bei steigenden Schräglaufwinkeln angepasst wird, um auch höhere Querbe-
schleunigungen zu modellieren. Als Eingangsgrößen u D ŒFXT; ıH� werden die Radlängskräfte
und der Lenkwinkel genutzt. Die Korrektur der geschätzten Zustandsgrößen erfolgt mit einer se-
parat geschätzten Geschwindigkeit auf Basis der Raddrehzahlen und der gemessenen Gierrate
z D Œ Ov; P �. Die Querbeschleunigung wird nicht verwendet. In Kiencke und Nielsen (2005) wer-
den Ergebnisse während einer stationären Kreisfahrt, einem Slalom und einer Klothoide bis ca.
6 m=s2 Querbeschleunigung gezeigt. Vietinghoff u. a. (2005) nutzt ein identisches Konzept, aller-
dings mit einem nichtlinearen Reifenmodell nach Hiemer u. a. (2004). Bauer (2015) verwendet ein
sehr ähnliches Konzept, nutzt zur Korrektur der Schätzung aber auch das Querbeschleunigungs-
signal aY und GPS-Messungen. Validiert wird die Schätzung mit einem Doppelspurwechsel bis
6 m=s2.

Börner (2004) nutzt das Konzept von Kiencke und Daiß (1997) mit den Zuständen x D Œv; ˇ; P �
und Korrekturgrößen z D Œ Ov; P �, adaptiert aber das lineare Reifenmodell mit der aktuell geschätz-
ten Radquerkraft und den geschätzten Schräglaufwinkeln außerhalb des Filters, siehe Bild 1.8
in Abschnitt 1.2.4. Es wird allerdings keine Validierung mit Realdaten gezeigt. Schorn (2007)
und Halbe (2008) verwenden dieses Konzept mit der Rückführung des Schwimmwinkels, um
die Schräglaufsteifigkeiten zu adaptieren. Schorn (2007) zeigt Vergleiche mit dem nichtlinearen
Luenenberger-Beobachter und einem erweiterten Kalman-Filter (EKF) mit Realdaten während ei-
ner Wedelfahrt und Doppelspurwechsel bis ca. 7m=s2. Stationäre Manöver werden nicht gezeigt.
Durch die Rückführung des geschätzten Schwimmwinkels und der Schätzung der Seitenkräfte auf
Basis des Beschleunigungssensors können allerdings Erdbeschleunigungsanteile die Schwimm-
winkelschätzung destabilisieren. Dies tritt vor allem bei stationären Manövern auf. Eine ausführ-
liche Herleitung ist in Bechtloff (2013) zu finden.

Ray (1997) nutzt ein aufwändiges Zweispurmodell mit elastokinematischer Aufhängung und Rad-
drehdynamik. Sie schätzt mit einem EKF alle Radlängs- und Querkräfte. Eine Reibwertadaption
erfolgt außerhalb des Filters und bedient sich offline der online geschätzten Schlüpfe und Kräfte.
Validiert wird die Schwimmwinkelschätzung nur mit einem J-Turn1.

1Manöver ähnlich eines Lenkwinkelsprungs, bei dem maximale Querbeschleunigung erreicht wird, siehe Forken-
brock u. a. (2003).
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8 1 Einführung

Baffet u. a. (2007) untersucht einen EKF mit unterschiedlichen Reifenmodellen, um den Schwimm-
winkel zu schätzen. Unter den geschätzten Zuständen

x D
h
v;ˇ; P ;FYT;f;FYT;r;FXT;f

i
(1.10)

sind auch die Achsquer- und Längskräfte. Der Eingang besteht nur aus dem Lenkwinkel u D ıH.
Korrigiert wird mit einer separat geschätzten Geschwindigkeit, den Quer- und Längsbeschleuni-
gungen und der Gierrrate: z D Œ Ov;aY;aX; P �. Das Filter auf Basis eines erweiterten Einspurmodells
mit Burckhardt-Reifenmodell mit dynamischem Kraftaufbau erreicht gute Resultate bei einer rea-
len Stadtfahrt (aY < 4 m=s2), stationären Kreisfahrt (aY < 2 m=s2), Doppelspurwechseln und ei-
nem Slalom bei maximaler Querbeschleunigung. Eine separate Reibwert-Adaption wird nur in der
Simulation gezeigt. Doumiati u. a. (2011) nutzen das Konzept von Baffet u. a. (2007) und erwei-
tern es auf ein Zweispurmodell. Sie konzentrieren sich hauptsächlich auf die Schätzung genauer
einzelner Reifenkräfte mit einem EKF und Unscented Kalman-Filter (UKF). Die Schwimmwin-
kelschätzung ist nur mit einer Kurve (aY < 7 m=s2) und sehr kleinen Schwimmwinkeln validiert.

Reif u. a. (2007) benutzt einen UKF und die Pacejka-Magic-Formula, siehe Pacejka (2012), in
einem Zweispurmodell. Ergebnisse werden nur in der Simulation gezeigt.

Sentouh u. a. (2007) nutzt ebenfalls ein Zweispurmodell mit der Pacejka-Magic-Formula, um den
Schwimmwinkel mit einem EKF zu schätzen. Korrigiert wird mit einer geschätzten Geschwin-
digkeit und der Gierrate. Der Steilkurvenwinkel wird anschließend mit einem PI-Unknown-Input-
Observer2 geschätzt.

kin. Modell
ǑvO

z D ŒaY

u D Œ

K

Z
Reifenmodell

PǑPǑ
y D ŒaYO ...

...

aY P Systemmodell Ausgangsmodell

Bild 1.3: Signalflussplan eines Schwimmwinkelschätzers mit einem kinematischen Modell

als Systemmodell und einem Reifenmodell als Ausgangsmodell

Kinematische Methoden: Mit dem kinematischen Zusammenhang nach Gl. (1.7)

PǑ � aY

Ov � P ) Ǒ �
Z �aY

Ov � P 
�

dt (1.11)

und der Vereinfachung aY � ac wird der Schwimmwinkel durch Integration der gemessenen
Querbeschleunigung aY und der Gierrate P bestimmt, siehe Bild 1.3. Ist eine 6D-IMU3 vorhan-
den, wird auch vom „Strapdown-Algorithmus“ gesprochen, siehe Wendel (2007). Darunter wird

2siehe Wojciechowski (1978)
3eine 6D-IMU misst drei Beschleunigungen und drei Drehraten
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eine Rechenvorschrift verstanden, die angibt, wie mit körperfest gemessenen Beschleunigungen
und Drehraten und des vergangenen Zeitschritts die Bewegungsgrößen zum aktuellen Zeitpunkt
bestimmt werden. Angewendet mit einer reduzierten 3D-IMU ist diese Methode unabhängig von
fahrdynamischen Parametern und ist auch dann sehr genau, wenn Offset-Fehler des Querbeschleu-
nigungssensors gering sind und nur in der Ebene gefahren wird. In Kurven mit Querneigung mit
dem Steilkurvenwinkel ' wird die Querbeschleunigung um den Erdbeschleunigungsanteil g sin'
überlagert und die Integration der Schwimmwinkeldifferentialgleichung wird sehr schnell instabil.
Um dies zu verhindern, wird durch eine Beochbachterstruktur der Schwimmwinkel mit modellier-
ten Ausgangsgrößen wie z.B. der modellierten Querbeschleunigung auf Basis von Reifenmodel-
len korrigiert. D.h. fahrdynamische Parameter werden nicht im Systemmodell, sondern erst für
die Korrektur des Strapdown-Algorithmus benötigt.

Farrelly und Wellstead (1996) nutzen nur eine geschätzte Übergrundgeschwindigkeit aus Raddreh-
zahlen, um die Integration der Längs- und Quergeschwindigkeit x D ŒvX; vY� zu korrigieren. Der
Ansatz beschränkt sich auf Fahrten in der Ebene, da der geringe Zusammenhang aus Geschwin-
digkeitsmessung und Schwimmwinkel nicht ausreicht, um die Fehler der kinematischen Methode
bei Steilkurven zu kompensieren.

Fukada (1999) schätzt Achsquerkräfte mit der Quer- und Gierbeschleunigung, bildet dann eine
gewichtete Summe mit Achsquerkräften, die mit dem geschätzten Schwimmwinkel und einem
Reifenmodell berechnet werden, und nutzt die resultierende Querbeschleunigung zur Integration
des Schwimmwinkels. Der maximale Reibwert und der Steilkurvenwinkel werden durch den Ver-
gleich der Gierrate mit einer Referenzgierrate geschätzt. Der Algorithmus wird mit einem Doppel-
spurwechsel und J-Turn auf Schnee gezeigt.

In dem Patent Suissa u. a. (1996) wird bereits vorgeschlagen, die Integration mit den modellier-
ten Querbeschleunigung aus Gl. (1.9), berechnet mit einem gebrochen rationalen Reifenmodell
und dem geschätzten Schwimmwinkel, zu stützen. Das Reifenmodell kann mit einem maximalen
Reibwertfaktor auf Niedrigreibwert adaptiert werden. Der maximale Reibwert wird als Random-
Walk modelliert. Um Steilkurven zu erkennen, wird davon ausgegangen, dass ein Drehratensensor
in der Fahrzeuglängsachse vorhanden ist. Die Methode wird ohne Drehratensensor in der Fahr-
zeuglängsachse in Imsland u. a. (2007) getestet. Der Reibwert, der Steilkurvenwinkel ' und der
Steigungswinkel � werden statt Random-Walk als Gauss-Markov-Modelle 1. Ordnung model-
liert, siehe Grewal u. a. (2001). Ergebnisse sowohl auf Hochreibwert, in der Steilkurve als auch
auf Niedrigreibwert werden gezeigt. Gleichungen oder Details werden allerdings nicht preisge-
geben. In Bechtloff u. a. (2016) wird das Konzept wieder aufgenommen. Wenn direkt mit den
schwimmwinkel-abhängigen Raddrehzahlen der frei rollenden Vorderräder korrigiert wird, kön-
nen Steilkurven besser von dem Manöver „langsames Eindrehen auf Niedrigreibwert“ unterschie-
den werden.

Imsland u. a. (2005) und Imsland u. a. (2006) nutzen die mit der mit der Pacejka-Magic-Formula
modellierten Achsquerkräfte FYT;f=r, um die Integration der Sensorgrößen

PǑ � aY

Ov � P � Kˇ �
�
m � aY � .FYT;f.ıH; Ǒ; P ; Ov/C FYT;r. Ǒ; P ; Ov//

�
(1.12)
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mit einem nichtlinearen Beobachter zu stabilisieren. Die Geschwindigkeit Ov wird in einem separa-
ten Beobachter geschätzt.
In Imsland u. a. (2007) wird diese Methode um die Schätzung eines Steilkurvenwinkels mit einem
Unknown-Input-Observer und der Schätzung eines maximalen Reibwerts erweitert. Die Rückführ-
verstärkungen des Beobachters werden ähnlich wie bei einem EKF mit der partiellen Ableitung
der Ausgangsgröße nach dem jeweiligen Zustand skaliert. Die Geschwindigkeit und der Reibwert
werden von modularen Beobachtern mit ähnlicher Methodik wie der Schwimmwinkel geschätzt.

Grip u. a. (2009) entwickelt den Ansatz nach Imsland u. a. (2007) weiter. Der Steilkurvenwinkel
wird nun mit einem ähnlichen Ansatz wie der Schwimmwinkel geschätzt. Es wird genauer auf
die Implementierung des Reibwert-Schätzers eingegangen. Das Einstellen einer einzelnen Rück-
führverstärkung scheint einfach. Die heuristisch gestaltete Reibwert- und Steilkurvenschätzung
bedient sich unterschiedlicher Schwellen, die aufwendig einzustellen sind.
Die Validierung erfolgt mittels vieler realer Testfahrten eines Fahrzeugs mit Hinterradantrieb und
beinhalten stationäre und dynamische Manöver mit Winter- und Sommerreifen. Auch Manöver
mit Steilkurven bis ' D 6ı und Niedrigreibwert auf Schnee versprechen gute Schätzergebnis-
se. Bei den Ergebnissen auf Niedrigreibwert fällt auf, dass, wenn der Schwimmwinkel langsam
wächst (langsames Übersteuern des Fahrzeug), der Schwimmwinkel stark unterschätzt wird. D.h.
das Manöver wird nicht erkannt.

Klier u. a. (2008) nutzt eine 6D-IMU für den Strapdown-Algorithmus und schätzt so mittels eines
EKF die Orientierung und Geschwindigkeit

x D ŒvX;vY;';� � (1.13)

des Fahrzeugs in der Ebene. Da der Wankwinkel ' bereits gut aus der Integration der Rollrate
bestimmt wird, reicht die Korrektur mit einer aus Raddrehzahlen geschätzten Geschwindigkeit
z D OvX und eine situationsabhängige Adaption der Kovarianzmatrix, um eine stabile Schätzung
aller Größen aus Gl. (1.13) zu erhalten. Sehr gute Ergebnisse können für ein Drift-Manöver (bis
35ı Schwimmwinkel), einer Steilkurvenfahrt (bis 27ı Steilkurvenwinkel) und einem Doppelspur-
wechsel (bis 40ı Schwimmwinkel) gezeigt werden. Reibwertabhängige Reifenmodelle sind auf-
grund der sehr guten Schätzung des Steilkurvenwinkels mittels Rollratensensor nicht erforderlich.

Datengetriebene Methoden ohne physikalisch motivierte Modelle: Eine andere Gruppe von Me-
thoden zur Schwimmwinkelschätzung, die nicht auf fahrdynamische Parameter angewiesen sind,
nutzt „Black-Box-Regression“-Modelle, siehe Milanese u. a. (2015). Nach dem Training von z.B.
neuronalen Netzen mit einem gemessenen Schwimmwinkel und der ESC-Sensorik und ihren Ab-
leitungen als Eingangsgrößen wird es möglich den Schwimmwinkel

Ǒ D fBlackBox .u; Pu; : : : ;un/ (1.14)

mit den Eingangsdaten

u D
h
ıf; P ;ax;ay;!

i
: (1.15)
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zu schätzen. Dabei werden die Eingangsdaten dazu benutzt, um fahrdynamische Effekte mit der
Schwimmwinkelschätzung zu verbinden. Diese Methode liefert eine hohe Schätzgüte im trainier-
ten Bereich. Wenn dieser Bereich allerdings verlassen wird, sind keine plausiblen Schätzergebnis-
se mehr zu erwarten, siehe Eckart (2016). Das bedeutet auch, dass wenn sich das Fahrverhalten
durch Verschleiß verändert, dieser Bereich verlassen werden kann. Zudem müssen für eine neue
Fahrzeugvariante neue Trainingsdaten in jedem erdenklich Arbeitspunkt erstellt werden, was zu
einem großen Zeit- und somit Kostennachteil führt.

Mischformen aus physikalisch motivierten Modellierungen und datengetriebenen Methoden sind
ebenfalls denkbar. Halfmann und Holzmann (2003) sprechen von einer hybriden Modellbildung
und zeigen, wie Teilsysteme des physikalischen Modells durch neuronale Netze ersetzt werden
können.

Zusammenfassung: Bild 1.6 ordnet einige Methoden zur Schwimmwinkelschätzung ohne An-
spruch auf Vollständigkeit nach validierten Testmanövern und ihrem Aufbau nach ein. Ähnlich
wie die Einteilung von Fahrdynamikregelung in modulare Konzepte (friedliche Koexistenz, Krim-
mel u. a. (2006)) sollen in Bild 1.6 die Methoden in modulare Schätzer, die pro Schätzgröße einen
modularen Schätzer verwenden, und in integrierte Schätzalgorithmen unterteilt werden, siehe Bild
1.7. Integrierte Lösungen (meist mit Kalman-Filtern umgesetzt) schätzen alle Zustände in einem
Filter und profitieren von der korrekten Berücksichtigung der Auswirkung eines Schätzfehlers ei-
nes Zustands auf den Schätzfehler eines anderen Zustands. In der Kalman-Filter-Theorie spricht
man in diesem Zusammenhang von der Kovarianz der geschätzten Zustände. Auffällig ist, dass
modulare Konzepte nur für viele Manöver funktionieren, wenn eine Vielzahl von Heuristiken im-
plementiert werden.
Der Anspruch dieser Arbeit ist es, alle Manöver abzudecken, trotzdem einfach zu parametrieren-
de Modelle zu verwenden und dabei schwierig zu applizierende Heuristiken zu vermeiden. Damit
platziert sich diese Arbeit am rechten oberen Rand von Bild 1.6.

1.2.3 Maximaler Reibwert

Der maximale Reibwert in Querrichtung des als Punktmasse vereinfachten Fahrzeugs kann z.B.
für Glatteis bis zu griffigen Asphalt mit straßenzugelassenen Hochleistungsreifen zwischen 0,15
bis 1,5 variieren. Trotz dieser großen Spannweite des maximalen Reibwerts sollen Fahrdynamikre-
gelungen auch auf schneebedeckter Fahrbahn eine Verbesserung des Fahrverhaltens erzielen. Um
diesen Ansprüchen gerecht zu werden, wird zum einen ein zuverlässiger Reibwert-Schätzer und
zum anderen eine Applikation der Fahrdynamikregelung auf den geschätzten maximalen Reib-
wert benötigt. Weber (2005) untersucht das Verbesserungspotenzial von Stabilisierungssystemen
durch eine Reibwertsensorik und kommt zu dem Schluss, dass durch einen bekannten maximalen
Reibwert signifikante Verbesserungen von Längs- und Querdynamikregelungen möglich sind.

Die Adaption des maximalen Reibwerts sollte gerade für Reibwertsprünge hin zu niedrigen Reib-
werten möglichst schnell sein, wenn sich mindestens ein Rad nahe der Kraftschlussgrenze befindet.
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Integrations-
grad der Modelle

Abdeckung
von

Manövern

Modulare Fahrdynamikschätzer
(pro Schätzgröße ein Schätzer)

integrierte Fahr-
dynamikschätzer

Querdyn.
Manöver
bis 6 m/s²

+ Niedrig-
reibwert

+ Steilkurve

+ max.
Querb.

+ langsames
Übersteuern

wenig Heuristken

Anzahl der
Heuristiken viele Heuristken

Schorn (2007)
Halbe (2008)
(FDM, NLB)

Imsland (2005)
(KIN, NLB)

Diese Arbeit

Bauer (2015)
(FDM, EKF)

Kiencke (2005)
Vietinghoff (2005)

(FDM, NLB)

Imsland (2007) nach Suissa (1997)
(KIN, EKF)

Grip (2009)
(KIN, NLB)

Imsland (2007)
(KIN, NLB)

Baffet (2007)
(FDM, EKF)

Doumiati (2011)
(FDM, UKF)

Fukada (1999)
(KIN, NLB)

Bild 1.4: Einteilung von Schwimmwinkelschätzalgorithmen nach Integrität und Abdeckung

nach validierten Manövern; Prozessmodell mit kinematischen Modell (KIN), Prozessmo-

dell mit Fahrdynamikmodell (FDM), Schätzmethode mit nichtlinearem Beobachter (NLB),

Schätzmethode mit erweiterten oder Unscented-Kalman-Filter (EKF/UKF)

Bild 1.5: Einteilung von Schwimmwinkelschätzalgorithmen nach Integrität und Abdeckung

nach validierten Manövern; Prozessmodell mit kinematischen Modell (KIN), Prozessmo-

dell mit Fahrdynamikmodell (FDM), Schätzmethode mit nichtlinearem Beobachter (NLB),

Schätzmethode mit erweiterten oder Unscented-Kalman-Filter (EKF/UKF)

Bild 1.6: Einteilung von Schwimmwinkelschätzalgorithmen nach Integrität und Abdeckung

nach validierten Manövern; Prozessmodell mit kinematischen Modell (KIN), Prozessmo-

dell mit Fahrdynamikmodell (FDM), Schätzmethode mit nichtlinearem Beobachter (NLB),

Schätzmethode mit erweiterten oder Unscented-Kalman-Filter (EKF/UKF)

Bei fehlender Anregung soll der Reibwert in Richtung Hochreibwert eingestellt werden, um im
Zweifel die Fahrdynamikregelung auf die Hochreibwert-Applikation zu parametrieren.

Stand der Technik

Die Güte von Verfahren zur Schwimmwinkelschätzung, die auf nichtlinearen Reifenmodellen ba-
sieren, sind vom aktuellen maximalen Reibwert stark abhängig. Daher werden in Imsland u. a.
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Schätzer 2
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u2
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xO2

Schätzer

xOu
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Ox1

Ox2

#

a) modulare Zustandsschätzung b) integrierte Zustandsschätzung

z1

z2

z D Œz1; z2

Bild 1.7: Vergleich von modularer a) und integrierte Zustandsschätzung b)

(2007) basierend auf Suissa u. a. (1996) und in Bechtloff u. a. (2016) der maximale Reibwert di-
rekt neben den Bewegungsgrößen

x D Œ:::;�max� (1.16)

in einem EKF geschätzt.

In Ray (1997), Grip u. a. (2006), Imsland u. a. (2007), Grip u. a. (2009) wird der maximale Reib-
wert separat geschätzt.

Grip u. a. (2009) korrigiert den maximalen Reibwert durch die Rückführung der Differenz gemes-
sener aY und geschätzter Querbeschleunigung aY.Ox;u/ mit der Pacejka-Magic-Formula

P�max D K�.Ox;u/ .aY � aY.Ox;u// (1.17)

Die Beobachterverstärkung K�.Ox;u/ ist dabei abhängig vom aktuell geschätzten Schwimmwin-
kel. Der Reibwert wird nur bei Erfüllung mehrerer Bedingungen adaptiert. Die Gierrate muss z.B.
groß genug sein, die Schwimmwinkelgeschwindigkeit muss eine Grenze überschreiten oder ESC-
Eingriffe müssen bemerkt werden. Wird der maximale Reibwert gerade nicht angepasst, wird er
gegen einen Standardwert mit einer Zeitkonstante gefiltert. Es wird allerdings aufgezeigt, dass die
Reibwertadaption bei stationären Manövern nicht gut funktioniert, da die Adaptionsschwellen oft
nicht erreicht werden. Besonders auf Niedrigreibwert führt dies zu Problemen, da der Schwimm-
winkel stark unterschätzt wird, wenn der Reibwert wegen mangelnder Anregung nicht schnell
genug adaptiert wird. Ein Kompromiss bei der Applikation der Schwellen ist nicht zu umgehen.

Villagra u. a. (2011) schätzt den maximalen Reibwert, indem die aktuelle Steigung der Längsreib-
wertkennlinie

d�X

dsX
D d�X

dt

dt

dsX
D P�X

PsX
(1.18)

durch Differenzieren von Längsschlupf sX und Längsreibwert

�X D FTX=FZ (1.19)
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ausgewertet wird. Ist die Steigung kleiner als eine Schwelle, wird der maximale Reibwert gleich
dem aktuellen Reibwert gesetzt. Es werden Ergebnisse mit Realdaten während einer Bremsung
auf Hochreibwert gezeigt.

Lee u. a. (2004) schätzt die aktuelle auf die Radlast normierte Schlupfsteifigkeit c�
sX

D csX=FZ

und schließt so auf den maximalen Reibwert in Längsrichtung, lange bevor dieser erreicht wird.
Messungen auf nassem Asphalt ergeben z.B. normierte Schlupfsteifigkeiten von c�

sX
D 40 im

Vergleich zu c�
sX

D 52 bei trockenem Asphalt. D.h., auch bei geringer Anregung in Längsrichtung
könnte eine Aussage über den maximalen Reibwert in Querrichtung getroffen werden.

1.2.4 Schräglaufsteifigkeiten

Das ESC vergleicht die gemessene Gierrate mit einer simulierten Gierrate eines linearen Ein-
spurmodells. Bei größeren Abweichungen wird davon ausgegangen, dass sich das Fahrzeug nicht
mehr wie das lineare Modell verhält. Dementsprechend werden Bremseingriffe zur Stabilisie-
rung erzeugt, Van Zanten (2006). Die simulierte Modellgierrate hängt stark von den verwende-
ten Schräglaufsteifigkeiten ab. Ändern sich die Schräglaufsteifigkeiten des echten Fahrzeugs, z.B.
durch ein anderes Reifenfabrikat, Verschleiß oder Reifenluftdruckabfall, können die Abweichun-
gen der Gierrate bereits in nicht kritischen Fahrsituationen so groß werden, dass es zu Fehlein-
griffen kommt, Van Zanten (2006). Um diese Fehleingriffe zu vermeiden, müssen die aktuellen
Schräglaufsteifigkeiten im normalen Fahrbetrieb geschätzt werden, siehe Chen u. a. (2013).

Unterschiedliche Bereifungen sollen nach einiger Zeit „erkannt“ werden. Steifigkeitsänderungen,
die mit kleinen Massenänderungen einhergehen, werden als weniger kritisch eingestuft, da sich
die relative Steifigkeit

c˛=FZ � const: (1.20)

bezogen auf die Normalkraft FZ bei geringen Massenänderungen kaum ändert.

Stand der Technik

Die Online-Schätzung von Schräglaufsteifigkeiten kann in drei Kategorien unterteilt werden:

� direkte Adaption mit geschätzten Schwimmwinkel,

� indirekte Adaption durch parallele Zustands- und Parameterschätzung und

� indirekte Adaption unter speziellen Annahmen.

Direkte Adaption mit geschätztem Schwimmwinkel: Börner (2004), Schorn (2007) und Halbe
(2008) schätzen die adaptiven Schräglaufsteifigkeiten

k˛;f=r D OFYT;f=r. R ;aY/= Ǫ f=r. Ǒ/ (1.21)
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direkt mit dem geschätzten Schräglaufwinkel Ǫ . Ǒ/ aus der Schwimmwinkelschätzung, der ge-
schätzten Achsquerkraft OFYT;f=r aus Sensorgrößen und einem RLS-Verfahren. Bild 1.9 zeigt den
Aufbau der Methode. Der Ansatz funktioniert für dynamische Manöver gut, für stationäre Manö-
ver kann die Schätzung des Schwimmwinkels und damit der Schräglaufsteifigkeiten allerdings
divergieren, siehe Bechtloff (2013). Auch im nichtlinearen Bereich des Querkraft-Schräglauf-
Verhaltens wird k˛ so angepasst, dass auch Manöver mit großen Schräglaufwinkeln beschreiben
zu können, siehe Bild 1.8. In dieser Arbeit ist mit einer adaptiven Schräglaufsteifigkeit allerdings
immer die Schräglaufsteifigkeit im Ursprung gemeint, da sich diese nur langsam über Verschleiß
oder in engeren Grenzen bei einem Reifenwechsel ändert.

˛

FYT

c˛

k˛

k˛

Bild 1.8: Definition von der Schräglauf-
steifigkeit im Ursprung c˛ und adapti-
ver Schräglaufsteifigkeit k˛ nach Bör-
ner (2004)

D Œv; ˇ; PO O O
xO1

xO2

xO1

z1

Beobachter

adaptive
Schräglauf-
steifigkeiten k˛,f/rD

k˛,f/r

FYT,f/r
O

Œ Ov; PD

z2 D

u1 D ŒFXT; ıH

Bild 1.9: Adaption der Schräglaufstei-
figkeiten eines Einspurmodells k˛;f=r
auf Basis der geschätzten Zustände und
der geschätzten Radquerkräfte FYT;f=r

Sienel (1997) umgeht das Problem des unbekannten Schwimmwinkels, indem er auf die zeitliche
Ableitungen von Messgrößen zurückgreift, um die Schräglaufsteifigkeit

c˛ D dFY

d˛
D dFY

dt
� dt

d˛
D

PFY.« ; PaY/

P̨ . R ; Pıf/
(1.22)

zu berechnen. Problematisch sind allerdings die zweifachen Ableitungen der Gierrate. In Sienel
(1997) wird dies vermieden, indem die Querbeschleunigung nicht im Fahrzeugschwerpunkt, son-
dern an der Vorderachse gemessen wird.

Indirekte Adaption durch parallele Zustands- und Parameterschätzung: Best u. a. (2000) nehmen
die Schräglaufsteifigkeiten in den Zustandsvektor x D Œv;ˇ;c˛;f;c˛;r� eines EKF auf und schätzen
diese zusammen mit den Zuständen eines linearen Einspurmodells. Ergebnisse werden nur in der
Simulation gezeigt.

Baffet u. a. (2009) schätzt mit einem EKF erst die Achslängs- und Querkräfte und korrigiert damit
einen Schwimmwinkelschätzer basierend auf einem Einspurmodell und einem linearen Reifen-
modell, bei dem die Schräglaufsteifigkeiten als Random-Walk im Zustandsvektor mitgeschätzt
werden. Validiert wird der Schätzer mit Slalom- und Kreisfahrten.
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Bechtloff u. a. (2015) und Bechtloff u. a. (2016) modellieren die Schräglaufsteifigkeiten ebenfalls
als Random-Walk und nehmen sie ebenfalls in den Zustandsvektor mit auf. Der Schätzer basiert
auf einem EKF mit einem erweiterten Einspurmodell und Pacejka-Reifenmodell. Die Steifigkei-
ten werden erfolgreich bei einem Slalom-Manöver mit maximaler Querbeschleunigung geschätzt.
Auch bei geringen Anregungen auf der Landstraße konvergieren die Steifigkeiten nach ca. 8 Mi-
nuten Testfahrt. Bechtloff u. a. (2015) merkt an, dass die Steifigkeiten nur durch eine gewisse
dynamische Anregung identifiziert werden können, da sich die Gier- und Querbeschleunigungs-
verstärkung bei geringen Frequenzen und Schräglaufsteifigkeiten, die den gleichen Eigenlenkgra-
dient bilden, nicht unterscheiden.

Indirekte Adaption unter speziellen Annahmen: Wesemeier (2011) schätzt während stationären
Manövern den Eigenlenkgradient EG mittels der aktuellen Gierverstärkung auf Basis des linearen
Einspurmodells mit einem RLS. Über die Annahme, dass sich die Schräglaufsteifigkeiten über
einen gemeinsamen Faktor � und den Basis-Schräglaufsteifigkeiten c˛;f=r0 adaptieren lassen, kann
der Faktor

� D EG0

EG
) c˛;f D c˛;f0 � EG0

EG
) c˛;r D c˛;r0 � EG0

EG
(1.23)

mit der aktuellen Eigenlenkgradient EG und einem Basis-Eigenlenkgradient EG0 geschätzt wer-
den. Die Methode setzt voraus, dass sich das Verhältnis der Schräglaufsteifigkeiten c˛;f=c˛;r nicht
verändert. Zudem darf der aktuelle Eigenlenkgradient nicht null werden. Sierra u. a. (2006) ver-
wendet eine ähnliche Methode, bei der das Verhältnis der Schräglaufsteifigkeiten konstant bleiben
muss. Beide Annahmen haben in der Praxis gezeigt, dass die Methode nur sehr eingeschränkt
verwendet werden kann, siehe Bechtloff (2013).

Das Patent Chen u. a. (2013) schlägt zur Vermeidung von Fehleingriffen des ESC vor, lediglich
die hintere Schräglaufsteifigkeit

c˛;r D
m � lf � aY�JZ� R 

v� P 

l2

v2 � l �ıf

v� P 
C m�lr�aY

c˛;f�v� P 
C JZ� R 

c˛;f�v� P 

(1.24)

durch Umformen der Einspurmodell-Differentialgleichungen zu schätzen. Alle anderen Parameter
des linearen Einspurmodells werden als konstant angenommen. Es wird sogar zwischen einer
Steifigkeit für Rechts- und für Linkskurven unterschieden, um asymmetrische Fahreigenschaften
zu berücksichtigen.

Würtenberger (1997) minimiert mit einem Simplex-Downhill-Algorithmus den Ausgangsfehler
(Querbeschleunigung und Gierrate) des linearen Einspurmodells

J D
X

.aY � aY;ESM/
2 C . P � P ESM/

2; (1.25)

um die Schräglaufsteifigkeiten nach dynamisch angeregten Testfahrten zu identifizieren. Dadurch,
dass erst eine Reihe von geeigneten Testfahrtsequenzen gesammelt werden muss, braucht die Me-
thode mehr Speicherplatz und ist daher nicht direkt als Online-Schätzalgorithmus einsetzbar.
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1.2.5 Achsindividuelle maximale Reibwerte in Querrichtung

Die Differenz der maximalen Reibwerte der Vorder- und Hinterachse �Y;max;f - �Y;max;r bestim-
men das Fahrverhalten im Grenzbereich. Serienmäßig ist die Vorderachse immer schwächer (z.B
�Y;max;f D 0:9 und �Y;max;f D 1:0) als die Hinterachse ausgelegt, um ein untersteuerndes
Fahrverhalten und eine große Gierdämpfung bei hohen Querbeschleunigungen aY zu erhalten.
Sollen maximale Kurvengeschwindigkeiten erreicht werden, ist eine „stärkere“ Vorderachse wün-
schenswert. Dies kann unter anderem auch durch das Aufbringen eines Zusatzgiermoments MZ

um die Hochachse durch Bremseingriffe oder einseitige Antriebsmomente (elektronische Diffe-
rentialsperre) erreicht werden. So wird die verfügbare Seitenkraftreserve an der Hinterachse durch
ein Zusatzmoment an die Vorderachse „gereicht“. Orend (2005), Andreasson (2007), Moseberg
(2013) und Hoedt (2013) untersuchen solche optimalen Radkraftverteilungen im Hinblick auf eine
gleichmäßige Ausnutzung der maximalen Reibwerte aller vier Reifen bei bekannten maximalen
Reibwerten je Achse. Bild 1.10 veranschaulicht den Einfluss eines Zusatzgiermoments MZ und
die Wirkung auf die Querkraftkennlinien a). Die Vorderachse wird „virtuell stärker“ durch das
Zusatzgiermoment. Das Pacejka-Handling-Diagramm b), bei dem die normierte Querbeschleuni-
gung über die Schräglaufwinkeldifferenz ˛f � ˛r aufgetragen wird, veranschaulicht das Fahrver-
halten eines Fahrzeugs bis in den Grenzbereich, siehe Pacejka (2012). Es wird deutlich, dass eine
größere normierte Querbeschleunigung erzeugt werden kann als ohne Zusatzgiermoment.

Ist der maximale Reibwert der Hinterachse allerdings durch z.B. Erhitzung oder Verschleiß der
Hinterreifen stark im Vergleich zum vorderen gesunken, kann ein Fahrzeug mit diesem Zusatz-
moment, welches das Untersteuern vermeiden sollte, sehr stark übersteuern und nahezu unfahrbar
werden. In diesem Fall ist es wichtig, die achsindividuellen maximalen Reibwerte im Fahrbetrieb
mitzuschätzen. Da sich die Reibwertdifferenz nur langsam ändert, gelten keine hohen Dynamikan-
forderungen an die Schätzung.

˛

~~

~~

˛

~~

~~

f - ˛ r

P P= 0

Y,max,r
*

Hinterachskennlinie

Vorderachskennlinie

aY
g

FY

FZ

Handlingkurve ohne Zusatzgiermoment

Handlingkurve mit Zusatzgiermoment

a) b)

M Z

mgl

Y,max,f

Y,max,f/r

M Z

der Bremseingriff erzeugt ein Zusatzgiermoment

0
0

0
0

Bild 1.10: a) Prinzip der Wirkung des Zusatzgiermoments durch ein Bremseingriff am kurven-

inneren Hinterrad auf die resultierenden Achsquerkraftkennlinien; b) Resultierendes Pacejka-

Handling-Diagramm mit und ohne Zusatzgiermoment
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Stand der Technik

In Abschnitt 1.2.3 sind einige Verfahren dargestellt, die einen schnell veränderlichen maximalen
Reibwert schätzen, der die Vorder- und Hinterachsquerkraftkennlinien zusammen auf Niedrigreib-
wertkennlinien anpasst. Wird allerdings nach Verfahren gesucht, die auch eine veränderliche Dif-
ferenz der maximalen Reibwerten an der Vorder- und Hinterachse oder deren Verhältnis schätzen,
sind kaum Veröffentlichungen bekannt. Lediglich Bechtloff u. a. (2015) verwendet die Pacejka-
Magic-Formula und nimmt die achsindividuellen maximalen Reibwerte als Random-Walk in den
Zustandsvektor

x D Œ:::;�max;f;�max;r�
T (1.26)

auf, um sie bei großer Anregung neben den Bewegungsgrößen zu schätzen.

1.3 Konzeptbeschreibung und Gliederung der Arbeit

Ziel dieser Arbeit ist es, einer modernen Fahrdynamikregelung die wichtigsten Bewegungsgrößen
Schwerpunktgeschwindigkeit und Schwimmwinkel zur Verfügung zu stellen. Dazu soll lediglich
die vorhandene ESC-Sensorik genutzt werden. Damit eine Steuerung oder ein Führungsmodell auf
Veränderung des querdynamischen Fahrverhaltens reagieren kann, sollen außerdem die fahrdyna-
misch wichtigsten Parameter, wie die Schräglaufsteifigkeiten und der maximale Reibwert an der
Vorder- und Hinterachse während des Fahrbetriebs geschätzt werden. Ein besonderer Anspruch
ist, dass gerade die Schätzung des Schwimmwinkels in allen erdenklichen Situationen robuste
Ergebnisse liefern muss, um nicht fälschlicher Weise eine instabile Fahrsituation als stabile Fahr-
situation zu detektieren und Fehleingriffe einer Stabilisierungsregelung auszulösen.

Daher werden in Kapitel 2 fahrdynamische Modelle hergeleitet, die zwar noch einfach genug sind,
um sie direkt für die Regelung und Zustandsschätzung verwenden zu können, aber dennoch in der
Lage sind, alle erforderlichen Situationen wie die Fahrt in der Steilkurve, Fahrten im physikali-
schen Grenzbereich auf Hoch- und Niedrigreibwert genau genug zu modellieren. Bild 1.11 zeigt
den konzeptionellen Signalflussplan und ordnet den einzelnen Blöcken die Kapitel in dieser Arbeit
zu.

Die Grundlagen der Zustandsschätzung mit Kalman-Filtern wird Kapitel 3 behandelt.

Um das erweiterte Einspurmodell mit den nichtlinearen Achsquerkraftkennlinien zu parametrie-
ren, werden in Kapitel 4 die benötigten fahrzeugabhängigen Parameter durch Fahrversuche und
einer Referenzsensorik bestehend aus 6D-IMU, GPS und Correvit-Sensor identifiziert. Dabei wer-
den Manöver gefahren, die in der Lage sind, die Vorder- und Hinterachse über den gesamten
Schräglaufwinkelbereich bis ca. 20ı abzudecken. Die identifizierten Parameter dienen dann der
Zustandsschätzung und der Fahrdynamikregelung als Grundparametrierung.

Die Zustandsschätzung mit ESC-Sensorik wird in Kapitel 5 behandelt. Durch eine Beobachtbar-
keitsanalyse wird deutlich, dass die Qualität der Schwimmwinkelschätzung mit einem erweiterten
Kalman-Filter abhängig vom Arbeitspunkt ist. Anhand des Vergleichs der Rückführverstärkungen
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eines EKF und eines UKF wird der Unterschied bzgl. der Stabilisierung des Schwimmwinkels bei
einer besonders kritischen Situation gezeigt.

In Kapitel 6 erfolgt die Validierung mittels unterschiedlicher Testfahrten mit einem BMW F10
550i auf Fahrdynamikflächen, Steilkurven, Handlingkursen und auf Schnee. Insgesamt kann ge-
zeigt werden, dass der Algorithmus auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdy-
namisch relevanten Situationen robuste Ergebnisse liefert. Zudem werden an einigen Stellen die
Vorteile einer zusätzlichen Roll- und Nickratenmessung aufgezeigt.

Kapitel 7 zeigt ein Beispiel einer Fahrdynamikregelung, die die geschätzten Größen zur Verbes-
serung der Regelgüte nutzen kann. Sie basiert auf einer flachheitsbasierten Modellfolgesteuerung,
die die geschätzten Schräglaufsteifigkeiten für eine Inversion der Reifenkennlinie nutzt. Durch
die Rückführung des geschätzten Schwimmwinkels und einem einfachen P-Regler erfolgt die
Stabilisierung des Fahrzeugs bei langsam anwachsenden Schwimmwinkeln. Die Stellgrößen sind
überlagerte Vorderachs- und Hinterachslenkwinkel, sowie Bremseingriffe. Ergebnisse von Lenk-
winkelsprüngen, Doppelspurwechseln und langsamen Übersteuern auf Niedrigreibwert werden
mit der Simulation IPG Carmaker gezeigt.

Die Arbeit schließt mit einer Zusammenfassung in Kapitel 8.
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Bild 1.11: Informationsfluss im Gesamtkonzept und Zuordnung zu den entsprechenden Kapi-

teln dieser Arbeit
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2 Modellbildung

Dieses Kapitel beschreibt die Modellierung des Fahrverhaltens bis in den fahrpysikalischen Grenzbe-

reich. Die entsprechenden Modelle werden später für die Zustandsschätzung und Regelung heran-

gezogen. Zuerst werden die genutzten Koordinatensysteme beschrieben. Zur Bewegungserzeugung

müssen Kräfte zwischen der Fahrbahn und den Reifen durch Längs- und Querschlupf entstehen.

Experimentelle Modelle, die diesen Zusammenhang aus Kraft und Schlupf beschreiben, werden vor-

gestellt. Die Fahrzeugbewegung wird nicht nur in der Ebene, sondern im dreidimensionalen Raum

als Zweispurmodell betrachtet. So sind die entwickelten Modelle auch bei Fahrten in Steilkurven bei

gleichzeitiger Fahrbahnsteigung gültig. Durch Zusammenfassen der Räder einer Achse entsteht das

erweiterte Einspurmodell. Ein Wankmodell, welches zur Schätzung des Wankwinkels zwischen dem

Aufbau und der Fahrbahn verwendet werden soll, wird ebenfalls vorgestellt.

2.1 Koordinatensysteme

Ein Kraftfahrzeug ist ein komplexes System, das aus vielen Teilsystemen besteht. Je nach betrach-
tetem Teilsystem werden Koordinatensysteme mit unterschiedlichen Ausrichtungen genutzt. Für
die Beschreibung der Fahrdynamik eines Kraftfahrzeugs werden in dieser Arbeit vier orthogonale
Rechtssysteme, die sich an die Koordinatensysteme der DIN-ISO-8855:2013-11 (2013) orientie-
ren, definiert. In Abbildung 2.1 sind alle Koordinatensysteme und zugehörige Winkel dargestellt.

1. Ortsfestes Koordinatensystem (Inertialsystem) XE, YE, ZE (Anmerkung: „E“ = earth-fixed)
Die XE- und YE-Achsen liegen in der Horizontalebene. Die ZE-Achse ist nach oben ge-
richtet. Die Position sowie die von einem GPS gemessenen Geschwindigkeiten werden in
diesem Koordinatensystem beschrieben.

2. Fahrzeugfestes Koordinatensystem XV, YV, ZV (Anmerkung: „V“ = vehicle)
Das Fahrzeug besitzt sechs Freiheitsgrade im Raum. Der Ursprung des fahrzeugfesten Koor-
dinatensystems liegt fest im gefederten Schwerpunkt des Fahrzeugaufbaus. Die translatori-
schen Bewegungen in Richtung der XV -, YV - und ZV -Achse werden als Zucken, Schieben
und Heben bezeichnet. Da die meisten Fahrzeugsignale in diesem Koordinatensystem ge-
messen werden und es sich anbietet die Fahrdynamik auch in diesem System darzustellen,
wird in dieser Arbeit für die Beschreibung von Größen im fahrzeugfesten Koordinatensys-
tem der Index „V“ weggelassen, um die Gleichungen übersichtlich zu halten.
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Bild 2.1: Koordinatensysteme, Winkel und Fahrzeugabmessungen nach DIN-ISO-8855:2013-

11 (2013)

3. Reifenfestes Koordinatensystem XT, YT, ZT (Anmerkung: „T“ = tire)
Für jedes Rad des Fahrzeugs wird ein reifenfestes Koordinatensystem definiert. Der Ur-
sprung liegt im Reifenaufstandspunkt. Die XT-ZT- Ebene liegt in der Radmittelebene und
die XT-YT-Ebene in der Fahrbahnebene. Mit diesem Koordinatensystem wird auch die Lage
der Fahrbahn durch die Winkel 'T und �T relativ zur horizontalen Ebene beschrieben.

4. Fahrzeugfestes Sensor-Koordinatensystem XS, YS, ZS (Anmerkung: „S“ = sensor)
Zusätzlich wird ein fahrzeugfestes Sensor-Koordinatensystem eingeführt. Es liegt fest im
Fahrzeug mit den Abständen lS und bS vom Schwerpunkt entfernt.

Die Lage des Schwerpunktes wird horizontal mit dem Radstand l und dem Abstand zur Vorderach-
se lf oder zur Hinterachse lr und vertikal mit der Schwerpunktshöhe h definiert. Die Spurweiten
vorne und hinten werden mit bf und br bezeichnet.

2.2 Lagedarstellung

Um Größen zwischen den unterschiedlichen Koordinatensystemen zu transformieren, sind drei
Elementardrehungen erforderlich. In dieser Arbeit wird die Drehreihenfolge um die Eulerwinkel
nach DIN-ISO-8855:2013-11 (2013) genutzt. Eulerwinkel sind zur Beschreibung der Lage sehr
anschaulich. Der Nachteil, dass bei einem Nickwinkel von ˙90ı Singularitäten auftreten, kommt
bei der Beschreibung der Fahrzeugbewegung nicht zum Tragen. Für den Übergang vom ortsfesten
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Inertialsystem „E“ in das fahrzeugfeste Aufbausystem „V“2
4 xV

yV

zV

3
5 D TV

E .';�; / �
2
4 xE

yE

zE

3
5 (2.1)

mit der Richtungskosinusmatrix

TV
E D

2
4 1 0 0

0 cos' sin'
0 � sin' cos'

3
5 �

2
4 cos � 0 � sin �

0 1 0

sin � 0 cos �

3
5 �

2
4 cos sin 0

� sin cos 0

0 0 1

3
5 (2.2)

erfolgt zuerst eine Drehung um die ZE-Achse mit dem Gierwinkel  . Um die neue Y -Achse wird
mit dem Nickwinkel � gedreht. Zuletzt erfolgte eine Drehung um die neue XV-Achse mit dem
Wankwinkel '.

Durch Invertierung der Richtungskosinusmatrix lassen sich die Drehungen rückgängig machen
und beschreiben eine Transformation von dem fahrzeugfesten in das erdfeste Koordinatensystem2

4 xE

yE

zE

3
5 D �

TV
E

��1 �
2
4 xV

yV

zV

3
5 : (2.3)

Die Verdrehungen zwischen dem Aufbaukoordinatensystem „V“ und den Reifenkoordinatensyste-
men „T“ werden mittels des Wankwinkels 'K, des Nickwinkels �K der Radaufhängung und einer
Verdrehung um die ZV-Achse mit dem Lenkwinkel ı beschrieben. In dieser Arbeit wird von sehr
kleinen Nickwinkeln ausgegangen, sodass lediglich der Wank- und der Lenkwinkel bei der Trans-
formation2
4xV
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yT

zT

3
5
(2.4)

berücksichtigt werden muss.

2.3 Reifen- und Achskraftmodelle

Über die Aufstandsfläche des Reifen, auch Latsch genannt, werden sämtliche Kräfte zwischen
Fahrzeug und Fahrbahn übertragen. Die Reifen bestimmen daher das längs- und querdynamische
Fahrverhalten maßgeblich und sollen deswegen genauer betrachtet werden.
Besonders bei der Betrachtung der Querdynamik ist die resultierende Achsquerkraftcharakteristik
von Interesse. Die entsprechenden Achsquerkraftmodelle resultieren aus den Reifenquerverhalten
der jeweiligen Achse und der zugehörigen Fahrwerksauslegung. Z.B. wird durch die unterschied-
liche Auslegung des Fahrwerks der Vorder- und Hinterachse, aus Gründen der Fahrsicherheit, ein
untersteuerndes Fahrzeug mit den selben Reifen an der Vorder- und Hinterachse zu erzeugt.
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2.3.1 Reifenverhalten

In diesem Abschnitt werden nach der Definition des Reifenschlupfes einige wichtige Einflussgrö-
ßen auf die Reifenkraft beschrieben.

Schlupfdefinition

Längsschlupf entsteht aufgrund einer Differenz zwischen der Reifenumfangs- und der Reifen-
längsgeschwindigkeit, die zu einer Scherverformung der Profilelemente führt. Dies führt wieder-
um dazu, dass Kräfte zwischen der Fahrbahn und dem Reifen übertragen werden. In dieser Arbeit
soll die Längsschlupfdefinition nach Pacejka (2012) und DIN-ISO-8855:2013-11 (2013) verwen-
det werden. Hierbei wird der Längsschlupf

sX D !rdyn � vXT

vXT
(2.5)

aus der Längsgeschwindigkeit in Reifenkoordinaten vXT und der Umfangsgeschwindigkeit, wel-
che aus dem dynamischen Reifenhalbmesser rdyn und der Raddrehgeschwindigkeit ! berechnet
wird, gebildet. Ist die Umfangsgeschwindigkeit größer als die Längsgeschwindigkeit, wird der
Schlupf positiv. Es wird von Antriebsschlupf gesprochen. Bremsschlupf wird durch kleinere Um-
fangsgeschwindigkeiten relativ zur Längsgeschwindigkeit erzeugt. Das Vorzeichen des Schlupfes
wird negativ. Auf eine Fallunterscheidung bei der Schlupfberechnung zwischen Brems- und An-
triebsschlupf wie in Burckhardt (1993) wird verzichtet.

Der Querschlupf

sY D �vYT

vXT
D tan˛ (2.6)

wird in Pacejka (2012) als negativer Quotient der Quer- und Längsgeschwindigkeit in Reifenkoor-
dinaten verstanden. Dies entspricht, wie aus Bild 2.2 zu entnehmen, dem Tangens des Schräglauf-
winkels ˛. Durch das negative Vorzeichen erzeugt ein positiver Schräglaufwinkel eine positive
Kraft.

˛

vYT

vXT

Bild 2.2: Schräglaufwinkel am Reifen

Treten Längs- und Querschlupf gleichzeitig auf, wird von einem kombinierten Schlupf

s D
q

tan˛2 C s2
X (2.7)

gesprochen.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


2.3 Reifen- und Achskraftmodelle 25
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Bild 2.3: a) Prinzipielle Reifenquerkraftkennlinien mit Einfluss des Längsschlupfes; b) Prin-

zipielle Reifenquerkraftkennlinie bei unterschiedlichem Untergrund und Geschwindigkeiten

nach Pacejka (2012); c) Prinzipielles Reifenquerkraftmaximum in Abhängigkeit der Radlast

Einflüsse von Schlupf, Radlast, Fahrbahn, Geschwindigkeit

Bild 2.3 a) zeigt typische Reifenquerkraftkennlinien mit Einfluss des Längsschlupfes. Je größer
der Längsschlupf wird, desto stärker wird die Querkraft abgeschwächt. In Bild 2.3 b) wird deutlich,
dass nicht nur der Untergrund maßgeblich für die maximal übertragbare Kraft ist, sondern auch,
gerade auf nasser Fahrbahn, die Geschwindigkeit einen Einfluss hat. Die maximale Querkraft
FYT;max der Querkraftkennlinie verändert sich wie in Bild 2.3 c) nichtlinear abhängig von der
Radlast. D.h., der maximale Reibwert ist nicht konstant und somit steigt die maximale Kraft nicht
proportional zur Radlast an.

2.3.2 Effektives Achsquerkraftmodell

Für einfache Fahrdynamikmodelle ist die Größe der Querkraft an einer Achse wichtiger als an
einem Reifen. Daher soll nun gezeigt werden, wie sich aus dem Reifenverhalten im Zusammen-
spiel mit dem Fahrwerk effektive Achsquerkraftmodelle herleiten lassen, die sich gleichermaßen
für Zwei- als auch für Einspurmodelle bei gleicher Parametrierung eignen.

Einfluss der Kinematik

Zusätzlich zu den aufgeführten Einflüssen von Radlast, Fahrbahn, Geschwindigkeit auf die Quer-
kraftkennlinie kann die effektive Achsquerkraft noch von den momentanen Spurwinkeln der Rä-
der, die die Schräglaufwinkel vergrößern oder auch verkleinern können, beeinflusst werden, siehe
Heißing und Ersoy (2008). Durch die Kinematik der Radaufhängung verändert sich bei der Ein-
und Ausfederbewegung die Spur des jeweiligen Rades. Es wird versucht, durch mehr Vorspur am
wichtigeren kurvenäußeren Rad (Einfedern) die effektive Anfangssteigung zu vergrößern. Dieser
Effekt wird Wanklenken genannt. Bild 2.4 zeigt eine sogenannte Raderhebungskurve, welche die
Spuränderung in Abhängigkeit des Ein- bzw. Ausfederwegs darstellt. Auch in verschiedenen Fahr-
situationen können unterschiedliche Effekte bzgl. der effektiven Achsquerkraft erzielt werden. So
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Spurwinkel

Einfederweg

Vorderachse Hinterachse

Bremsen
geradeaus

ı0

a)

ı0,f

ı0,f

b)

Nachspur (-) Vorspur (+)

Bild 2.4: a) Prinzipielle Raderhebungskurve: Typische Spuränderung abhängig vom Radhub

der Vorder- und Hinterachse in Anlehnung an Heißing und Ersoy (2008); b) Darstellung eines

positiven Spurwinkels an der Vorderachse (Vorspur)

gehen z.B. die Vorderräder in Bild 2.4 beim Einfedern typischerweise in Nachspur und die Hinter-
räder beim Ausfedern mehr in Richtung Vorspur. Dies hat bei Bremsungen einen stabilisierenden
Effekt.

Einfluss der Elastokinematik

Durch elastische Gummilager und Einwirken von Quer- oder Längskräften kann der Spurwinkel
zusätzlich beeinflusst werden. Es wird von Querkraft- oder Längskraftlenken gesprochen, siehe
Reimpell (1986). Bild 2.5 macht die Wirkung der Elastokinematik auf die effektive Reifenquer-
kraft deutlich: Durch eine Querkraft verdreht sich das Rad um den Winkel�˛el Richtung kleinerer
effektiver Schräglaufwinkel ˛ D ˛kin ��˛el. Die Anfangssteigung der effektiven Querkraftkenn-
linie FY.˛/ über den kinematischen Schräglaufwinkel ˛kin kann so deutlich abgesenkt werden.
Durch eine andere Anordnung des elastischen Lagers kann der effektive Schräglaufwinkel aller-
dings auch verkleinert werden, sodass die effektive Schräglaufsteifigkeit auch zunehmen kann.

FYT

el

˛

v
˛kin

FYT

˛kin

el

FYT.˛kin/

FYT.˛/

a) b)

0
0

Bild 2.5: a) Prinzip des Achsquerkraftlenkens in Anlehnung an Pacejka (2012); b) Wirkung

auf die effektive Reifenkennlinie
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Einfluss der Wankabstützung

Durch den degressiven Zusammenhang aus Radlast und Querkraft (siehe Bild 2.3) wird die größe-
re Radlast am kurvenäußeren Rad in der Regel weniger Querkraft erzeugen, als das kurveninnere
Rad verliert. Bild 2.6 verdeutlicht den Effekt durch die Radlastverschiebung. Das linke Rad muss
durch das Wankmoment deutlich mehr Radlast abstützen als das rechte Rad (FZ;fl >> FZ;fr). Die
Querkraft des linken Rads FYT;fl wächst allerdings nicht proportional zur Radlast, sodass die Sum-
me der Reifenquerkräfte FYT;fl C FYT;fr < FYT;f geringer ist als bei der mittleren Radlast FZ;f.
Mit unterschiedlichen Federraten und Stabilisatoren an Vorder- und Hinterachse kann das Wank-
moment und damit die Radlastunterschiede während einer Kurvenfahrt unterschiedlich stark ab-
gestützt werden. Dies wird genutzt, um eine größere Radlastverschiebung an der Vorderachse als
an der Hinterachse zu erzeugen und so, auch bei gleichen Reifen, die effektive Achsquerkraft der
Hinterachse im Vergleich zur Vorderachse zu vergrößern und eine Untersteuertendenz bei hohen
Querbeschleunigungen zu erzeugen.

VerlustFYT

FZFZ,flFZ,fr FZ,f

FYT,f /2

/2

FYT,fl

FYT,fr

FYT,fl

FZ,fr FZ,fl

FYT,fl FYT,fr FYT,f

FYT,fr

0
0

Bild 2.6: Prinzip des Einflusses der Radlastverschiebung während einer Rechtskurve auf die

effektive Querkraft der Vorderachse in Anlehnung an Andreasson (2007)

Stationäres Achsquerkraftmodell

Durch die gezeigten Effekte und Einflüsse lassen sich die effektiven Achsquerkraftkennlinien im
Fahrwerksauslegungsprozess in gewissen Grenzen so anpassen, dass ein gewünschtes passives
Fahrverhalten resultiert. Für den Entwurf von Reglern und Beobachtern ist diese Modellierung al-
lerdings zu komplex. Viele unbekannte Kennlinien und Kennfelder können aus einem Fahrversuch
nicht eindeutig identifiziert werden. Stattdessen soll wie in Grip u. a. (2009) und Bauer (2015) mit
empirischen Achsquerkraftmodellen, die bereits die genannten Effekte abbilden, gearbeitet wer-
den. Mit der weit verbreiteten Magic Formula

FYT D DY � sin ŒCY � arctan .BY˛ � EY � .BY˛ � arctan.BY˛///� (2.8)

nach Pacejka (2012) lassen sich die Nichtlinearitäten der Reifenkennlinie in hoher Qualität abbil-
den und es ist einfach zu parametrieren. Das gebrochen rationale Reifenmodell nach Bechtloff
(2013) und Bauer (2015) lässt sich ebenfalls einfach parametrieren und hat Vorteile bzgl. Rechen-
zeit und analytischen Invertierbarkeit, kann aber den Kraftverlauf bei Schräglaufwinkeln nach
Auftreten der maximalen Seitenkraft nicht mehr genau genug modellieren. Der Faktor

DY D �Y;max � F�
Z (2.9)
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bestimmt die maximale Querkraft. Mit der modifizierten Radlast

F�
Z D FZ �

�
1 � kFZ

FZ;0 � FZ

FZ;0

�
(2.10)

wird das degressive Verhalten der Querkraftkennlinie gegenüber der Radlast entsprechend Bild
2.3 c) berücksichtigt. Bei der nominellen Radlast FZ;0 hat die Modifikation keinen Einfluss, siehe
Bild 2.7.

FZFZ,0

kFZ D 0

 kFZ D 0;3
FZ,0

FZ

0
0

Bild 2.7: Modell des degressiven Radlasteinflusses auf die Querkraft durch die modifizierte

Radlast nach Gl. (2.10)

Der Steifigkeitsfaktor

BY D F�
Z

FZ;0
c˛=.CY � DY/ (2.11)

wird so eingestellt, dass bei nomineller Radlast die Anfangssteigung der Querkraftkennlinie der
Schräglaufsteifigkeit c˛ entspricht. Der Formfaktor CY ist ein freier Parameter und bestimmt die
Form der Kurve hauptsächlich nach dem Maximum: Desto größer CY, je stärker sinkt die Quer-
kraft nach dem Maximum wieder ab. Der Formfaktor

EY D BY � ˛crit � tan
�
�

2C

�
BY � ˛crit � arctan .BY � ˛crit/

(2.12)

wird so parametriert, dass die maximale Kraft FYT;max genau zu dem Schräglaufwinkel ˛crit er-
reicht wird.
Auch das Auftreten von kombinierten Schlupfzuständen, wie sie z.B. bei Kurvenbremsungen und
Driften entstehen, soll ausreichend gut abgebildet werden. Zur Berücksichtigung der Querkraft-
abschwächung durch Längsschlupf setzt man statt des Schräglaufwinkels ˛ den resultierenden
Schlupf s in Gl. (2.8) ein

FT D DY sin ŒCY arctan .BYs � EY � .BYs � arctan.BYs///� (2.13)

und teilt die resultierende Kraft FT im Verhältnis des Querschlupfes und resultierenden Schlupf s
nach Gl. (2.7) auf

FYT D FT � sY

s
D FT � sYq

s2
Y C .� � sX/2

: (2.14)
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Bild 2.8: Berechnete Achsquerkraftmodelle nach Gl. (2.8): a) Variation des maximalen Reib-

werts �max; b) Variation der Schräglaufsteifigkeit c˛; c) Variation des kritischen Schräglauf-

winkels ˛crit; d) Variation des Formfaktors C

Mit dem Faktor � kann der Längsschlupf modifiziert werden, um eine stärkere (� > 1) oder
schwächere (� < 1) Querkraftabschwächung einzustellen.

Bild 2.8 zeigt Variationen der zu identifizierenden Parameter maximaler Reibwert �max, Schräg-
laufsteifigkeit c˛, kritischer Schräglaufwinkel ˛crit sowie Formparameter C . Kapitel 4 behandelt
die Identifikation dieser Parameter.

2.3.3 Transientes Querkraftverhalten

Im stationären Achskraftmodell wird die Beziehung zwischen der Querkraft und dem Schräglauf-
winkel bei stationären Fällen für ˛.t/ D const. beschrieben. Für schnelle Schräglaufwinkelände-
rungen muss das stationäre Modell modifiziert werden. Bei einer Schräglaufwinkeländerung muss
sich erst der Latsch verformen, bevor sich eine Querkraft aufbaut. Bild 2.9 zeigt die Modellvor-
stellung des dehnbaren Bandes nach Pacejka (2012). Der Einlaufvorgang ist somit wegabhängig
und kann durch die Einlauflänge lT beschrieben werden, siehe Böhm (1966) und Mitschke (2013).

Ein Standardverfahren für die Berücksichtigung des Einlaufverhaltens ist ein Verzögerungsglied
1. Ordnung nach Böhm (1966)

PFYT D � 1

lT=v
� FYT C 1

lT=v
� FYT;stat: (2.15)

Die Zeitkonstante T1 D lT=v ist direkt abhängig von der Geschwindigkeit. Als Eingang wird das
stationäre Modell nach Gl. (2.14) verwendet.
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Trajektorie

Reifenband

Radebene

YT-F

XTYT

ZTFXTF

Z T

Bild 2.9: Modellvorstellung des dehn-
baren Band-Modells in Anlehnung an
Pacejka (2012)

0 0;05 0;1 0;15 0;2

0

0;2

0;4

0;6

0;8

1

t in s
F

Y

stationäres Modell

PT1 mit lT D 0;55m

Bild 2.10: Simuliertes stationäres und
dynamisches Querkraftmodell nach Gl.
(2.15) bei einem Schräglaufwinkel-
sprung bei 65 km/h und einer Einlauf-
länge von lT D 0;55m

2.3.4 Reifenlängskraftmodell

Durch den Zugriff auf geschätzte Brems- und Antriebsmomente sowie der Raddrehzahlen der
einzelnen Räder wird es möglich, mit dem Fahrversuch Reifenlängskraftmodelle zu identifizieren.
Es wird wie beim Achsquerkraftmodell die empirische Magic Formula

FX D DX sin ŒCX arctan .BXsX � EX � .BXsX � arctan.BXsX///� (2.16)

nach Pacejka (2012) genutzt. Die Parametrierung erfolgt ebenso wie bei dem Querkraftmodell.
Der Faktor

DX D �X;max � FZ (2.17)

bestimmt die maximale Längskraft. Der Zusammenhang aus maximaler Längskraft und Radlast
wird wieder als proportional mit dem maximalen Reibwert in Längsrichtung �X;max vereinfacht.
Der Steifigkeitsfaktor

BX D csX=.CX � DX/ (2.18)

wird so eingestellt, dass die Anfangssteigung der Längssteifigkeit csX entspricht. Der Formfaktor

EX D
BX � sX;crit � tan

�
�

2CX

�
BX � sX;crit � arctan .BX � sX;crit/

(2.19)

wird so parametriert, dass die maximale Kraft FXT;max genau zu dem Schlupf sX;crit erreicht wird.
Setzt man statt des Längsschlupfes sX den resultierenden Schlupf s in Gl. (2.16) ein

FT D DX sin ŒCX arctan .BXs � EX � .BXs � arctan.BXs///� (2.20)
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und teilt die resultierende Kraft FT im Verhältnis des Längsschlupfes sX und resultierenden Schlupf
s auf, erhält man eine Reifenlängskraft

FXT D FT � sX

s
D FT � sXq

s2
Y C s2

X

; (2.21)

welche durch Querschlupf abgeschwächt werden kann.

2.4 Starrkörperbewegung

Für ein nichtlineares Modell der Fahrdynamik im Raum kann die Bewegung des Fahrzeugschwer-
punkts mit Hilfe der Newton-Euler-Gleichungen als Kräfte- und Momentenbilanz beschrieben
werden, siehe Gross (2015).

Drehraten

Die Eulerschen Kreiselgleichungen

M D PL C .! � L/ (2.22)

mit dem Drehimpuls L D J � !2
4MX

MY

MZ

3
5 D

2
4JX 0 0

0 JY 0

0 0 JZ

3
5 �

2
4 P!X

P!Y

P!Z

3
5C

2
4!Y � !Z � .JZ � JY/

!Z � !X � .JX � JZ/

!X � !Y � .JY � JX/

3
5 (2.23)

beschreiben die rotatorischen Freiheitsgrade des Starrkörpers.

Lage

Die zeitliche Änderung der Eulerwinkel aufgrund der fahrzeugfest gemessenen Drehraten wird
durch die Differentialgleichungen2

64 P'
P�
P 

3
75 D

2
4 1 sin' � tan � cos' � tan �

0 cos � � sin'
0 sin'= cos � cos'= cos �

3
5 �

2
4 !X

!Y

!Z

3
5 (2.24)

beschrieben und ist nicht nur abhängig von den körperfesten Drehraten, sondern auch von der aktu-
ellen Lage, siehe Titterton und Weston (2009) und Wendel (2007). Z.B. ändert sich der Gierwinkel
nach Gl. (2.24) in einer ' D 90ı - Steilkurve

P D sin'= cos �„ ƒ‚ …
1

�!Y C cos'= cos �„ ƒ‚ …
0

�!Z (2.25)
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ohne einer körperfesten Gierrate !Z bei entsprechender Nickrate !Y. Bei der Fahrt in der Ebene
sind die Eulerwinkel sehr klein und damit die Ableitungen der Eulerwinkel2

64 P'
P�
P 

3
75 �

2
4 1 0 0

0 1 0

0 0 1

3
5 �

2
4 !X

!Y

!Z

3
5 (2.26)

gleich den gemessenen Drehraten in den Fahrzeugkoordinaten.

Werden die Drehraten zwischen dem erdfesten- und dem Aufbaukoordinatensystem von einer
IMU gemessenen, müssen die Anteile der Erddrehrate und der Transportrate abgezogen werden,
siehe Wendel (2007). Die Transportrate resultiert aus der Bewegung gegenüber der gekrümmten
Erdoberfläche in Nord- und Ostrichtung, wodurch sich das Navigationskoordinatensystem mitdre-
hen muss. Aufgrund der im Automobilbereich geringen Auflösung der gemessenen Drehraten und
geringen Geschwindigkeit des Fahrzeugs können beide Anteile vernachlässigt werden.

Geschwindigkeit

Die translatorische Bewegung eines Starrkörpers beschreibt der Impulssatz von Newton

F D m � .Pv C ! � v/: (2.27)

Der Anteil Pv beschreibt die Ableitung der Geschwindigkeiten in Fahrzeugkoordinaten. Das Kreuz-
produkt ! � v entspricht der Zentripetalbeschleunigung für die Starrkörperbewegung im Raum.
Mit dem Drehratenvektor des Fahrzeugs ! D Œ!X; !Y; !Z�

T und dem Geschwindigkeitsvektor
v D ŒvX; vY; vZ�

T ergibt sich die Bilanzgleichung

F D m �
0
@
2
4 PvX

PvY

PvZ

3
5C

2
4!Y � vZ � !Z � vY

!Z � vX � !X � vZ

!X � vY � !Y � vX

3
5
1
A : (2.28)

Die am Starrkörper wirkenden Kräfte

F D F� C TV
E �
2
4 0

0

�g � m

3
5 (2.29)

werden in Kräfte, die direkt in Fahrzeugkoordinaten wirken, F� D ŒFX;FY;FZ� und Kräfte auf-
grund der Erdbeschleunigung g unterteilt, siehe Sendobry (2014). Der Erdbeschleunigungsanteil
wirkt entgegengesetzt der ZE-Achse und wird mit der Transformationsmatrix TV

E , siehe Gl. (2.2),
vom ortsfesten in das fahrzeugfeste Koordinatensystem transformiert. Durch Umstellen der Gl.
(2.28) erhält man die Geschwindigkeitsdifferentialgleichung der Starrkörperbewegung im Raum

PvX D FX

m
� !Y � vZ C !Z � vY C g � sin � ; (2.30)

PvY D FY

m
C !X � vZ � !Z � vX � g � cos � � sin' ; (2.31)

PvZ D FZ

m
� !X � vY C !Y � vX � g � cos' � cos � : (2.32)
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2.4 Starrkörperbewegung 33

Die fahrzeugfesten Kräfte F� können auch mit den ideal gemessenen Beschleunigungskräften

F� D m � a (2.33)

ausgedrückt werden. Dadurch entsteht eine Rechenvorschrift

PvX D aX � !Y � vZ C !Z � vY C g � sin � ; (2.34)

PvY D aY C !X � vZ � !Z � vX � g � cos � � sin' ; (2.35)

PvZ D aZ � !X � vY C !Y � vX � g � cos' � cos � ; (2.36)

mit der es möglich ist, aus den gemessenen Beschleunigungen und der aktuellen Lage die Ge-
schwindigkeiten durch Integration von den Gl. (2.34) bis (2.36) zu erhalten. Ein solcher Algorith-
mus wird als „Strapdown-Algorithmus“ bezeichnet, siehe Wendel (2007), Sendobry (2014) und
Klier u. a. (2008).

Position

Die Änderung der Position in ortsfesten Koordinaten

Pp D TE
Vv (2.37)

ergibt sich aus den Geschwindigkeiten in Fahrzeugkoordinaten v in Richtung der aktuellen Lage,
welche mit der Richtungskosinusmatrix TE

V beschrieben ist, siehe Wendel (2007).

2.4.1 Beispiel: Steilkurve

Die stationäre Fahrt durch eine Steilkurve wird mit dem konstanten Wank- und Nickwinkel

P' D 0; P� D 0 (2.38)

sowie vorgegebener Gierwinkeländerung

P D v

R
(2.39)

durch Vorgabe eines Bahnradius R und einer konstanten absoluten Geschwindigkeit v

PvX D 0; PvY D0; PvZ D 0 (2.40)

beschrieben, siehe Bild 2.11. Setzt man den Nickwinkel � , die Hubgeschwindigkeit vZ und die
Quergeschwindigkeit vY zu null, d.h.

� D 0; vZ D0; vY D 0 (2.41)

lassen sich die Gl. (2.24) und (2.34) bis (2.36) nach den Beschleunigungen

aX;stat D 0; aY;stat D cos .'/ � v2

R„ƒ‚…
aC

C sin .'/ � g; aZ;stat D � sin .'/ � v
2

R
C cos .'/ � g

(2.42)
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Bild 2.11: Darstellung der Bewegungsgrößen während einer stationären Fahrt in der Steilkur-

ve (Rechtskurve, negative Querbeschleunigung)

und den Drehraten

!X;stat D 0 ; !Y;stat D sin .'/ � v
R
; !Z;stat D cos .'/ � v

R
; (2.43)

in Fahrzeugkoordinaten in Abhängigkeit des Wankwinkels ' auflösen. Die Zentripetalbeschleuni-
gung

aC D v2

R
(2.44)

beschreibt gerade die Querbeschleunigung des Fahrzeugs während einer stationären Kreisfahrt
mit dem Radius R und der Geschwindigkeit v in der Ebene.

Bild 2.12 zeigt die Ein- und Ausfahrt einer Steilkurve mit einem Wankwinkel von knapp 30ı. Es
wird deutlich, dass nach Gl. (2.42) die Vertikalbeschleunigung stark zunimmt und ein Teil der
erdfesten Gierrate P auch in der Nickrate !Y nach Gl. (2.43) vorkommt.

2.5 Zweispurmodell

Bild 2.5 zeigt die verwendeten Größen des Zweispurmodells in der Ebene. Zur Herleitung des
Zweispurmodells werden die Newton-Euler-Gleichungen mit der Erweiterung des Erdbeschleuni-
gungsanteils nach Gl. (2.29) verwendet. Durch die Annahme kleiner Vertikalgeschwindigkeiten

vZ � 0; PvZ � 0 (2.45)

können Änderungen der absoluten Höhe im ortsfesten „E“-Koordinatensystem nur durch einen
Nickwinkel hervorgerufen werden, siehe Bild 2.14. Die Gl. (2.30) bis (2.32) vereinfachen sich so
zu

PvX D FX

m
C !Z � vY C g � sin �; (2.46)

PvY D FY

m
� !Z � vX � g � cos � � sin': (2.47)
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Bild 2.12: Einfahrt in und Ausfahrt aus einer Steilkurve mit 27ı Wankwinkel, R � 250 m

und v D 200 km/h. BMW F10 550i auf dem Prüfgelände Boxberg. Vergleich der gemessenen

Nickrate !Y und Vertikalbeschleunigung aZ mit den Modellen !Y;stat und aZ;stat für die sta-

tionären Steilkurvenfahrt nach Gl. (2.43) und Gl. (2.42). Weitere gemessene Größen: Gierrate

!Z, Rollrate !X und Querbeschleunigung aY

Fahrten mit starker Nickbewegung des Fahrzeugaufbaus gegenüber der Fahrbahn, Sprünge und
der freie Fall des Fahrzeugs werden so allerdings nicht mehr berücksichtigt. Die Längskräfte

FX D cos ıf.FXT;fl C FXT;fr/ � sin ıf.FYT;fl C FYT;fr/C cos ır.FXT;rl C FXT;rr/ : : :

: : : � sin ır.FYT;rl C FYT;rr/ � FR � FX;Air

(2.48)

setzen sich aus Reifenkräften FXT,FYT aller vier Räder transformiert mit den Lenkwinkeln ıf,ır in
das fahrzeugfeste Koordinatensystem, dem Rollwiderstand FR und dem Luftwiderstand

FX;Air D 1

2
� � cW � AX � v2

X (2.49)

mit der Luftdichte �, dem Luftwiderstandsbeiwert cW und der Stirnfläche AX zusammen. Die
Querkräfte bei einem Wankwinkel 'K relativ zur Fahrbahnebene

FY D cos'K

�
cos ıf.FYT;fl C FYT;fr/C sin ıf.FXT;fl C FXT;fr/ : : :

: : : cos ır.FYT;rl C FYT;rr/C sin ır.FXT;rl C FXT;rr/
�C sin.'K/

X
FZT;ij

(2.50)

beinhalten durch die Transformation von radfesten in fahrzeugfeste Koordinaten

Fij D FV;ij D TV
T .'K;0;ıij/ � FT;ij (2.51)

einen Anteil sin.'K/
P

FZT;ij der Summe der Radlasten. Die Indizes

ij 2 ffl;fr;rl;rrg (2.52)

stehen dabei für die linken (left, l) und rechten (right, r) Räder der Vorderachse (front, f) und der
Hinterachse (rear, r). Wird die Summe der RadlastenX

FZT;ij � mg (2.53)
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Bild 2.13: Zweispurmodell in der Ebene mit den Längs- und Querkräften (FXT und FYT) in

radfesten Koordinaten (T), den Schräglaufwinkeln ˛), den Lenkwinkeln ı, den Geschwindig-

keitsvektoren an den Rädern Ev, den Reaktionskräften (aX � m und aX � m), dem Giermoment

P!Z � JZ und der Luft- und Rollwiderstandskraft FX;Air C FR

a)

vZ 0
vZ ¤ 0

b)

K

Bild 2.14: Vernachlässigung der Vertikalgeschwindigkeit: a) Fahrzeugfestes Koordinatensys-

tem parallel zur Fahrbahnebene (�K D 0); b) Fahrzeugfestes Koordinatensystem durch starkes

Fahrwerksnicken nicht parallel zur Fahrbahnebene (�K ¤ 0)

in der Ebene mittels Erdbeschleunigung g und Fahrzeuggesamtmasse m geschätzt, können die
Querkräfte in Fahrzeugkoordinaten

FY D F�
Y C mg sin.'K/ (2.54)

mit den um die Lenkwinkel in Aufbaukoordinaten transformierten Querkräfte

F�
Y D cos'K

�
cos ıf.FYT;fl C FYT;fr/C sin ıf.FXT;fl C FXT;fr/ : : :

: : : cos ır.FYT;rl C FYT;rr/C sin ır.FXT;rl C FXT;rr/
� (2.55)

und dem Erdbeschleunigungsanteil mg sin.'K/, unter der Annahme kleiner Wankwinkel der Rad-
aufhängung cos.'K/ � 1, ausgedrückt werden.
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Ist der Wankwinkel der Radaufhängung gleich dem Wankwinkel des Aufbaus relativ zur horizon-
talen Ebene 'K D ', vereinfacht sich die Differentialgleichung für die Quergeschwindigkeit

PvY D
P

F�
Y C mg sin.'K D '/

m
� !Z � vX � g � cos � � sin' (2.56)

zu der bekannten Form

PvY D
P

F�
Y

m
� !Z � vX (2.57)

für Fahrten in der Ebene, siehe Isermann (2006) und Bauer (2015).

Zur Beschreibung der Drehdynamik um die Hochachse wird die Gierdifferentialgleichung aus Gl.
(2.22)

P!Z D 1

JZ
.MZ C !X � !Y � .JX � JY// (2.58)

für das Zweispurmodell genutzt. Das Moment um die Hochachse

MZ D .FY;fl C FY;fr/lf � .FY;rl C FY;rr/lr C .FX;fr � FX;fl/
bf

2
C .FX;rr � FX;rl/

br

2
(2.59)

berechnet sich aus den in Fahrzeugkoordinaten transformierten Radkräften. Mit der Annahme
kleiner Wankwinkel der Radaufhängung cos.'K/ � 1 muss der Winkel 'K nicht im Giermoment
mit eingesetzten Reifenkräften

MZ DŒcos.ıf/ � .FYT;fl C FYT;fr/C sin.ıf/ � .FXT;fl C FXT;fr/� � lf : : :
: : :�Œcos.ır/ � .FYT;rl C FYT;rr/C sin.ır/ � .FXT;rl C FXT;rr/� � lr : : :
: : :CŒcos.ıf/ � .FXT;fr � FXT;fl/ � sin.ıf/ � .FXT;fr � FXT;fl/� � bf

2
: : :

: : :CŒcos.ır/ � .FXT;rr � FXT;rl/ � sin.ır/ � .FXT;rr � FXT;rl/� � br

2

(2.60)

berücksichtigt werden.

Formt man Gl. (2.58) nach dem Giermoment

MZ D P!Z � JZ � !X � !Y � .JX � JY/ D M P!Z C M!X!Y (2.61)

um und zerlegt das gesamte Giermoment in die Giermomentanteile, die durch die Gierbeschleuni-
gung M P!Z D P!Z � JZ, und den Anteil, der durch die Kreiselkräfte entsteht M!X!Y D �!X � !Y �
.JX � JY/, und vergleicht die Größenordnungen in Bild 2.5 während der Ein- und Ausfahrt in
und aus einer Steilkurve mit nahezu 30ı Wankwinkel, wird deutlich, dass der Kreiselanteil M!X!Y

vernachlässigt werden kann. Somit folgt die vereinfachte Gierdifferentialgleichung

P!Z D 1

JZ
MZ (2.62)

mit eingesetzten Kräften in fahrzeugfesten Koordinaten. Mit den Zuständen

x D �
vX vY !Z

	T
(2.63)

ergibt sich das Zweispurmodell in Längs- und Quergeschwindigkeitsform mit Gl. (2.46), (2.47)
und (2.62).
Das Zweispurmodell kann allerdings auch mit dem einfacher zu interpretierenden Schwimmwin-
kel ausgedrückt werden.
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Bild 2.15: Messung einer Einfahrt in und Ausfahrt aus einer Steilkurve mit ca. 27ı Wank-

winkel und v D 200 km/h, BMW F10 auf dem Prüfgelände Boxberg: a) Wankwinkel ', b)

Fahrzeugfeste Drehraten, c) Vergleich des berechneten Kreiselmoments M!X!Y aufgrund der

Rollrate !X und Nickrate !Y mit dem Trägheitsmoment M P!Z

nach Gl. (2.61)

Geschwindigkeits-/ Schwimmwinkel-Darstellung

Drückt man die Längs- und die Quergeschwindigkeit,

vX D cosˇ � v ; vY D sinˇ � v ; (2.64)

mit der Übergrundgeschwindigkeit des Schwerpunkts v und dem Schwimmwinkel ˇ aus und setzt
ihre Ableitungen

PvX D � sinˇ � P̌ � v C cosˇ � Pv ; PvY D cosˇ � P̌ � v C sinˇ � Pv (2.65)

in Gl. (2.46) und (2.47) ein, erhält man das Zweispurmodell nach mehreren Zwischenschritten
(siehe Anhang 9.2) zu

Pv D cosˇ �
�
FX

m
C g � sin �

�
C sinˇ �

�
FY

m
� g � cos � � sin'

�
(2.66)

P̌ D cosˇ � 1
v

�
�
FY

m
� g � cos � � sin'

�
� sinˇ � 1

v
�
�
FX

m
C g � sin �

�
� !Z (2.67)

P!Z D 1

JZ
MZ (2.68)

mit dem Zustandsvektor

x D �
v ˇ !Z

	T
(2.69)

mit den Elementen Übergrundgeschwindigkeit v, Schwimmwinkel ˇ und Gierrate !Z.
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Längs- und Querschlupf

Um Reifenquer- und Längskräfte nach Gl. (2.14) und (2.21) zu bestimmen, werden die Schräg-
laufwinkel der einzelnen Räder

˛ij D ıij � arctan
�
vY;ij

vX;ij

�
(2.70)

mit den Geschwindigkeiten der Radaufstandspunkte

vfl D


vX � !Z � bf=2

vY C !Z � lf

�
; vfr D



vX C !Z � bf=2

vY C !Z � lf

�
; (2.71)

vrl D


vX � !Z � br=2

vY � !Z � lr

�
; vrr D



vX C !Z � br=2

vY � !Z � lr

�
(2.72)

mit der Gierrate !Z, der Längs- vX und Quergeschwindigkeit vY sowie mit den mittleren Lenkwin-
keln an der Vorder- ıf und Hinterachse ır berechnet, siehe Börner (2004). Die Längsschlüpfe nach
Pacejka (2012)

sX;ij D !ij � rdyn;f=r � vXT;ij

vXT;ij
(2.73)

ergeben sich aus den Geschwindigkeiten der Radaufstandspunkte der jeweiligen Raddrehzahlen
!ij und den dynamischen Reifenhalbmessern rdyn;f und rdyn;r sowie die in Reifenkoordinaten trans-
formierten Längsgeschwindigkeiten

vXT;ij D cos ıij � vX;ij � sin ıij � vY;ij: (2.74)

Reifenaufstandskräfte

Mit den statischen Achslasten

FZ;f0 D mg
lr

lf C lr
; FZ;r0 D mg

lf

lf C lr
(2.75)

und Radlastverschiebungen durch Längs- und Querbeschleunigung

�FZ;Pitch D h

lf C lr
maX; �FZ;Roll D h

b
maY (2.76)

lassen sich die einzelnen Radlasten

FZ;fl D 1

2
.FZ;f0 ��FZ;Pitch/ � CRoll ��FZ;Roll (2.77)

FZ;fr D 1

2
.FZ;f0 ��FZ;Pitch/C CRoll ��FZ;Roll (2.78)

FZ;rr D 1

2
.FZ;r0 C�FZ;Pitch/ � .1 � CRoll/ ��FZ;Roll (2.79)

FZ;rr D 1

2
.FZ;r0 C�FZ;Pitch/C .1 � CRoll/ ��FZ;Roll (2.80)
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ohne Berücksichtigung der Wank- oder Nickdynamik berechnen, siehe Kiencke und Nielsen (2005).
Durch den Faktor CRoll lässt sich die stationäre Wankmomentabstützung variabel zwischen der
Vorderachse (CRoll = 1) und Hinterachse (CRoll D 0) verteilen. Die Radlasten werden für die Be-
rechnung der Reifenkräfte in Gl. (2.9), (2.10) und (2.11) verwendet.

Zusammenfassung

Die Reifenkräfte in Längs- und Querrichtung FX=YT;ij nach Gl. (2.21) und (2.14) werden mit den
Radlasten FZ;ij nach Gl. (2.75) bis (2.80), Schlüpfen sX;ij und Schräglaufwinkeln ˛ij nach Gl. (2.70)
bis (2.74) bestimmt und in die Gl. (2.48) und (2.50) für die Summen der Längs- und Querkräfte
FX=Y in Fahrzeugkoordinaten sowie dem Giermoment MZ nach Gl. (2.60) eingesetzt. Die zusam-
mengefassten Kräfte können dann in den Differentialgleichungen des Zweispurmodells in Längs-
und Quergeschwindigkeitsform nach Gl. (2.46) und Gl. (2.47) verwendet werden. Wählt man die
Geschwindigkeits-/ Schwimmwinkel-Darstellung des Zweispurmodells, werden die Kräfte in Gl.
(2.66) für die Geschwindigkeitsänderung und in Gl. (2.67) für die Schwimmwinkeländerung ein-
gesetzt. Die Differentialgleichung der Gierrate wird mit dem zusammengefassten Moment MZ in
beiden Fällen mit Gl. (2.62) bestimmt.

2.6 Erweitertes Einspurmodell

Im Vergleich zum weit verbreiteten linearen Einspurmodell, siehe Mitschke (2013), sollen in die-
ser Arbeit für das

� Achskraftmodell und

� kinematischen Beziehungen für die Berechnungen der Zustandsänderungen und der Schräg-
laufwinkel

nichtlineare Modelle für das erweiterte (nichtlineare) Einspurmodell verwendet werden.

Für das Einspurmodell werden die Quer- und Längskräfte einer Achse zusammengefasst, siehe
Bild 2.16, sodass sich die Summen der Kräfte in Gl. (2.46) und (2.47) zu

FX D cos ıf � FXT;f � sin ıf � FYT;f C cos ır � FXT;r � sin ır � FYT;r � FR � FX;Air (2.81)

und

FY D cos'K � � cos ıf � FYT;f C sin ıf � FXT;f C cos ır � FYT;r C sin ır � FXT;r

�C mg sin.'K/

(2.82)

ergeben. Um in der Gierdifferenzialgleichung des Einspurmodells

P!Z D 1

JZ
� .FY;f � lf � FY;r � lr C MZ/ (2.83)
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z.B. stabilisierende ESC-Bremseingriffe zu berücksichtigen, muss ein Zusatzmoment

MZ D .FX;fr � FX;fl/ � bf

2
C .FX;rr � FX;rl/ � br

2
(2.84)

eingeführt werden. Die Schräglaufwinkel an der Vorder- und Hinterachse

˛f D ıf � arctan

 
vY C lf P 

vX

!
; ˛r D ır � arctan

 
vY � lr P 
vX

!
(2.85)

beziehen sich jetzt auf die jeweils mittleren Räder auf der Fahrzeuglängsachse. Bei realen Fahr-
zeugen treten an jedem Rad Längsschlüpfe auf, die im Gegensatz zu den Schräglaufwinkeln der
rechten und linken Räder sehr unterschiedlich sein können. Daher wird für das Einspurmodell ein
Ersatzschlupf je Achse

sX;f D sX;fl � FZ;fl C sX;fr � FZ;fr

FZ;fl C FZ;fr
; sX;r D sX;rl � FZ;rl C sX;rr � FZ;rr

FZ;rl C FZ;rr
(2.86)

berechnet. Je nach Radlast wird der Schlupf mehr oder weniger gewichtet.

Die Achslasten

FZ;f D FZ;f0 ��FZ;Nick D m

l
� .glr � aXh/ ; (2.87)

FZ;r D FZ;r0 C�FZ;Nick D m

l
� .glf C aXh/ (2.88)

berechnet aus der gemessenen Längsbeschleunigungen aX, vereinfachen sich, durch das Zusam-
menfassen der Räder zu einer Achse. Bild 2.16 zeigt alle wirkenden Kräfte und resultierende
Beschleunigungen und Bewegungsgrößen am erweiterten Einspurmodell.

2.7 Lineares Einspurmodell

Um das nichtlineare Einspurmodell mit dem Zustandsvektor x D Œˇ; !Z� um einen Arbeitspunkt
ŒxAP;uAP� zu linearisieren, werden die Kleinwinkelnäherungen

sinx � x; cosx � 1; tanx � x

genutzt. Die Schräglaufwinkel mit der Kleinwinkelnäherung

˛f D ıf � ˇ � !Zlf

v
und ˛r D ır � ˇ C !Zlr

v
(2.89)

sind nach Kiencke und Nielsen (2005) für Schräglaufwinkel kleiner 5ı gültig.

Die linearisierten Achsquerkräfte

FYT;f D ˛f � c�
˛;f.xAP;uAP/ und FYT;r D ˛r � c�

˛;r.xAP;uAP/ (2.90)
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FYT;f

FYT;r
FXT;f

FXT;r

aY � m mv2

�

m Pv

aX � m FX;Air C FR

P!Z � JZ

ıf
˛f

˛r

ˇ

ır

vf

vr

v

vX

vY
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Bild 2.16: Einspurmodell in der Ebene, welches sich um den Momentanpol dreht, mit den

Längs- und Querkräften (FXT und FYT) radfesten Koordinaten (T), den Schräglaufwinkeln

der Vorder- und Hinterachse (˛f und ˛r), den Lenkwinkeln (ıf und ır), den Geschwindigkeit-

vektoren der Vorder- und Hinterachse (Evf und Evr), den Trägheitskräften (aX � m und aX � m),

dem Giermoment P!Z �JZ, den Reaktionskräften (aX �m und aX �m), dem Giermoment P!Z �JZ

und der Luft- und Rollwiderstandskraft FX;Air C FR

werden im Arbeitspunkt in Abhängigkeit ihrer lokalen Schräglaufsteifigkeit c�
˛.xAP;uAP/ ausge-

drückt. Bei der Linearisierung um die Geradeausfahrt

xAP D Œˇ D 0; !Z D 0�T; uAP D ıf D 0 (2.91)

sind die lokalen Schräglaufsteifigkeiten

c�
˛;f D c˛;f; c�

˛;r D c˛;r (2.92)

gleich der Anfangssteigungen der Querkraftkennlinien. Das resultierende Zustandsraummodell

" P̌
P!Z

#
D

2
64�c˛;f C c˛;r

mv

c˛;rlr � c˛;flf

mv2
� 1

c˛;rlr � c˛;flf

JZ
�c˛;fl

2
f � c˛;rl

2
r

JZv

3
75 


ˇ

P!Z

�
C

2
64

c˛;f

mviS
c˛;flf

JZiS

3
75 ıH

Px D A x C b u

(2.93)

wurde erstmals in Riekert und Schunck (1940) hergeleitet und wird seitdem für die Analyse des dy-
namischen Systemverhaltens des Fahrzeugs, siehe Mitschke (2013), oder zur linearen Regleraus-
legung genutzt.
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Die stationäre Gierverstärkung

ˇ̌̌
G P 
.v;EG/

ˇ̌̌
D
ˇ̌̌
ˇ̌ P 
ıf

ˇ̌̌
ˇ̌ D v

l C v2 � EG
(2.94)

lässt sich mit dem Eigenlenkgradient

EG D m
c˛;rlr � c˛;flf

c˛;f � c˛;f � l D dıf

daY
; ŒEG� D rad

m=s2
; (2.95)

berechnet aus den Schräglaufsteifigkeiten, ausdrücken, siehe Mitschke (2013). Bild 2.17 a) zeigt
den geschwindigkeitsabhängigen Verlauf der Gierverstärkung für ein unter-, ein über- und ein
neutralsteuerndes Fahrzeug. Der Eigenlenkgradient eines untersteuernden Fahrzeugs ist größer
null. Die Gierverstärkung nimmt bei einem untersteuernden Fahrzeug mit der Geschwindigkeit
erst zu und erreicht dann bei der charakteristischen Geschwindigkeit

vch D
r

l

EG
; Œvch� D m

s
(2.96)

ein Maximum. Ist der Eigenlenkgradient kleiner null, steigt die Gierverstärkung überproportional
mit der Geschwindigkeit an. Das Lenkverhalten wird als übersteuernd bezeichnet. Bei Erreichen
der kritischen Geschwindigkeit

vkrit D
r

� l

EG
; Œvkrit� D m

s
(2.97)

steigt die Verstärkung gegen Unendlich, das Fahrzeug wird instabil. In Bild 2.17 b) ist der Lenk-
winkelbedarf für einen Radius R D 100 m über die Querbeschleunigung aufgetragen. Das un-
tersteuernde Fahrzeug benötigt linear abhängig von der Querbeschleunigung einen wachsenden
Lenkwinkel

ıf D l

R
C ˛f � ˛r D ıA C EG � aY: (2.98)

Die Steigung dıf=daY ist gerade der Eigenlenkgradient EG. Das neutrale Fahrzeug benötigt unab-
hängig von der Beschleunigung den Ackermannlenkwinkel ıA. Pacejka (2012) nutzt eine weitere
Darstellung wie in Bild 2.17 c): Aufgetragen wird die normierte Querbeschleunigung aY=g über
die Differenz der Schräglaufwinkel. Das untersteuernde Fahrzeug braucht größere Schräglauf-
winkel an der Vorderachse als an der Hinterachse und hält sich im linken Bereich des Diagramms
auf.
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Bild 2.17: Verschiedene Darstellungen der stationären Lenkwinkelverstärkungen des linea-

ren Einspurmodells berechnet für ein unter-,ein über- und ein neutralsteuerndes Fahrzeug auf

Basis der Parameter eines BMW F10 550i und R D 100 m: a) Gierverstärkung in Abhän-

gigkeit der Geschwindigkeit nach Gl. (2.94); b) Lenkwinkelbedarf in Abhängigkeit der Quer-

beschleunigung bei dem festgelegten Kurvenradius R nach Gl. (2.98); c) Pacejka-Handling-

Diagramm mit eingezeichneten Lenkwinkelbedarf für einen gegeben Kurvenradius R nach

Pacejka (2012)

2.8 Wankmodell

Um die Kräfte, die am Schwerpunkt angreifen, in Reifenkräfte umzurechnen damit in Kapitel 4
die Parameter der Reifenmodelle identifiziert werden können, wird der erforderliche Wankwinkel
mit Wankmodellen geschätzt. Im Folgenden werden zwei Wankmodelle beschrieben. In Kapitel 4
werden die Parameter bestimmt und die Modellgüte miteinander verglichen.

PT2-Wankmodell

Die gemessene Querbeschleunigung aY stellt wie in Ackermann u. a. (2013) und Bauer (2015)
einen geeigneten Eingang des Wankmodells 2. Ordnung

1

!2
0;Roll

� R'K C 2DRoll

!0;Roll
� P'K C 'K D KRoll � aY (2.99)

da. Die drei zu identifizierenden Parameter sind die Kennkreisfrequenz!0;Roll, die Dämpfung DRoll

und die Verstärkung KRoll. Anders als in Ackermann u. a. (2013) oder Bauer (2015) wird von der
physikalisch motivierten Modellierung abgesehen, da benötigte Parameter wie die Wankpolhöhe
nicht zur Verfügung stehen und die Modellausgangsgüte durch die physikalische Modellierung
nicht verbessert werden konnte, siehe Meister (2014). Bild 2.18 zeigt den Signalfluss.
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PT2-Wankmodell

DRollKRoll

aY K'
aY

'Ka) b)
!0;Roll

Bild 2.18: a) Signalfluss und Parameter des PT2-Wankmodells; b) Prinzip der Wirkung der

gemessenen Querbeschleunigung auf den Wankwinkel

Stationäres Wankmodell

Setzt man die Wankbeschleunigung und Geschwindigkeit in (2.99) zu null erhält man ein einfa-
ches stationäres Wankmodell

'K D KRoll � aY ; (2.100)

welches den stationären Wankwinkel genau abbildet.

2.9 Zusammenfassung

Zuerst wurden die Koordinatensysteme und dessen Lagedarstellung mit den Eulerwinkeln be-
schrieben. Durch entsprechender Transformationen mit der orthogonalen Richtungskosinusmatrix
wurden Größen im radfesten Koordinatensystem in das fahrzeugfeste Koordinatensystem über-
führt. Dabei wurde auch der Wankwinkel des Fahrwerks 'K berücksichtigt. Als wichtigstes Ele-
ment zur Kraftübertragung des Kraftfahrzeugs wurde der Reifen detailliert behandelt. Für die
Modellierung der Achsquerkraft und Reifenlängskraft wurde die Magic Formula nach Pacejka
(2012) aufgrund der guten Abbildung der gesamten Kraft-Schlupf-Kennlinie und der einfachen
Parametrierung gewählt. Zusätzlich wurden Modifikationen eingeführt, die das degressive Ver-
halten der Achsquerkraft über die Radlast modellieren. Über die Starrkörperbewegung im Raum
wurden der sogenannte „Strapdown-Algorithmus“ hergeleitet, der angibt, wie aus der Integrati-
on der Drehraten und der Beschleunigungen die Lage und die Geschwindigkeiten des Fahrzeug
bestimmt werden können. Basierend auf diesen Gleichungen und den beschriebenen Reifen- und
Achskraftmodellen wurde das Zweispurmodell, welches auch Fahrten in der Steilkurve und in
Steigungen berücksichtigt, hergeleitet. Durch Zusammenführen der Räder einer Achse wurde das
erweiterte nichtlineare Einspurmodell erzeugt. Das Modell unterscheidet sich von Modellen aus
der Literatur vor allem durch die korrekte Berücksichtigung von großen Wank- und Nickwinkeln
(',� ), die bei Steilkurvenfahrten oder an großen Gefällen auftreten. Aufgrund der geringeren Kom-
plexität soll dieses Modell in dieser Arbeit weiter genutzt werden. Durch weitere Vereinfachungen
entstand dann das lineare Einspurmodell, mit dem das Systemverhalten mit einfachen Methoden
der linearen Regelungstechnik analysiert werden kann.
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3 Grundlagen der Zustandsschätzung

Viele reale Systeme sind nichtlinear. Abhängig vom Prozess selbst und dem Arbeitspunkt können

manche Prozesse allerdings mit linearen Modellen und einem linearen Kalman-Filter beobachtet

werden. In anderen Fällen ist die lineare Approximation nicht genau genug und Zustandsschätzer,

basierend auf nichtlinearen Prozessmodellen, müssen eingesetzt werden. Da bereits in Kapitel 2 ge-

zeigt werden konnte, wie sich das Fahrverhalten eines Fahrzeug je nach Arbeitspunkt aufgrund von

starken Nichtlinearitäten der Querkraftkennlinien verändert, werden in diesem Abschnitt lediglich

Schätzverfahren für nichtlineare Systeme vorgestellt. Die bekannteste Methode, einen Kalman-Filter

für ein nichtlineares System einzusetzen, ist der erweiterte Kalman-Filter (EKF), siehe Welch und

Bishop (2006). Der EKF prädiziert die Wahrscheinlichkeitsdichtefunktion mit Hilfe einer linearen

kontinuierlich angepassten Approximation des Systems um einen Arbeitspunkt. Um dies zu ermög-

lichen, müssen die Jacobi-Matrizen des Prozess- und Messmodells berechnet werden, was unter

Umständen sehr aufwendig sein kann.

Ändert sich das Systemverhalten in unmittelbarer Nähe zum linearisierten Arbeitspunkt stark, kann

es zudem vorkommen, dass die lineare Approximation das eigentliche Systemverhalten nur ungenü-

gend repräsentiert und die erzeugten Rückführverstärkungen nicht optimal sind.

Um die Nachteile des EKF zu überwinden, wurden eine Reihe weiterer Methoden zur nichtlinearen

Zustandsschätzung entwickelt. Darunter ist der Unscented-Kalman-Filter (UKF) eine vielversprechen-

de Alternative, siehe Julier u. a. (1995). Der UKF prädiziert die Wahrscheinlichkeitsdichtefunktion in

einer einfachen Art und Weise und ist für Nichtlinearitäten bis zur 2. Ordnung genau in der Schätzung

des Mittelwert und der Kovarianz. Die Implementierung des EKF und des UKF werden im Folgenden

kurz erläutert.

Ein diskretes Filter soll die Zustände xk eines stochastischen Prozesses, siehe Bild 3.1

xk D f.xk�1;uk�1/C wk�1 (3.1)

in diskreter nichtlinearer Form mit den Eingängen uk�1 und dem Prozessrauschens wk�1 schätzen.
Um eine Approximation der zeitdiskreten Darstellung

xk D f.xk�1;uk�1/C wk�1 � xk�1 C T0 Œfc.xk�1;uk�1/C w� (3.2)

aus dem nichtlinearen kontinuierlichen System fc zu erhalten, wird in dieser Arbeit das explizite
Euler-Verfahren mit der Abtastzeit T0 verwendet. Die Zustände können mittels der Messgleichung

zk D h.xk ;uk/C vk ; (3.3)
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1uk

1wk vk

xk z k

1
z

f.xk 1;uk 1/

xk 1

h.xk ;uk/

Bild 3.1: Diskretes nichtlineares Prozessmodell mit dem Systemeingang uk�1, dem Zustands-

vektor xk�1, dem Systemrauschen wk�1, der Messung zk und dem Messrauschen vk

die die Zustände nichtlinear mit der durch vk verrauschten Messung zk verknüpft, korrigiert wer-
den. Die Rauschanteile müssen für korrekte Funktionsweise des Kalman-Filters jeweils voneinan-
der unabhängig, weiß und normalverteilt sein. Für ihre Kovarianzmatrizen gilt im Fall des System-
rauschens Qk�1 D E

�
wk�1wT

k�1

	
und Rk D E

�
vkvT

k

	
für das Messrauschen. Soll der Zustands-

vektor im Bezug der Minimierung eines quadratischen Gütemaßes optimal geschätzt werden, so
besteht die Aufgabe des Kalman-Filters darin, die Schätzfehlerkovarianzmatrix Pk D E

�
ekeT

k

	
mit dem Schätzfehler

ek D xk � Oxk (3.4)

zu minimieren.

3.1 Erweitertes Kalman-Filter

Der Filteralgorithmus gliedert sich in die beiden Schritte Prädiktion und Korrektur. Bild 3.2 b)
zeigt den Signalfluss der Prädiktion und Korrektur des geschätzten Zustandsvektors Ox. Die Prädik-
tion und Korrektur der Kovarianzmatrix Pk wird aus Gründen der Übersichtlichkeit nicht im Bild
dargestellt.

Prädiktion

Die Zustände

x�
k D f.Oxk�1;uk�1/ (3.5)

werden mit dem nichtlinearen Prozessmodell um einen Abtastschritt prädiziert. Die Prädiktion der
Kovarianzmatrix

P�
k D Ak�1Pk�1AT

k�1 C Qk�1 (3.6)

basiert auf dem Kalman-Filter für lineare Systeme. Hierzu muss das nichtlineare Prozessmodell
im Arbeitspunkt ŒOxk�1;uk�1� mit der Jacobi-Matrix

Ak�1 D @f
@x

ˇ̌̌
ˇ
Oxk�1;uk�1

(3.7)

linearisiert werden.
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Korrektur

Für die Korrektur muss zunächst die Kreuzkovarianz

Pxy;k D P�
k HT

k (3.8)

zwischen Zustandsfehler und Ausgangsfehler mit der Ausgangs-Linearisierung im Arbeitspunkt

Hk D @h
@x

ˇ̌̌
ˇ
Ox�

k
;uk

(3.9)

berechnet werden. Die Kovarianz der Messung

Pzz;k D Pyy;k C Rk D HkP�
k HT

k C Rk (3.10)

setzt sich aus der Kovarianz des Ausgangs Pyy;k und der Kovarianzmatrix des Messrauschens Rk

zusammen. Mit Gl. (3.8) und (3.10) wird die Kalman-Filter-Verstärkung

Kk D Pxy;k.Pzz;k/
�1 (3.11)

und die Differenz aus Messung zk und prädizierten Systemausgang h.Ox�
k
;uk/ zur Korrektur der

prädizierten Zustände

Oxk D Ox�
k C Kk � .zk � h.Ox�

k ;uk// (3.12)

verwendet. Daraufhin muss die Kovarianzmatrix

Pk D .I � KkHk/ � P�
k D P�

k � KkPT
xy;k (3.13)

in Abhängigkeit der Größe der Kalman-Filter-Verstärkung korrigiert werden, da der prädizierte
Schätzfehler durch die Korrektur abnimmt.

Für eine ausführliche Herleitung und weitere Informationen siehe Welch und Bishop (2006) oder
Grewal und Andrews (2008).

3.2 Unscented Kalman-Filter

Der UKF prädiziert die Wahrscheinlichkeitsdichtefunktion, indem geeignete Sigma-Partikel1

durch die nichtlineare Funktion mittels der „Unscented Transformation“ transformiert werden
und so der Mittelwert und die Kovarianz nach der Transformation neu ermittelt werden kann. Bild
3.2 c) zeigt den Signalfluss der Prädiktion und Korrektur des geschätzten Zustandsvektors Ox. Die
Prädiktion und Korrektur der Kovarianzmatrix Pk wird aus Gründen der Übersichtlichkeit nicht im
Bild dargestellt. Im Folgenden soll lediglich der Algorithmus erläutert werden, für eine Herleitung
sei auf Julier u. a. (1995) verwiesen.

1Als Sigma-Partikel sollen hier um den Mittelwert verteilte Zustandsvektoren verstanden werden. In der englisch-
sprachigen Literatur wird von „Sigma-Points“ gesprochen. Ihre Entfernung vom Mittelwert hängt von ihrer Standard-
abweichung � ab.
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Verteilung von Sigma-Partikeln

Auf Basis der Cholesky-Zerlegung2 C der aktuellen Kovarianz Pk�1 werden 2n C 1 (n = Anzahl
der Zustände) Sigma-Partikel

Xk�1 D �Oxk�1 Oxk�1 C p
n C 	UKF � CT Oxk�1 � p

n C 	UKF � CT
	

(3.14)

um den geschätzten Erwartungswerts Oxk�1 verteilt. Der Parameter

	UKF D ˛2
UKF � �UKF C .1 � ˛2

UKF/ � n (3.15)

wird aus den Skalierungsfaktoren ˛UKF und �UKF berechnet.

Prädiktion

Die Sigma-Points werden durch das diskrete Prozessmodell transformiert

X��
k D f.Xk�1;uk�1/: (3.16)

Der Erwartungswert des prädizierten Zustands

Ox�
k D W0X�

k;0 C
2nX

iD1

WiX�
k;i (3.17)

wird mit den Gewichten

W0 D 	UKF=.n C 	UKF/; Wi D 1=Œ2.n C 	UKF/�; 1 � i � 2n (3.18)

W P
0 D 	UKF=.n C 	UKF/C 1 � ˛2

UKF C ˇUKF; W P
i D 1=Œ2.n C 	UKF/�; 1 � i � 2n (3.19)

gebildet. Die Gewichte W P
i und die Differenzen aus Erwartungswert x�

k
und Sigma-Partikel X�

k;i

werden für die Berechnung der prädizierten Kovarianzmatrix

P�
k D

2nX
iD0

W P
i .X

��
k � Ox�

k /.X
��
k � Ox�

k /
T C Qk�1 (3.20)

verwendet. Mit dem Faktor ˇUKF kann das Filter an unterschiedliche Verteilungsdichtefunktionen
angepasst werden. Für Gauss-Verteilungen wird der Faktor ˇUKF D 2 empfohlen, siehe Van der
Merwe und Wan (2001).

2Die Cholesky-Zerlegung bezeichnet eine Zerlegung einer symmetrischen positiv definiten Matrix P D CCT in
ein Produkt aus einer unteren Dreiecksmatrix C und deren Transponierter CT, siehe Golub und Van Loan (1996).
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Korrektur

Auf Basis der Cholesky-Zerlegung C der prädizierten Kovarianz P�
k

werden wieder 2nC1 Sigma-
Partikel

X�
k D �Ox�

k
Ox�

k
C p

n C 	UKF � CT Ox�
k

� p
n C 	UKF � CT

	
(3.21)

diesesmal um den prädizierten Erwartungswerts Ox�
k

verteilt. Die Sigma-Partikel werden durch das
diskrete Ausgangsmodell transformiert

Y�
k D h.X�

k ;uk/ (3.22)

und der Erwartungswert

y�
k D

2nX
iD0

WiY�
k;i (3.23)

wieder mit den Gewichten berechnet. Die Ausgangskovarianzmatrix

Pzz;k D
2nX

iD0

W P
i .Y

�
k � y�

k /.Y
�
k � y�

k /
T C Rk (3.24)

wird ähnlich zu Gl. (3.20) mit der Messrauschkovarianzmatrix Rk berechnet. Die Kreuzkovarianz
zwischen Zustands- und Ausgangsfehler

Pxy;k D
2nX

iD0

W P
i .X

�
k � Ox�

k /.Y
�
k � y�

k /
T (3.25)

wird nicht auf Basis von Linearisierungen (wie beim EKF), sondern durch die Differenzen der
nichtlinear transformierten Sigma-Partikel berechnet. Die Kalman-Verstärkung, die Korrektur der
Zustände und der Kovarianzmatrix

Kk D Pxy;k.Pzz;k/
�1

Oxk D Ox�
k C Kk � .zk � y�

k /

Pk D P�
k � KkPT

xy;k

erfolgt genau wie beim EKF mit Gl. (3.11) bis (3.13).

3.3 Vergleich des EKF mit dem UKF

Bild 3.2 zeigt den Signalfluss der Prädiktion und Korrektur des Zustandsvektors Oxk mit dem er-
weiterten Kalman-Filter und mit einem Unscented Kalman-Filter. Durch die zusätzlichen Blöcke
des UKF „Gewichtung“ und „Verteilung neuer Sigma-Partikel“ im Vergleich zum EKF wirkt es
so, als wäre der UKF-Algorithmus deutlich komplexer und benötige mehr Rechenzeit. Allerdings
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Sigma-Partikel
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h.Xk ;uk/

Xk

Gewichtung

Wi

yk

Kk

Pxy;k Pzz;k

Verteilung neuer
Sigma-Partikel

Oxk

1uk Oxk
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Kk

Pxy;k Pzz;k

f.xk 1;uk 1/ OO

xk 1O

h.x
k
;uk/

1
z

1
z

1uk zkf.xk 1;uk 1/

vk

yk

xk 1

h.x
k
;uk/

1
z

1wk

xk

a) Realer Prozess- und Messung

b) Erweiterter Kalman-Filter

c) Unscented Kalman-Filter

Prädiktion Korrektur

Prädiktion Korrektur

Oxk

Prozess Messung

Oxk 1

Gl.(3.8) Gl.(3.10)

Gl.(3.17) Gl.(3.21) Gl.(3.23)

Gl.(3.14)

Gl.(3.25) Gl.(3.24)

Bild 3.2: a) Nichtlinearer realer Prozess und Messung; b) Prädiktion und Korrektur des Zu-

standsvektors Oxk mit dem erweiterten Kalman-Filter und c) dem Unscented Kalman-Filter

scheint dies nur bei der Prädiktion und Korrektur des Zustandsvektors Oxk . Die Prädiktion und Kor-
rektur der Kovarianzmatrix Pk des EKF benötigt die Berechnung der Jacobi-Matrizen Ak�1 und
Hk nach Gl. (3.7) und Gl. (3.9), was je nach Nichtlinearität sehr aufwendig sein kann. Der UKF
benötigt hierzu lediglich die Gewichte Wi und die transformierten Sigma-Partikel .

Bild 3.3 illustriert die Prädiktion von Mittelwert und Kovarianz durch eine nichtlineare Funktion:
Das EKF ist nicht in der Lage, die „Verzerrung“ durch die nichtlineare Funktion zu berücksichti-
gen. Mittelwert und Kovarianz liegen weit von den tatsächlichen Transformierten (Partikelfilter)
entfernt. Das UKF ist in der Lage mit einer geringen Anzahl von Partikeln die wahre Kovarianz
und Mittelwert deutlich besser anzunähern.
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Pk D Ak 1Pk 1AT
k 1

a) Partikelfilter b) Linearisiert (EKF) c) UKF

Mittelwert

Kovarianz

X k D f.Xk 1/

tatsächlicher
Mittelwert

tatsächliche
Kovarianz

xk D f.xk 1/

Sigma-
Partikel

UKF-Kovarianz

UKF-Mittelwert

X k D f.Xk 1/

Ak 1Pk 1AT
k 1

f.xk 1/

xk 1

Pk 1

Xk 1

Partikel

gewichteter Mittelwert
und Kovarianz

xk

Bild 3.3: Beispiel der Prädiktion von Mittelwert und Kovarianz in Anlehnung an Van der

Merwe und Wan (2001): a) Ideal (Partikelfilter); b) EKF; c) UKF
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4 Identifikation

In diesem Kapitel wird beschrieben, wie die unbekannten Parameter der Modelle aus Kapitel 2

aus dem Fahrversuch zu bestimmen sind. Einige Parameter wie Abmessungen können allerdings

direkt durch eine Grundvermessung bestimmt werden. Durch eine über die ESC-Sensorik hinausge-

hende Referenzsensorik, bestehend aus hochwertiger 6D-IMU, Correvit und 3-Antennen-GPS, kann

die dreidimensionale Fahrzeugbewegung genau erfasst und so gemessene Größen der Identifikation

bereitgestellt werden. Wie in Bauer (2015) müssen verschiedene Manöver mit unterschiedlichen An-

regungen durchgeführt werden, um alle weiteren Modellparameter zuverlässig ermitteln zu können.

In dieser Arbeit soll ein Hauptaugenmerk auf die Identifikation der nichtlinearen Achsquerkraftkenn-

linien gelegt werden. Dazu werden Daten auf unterschiedlichen Reibwerten von trockenem Asphalt

bis zu schneebedeckter Fahrbahn verarbeitet. Auch das Querkraftverhalten unter Längsschlupfein-

fluss muss ausreichend gut parametriert werden. Dazu werden Daten aus den Manövern „Bremsen

in der Kurve“ und „Driften“ herangezogen. Der dynamische Querkraftaufbau spielt nur bei schnellen

Schräglaufwinkeländerungen eine Rolle und soll ebenfalls identifiziert werden. Abschließend werden

die resultierenden Fahrdynamikmodelle mit verschiedenen Manövern validiert. Als Versuchsfahrzeug

wird ein BMW F10 550i verwendet.

4.1 Grundparameter

Nachdem die Parameter Spurbreite b und Radstand l vermessen wurden, wird die Radlast mf an
der Vorder- und die Radlast mr an Hinterachse mit Radlastwaagen in der Ebene ohne Insassen
bestimmt. Die Schwerpunktpositionen

lf D l � mr

mf C mr
und lr D l � lf (4.1)

ergeben sich durch die Momentenbilanz um die Vorderachse.

Dann wird das Fahrzeug in die Schräge mit Steigung � gebracht und die Schwerpunktshöhe

h D l � �mr

m tan �
(4.2)

aus der Radlastdifferenz �mr im Vergleich zur Messung in der Ebene bestimmt, siehe Goertz
(2007). Die dynamischen Reifenhalbmesser

rdyn;f D 2v

!fl C !fr
und rdyn;r D 2v

!rl C !rr
(4.3)

werden durch eine Geradeausfahrt und Mittelwertbildung von Gl. (4.3) geschätzt. Die Geschwin-
digkeit v wird dabei mit einem GPS-System oder Correvit gemessen. Ist GPS serienmäßig im
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Fahrzeug verbaut, kann der Parameter auch Online mit einem RLS-Verfahren geschätzt werden,
siehe Bauer (2015).

Tabelle 4.1 gibt einen Überblick über die gewonnenen Fahrzeugparameter aus der Grundparame-
trierung.

Tabelle 4.1: Grundparameter: Masse, Schwerpunktlage und Abmessungen eines BMW F10

550i

Symbol Beschreibung Wert

l Abstand von Vorder- zu Hinterachse 2,97 m

b Spurweite 1,61 m

mf Fahrzeugmasse an der Vorderachse 1063 kg

mr Fahrzeugmasse an der Hinterachse 973 kg

m Fahrzeuggesamtmasse 2036 kg

lf Abstand vom Schwerpunkt zur Vorderachse 1,42 m

lr Abstand vom Schwerpunkt zur Hinterachse 1,55 m

h Schwerpunktshöhe 0,54 m

rdyn;f=r dynamischer Radhalbmesser 0,335 m

4.2 Referenzmesssystem

Um die Fahrzeuggeschwindigkeit im Raum v D ŒvX;vY;vZ� und die Lage ‰ D Œ';�; � zu jeder
Zeit zuverlässig zu erfassen, wurde im Rahmen dieser Arbeit ein Referenzsensorsystem bestehend
aus einem 3-Antennen-GPS-System, einer hochwertigen 6D-IMU und einem Correvit-Sensor auf-
gebaut. Dieses Messsystem steht nur im Versuchsfahrzeug zur Verfügung und ist im Anhang 9.3
näher erläutert. Im Serienfahrzeug werden nur die Messgrößen des Serien-ESC-Systems für die
Zustandsschätzung und Fahrdynamikregelung verwendet. Darauf wird in Kapitel 5 eingegangen.

Im Gegensatz zu Bauer (2015) und Ryu (2004), die für jede Größe des Zustandsvektors x D
ŒvX;vY;vZ;';�; � modulare Beobachter verwenden, wird in dieser Arbeit ein Kalman-Filter für
alle Zustände genutzt. Vorteil dieser integrierten Lösung ist, dass der Wank- und der Nickwinkel
auch dann noch über den Correvit-Sensor beobachtbar sind, wenn das 3-Antennen-GPS ausfällt.
Der Gierwinkel kann noch beobachtet werden, wenn die Geschwindigkeitsmessungen des GPS in
erdfesten Koordinaten verfügbar sind.
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4.2.1 Aufbau

Bild 4.1 zeigt den Aufbau der Sensordatenfusion der drei verschiedenen Messsysteme auf Basis
eines EKF. Das EKF ist im Allgemeinen in Abschnitt 3.1 näher beschrieben. Der Schwimmwinkel

ˇ D atan2.vY;vX/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

arctan.vY=vX/ für vX > 0;

arctan.vY=vX/C 
 für vX < 0 und vY � 0;

arctan.vY=vX/ � 
 für vX < 0 und vY < 0;

C
=2 für vX D 0 und vY > 0;

�
=2 für vX D 0 und vY < 0:

(4.4)

wird aus der Längs- und Quergeschwindigkeit mit der Funktion atan2 berechnet, um auch Dreher
mit über 90ı Schwimmwinkel korrekt darzustellen.

3-Antennen
GPS (10 Hz)

Correvit 
(100 Hz)

IMU
(100 Hz)

u D Œa;!

‰GPS

vGPS
E

vCorr

ˇCorr

Erweiterter
sequentieller
Kalmanfilter

(100 Hz)

z
Ǒ

O‰

vO
atan2.vY;vX/

D Œ vX vY vZ

D Œ '  

Geschw. im Raum

Lagewinkel

Schwimm-
winkel

Bild 4.1: Signalfluss der Sensordatenfusion mit der Referenzsensorik des Versuchsfahrzeugs

mit einem erweiterten Kalman-Filter

Das kontinuierliche Systemmodell

Px D f.x;u/ C w2
66666664

PvX

PvY

PvZ

P'
P�
P 

3
77777775

D

2
66666664

aX � !Y � vZ C !Z � vY C g � sin �
aY C !X � vZ � !Z � vX � g � cos � � sin'
aZ � !X � vY C !Y � vX � g � cos' � cos �
!X C !Y � sin' tan � C !Z � cos' tan �

!Y � cos � � !Z � sin'
!Y � sin'= cos � C !Z � cos'= cos �

3
77777775

C w
(4.5)

basiert auf den Strapdown-Gleichungen (2.24) und (2.34) bis (2.36) zur Beschreibung der Lage-
und Geschwindigkeitsänderung mit den Systemeingängen der Kreiselplattform

u D �
aX aY aZ !X !Y !Z

	T D �
a !

	T
(4.6)
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aus den aufbaufest gemessenen Drehraten ! und Beschleunigungen a. Der Vektor w beschreibt
das Systemrauschen. Als Messgrößen nach Gl. (3.3)

z D h.x;u/ C vKF2
6664

vGPS
E

‰GPS

vCorr

ˇCorr

3
7775 D

2
66664

TE
V .v � ! � lGPS/

‰q
v2

X C v2
Y

arctan.vY=vX/

3
77775 C

2
6664

vGPS
v

vGPS
‰

vCorr
v

vCorr
ˇ

3
7775 (4.7)

wird der GPS-Geschwindigkeitsvektor vGPS
E D ŒvGPS

X;E ;v
GPS
Y;E ;v

GPS
Z;E �

T, die Winkelmessung des 3-Antennen-
GPS ‰ D Œ'GPS;�GPS; GPS�T sowie die Geschwindigkeits- und Schwimmwinkelmessung (vCorr,
ˇCorr) des Correvit-Sensors (transformiert in den Fahrzeugschwerpunkt, siehe Gl. (9.21) im An-
hang 9.3) verwendet. Der Systemausgang h.x;u/ stellt diese Messgrößen in Abhängigkeit der Sys-
temzustände dar. Der Geschwindigkeitsvektor v muss mit dem Vektor von der GPS-Hauptantenne
zum Schwerpunkt lGPS transformiert werden. Das Messrauschen

vKF D ŒvGPS
v ;vGPS

‰ ;vCorr
v ;vCorr

ˇ �T (4.8)

wird als unkorreliert angenommen, d.h. die Fehler einer Messung sind unabhängig von den Feh-
lern einer anderen Messung. Die Kovarianzmatrix des Messrauschens

R D cov.vKF/ D IŒvar.vGPS
v;XE;var.vGPS

v;YE/; : : : ;var.vCorr
ˇ /� (4.9)

besteht daher aus einer Diagonalmatrix und den Varianzen des Messrauschens. Unter diesen An-
nahmen kann die Kalman-Filter-Korrektur sequentiell durchgeführt werden, siehe Simon (2006)
und Grewal u. a. (2001). D.h. jeder Messwert wird einzeln verarbeitet. Das GPS-Signal wird im-
mer wieder durch Bäume oder Gebäude abgeschattet und liefert unplausible Messergebnisse. Der
Correvit-Sensor liefert unbrauchbare Messungen, wenn durch Pfützen oder nasse Kacheln gefah-
ren wird. Damit die Qualität der Sensordatenfusion von solchen Fehlern nicht beeinflusst wird, soll
die i -te Messgröße nur zur Schätzung der Zustände herangezogen werden, wenn die Differenz aus
Messung und geschätztem Systemausgang

zi � yi.x;u/ < 4 �
p
Pzz.i;i/ mit i 2 f1 : : :m D 8g (4.10)

kleiner der vierfachen Standardabweichung aus der geschätzten Kovarianz Pzz der Messung ist.
Die Kovarianz der Messung

Pzz D Pyy C R D HPHT C R

ist ein Nebenprodukt des Kalman-Filters und wird mit der aktuellen Kovarianz der Zustandsschät-
zung P, der linearisierten Ausgangsmatrix H und dem Messrauschen R berechnet.

Zudem wird nur alle 10 Abtastschritte mit den 10Hz-GPS-Signal korrigiert.

Der Kalman-Filteralgorithmus ist im Abschnitt 3.1 erläutert.
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4.2.2 Ergebnisse

In Bild 4.2 werden die Rohdaten des GPS und des Correvit-Sensors mit dem Fusionsergebnis des
Kalman-Filters während einem Slalom verglichen. Für die Geschwindigkeit a) und den Schwimm-
winkel b) wirkt die Fusion störgrößendämpfend, ohne einen Phasenverzug zu erzeugen. Bei dem
Vergleich der Wank- und Gierwinkel in Bild 4.2 c) und d) des 3-Antennen-GPS mit dem Kalman-
Filter-Ergebnis fällt die 10-fach höhere Datenrate durch die Prädiktion mit den gemessenen Dreh-
raten auf.
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v
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=
h
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Referenzfusion

20 22 24 26 28 30
�4

�2
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ˇ
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ı

b)
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Referenzfusion
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GPS

Referenzfusion
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Referenzfusion

Bild 4.2: Vergleich der Datenfusion des Referenzmessystems mit den Rohdaten von GPS und

Correvit-Sensor während einer Slalomfahrt mit einem BMW F10 550i: a) Geschwindigkeit v;

b) Schwimmwinkel ˇ; c) Wankwinkel '; d) Gierwinkel iatpsi

Bild 4.3 zeigt die Fahrt durch eine Pfütze bei ca. 123,5 s: Das Correvit-Signal wird stark durch
die Spiegelung in der Pfütze gestört. Die Datenfusion mit dem Referenzmessystem ist in der Lage,
durch die Überprüfung der Correvit-Daten auf Plausibilität nach Gl. (4.10) die Geschwindigkeit
und den Schwimmwinkel weiterhin genau zu schätzen. Somit können auch solche Ausreißer ver-
mieden werden.
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Bild 4.3: Vergleich der Datenfusion mit dem Referenzmessystem mit den Rohdaten von GPS

und Correvit-Sensor während einer Fahrt durch eine Pfütze bei ca. 123,5 s : a) Geschwindig-

keit; b) Schwimmwinkel

4.3 Wankmodell

Die Parameter des in Abschnitt 2.8 beschriebenen Wankmodells werden durch die Methode der
kleinsten Fehlerquadrate (Least Squares, LS), siehe Isermann und Münchhof (2011), bestimmt.
Da der Wankwinkel 'K zwischen Aufbau und Fahrbahnebene nicht direkt ermittelt werden kann,
wird die Modellgleichung (2.99) mit dem Zusammenhang, vgl. Bild 2.1,

'K D ' � 'T (4.11)

aus Fahrbahnwankwinkel 'T in Reifenkoordinaten und gesamtem Aufbauwankwinkel '

aY D .' � 'T/ � 1

KRoll
C . P' � P'T/ � 2DRoll

KRoll!Roll
C . R' � R'T/ � 1

KRoll!
2
Roll

(4.12)

modifiziert. Durch Vernachlässigung der Wankwinkelgeschwindigkeit der Fahrbahn und Wank-
winkelbeschleunigung sowie der Annahme, dass in der Ebene gefahren wird,

P'T � 0; R'T � 0; P' D !X

erhält man die Modellgleichung

aY D '
1

KRoll
� 'T

1

KRoll
C !X

2DRoll

KRoll!Roll
C P!X

1

KRoll!
2
Roll

(4.13)

in Form eines Messvektors y, einer Regressionsvektor �T und dem Parametervektor �:

aY D �
1 ' !X P!X

	
2
6664

�'T=KRoll

1=KRoll

2DRoll=.KRoll!Roll/

1=.KRoll!
2
Roll/

3
7775

y D �T �:

(4.14)
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Die Fahrbahnneigung 'T kann mit dieser Struktur in dem Gleichanteil �'T=KRoll mitgeschätzt
werden. Der Wankwinkel ' wird aus der in Abschnitt 4.2 vorgestellten Sensordatenfusion der Re-
ferenzsensorik bestimmt, die Wankrate !X mit der IMU gemessen und die Wankbeschleunigung
P!X mit einem Zustandsvariablenfilter, siehe Vogt (1998), berechnet.

Ergebnisse

Bild 4.4 zeigt die zur Identifikation verwendeten Daten und das Verhalten des identifizierten PT2-
Wankmodells und des stationären Wankmodells nach Gl. (2.100) mit der Verstärkung KRoll des
PT2-Wankmodells. Die Fehler c) des stationären Wankmodells nehmen mit der Anregungsfre-
quenz zu. Durch die Berücksichtigung der Wankdynamik ist der Fehler des Modells 2. Ordnung
weitgehend unabhängig von der Anregungsfrequenz. Bis ca. 1 Hz Anregungsfrequenz ergeben
sich nahezu identische Ergebnisse. Der identifizierte Parametervektor O� kann in folgende Parame-
ter umgerechnet werden:

KRoll D 2;64ı

9:81 m=s2
D 0;269

ı

m=s2

DRoll D 0;29

!Roll D 20 rad=s ! fRoll D !Roll

2

D 3;2 Hz :

4.4 Achsquerkraftmodelle

Die in Kapitel 5 entwickelten Schätzalgorithmen sollen in jeglicher Fahrsituation robust sein und
höchste Schätzgüte liefern. Dies ist nur zu erreichen, wenn die Achsquerkraftmodelle ebenfalls
in jeder Situation die Realität bzw. die Messdaten ausreichend gut abbilden. Um eine gute Aus-
gangsparametrierung zu erreichen, werden daher im Fahrversuch Manöver ausgewählt, die den
wichtigen Schräglaufwinkel- und Längsschlupf-Bereich an der Vorder- und Hinterachse abdecken.

4.4.1 Vorgehen

Um die nichtlinearen Achskraftkennlinien, das Gierträgheitsmoment des Fahrzeugs und die Ein-
lauflänge der Reifen zu bestimmen, benutzt Kobetz (2003) ein zu optimierendes Gütekriterium,
welches direkt die Größen Gierrate, Querbeschleunigung und Schwimmwinkel einschließt. D.h.,
in jedem Optimierungsschritt wird das Fahrdynamikmodell mit neuen Optimierungsvariablen, die
Querkraftparameter beinhalten, simuliert und die Ausgänge mit den Messdaten Gierrate, Quer-
beschleunigung und Schwimmwinkel verglichen, um ein Gütekriterium zu bilden. Buric (2016)
bemerkt allerdings einen Nachteil bei diesem Verfahren: Bei ungünstiger Wahl der Optimierungs-
variablen kann das simulierte nichtlineare Einspurmodell instabil werden. Damit sind die Schwan-
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Bild 4.4: Vergleich des stationären Wankmodells mit dem PT2-Wankmodell während einer

Wedelfahrt-Messung mit steigender Lenkwinkelfrequenz (Sinus-Sweep) mit 60 km/h: a) Ge-

messene Querbeschleunigung aY (Eingang der Wankmodelle), b) Wankwinkel ', c) Modell-

fehler berechnet aus gemessenem Wankwinkel ' und simulierten Fahrwerkswankwinkel 'K

kungen des Gütemaßes sehr groß und es ist wahrscheinlich, dass der Optimierer ein lokales Mi-
nimum findet, welches ebenfalls zu einem instabilen Verhalten führt und dabei unrealistische Pa-
rameter identifiziert. In dieser Arbeit soll daher das robustere Verfahren nach Bechtloff (2014)
und Buric (2016) genutzt werden, bei dem die Reifenparameter direkt identifiziert werden, indem
die gemessenen Zustandsgrößen und deren Ableitung in Achsquerkräfte umgerechnet werden. So
können die berechneten Achsquerkräfte direkt mit den Modellachsquerkräften verglichen werden
und die Parameter können direkt identifiziert werden.

Der Signalfluss für die Datenaufbereitung zur Identifikation ist in Bild 4.5 gezeigt. Um die Parame-
ter von nichtlinearen Querkraftmodellen zu identifizieren, müssen die Ein- und Ausgangsgrößen
des Modells bereitgestellt werden, was im Weiteren beschrieben ist. Die Schräglaufwinkel und
Schlupfberechnung erfolgt nach Gl. (2.85) und (2.73). Die dafür benötigen Größen Längs- vX

und Quergeschwindigkeit vY werden von der vorgestellten Sensordatenfusion mit der Referenz-
sensorik bereitgestellt. Die serienmäßige ESC-Sensorik stellt für die Berechnung die Gierrate !Z,
der Lenkwinkel ıf und die Raddrehzahlen !ij bereit. Die Radlasten der vorder- und Hinterachse
FZ;f=r werden unter Berücksichtigung der Schwerpunkthöhe und dem Einfluss der Längsbeschleu-
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Schlupf-
berechnung

Radlast-
berechnung

Querkraft-
modell 

Berechnung
Gütemaß

Minimierung 
Gütemaß

FY;f

FTY,r

FZ;f

FZ;r

˛f/r

f/r

popt D Œpf;pr;JZ

J

aX

v

ˇ

popt

FTY,f PTl

FTY,r

Gierbeschleu-
nigungsanteil

JZ

pf;pr

Identifikation der querdynamischen Parameter

ıf/r

lT,f/r

lT,f/r;

v

mod. Querkraft-
schätzung

aY

MB,ij
Moment durch
Bremseingriffe

MZ

MD,ij

aYT
Wankmodell und
Transformation

FTY,f

!Z

!Z

pf D Œc˛;f Y;max;f;˛crit;f;CY;f

pr D Œc˛;r Y;max;r;˛crit;r;CY;r

Gl. (2.85)
Gl. (4.25)
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Gl. (4.25) min .J.p//

Gl. (4.23)
Gl. (4.24)

Gl. (4.20)

Bild 4.5: Signalflussplan für die Identifikation der Achskraftparameter pf=r und des Gierträg-

heitsmoments JZ

nigung mit Gl. (2.87) berechnet. Der Einfluss der Nickdynamik wird nicht berücksichtigt. Setzt
man die auf den Aufbau wirkenden Radkräfte unter der Annahme kleiner Fahrwerkswankwinkel
(cos.'K/ � 1) aus Gl. (2.50) in Gl. (2.33) ein, so erhält man für die Querkraft

FY D m � aY D cos ıf � .FYT;fl C FY;fr/C sin ıf � .FXT;fl C FXT;fr/ : : :

: : : cos ır � FYT;rl C FYT;rr/C sin ır � .FXT;rl C FXT;rr/C sin.'K/ � mg :
(4.15)

Verwendet man des Weiteren das Giergleichgewicht in Abhängigkeit der Radkräfte aus Gl. (2.62)

P!Z D 1

JZ



.FY;fl C FY;fr/lf � .FY;rl C FY;rr/lr C .FX;fr � FX;fl/

bf

2
C .FX;rr � FX;rl/

br

2

�
;

(4.16)

können Gl. (4.15) und (4.16) unter der Annahme gleich großer Radquerkräfte an linker und rechter
Seite

FYT;fl D FYT;fr ; FYT;rl D FYT;rr ; (4.17)
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nach den Summen der Radseitenkräfte je Achse

FYT;fl C FYT;fr D FYT;f D 1

cos ıf
�


aYT � lr � m C P!Z � JZ � MZ

l
� sin ıf � .FXT;fl C FXT;fr/

�
;

(4.18)

FYT;rl C FYT;rr D FYT;r D 1

cos ır
�


aYT � lf � m � P!Z � JZ C MZ

l
� sin ır � .FXT;rl C FXT;rr/

�
(4.19)

in Abhängigkeit von Sensorgrößen aufgelöst werden. Die Gierbeschleunigung P!Z wird aus der
gemessenen ideal gefilterten1 Gierrate !Z mittels Differentiation offline gebildet. Die Querbe-
schleunigung bezogen auf Reifenkoordinaten

aYT D aY � g sin .'K.aY// (4.20)

wird aus der gemessenen Querbeschleunigung und der Kompensation mittels des geschätzten
Wankwinkels berechnet. Dabei beschreibt

MZ D b

2
� Œcos ıf � .FXT;fr � FXT;fl/C cos �ır .FXT;rr � FXT;rl/� (4.21)

das Zusatzmoment durch Bremseingriffe. Die Längskräfte in Reifenkoordinaten

FXT;ij D MD;ij � MB;ij

rdyn;i
(4.22)

ergeben sich aus dem Momentengleichgewicht am Rad. Die Bremsmomente MB;ij werden mit-
tels Bremsdrücken und Hydraulikmodellen vom ESC-Steuergerät bereits geschätzt und über den
Fahrzeug-Bus zur Verfügung gestellt. Die Radantriebsmomente MD;ij wurden durch ein Momen-
tenmodell des Motors mit Geriebe und Antriebsachse bereits von der Motorsteuerung geschätzt.
Die Größen werden daher in dieser Arbeit als gegeben angenommen. Der Momentenanteil durch
eine Radträgheit wurde vernachlässigt.

Unbekannt ist im Allgemeinen allerdings das Trägheitsmoment um die Hochachse JZ. Durch
Modifikation der Gl. (4.18) und (4.19)

F�
YT;f D FYT;f � P!Z � JZ

cos ıf � l D 1

cos ıf
�


aYT � lr � m � MZ

l
� sin ıf � .FX;fl C FX;fr/

�
(4.23)

F�
YT;r D FYT;r C P!Z � JZ

cos ır � l D 1

cos ır
�


aYT � lf � m C MZ

l
� sin ır � .FX;rl C FX;rr/

�
(4.24)

1ein ideales Tiefpassfilters hat keinen Phasenverzug und wird auch als „Zero-Phase-Filter“ bezeichnet, siehe Op-
penheim und Schafer (2010)
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kann das Trägheitsmoment als Modellparameter mitgeschätzt werden, siehe Bechtloff und Iser-
mann (2014). Das zu optimierende Gütefunktional

J D
X


F�
YT;f �

�
FYT;f .Xf D Œ˛f;	f;FZ;f�;pf D Œc˛;f;�Y;max;f;˛crit;f;CY;f�/ � P!Z � JZ

cos ıf � l
��2

C
X


F�
YT;r �

�
FYT;r .Xr D Œ˛r;	r;FZ;r�;pr D Œc˛;r;�Y;max;r;˛crit;r;CY;r�/C P!Z � JZ

cos ır � l
��2

(4.25)

setzt sich dementsprechend aus den Kräften des Querkraftmodells mit den zu optimierenden Para-
metern Schräglaufsteifigkeit c˛, maximaler Reibwert �Y;max, kritischer Schräglaufwinkel ˛crit und
Formfaktor CY zusammen. Um auch das Einlaufverhalten zu berücksichtigen, werden in jedem
Optimierungsschritt die Modellquerkräfte mittels eines PT1 Glieds verzögert, siehe Bild 4.5.

Die Optimierungsvariablen für das Querkraftverhalten

popt D popt;Y D Œpf;pr;JZ; lT;f; lT;r� (4.26)

setzen sich somit aus den Parametern für die stationäre Kennlinie pf=r nach Gl. (2.13) und den
Parametern für das dynamische Verhalten Gierträgheitsmoment JZ und die Einlauflängen lT;f=r

zusammen. Zur Schätzung des Gierträgheitsmoments JZ ist eine entsprechende Queranregung
mit P!Z ¤ 0 erforderlich, was durch eine Wedelfahrt mit hoher Lenkfrequenz erreicht wird.

Zur Minimierung des Gütefunktionals J nach Gl. (4.25) in Abhängigkeit der Optimierungsvaria-
blen popt nach Gl. (4.26) wird das innere-Punkt-Verfahren nach Waltz u. a. (2006) verwendet.

4.4.2 Identifikation ohne Einfluss von Längsschlupf

Manöver zur Identifikation der Vorderachsquerkraftkennlinie

Um die Parameter der Querkraftkennlinien an der Vorderachse zu identifizieren, muss ein ausrei-
chend großer Schräglaufwinkel an der Vorderachse erzeugt werden. Steht genug Platz zur Ver-
fügung, bietet sich eine stationäre Kreisfahrt an, bei der der Fahrer bei Erreichen der maximalen
Querbeschleunigung die Lenkung weiter zuzieht. So kann auch der Querkraftabfall bei steigendem
Schräglaufwinkel (˛f > ˛crit;f) erfasst werden. Ein alternatives Manöver, bei dem ebenfalls die ge-
samte Querkraftkennlinie erfasst werden kann, zeigt Bild 4.6: Bei gleichbleibender Frequenz wird
die Amplitude des Lenkwinkels weiter erhöht. Bei Erreichen der maximalen Querbeschleunigung
(ab ca. 22 s) wird der Lenkwinkel weiter vergrößert, sodass der Schräglaufwinkel an der Vor-
derachse weiter ansteigt. Das Fahrzeug bleibt stabil (kleiner Schwimmwinkel), untersteuert aber
absichtlich sehr stark.

Manöver zur Identifiktion der Hinterachsquerkraftkennlinie

Soll die Querkraftkennlinie der Hinterachse über alle relevanten Schräglaufwinkel erfasst wer-
den, reicht die stationäre Kreisfahrt als Identifikationsmanöver nicht aus. So gut wie alle Fahrzeu-
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Bild 4.6: Messung eines Wedel-Manövers bei 90 bis 95 km/h mit kleinen bis großen Quer-

beschleunigungen und Zuziehen der Lenkung zur Identifikation der Vorderachsquerkraftkenn-

linie: a) Lenkwinkel der Vorderachse ıf; b) Beschleunigungen aY; c) Schwimmwinkel ˇ; d)

Schräglaufwinkel ˛

ge erzeugen eine höhere maximale Querkraft an der Hinter- als an der Vorderachse, sodass bei
Erreichen der maximalen Querbeschleunigung bei weiter steigenden Lenkwinkel der Schwimm-
winkel und die Gierrate nicht weiter anwachsen, da das Fahrzeug stark untersteuert. Um auch
Schräglaufwinkel an der Hinterachse zu erzeugen, die größer als der kritische Schräglaufwinkel
sind (˛r > ˛crit;r), bietet sich eine nahezu instabile Wedelfahrt an. Bei diesem Manöver entste-
hen große Schwimmwinkel und dementsprechend große Schräglaufwinkel an der Hinterachse.
Ein Lenkwinkelverlauf, der das Auto maximal destabilisiert, wird in König (2012) mittels einer
Ljapunov-Funktion hergeleitet. Bild 4.7 zeigt ein solches Manöver: Durch den destabilisierenden
Lenkwinkelverlauf wird ein Schräglaufwinkel an der Hinterachse von ca. 30ı erreicht.

Bild 4.8 a) zeigt die geschätzten Achsquerkräfte FYT.aY; P!Z/ und die identifizierten Querkraft-
kennlinien auf trockenem Asphalt mit Sommerreifen auf der Fahrdynamikfläche des Prüfzentrum
Boxberg (PZB). Zusätzlich zu den beschriebenen stabilen und instabilen Wedelfahrten wurden
auch Wedelfahrten mit sehr hohen Lenkfrequenzen hinzugenommen, um die Einlauflängen und
das Gierträgheitsmoment identifizieren zu können. Während der anderen Versuche wurden die
dynamischen Parameter dann nicht mehr zur Identifikation hinzugenommen.

Bild 4.8 b) zeigt die Kennlinien auf feuchtem Asphalt mit Sommerreifen auf der Fahrdynamikflä-
che des Automotive Testcenters Papenburg (ATP).

Die identifizierten Querkraftkennlinien der Winterreifen auf trockenem Asphalt sind in Bild 4.8 c)
zu sehen.

Auf einer bewässerten Teststrecke des ATP zeigen sich deutlich niedrigere maximale Querkräfte,
siehe Bild 4.8 d). Nach Erreichen des Maximums fallen die Querkräfte bei steigenden Schräglauf-
winkeln zudem auffällig stark ab.
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Bild 4.7: Messung eines Wedel-Manövers bei 65 bis 90 km/h mit großen Querbeschleuni-

gungen und großen Schwimmwinkeln zur Identifikation der Hinterachsquerkraftkennlinie: a)

Lenkwinkel der Vorderachse ıf; b) Beschleunigungen aY; c) Schwimmwinkel ˇ; d) Schräg-

laufwinkel ˛

Auf schneebedeckter Fahrbahn auf dem Testgelände in Vaitoudden in Schweden sind die maxima-
len Querkräfte am geringsten, fallen bei steigenden Schräglaufwinkeln allerdings kaum ab, siehe
Bild 4.9 e).

Vergleich

Tabelle 4.2 fasst die identifizierten Achsquerkraftparameter auf unterschiedlichen Fahrbahnbelä-
gen und Bereifungen zusammen. Zudem wird aus den identifizierten Schräglaufsteifigkeiten der
Eigenlenkgradient nach Gl. (2.95) berechnet, um die Variation der Über- oder Untersteuertendenz
bei geringen Querbeschleunigungen zu zeigen.
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Bild 4.8: Geschätzte Achsquerkräfte FYT.aY; P!Z/ und identifizierte Querkraftkennlinien

FYT.˛;c˛;�max;˛crit;CY/ sowie das lineare Achskraftmodell FYT D ˛ �c˛ der Vorder- und Hin-

terachse auf: a) trockenem Asphalt mit Sommerreifen (Fahrdynamikfläche, PZB); b) feuchtem

Asphalt mit Sommerreifen (Fahrdynamikfläche, ATP); c) trockenem Asphalt mit Winterreifen

(Fahrdynamikfläche, ATP); d) nassem Asphalt (Nasshandlingkurs, ATP)
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Bild 4.9: Geschätzte Achsquerkräfte FYT.aY; P!Z/ und identifizierte Querkraftkennlinien

FYT.˛;c˛;�max;˛crit;CY/ sowie das lineare Achskraftmodell FYT D ˛ � c˛ der Vorder- und

Hinterachse auf e) schneebedeckter Fahrbahn (Vaitoudden, Schweden)

Tabelle 4.2: Zusammenfassung der identifizierten Achsquerkraftparameter auf unterschied-

lichen Fahrbahnbelägen und Bereifungen auf Basis der Messungen der Fahrmanöver nach

Bild 4.6 und 4.7. Sommerreifen (SR): Dunlop, VA: 245/40R19, HA: 275/35R19. Winterrei-

fen (WR): Dunlop VA/HA: 245/45R18, Fahrzeug: BMW F10 550i

Para-
meter

Asphalt
trocken, SR

Asphalt
feucht, SR

Asphalt
trocken, WR

Nasshandling-
Kurs, SR

Schnee, WR Einheit

lT;f 0,25 - - - - m

lT;r 0 - - - - m

Jz 3417 - - - - kgm2

�max;f 0,91 0,85 0,88 0,46 0,26 �
�max;r 0,98 0,94 0,93 0,51 0,29 �
calpha;f 139 137 132 106 116 kN=rad
calpha;r 186 224 195 153 123 kN=rad

Cf 1,42 1,46 1,55 1,51 1,15 �
Cr 1,59 1,54 1,57 1,76 1,21 �
˛crit;f 8,9 7,3 9,6 4,5 20,0 ı

˛crit;r 6,6 5,1 7,1 4,6 17,0 ı

EG 2,41 3,41 3,06 3,66 1,25 rad=.m=s2/

�10�3

Bild 4.10 zeigt alle identifizierten Querkraftkennlinien auf unterschiedlichen Fahrbahnbelägen
und Reifen. Auffällig ist, dass die Winterreifen im Trockenen ihre maximale Querkraft erst bei
größeren Schräglaufwinkeln erreichen als die Sommerreifen. Die Kurven mit Sommerreifen fal-
len steiler ab (Parameter C ist größer) als bei den Winterreifen. Gerade auf sehr nasser Fahrbahn
(Sommerreifen, Nasshandling-Kurs ATP) ist dieses Verhalten auffällig. Auf Schnee fällt die Quer-
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Bild 4.10: Identifizierte Querkraftkennlinien der Vorderachse a) und Hinterachse b) auf unter-

schiedlichen Fahrbahnbelägen, Sommerreifen (R) und Winterreifen (WR)

kraft nicht mehr mit wachsenden Schräglaufwinkeln ab.
Sonderbar erscheint das Ergebnis, dass die Steifigkeit der Hinterachse c˛;r der Sommerreifen auf
trockenem Asphalt mit 186 kN/rad geringer ist als mit Sommerreifen auf feuchtem Asphalt mit
224 kN/rad. Auch mit unterschiedlichen Datensätzen auf trockenem und feuchten Asphalt wurden
sehr ähnliche Parameter identifiziert, was für die Zuverlässigkeit der Parameterschätzung spricht.
Grund könnte vielmehr ein unterschiedlicher Zustand der Reifen zum Zeitpunkt der Messung sein
(Luftdruck, Temperatur, Verschleiß). Deutlich wird allerdings der größere maximale Reibwert
�max der Sommerreifen im Vergleich der Winterreifen.

Insgesamt wird deutlich, wie groß der Bereich der Achsquerkraftkennlinien ist und motiviert die
Adaptionsfähigkeit von Fahrdynamikregelungen und Beobachtern bzgl. des maximalen Reibwerts
und der Schräglaufsteifigkeiten.

4.4.3 Identifikation bei kombiniertem Schlupf

In Abschnitt 2.3 wurde gezeigt, dass Längsschlupf die Reifenquerkraft abschwächt. Wie stark dies
geschieht, wurde durch die Modellannahme (2.14)

FYT D FT � sYq
s2

Y C .� � sX/2

ausgedrückt. Der Faktor � skaliert den Schlupf und macht so die Stärke des Längsschlupfeinflus-
ses auf unterschiedliche Reifen- bzw. Achsverhalten applizierbar. Zudem nimmt die Querkraft
nicht proportional zur Radlast zu. Das degressive Verhalten wurde mit der modifizierten Radlast
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(2.10)

F�
Z D FZ �

�
1 � kFZ

FZ;0 � FZ

FZ;0

�

mit dem Faktor kFZ;f für die Vorder- und kFZ;r für die Hinterachse beschrieben. Zur Identifikation
der vier weiteren Parameter werden Daten von Kurvenbremsungen mit unterschiedlichen Längs-
und Querbeschleunigungen verwendet. Die Optimierungsvariablen

popt D popt;sX D Œ�f; �r; �f; �r� (4.27)

beschränken sich nun lediglich auf die Längsschlupffaktoren �f und �r und der Radlastfaktoren
kFZ;f und kFZ;r. Die Optimierungsvariablen für die reine Querkraftkennlinie popt;Y D const:wurden
bereits durch geeignete Testfahrten identifiziert und werden nun als fest angenommen.

Identifikation der Querkraftabschwächung ohne Radlast- und Schlupffaktoren

Bild 4.11 a) zeigt den Fehler der Querkraftmodelle

e� D
OFY � FY .X;p/

FZ0
(4.28)

über den Schlupf bei 26 Kurvenbremsungen mit Startgeschwindigkeiten zwischen 60 und 120
km/h mit der Grundparametrierung vor der Identifikation der Längsschlupffaktoren �f D 1, �r D 1

und den Radlastfaktoren kFZ;f D 0 und kFZ;r D 0. Die Fehler wurden nur bei Längsbeschleunigung
über 3 m=s2 ausgewertet.

An der Vorderachse sind gerade im wichtigen Schlupfbereich von 5 bis 15 % die Modellkräfte im
Mittel 0:1 � FZ;f0 zu groß. Die Standardabweichungen der Fehler betragen

�.e�;f/ D 0;058 ; �.e�;r/ D 0;055

Identifikation der Querkraftabschwächung ohne Radlastfaktoren

Bild 4.11 b) zeigt den Fehler der Querkraftmodelle mit den Basis-Radlastfaktoren kFZ;f D 1 und
kFZ;r D 1 und identifizierten Längsschlupffaktoren �f D 1;33, �r D 0;83. Die Standardabwei-
chungen der Fehler betragen

�.e�;f/ D 0;054 �.e�;r/ D 0;053

und sind an der Vorder- und Hinterachse kleiner durch die Hinzunahme der Längsschlupffaktoren
geworden. Durch die Ausgleichsgerade wird aber deutlich, dass noch ein Freiheitsgrad fehlt, um
den Fehler gleichmäßiger über den Längsschlupf zu verteilen.
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Bild 4.11: Fehler der identifizierten Querkraftmodelle in Abhängigkeit des Schlupfes bei 26

Kurvenbremsungen mit Startgeschwindigkeiten zwischen 60 und 120 km/h: a) ohne Schlupf-

faktoren (�f D 1, �r D 1), ohne Radlastfaktoren (kFZ;f D 0, kFZ;r D 0); b) mit Längs-

schlupffaktoren (�f D 1;33, �r D 0;83), ohne Radlastfaktoren (kFZ;f D 0, kFZ;r D 0);

c) mit Längsschlupffaktoren (�f D 0;93, �r D 0;83), mit Radlastfaktoren (kFZ;f D 0;53,

kFZ;r D 0)

Identifikation der Querkraftabschwächung mit Radlastfaktoren

Bild 4.11 c) zeigt den Fehler der Querkraftmodelle mit den identifizierten Längsschlupffaktoren
�f D 0;93, �r D 0;83 und den Radlastfaktoren kFZ;f D 0;53 und kFZ;r D 0. Die Standardab-
weichungen der Fehler

�.e�;f/ D 0;047; �.e�;r/ D 0;053:

konnten an der Vorderachse deutlich reduziert werden. Es zeigt sich eine gleichmäßige Fehlerver-
teilung über den wichtigen Schlupfbereich bis 20%. Auf die Hinterachse hat der Freiheitsgrad des
Radlastfaktors keine weitere Verbesserung erzielt.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


4.5 Achslängskraftmodelle 71

Tabelle 4.3: Zusammenfassung der Ergebnisse der Identifikation der Querkraftabschwächung

Variante �.e�;f/ �.e�;r/

a) Basisparameter 0,058 0,055

b) + Schlupffaktor 0,054 0,053

c) + Radlastfaktor 0,048 0,053

Die Fehler der unterschiedlichen Modelle zur Querkraftabschwächung sind in Tabelle 4.3 aufge-
tragen. In Abschnitt 4.6 werden die einzelnen Modellierungen mit einer Simulation im Zeitbereich
verglichen.

4.5 Achslängskraftmodelle

Die Längskräfte

FXT;ij D MD;ij � MB;ij

rdyn
(4.29)

werden wie in Gl. (4.22) aus den Bremsmomenten MB und Radantriebsmomenten MD geschätzt.

Für die Achslängskraftfehler an Vorder- und Hinterachse können nun zwei Gütefunktionale

JX;f D JX;fl C JX;fr ; JX;r D JX;rl C JX;rr (4.30)

mit

JX;fl D
X�

FXT;fl � �
FXT;fl

�
Xf D Œ˛fl;sX;fl;FZ;fl�;pX;f D ŒcsX;f;�X;max;f;sX;crit;f;CX;f�

��	2
; (4.31)

JX;fr D
X�

FXT;fr � �
FXT;fr

�
Xf D Œ˛fr;sX;fr;FZ;fr�;pX;f D ŒcsX;f;�X;max;f;sX;crit;f;CX;f�

��	2
; (4.32)

JX;rl D
X�

FXT;rl � �
FXT;rl

�
Xrl D Œ˛rl;sX;rl;FZ;rl�;pX;r D ŒcsX;r;�X;max;r;sX;crit;f;CX;r�

��	2
; (4.33)

JX;rr D
X�

FXT;rr � �
FXT;rr

�
Xrr D Œ˛rr;sX;rr;FZ;rr�;pX;r D ŒcsX;r;�X;max;r;sX;crit;f;CX;r�

��	2
(4.34)

aufgestellt werden, da die Optimierungsvariablen für das Längskraftverhalten, anders wie beim
Querverhalten, keine gemeinsamen Parameter für die Vorder- und Hinterachse enthalten. Die Feh-
ler jedes einzelnen Rades werden in den Gütefunktionalen berücksichtigt. Zur Minimierung der
Gütefunktionale in Abhängigkeit der Optimierungsvariablen pX;f und pX;r wird das innere-Punkt-
Verfahren nach Waltz u. a. (2006) verwendet.

Bild 4.12 zeigt die geschätzten Längskräfte FXT.MD;MB/ und identifizierte Längskraftkennlinien
während einer Bremsung bis in den ABS-Regelbereich. Gerade für den instabilen Schlupfbereich
ab ca. 6% streuen die geschätzten Achslängskräfte stark. Auch mit der Berücksichtigung der Rad-
drehbeschleunigung und Radträgheit konnte das Ergebnis nicht verbessert werden. Vermutlich
sind die unterlagerten Hydraulik- und Bremskraftmodelle bei ABS-Regeleingriffen nicht mehr
genau genug. Tabelle 4.4 fasst die identifizierten Parameter zusammen.
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Bild 4.12: Geschätzte Achslängskräfte FXT.MD;MB/ und identifizierte Längskraftkennlinien

während einer Bremsung bis in den ABS-Regelbereich

Tabelle 4.4: Identifizierte Achslängskraftparameter mit Sommerreifen: Dunlop, VA:

245/40R19, HA: 275/35R19, Fahrzeug: BMW F10 550i

Parameter csX in kN �X;max sX;crit in% CX

Vorderachse 361 1,00 6;6 1,3

Hinterachse 477 1,15 10;0 1,3

4.6 Validierung und Vergleich der Einspurfahrdynamikmodelle

Mit verschiedenen Testfahrten soll das erweiterte Einspurmodell in unterschiedlichen Konfigura-
tionen nun validiert werden. Bild 4.13 zeigt den Aufbau zur Validierung des erweiterten Einspur-
modells. Da nur das querdynamische Verhalten überprüft werden soll, werden die Geschwindig-
keit v, die Beschleunigung aX und der Schlupf sX als Eingänge des Modells vorgegeben.

X,f/r v

ˇ !Z

Achsquerkraft-
modell

MB,ij
Schätzung der
Längskräfte

FXT,ij

MD,ij

Radlast-
berechnung

FZ;f

FZ;r

aX

ıf/r

Schwimm-
winkel- und 
Gierdynamik

Transformation
in Aufbau-
koordinatenFYT;r

FYT;f

FY

FX

MZ

Œ

Œu D

xD

T

T

s

Gl. (2.87)
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Gl. (2.14)

Gl. (2.48)

Gl. (2.82)

Gl. (2.59)

Gl. (2.67)

Gl. (2.83)

Bild 4.13: Aufbau zur Validierung des querdynamischen Verhaltens des erweiterten Einspur-

modells
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Bild 4.14: Simulation des linearen (ESM) und erweiterten Einspurmodells (eESM) und Ver-

gleich mit einer Messung; Parameter: Sommerreifen, trockenener Asphalt; Manöver: Sta-

tionäre Kreisfahrt bis maximale Querbeschleunigung; a) Lenkwinkel der Vorderachse; b)

Geschwindigkeit; c) Längs- und Querbeschleunigung; d) Schwimmwinkel; e) Gierrate; f)

Einspurmodell-Schlupf

4.6.1 Stationäres Verhalten

Der Vergleich des linearen mit dem erweiterten Einspurmodell während einer stationären Kreis-
fahrt bis zur maximalen Querbeschleunigung und Überziehen der Lenkung ist in Bild 4.14 dar-
gestellt. Das nichtlineare Modell ist in der Lage auch bei überzogender Lenkung und großen
Schräglaufwinkeln an der Vorderachse, die Zustandsgrößen Gierrate und Schwimmwinkel sowie
die Ausgangsgröße Querbeschleunigung zu modellieren. Die Fehler des linearen Einspurmodells
werden in dem Moment sehr groß, ab dem der Lenkwinkel stark zunimmt und die Schräglauf-
winkel an der Vorderachse größer 5ı werden.
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Bild 4.15: Simulation der drei Varianten des nichtlinearen Einspurmodells (eESM) und Ver-

gleich mit einer Messung; Manöver: Vollbremsung bei maximaler Querbeschleunigung; a)

Lenkwinkel der Vorderachse; b) Geschwindigkeit. c) Längs- und Querbeschleunigung; d)

Schwimmwinkel; e) Gierrate; f) Einspurmodell-Schlupf

4.6.2 Bremsen in der Kurve

Bild 4.15 zeigt die Simulation des erweiterten Einspurmodells mit und ohne Berücksichtigung
der Schlupf- und Radlastfaktoren im Vergleich mit Realdaten während einer Vollbremsung bei
maximaler Querbeschleunigung. Bis auf den harten Lastwechsel bei 19 s wird die Gierrate, der
Schwimmwinkel und die Querbeschleunigung von den Modellen mit Schlupfkorrektur (eESM;�)
gut abgebildet. Im weiteren Verlauf der Bremsung zeigt das komplexere Modell mit den Radlast-
korrekturen (eESM;�;kFZ) die besten Ergebnisse. Das Modell ohne die Korrekturen (eESM) wird
nach der Lastwechselreaktion fast instabil: Gierrate und Schwimmwinkel steigen stark an.
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4.6.3 Dynamisches Verhalten

Das dynamische Verhalten wird hier lediglich mit den linearen Einspurmodellen verglichen. Es
soll untersucht werden, ob beim Versuchsfahrzeug der transiente Querkraftaufbau berücksichtigt
werden sollte. In Bild 4.16 sind die Messungen mit der Simulation des linearen Einspurmodells
während eines Sinus-Sweep-Manövers bei 60 km/h mit Lenkfrequenzen zwischen 0 und 4 Hz
abgebildet. Auf den ersten Blick werden die Zustandsgrößen sehr gut abgebildet. Zwischen den
Modellen mit und ohne dynamischen Querkraftaufbau sind im Zeitbereich kaum Unterschiede
auszumachen, was bereits die geringe identifizierte Einlauflänge lT;f D 0;25 m aufzeigt. Die ge-
ringe Einlauflänge resultiert höchstwahrscheinlich aus dem steifen Aufbau der Reifenseitenwand
und der niedrigen Querschnittshöhe.

Analysiert man die gemessene Ein- und Ausgangssignale (Lenkwinkel und Gierrate) im Frequenz-
bereich mittels Fast Fourier Transformation, siehe Isermann und Münchhof (2011), und bildet die
Gierübertragungsfunktion und dessen Phasengang

G P 
.j!/ D

F

� P .t/
�

F .ıf.t//
; � P 

.j!/ D arctan
Im
�
G P 
.j!/

�
Re
�
G P 
.j!/

� ; (4.35)

dann erkennt man in Bild 4.16 e) und f) einen leichten Unterschied im Phasengang bei Frequenzen
oberhalb 2 Hz. Die 20ı Phasendifferenz bei 4 Hz entspricht allerdings einer Verzögerung der
Gierrate mit Einlaufen um lediglich 0;014 s.

4.7 Zusammenfassung

Auf Basis der fusionierten Referenzsensorik wurde in Abschnitt 4.4 ein Konzept aufgezeigt, wie
die Parameter der Achsquerkraft-Schlupf-Kennlinien mittels einfacher Fahrversuche identifiziert
werden können. Nicht nur der Schlupf-Kraft-Zusammenhang bis zum Kraftmaximum wurde be-
stimmt, sondern auch der abfallende Anteil der Kennlinie. Bei Betrachtung der Ergebnisse wird
klar, dass die Kennlinien stark in Abhängigkeit vom Untergrund und Reifenzustand variieren.
Außerdem wurden Modelle mit unterschiedlicher Komplexität bzgl. der Querkraftabschwächung
untersucht: Das Modell mit applizierbaren Faktoren für die Querkraftabschwächung in Abhän-
gigkeit des Längsschlupfs nach Gl. (2.14) und der Radlast nach Gl. (2.10) lieferten die besten
Ergebnisse. Gegenüber der üblichen Extrapolation des Querkraftmodells bei auftretendem Längs-
schlupf nach Gl. (2.7), konnte mit dem komplexeren Modell der Querkraftfehler um 17 % und der
Fehler in der Simulation der Gierrate um 62 % bei einer Kurvenbremsung reduziert werden.
Abschnitt 4.6 zeigt auf, dass die resultierenden nichtlinearen Einspurmodelle in der Lage sind, ne-
ben den stationären Manövern bis zur maximalen Querbeschleunigung auch Manöver mit gleich-
zeitigem Längs- und Querschlupf sehr gut zu modellieren. Bei dem Vergleich des Einspurmodells
mit und ohne dynamischen Querkraftaufbau konnten kaum Vorteile auch bei niedriger Geschwin-
digkeit (60km/h) und sehr schneller Anregung über 2 Hz beim vorliegendem Fahrzeug festgestellt
werden. Daher wird der dynamische Querkraftaufbau im Weiteren vernachlässigt.
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Bild 4.16: Simulation des linearen Einspurmodells mit dynamischen Querkraftaufbau (ESM

PT1) und ohne (ESM), sowie Vergleich mit einer Messung; Parameter: Sommerreifen, tro-

ckenener Asphalt; Manöver: Sinus-Sweep 0 - 4 Hz bei ca. 60 km/h; a) Lenkwinkel der Vor-

derachse; b) Querbeschleunigung; c) Schwimmwinkel; d) Gierrate; e) und f) Vergleich des

Amplituden- und Phasengang
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5 Schätzung fahrdynamischer Zustände und

Parameter

In diesem Kapitel wird die Schätzung der wichtigsten fahrdynamischen Bewegungsgrößen Geschwin-

digkeit und Schwimmwinkel beschrieben. Dazu wird lediglich die vorhandene ESC-Sensorik, beste-

hend aus Raddrehzahlen, Lenkradwinkel, Gierrate, Quer- und Längsbeschleunigung, genutzt. Die

drei Größen Gierrate, Quer- und Längsbeschleunigung werden von einer 3D-IMU gemessen, wel-

che ebenfalls serienmäßig zur ESC-Sensorik gehört. Damit eine flachheitsbasierte Steuerung oder

ein Führungsmodell auf Veränderung des querdynamischen Fahrverhaltens reagieren kann, werden

außerdem die fahrdynamisch wichtigsten Parameter, die Schräglaufsteifigkeiten und die maximalen

Reibwerte in Querrichtung an der Vorder- und Hinterachse im Fahrbetrieb geschätzt. Der Schätz-

algorithmus auf Basis eines Kalman-Filters ist in die Abschnitte 5.2 Prädiktion und 5.3 Korrektur

aufgeteilt.

Durch die Analyse der Beobachtbarkeit von Geschwindigkeit und Schwimmwinkel eines reduzierten

Systems kann ein tieferes Verständnis für das Schätzproblem entwickelt und die Vorteile einer 6D-

IMU bzgl. der Schätzgüte verdeutlicht werden. Durch den Vergleich der Rückführverstärkung bzgl.

der Schwimmwinkelkorrektur, wird der Unterschied zwischen einem EKF und UKF gezeigt.

5.1 Aufbau der Kalman-Filter

Bild 5.1 zeigt den Aufbau des entwickelten Fahrdynamik-Kalman-Filter. Das Filter ist in die
Schritte Prädiktion (Abschnitt 5.2) und Korrektur (Abschnitt 5.3) eingeteilt. Der Eingangsvektor
des Kalman-Filters

u D �
!Z; aX; aY; ıf; ır; !fl; !fr; !rl; !rr; 'K; P'K

	T
(5.1)

setzt sich nicht nur aus den Sensorsignalen zusammen, sondern enthält auch den Wankwinkel 'K

und die Wankrate P'K des Wankmodells nach Gl. (2.99) mit dem Eingang Querbeschleunigung
aY. So kann der (aus dem Wankmodell) geschätzte Wankwinkel des Fahrwerks im Kalman-Filter
berücksichtigt werden. Der Messvektor z umfasst nicht direkt die Sensorgrößen, sondern bereits
umgerechnete „virtuelle“ Sensorsignale, um die Anzahl der Zustände gering zu halten und fahrdy-
namisch anschauliche Größen für die Korrektur zu verwenden. Dieser Schritt wird in Abschnitt
5.3 näher beschrieben.

Da die Messgrößen in unterschiedlichen Fahrsituationen unterschiedliche Genauigkeiten aufwei-
sen, wird die Messkovarianzmatrix R in Abhängigkeit der ESC-Sensorsignale an die Situation
angepasst. Auch die Prozesskovarianzmatrix Q muss an die Fahrsituation angepasst werden.
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Bild 5.1: Aufbau des Fahrdynamik-Kalman-Filters mit dem Eingangsvektor u, der adaptiven

Prozesskovarianzmatrix Q, dem Messvektor z und der adaptiven Messkovarianzmatrix R

Der Zustandsvektor

x D �
v; ˇ; �max; '; �„ ƒ‚ …

xfast

; c˛;f;EG; ��„ ƒ‚ …
xslow

	T
(5.2)

wird in schnell veränderliche Zustände xfast und in langsam veränderliche Zustände xslow eingeteilt.
Die schnell veränderlichen Zustände umfassen unter anderem die nicht direkt messbaren Größen
Übergrundgeschwindigkeit v und Schwimmwinkel ˇ. Durch Berücksichtigung eines Wankwin-
kels ' und eines Nickwinkels � sollen auch Situationen abgedeckt werden, bei denen ein größe-
rer Teil der Erdbeschleunigung auf den Längs- und Querbeschleunigungssensoren während einer
Fahrt in der Steilkurve oder bei größeren Fahrbahnsteigungswinkeln wirken.
Um den linearen Teil der Achsquerkraftkennlinien an der Vorder- und Hinterachse zu adaptieren,
werden die Schräglaufsteifigkeit an der Vorderachse c˛;f und der Eigenlenkgradient EG zu den
langsam veränderlichen Zuständen hinzugefügt. Für die Hinterachse wird durch Umstellen von
Gl. (2.95) des linearen Einspurmodells die Schräglaufsteifigkeit

c˛;r D m � c˛;f � lf
m � lr � EG � c˛;f � l (5.3)

aus dem geschätzten Eigenlenkgradient und der vorderen Schräglaufsteifigkeit berechnet. Statt
die maximalen aktuellen Reibwerte beider Achsen �max;f=r direkt als Zustände zu schätzen, wird
für eine schnelle Adaption auf Niedrigreibwert der Zustand maximaler Reibwert �max, der die
Querkraftkennlinien der Vorder- und Hinterachse skaliert, verwendet. Um zu erkennen, ob die
Querkraftkennlinien der Vorder- oder Hinterachse relativ zu einander weniger oder mehr maxima-
len Reibwert zulassen, wird der Zustand maximaler Reibwertunterschied zwischen Vorder- und
Hinterachse �� in den Zustandsvektor aufgenommen. Die genaue Wirkung der geschätzten Zu-
stände auf die Achsquerkraftkennlinien wird in Abschnitt 5.3 erläutert.
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5.2 Prädiktion

Das kontinuierliche Prozessmodell

Px D fc.x;u/C w (5.4)

wird in nichtlinearer Schreibweise formuliert. Das Prozessrauschen w geht allerdings linear in
den Prozess eingehen, um eine einfachere Variante des UKF, siehe Abschnitt 3.2, verwenden zu
können. Die Zustandsänderung Px ist hierbei nichtlinear von dem Zustandsvektor x, dem Eingangs-
vektor u und linear von dem unbekannten Prozessrauschvektor w abhängig.

Übergrundgeschwindigkeit

Die Änderung der Übergrundgeschwindigkeit des Schwerpunkts

Pv D cosˇ � .aX C waX C sin � � g/C sinˇ � .aY C waY � sin' � cos � � g/ (5.5)

wird auf Basis der Geschwindigkeits-/ Schwimmwinkel-Darstellung der Starrkörperbewegung mit
Gl. (2.66) berechnet. Die Erdbeschleunigungsanteile werden in Abhängigkeit der Winkel � und '
kompensiert und die Rauschanteile der Beschleunigungssensoren waX=Y berücksichtigt. Geht man
von kleinen Schwimmwinkeln bzgl. der Rauschanteile aus, kann Gl. (5.5) vereinfacht werden,
sodass die Änderung der Übergrundgeschwindigkeit

Pv D cosˇ � .aX C sin � � g/C sinˇ � .aY � sin' � cos � � g/C waX (5.6)

nur noch linear vom Rauschen des Längsbeschleunigungssensors waX abhängt.

Schwimmwinkel

Die Schwimmwinkel-Differentialgleichung

P̌ D �sinˇ � .aX C sin � � g/
v

C cosˇ � .aY � sin' � cos � � g/
v

� !Z C waY

v
C w!Z (5.7)

nutzt ebenfalls die Vereinfachung für das Beschleunigungssensorrauschen.

Maximaler Reibwert

Die Änderung des maximalen Reibwerts

P�max D 1

T�
� .1 � �max/C w�max (5.8)

wird als Gauss-Markov-Prozess 1. Ordnung mit Mittelwert wie in Imsland u. a. (2007) und Becht-
loff u. a. (2016), modelliert. Die Zeitkonstante T� bestimmt wie schnell der maximale Reibwert
gegen den Mittelwert eins konvergiert, wenn er nicht beobachtbar ist. Im Folgenden wird bei die-
sem Effekt von der künstlichen Stabilisierung eines geschätzten Zustands gesprochen.
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PT2-Wankmodell

DRollKRoll

aY K'

PT1
'w'

T'

deterministischer Anteil

stochastischer Anteil

!0;Roll

Bild 5.2: Darstellung des deterministischen Wankwinkels aus einem Wankmodell und einem

stochastischen Anteil, modelliert als Gauss-Markov-Prozess 1. Ordnung

Wank- und Nickwinkel

Die Änderung des Wankwinkels

P' D P'K C 1

T'
� .'K � '/C w' (5.9)

setzt sich aus der geschätzten Wankrate P'K und Wankwinkel 'K des Fahrwerks mit dem Wank-
modell aus Gl. (2.99) sowie einem stochastischen Anteil, modelliert als Gauss-Markov-Prozess 1.
Ordnung zusammen. Bild 5.2 verdeutlicht das Konzept. Ist der Wankwinkel ' nicht beobachtbar,
so wird gegen den Fahrwerks-Wankwinkel stabilisiert. Der Änderung Nickwinkel

P� D � 1

T�
� � C w� (5.10)

wird ebenfalls als Gauss-Markov-Prozess 1. Ordnung modelliert. Aufgrund sehr kleiner Nickwin-
kel wird kein bekannter Anteil durch ein Nickmodell hinzugefügt.

Schräglaufsteifigkeit, Eigenlenkgradient und Reibwertunterschied

Die Änderung der Schräglaufsteifigkeit der Vorderachse

Pc˛;f D wc˛;f ; (5.11)

der Eigenlenkgradient

PEG D wEG (5.12)

und der Reibwertunterschied

P�� D w�� (5.13)
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werden als Random-Walk modelliert, was typisch für die Parameterschätzung mit einem Kalman-
Filter ist, siehe Grewal und Andrews (2008). Das gesamte Prozessmodell entsprechend Gl. (5.4),

Px D

2
6666666666664

Pv
P̌

P�max

P'
P�

Pc˛;f
PEG
P��

3
7777777777775

D

2
66666666666664

cosˇ � .aX C sin � � g/C sinˇ � .aY � sin' � g/
�sinˇ � .aX C sin � � g/

v
C cosˇ � .aY � sin' � g/

v
� !Z

1
T�

� .1 � �max/C w�max

P'K C 1
T'

� .'K � '/
� 1

T�
� �

0

0

0

3
77777777777775

C

2
6666666666664

waX
waY

v
C w!Z

w�max

w'

w�

wc˛;f

wEG

w��

3
7777777777775
;

(5.14)

ergibt sich aus den Gl. (5.5) bis (5.13). Das Prozessrauschen wir im Vektor

w D �
waX;

waY

v
C w!Z; w�max; w'; w� ; wc˛;f ; wEG; w��

	T
(5.15)

zusammengefasst. Der zweite Eintrag ist allerdings noch von der Geschwindigkeit v abhängig.
Dies wird mit der Adaption der Prozessrauschkovarianzmatrix

Q.t/ D

2
6666666666664

�2
aX

0 0 0 0 0 0 0 0

0 .�aY=v.t//
2 C �2

!Z
0 0 0 0 0 0 0

0 0 �2
�max

0 0 0 0 0 0

0 0 0 �2
' 0 0 0 0 0

0 0 0 0 �2
�

0 0 0 0

0 0 0 0 0 �2
c˛;f 0 0

0 0 0 0 0 0 0 �2
EG 0

0 0 0 0 0 0 0 0 �2
��

3
7777777777775

(5.16)

durch die Skalierung des zweiten Diagonalelements über die Geschwindigkeit berücksichtigt. Um
eine Approximation der zeitdiskreten Darstellung

xk D f.xk�1;uk�1/C wk�1 � xk�1 C T0 Œfc.xk�1;uk�1/C w�

des nichtlinearen Systems mit der Abtastzeit T0 D 10 ms zu erhalten, wird das einfache expli-
zite Euler-Verfahren nach Gl. (3.2) verwendet. Um systematische Fehler durch Integrationsfehler
gering zu halten, werden für Strapdown-Anwendungen mit hochwertiger 6D-IMU oft aufwendi-
gere Verfahren verwendet, siehe hierzu Wendel (2007). Die diskrete Prozesskovarianzmatrix wird
ebenfalls mit einer einfachen Approximation

Qk�1 � Q.t/ � T0 (5.17)

dargestellt.

Mit dem Prozessmodell nach Gl. (3.2) und der Prozesskovarianzmatrix nach Gl. (5.17) kann nun
der Prädiktionsschritt mit einem EKF nach Gl. (3.5) und Gl. (3.6) oder mit einem UKF nach Gl.
(3.16) bis Gl. (3.20) erfolgen.
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Prozessmodell bei Verwendung einer 6D-IMU

Steht eine 6D-IMU zur Verfügung, müssen der Wankwinkel ' und der Nickwinkel � und ihre
entsprechenden Änderungen

P' D !X C !Y � sin' � tan � C !Z � cos' � tan � C w' ; (5.18)

P� D !Y � cos � � !Z � sin' C w� ; (5.19)

nicht mehr als Gauss-Markov-Prozess 1. Ordnung modelliert werden, da über die Drehratensenso-
rik die Änderungen der Winkel sehr gut bestimmt werden können. In Kapitel 6 wird der Schätzal-
gorithmus mit 3D-IMU nach Gl. (5.14) auch gegen einen Schätzer mit den zusätzlichen Eingängen
Wank- !X und Nickrate !Y nach Gl. (5.18) und Gl. (5.19) verglichen.

5.3 Korrektur

Die Prädiktion der Prozesszustände Geschwindigkeit v und Schwimmwinkel ˇ muss durch den
Vergleich von Messgrößen z mit Ausgangsmodellen y D h.x;u/, welche von diesen Zuständen
direkt oder indirekt abhängig sind, im Korrekturschritt stabilisiert werden. Außerdem sollen die
Achsquerkraftparameter in den Ausgangsmodellen Einfluss haben, um diese ebenfalls schätzen zu
können. Das Messmodell

z D h .x;u/C v D �
vSTM vSTM FXT;f FXT;r FYT;f FYT;r ˇ

	T C v (5.20)

umfasst die Fahrzeuggeschwindigkeit transformiert in das mittlere Vorderrad vSTM, die Achslängs-
kräfte FXT;f=r, die Achsquerkräfte FYT;f=r und den Schwimmwinkel ˇ. Da diese Größen nicht di-
rekt messbar sind, werden sie aus Sensorgrößen berechnet und werden im folgenden als „virtueller
Sensor“ bezeichnet. Da die Ausgangsmodelle nicht in jeder Fahrsituation die Realität genau ab-
bilden können, wird ihr Einfluss auf die Zustandsschätzung durch die Adaption der diagonalen
Messkovarianzmatrix

Rk D EŒvkvT
k � D

2
66666666664

�2
vSTM;fl

0 0 0 0 0 0

0 �2
vSTM;fr

0 0 0 0 0

0 0 �2
FXT;f

0 0 0 0

0 0 0 �2
FXT;r

0 0 0

0 0 0 0 �2
FYT;f

0 0

0 0 0 0 0 �2
FYT;r

0

0 0 0 0 0 0 �2
ˇ

3
77777777775

(5.21)

situationsabhängig adaptiert. Im Folgenden wird die Berechnung der virtuellen Sensoren erläutert
und es werden die jeweiligen Ausgangsmodelle gebildet.
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5.3.1 Einspurmodellvorderradgeschwindigkeit

Virtueller Sensor

Um die Geschwindigkeitsschätzung zu stützen, werden die Vorderradgeschwindigkeiten

vXT;fl D !fl � rdyn;f ; vXT;fr D !fr � rdyn;f ; (5.22)

verwendet. Für eine bessere Vergleichbarkeit der Geschwindigkeiten werden diese mit der Gierra-
te !Z in die Mitte des Fahrzeugs transformiert und ergeben die virtuellen Messgrößen

z1 D vSTM;fl D !fl � rdyn;f C cos ıf � !Z � bf

2
; (5.23)

z2 D vSTM;fr D !fr � rdyn;f � cos ıf � !Z � br

2
: (5.24)

So unterscheiden sich die Geschwindigkeiten auch in engen Kurven nur bei unterschiedlichen
Längsschlupf am linken und rechten Vorderrad.

Ausgangsmodell

Diese virtuellen Messgrößen werden in Abhängigkeit des Zustandsvektors als Modellausgang

y1 D y2 D vSTM.x;u/ D v � cos .ıf � ˇ/C sin .ıf/ � lf � !Z (5.25)

formuliert. Die kinematischen Zusammenhänge zwischen den Zustandsgrößen und der Ausgangs-
größe ESM-Vorderradgeschwindigkeit wird in Bild 5.3 a) dargestellt. Bild 5.3 b) zeigt die virtuelle
Sensorgröße vSTM;fl=fr und den Modellausgang vSTM.x;u/ während eines Manövers, bei dem sich
das Fahrzeug langsam auf Niedrigreibwert, ohne gegenzulenken, eindreht: Steigt der Schwimm-
winkel, so werden die frei drehenden Vorderräder langsamer, da der Geschwindigkeitsanteil in
Längsrichtung des Rades sinkt.

Beispiel: Korrektur der Zustände nur mit Vorderradgeschwindigkeiten

Wenn keine Wank- oder Nickwinkel der Fahrbahn auftreten, können nur mit der Korrektur durch
die Vorderradgeschwindigkeiten

z D h .x;u/C v D �
vSTM vSTM

	T C v (5.26)

mit dem Systemmodell nach Gl. (5.14) und einem UKF nach Abschnitt 3.2 bereits sehr gute Er-
gebnisse für die Geschwindigkeits- und Schwimmwinkelschätzung erzielt werden. Bild 5.4 zeigt
eine Fahrt in der Ebene auf einem zugefrorenen See des Bosch-Winterprüfzentrums in Vaitoudden
(Schweden).
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ıf ˇ

ıf

ˇ

lf !Z

!Z

vcos ˇ

v sinˇ

vSTM

a)

vY D

vX
D

v

vXT,f D

vY

vX
vYT,f

�60 �40 �20 0
0

0;2

0;4

0;6

0;8

1

ˇ in ı

v
ST

M
=
v

b)

vSTM;fl=v

vSTM;fr=v

vSTM.x;u/=v

Bild 5.3: a) Darstellung der Zusammenhänge aus Übergrundgeschwindigkeit und Schwimm-

winkel auf die Vorderradumfangsgeschwindigkeit bei Vernachlässigung von Längsschlupf; b)

Virtueller Sensor berechnet mit ESC-Sensoren vSTM;fl=fr und Ausgangsmodell vSTM.x;u/ be-

rechnet mit der Correvit-Geschwindigkeit während eines Manövers, bei dem das Fahrzeug

langsam auf Niedrigreibwert übersteuert ohne gegen zu lenken

5.3.2 Achslängskräfte

Bei starken Bremsungen gehen alle Räder in Schlupf. Eine Stützung der Zustände über die Rad-
drehzahlen wird in diesem Fall durch die angesprochene Adaption des Messrauschens ausgeschal-
tet. Um auch in diesen Situationen, gerade bei Änderungen der Fahrbahnsteigung, gute Schät-
zungen der Übergrundgeschwindigkeit zu erhalten, ist es sinnvoller, auf Schlupf abhängige Achs-
längskraftmodelle zurückzugreifen. Außerdem kann durch die Berücksichtigung des maximalen
Reibwerts im Längskraftmodell der maximale Reibwert bei Antriebs- oder Bremsschlupf beob-
achtet werden.

Virtueller Sensor

Die virtuellen Messgrößen

z3 D FXT;f D .MB;fl C MB;fr/ =rdyn;f ; (5.27)

z4 D FXT;r D .MB;rl C MB;rr C MD/ =rdyn;r (5.28)

werden mit der vom Fahrzeugbus zur Verfügung gestellten geschätzten Antriebsmoment MD und
Bremsmomente MB;ij berechnet. Die Drehmomentanteile durch die Radbeschleunigung und der
Raddrehträgheit werden nicht berücksichtigt, da sich in der Praxis keine Verbesserung der Schät-
zung ergab.
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Bild 5.4: Schätzung mit dem UKF nach Abschnitt 3.2 (lediglich mit den Vorderradgeschwin-

digkeiten im Messvektor) im Vergleich mit den Signalen des Referenzmesssystems aus Ab-

schnitt 4.2 für eine Messung auf einem zugefrorenen See mit großen Schwimmwinkel: a)

Geschwindigkeit v, b) Schwimmwinkel ˇ

Ausgangsmodell

Die Ausgangsmodelle der Achslängskräfte an der Vorder- und Hinterachse nach Gl. (2.21)

y3 D FXT;f

�
FZ;f; sX;f; ˛f; �X;max;f; csX;f; sX;crit;f;CX;f

�
; (5.29)

y4 D FXT;r

�
FZ;r; sX;r; ˛r; �X;max;r; csX;r; sX;crit;f;CX;r

�
(5.30)

verbinden die geschätzten Zustände mit den Ausgangsgrößen. Die Schräglaufwinkel ˛f=r.v;ˇ;:::/

und Längsschlüpfe sX;fr.v;ˇ;!:::/ an Vorder- und Hinterachse werden mit Gl. (2.85) und Gl. (2.86)
berechnet und die Radlasten FZ;f=r.aX/ mit Gl. (2.87) geschätzt. Die maximalen Reibwerte der
Vorder- und der Hinterachse

�X;max;f=r D �X;max;f=r0 � �max (5.31)

werden mit den maximalen Reibwerten aus der Basisparametrierung �X;max;f=r0 und dem verallge-
meinerten maximalen Reibwert �max berechnet. Somit hat der Zustand maximaler Reibwert �max

direkten Einfluss auf den Ausgang und ist somit beobachtbar, wenn die Vorder- oder Hinterach-
se weit genug in Schlupf geht. Alle weiteren Parameter werden als konstant angenommen und
werden aus der Basisparametrierung (Kapitel 4, Tabelle 4.4) verwendet.
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Beispiel: Bremsen über eine Kuppe

Bild 5.5 zeigt die Schätzung der Geschwindigkeit bei einer Bremsung über eine Kuppe. Ohne
Längskraftmodell kann der Nickwinkel � in Abschnitt (1) nicht mehr beobachtet werden und
bleibt deshalb etwa konstant, da den gemessenen Raddrehzahlen durch großes Messrauschen
nicht mehr „vertraut“ wird. Die Geschwindigkeitsschätzung wird aufgrund des schlecht geschätz-
ten Nickwinkels ebenfalls schlecht. Mit dem Längskraftmodell bleibt der Nickwinkel auch bei
Schlupf an den Rädern beobachtbar.
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Bild 5.5: Schätzung und Vergleich mit einer Messung von Geschwindigkeit a) und Nickwinkel

b) während einer Bremsung über eine Kuppe in Phase (1) mit und ohne Korrektur mit dem

Längskraftmodell; c) Achslängskräfte; d) Längsbeschleunigung

5.3.3 Achsquerkräfte

Zur Korrektur des Schwimmwinkels ist es üblich, mit den direkten Messgrößen Gierrate und
Querbeschleunigung zu arbeiten, siehe Baffet u. a. (2009). Um das Giergleichgewicht zu berück-
sichtigen, müsste die Gierrate allerdings als Zustand in den Zustandsvektor mit der Gierdifferen-
tialgleichung (2.83) aufgenommen werden. Um eine Erweiterung des Zustandsvektor mit einer
schon bekannten Größe zu vermeiden, werden in dieser Arbeit aus der Gierbeschleunigung P!Z

und der Querbeschleunigung Achsquerkräfte geschätzt und erstmals mit diese Zwischengrößen
zur Korrektur der Zustandsschätzung genutzt.
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Virtueller Sensor

Die quasi-gemessenen Achsquerkräfte

z3 D FYT;f D 1

cos ıf
�


aYT � lr � m C P!Z � JZ � MZ

l
� sin ıf � .FX;fl C FX;fr/

�
;

z4 D FYT;r D 1

cos ır
�


aYT � lf � m � P!Z � JZ C MZ

l
� sin ır � .FX;rl C FX;rr/

�

wurden bereits in Kapitel 4 nach Gl. (4.18) und (4.19) verwendet, um die Achsquerkraftmodelle
zu identifizieren. Die Querbeschleunigung, bezogen auf Reifenkoordinaten aYT, wird nach Gl.
(4.20) aus der gemessenen Querbeschleunigung aY und der Kompensation mit dem geschätzten
Wankwinkel zwischen Aufbau- und Reifenkoordinatensystem berechnet. Das Zusatzgiermoment
MZ durch Bremseingriffe wird nach Gl. (4.21) aus den Längskräfte FXT;ij berechnet.

Ausgangsmodell

Das Kraft-Schlupf-Modell nach der Pacejka-Magic-Formula

y3 D FYT;f

�
F�

Z;f; ˛f; sX;f; �Y;max;f; c˛;f; ˛crit;f;CY;f

�
(5.32)

y4 D FYT;r

�
F�

Z;r; ˛r; sX;r; �Y;max;r; c˛;f; ˛crit;r;CY;r

�
(5.33)

verbindet die geschätzten Zustände mit der Ausgangsgröße. Die Schräglaufwinkel ˛f=r.v;ˇ;:::/

und Längsschlüpfe sX;f=r.v;ˇ;!;:::/ an Vorder- und Hinterachse werden mit Gl. (2.85) und (2.86)
berechnet. Die modifizierten Radlasten F�

Z;f=r.aX/ werden aus der physikalischen Radlast mit Gl.
(2.87) und der Radlastmodifikation (2.10) berechnet.

Die aktuellen maximalen Reibwerte der Vorder- und Hinterachse

�Y;max;f D �Y;max;f0 � �max; �Y;max;r D .�Y;max;f0 C��/ � �max (5.34)

werden aus der Basisparametrierung �max;f0 und dem schnellen Reibwertfaktor �max adaptiert. Der
maximale Reibwert der Hinterachse �Y;max;r wird noch über den geschätzten Anteil �� definiert.
Den Startwert ��.t D 0/ D �Y;max;r0 � �Y;max;f0 erhält man aus der Basisparametrierung. Die
Schräglaufsteifigkeit an der Vorderachse c˛;f ist direkt ein geschätzter Zustand. Für die Hinter-
achse wird die Schräglaufsteifigkeit mit Gl. (5.3) aus der Steifigkeit der Vorderachse und dem
Eigenlenkgradient bestimmt. Unter der Annahme, dass eine Achse mit größerer Schräglaufsteifig-
keit ihr Querkraftmaximum früher erreicht, werden die kritischen Schräglaufwinkel

˛crit;f D ˛crit;f0 � c˛;f0
c˛;f

; ˛crit;r D ˛crit;r0 � c˛;r0
c˛;r

(5.35)

ausgehend von der Basisparametrierung ˛crit0 proportional zum Verhältnis aus geschätzter Schräg-
laufsteifigkeit c˛ und Basisschräglaufsteifigkeit c˛0 angepasst.
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Bild 5.6: Nach Gl. (2.8) berechnete Auswirkung der Zustände maximaler Reibwert �max,

Reibwertunterschied ��, Schräglaufsteifigkeit c˛;f und Eigenlenkgradient EG auf die Achs-

querkraftkennlinien der Vorder- und Hinterachse

Buric (2016) entwickelte noch weitere Methoden, um die Reifenkennlinien in Abhängigkeit des
geschätzten maximalen Reibwerts und der Schräglaufsteifigkeiten zu extrapolieren. Er berücksich-
tigt z.B. auch die Änderung der Lage des Querkraftmaximums und die Veränderung der Formfak-
toren CY;f und CY;r auf unterschiedlichen Untergründen.

Bild 5.6 zeigt die Auswirkung der Zustände maximaler Reibwert �max, Reibwertunterschied ��,
Schräglaufsteifigkeit c˛;f und Eigenlenkgradient EG auf die resultierenden Querkraftkennlinien.
Es wird deutlich, dass die Querkraftkennlinien mit lediglich vier zu schätzenden Parametern in
weiten Bereichen adaptiert werden können.

5.3.4 Schwimmwinkel für niedrige Geschwindigkeiten

Die Berechnung von Längs- und Querschlupf erfordert eine Division durch die Übergrundge-
schwindigkeit v. Bei geringer Geschwindigkeit und kleinen Schätzfehlern der Geschwindigkeit
kommt es zu großen Fehlern in der Berechnung von Quer- und Längsschlupf, sodass über die
Schlupf-Kraftmodelle keine Schwimmwinkelschätzung mehr erfolgen kann. Bei geringen Ge-
schwindigkeiten muss daher der Schwimmwinkel mit einem kinematischen Schwimmwinkel kor-
rigiert werden.
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Virtueller Sensor: Kinematischer Schwimmwinkel

Der Schwimmwinkel ohne Berücksichtigung von Schräglaufwinkeln lässt sich aus den kinemati-
schen Beziehung des Einspurmodells herleiten. Die Messgröße

z7 D ˇkin1 D arctan



tan.ıf/ � lr
l

C tan.ır/ � lf
l

�
(5.36)

lässt sich aus den Lenkwinkeln an Vorder- und Hinterachse sowie den Abständen zum Schwer-
punkt berechnen.

Virtueller Sensor: Schwimmwinkel bei großen Schräglaufwinkeln an der Hinterachse

Bei Manövern, bei denen große Schräglaufwinkel an der Hinterachse bei geringen Geschwindig-
keiten entstehen, kann der Schwimmwinkel mit Gl. (5.36) nicht genau genug bestimmt werden.
Geht man davon aus, dass der Schräglaufwinkel an der Vorderachse bei diesen Manövern klein
bleibt und mittels der geschätzten Querkraft nach Gl. (4.18) und einem linearen Reifenmodell

˛f � FYT;f

c˛;f
(5.37)

geschätzt werden kann, lässt sich mit dem Schräglaufwinkel der Vorderachse

˛f D ıf � arctan
�
vY C !Z � lf

vX

�
und der Schwerpunktsgeschwindigkeit transformiert in die Radkoordinaten des mittleren Vorder-
rades,

vSTM D cos ıf � vX C sin ıf � .vY C !Z � lf/ ;
durch Lösen der Gleichungen nach der unbekannten Längs- und Quergeschwindigkeit

vX D vSTM

cos ıf C sin ıf � .ıf � ˛f/
; vY D vX � tan .ıf � ˛f/ � !Z � lf ; (5.38)

der Schwimmwinkel

z7 D ˇkin2 D arctan
�
vY

vX

�
(5.39)

nur in Abhängigkeit des geschätzten Schräglaufwinkels der Vorderachse, der gemessenen Gierrate
und einer Vorderraddrehzahl berechnen. Die Berechnung des Schwimmwinkels ist somit vollstän-
dig unabhängig von dem Schräglaufwinkel der Hinterachse.

Ausgangsmodell

Das Ausgangsmodell

y7 D ˇ (5.40)

entspricht direkt dem geschätzten Schwimmwinkel.
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Beispiel: 180
ı- Wendemanöver auf Schnee

Bild 5.7 zeigt ein 180ı- Wendemanöver auf Schnee mit großen Schräglaufwinkeln an der Hinter-
achse. Verglichen wird die einfache Berechnung des Schwimmwinkels ˇkin1 nach Gl. (5.36) und
nach der Berechnung mit der Gierrate und Raddrehzahl ˇkin2 nach Gl. (5.39) unter der Annahme,
dass der Schräglaufwinkel der Vorderachse null ist (˛f D 0).

8 10 12 14 16

�20

0

20

t in s

ˇ
in

ı

a)
ˇRef

ˇkin1

ˇkin2

8 10 12 14 16

0

20

40

t in s

˛
in

ı

b)
˛f;ref

˛r;ref

Bild 5.7: 180ı-Wende mit großen Schräglaufwinkeln an der Hinterachse auf Schnee bei 5-10

km/h: a) Vergleich der einfachen Berechnung aus Lenkwinkeln (ˇkin1) nach Gl. (5.36) mit der

Berechnung aus Gierrate, Vorderachslenkwinkel und Raddrehzahl (ˇkin2) nach Gl. (5.39) und

der Messung (ˇRef); b) Gemessene Schräglaufwinkel

Der Schwimmwinkel ˇkin2 hilft somit dem Zustandsschätzer auch bei extremen Fahrmanövern bei
sehr langsamer Geschwindigkeit gute Ergebnisse zu liefern. Dies kann genutzt werden, um gute
„Startwerte“ vorzugeben, wenn bei höheren Geschwindigkeiten auf eine Kraft-Schlupf basierte
Korrektur zurückgegriffen wird.

Überblick

Nun sind alle Teilmodelle für das gesamte Ausgangsmodell beschrieben. Zusammenfassend kann
das Ausgangsmodell

y D h .x;u/2
6666666664

vSTM

vSTM

FXT;f

FXT;r

FYT;f

FYT;r

ˇ

3
7777777775

D

2
6666666664

v � cos .ıf � ˇ/C sin .ıf/ � lf � !Z

v � cos .ıf � ˇ/C sin .ıf/ � lf � !Z

FXT;f

�
FZ;f; sX;f; ˛f; �X;max;f; csX;f; sX;crit;f;CX;f

�
FXT;r

�
FZ;r; sX;r; ˛r; �X;max;r; csX;r; sX;crit;f;CX;r

�
FYT;f

�
F�

Z;f; ˛f; sX;f; �Y;max;f; c˛;f; ˛crit;f;CY;f

�
FYT;r

�
F�

Z;r; ˛r; sX;r; �Y;max;r; c˛;f; ˛crit;r;CY;r

�
ˇ

3
7777777775

(5.41)
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in Abhängigkeit der Zustände x und Eingänge u formuliert werden. Die virtuellen Sensoren

z D g .u�/

2
6666666664

vSTM

vSTM

FXT;f

FXT;r

FYT;f

FYT;r

ˇ

3
7777777775

D

2
66666666666664

!fl � rdyn;f C cos ıf � !Z � bf
2

!fr � rdyn;f � cos ıf � !Z � br
2

.MB;fl C MB;fr/ � rdyn;f

.MB;rl C MB;rr C MD/ � rdyn;r

1

cos ıf
�


aYT � lr � m C P!Z � J � MZ

l
� sin ıf � .FX;fl C FX;fr/

�
1

cos ır
�


aYT � lf � m � P!Z � J C MZ

l
� sin ır � .FX;rl C FX;rr/

�
ˇkin1 oder ˇkin2

3
77777777777775

(5.42)

werden in Abhängigkeit der ESC-Sensorsignale u� berechnet.

Der Korrekturschritt kann nun mit dem Ausgangsmodell Gl. (5.41), den virtuellen Sensorgrößen
Gl. (5.42) und der adaptiven Messkovarianzmatrix Gl. (5.21) mit einem EKF nach Gl. (3.8) bis
Gl. (3.13) oder UKF nach Gl. (3.21) bis Gl. (3.25) durchgeführt werden.

5.4 Güte der Schätzung der Geschwindigkeit und der

Fahrbahnsteigung

Mittels einer Beobachtbarkeitsmatrix nach Kalman und Prüfung dieser Matrix auf vollen Rang ist
es möglich, die Beobachtbarkeit linearer Systeme zu prüfen, Föllinger u. a. (1994). Allerdings ist
es nicht möglich, eine Aussage über die zu erwartende Qualität des Schätzergebnisses zu treffen.
In diesem Abschnitt soll ein Weg aufgezeigt werden, wie die Qualität des Schätzergebnisses in
Form der doppelten Standardabweichung 2� analytisch berechnet werden kann.

Um die Beobachtbarkeit der Fahrzeuggeschwindigkeit v und Fahrbahnsteigung � anschaulich zu
untersuchen, wird das Systemmodell

Px D f.x;u/ C w"
Pv
P�

#
D



ax C sin � � g

0

�
C



waX

w�

�
(5.43)

auf diese zwei zu schätzenden Größen mit dem Zustandsvektor

x D �
v �

	T
(5.44)

reduziert. Für kleine Steigungswinkel (sin � � � ) kann das System in die lineare Zustandsraum-
darstellung

Px D A x C B u C w"
Pv
P�

#
D



0 g

0 0

� 

v

�

�
C



1

0

�
ax C



waX

w�

�
(5.45)
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überführt werden.

Es soll berücksichtigt werden, dass die Räder bei ABS-Bremsungen über den kritischen Längs-
schlupf hinaus gebremst werden können. Daher wird ein nichtlineares Modell der Reifenlängs-
kraft nach Gl. (2.16)

z D h.x;u/C v D FXT .sX; :::/C vFXT (5.46)

mit der vereinfachten Schlupfberechnung

sX D ! � rdyn � v
v

(5.47)

für die Geradeausfahrt als Ausgangsgröße verwendet. Es wird davon ausgegangen, dass immer
das schnellste Rad während eines Bremsvorgangs und das langsamste Rad während des Beschleu-
nigungsvorgangs ausgewählt wird. Das nichtlineare Ausgangsmodell wird für die Analyse mit der
Jacobi-Matrix

H D @h.x;u/
@x

D


c�

sX
.sX/ � .v � !rdyn/

v2
� c�

sX
.sX/

v
0

�
(5.48)

im Arbeitspunkt linearisiert und ist von der Schlupfsteifigkeit im aktuellen Arbeitspunkt c�
sX
.sX/

abhängig. Mit der Annahme, dass das System beobachtbar und die Kovarianz P nach endlicher
Zeit gegen feste Werte konvergiert, lässt sich die Riccati-Differentialgleichung (siehe Adamy
(2009) und Lunze (2013))

PP D AP C PAT C Q C PHTR�1HP D 0 (5.49)

für dieses einfache System lösen. Die Kovarianz des Prozessrauschens

Q.t/ D



EŒwaX.t/waX.t/
T� D QaX 0

0 EŒw�.t/w�.t/T� D Q�

�
(5.50)

und des Messrauschens

R D EŒvFX.t/vFX.t/
T� D RFX (5.51)

setzen sich aus den jeweiligen Varianzen zusammen. Die Lösung von Gl. (5.49) für den stationären
Endwert der Varianz der Geschwindigkeit

Pv.sX;t ! 1/ D
v2
p
Q�RFX �

s
Q� �

�
QaX C 2g�v2�cos � �

p
Q� �RFX

c�
sX
.sX/�!�rdyn

�
Q� � c�

sX
.sX/ � ! � rdyn

(5.52)

soll in Bild 5.8 in Abhängigkeit des Arbeitspunktes genauer untersucht werden. Bild 5.8 a) zeigt
die auf die Radlast normalisierte Längskraft. In dem Arbeitspunkt (1) bei ca. 4 % Schlupf hat
die Kennlinie noch eine Steigung c�

sX
.sX/ von etwa 80 kN (2). Dies entspricht nach Gl. (5.52),

ohne Messung der Nickrate und dementsprechend großer Varianz Q� D �
2 ı=

p
s
�2

einer 2� -

Schätzgüte von etwa 2 km/h. Wird die Nickrate gemessen, so kann die Varianz Q� D �
0;2 ı=

p
s
�2

sehr viel kleiner eingestellt werden. Die Schätzgüte verbessert sich auf etwa 1 km/h.
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Bild 5.8: a) Längskraftmodell der Hinterachse und b) Ableitung über den Schlupf;

c) Schätzqualität in Abhängigkeit der Schlupfsteifigkeit mit QaX D
�
0;01

m=sp
s

�2

,

RFX D .500 kN � 0;1�X/
2 bei 100 km=h

Beispiel

Um minimale Bremswege zu erreichen, müssen bei einer ABS-Regelung alle Räder möglichst nah
an ihrem kritischen Schlupf gebremst werden. Damit in der Praxis die Geschwindigkeit, welche
für den Schlupfregler benötigt wird, berechnet werden kann, muss sich immer ein Rad in der soge-
nannten Anpassungsphase befinden, Van Zanten (2006). Das bedeutet, das ein Rad immer wieder
in kleinere Schlupfbereiche durch unterbremsen gelangen muss. Nach 5.8 c) kann mit Messung
der Nickrate die Schlupfsteifigkeit auf ca. 80 kN abnehmen, bis die Qualität der Geschwindigkeits-
schätzung 2�v D 1 km/h überschreitet. Ohne Messung der Nickrate darf die Schlupfsteifigkeit bei
gleicher geforderter Schätzqualität 160 kN nicht unterschreiten.

Mit einem Nickratensensor gelingt es, ein Rad in der Anpassungsphase stärker in Schlupf zu
bremsen (Bild 5.8 a) und so mehr Längsverzögerung

amax;1 � 1

m

�
�X;f.sX;crit;f/ � FZ;f C �X;r.sX;crit;f/ � FZ;r=2 C �X.c

�
sX

D 160 kN/ � FZ;r=2
	

D 10;57 m=s2

amax;2 � 1

m

�
�X;f.sX;crit;f/ � FZ;f C �X;r.sX;crit;f/ � FZ;r=2 C �X.c

�
sX

D 80 kN/ � FZ;r=2
	

D 10;24 m=s2
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Bild 5.9: Degradation der Geschwindigkeitsschätzung ohne Korrekturen mit einem Längs-

kraftmodell mit und ohne Nickratensensor bei 100 km=h

zu erzeugen, vorrausgesetzt, dass sich immer ein Hinterrad in der Anpassungsphase befindet. Die
Radlasten wurden mit der mittleren Längsverzögerung von 10 m=s2 berechnet.

An diesem Beispiel wird deutlich, dass eine modellbasierte Zustandsschätzung auch Einfluss auf
die erzielbare Leistung von Fahrdynamikregelsystemen hat.

Unter der Annahme, dass die lokale Steigung null wird (der Reifen wird genau bei seinem kriti-
schen Schlupf gebremst, bei dem die maximale Kraft entwickelt wird) lässt sich kein stationärer
Endwert der Geschwindigkeitsvarianz berechnen. Um nun zu zeigen, wie schnell die Schätzgüte
in Abhängigkeit der Zeit nachlässt, kann Gl. 5.49 integriert werdenZ

PPdt D


P 0
v C Qax � t C 1

3
Q� � t3 � g2 C P 0

�
� t2 � g2; �g � �1

2
Q� � t2 C P 0

�
� t�

�g � �1
2
Q� � t2 C P 0

�
� t� ; P 0

�
� t � Q� � t

�
: (5.53)

Durch Umrechnung der zeitabhängigen Varianz der Geschwindigkeit kann die nachlassende Schätz-
güte als doppelte Standardabweichung

2�v.t/ D 2

r
P 0

v C QaX � t C 1

3
Q� � t3 � g2 C P 0

�
� t2 � g2 (5.54)

dargestellt werden. In Bild 5.9 ist die doppelte Standardabweichung 2�v.t/ nach Gl. (5.54) mit
und ohne Nickratensensor dargestellt. Die Startvarianzen P 0

v und P 0
�

zum Zeitpunkt t D 0 s wer-
den ausgehend vom frei rollenden Rad mit maximaler Schlupfsteifigkeit berechnet. Nach 3 s ist
die Qualität ohne Nickratensensor bereits stark auf 2�v.t D 3 s/ D 9 km=h degradiert. Bezo-
gen auf 100 km/h liegt der Fehler bereits bei ca. 9%. Es kann nicht mehr sichergestellt werden,
dass das Rad im optimalen Schlupfbereich gebremst wird. Mit Nickratensensor degradiert die Ge-
schwindigkeit langsamer. Nach 3 s liegt der wahrscheinliche Fehler bei ca. 1 km/h, was einem
Schlupffehler von 1% entspricht.
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5.5 Güte der Schätzung des Schwimmwinkels und des

Fahrbahnwankwinkels

Um die Beobachtbarkeit des Schwimmwinkels ˇ und des Fahrbahnwankwinkels ' anschaulich
zu untersuchen, wird das Prozessmodell

Px D f.x;u/ C w" P̌
P'

#
D

"
ay�sin'�g

v
� !Z

0

#
C



w!Z

w'

�
(5.55)

auf diese zwei zu schätzenden Größen mit dem Zustandsvektor

x D �
ˇ '

	T
(5.56)

reduziert. Für kleine Wankwinkel (sin' � ') kann das System in die lineare Zustandsraumdar-
stellung

Px D


0 �g=v

0 0

� 

ˇ

'

�
C


1=v

0

�
ay C



w!Z

w'

�
(5.57)

überführt werden.

Als Ausgangsgröße wird die Querbeschleunigung, welche aus der Summe der nichtlinearen Rei-
fenseitenkräfte nach Gl. (2.8) an der Vorder- und Hinterachse

y D 1

m
.FYT;f.˛f/C FYT;r.˛r// D h.x;u/ (5.58)

berechnet wird, verwendet. Um die Ableitungen des Ausgangsmodells

H D @h.x;u/
@x

D


�c�

˛;f.˛f/C c�
˛;r.˛r/

m
0

�
(5.59)

zu vereinfachen, wird die Steigung der Seitenkraftmodelle im aktuellen Arbeitspunkt mit c�
˛;f=r

bezeichnet. Mit der Annahme, dass das System beobachtbar und die Kovarianz nach endlicher Zeit
gegen feste Werte konvergiert, lässt sich die Riccati-Differentialgleichung (siehe Adamy (2009)
und Lunze (2013))

PP D AP C PAT C Q C PHTR�1HP D 0

für dieses vereinfachte System lösen. Im Weiteren soll die Teillösung Pˇ.t ! 1/ weiter un-
tersucht werden. Bild 5.10 b) und d) zeigt, dass bei größer werdender Summe der Steifigkeiten
c�
˛ D c�

˛;f C c�
˛;r im aktuellen Arbeitspunkt der Schwimmwinkel und der Wankwinkel immer bes-

ser geschätzt werden kann. Bei mittleren Querbeschleunigungen wird deutlich, dass der Schwimm-
winkel sehr gut geschätzt werden kann, da die Summe der Schräglaufsteifigkeiten im Arbeitspunkt
noch sehr groß sind und damit ein „enger“ Zusammenhang aus Querkraft und Schwimmwinkel
besteht.
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Bild 5.10: Konstruktion der 2�ˇ-Schätzqualität bei maximaler Querbeschleunigung von

0;9 g: a) Auf die Radlast normierte Seitenkraftmodelle der Vorder- und Hinterachse;

b) Schräglaufsteifigkeiten in Abhängigkeit des Schräglaufwinkels; c) Schwimmwinkel-

Schätzqualität in Abhängigkeit der Summe der Schräglaufsteifigkeiten mit und ohne Mes-

sung der Wankrate; d) 2�ˇ-Schätzqualität in Abhängigkeit der Querbeschleunigung mit

(Q!Z D EŒw!Zw
T
!Z
� D .0;4 ı=

p
s/2) und ohne (Q!Z D EŒw!Zw

T
!Z
� D .4 ı=

p
s/2)

Messung der Wankrate

Bei sehr kleinen Summen der Steifigkeiten werden die Standardabweichungen sehr groß, das Sys-
tem ist kaum noch beobachtbar, d.h. die Schätzqualität nimmt mit höheren Querbeschleunigungen
immer weiter ab. Da das Fahrzeug, wie gewöhnlich, an der Vorderachse (VA) eine geringere ma-
ximale Seitenkraft als an der Hinterachse (HA) verfügt, bestimmt die VA die maximal erreichbare
Querbeschleunigung. Das bedeutet, dass in diesem Arbeitspunkt die VA zwar keine Steifigkeit zur
Summensteifigkeit mehr beiträgt, die Hinterachse allerdings noch „Reserven“ hat und so die Be-
obachtbarkeit des Schwimmwinkels auch bei maximaler Querbeschleunigung ermöglicht. Ohne
Wankratensensor beträgt die 2�ˇ-Schätzqualität noch etwa 4,2ı, mit Wankratensensor ca. 2,4ı.

Deutlich wird, dass mit Einsatz eines Wankratensensors und damit bekannten Eingang der Dif-
ferenzialgleichung des Wankwinkels die Varianz deutlich verringert werden kann, sodass der
Schwimmwinkel auch bei sehr hohen Querbeschleunigungen und somit geringen Steifigkeiten
zuverlässiger geschätzt werden kann.
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5.6 Vergleich der Schwimmwinkelschätzung mit EKF und UKF

Anhand der Korrektur des Schwimmwinkels mit der Achsquerkraft als Ausgangsmodell soll in
diesem Abschnitt gezeigt werden, wann das EKF andere Ergebnisse wie das UKF bei der Berech-
nung der Kalman-Filter-Verstärkung Kˇ erzeugt.

Die Kreuzkovarianz Pxy beschreibt, wie ein Zustandsfehler mit einem Fehler des Ausgangs ver-
knüpft ist. Dieser Zusammenhang fließt direkt in die Berechnung der Rückführverstärkung

K D Pxy.Pzz/
�1

nach Gl. (3.11) eines Kalman-Filters ein. Das EKF berechnet die Kreuzkovarianz

Pxy;k D P�
k HT

k

nach Gl. (3.8) mit einer linearen Transformation der prädizierten Kovarianz der Zustände P�
k

und
der Linearisierung nach Gl. (3.9),

Hk D @h
@x

ˇ̌̌
ˇ
Ox�

k
;uk

;

des nichtlinearen Ausgangsmodell um den Arbeitspunkt ŒOx�
k
;uk �. Ändert sich die Steigung in der

Nähe des Arbeitspunktes, dann bildet diese lineare Transformation die eigentliche Transformation
der Kovarianz nur fehlerhaft ab. Das UKF wählt auf Basis der aktuellen Kovarianz Sigma-Partikel
aus, transformiert diese durch die nichtlineare Funktion und kann so auch bei Nichtlinearitäten die
tatsächliche Kreuzkovarianz annähern. Die tatsächliche Kreuzkovarianz

Pxy D 1

N

NX
iD1

.Xi � x/.h.Xi;u/ � y/T (5.60)

kann abgeschätzt werden, indem um den Arbeitspunkt x eine Anzahl N von zufällig normalver-
teilten Partikeln X durch die nichtlineare Ausgangsfunktion h.Xi;u/ transformiert werden.

Das folgende Beispiel verwendet nach Abschnitt 5.2 das auf die Zustände x D Œˇ;�max�
T

Schwimmwinkel und maximaler Reibwert reduzierte Prozessmodell. Die aktuelle Kovarianz

P D
"
�2
ˇ

0

0 �2
�max

#T

(5.61)

setzt sich somit nur aus den Standardabweichungen des Schwimmwinkels und des maximalen
Reibwerts zusammen. Effekte aufgrund von korrelierten Zustandsfehlern werden durch die Ver-
nachlässigung der Nebendiagonale von P in diesem Beispiel nicht berücksichtigt. Das Ausgangs-
modell nach 5.3 wird auf die Querkraft an der Vorderachse FYT;f D h.x;u/ reduziert.

Bild 5.11 a) zeigt die Querkraftkennlinie und die verteilten Partikel mit der aktuellen Standard-
abweichung des Schwimmwinkels �ˇ D 0;5ı in einem Arbeitspunkt (ˇ D 0ı), der die Gera-
deausfahrt repräsentiert. Die Partikel des UKF sind ebenfalls eingezeichnet. Die Kreuzkovarianz
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Pxz D Pˇ;FYT zwischen dem Zustand Schwimmwinkel und der Ausgangsmessung wird in Form
von 2� -Ellipsen dargestellt. Der Unterschied zwischen der Kreuzkovarianz zur Berechnung der
Kalman-Verstärkung Pxy und der dargestellten Kreuzkovarianz Pxz liegt lediglich darin, dass auch
direkt das Messrauschen in der Ellipse von Pxz mit abgebildet wird. Durch den linearen Charakter
in diesem Abschnitt der Querkraftkennlinie sind die normal verteilten Partikel nach der Trans-
formation immer noch normalverteilt. Die 2� -Ellipse, berechnet mit der linearen Transformation
(EKF), und die 2� -Ellipse des UKF liegen genau auf der tatsächlichen Kovarianzellipse, die mit
ihrer 2� -Grenze 95,4% der verteilten Partikel einschließt. Die Kalman-Verstärkungen, die mit
dem UKF, EKF und mit der tatsächlichen Kreuzkovarianz berechnet wurden, sind somit gleich
groß.

In Bild 5.11 b) wurde der Arbeitspunkt auf den kritischen Schräglaufwinkel

˛ D 10ı OD ˇ D �10ı

für ı D !Z D 0 verschoben. Nun wird deutlich, dass auch Sigma-Partikel nach oben und unten
um die gewählte Standardabweichung des maximalen Reibwerts ��max D 0;1 gestreut werden.
Durch die geringe Standardabweichung des Schwimmwinkels sind auch in diesem Arbeitspunkt
mit den gewählten Randbedingungen keine Unterschiede in den Ellipsen und Verstärkungen aus-
zumachen.

Wird das Filter allerdings länger ohne Korrekturen seiner Zustände und Kovarianz betrieben, wür-
de aufgrund des Prozessrauschens Q die Kovarianz und damit die Standardabweichung der ge-
schätzten Zustände steigen. Dies wird in Bild 5.11 c) dargestellt. Es wird angenommen, dass die
Standardabweichung des Schwimmwinkels �ˇ D 5ı stark angestiegen ist, da nur noch die Sen-
sorgrößen für einen gewissen Zeitraum integriert wurden. Nun wird deutlich, dass durch die große
Varianz des Schwimmwinkels die Sigma-Partikel auch „weiter“ verteilt werden. Die wahre Feh-
lerellipse dreht sich, da die Querkraftkennlinie neben dem Arbeitspunkt stark abfällt. Ein Zusam-
menhang zwischen Ausgangs- und Zustandsfehler wie in Bild 5.11 a) ist nun wieder vorhanden.
Das UKF kann diese Drehung der Fehlerellipse abbilden, das EKF durch die Linearisierung im Ar-
beitspunkt nicht. Die resultierende Kalman-Verstärkung des UKF und des Partikelfilters sind nun
stark negativ und wirken so stabilisierend auf den Schwimmwinkel. Das EKF kann dieses Gefälle
direkt neben dem Arbeitspunkt nicht „sehen“ und würde den Schwimmwinkel bei Abweichungen
zwischen der Querkraftmessung und dem Querkraftmodell kaum korrigieren.

Bild 5.12 zeigt ein Beispiel, bei dem dieses Verhalten das EKF destabilisiert: Ab t D 179 s wird
der maximale Reibwert im Bild 5.12 c) auf einen Wert von 0,4 heruntergeschätzt. Da die Kennli-
nie nach dem steilen (linearen) Bereich bei niedrigen Reibwerten bereits bei kleinen Schräglauf-
winkeln abflacht, kann der Schwimmwinkel kaum noch über die Querkraftkennlinien gestützt wer-
den kann. Der Schwimmwinkel im Bild 5.12 d) wird jetzt etwas überschätzt (t D 184 s). Wenn
die Querbeschleunigung im Teilbild 5.12 b) bei Kurvenausfahrt sinkt, korrigiert das EKF nicht
mehr den Schwimmwinkel, sondern nur noch den maximalen Reibwert nach unten, da aufgrund
der zu groß geschätzten Schräglaufwinkel, siehe Bild 5.12 e) und f), keine Verbindung zwischen
Ausgangsmodell FYT und Schwimmwinkel besteht. Der UKF kann den Schwimmwinkel stabili-
sieren, da durch die groß gewordenen Varianz (in Bild 5.12 d), e) und f) als ˙2�ˇ D ˙2

p
Pˇ
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Bild 5.11: Vergleich der Kreuzkovarianz-Ellipsen und Kalman-Verstärkungen K des Partikel-

Filters (berechnet aus den durch die Ausgangsgleichung h.x;u/ transformierten Partikeln)

mit dem UKF und dem EKF in verschiedenen Arbeitspunkten: a) Geradeausfahrt, klei-

ne Schwimmwinkelvarianz; b) Querkraftmaximum, kleine Schwimmwinkelvarianz; c) Quer-

kraftmaximum, große Schwimmwinkelvarianz; d) Querkraftmaximum, große Schwimmwin-

kelvarianz, kleiner Skalierungsfaktor ˛UKF des UKF

dargestellt) die UKF-Partikel auch in Richtung kleinerer Schräglaufwinkel verteilt werden und der
Zusammenhang zwischen Querkraft und Schwimmwinkel bestehen bleibt. In Bild 5.11 d) wird der
UKF-Tuning-Faktor ˛UKF verkleinert. Der Faktor steuert die „Streuweite“ der Sigma-Partikel des
UKF und kann so helfen, den Filter auf die entsprechende nichtlineare Funktion anzupassen. Wird
der Faktor sehr klein gewählt, dann erhält man die gleichen Ergebnisse wie das EKF. In diesem
Beispiel wird die Verstärkung fälschlicherweise wie beim EKF zu klein geschätzt.
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Bild 5.12: Vergleich des EKF und UKF während einer Fahrt auf schneebedeckter Fahrbahn

und einem Fahrbahnwankwinkel von ca. 5ı

5.7 Zusammenfassung

In Abschnitt 5.1 bis 5.3 wurde der Aufbau eines Schätzalgorithmus vorgestellt, der die Übergrund-
geschwindigkeit und den Schwimmwinkel durch die „Strapdown“-Methode (Integration) mit den
Beschleunigungssensoren und dem Gierratensensor schätzt. Bei Fahrten durch Steilkurven und
Fahrten an großen Steigungen wirkt ein großer Teil der Erdbeschleunigung auf die Beschleuni-
gungssensoren. Um diesen Effekt zu kompensieren, wurden die Zustände Wank- und Nickwin-
kel als Gauss-Markov-Prozesse 1. Ordnung zum Gesamtprozessmodell hinzugenommen. Durch
die Hinzunahme der Parameter Eigenlenkgradient und maximaler Reibwertunterschied zwischen
Vorder- und Hinterachse wurde es möglich, die stationäre Verstärkung des erweiterten Einspurmo-
dells vom linearen bis in den nichtlinearen Bereich der Achsquerkraftkennlinien zu schätzen. Um
auch eine Veränderung der Dynamik des Einspurmodells zu beobachten, wurde zudem noch die
Schräglaufsteifigkeit der Vorderachse als Parameter in den Zustandsvektor aufgenommen.
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In Abschnitt 5.4 und 5.5 wurde die Beobachtbarkeit der Geschwindigkeit und des Schwimmwin-
kels mit nichtlinearen Achskraftmodellen und reduzierten Prozessmodellen in Abhängigkeit des
Arbeitspunktes untersucht. Es wurde deutlich, dass die Schätzqualität der Geschwindigkeit bzw.
des Schwimmwinkels abnimmt, wenn die Steigung der Längs- bzw. Querkraftkennlinie geringer
wird. Durch die Hinzunahme eines dreiachsigen Drehratensensors, der auch die Wank- und Nick-
rate misst, wurde die Unsicherheit des aktuellen Wank- bzw. Nickwinkels deutlich kleiner und die
Qualität der Geschwindigkeits- bzw. Schwimmwinkelschätzung wurde wesentlich verbessert.

Abschnitt 5.6 analysierte die Korrektur des Schwimmwinkels mit der Achsquerkraft in unter-
schiedlichen Arbeitspunkten und verglich die Ergebnisse eines EKF mit dem eines UKF. Es konn-
te gezeigt werden, dass das UKF in Situationen mit großen Schräglaufwinkeln durch die Berück-
sichtigung der Nichtlinearität im Arbeitspunkt, den Schwimmwinkel robuster schätzt als ein EKF,
welches nur die Nichtlinearität im Arbeitspunkt als lineare Funktion annähert. Das UKF gewähr-
leistet somit auch in extremen Situationen eine zuverlässigere Schätzung des Schwimmwinkels.
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6 Validierungsergebnisse für verschiedene

Fahrmanöver

Die Validierung der entwickelten Algorithmen erfolgt mit über 1000 km bei 355 Testfahrten mit

einem BMW F10 550i auf dem Prüfzentrum Boxberg, dem Automotive Testcenter Papenburg und

dem Winter-Prüfzentrum Vaitoudden. Dabei werden die Manöver stationäre Kreisfahrt, Doppelspur-

wechsel, Steilkurve, Fahrten auf einem Handlingkurs, Driften und das langsame Übersteuern genauer

untersucht.

Um die Vor- oder Nachteile der entwickelten Algorithmen darzustellen, werden auch Simulationen

mit Abwandlungen des Zustandsschätzers gezeigt. Z.B. wird der Unterschied zu einem Schätzer mit

6D-IMU an einigen Testfahrten verdeutlicht. Bei der Validierung der Schätzung der Schräglaufsteifig-

keit und des Eigenlenkgradients werden auch Ergebnisse mit modularer statt integrierter Zustands-

und Parameterschätzung betrachtet.

6.1 Geschwindigkeitsschätzung

Bild 6.1 a) zeigt die Schätzung der Übergrundgeschwindigkeit des Schwerpunkts bei einer ABS-
Bremsung aus 150 km/h. Verglichen wird der entwickelte Schätzalgorithmus mit Korrekturen
durch das nichtlineare Längskraftmodell (mit FXT) nach Gl. (5.29) und Gl. (5.30). Der Schätzer
ohne Längskraftstützung (ohne FXT) nutzt das vorgestellte Prozessmodell nach Abschnitt 5.2, kor-
rigiert bei einer Bremsung die Geschwindigkeit aber nicht mit den Längskräften nach Gl. (5.29)
und Gl. (5.30), sondern immer mit der größten Raddrehzahl und führt eine lineare Schlupfkom-
pensation

vcomp D ! � rdyn

1 � sX
mit sX D FXT

csX

;

ähnlich wie der Schätzer nach Van Zanten (2006) durch. Zudem müssen weitere Heuristiken im-
plementiert werden, um z.B. Antriebsschlupf der nicht angetriebenen Vorderräder auszuschließen.
Der maximale Geschwindigkeitsfehler b) mit Längskraftmodell liegt bei ca. 2 km/h, ohne bei
ca. 5 km/h. Der Schlupf des linken Vorderrads d) wird mit beiden Methoden bis 20,2 s sehr gut
geschätzt. Dann zeigt die Schätzung mit Längskraftmodell deutliche Vorteile. Der heuristische
Schätzer nach Van Zanten (2006) unterschätzt zwischen 20,2 s bis ca. 22 s den Schlupf sehr stark.
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Bild 6.1: Schätzung und Messung der Geschwindigkeit bei einer ABS-Bremsung geradeaus

aus 150 km/h; a) Geschwindigkeit; b) Geschwindigkeitsfehler; c) Beschleunigung; d) Schlupf

vorne links

6.2 Schwimmwinkel- und Reibwertschätzung

Um die Robustheit der Schwimmwinkelschätzung mit dem vorgestellten UKF zu bewerten, kann
der maximale Schwimmwinkelfehler

eˇ;max D max
�ˇ̌̌ Ǒ � ˇ

ˇ̌̌�
(6.1)

betrachtet werden. Nutzt man die aktuell geschätzte Kovarianz P nach Gl. (3.13) zur Berechnung
einer 2�ˇ-Grenze als Vertrauensbereich, kann der maximal überschätzte Schwimmwinkel

eˇ;Over;max D max
�
jˇj �

ˇ̌̌
Ǒ
ˇ̌̌
� 2�ˇ

�
(6.2)

außerhalb dieses Bereichs ausgewertet werden. Wird der maximal überschätzte Schwimmwinkel
groß, deutet dies auf ein Überschätzen des Schwimmwinkels aufgrund einer Steilkurve hin. Bild
6.2 zeigt den maximalen Schätzfehler eˇ;max � 3ı und den maximal überschätzten Schwimmwin-
kel eˇ;Over;max � 1ı. Als Referenz dient jeweils der Schwimmwinkel der Referenzdatenfusion aus
Abschnitt 4.2.
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Die Güte der Schwimmwinkelschätzung lässt sich am einfachsten mit dem mittleren quadrati-
schen Fehler (root mean square, rms)

eˇ;rms D 1

N

rX� Ǒ � ˇ
�2

(6.3)

bewerten. Ausgewertet wird allerdings erst ab 2 m=s2 Querbeschleunigung, um nur die Anteile
in den Testfahrten zu bewerten, die auch einer querdynamischen Anregung unterlagen. Um zu
überprüfen, ob das langsame Übersteuern des Fahrzeug erkannt wird, sollte der maximale unter-
schätzte Schwimmwinkelfehler

eˇ;Under;max D max
�ˇ̌̌ Ǒ

ˇ̌̌
� jˇj � 2�ˇ

�
(6.4)

unter Berücksichtigung des 2�ˇ-Vertrauensbereich verwendet werden. Bild 6.3 zeigt als Beispiel
eine Testfahrt mit stark unterschätzten Schwimmwinkel eˇ;Under;max � 9ı und kaum überschätzten
Schwimmwinkel eˇ;Over;max � 1ı.
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6.2.1 Stationäre Kreisfahrt

In 6.4 ist die Auswertung einer stationären Kreisfahrt mit 40 m Radius auf feuchtem Asphalt
zu sehen. Die Querbeschleunigung b) wird langsam durch Steigerung der Geschwindigkeit c)
erhöht. Der maximale Reibwert e) ist aufgrund der schlechteren Beobachtbarkeit bei geringen
Schräglaufwinkeln f) noch relativ unzuverlässig, was durch den großen 2� -Vertrauensbereich zu
erkennen ist. Erst wenn die Querbeschleunigung bei ca. t D 95 s aY D 7 m=s2 erreicht, wird die
Schätzung des maximalen Reibwerts zuverlässiger. Dies sind ca. 82% bezogen auf die maximale
Querbeschleunigung von ca. 8;5 m=s2 bei diesem Manöver. Der Referenzwert des maximalen
Reibwerts

�max;Ref D 1

�max;f0
� aY;max

g
D 1

0;9
� 8;5

9;81
D 0;96 (6.5)

wird durch die erreichte maximale Querbeschleunigung und dem maximalen Reibwert �max;f0 der
Vorderachse abgeschätzt.

Der Schwimmwinkel d) wird auch bei hohen Querbeschleunigungen sehr gut geschätzt. Der ma-
ximale Fehler liegt unter einem Grad. Der 2� -Vertrauensbereich wächst mit steigender Querbe-
schleunigung, da der Zusammenhang aus der Querkraftkennlinie und dem Schräglaufwinkel (bzw.
dem Schwimmwinkel) bei größeren Schräglaufwinkeln immer weiter abnimmt, da die Querkraft-
kennlinie flacher wird. Dieses Phänomen wurde bereits in Abschnitt 5.6 genauer untersucht.

Wird statt dem nichtlinearen Reifenmodell ein lineares verwendet, nimmt der Schwimmwinkel-
fehler in d) gerade bei größeren Querbeschleunigung ab ca. 5 m=s2 stark zu.

6.2.2 Doppelspurwechsel

Der Doppelspurwechsel gilt als Referenzmanöver zur Bewertung der Agilität und Stabilität des
Fahrzeugs. Durch ESC-Eingriffe können die auftretenden Schwimmwinkel verringert und so ein
mögliches Schleudern verhindert werden. Das Manöver wird in vielen Veröffentlichungen über
die Schwimmwinkelschätzung auch zur Validierung genutzt, siehe z.B. Imsland u. a. (2007), Klier
u. a. (2008), Halbe (2008) und Bauer (2015). Bild 6.5 d) zeigt den geschätzten Schwimmwinkel
während eines Doppelspurwechsel mit ausgeschalteten ESC. Das Messrauschen der Längs- und
Querkraftmessung wurde auf den 10-fachen Wert der Basisparametrierung eingestellt, um zu de-
monstrieren, dass bei diesem Manöver in der Ebene die Schwimmwinkelschätzung bereits sehr gut
durch die Integration der Sensorgrößen nach Gl. (5.7) und minimaler Korrekturen zum Ausgleich
kleiner Fahrbahnwinkel arbeitet, obwohl die maximale Querbeschleunigung bei fast 10 m=s2 liegt.
Der maximale Fehler liegt bei 1,2ı.
Dieses Ergebnis zeigt auch, dass der Schwimmwinkel für die Identifikation der Querkraftkennli-
nien in Kapitel 4 bei dynamischen Fahrten auch ohne Referenzsensorik, wie ein Correvit-Sensor,
ermittelt werden kann.
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Bild 6.4: Schwimmwinkelschätzung während einer gemessenen stationären Kreisfahrt mit

40 m Radius auf feuchtem Asphalt: a) Lenkwinkel und Gierrate; b) Beschleunigung; c) Ge-

schwindigkeit; d) Schwimmwinkel; e) maximaler Reibwert; f) Schräglaufwinkel

6.2.3 Steilkurve

In Steilkurven misst der Querbeschleunigungssensor, wie schon erwähnt, einen großen Teil der
Erdbeschleunigung mit. Wird dieser Anteil in Gl. (5.7)

P̌ D �sinˇ � .aX C sin � � g/
v

C cosˇ � .aY � cos � � sin' � g/
v

� !Z

nicht kompensiert, wird der geschätzte Schwimmwinkel sehr schnell divergent. Um den Wank-
winkel zu schätzen und damit die Querbeschleunigung zu korrigieren, werden hauptsächlich die
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Bild 6.5: Schwimmwinkelschätzung während eines gemessenen Doppelspurwechsels ohne

Korrektur mit Achslängs- und Querkräften: a) Lenkwinkel und Gierrate; b) Beschleunigung;

c) Geschwindigkeit; d) Schwimmwinkel

Achsquerkraftmodelle genutzt. Bei gleichzeitiger Schätzung des unbekannten maximalen Reib-
werts kann es allerdings vorkommen, dass statt dem großen Fahrbahnwankwinkel ein sehr nied-
riger Reibwert geschätzt wird und der fälschlicherweise wachsende Schwimmwinkel nicht mehr
korrigiert wird. Es kommt zur „Verwechselung“ der Manöver wachsender Schwimmwinkel (lang-
sames Übersteuern) auf Niedrigreibwert und Steilkurvenfahrt. Nach Van Zanten (2006) können
solche Situationen mit einem kurzen Bremsimpuls und Auswertung der Radbeschleunigung un-
terschieden werden können. Im Folgenden wird aufgezeigt, wie das entwickelte Verfahren ohne
diesen Bremsimpuls die Steilkurvenfahrt erkennen kann.

Bild 6.7 zeigt geschätzte Größen während einer Steilkurvenfahrt bis ca. 27ı. Verglichen wird der
vorgestellte Algorithmus mit und ohne Korrekturen aufgrund des Längskraftmodells nach Ab-
schnitt 5.3.2. Außerdem wird noch die Schätzung basierend auf einer 6D-IMU ohne Korrektur
mit dem Längskraftmodell gezeigt. In Bild 6.7 b) wird deutlich, dass ohne Längskraftmodell der
Schwimmwinkel nicht stabil in der Steilkurve geschätzt wird. In c) ist zwar zu erkennen, dass
der Wankwinkel am Anfang (t D 9 s) angepasst wird, kurz danach aber der maximale Reibwert
in Richtung Niedrigreibwert geschätzt wird. In d) und b) wird deutlich, dass der Reibwert unter-
und der Schwimmwinkel überschätzt wird. Der Ausgang des Längskraftmodells der Hinterachse
FXT;r.sX;f;˛r;�max;:::/ wird allerdings viel zu klein (wird zur Korrektur nicht genutzt). In Bild 6.6
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a) ist die Abhängigkeit der normierten Achslängskraft vom maximalen Reibwert nach Gl. (5.30)
gezeigt. Bei großem Schlupf (sX D 16%) ist die Längskraft stark abhängig vom geschätzten
maximalen Reibwert. Bei kleinem Schlupf, wie in dieser Steilkurven-Situation (sX D 1%), hat
der maximale Reibwert kaum Einfluss auf den Ausgang, d.h. der Kalman-Filter würde bei einer
Differenz zwischen Modellausgang und Sensor den maximalen Reibwert kaum korrigieren. Aus-
schlaggebend für die Konvergenz des Schwimmwinkels ist vielmehr die starke Abhängigkeit der
Längskraft vom Schwimmwinkel bei niedrigem Schlupf, siehe Bild 6.6 b). Dieses Phänomen lässt
sich mit der Drehung des resultierenden Schlupfvektors

FXT D FT �
�q

s2
X C s2

Y

�
� sXq

s2
X C s2

Y

(6.6)

begründen: Bei wenig Längsschlupf sX kann etwas Querschlupf sY die Kraft in Längsrichtung
stark verkleinern. Auf den Korrekturschritt des Kalman-Filters mit der Achslängskraft wirkt sich
das wie folgt aus: Bei zu geringer Längskraft (berechnet mit den geschätzten Zustandsgrößen) im
Vergleich zur gemessenen Längskraft wird zu geringeren Schwimmwinkeln hin korrigiert, um den
Querschlupf zu verkleinern und den Ausgangsfehler zu minimieren.
Der Schätzer mit Längskraftmodell kann mit Hilfe dieses Effekts große Schwimmwinkel aus-
schließen und folgt mit der Achslängskraft FXT;r.sX;f;˛r;�max;:::/ der virtuellen Sensorgröße.
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Bild 6.6: a) Abhängigkeit der normierten Achslängskraft berechnet nach Gl. (5.30) vom ma-

ximalen Reibwert; b) Abhängigkeit der normierten Achslängskraft berechnet nach Gl. (5.30)

vom Schwimmwinkel

Der Schätzer mit 6D-IMU kann mit der gemessenen Wankrate den großen Wankwinkel auch oh-
ne Korrekturen mit dem Längskraftmodell robust bestimmen. Die Standardabweichung des Quer-
kraftmodells wurde auf 10-fach größere Werte eingestellt gegenüber dem Schätzer mit 3D-IMU.
Trotzdem ist die Schwimmwinkelschätzung stabil. Dies soll verdeutlichen, dass mit zusätzlicher
Wankratenmessung robuste Schwimmwinkelschätzung auch mit weniger Modellwissen (das Quer-
kraftmodell muss weniger genau sein) und damit weniger Komplexität bzgl. der Algorithmen
möglich ist.
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Bild 6.7: Schwimmwinkelschätzung während einer gemessenen Steilkurvenfahrt mit und oh-

ne Korrektur mit Achslängskräften sowie einem Schätzer mit 6D-IMU: a) Geschwindigkeit; b)

Schwimmwinkel; c) Wankwinkel; d) Maximaler Reibwert; e) Achsquerkraft hinten; f) Achs-

längskraft hinten
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6.2.4 Handlingkurs

Bild 6.8 zeigt die Geschwindigkeits- und Schwimmwinkelschätzung während einer Fahrt auf dem
Handlingkurs des Automotive Testcenter Papenburg (HK-ATP). Das Fahrzeug wurde am fahr-
physikalischen Limit bewegt. Durch großen Längsschlupf an der Hinterachse kommt es immer
wieder zu „Querstehern“ oder „Drifts“ mit großen Schwimmwinkeln. Die „Sachskurve“ mit ca.
5ı Steilkurvenwinkel wurde bei t D 230 s im Drift gefahren. Der maximale Fehler des Schät-
zers beträgt ca. 3ı (bei t D 244 s). Dieser Fehler liegt allerdings noch in dem geschätzten Band
der zweifachen Standardabweichung ˙2� . D.h. die Schwimmwinkelschätzung liefert sehr gute
Ergebnisse auch bei Fahrbahnwankwinkeln, hohen Querbeschleunigungen aY bis 10 m=s2 und
Längsbeschleunigungen aX bis �10 m=s2.

6.2.5 Driften

In Bild 6.9 sind die wichtigsten fahrdynamischen Größen und indirekt die Schätzung des Schwimm-
winkels in Form der geschätzten Schräglaufwinkel während eines Driftmanövers dargestellt. Ein
stationärer Arbeitspunkt, bei dem ein Giergleichgewicht herrscht, d.h. die vordere und hintere
Querkraft gleich groß sind, wurden markiert. Auf diesem Arbeitspunkt beziehen sich die Quer-
kraftkennlinien in Bild 6.9 e) an der Vorder- und Hinterachse.

Wird mit einem Fahrzeug mit Standardantrieb im Drift gefahren, bewegt sich die Querkraft der
Vorderachse nah an ihrem Maximum, siehe Bild 6.9 c) und e), allerdings nur selten darüber hin-
aus, siehe Velenis u. a. (2010). Die Querkraft der Hinterachse wird mit genügend Längsschlupf
soweit auf das Niveau der Vorderachse abgeschwächt, dass ein quasi-stationärer Arbeitspunkt
bei sehr großen Schwimmwinkeln bzw. Schräglaufwinkel an der Hinterachse erreicht wird, sie-
he Bild 6.9 e). Die Steigung der Hinterachsquerkraft in Bild 6.9 e) wird in diesem Arbeitspunkt
sehr flach. Nach der Beobachtbarkeitsuntersuchung aus Abschnitt 5.5 lässt sich der Schwimmwin-
kel nur dann beobachten, wenn noch eine Steigung der Querkraftkennlinie vorhanden ist. Dies
zeigt die große Kalman-Verstärkung KYTf;ˇ D �0;44 ı=kN bzgl. der Vorderachsquerkraft auf
den Schwimmwinkel. Die Hinterachsquerkraft wird aufgrund der kleinen Rückführverstärkung
KYTr;ˇ D �0;043 ı=kN nicht mehr zur Korrektur des Schwimmwinkels verwendet. Anhand
der zehnmal größeren Rückführverstärkung der Hinterachsquerkraft auf den maximalen Reibwert
KYTr;�max D 0;044 1=kN im Vergleich zur Vorderachse KYTf;�max D 0;005 1=kN wird deutlich,
dass die Messung der Hinterachsquerkraft in diesem Arbeitspunkt zur Schätzung des maxima-
len Reibwerts verwendet wird. Dies ist wiederum nützlich für die Schwimmwinkelschätzung, da
Niedrigreibwert und ein großer Schräglaufwinkel der Vorderachse sicher ausgeschlossenen wer-
den kann.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


6.2 Schwimmwinkel- und Reibwertschätzung 111

175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255
50

100

150

t in s

v
in

km
=
h

a)

Referenz

Schätzer

175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255

20

0

20

t in s

ˇ
in

ı

b)

Referenz

Schätzer

˙2

175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255

10

0

10

t in s

a
in

m
=
s2

c)
aX

aY

Drift

Bild 6.8: Schwimmwinkelschätzung während Messung auf dem Handlingkurs des ATP mit

Drifts; a) Geschwindigkeit; b) Schwimmwinkel; c) Beschleunigungen

6.2.6 Niedrigreibwert

Gemischte Testfahrt in der Ebene

Bild 6.10 zeigt eine Fahrt auf einem zugefrorenen See auf dem Testgelände Vaitoudden in Schwe-
den auf Niedrigreibwert und großen Schwimmwinkeln. Der maximale Schwimmwinkelfehler
liegt bei beiden Schätzern bei ca. 6ı. Da die Fahrbahn eben ist, hat die 6D-Sensorik bzgl. des
maximalen Schätzfehlers kaum Vorteile gegen den Schätzer mit 3D-IMU. Betrachtet man aller-
dings den Ausschnitt c), dann wird deutlich, dass der Schätzer mit 6D-IMU den Vertrauensbereich
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Bild 6.9: Schwimmwinkelschätzung während eines gemessenen Drifts bei v � 70 km=h und

Schwimmwinkeln bis ca. 30ı auf trockenem Asphalt mit eingetragenem stationären Arbeits-

punkt; a) Lenkwinkel und Gierrate; b) Längsschlupf der Hinterachse; c) Achsquerkräfte in

Fahrzeugkoordinaten; d) Schräglaufwinkel; e) Berechnete Querkraftkennlinien in Fahrzeug-

koordinaten im Arbeitspunkt
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Bild 6.10: Schwimmwinkelschätzung während einer Messung auf einem zugefrorenen See

auf dem Testgelände Vaittouden in Schweden auf Niedrigreibwert und großen Schwimmwin-

keln; a) Geschwindigkeit; b) und c) Schwimmwinkel

in Form der ˙2�6D-Grenze viel kleiner einschätzt als der Schätzer mit 3D-IMU, da der aktuelle
Fahrbahn-Wankwinkel besser geschätzt werden kann.

Der Bereich von 20 s bis 32 s ist in Bild 6.11 genauer dargestellt. Bei diesem Ausschnitt dreht
sich Fahrzeug ab ca. 24 s durch einen Lastwechsel ein. Der niedrige Reibwert in Bild 6.9 e) wird
bei ca. 24 s erkannt. Zu diesem Zeitpunkt liegt die Querbeschleunigung b) etwa bei 3 m=s2. Der
steigende Schwimmwinkel in Bild 6.9 d) und die damit steigenden Schräglaufwinkel in Bild 6.9
f) werden erkannt. Die maximale Querbeschleunigung liegt bei etwa 3;5 m=s2, d.h. der Reibwert
wurde bereits bei 85% der maximalen Querbeschleunigung richtig geschätzt. Im weiteren Verlauf
des Manövers wird stark gegengelenkt, der Schräglaufwinkel der Vorderachse in Bild 6.9 f) wird
sehr klein, sodass die doppelte Standardabweichung des Schwimmwinkels ebenfalls wieder sehr
klein wird, da die Kalman-Verstärkung im linearen Bereich der Querkraftkennlinien sehr groß im
Vergleich zum gesättigten flacheren Bereich wird.
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Bild 6.11: Schwimmwinkelschätzung während einer Messung auf einem zugefrorenen See

auf dem Testgelände Vaitoudden in Schweden auf Niedrigreibwert und großen Schwimmwin-

keln: a) Lenkwinkel und Gierrate; b) Beschleunigung; c) Geschwindigkeit; b) Schwimmwin-

kel; e) maximaler Reibwert; f) Schräglaufwinkel

Langsames Übersteuern

Besonders schwierig zu unterscheiden ist das Manöver Steilkurve und langsames Übersteuern auf
Niedrigreibwert, wie bereits in Abschnitt 6.2.3 erklärt. Bei beiden Manövern ist der Quotient

aY

v
< !Z
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aus Querbeschleunigung aY und Geschwindigkeit v geringer als die Gierrate !Z, was auf einen
steigenden Schwimmwinkel

P̌ � aY � g � sin'

v
� !Z

hindeutet, wenn der Wankwinkel ' unbekannt ist. Bild 6.12 zeigt eine Fahrt auf Niedrigreibwert,
bei der sich das Fahrzeug während einer Kurvenbremsung langsam eindreht (steigende Schwimm-
winkel). Das langsame Übersteuern wird durch die schnelle Schätzung des maximalen Reibwerts
gut erkannt. Lediglich ab ca. 13 s wird der Schwimmwinkel unterschätzt. Hier entsteht der größte
maximale Schwimmwinkelfehler eˇ;max � 10ı aus allen 355 Testfahrten.

Insgesamt wurde das Manöver 25-mal auf unterschiedlichen Untergründen und verschiedenen Va-
riationen wiederholt. In Bild 6.13 sind die unterschiedlich ausgewerteten Schwimmwinkel über
die Anzahl dieser Testfahrten aufgetragen. Die maximalen Schwimmwinkelfehler � 10ı in a)
erscheinen groß, allerdings entstehen wie in c) zu erkennen die größten Fehler durch das Unter-
schätzten des Schwimmwinkels, wie in Bild 6.12 gezeigt erst am Ende des Manövers. Der wach-
sende Schwimmwinkel zu Beginn des Manövers wird bei allen 25 Testfahrten erkannt. D.h. ein
stabilisierender Bremseingriff auf Basis der entwickelten Schwimmwinkelschätzung hätte noch
rechtzeitig erfolgen können.

6.2.7 Zusammenfassung

Bild 6.14 zeigt unterschiedlich ausgewertete Schwimmwinkelfehler über alle 355 Testfahrten. Die
Tabelle 6.1 fasst die Ergebnisse zusammen. Dabei werden Testfahrten zu unterschiedlichen Kate-
gorien zusammenfasst und die jeweiligen Bewertungsmaße über alle Testfahrten der jeweiligen
Kategorie berechnet, d.h. z.B. der maximale Schwimmwinkelschätzfehler

e�
ˇ;max D max.eˇ;max/

über alle Testfahrten einer Kategorie wird mit einem Sternchen gekennzeichnet. Er liegt bei 12ı

und wurde bei einem Manöver, bei dem das Fahrzeug langsam auf Niedrigreibwert übersteuert,
durch das Unterschätzen des Schwimmwinkels verursacht, siehe Bild 6.12. Die mittleren maxima-
len Schwimmwinkelfehler

eˇ;max D 1

N

NX
i

eˇ;max;i

sind über alle N D 355 Testfahrten mit 2,7ı deutlich geringer.

Der maximal überschätzte Schwimmwinkel e�
ˇ;Over;max beträgt 6,0ı. Durchschnittlich über alle Test-

fahrten wird der Schwimmwinkel eˇ;Over;max D 0;7 ı allerdings kaum überschätzt.

Der größte mittlere quadratische Fehler e�
ˇ;rms D 3;8 ı bei Querbeschleunigungen über 2 m=s2

tritt ebenfalls bei dem Manöver langsames Übersteuern auf. In Anbetracht der großen Schwimm-
winkel von bis zu 40ı bei diesem Manöver ist dieses Ergebnis allerdings als gut zu betrachten.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


116 6 Validierungsergebnisse für verschiedene Fahrmanöver

5 10 15 20

�10

0

t in s

ı f
in

ı
un

d
!

Z
in

ı
=
s

a)

ıf

!Z

5 10 15 20

�2

0

t in s

a
in

m
=
s2

b)
aX

aY

5 10 15 20

20

40

60

80

t in s

v
in

km
=
h

c)
Referenz

Schätzer

5 10 15 20

0

20

t in s

ˇ
in

ı

d)
Referenz

Schätzer

˙2�

5 10 15 20
0

0;5

1

1;5

t in s

�
m

ax

e)
Referenz

Schätzer

˙2�

5 10 15 20

�40

�20

0

t in s

˛
in

ı

f)

Referenz VA

Referenz HA

Schätzer VA

Schätzer VA, ˙2�

Schätzer HA

Schätzer HA, ˙2�

Bild 6.12: Messung und Schätzung für das Manöver langsames Übersteuern auf Niedrigreib-

wert auf dem Testgelände Vaitoudden in Schweden: a) Lenkwinkel und Gierrate; b) Beschleu-

nigung; c) Geschwindigkeit; b) Schwimmwinkel; e) maximaler Reibwert; f) Schräglaufwinkel

Durchschnittlich über alle Testfahrten ist der mittlere quadratische Fehler eˇ;rms mit 0,8ı sehr ge-
ring.

Der größte unterschätzte Schwimmwinkel e�
ˇ;Under;max tritt ebenfalls bei dem Manöver langsames

Übersteuern auf, siehe Bild 6.12. Allerdings wird das anfängliche Ansteigen des Schwimmwinkels
beim langsamen Übersteuern bei allen Testfahrten erkannt (eˇ;Under;max D 1;7 ı).
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Bild 6.13: Unterschiedlich ausgewertete Schwimmwinkelfehler bei Messungen mit dem Ma-

növer langsames Übersteuern auf Schnee und nassen Kacheln: a) maximaler Schwimmwinkel-

fehler; b) maximaler überschätzter Schwimmwinkel; c) maximaler unterschätzter Schwimm-

winkel; d) RMS-Schwimmwinkelfehler
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Bild 6.14: Unterschiedlich ausgewertete Schwimmwinkelfehler über alle Messungen a) ma-

ximaler Schwimmwinkelfehler; b) maximaler überschätzter Schwimmwinkel; c) maximaler

unterschätzter Schwimmwinkel; d) RMS-Schwimmwinkelfehler
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Tabelle 6.1: Auswertung der Schwimmwinkelfehler aller Messungen

Robustheit Güte

N e�
ˇ;max eˇ;max e�

ˇ;Over;max eˇ;Over;max e�
ˇ;rms eˇ;rms e�

ˇ;Under;max eˇ;Under;max

355 Alle 12,0 2,7 6,0 0,7 3,8 0,8 9,5 0,7

9 Landstraße 2,9 2,2 1,6 0,5 0,8 0,4 2,6 0,8

9 HK-
ATP

6,0 3,9 2,4 0,8 1,2 0,7 0,8 0,3

10 Driften 4,7 3,2 1,9 0,9 1,3 0,9 2,6 1,4

45 Kurven-
bremsen

9,3 2,9 4,6 0,4 2,3 0,8 0,8 0,2

10 Steilwand 2,0 1,0 0,4 0,2 0,6 0,4 0,9 0,4

25 langsames
Über-
steuern

12,0 4,0 6,0 0,6 3,8 1,6 9,5 1,7

19 Doppel-
spur-
wechsel

4,6 1,8 2,0 0,9 2,1 0,8 1,5 0,3

103 Wedeln 5,6 2,2 3,0 0,7 1,9 0,7 3,4 0,5

194 alle an-
deren

9,2 2,4 6,4 0,7 2,3 0,7 8,2 0,7
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6.3 Schätzung der Schräglaufsteifigkeiten

Da als Zustände die vordere Schräglaufsteifigkeit c˛;f und der Eigenlenkgradient EG geschätzt
werden, wird die hintere Schräglaufsteifigkeit c˛;r nach Gl. (5.3) über das lineare Einspurmodell
aus den beiden geschätzten Größen berechnet. Die Standardabweichung für die hintere Steifigkeit
kann ebenfalls nach Gl. (5.3) berechnet werden, wenn statt EG und c˛;f die Standardabweichun-
gen der Zustandsgrößen �EG und �c˛;f eingesetzt werden.

6.3.1 Adaption von zufälligen Startwerten auf Winterbereifung

Zur Validierung der Schräglaufsteifigkeitsschätzung dient eine Landstraßenfahrt über sechs Minu-
ten und mittleren Querbeschleunigungen zwischen drei und fünf m=s2. Es werden erhöhte Stan-
dardabweichungen zum Zeitpunkt t D 0 s für die Schräglaufsteifigkeit und dem Eigenlenkgradi-
ent

�c˛;f.t D 0 s/ D 50 kN=rad; �EG.t D 0 s/ D 2 rad=.m=s2/ � 10�3 (6.7)

im UKF eingestellt, um den größeren Anfangsfehler zu berücksichtigten. In Bild 6.15 c) ist zu er-
kennen, dass der Eigenlenkgradient deutlich schneller als die Schräglaufsteifigkeiten konvergiert.
Nach zwei Rechts- und einer Linkskurve (ca. 40 s) mit aY;max D 4;5 m=s2 ist der Eigenlenkgradi-
ent bereits sehr nahe am stationären Endwert angelangt. Am Ende der Testfahrt ist der geschätzte
Eigenlenkgradient OEG.t D 360 s/ D 2;99 rad=.m=s2/ � 10�3 sehr nahe am identifizierten Para-
meter EG D 3;06 rad=.m=s2/ � 10�3 aus Kapitel 4 mit Winterbereifung. Der Fehler beträgt 2,2%.
Dies entspricht bei mittlerer Querbeschleunigung von 5 m=s2 nach Gl. (2.98) ein Lenkradwinkel-
unterschied von lediglich 0;25ı.

Die Standardabweichungen der Schräglaufsteifigkeiten konvergieren erst nach ca. 160 s. Durch die
höherfrequente Anregung am Ende der Testfahrt werden sie noch einmal in Richtung der offline
identifizierten Werte (c˛;f D 132 kN=rad; c˛;r D 195 kN=rad) aus Kapitel 4 korrigiert. Insgesamt
werden die Steifigkeiten mit Oc˛;f .t D 350 s/ D 131 kN=rad und Oc˛;r .t D 350 s/ D 190 kN=rad
nur leicht unterschätzt. Der geschätzte Vertrauensbereich liegt bei 2�c˛ D ˙10 kN=rad oder 8%
am Ende der Testfahrt.

Der Eigenlenkgradient kann deutlich schneller identifiziert werden, da er die stationäre Verstär-
kung zwischen Lenkwinkel und Gierrate repräsentiert, siehe Gl. (2.94). Er ist dementsprechend
auch bei den stationären Anteilen der Testfahrt beobachtbar. Bei festgelegtem Eigenlenkgradient
und damit stationärer Verstärkung bestimmt die Schräglaufsteifigkeit der Vorderachse die Gierdy-
namik. Dementsprechend muss das Fahrzeug dynamischer angeregt werden, um die Steifigkeit zu
adaptieren. Dies passiert unter anderem während 110 ... 130 s und 330 ... 350 s in der behandelten
Testfahrt.
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Bild 6.15: Schätzung der Schräglaufsteifigkeiten (Schätzer VA/HA) und Vergleich mit den

identifizierten Parametern aus Abschnitt 4.4, Tabelle 4.2 (Offline VA/HA) während einer Land-

straßenfahrt mit mittleren Querbeschleunigungen (Winterrreifen): a) Gemessene Beschleuni-

gungen; b) Geschätzte Schräglaufsteifigkeiten; c) Geschätzter Eigenlenkgradient

Sensitivität der Startwerte

Um die Sensitivität der Parameterschätzung gegenüber unterschiedlichen Startwerten zu prüfen,
wurde das in Bild 6.15 gezeigte Manöver mit drei unterschiedlichen Startwerten je Parameter

Oc˛;f.t D 0/ D Œ80I 80I 80I 140I 140I 140I 180I 180I 180� � kN=rad (6.8)

OEG.t D 0/ D Œ1I 3I 5I 1I 3I 5I 1I 3I 5� � rad=.m=s2/ � 10�3 (6.9)

simuliert. Dies ergibt neun unterschiedliche Schräglaufsteifigkeiten an der Hinterachse. Bild 6.16
zeigt, dass die Endwerte unabhängig von den Startwerten zuverlässig geschätzt werden. Nach ca.
250 s werden die Unterschiede sehr klein.
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Bild 6.16: Schätzung der Schräglaufsteifigkeiten während einer Landstraßenfahrt mit mittle-

ren Querbeschleunigungen und unterschiedlichen Startparametern (Winterreifen): a) Schräg-

laufsteifigkeiten; b) Eigenlenkgradient

6.3.2 Adaption von Winter- auf Sommerbereifung

Um die Adaption von den identifizierten Winterreifen auf die Parameter der Sommerreifen zu va-
lidieren, wird wieder eine Landstraßenfahrt mit mittleren Querbeschleunigungen und montierten
Sommerreifen ausgewählt. Die Standardabweichungen der Parameter

�c˛;f.t D 0/ D 5 kN=rad ; �EG.t D 0/ D 0:15 rad=.m=s2/ � 10�3 (6.10)

werden auf die Endwerte aus den Experimenten aus Bild 6.15 eingestellt. Bild 6.17 zeigt die
Adaption der Schräglaufsteifigkeiten b) und des Eigenlenkgradienten c). Der Eigenlenkgradient
wird mit OEG.t D 295s/ D 3;41 rad=.m=s2/ � 10�3 exakt gleich dem offline identifzierten Wert
geschätzt. Die Steifigkeiten der Vorderachse Oc˛;f.t D 295 s/ D 135 kN=rad und der Hinterachse
Oc˛;r.t D 295 s/ D 218 kN=rad werden maximal um 7 kN=rad unterschätzt. Diese Ergebnisse
sind noch einmal in Tabelle 6.2 zusammengefasst.

Tabelle 6.2: Adaptionsergebnisse mit Sommerreifen (SR Online) und Vergleich mit den offline

identifizierten Sommerreifen (SR Offline) auf feuchten Asphalt aus Tabelle 4.2

WR (Startp.) SR Online SR Offline Einheit

c˛;f 131 135 137 kN=rad

c˛;r 190 218 224 kN=rad

EG 3,06 3,41 3,41 rad=.m=s2/ � 10�3
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Bild 6.17: Schätzung der Schräglaufsteifigkeiten während einer Landstraßenfahrt mit mitt-

leren Querbeschleunigungen (Startparametern der Winterrreifen): a) Gemessene Beschleuni-

gungen; b) Geschätzte Schräglaufsteifigkeiten; c) Geschätzter Eigenlenkgradient

6.3.3 Vergleich mit dem EKF und modularer Parameterschätzung

Wenn für die Prädiktion und Korrektur statt des UKF ein EKF verwendet wird, konnte bereits in
Abschnitt 5.6 Nachteile bzgl. der Schwimmwinkelschätzung festgestellt werden. Bild 6.19 zeigt
den Vergleich eines UKF mit einem EKF bzgl. der Schätzung der Schräglaufsteifigkeiten und des
Eigenlenkgradients während der vorgestellten Testfahrt mit Sommerreifen und Startparametern
der Winterreifen. Das EKF ist nicht in der Lage die größeren Steifigkeiten der Sommerreifen zu
schätzten, stattdessen wird die Steifigkeit der Vorderachse Oc˛;f.t D 295 s/ D 125 kN=rad sogar
unter die Anfangssteifigkeit Oc˛;f.t D 0 s/ D 131 kN=rad geschätzt. Die Vorteile eines UKF im
Vergleich zu einem EKF bei bestimmten Nichtlinearitäten konnten bereits in vielen Arbeiten nach-
gewiesen werden, siehe Julier und Uhlmann (2004) sowie Van der Merwe und Wan (2001).
Die Schätzung des Eigenlenkgradients EG in Bild 6.19 c) ist relativ unabhängig von der eigentli-
chen Schätzmethode.
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Statt der vorgestellten integrierten Methode (UKF), bei der die Zustände und die Parameter in
einem Filter geschätzt werden, kann auch eine modulare Parameterschätzung (UKF-MPS), bei
der das Prozessmodell nach Gl. (5.14) in zwei Prozessmodelle mit einem schnell veränderlichen
Zustandsvektor

xfast D �
v; ˇ; �max; '; �

	T
(6.11)

und mit einem langsam veränderlichen Parametervektor

xslow D �
c˛;f;EG; ��

	T
(6.12)

aufgetrennt wird, verwendet werden. Die Zustände xfast und xslow werden dann von zwei separaten
UKF mit den gleichen Messvektoren nach Gl. (5.20) verarbeitet, siehe Bild 6.18.

Nach Bild 6.19 a) und b) werden die Steifigkeiten mit der modularen Parameterschätzung (UKF-
MPS) sehr stark unterschätzt. Die Schätzung des Eigenlenkgradients in c) ergibt sehr ähnliche
Ergebnisse wie die integrierte Methode (UKF). Dieser Parameter könnte also auch außerhalb des
Filters der Zustandsgrößen geschätzt werden.

Fahrdyn.-
UKF

xO

Parameter-
UKF

u

u

fast

z

z

D max

c˛;f;EG
T

T

xO slow D

xO fast

xO slow

Bild 6.18: Aufbau der modularen Zustands- und Parameterschätzung mit zwei separaten UKF,

aufgeteilt in schnell veränderliche xfast und langsam veränderliche Zustände xslow

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


6.4 Zusammenfassung 125

100 200

80

100

120

140

t in s

c ˛
;f

in
kN
=
ra

d
a)

Offl.

UKF

UKF-MPS

EKF

100 200

150

200

t in s
c ˛
;r

in
kN
=
ra

d

b)

Offl.

UKF

UKF-MPS

EKF

100 200

3

3;2

3;4

t in s

E
G

in
ra

d=
.m
=
s2
/

�1
0

�
3

c)

Offl.

UKF

UKF-MPS

EKF

Bild 6.19: Vergleich der integrierten Parameter und Zustandsschätzung (UKF) mit einem er-

weiterten Kalman-Filter (EKF) und einer modularer Parameterschätzung (UKF-MPS) wäh-

rend einer Messung mit mittleren Querbeschleunigungen auf einer Landstraße (Startparame-

tern der Winterrreifen): a) Schräglaufsteifigkeit vorne; b) Schräglaufsteifigkeit hinten; c) Ei-

genlenkgradient

6.4 Zusammenfassung

Durch die Hinzunahme eines Längskraftmodells konnten leichte Vorteile bzgl. einer ABS-Bremsung,
bei denen sich alle Räder in dem nichtlinearen Kraft-Schlupf-Bereich befinden, aufgezeigt werden.
Zudem wird durch die Verwendung des nichtlinearen Längskraftmodells auch der maximale Reib-
wert beobachtbar.

Sehr gute Ergebnisse bzgl. der Schwimmwinkelschätzung werden bei den Standardmanövern, sta-
tionäre Kreisfahrt bis maximaler Querbeschleunigung und Doppelspurwechsel mit großen Schwimm-
winkeln mit dem entwickelten Algorithmus erzielt. Schätzer mit linearen Modellen können bei
höheren Querbeschleunigungen dem realen Schwimmwinkel nicht mehr folgen.

Schwieriger ist die Unterscheidung zwischen der Steilkurvenfahrt und einem Manöver, bei dem
sich das Fahrzeug langsam bei geringen Querbeschleunigung eindreht (langsames Übersteuern).
Durch die Nutzung des Längskraftmodells konnte der Schwimmwinkel auch in der Steilkurve
stabilisiert werden. Das langsame Übersteuern wird bei allen 25 Testfahrten, wie z.B. in Bild 6.12,
erkannt. D.h., die entwickelte Schwimmwinkelschätzung könnte einen entscheidenden Beitrag
bei der Weiterentwicklung des ESC leisten, indem auch kritische Situationen frühzeitig erkannt
werden, bei denen das Fahrzeug langsam übersteuert und der Fahrer nicht durch Gegenlenken
reagiert.

Bei Nutzung einer 6D-IMU für die Schwimmwinkelschätzung ist der Wankwinkel durch die Inte-
gration des Rollratensensors genauer bekannt und Steilkurvenfahrten sind auch ohne starke Kor-
rekturen durch Längs- und Querkraftmodelle stabil. Zudem ist der 2�ˇ-Vertrauensbereich deutlich
kleiner, sodass dem geschätzten Schwimmwinkel bei der Anwendung einer Fahrdynamikregelung
stärker vertraut werden kann. Zudem wird es möglich, den Algorithmus zu vereinfachen und z.B.
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nur mit einer Messung, den Raddrehzahlen, zu korrigieren. Dies würde die Komplexität des Ver-
fahrens stark reduzieren.

Es konnte auch gezeigt werden, dass die Schätzung des maximalen Reibwerts sehr schnell ist
und bereits bei ca. 80-85% der maximalen Querbeschleunigung den maximalen Reibwert richtig
einschätzt.

Die Schräglaufsteifigkeiten und der Eigenlenkgradient konnte mit dem entwickelten Algorithmus
für eine Landstraßenfahrt mit mittleren Querbeschleunigungen innerhalb 5 Minuten unabhängig
von den Startwerten sehr gut geschätzt werden. Der Wechsel zwischen Winter- und Sommerrädern
wird erkannt. Wird statt dem UKF ein EKF verwendet, wird der Eigenlenkgradient noch gut ge-
schätzt, die Steifigkeiten werden allerdings unterschätzt. Die Zustands- und Parameterschätzung,
aufgeteilt in zwei modulare UKF, erzielt bei der Schätzung des Eigenlenkgradients gute Ergeb-
nisse, unterschätzt die Schräglaufsteifigkeiten allerdings sehr deutlich, da die Kovarianz zwischen
Schwimmwinkel und Schräglaufsteifigkeit nicht mehr berücksichtigt wird.
Durch den gut geschätzten Eigenlenkgradient ist die stationäre Gierverstärkung bis zu mittleren
Querbeschleunigung bekannt. Zusammen mit der vorderen Schräglaufsteifigkeit wird auch die
Gierdynamik sehr gut abgebildet. Nutzt man diese Parameter für ein adaptives Einspurmodell zur
Führungsgrößenerzeugung des ESC, so könnten Fehleingriffen bei stark veränderten Reifencha-
rakteristika vermieden werden.
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7 Adaptive modellbasierten

Fahrdynamikregelung auf Basis der

geschätzten Größen

In diesem Kapitel wird beispielhaft gezeigt, wie die geschätzten Größen zur Verbesserung einer mo-

dellbasierten Fahrdynamikregelung eingesetzt werden können. In Abschnitt 7.1 wird eine flachheits-

basierte Modellfolgesteuerung vorgestellt, deren Stellgrößen abhängig von den geschätzten Schräg-

laufsteifigkeiten adaptiv berechnet werden.

In Abschnitt 7.2 wird ein Ansatz vorgestellt, um die Stabilisierungsfunktion des ESC zu verbessern.

Dreht sich das Fahrzeug nur langsam ein, ist bei einem klassischen ESC-Gierratenregler die Gier-

ratendifferenz zu gering, um stabilisierende Bremseingriffe zu erzeugen. Daher wird der geschätzte

Schwimmwinkel verwendet, um das Fahrzeug in dieser Situation zu stabilisieren. In Abschnitt 7.3

wird dann gezeigt, wie sich die Fahrleistung bei einem Doppelspurwechsel mit der Kombination aus

entworfener Steuerung und Regelung verbessern lässt.

7.1 Adaptive flachheitsbasierte Modellfolgesteuerung

Durch die Steuerung einer aktiven Hinterachslenkung und Überlagerungslenkung an der Vor-
derachse, welche in Ergänzung zum Lenkradwinkel zusätzliche Stellgrößen zulassen, sollen die
fahrdynamischen Eigenschaften des Fahrzeugs verbessert werden. Im Vergleich zu einer Rege-
lung hat eine Modellfolgesteuerung im Allgemeinen einen geringeren Phasenverzug und damit
ein besseres Ansprechverhalten, was Grundlage für die Kundenakzeptanz von Fahrdynamikrege-
lungen darstellt, Obermüller (2012) und König u. a. (2014). Um eine stationäre Genauigkeit der
Modellfolgesteuerung zu erzielen, muss allerdings ein sehr gutes Modell der Strecke verfügbar
sein.

Im Folgenden soll ein grober Überblick über Modellfolgesteuerung im Bezug auf Fahrdynamikre-
gelung gegeben werden.
Die durch eine Einzelradaktorik1 zusätzlichen Freiheitsgrade werden von Orend (2007), Andre-
asson (2007) und Hoedt (2013) genutzt, um einer beliebigen Zustandssolltrajektorie eines Füh-
rungsmodells in Form eines Einspurmodells zu folgen. Da allerdings mehr Freiheitsgrade als
Zielgrößen vorliegen, ist das Trajektorienfolgeproblem überbestimmt. Die übrigen Freiheitsgra-

1jedes Rad kann gelenkt, angetrieben und gebremst werden
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de werden genutzt, um eine optimale Radkraftverteilung, die den maximalen Kraftschluss aller
vier Räder minimiert, zu erzielen. Orend (2007) und Andreasson (2007) nutzten dafür eine nu-
merische Optimierung, die allerdings nicht echtzeitfähig ist. Andreasson (2007) nutzt bei dieser
Optimierung Randbedingungen, um auch herkömmliche Aktorkonfigurationen, wie eine normale
Vorderachs- und Hinterachslenkung, zu verwenden. Hoedt (2013) untersucht auch Führungsmo-
delle, die nicht auf fahrdynamischen Modellen beruhen, sondern direkt aus fahrdynamisch objekti-
ven Kenngrößen gebildet werden können. Zudem wird auf Aktorausfälle und eine entsprechende
Rekonfiguration der Steuerung und Regelung eingegangen. Moseberg (2013) löst das Optimie-
rungsproblem bzgl. der Solltrajektorienfolge und der Ausnutzung des minimalen Kraftschlusses
aufgrund der Überaktuierung analytisch und überwindet damit das Problem der Echtzeitfähig-
keit von Orend (2007). Luft (2014) nutzt die Ansätze nach Orend (2007) und Moseberg (2013)
für die automatisierte gebremste Notausweichmanöver, kann allerdings nur geringe Vorteile einer
optimalen Radkraftverteilung bei konventioneller Aktuierung (Vorderachslenkung und Bremsein-
griffe) gegenüber festen Radkraftverteilungen feststellen.
Alle Ansätze nutzen invertierte Reifenmodelle, um für die geforderten Kräfte zur Umsetzung der
Sollbewegung passende Schräglaufwinkel und Längsschlüpfe zu berechnen. Die Parameter der
Reifenmodelle werden als bekannt angenommen.
Obermüller (2012) verwendet die Inversion des linearen Einspurmodells zur Ansteuerung einer
Hinterachslenkung und adaptiert die Steuerung, wie im nachfolgend dargestellten Konzept, mit
geschätzten Schräglaufsteifigkeiten. Diese entsprechen allerdings nicht mehr den wahren Anfangs-
steigungen der Querkraftkennlinien, sondern beschreiben den Quotient k˛ D FYT=˛ aus aktueller
Querkraft und Schräglaufwinkel, ähnlich wie in Börner (2004) und Halbe (2008), siehe Gl. (1.21).
Um das Fahrverhalten bei hohen Querbeschleunigungen zu beschreiben, muss der Quotient k˛
schnell genug angepasst werden, damit die Steuerung richtig reagiert. So findet allerdings auch
ein starke Rückkopplung von Messgrößen in die Steuerung statt, sodass nicht mehr von einer rei-
nen Steuerung gesprochen werden kann.
Abschnitt 7.1.2 beschreibt den Aufbau einer beispielhaft entworfenen Steuerung, die sich an Kö-
nig u. a. (2014) orientiert. Durch die Nutzung des vorgestellten nichtlinearen Querkraftmodells
mit geschätzten Schräglaufsteifigkeiten, die nur langsam adaptiert werden, ist die Steuerung weit-
gehend unabhängig von der aktuellen Messung.
In Abschnitt 7.1.3 wird die Verbesserung der fahrdynamischen Eigenschaften auf Basis von Si-
mulationen von Lenkwinkelsprüngen gezeigt. Für eine detailliertere Herleitung sei auf Pospischil
(2016) verwiesen.

7.1.1 Entwurf einer Steuerung für flache Systeme

Für das System der Form

Px D f .x;u/ (7.1)

y D g .x/ (7.2)

ergibt sich der Entwurf einer flachen Steuerung genau dann, wenn der Ausgang

y D g .x/ D h .x/ (7.3)
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flach ist und mit der Regelgröße übereinstimmt, siehe Anhang 9.1. Die Steuerfunktion

u D S
�

y; Py; : : : ; y.�C1/
�
; (7.4)

kann dann in Abhängigkeit vom Ausgangsgrößenvektor y und seinen � -fachen zeitlichen Ablei-
tungen berechnet werden, siehe Adamy (2009). Das Blockschaltbild zeigt Bild 7.1. Durch Vorga-

u D S
�

y; Py; : : : ; y.�C1/
� Px D f .x;u/

y D h .x/

ysoll u y

Bild 7.1: Steuerung eines flachen Systems

be eines Solltrajektorienvektors und der zugehörigen Ableitungen
h
ysoll.t/; Pysoll.t/; : : : ; y

�C1
soll .t/

i
kann für den Fall eines exakten Modells der Ausgang des zu steuernden Prozesses genau auf der
Solltrajektorie geführt werden

y.t/ D ysoll.t/ (7.5)

Hierbei ist zu beachten, dass die Solltrajektorie ysoll.t/ .� C 1/-mal differenzierbar sein muss.
Führungsgrößensprünge sind im Fall verzögernder System (� > 0) nicht realisierbar.

7.1.2 Aufbau

Der Aufbau der Modellfolgesteuerung ist in Bild 7.3 dargestellt. Ähnlich zum ESC nach Van
Zanten (2006) wird ein Fahrdynamikmodell mit dem Lenkwinkel ıf als Eingang zur Führungs-
größenerzeugung (Soll-Fahrzeug) verwendet. Allerdings wird, statt einem linearen Einspurmo-
dell, das erweiterte Modell nach Abschnitt 2.6 verwendet. Über die Parameter des Soll-Fahrzeugs
Œc�
˛;f;c

�
˛;r;J

�
Z � lässt sich das Soll-Fahrverhalten bestimmen.

Bild 7.2 zeigt Eigenfrequenz und Gierdämpfung unterschiedlicher Fahrzeugtypen, um den querdy-
namischen Unterschied anhand des Gierverhaltens aufzuzeigen. Als passives Ausgangsfahrzeug
dient der in dieser Arbeit untersuchte BMW F10 550i, siehe Bild 7.2 a). Das Erhöhen der Schräg-
laufsteifigkeiten des Soll-Fahrzeugs auf identifizierte Werte eines Supersportwagens in Bild 7.2 b)
resultiert in einer höheren Eigenfrequenz. Dadurch reagiert der Supersportwagen deutlich schnel-
ler auf Lenkbefehle des Fahrers als das Ausgangsfahrzeug. Dennoch kann eine Überreaktion bei
starkem Einlenken aufgrund der besseren Gierdämpfung vermieden werden. Eine weitere Ver-
schiebung von Gierdämpfung und Eigenfrequenz kann durch Reduktion der Gierträgheit, reprä-
sentiert durch einen Rennwagen in Bild 7.2 c), erreicht werden. Die Fahrdynamik soll in diesem
Kapitel wieder in der Ebene betrachtet werden, sodass die Gierrate in der Ebene

!Z � P (7.6)

der aufbaufesten Gierrate !Z entspricht.
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Bild 7.2: Vergleich der Gierdämpfung und Eigenfrequenz von Einspurmodellen unterschied-

licher Fahrzeugtypen bei einer Geschwindigkeit von v D 100 km=h in Anlehnung an Heißing

und Ersoy (2008): a) Versuchsfahrzeug BMW F10 550i; b) Supersportfahrzeug; c) virtueller

Rennwagen

Aus der Solltrajektorie ysoll D
h P �; ˇ�; R �; P̌�

iT
, die sich direkt aus den Zuständen und deren

Ableitung des Einspurmodells zusammensetzt, berechnet die flachheitsbasierte Steuerung die nö-
tigen Stelleingriffe uVS D Œıf,VS; ır� für Hinterachs- und Überlagerungslenkung. Der Lenkwinkel
der Überlagerungslenkung ıf;ges D ıf C ıf,VS setzt sich aus dem Lenkwinkel des Fahrers ıf und
dem Lenkwinkel der Steuerung ıf,VS zusammen.
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Bild 7.3: Struktur der Modellfolgesteuerung
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Die Struktur der eigentlichen Steuerung ist in Abbildung 7.4 a) dargestellt. Für die Berechnung
der Lenkeingriffe werden zunächst die erforderlichen Achsseitenkräfte

FYT,f,VS

� P �; ˇ�; R �; P̌�
�

D
2 �
�
lrmv �

� P � C P̌�

�
C JZ

R � � cos .ˇ�/
�

cos .ˇ� C ıf/ � .lf C 2lr/C lf � cos .ˇ� � ıf/
; (7.7)

FYT,r,VS

� P �; ˇ�; R �; P̌�
�

D
2 �
�
lfmv � cos .ıf/ �

� P � C P̌�

�
C JZ

R � � cos .ˇ� C ıf/
�

cos .ˇ� C ıf/ � .lf C 2lr/C lf � cos .ˇ� � ıf/
(7.8)

durch Auflösen der nichtlinearen Differentialgleichungen Gl. (2.67), (2.83), (2.81) und (2.82) aus

den Solltrajektorien
h P �; ˇ�; R �; P̌�

i
rekonstruiert. Die Reifenseitenkräfte FYT,f und FYT,r kön-

nen als flache Eingänge des Systems interpretiert werden. Beide Zustandsgrößen P und ˇ des
nichtlinearen Einspurmodells bilden die flachen Ausgänge für die Steuerung. Die erforderlichen
Reifenseitenkräfte FYT,f,VS und FYT,r,VS sind wie gefordert als Funktionen der Ausgangsgrößen
P � und ˇ� des Soll-Fahrzeugs und deren Ableitungen R � und P̌� darstellbar. Mit x D y und

dim.y/ D dim.u/ D 2 sind alle Bedingungen an ein flaches System erfüllt, siehe Fliess u. a.
(1995).

Um die Schräglaufwinkel ˛f,VS und ˛r,VS berechnen zu können, wird ein inverses Reifenmodell

˛f,VS D ˛f .FYT,f,VS; Oc˛;f/ ˛r,VS D ˛r .FYT,r,VS; Oc˛;r/ (7.9)

verwendet, welches auch die aktuell geschätzten Schräglaufsteifigkeiten Œ Oc˛;f; Oc˛;r� berücksichtigt.
Die Berechnung der erforderlichen Lenkwinkel aus den Differenzen der Schräglaufwinkel

˛f,VS � ˛�
f D ıf ; bzw: ˛r,VS � ˛�

r D ır (7.10)

soll anhand von Bild 7.4 b) erläutert werden. Beispielhaft soll angenommen werden, dass die Hin-
terachsschräglaufsteifigkeit des Ist-Fahrzeugs durch einen Lenkeingriff verdoppelt werden soll.
D.h. wenn für das Ist-Fahrzeugs eine hintere Schräglaufsteifigkeit von c˛;r D 220 kN

rad geschätzt
wird, wird die Steifigkeit des Soll-Fahrzeugs mit c�

˛;r D 440 kN
rad eingestellt.

Wie in Bild 7.4 b) zu erkennen, erfordert das Reifenmodell des Soll-Fahrzeugs einen Schräglauf-
winkel von ˛�

r D 1;4ı, um eine geforderte Seitenkraft von F�
YT,r D 8kN umzusetzen. Bei diesem

Soll-Schräglaufwinkel (berechnet mit den Sollgrößen P � und ˇ�) erreicht die Reifenkennlinie des
Ist-Fahrzeugs lediglich eine Seitenkraft von FYT,r D 5 kN. Erst bei einem Schräglaufwinkel von
˛r D 2;8ı erreicht der Reifen des Ist-Fahrzeugs eine Seitenkraft von FYT,r D 8 kN. Die Differenz
ır D ˛f,VS � ˛�

r D 1;4ı muss mit der Hinterachslenkung erzeugt werden.

7.1.3 Simulationsergebnisse

Die Parameter der nichtlinearen Einspurmodelle von Soll- und Ist-Fahrzeug sind aus Kapitel 4
für den BMW 550i entnommen. Um die Fahrleistungen des gesteuerten Fahrzeugs zu steigern,
werden die Schräglaufsteifigkeiten des Soll-Fahrzeugs virtuell vergrößert:

c�
˛;f D 230 kN=rad anstelle von c˛;f D 140 kN=rad ; (7.11)

c�
˛;r D 630 kN=rad anstelle von c˛;r D 220 kN=rad (7.12)
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Bild 7.4: a) Blockschaltbild der Steuerung; b) Schema der Berechnung des Hinterachslenk-

winkels mit Inversion des nichtlinearen Querkraftmodells

Die Gierträgheit des Soll-Fahrzeugs J �
Z D 0;5JZ wird halbiert. Die Zeitverläufe der Stell- und Zu-

standsgrößen für einen Lenkwinkelsprung von ıf D 4ı bei einer Geschwindigkeit von v D 100 km=h
sind in Bild 7.5 dargestellt. Durch die Lenkeingriffe an Vorder- und Hinterachse in Bild 7.5 a) und
b) folgen die Zustandsgrößen in Bild 7.5 c) und d) des gesteuerten Fahrzeugs den Trajektorien
des Soll-Fahrzeugs. Aufgrund der geringeren Gierträgheit und größeren Schräglaufsteifigkeiten
des Soll-Fahrzeugs kann eine schnellere Reaktion der Gierrate P auf den Lenkwinkelsprung im
Vergleich zum ungesteuerten Fahrzeug erzeugt werden. Außerdem kann die Gierdämpfung deut-
lich verbessert werden. Die Hinterachse lenkt im ersten Augenblick bei t D 0;5 s entgegensetzt
der Vorderachse. Im weiteren Verlauf dann aber gleichsinnig. Der Gesamtwinkel der Vorderachse
ıf;ges D ıf C ıf,VS ist größer als am passiven Fahrzeug, da die Hinterachse gleichsinnig lenkt
(würde weniger Gierverstärkung bei gleichem Vorderachslenkwinkel erzeugen) und die Parame-
ter des Soll-Fahrzeugs mit der Forderung gleicher Gierverstärkung ausgelegt wurden. Das nicht-
minimale Phasenverhalten des Schwimmwinkels in Bild 7.5 d) zeigt sich beim aktiven wie auch
beim passiven Fahrzeug. Die Reduktion des stationären Schwimmwinkels ˇ wird durch die vir-
tuell größere Schräglaufsteifigkeit der Hinterachse c�

˛;r und dem daraus resultierenden positiven
Hinterachslenkwinkel erreicht. Die Vorsteuerung ist solange exakt, wie die Schräglaufsteifigkei-
ten für die Inversion des Querkraftmodells gerade genau dem Ist-Fahrzeugs entsprechen. Werden
die Schräglaufsteifigkeiten nicht im Fahrbetrieb geschätzt und es kommt zu Änderungen aufgrund
von Verschleiß, Luftdruck oder Reifenwechsel, so kommt es zu Fehlern bei der Inversion. Bild 7.6
zeigt die Lenkwinkelsprungantwort bei fehlerhafter Schräglaufsteifigkeiten. Die vordere Schräg-
laufsteifigkeit wurde um den prozentualen Fehler ˙50% verstellt. Bei Annahme eines konstanten
Eigenlenkgradients EG D const: wird die hintere Schräglaufsteifigkeit aus der vorderen und
dem Eigenlenkgradient nach Gl. (5.3) berechnet. Zu einem sehr ungünstigem Verhalten kommt es
gerade dann, wenn die Steifigkeiten als zu klein angenommen werden: Die Gierrate in Bild 7.6 c)
steigt durch die Zusatzlenkwinkel schneller an, fällt dann allerdings wieder ab, um dann aufgrund
des gleichen Eigenlenkgradients stationär der Soll-Gierrate zu folgen. Dieser Effekt würde vom
Fahrer sehr negativ empfunden werden und zeigt, dass die Steuerung in diesem Fall das Fahrver-
halten auch verschlechtern kann. Pospischil (2016) untersucht diesen Effekt genauer und kann
durch die Betrachtung der äquivalenten linearen Modellfolgesteuerung zeigen, dass die Pole der
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Bild 7.5: Simulation des erweiterten Einspurmodells mit und ohne flachheitsbasierter Modell-

folgesteuerung während eines Lenkwinkelsprungs: a) Vorderachslenkwinkel; b) Hinterachs-

lenkwinkel; c) Gierrate; d) Schwimmwinkel

Strecke nicht mehr exakt kompensiert werden und das resultierende Zustandsraummodell zwei
weitere Zustände durch die fehlerhafte Steuerung erhält.

Anhand des Gütefunktionals

Jq D
Z 1

0

� P � � P 
�2

dt: (7.13)

kann für den Lenkwinkelsprung gezeigt werden, dass das Unterschätzten der Schräglaufsteifigkeit
ein größeren Effekt auf die Gierrate hat als das Überschätzen, siehe Bild 7.7.
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Bild 7.7: Bewertung des Einschwingverhaltens im Zeitbereich mittels quadratischem Güte-

maß Jq

7.2 Schwimmwinkel- und Gierratenregelung durch Bremseingriffe

Das ESC nutzt die Differenz aus Gierrate eines linearen Einspurmodells und gemessener Gierra-
te als Eingang eines Gierraten-PID-Reglers, der als Ausgang ein Giermoment ausgibt, siehe Van
Zanten (2006). Van Zanten (2006) deutet auch an, dass die PID-Reglerparameter abhängig von
der Geschwindigkeit, eines geschätzten maximalen Reibwerts und des geschätzten Schwimmwin-
kels sind. Der Schwimmwinkel wird allerdings nicht direkt als Regelgröße verwendet. Vietinghoff
(2008) nutzt zur Aktivierung ihrer Gierratenregelung nicht eine Totzone für die Gierratendifferenz
wie in Van Zanten (2006), sondern prüft, ob sich der aktuelle Zustand noch im Bereich stabiler
Trajektorien in der vorher (offline) simulierten Zustandsebene eines erweiterten Einspurmodells
befindet. Hac und Bedner (2007) und Lu u. a. (2016) nutzten neben der Gierraten auch eine di-
rekte Schwimmwinkelregelung und kommen zum Ergebnis, dass bereits einfache P-Regler für die
Gierrate- und den Schwimmwinkel ausreichen, um das Fahrzeug zu stabilisieren. Klier u. a. (2008)
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kann Vorteile eines Schwimmwinkelreglers gegenüber eines Gierratenregler bei einem Doppel-
spurwechsel zeigen.

Bisher wurde allerdings noch nicht der Vorteil der Schwimmwinkelregelung mit einem geschätz-
ten Schwimmwinkel bzgl. des Manövers langsames Übersteuern auf Niedrigreibwert gezeigt. Bild
7.8 b) zeigt die gemessene und mit dem erweiterten Einspurmodell simulierten Gierrate, Bild 7.8
c) den geschätzten, den gemessenen und den simulierten Schwimmwinkel, während sich das Fahr-
zeug langsam auf Schnee, trotz eingeschaltetem ESC, eindreht. Die Längskräfte in Bild 7.8 d)
zeigen die Eingriffszeitpunkte des ESC. Bei einem Lenkwinkel von ıf D 5ı baut sich langsam
ein Schwimmwinkel mit einer Geschwindigkeit von etwa P̌ D 8ı=s auf. Aufgrund von Abwei-
chungen zwischen gemessener Gierrate P und der des Führungsmodells (ESM) kommt es bei
t D 3 s zu einem stabilisierenden Bremseingriff durch die Gierratenregelung. Da die Gierra-
tenregelabweichung allerdings sehr gering ist, ist der Bremseingriff nicht stark genug, um den
Schwimmwinkelaufbau zu unterbinden. Da ab t D 4 s die Abweichung der Gierraten zu klein ist,
greift die Gierratenregelung nicht weiter ein. Das Fahrzeug dreht sich weiter ein, bis bei t D 7 s
durch starkes Gegenlenken des Fahrers eine deutliche Abweichung der Soll-Gierrate (ESM) für
das ESC erkennbar wird. Erst jetzt wird das Fahrzeug durch einen stärkeren Bremseingriff stabili-
siert. Zu diesem Zeitpunkt beträgt der Schwimmwinkel jedoch bereits ˇ D 40ı.
Das Beispiel macht deutlich, dass die Stabilisationsregelung lediglich mit der Gierrate nicht immer
zielführend ist. Vielmehr müssen beide Zustände zur Beschreibung der Fahrdynamik Gierrate und
Schwimmwinkel betrachtet werden. Die Schwimmwinkelschätzung aus Kapitel 5 ist in der Lage,
das langsame Übersteuern anhand des Schwimmwinkels in Bild 7.8 c) zu erkennen. Stabilisie-
rende Bremseingriffe über einen Schwimmwinkelregler hätten das Fahrzeug früher stabilisieren
können.

Im Folgenden wird der Aufbau einer kombinierten Gierraten- und Schwimmwinkelregelung vor-
gestellt. Die Schwimmwinkelregelung basiert auf dem geschätzten Schwimmwinkel und nutzt
auch den 2� -Vertrauensbereich, um Fehleingriffe zu vermeiden.

7.2.1 Aufbau der Gierraten- und Schwimmwinkelregelung

Der Aufbau der Regelung orientiert sich am ESC, nach Van Zanten (2006) mit Rückführung der
Gierrate P . Zusätzlich wird aber auch der geschätzte Schwimmwinkel Ǒ zurückgeführt. Bild 7.9
zeigt die Anordnung mit ausgeschalteter Vorsteuerung, bestehend aus der Regelung von Gierrate
und Schwimmwinkel, Berechnung der Soll-Trajektorien und dem Schätzalgorithmus. Als Stell-
größen

uR D Œıf;R D 0;ır;R D 0;MB�
T (7.14)

werden nur Bremseingriffe MB D ŒMB;fl;MB;fr;MB;rl;MB;rr� verwendet.

Mit dem Vergleich der Gierraten von Soll- und Ist-Fahrzeug

e P 
D j P �j � j P j; (7.15)
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Bild 7.8: Messung der Stell- und Zustandsgrößen bei langsamem Übersteuern auf Niedrig-

reibwert: a) Lenkwinkel; b) gemessene Gierrate und Gierrate des erweiterten Einspurmodells;

c) Schwimmwinkel: d) Längskräfte

kann zwischen Unter- .e P 
> 0/ und Übersteuern .e P 

< 0/ unterschieden werden. Da im Fall
von Untersteuern vermutet wird, dass der Kraftschluss an der Vorderachse zu gering ist, müssen
die Bremseingriffe am kurveninneren Hinterrad umgesetzt werden, um die Gierbewegung des
Fahrzeugs zu unterstützen. Wird Übersteuern festgestellt, reagiert die Regelung mit Bremseingrif-
fen am kurvenäußeren Vorderrad, um der Gierbewegung entgegen zu wirken, siehe Van Zanten
(2006).

Weil die Bremseingriffe vom Fahrer als störend empfunden werden können und ohnehin von Ab-
weichungen zwischen gemessener Gierrate P und der mit einem nichtlinearen Einspurmodell
berechneten Gierrate des Soll-Fahrzeugs P � ausgegangen werden muss, ist wie im ESC üblich,
eine Totzone für die Regelabweichung e P 

vorgesehen. Erst nach Überschreiten einer Schwelle
wird die Gierratenregelung aktiv, siehe Van Zanten (2006).

In einem zusätzlichen Regelkreis wird der Schwimmwinkel zurückgeführt. Da angenommen wird,
dass der Schwimmwinkel im Gegensatz zur Gierrate nicht als Messgröße zur Verfügung steht,
wird auf den geschätzten Schwimmwinkel Ǒ zurückgegriffen. Der Schwimmwinkelregler soll,
wie auch der Gierratenregler, nicht kontinuierlich eingreifen. Lediglich in sicherheitskritischen
Situationen sollen gezielte Bremseingriffe für eine Stabilisierung des Fahrzeugs sorgen.
Die Standardabweichung des Schwimmwinkels �ˇ, berechnet mit dem Kalman-Filter, die ein Maß
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Bild 7.9: Struktur der Regelung von Gierrate und Schwimmwinkel mit ausgeschalteter mo-

dellbasierter Vorsteuerung nach Bild 7.3

für die Verlässlichkeit des geschätzten Schwimmwinkels Ǒ ist, wird für die Eingriffsstrategie

eˇ D
(

0 für 2�ˇ C ˇoff > j Ǒj � jˇ�j
eˇ für 2�ˇ C ˇoff � j Ǒj � jˇ�j; (7.16)

genutzt. Steigt der Wert von �ˇ bei wenig Stützung der Schwimmwinkelschätzung durch die Achs-
querkräfte an, so kann die Einschaltschwelle des Schwimmwinkelreglers für weniger verlässliche
Schätzungen nach oben versetzt werden und so die Anzahl fehlerhafter Bremseingriff verringert
werden. Der Offset ˇoff erlaubt eine genaue Abstimmung der Eingriffe des Schwimmwinkelreg-
lers. Um den Fahrer weniger zu bevormunden, können größere Offsets ˇoff eingestellt werden.
Stabilisierende Eingriffe erfolgen dann nur noch im Notfall.

Die gemeinsame Stellgröße, das Giermoment

MZ,reg D
(

K P 
� e P 

für e P 
> 0 untersteuern

gˇ � Kˇ � eˇ C g P 
� K P 

� e P 
für e P 

< 0 übersteuern;
(7.17)

von Gierraten- und Schwimmwinkelregler, basiert wie bei Hac und Bedner (2007) und Lu u. a.
(2016) auf P-Reglern und wird abhängig der jeweiligen Situation mit den Gewichten gˇ und g P 

erzeugt. Bei untersteuerndem Verhalten greift mit Gl. (7.17) nur der Gierratenregler ein. Bei Über-
steuern hingegen werden die mit den Verstärkungen Kˇ und K P 

berechneten Stellgrößen der
einzelnen Regelkreise mit den Faktoren gˇ und g P 

gewichtet und zur gemeinsamen Stellgröße
MZ,reg addiert. Wie in Lu u. a. (2016) gezeigt, sorgen bereits einfache P-Regler für eine deutli-
che Steigerung der Fahrstabilität durch Rückführung des Schwimmwinkels. Über die Gewich-
tungsfaktoren gˇ und g P 

soll erreicht werden, dass der Gierratenregler deaktiviert wird, wenn
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der Schwimmwinkelregler, wie in Gleichung 7.16 beschrieben, aktiv wird. Abbildung 7.10 ver-
deutlicht die Funktionen der Gewichtungsfaktoren gˇ und g P 

. Die gewichtete Zusammenführung
mit dem Überblendbereich ˇblend der Stellgrößen von Gierraten- und Schwimmwinkelregler dient
der Vermeidung von sprunghaften Stellgrößenverläufen MZ,reg. Das Giermoment MZ,reg wird in
radindividuelle Bremsmomente MB,ij umgerechnet und an das ABS-System übergeben, siehe Van
Zanten (2006).

2�ˇ C ˇoff 2�ˇ C ˇoff C ˇblend
0

1

eˇ in ı

G
ew

ic
ht

un
g

g P 
gˇ

Bild 7.10: Prinzip der Gewichtung der Stellgrößen von Gierraten- und Schwimmwinkelregler

7.2.2 Simulationsergebnisse

Zum Testen der Steuerung und Regelung werden Simulationen für unterschiedliche Fahrmanöver
in der Simulationsumgebung IPG-CarMaker durchgeführt. Die Parameter des Simulationsfahr-
zeugs aus IPG-CarMaker werden an das reale Fahrzeug angepasst. Verwendet wird das aufwendi-
gere Reifenmodell „Pacjeka Magic Formula 5.2“, welches mit Skalierungsfaktoren so angepasst
wird, dass es in etwa den Längs- und Querkraftkennlinien aus Kapitel 4 entspricht.

Da lediglich die Funktion der Regelung untersucht werden soll, unterscheiden sich die Parameter
von Soll- und Ist-Fahrzeugmodell zunächst nicht, sodass keine Eingriffe der Steuerung mit der
Aktivlenkung erfolgt.

Das Manöver aus Bild 7.8, bei dem das Fahrzeug langsam auf Schnee übersteuert, wird mit der
Simulationsumgebung in Bild 7.11 nachgestellt. Bei stationärer Kreisfahrt mit einem Radius von
R D 100 m und einer Geschwindigkeit von v D 67 km=h befindet sich das simulierte Fahrzeug
bereits bei aY � 3:5 m=s2 an der Kraftschlussgrenze der Vorderachse. Zum Zeitpunkt t D 10 s
wird ein Lastwechsel provoziert, indem die Fahrpedalstellung auf 0% reduziert und der Lenkwin-
kel weiter erhöht wird. Der Schwimmwinkel in c) wächst an. Der Unterschied zur Sollgierrate in
b) ist allerdings sehr gering, sodass ein Regler, der nur auf der Gierrate basiert ( P -Regler), zu-
nächst keinen Bremseingriff in d) stellt. Erst bei ca. t � 12 s und einem großen Schwimmwinkel
ˇ P 

D �16ı ist die Gierratendifferenz groß genug, sodass ein Bremseingriff erfolgt. Der maximale
Schwimmwinkel liegt bei ca. �18ı.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


7.3 Kombinierte Schwimmwinkel und Gierraten-Steuerung und Regelung 139

Eine Sekunde früher bei t D 11 s unterschreitet die 2�ˇCˇoff-Grenze den Sollschwimmwinkel in
Bild 7.8 c), sodass ein stärkerer Bremseingriff der kombinierten Gierraten- und Schwimmwinkel-
regelung (ˇC P -Regler) das weitere Anwachsen des Schwimmwinkels unterbindet. Der maximale
Schwimmwinkel beträgt lediglich ca. �6ı.
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Bild 7.11: IPG-CarMaker-Simulation der Stell- und Zustandsgrößen bei langsamem Über-

steuern aufgrund eines Lastwechsels auf Niedrigreibwert; Offset des Schwimmwinkelreglers

ˇoff D 2ı; Offset des Gierratenreglers P off D 5I ı=s; a) Lenkwinkel; b) Gierrate; c) Schwimm-

winkel; d) Längskräfte

7.3 Kombinierte Schwimmwinkel und Gierraten-Steuerung und

Regelung

Der Aufbau der Regelung orientiert sich am Zwei-Freiheitsgrad-Entwurf, siehe Horowitz (1963),
mit der in Abschnitt 7.1 entworfenen Steuerung im Vorwärtszeig und der zusätzlichen Rückfüh-
rung der Gierrate P und dem geschätzten Schwimmwinkel Ǒ. Bild 7.9 zeigt die Anordnung der
kombinierten Regelung von Gierrate und Schwimmwinkel mit Vorsteuerung, Berechnung der Soll-
Trajektorien und dem Schätzalgorithmus.
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Flachheitsbasierte
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Bild 7.12: Struktur der Regelung von Gierrate und Schwimmwinkel mit modellbasierter Vor-

steuerung nach Bild 7.3

7.3.1 Performancesteigerung durch kombinierte Lenk- und Bremseingriffe

Um das mögliche Potential der Steuerung in Kombination mit der Regelung aus Bild 7.12 zu
zeigen, soll nachfolgend der Einfluss von kombinierten Lenk- und Bremseingriffen während eines
Doppelspurwechsels mit einer Anfangsgeschwindigkeit von v D 150 km=h untersucht werden.
Um die Fahrleistungen des Fahrzeugs zu steigern, werden die Schräglaufsteifigkeiten

c�
˛;f D 230 kN=rad und c�

˛;r D 630 kN=rad

des Soll-Fahrzeugs vergrößert. Die Gierträgheit

J �
Z D 0;5 JZ

des Soll-Fahrzeugs soll halbiert werden.

Bild 7.13 zeigt den Vergleich der Geschwindigkeiten und Schwimmwinkel während des Doppel-
spurwechsels mit der reinen Gierratenregelung ( P -Regler), mit Gierraten- und Schwimmwinkel-
regelung (ˇC P -Regler) sowie der Steuerung kombiniert mit der Gierraten- und Schwimmwinkel-
regelung (Steuerung+ˇ C P -Regler). Durch die Eingriffe der Aktivlenkung kann der Schwimm-
winkel im Vergleich zu den rein geregelten Simulationen um den Faktor fünf reduziert werden.
Aufgrund der guten Sollwertfolge durch die Steuerung kommt es zu weniger und schwächeren
Bremseingriffen, sodass die Endgeschwindigkeit mit der Steuerung deutlich höher wird.
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Bild 7.13: Vergleich der Gierratenregelung mit der kombinierten Regelung und der Steuerung

mit Regelung bei einem Doppelspurwechsel mit einer Eingangsgeschwindigkeit von v D
150 km=h (IPG-CarMaker-Simulation)

7.3.2 Virtueller Fahrversuch

Durch eine Anbindung von Lenkrad und Pedalerie an die verwendete Simulationsumgebung IPG-
CarMaker kann die Fahrzeugführung auch manuell erfolgen, sodass die Steuerungs- und Rege-
lungskonzepte im virtuellen Fahrversuch erprobt werden können.

Zur subjektiven Bewertung des Fahrgefühls wird wieder der Doppelspurwechsel aus Abschnitt
7.3.1 verwendet. Ziel des virtuellen Fahrversuchs ist das Durchfahren der Pylonengassen ohne die
Pylonen zu berühren, um den Einfluss der unterschiedlichen Steuerungs- und Regelungskonzepte
auf die maximale Eingangsgeschwindigkeit festzustellen. Tabelle 7.1 zeigt die maximal erreichten
Anfangsgeschwindigkeiten v0.

Tabelle 7.1: Anfangsgeschwindigkeiten v0 bei einem Doppelspurwechsel mit unterschiedli-

chen Steuerungs- und Regelungskonzepten (IPG-CarMaker-Simulation)

Konzept v0 in km=h

Ist-Fahrzeug ohne Eingriffe 126

Gierratenregelung 133

Modellfolgesteuerung 140

Modellfolgesteuerung + Gierratenregelung 152

Mit dem ungesteuerten und ungeregelten Ist-Fahrzeug kann eine maximale Anfangsgeschwindig-
keit von v0 D 126 km=h erreicht werden.
Die Gierratenregelung stabilisiert das Fahrzeug und erlaubt eine höher Eingangsgeschwindigkei-
ten von v0 D 133 km=h.
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Durch die Modellfolgesteuerung wird das Fahrverhalten auch subjektiv als bedeutend agiler emp-
funden. Dies ist auch an der weiter gesteigerten maximalen Eingangsgeschwindigkeiten von v0 D
140 km=h zu erkennen.
Die Kombination von Lenkeingriffen der Modellfolgesteuerung und den geregelten Bremsein-
griffen der Gierratenregelung erlaubt durch den Sicherheitsgewinn der Zustandsrückführung eine
weitere Steigerung der maximalen Eingangsgeschwindigkeit auf v0 D 152 km=h. Es ist allerdings
anzumerken, dass diese Ergebnisse als subjektiv zu bewerten sind und auch vom jeweiligen Fahrer
abhängen.

7.4 Zusammenfassung

Durch die flachheitsbasierte Modellfolgesteuerung mit einem virtuellen agileren Soll-Fahrzeug
als Führungsmodell wurde gezeigt, dass das Gierverhalten bei Lenkwinkelsprüngen deutlich ver-
bessert werden kann. Um keine Verschlechterung des Fahrverhaltens aufgrund der Steuerung zu
erhalten, müssen die Schräglaufsteifigkeiten hinreichend genau durch Schätzalgorithmen bekannt
sein. Es wurde gezeigt, dass sich das Gierverhalten bei unterschätzten Steifigkeiten deutlich nega-
tiv in Form von Unterschwingern auswirkt. Das Überschätzen der Steifigkeit hat lediglich gerin-
gere Eingriffe der Aktivlenkung zur Folge und verschlechtert das Fahrverhalten daher weniger.

Dreht sich das Fahrzeug auf Niedrigreibwert langsam ein, reicht die geringe Differenz aus gemes-
sener und Soll-Gierrate nicht aus, um das Fahrzeug zu stabilisieren. Durch die Rückführung des
geschätzten Schwimmwinkels konnte in einer IPG-Carmaker-Simulation gezeigt werden, dass
ein Schwimmwinkelregler das Fahrzeug deutlich früher stabilisieren kann.

Das Konzept der flachheitsbasierten Vorsteuerung in Kombination der Regelung der Gierrate und
Schwimmwinkel wurde anhand eines Dopperspurwechsels mit einem virtuellen Fahrer aber auch
im virtuellen Fahrversuch mit menschlichen Fahrern untersucht. Im Vergleich zum passiven Fahr-
zeug konnten höhere Manövereingangsgeschwindigkeiten durch ein agileres Ansprechverhalten
erreicht werden. Somit vereint die entworfene kombinierte Steuerung und Regelung das sport-
licherer (agilere) Fahrverhalten durch die Steuerung mit dem erhöhten Sicherheitspotential der
Gierraten- und Schwimmwinkelregelung.
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8 Zusammenfassung und Ausblick

Ziel dieser Arbeit war die Entwicklung einer Methode zur Schätzung der wichtigsten Bewegungs-
größen Schwerpunktgeschwindigkeit und Schwimmwinkel, um diese einer Fahrdynamikregelung
zur Verfügung zu stellen. Dazu sollte lediglich die ESC-Sensorik genutzt werden. Damit eine
modellbasierte Steuerung oder ein Führungsmodell auf Veränderung des querdynamischen Fahr-
verhaltens reagieren kann, sollten zusätzlich die fahrdynamisch wichtigsten Parameter, wie die
Schräglaufsteifigkeiten und der maximale Reibwert an der Vorder- und Hinterachse während des
Fahrbetriebs geschätzt werden.

Die intensive Analyse des Stands der Technik macht deutlich, dass gerade auf dem Gebiet der
Schwimmwinkelschätzung bereits seit der Einführung des ESC in den 90er-Jahren viele Metho-
den veröffentlicht wurden. Allerdings konnte bei keiner dem Autor bekannten Methode gezeigt
werden, dass sie in jeder, insbesondere in extremen Fahrsituationen gute und zuverlässige Schätz-
ergebnisse liefert.

In Kapitel 2 wurden fahrdynamische Modelle auf Basis der Starrkörperbewegung im Raum ent-
wickelt, die alle erforderlichen Situationen, wie die Fahrt in der Steilkurve, Fahrten im physika-
lischen Grenzbereich auf Hoch- und Niedrigreibwert genau genug modellieren. Dabei wurde ein
optimaler Kompromiss aus Komplexität und Genauigkeit gesucht. Das für den Entwurf des Schät-
zers und einer Steuerung verwendete erweiterte Einspurmodell nutzte die nichtlinearen Schlupf-
Kraftmodelle nach Pacejka (2012). Die Radlasten wurden vereinfacht mit den quasi-stationären
Radlastverschiebungen durch die auf den Schwerpunkt angreifenden Trägheitskräfte berechnet.

Die fahrzeug- und reifenabhängigen Parameter dieser nichtlinearen Schlupf-Kraftmodelle wur-
den in Kapitel 4 durch Fahrversuche und einer Referenzsensorik bestehend aus 6D-IMU, GPS und
Correvit-Sensor identifiziert. Dabei wurden Manöver verwendet, die in der Lage waren die Vorder-
und Hinterachse über den gesamten Schräglaufwinkelbereich bis ca. 20ı abzudecken. Auch Manö-
ver mit gleichzeitigem Längs- und Querschlupf (Kurvenbremsungen) wurden verwendet, um die
Querkraftabschwächung in Abhängigkeit des Längsschlupfes zu parametrieren. Die Validierung
mit einer Kurvenbremsung bei maximaler Querbeschleunigung zeigt die Leistungsfähigkeit des
resultierenden erweiterten Einspurmodells. Es konnten deutliche Verbesserung gegenüber Model-
len mit unparametrierter Querkraftabschwächung erzielt werden.

Die Schätzung der fahrdynamischen Zustände und Parameter mit ESC-Sensorik auf Basis von
Kalman-Filtern wurde in Kapitel 5 behandelt. Die Prädiktion der Zustände erfolgte mit einem
kinematischen Modell, d.h. durch Integration der Längs- und Querbeschleunigungsensorsignale,
sowie der Gierrate. Die Korrektur dieser instabilen Integration erfolgte durch die Geschwindigkei-
ten der Vorderräder und der Längs- und Querkräfte der Vorder- und Hinterachse. Durch Berück-
sichtigung des maximalen Reibwerts in den Achslängs- und Querkraftmodellen wird dieser bei
genügend Schlupf beobachtbar.
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Durch eine Untersuchung der Beobachbarkeit in Abhängigkeit des Arbeitspunktes wurde deutlich,
dass die Schätzqualität der Geschwindigkeit bzw. des Schwimmwinkels abnimmt, wenn die Stei-
gung der Längs- bzw. Querkraftkennlinie geringer wird. Wird ein dreiachsiger Drehratensensor,
der auch die Wank- und Nickrate misst, verwendet, wurde die Unsicherheit des aktuellen Wank-
bzw. Nickwinkels geringer und so die Qualität der Geschwindigkeits- bzw. Schwimmwinkelschät-
zung merklich verbessert.
In Abschnitt 5.6 wurde die Korrektur des Schwimmwinkels mit einem EKF und einem UKF in
unterschiedlichen Arbeitspunkten analysiert. Es wurde gezeigt, dass das UKF in Situationen mit
großen Schräglaufwinkeln durch die Berücksichtigung der Nichtlinearität den Schwimmwinkel
stärker stabilisiert als ein EKF, sodass robustere Schwimmwinkelschätzungen mit einem UKF
möglich waren.

In Kapitel 6 wurde die Schwimmwinkelschätzung mittels 355 unterschiedlicher Testfahrten auf
Fahrdynamikflächen, Steilkurven, Handlingkursen und auf Schnee validiert. Der Algorithmus
lieferte auf ca. 1000 Testfahrt-Kilometern in allen erdenklichen fahrdynamisch relevanten Situa-
tionen robuste Ergebnisse. Im Mittel betrug der maximale Schwimmwinkelfehler während einer
Testfahrt 2,7ı. Bei Berücksichtigung des 2� -Vertrauensbereich überschätzt der Algorithmus den
Schwimmwinkel im Mittel um lediglich 0,7ı. Besonders schwierig war es, das Manöver Steilkur-
ve und langsames Übersteuern auf Niedrigreibwert zu unterscheiden. Das langsame Übersteuern
wurde durch die schnelle Reibwertschätzung bei allen 25 Testmanövern auf unterschiedlichen Un-
tergründen und verschiedenen Variationen erkannt. Trotzdem konnten stabile Schwimmwinkel-
schätzungen in der Steilkurve realisiert werden. Der entwickelte Schwimmwinkelschätzer kann
daher einen entscheidenden Beitrag bei der Weiterentwicklung des ESC leisten, indem auch kriti-
sche Situationen frühzeitig erkannt werden, bei denen das Fahrzeug langsam übersteuert und der
Fahrer nicht durch Gegenlenken reagiert.
Die Reibwertschätzung reagierte sehr schnell, sodass bereits bei ca. 80-85% der maximalen Quer-
beschleunigung der maximale Reibwert richtig eingeschätzt wurde. Ein derartiger Reibwertschät-
zer kann auch für die automatische Fahrzeugführung vorteilhaft sein, wenn bereits vor Erreichen
der maximalen Längs- und Querkräfte die Trajektorie aufgrund von erkanntem Niedrigreibwert
neu geplant werden muss.
Die Schräglaufsteifigkeiten konnten während einer Landstraßenfahrt mit mittleren Querbeschleu-
nigungen mit dem integrierten Zustandsschätzer auf Basis des UKF (Schwimmwinkelschätzung
zusammen mit der Parameterschätzung in einem Filter) robust geschätzt werden. Der Unterschied
zwischen der Winter- und Sommerbereifung wurde deutlich. Bei Verwendung eines EKF oder ei-
nes UKF in modularer Ausführung (Schwimmwinkelschätzung getrennt von der Parameterschät-
zung) wurden die Steifigkeiten deutlich unterschätzt.

In Kapitel 7 wurde eine Fahrdynamikregelung entwickelt, die die geschätzten Größen zur Ver-
besserung der Regelgüte nutzt. Eine Modellfolgesteuerung einer aktiven Vorder- und Hinterachs-
lenkung zur Verbesserung der Gierdynamik verwendete die geschätzten Schräglaufsteifigkeiten,
um sich an unterschiedliche Bereifungen anzupassen. Die Stabilisierung des Fahrzeugs in einer
IPG-Carmaker-Simulation bei langsam anwachsenden Schwimmwinkeln konnte nicht mit einem
Gierratenregler erfolgen, da die Differenz von Soll- und Ist-Gierrate zu gering war. Erst durch die
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Rückführung des geschätzten Schwimmwinkels und einem einfachen P-Regler konnte das Fahr-
zeug bei diesem Manöver frühzeitig stabilisiert werden.

Einige wesentlichen Beiträge der Arbeit sind zusammenfassend:

� Modellbildung eines erweiterten Einspurmodells mit Einfluss der Fahrbahnwank- und Nick-
winkel und unterschiedlichen maximalen Reibwerten, welches auch bei Manövern mit ho-
hen Quer- und Längsbeschleunigungen gültig ist,

� Entwicklung einer Datenfusion mit Kalman-Filtern für ein Referenzmesssystem bestehend
aus einer 6D-IMU, 3-Antennen-GPS und Correvit-Sensor,

� Schätzung von Achslängs- und Querkräften und Identifikation von Achskraftkennlinien auf
unterschiedlichen Untergründen im Fahrversuch,

� Entwicklung und Validierung eines Fahrdynamikschätzers basierend auf einem UKF und
dem entwickelten erweiterten Einspurmodell, welcher auch auf Niedrigreibwert und in Steil-
kurven robuste Schwimmwinkel liefert,

� Entwicklung einer modellbasierten Fahrdynamikregelung mit flachheitsbasierter Vorsteue-
rung und Gierraten- und Schwimmwinkelregelung basierend auf den Schätzgrößen des vor-
gestellten Fahrdynamikschätzers.

Zusammenfassend wurden also in dieser Arbeit auf Basis der entwickelten Fahrdynamikmodelle
und dem UKF-Verfahren Schätzalgorithmen entwickelt, deren Schätzgrößen von allen Fahrdyna-
mikregelsystemen, angefangen vom ABS über das ESC bis zu modellbasierten Steuerungen, zur
Verbesserung ihrer Regelgüte verwendet werden können. Obwohl seit den 90er-Jahren Schwimm-
winkelschätzer erforscht werden, kann der hier entwickelte Algorithmus sich durch die hohe Quali-
tät und Robustheit der Schätzung abheben und einen praxistauglichen Ansatz liefern. Diese Arbeit
liefert damit einen wesentlichen Beitrag bei der Entwicklung zukünftiger Fahrdynamikregelsyste-
me.

https://doi.org/10.51202/9783186809124 - Generiert durch IP 216.73.216.96, am 13.01.2026, 21:09:56. © Urheberrechtlich geschützter Inhalt. Ohne gesonderte
Erlaubnis ist jede urheberrechtliche Nutzung untersagt, insbesondere die Nutzung des Inhalts im Zusammenhang mit, für oder in KI-Systemen, KI-Modellen oder Generativen Sprachmodellen.

https://doi.org/10.51202/9783186809124


146

9 Anhang

9.1 Definition der Flachheit

Ein System
Px D f .x;u/ (9.1)

sei für x 2 R
n und u 2 R

m mit m � n definiert und es gelte

rang
�
@f .x;u/
@u

�
D m: (9.2)

Es sei flach, wenn ein realer oder fiktiver Ausgangsvektor

y D h
�

x;u; Pu; : : : ;u.˛/
�

(9.3)

mit einem endlichen Wert ˛ 2 N existiert, so dass

1. der Zustandsvektor x als Funktion von y und einer endlichen Zahl � von Ableitungen y.� /

als
x D S1

�
y; Py; : : : ; y.� /

�
(9.4)

dargestellt werden kann,

2. der Eingangsvektor u als Funktion

u D S2

�
y; Py; : : : ; y.�C1/

�
(9.5)

darstellbar ist und

3. für Ein- und Ausgangsvektor
dim.y/ D dim.u/ (9.6)

gilt.

Der Ausgangsvektor y heißt flacher Ausgang, siehe Adamy (2009).

9.2 Übergang zur Geschwindigkeits-/ Schwimmwinkel-Darstellung

des Zweispurmodells

Die Längs- und Quergeschwindigkeit

vX D cosˇ � v; vY D sinˇ � v (9.7)
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ausgedrückt mit der Übergrundgeschwindigkeit des Schwerpunkts v und dem Schwimmwinkel ˇ
werden nach der Zeit t unter Verwendung der Produktregel abgeleitet

dvX

dt
D PvX D � sinˇ � P̌ � v C cosˇ � Pv ; (9.8)

dvY

dt
D PvY D cosˇ � P̌ � v C sinˇ � Pv : (9.9)

Durch Einsetzen der Geschwindigkeiten und ihrer Ableitung (Gl. (9.7) bis (9.9)) in die Längs- und
Quergeschwindigkeitsdarstellung nach Gl. (2.46) und (2.47) des Zweispurmodells erhält man die
Gleichungen

� sinˇ � P̌ � v C cosˇ � Pv D FX

m
C !Z � sinˇ � v C g � sin � ; (9.10)

cosˇ � P̌ � v C sinˇ � Pv D FY

m
� !Z � cosˇ � v � g � cos � � sin' (9.11)

Durch Umstellen von Gl. (9.11)

P̌ � v D 1

cosˇ

�
FY

m
� !Z cosˇ � v � g � cos � � sin' � sinˇ � Pv

�
(9.12)

und Einsetzen in Gl. (9.10) erhält man

� sinˇ

cosˇ

�
FY

m
� !Z cosˇ � v � g � cos � � sin' � sinˇ � Pv

�
C cosˇ � Pv D FX

m
C !Z � sinˇ � v C g � sin � :

(9.13)

Durch Umstellen von Gl. (9.13)

Pv
 

cosˇ C sin2 ˇ

cosˇ

!
D sinˇ

cosˇ

�
FY

m
� !Z cosˇ � v � g � cos � � sin'

�
C FX

m
C !Z � sinˇ � v C g � sin �

(9.14)

und Multiplikation von Gl. (9.14) mit cosˇ sowie Umstellen erhält man

Pv �cos2 ˇ C sin2 ˇ
�„ ƒ‚ …

D1

D sinˇ
�
FY

m
� g � cos � � sin'

�
C cosˇ

�
FX

m
C g � sin �

�

C !Z � v � .cosˇ sinˇ � cosˇ sinˇ/„ ƒ‚ …
D0

(9.15)

und somit die Differentialgleichung für die Schwerpunktsgeschwindigkeit

Pv D cosˇ
�
FX

m
C g � sin �

�
C sinˇ

�
FY

m
� g � cos � � sin'

�
: (9.16)

Durch Umstellen von Gl. (9.10)

Pv D 1

cosˇ

�
FX

m
C !Z � sinˇ � v C g � sin � C sinˇ � P̌ � v

�
(9.17)
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und Einsetzen von Gl. (9.17) in Gl. (9.11) erhält man

cosˇ � P̌ � v C sinˇ

cosˇ

�
FX

m
C !Z � sinˇ � v C g � sin � C sinˇ � P̌ � v

�

D FY

m
� !Z � cosˇ � v � g � cos � � sin' :

(9.18)

Mit der Multiplikation von Gl. (9.18) mit cosˇ und Umstellen

P̌ �cos2 ˇ C sin2 ˇ
�„ ƒ‚ …

D1

�v D cosˇ
�
FY

m
� g � cos � � sin'

�
C sinˇ

�
FX

m
C g � sin �

�

C !Z � v � .cosˇ sinˇ � cosˇ sinˇ/„ ƒ‚ …
D0

(9.19)

ergibt sich die Differentialgleichung für den Schwimmwinkel

P̌ D cosˇ � 1
v

�
FY

m
� g � cos � � sin'

�
� sinˇ � 1

v

�
FX

m
C g � sin �

�
� !Z : (9.20)

9.3 Verwendete Zusatzsensorik

Über die ESC-Sensorik hinaus wurde in dieser Arbeit eine Zusatzsensorik verwendet, die im Fol-
genden näher beschrieben wird.

Correvit

Der Correvit-Sensor vom Hersteller CORRSYS-DATRON Sensorsysteme GmbH erfasst die Fahr-
zeuggeschwindigkeit in Längs- und Querrichtung berührungslos mit einem optischen Messprinzip.
Die Oberflächenstruktur des Untergrunds wird mit einem Objektiv auf ein zweiphasiges optisches
Gitter abgebildet und die Intensität des hindurchtretenden Lichts von einem Photosensor gemes-
sen. Die Frequenz der Helligkeitsschwankungen dient zu der Ermittlung der Fahrgeschwindigkeit
in Längs- und Querrichtung. Der Correvit-Sensor kann üblicherweise nicht im Fahrzeugschwer-
punkt montiert werden. Die Correvit-Geschwindigkeiten vCorr

X und vCorr
Y werden mit2

4vCorr
X

vCorr
Y

vCorr
Z

3
5 D

2
4vX;Corr

vY;Corr

0

3
5 �

2
4'K

0

!Z

3
5 � lCorr (9.21)

und der gemessenen Drehrate um die Hochachse !Z, der Fahrwerkswankrate 'K und dem Vektor
vom Correvit-Sensor zum Schwerpunkt lCorr in den Fahrzeugschwerpunkt transformiert werden.
Bei dem verwendeten Versuchsfahrzeug wurde der Sensor an der Abschleppöse montiert. In Bild
9.1 ist die Position des Sensors zu erkennen. Daraus ergeben sich der Schwimmwinkel

ˇCorr D arctan
�
vCorr

Y

vCorr
X

�
(9.22)
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XV

XV

YV

ZV

Schwerpunkt XCorr

YCorr

Correvit

XGPS

YGPS

GPS-Antenne

GPS-Hauptantenne
GPS-Hifsantenne

XGPS

ZGPS

l GPS

l GPS
l Corr

XCorr

ZCorr
YV

ZV

ZGPS

YGPS
l GPS

l Corr

Bild 9.1: Anordnung der Zusatzsenorik

und die absolute Geschwindigkeit

vCorr D
q
vCorr

X
2 C vCorr

Y
2
: (9.23)

Inertialmesseinheit

Eine Inertialmesseinheit misst üblicherweise drei Beschleunigungen a D �
aX aY aZ

	
und drei

Drehraten ! D �
!X !Y !Z

	
eines körperfesten Koordinatensystems bzgl. eines inertialen Ko-

ordinatensystems. Man spricht aufgrund der sechs Messwerte auch von einer 6D-IMU. Im ESC-
Umfeld wird üblicherweise nur eine 3D-IMU verwendet, mit der lediglich die Drehrate um die
Hochachse !Z sowie die Längs- und Querbeschleunigung aX, aX gemessen wird. Das inertiale Ko-
ordinatensystems sitzt fest im Zentrum der Erdkugel. Bei einer hochwertigen 6D-IMU werden die
Drehratensensoren hoch genug aufgelöst, sodass auch die natürliche Erddrehrate messbar wird.

Die Messung der Beschleunigungen erfolgt im niedrig- bis mittelpreisigen Segment mit MEMS
(Micro-Electrical-Mechanical-Systems) auf Basis der Messung der Auslenkung einer Masse-Feder-
Konstruktion. Diese Art der Messung wird üblicherweise im ESC verwendet. Hochpreisige Geräte
verwenden Servo-Beschleunigungsaufnehmer. Hierbei wird die Kraft gemessen die dazu nötig ist
eine Probemasse in Position zu halten.

Die Drehraten werden ebenfalls im niedrig- bis mittelpreisigen Segment mit MEMS gemessen.
Eine Schwinggabel wird kapazitiv in Schwingung gebracht. Dreht sich die Gabel, wird durch
Coriolis-Kräfte eine zur Grundschwingung senkrechten Schwingung überlagert. Durch Auswer-
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tung dieser Schwingung kann eine Drehrate berechnet werden. Diese Art der Messung wird üb-
licherweise im niedrigpreisigen (ESC-)Segment verwendet. Hochpreisige Drehratensensoren ver-
wenden optische Laserkreisel, welche auf der Interferenz zweier Lichtstrahlen beruhen, die gegen-
sinnig in einer aufgewickelten Glasfaser umlaufen. Durch die Auswertung der Differenzfrequenz
der Lichtstrahlen kann auf die Drehrate geschlossen werden.

Einen Überblick über Inertialsensorik ist in Wendel (2007) in kompakter Form zu finden.

3-Antennen-GPS

Das 3-Antennen-GPS PolaRx2 des Herstellers Septentrio misst nicht nur (wie bei einem 1-Antennen-
System) den Geschwindigkeitsvektor

vGPS
E D ŒvGPS

X;E ;v
GPS
Y;E ;v

GPS
Z;E �

T

und den Positionsvektor

pGPS
E D ŒpGPS

X;E ;p
GPS
Y;E ;p

GPS
Z;E �

T

in dem erdfesten Koordinatensystem „E“, sondern auch die Lagewinkel

‰ D Œ'GPS;�GPS; GPS� :

Bild 9.1 zeigt die Anordnung der drei Antennen. Die Positionsmessung erfolgt durch die Ermitt-
lung des Abstands zwischen der Hauptantenne zu mindestens vier Satelliten. Der Abstand wird
aus den Signallaufzeiten der Satelliten und der Lichtgeschwindigkeit in einem Kalman-Filter ge-
schätzt. Der vierte Satellit wird benötigt, um den Uhrenfehler laufend zu schätzen. Genauigkeits-
fehler entstehen aufgrund der Veränderung der Lichtgeschwindigkeit durch atmosphärische Effek-
te der Ionos- und Troposphäre. Weitere Ungenauigkeiten werden durch Mehrwegsausbreitung (Re-
flektierung der GPS-Signale an z. B. Häuserwänden), Uhren- und Rundungsfehler, relativistische
Effekte sowie ungünstige geometrische Anordnung der Satelliten erzeugt, siehe Wendel (2007).
Durch das „Space-Based Augmentation System“ SBAS werden die atmosphärischen Fehler von
geostationären Referenzstationen geschätzt und den entsprechenden Satelliten mitgeteilt. Diese In-
formationen werden dann von den SBAS-Satelliten und dem GPS-Empfänger geteilt, sodass die
Fehler korrigiert werden können. Durch die geringen Abständen der Hauptantenne zu den zwei
Hilfsantennen, erfahren alle Antennen die gleichen Positionsfehler, sodass die relative Position
zueinander D-GPS-Qualität („Differential“-GPS) im Zentimeterbereich erhält. Aus den relativen
Positionen können dann die Lagewinkel im erdfesten Koordinatensystem mit Kalman-Filtern ge-
schätzt werden. Die GPS-Geschwindigkeitsmessung basiert nicht wie die Positionsmessung auf
den Abständen der Satelliten, sondern auf dem Dopplereffekt, bei dem die Frequenzänderung des
Satellitensignals durch die Antennenbewegung gemessen und so die Geschwindigkeit geschätzt
werden kann.
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